WO2019196833A1 - 一种通信方法、装置、系统及存储介质 - Google Patents

一种通信方法、装置、系统及存储介质 Download PDF

Info

Publication number
WO2019196833A1
WO2019196833A1 PCT/CN2019/081903 CN2019081903W WO2019196833A1 WO 2019196833 A1 WO2019196833 A1 WO 2019196833A1 CN 2019081903 W CN2019081903 W CN 2019081903W WO 2019196833 A1 WO2019196833 A1 WO 2019196833A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearers
cell
network element
bearer
information
Prior art date
Application number
PCT/CN2019/081903
Other languages
English (en)
French (fr)
Inventor
梁津垚
王瑞
曾清海
张宏平
戴明增
赵旸
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2020555888A priority Critical patent/JP2021519028A/ja
Priority to EP19784416.0A priority patent/EP3755056A4/en
Publication of WO2019196833A1 publication Critical patent/WO2019196833A1/zh
Priority to US17/028,705 priority patent/US20210007028A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0027Control or signalling for completing the hand-off for data sessions of end-to-end connection for a plurality of data sessions of end-to-end connections, e.g. multi-call or multi-bearer end-to-end data connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/26Reselection being triggered by specific parameters by agreed or negotiated communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0064Transmission or use of information for re-establishing the radio link of control information between different access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • H04W36/142Reselecting a network or an air interface over the same radio air interface technology
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • H04W36/144Reselecting a network or an air interface over a different radio air interface technology
    • H04W36/1443Reselecting a network or an air interface over a different radio air interface technology between licensed networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a handover process in a wireless communication system.
  • the number of bearers provided by the communication network for the same user equipment needs to be increased to support the user equipment to simultaneously transmit different service data.
  • the network side device needs to be upgraded in order to support the increase in the number of bearers in the entire network.
  • some network-side devices can support a larger number of bearers, and some network-side devices can only support fewer bearer hybrid networking scenarios.
  • User equipment may need different support capabilities. Switching between network-side devices and how to support this type of handover is an urgent problem to be solved in the network evolution process.
  • This document describes a communication method, apparatus, system, and storage medium, and aims to provide a method for supporting user equipment to switch between network side devices or networks with different bearer support capabilities.
  • the present application provides a communication method, the method includes: sending a first message, where the first message includes information of N bearers that need to be switched, where the N is less than or equal to that required to perform the handover.
  • the maximum number of bearers supported by the source network element When the N is greater than M, the first cell in the first message includes information about M bearers in the N bearers, where the first message is in the first message.
  • the second cell includes information about other NM bearers except the M bearers in the N bearers, where the M is the maximum number of bearers supported by the first cell, and the second letter
  • the element is an unrecognizable cell of the target network element of the handover.
  • the priority of any one of the M bearers is higher than or equal to the priority of any one of the N-M bearers.
  • the method further includes: receiving priority information of the N bearers.
  • the M is the maximum number of bearers supported by the target network element of the handover.
  • the sending the first message includes: sending the first message to the switched target network element; or sending the first message to a control network element of the switched target network element Or sending the first message to a control network element of the source network element.
  • the method further includes: when the N is less than or equal to the M, the first cell includes information of the N bearers.
  • the sending the first message includes sending the first message to the target network element of the handover, where the second cell is used to trigger the target network element to be in the N bearers. Full configuration of at least one bearer.
  • the embodiment of the present application provides a communication method, the method includes: receiving a first message sent by a source network element, where the first message includes information about N bearers that need to be switched, where the N is smaller than Or the number of the maximum number of bearers supported by the source network element, where the first cell in the first message includes information about M bearers in the N bearers, and the second cell in the first message includes Information about other NM bearers except the M bearers in the N bearers, where the M is the maximum number of bearers supported by the first cell, and the second cell is the The unrecognized cell of the target network element of the handover; releasing the other NM bearers; and transmitting the information of the N bearers to the target network element of the handover.
  • the M is the maximum number of bearers supported by the target network element.
  • the embodiment of the present application provides a communication method, where the method includes: receiving a first message sent by a source network element, where the first message includes information about N bearers that need to be switched, where the N is smaller than Or the number of the maximum number of bearers supported by the source network element, where the first cell in the first message includes information about M bearers in the N bearers, and the second cell in the first message includes Information about other NM bearers except the M bearers in the N bearers, where M is the maximum number of bearers supported by the first cell, and the second cell is the switched a cell that is unrecognizable by the target network element; determining, according to the information of the N bearers, a bearer that can accept handover and a bearer that is unacceptable handover; and sending, to the source network element, the bearer that is acceptable to handover and the unacceptable handover The information carried.
  • the method further includes: performing a full configuration on the bearer that can be handed over according to the first message; and sending, to the source network element, configuration information of the bearer that can be switched.
  • the embodiment of the present application provides a communication method, where the method includes: receiving a bearer remapping indication, where the bearer remapping indication is used to indicate that a terminal device performs bearer remapping on a service flow that is not carried;
  • the remapping indication maps the un-beared service flow to a valid bearer.
  • the method further includes: receiving the rule information of the bearer remapping; mapping the service flow that is not carried on the effective bearer, including: the service that is not carried according to the rule of the bearer remapping The flow is mapped to a valid bearer.
  • embodiments of the present application provide a device having the functionality to implement the method described in any of the above aspects or any of the possible designs.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the above described apparatus includes a processor coupled to a memory, the processor being configured to process the apparatus to perform the corresponding functions of the methods described above.
  • the memory holds the program instructions and data necessary for the device.
  • the device may further include the memory.
  • embodiments of the present application provide a computer readable storage medium having instructions stored therein that, when run on a computer, cause the computer to perform the methods described in the above aspects.
  • embodiments of the present application provide a computer program product comprising instructions that, when run on a computer, cause the computer to perform the methods described in the various aspects above.
  • the present application provides a chip system including a processor for supporting the above-described apparatus to implement the functions involved in the above aspects, for example, generating or processing information involved in the above method.
  • the chip system further includes a memory for holding program instructions and data necessary to perform the function.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of a possible application scenario according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of still another possible application scenario according to an embodiment of the present application.
  • 3a-3c are schematic diagrams of three possible handover procedures provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an access network device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a core network device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the network architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
  • a wireless communication system of an orthogonal frequency division multiplexing (OFDM) access technology is particularly suitable for a communication system in which handover occurs, in particular, there is a handover between network elements having different bearer support capabilities.
  • FIG. 1 it is a schematic diagram of a possible application scenario of the embodiment of the present application.
  • a user equipment (UE) accesses a network side device through a wireless interface for communication, and can also communicate with another user equipment, such as a device to device (D2D) or a machine to machine (M2M). ) Communication under the scene.
  • D2D device to device
  • M2M machine to machine
  • the network side device can communicate with the user equipment, or can communicate with another network side device, such as communication between the macro base station and the access point or communication between the access network device and the core network device.
  • the network side device may include an access network device and a core network device.
  • the access network device usually includes a device that communicates with the user device through a wireless air interface or provides wireless access for the user device.
  • the core network device usually includes a user equipment connection. A device that manages user equipment and functions such as completing the bearer of the service and providing an interface of the user equipment to the external network.
  • the user equipment referred to in the present application may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, control devices, or other processing devices connected to the wireless modem, and various forms of UE, mobile Mobile station (MS), terminal or terminal equipment.
  • UE User Equipments
  • the network side device involved in the present application includes a base station (BS), a network controller, or a mobile switching center, etc., wherein the device that directly communicates with the user equipment through the wireless channel is usually a base station, and the base station may include various A form of a macro base station, a micro base station, a relay station, an access point, or a remote radio unit (RRU).
  • BS base station
  • RRU remote radio unit
  • the wireless communication with the user equipment may also be other network side devices having wireless communication functions, which is not limited in this application.
  • the name of a device with a base station function may be different, for example, in an LTE network, called an evolved Node B (eNB or eNodeB), in the third generation (the 3rd Generation, 3G) In the network, it is called node B, and it is called gNB in 5G system.
  • eNB evolved Node B
  • 3G the 3rd Generation
  • the base station may belong to the access network device defined above, and the network controller or the mobile switching center may belong to the core network device defined above, wherein the base station is connected to and controls the service or connection of the base station.
  • the managed device for example, a mobility management entity (MME) or an access and mobility management function (AMF) entity, etc., may also belong to the core network device defined in the present application. These devices are defined in the present application as control devices for the base station.
  • the network element is also used to describe the foregoing device.
  • the source network element in the handover process may be the source access network device in the handover process, for example, the source base station, and the target network element in the handover process.
  • the target network device to be switched for example, the target base station, and the control network element of the source network element, for example, may be a core network device connected to the source network element, such as an MME, an AMF, or a serving gateway (S -GW), a packet data network gateway (P-GW), a session management function (SMF), or a user plane function (UPF), etc., a control network element of the target network element, It may be a core network device connected to the target network element, such as MME, AMF, S-GW, P-GW, SMP or UPF.
  • MME Mobility Management Entity
  • the source base station or the source network element refers to a base station or a network element that provides a service for the user equipment before the handover
  • the target base station or the target network element refers to the base station to which the user equipment needs to be handed over or
  • the network element that is to say, the network side device serving the user equipment through the handover process is changed from the source base station (or the source network element) to the target base station (or the target network element).
  • the “data” or “data packet” described in the present application generally refers to service data or a data packet carrying service data, but may also include signaling, messages, and the like that the system needs to transmit, for example, reference signals, upper and lower. Line control messages, etc.
  • the bearer described in this application includes a radio bearer (RB) established between the user equipment and the base station, and the radio bearer may include a data radio bearer (DRB) and a signaling radio bearer (signaling).
  • Radio bearer, SRB Radio bearer
  • the bearer described in this application may also include an evolved radio access bearer (E-RAB), and the E-RAB refers to a bearer of the user plane, and is used for the user equipment and the core network (CN). Transfer voice, data or multimedia services between).
  • E-RAB evolved radio access bearer
  • the bearer described in this application may also include an evolved packet system (EPS) bearer, which refers to a bearer of the user equipment to the core network P-GW.
  • EPS evolved packet system
  • the bearer described in this application may also include an S5/S8 bearer, and the S5/S8 bearer is a bearer established on the S5/S8 interface.
  • the bearer described in this application may also include other types of bearers between the user equipment and the core network, bearers on the S1 interface, and the like.
  • the different types of bearers may be in one-to-one correspondence.
  • one DRB corresponds to one E-RAB and one EPS bearer.
  • the number of bearers that can be supported by networks of different protocol versions or different systems may be different.
  • the number of bearers supported by the LTE R14 network may be up to eight, which may include that the number of data radio bearers supported by the LTE R14 network may be up to eight.
  • the maximum number of bearers that the NR R15 network can support is 15. It can include that the number of data radio bearers supported by the NR R15 network is up to 15. Due to the different number of data radio bearers that can be supported, the number of all bearers (ie, the sum of data radio bearers and signaling radio bearers) that the network can support may be different. The number of bearers in the description may be different from the number of radio bearers in the data, or the number of radio bearers in the signal, or the number of total bearers including the radio bearers and the radio bearers.
  • the valid bearer described in this application refers to the bearer currently retained by the user equipment or being used or available.
  • the traffic flow described in this application is the uplink data sent by the user equipment or the downlink data sent by the network side device.
  • the traffic is mapped on the bearer and transmitted on the interface between the NEs.
  • the non-bearing service flow described in this application refers to the service flow of the bearer that can be mapped because of the reason of handover or bearer disconnection.
  • FIG. 2 is a schematic diagram of still another possible application scenario in the embodiment of the present application.
  • the user equipment 20 is in the coverage overlap area of the access network device 10 and the access network device 11.
  • the user equipment 20 may need to be performed between the access network device 10 and the access network device 11.
  • the access network device 10 and the access network device 11 can perform signaling interaction directly through the X2 interface, thereby supporting completion of handover, and supporting completion of handover by signaling interaction with the core network device.
  • the X2 interface refers to an interface for communication between base stations.
  • the access network device 10 and the access network device 11 are connected under the same core network device 30, and the core network device 30 controls access and services of the access network device 10 and the access network device 11 and management.
  • the access network device 10 is connected to the core network device 30, and the access network device 11 is connected to the core network device 31.
  • the core network device 30 controls and manages the access and services of the access network device 10.
  • the core network device 31 controls and manages the access and services of the network access device 11.
  • the handover described in the embodiment of the present application may be a handover between different standard networks, or a handover between networks of different protocol versions in the same system.
  • it may be a handover between an LTE and a 5G network, or a handover between network elements or networks supporting different protocol versions in an LTE system, or LTE and LTE/5GC (the access network uses the LTE protocol, and the core network uses 5G protocol system) switching between networks, or switching between LTE/5GC and 5G networks, and so on.
  • FIG. 3 is a schematic diagram of a handover process according to an embodiment of the present application.
  • the source base station directly performs signaling interaction with the target base station through the X2 interface to support the completion of the handover.
  • the source base station determines that the user equipment that provides the service needs to perform the handover, and sends a handover request to the target base station, where the handover request includes information about the bearer to be switched, configuration information of the user equipment, and the like.
  • the configuration information includes the configuration information of the bearer that needs to be switched, and may include configuration information of the air interface resource.
  • the handover request may be handover request (HO request) signaling.
  • the target base station After receiving the handover request, the target base station replies to the handover request acknowledgement to the source base station.
  • the handover request acknowledgement may include information about bearers that the target base station can accept, information about unacceptable bearers, configuration information of the target base station to the user equipment, and the like.
  • the configuration information may include configuration information provided by the target base station to the acceptable bearer, and may include configuration information of the air interface resource.
  • the handover request acknowledgement may be handover request acknowledge (HO request ACK) signaling.
  • the source base station sends a radio resource control (RRC) connection reconfiguration message to the user equipment according to the information received in the handover request acknowledgement, and the message reconfigures the user equipment based on the configuration information provided by the target base station. That is, the configuration information provided by the target base station is sent to the user equipment.
  • RRC Connection Reconfiguration message may be RRC connection reconfiguration signaling.
  • the source base station notifies the sequence number (SN) and the hyper frame number (HFN) of the Packet Data Convergence Protocol (PDCP) used by the bearer between the user equipment and the source base station to
  • the target base station enables the target base station to synchronize with the user equipment.
  • the PDCP SN and HFN information can be sent through SN status transfer signaling.
  • the user equipment synchronizes with the target base station according to the received RRC connection reconfiguration message, and implements access to the target base station, including the user equipment to send an uplink synchronization signal, and the target base station configures the uplink resource and the timing advance (timing advance, TA) and other processes.
  • timing advance timing advance
  • the target base station further communicates with its control network element (not shown in FIG. 3a), such as the MME, to implement update of the bearer information, and the target base station also performs signaling interaction with the source base station (not shown). Shown in 3a) to achieve the release of resources and the like.
  • its control network element such as the MME
  • FIG. 3b is a schematic diagram of another handover process provided by an embodiment of the present application.
  • the source base station and the target base station are connected to the same control network element, and the source base station and the target base station perform signaling interaction support to complete the handover through the control network element.
  • the control network element is the MME
  • the interface between the base station and the MME is the S1 interface.
  • the control network element is the AMF
  • the interface between the base station and the AMF is an NG interface.
  • the control network element may also be controlled in other processes as follows.
  • the network side device of the network element function is not limited in this application. Without loss of generality, the following describes the process by taking the control network element as the MME as an example.
  • the source eNB determines that the user equipment that provides the service needs to perform the handover, and sends a handover request to the MME, where the handover request includes information about the bearer to be switched, configuration information of the user equipment, and the like.
  • the configuration information includes the configuration information of the bearer that needs to be switched, and may include configuration information of the air interface resource.
  • the handover request may be handover required (HO required) signaling on the S1 interface between the source base station and the MME.
  • the MME sends the information about the bearer that needs to be handed over, and the content of the configuration information of the source base station to the user equipment is sent to the target base station by using a handover request.
  • the handover request may be handover request (HO request) signaling on the S1 interface between the target base station and the MME.
  • the target base station After receiving the handover request, the target base station replies to the handover request and acknowledges to the MME.
  • the handover request acknowledgement may include information about bearers that the target base station can accept, information about unacceptable bearers, configuration information of the target base station to the user equipment, and the like.
  • the configuration information may include configuration information provided by the target base station to the acceptable bearer, and may include configuration information of the air interface resource.
  • the handover request acknowledgement may be handover request acknowledge (HO request ACK) signaling.
  • HO request ACK handover request acknowledge
  • the MME sends the bearer information acceptable by the target base station, the unacceptable bearer information, and the configuration information of the target base station to the user equipment to the source base station through a handover command.
  • the handover command may be handover command (HO command) signaling.
  • the source base station sends a radio resource control (RRC) connection reconfiguration message to the user equipment according to the information received in the handover command, and the message is reconfigured based on the configuration information provided by the target base station, that is, And transmitting configuration information provided by the target base station to the user equipment.
  • RRC Connection Reconfiguration message may be RRC connection reconfiguration signaling.
  • the source base station passes the sequence number (SN) and the hyper frame number (HFN) of the Packet Data Convergence Protocol (PDCP) used by the bearer between the user equipment and the source base station through the MME.
  • the target base station is notified so that the target base station can synchronize with the user equipment.
  • the PDCP SN and HFN information can be sent through SN status transfer signaling.
  • the user equipment synchronizes with the target base station according to the received RRC connection reconfiguration message, and implements access to the target base station, including the user equipment to send an uplink synchronization signal, and the target base station configures the uplink resource and the timing advance (timing advance, TA) and other processes.
  • timing advance timing advance
  • FIG. 3c is a schematic diagram of still another handover process provided by an embodiment of the present application.
  • the source base station and the target base station are connected to different control network elements, and the source base station and the target base station control the network element and the target base station control network element to perform signaling interaction support handover completion.
  • the source base station control network element or the target base station controls the type of the network element, and the interface with the base station can refer to the description in the flow corresponding to FIG. 3b.
  • the source base station control network element and the target base station control network element are both MMEs, the source MME and the target MME are simply referred to as the S10 interface.
  • the handover procedure corresponding to FIG. 3c is different from the handover procedure corresponding to FIG. 3b in that the source base station sends a handover request (for example, HO required signaling) to the source MME, and the source MME transmits the bearer to be switched through S10 signaling.
  • the information is sent to the target MME by the source base station and the configuration information of the user equipment, and the target MME sends the information to the target base station by using a handover request (for example, HO request signaling).
  • the target base station Jiang handover request is determined to be sent to the target MME, and the target MME passes the information of the bearer that the target base station can accept in the handover request determination, the information of the unacceptable bearer, and the configuration information of the target base station to the user equipment, etc. through the S10 signaling. Love is sent to the source MME. The source MME then sends the above information to the source base station through a handover command.
  • the handover process shown in FIG. 3a and FIG. 3c is a description of a handover procedure by using a base station as an example.
  • the base station in the figure may also be other types of network side devices or network elements, for example, other An access network device or an access network element that performs wireless communication by the user equipment.
  • the control network element corresponding to the access network device may be a network side that is connected to the access network device and controls and manages the connection and service of the access network device.
  • the device for example, may be a core network device such as MME or AMF.
  • the switching process shown in Figure 3a or Figure 3b can be applied to the application scenario shown in Figure 2a or Figure 2b.
  • the handover process shown in Figure 3c can be applied to the application scenario shown in Figure 2b.
  • the number of bearers provided by the communication network for the same user equipment needs to be increased to support the user equipment to simultaneously transmit different service data.
  • the network side device needs to be upgraded in order to support the increase in the number of bearers in the entire network.
  • some network-side devices can support a larger number of bearers, and some network-side devices can only support fewer bearer hybrid networking scenarios.
  • User equipment may need different support capabilities. Switch between network side devices. This switching can be performed based on any of the switching procedures shown in Figures 3a-3c above.
  • the source base station may have been upgraded or supported by a newer protocol version, so that the same user equipment can be provided with more bearers, and the target base station may not be upgraded or can only support older protocols. Version can only provide fewer bearers for the same user device. For example, the user equipment switches from a 4G base station supporting a newer protocol version to a 4G base station that can only support an older protocol version, or the user equipment switches from a 5G base station to a 4G base station that can only support an older protocol version. In this case, the target base station cannot support the number of bearers provided by the source base station for the user equipment. How to support this type of handover is an urgent problem to be solved in the network evolution process.
  • FIG. 4 is a schematic flowchart of a communication method according to an embodiment of the present application. The method may be applied to the scenario described in the previous paragraph and used in combination with any of the handover processes shown in FIG. 3a to FIG. 3c.
  • the source network element in FIG. 4 may be a source base station, and the target network element involved in the method may be Target base station.
  • the method shown in FIG. 4 is applied to the handover procedure shown in FIG. 3a, the first message receiving network element therein may be the target base station in FIG. 3a.
  • the method shown in FIG. 4 is applied to the handover procedure shown in FIG.
  • the first message receiving network element therein may be the control network element in FIG. 3b.
  • the first message receiving network element therein may be the source base station control network element in FIG. 3c.
  • the source network element in FIG. 4 may also be other types of network side devices, such as an access network device or an access network element.
  • the first message receiving network element may also be other types of network side devices, such as an access network.
  • the target network element may also be other types of network side devices, such as an access network device or an access network element, such as a device, an access network element, a core network device, or a core network element.
  • the source network element and the target network element are both base stations, and the first message receiving network element is the target base station, the MME, or the source MM as an example.
  • N is the number of valid bearers provided by the source base station for the user equipment and needs to be handed over, where N may be all or part of all valid bearers provided by the current source base station for the user equipment.
  • the method shown in FIG. 4 includes: the source base station sends a first message, where the first message includes information about N bearers that need to be switched, where the N is less than or equal to that supported by the source network element that needs to perform the handover. The maximum number of bearers.
  • the first cell in the first message includes information about M bearers in the N bearers
  • the second cell in the first message includes the N bearers.
  • the signaling directly interacting between the source base station and the target base station, or the signaling through the MME interaction may include
  • the source base station can support (or can be identified), but the target base station cannot support (or can not recognize) the cell, and the source base station and the target base station can support (or can be identified) cells.
  • the source base station may not know the support capability of the target base station to the bearer.
  • the source base station may divide the bearers that need to be switched into two groups, and one set of bearers.
  • the information is placed in the first cell, and the first cell can be a cell defined by the old version protocol, and the first cell can be identified regardless of whether the target base station can support the newer protocol version, and the other cell
  • the information carried by the group is placed in the second cell, and the second cell may be a cell defined by the new version protocol.
  • the target base station cannot support the newer protocol version, the target base station cannot identify the second cell. However, the target base station can still perform the subsequent process of switching according to the information carried in the first cell.
  • the first message shown may be the handover request in FIG. 3a.
  • the first cell in the handover request may be an E-RABs To Be Setup List cell in the HO request, or an RRC Context cell, or an E-RABs To Be Setup List cell and an RRC Context cell combination.
  • the E-RABs To Be Setup List cell is used to provide bearer identification, quality of service (QoS) and other bearer information
  • the RRC Context cell includes handover preparation information, which includes the source base station to configure the user equipment. Air interface information, for example, DL-DCCH-Message information.
  • Both the E-RABs To Be Setup List cell and the RRC Context cell can support the delivery of M bearer information in the third generation partnership project (3GPP) TS 36.423 (version f00, Release 15).
  • 3GPP third generation partnership project
  • TS 36.423 version f00, Release 15
  • the second cell in the handover request may be designed according to an E-RABs To Be Setup List cell or an RRC Context cell.
  • E-RABs To Be Setup List cell or an RRC Context cell.
  • 3GPP TS 36.423 version f00, Release 15
  • the second cell needs to use a different cell name or cell identifier than the first cell to distinguish it from the first cell.
  • the name can be defined as E-RABs To Be Setup List Ext, when the second cell is the same as the RRC Context cell.
  • the second cell may also be designed according to an E-RABs To Be Setup List cell and an RRC Context cell, for example, including the E-RABs To Be Setup List Ext cell and the RRC Context Ext cell described above.
  • the maximum number of bearers supported by the second cell may be related to system requirements.
  • the second cell supports The maximum number of bearers can be defined as 7 (that is, the difference between the maximum number of bearers defined by the new version protocol and the maximum number of bearers supported by the first cell).
  • the target base station receives the first message sent by the source network element, where the first message includes the information of the N bearers that need to be switched, where the N is less than or equal to the maximum number of bearers supported by the source network element,
  • the first cell in the first message includes information about M bearers in the N bearers, and the second cell in the first message includes the M bearers in the N bearers.
  • the M is the maximum number of bearers supported by the first cell
  • the second cell is a cell that is not recognized by the switched target network element, and according to the The information of the N bearers in the first cell determines the bearer that can accept the handover and the bearer that is unacceptable, and sends the bearer information of the bearer that is acceptable to handover and the bearer that is not acceptable to the source network element.
  • the information about the bearer that can accept handover and the bearer that is unacceptable handover may be sent by using the handover request in FIG. 3a.
  • the handover request determination may be HO ACK signaling defined by 3GPP TS 36.423 (version f00, Release 15), where the E-RABs Admitted Item cell is used to convey information of bearers that can accept handover, E-RABs Not Admitted
  • the List cell is used to convey the information of the bearer that is unacceptable for handover.
  • the target base station may further determine, by using the handover request, configuration information that sends an acceptable bearer to the source base station.
  • the handover request determination may be HO ACK signaling defined by 3GPP TS 36.423 (version f00, Release 15), and the included DL-DCCH-Message information in the signaling is used to deliver the target base station for an acceptable bearer.
  • Configuration information provided to the user device.
  • the target base station performs full configuration on the bearer that can be switched according to the first message, and sends configuration information of the bearer that can be switched to the source network element. Because the second message in the first message is not recognized by the target base station, the target base station can learn that the current support capability of the bearer is different from that of the source base station, so that the bearer that can accept the handover can be fully configured.
  • the function of the full configuration described in this application is to refresh the configuration information of the source base station to the user equipment, so that the user equipment receives the complete information configured by the target base station, and can release the information configured by the source base station to the user equipment, and prevent the user equipment side from carrying the target. A cell that the base station does not recognize.
  • the first message shown may be a handover request or a graph sent by the source base station to the MME in FIG. 3b.
  • the first cell may be an E-RABs Information Item cell in the HO required, or an RRC Container cell, or an E-RABs Information Item cell and an RRC Container cell.
  • the specific definition and reference of the E-RABs Information Item cell and the RRC Container cell can be referred to the definition in 3GPP TS 36.423 (version f00, Release 15).
  • the second cell may be of the same design as the E-RABs Information Item cell, or the RRC Container cell, or the E-RABs Information Item cell and the RRC Container cell.
  • the name can be defined as E-RABs Information Item Ext
  • RRC Container Ext where the same information as the DL-DCCH-Message information in the RRC Container Ext can be defined as DL-DCCH-Ext-Message.
  • the second cell may also be designed according to the E-RABs Information Item cell and the RRC Container cell, for example, including the E-RABs Information Item Ext cell and the RRC Container Ext cell described above.
  • the maximum number of bearers supported by the second cell may be related to system requirements. For example, when the maximum number of bearers supported by the first cell is 8, and the maximum number of bearers defined by the new version protocol is 15, the second cell supports The maximum number of bearers can be defined as 7 (that is, the difference between the maximum number of bearers defined by the new version protocol and the maximum number of bearers supported by the first cell).
  • the MME in Figure 3b or the source in Figure 3c The MME or the target MME in FIG. 3c needs to release the bearer in the second cell when transmitting the information of the bearer to be handed over to the target base station, and only transmit the bearer information in the first cell to the target base station. Specifically, in Figure 3b, the release can be performed by the MME. In FIG. 3c, when the target MME does not support the second cell or only supports fewer bearers (or only supports the maximum number of bearers supported by the first cell), the release may be performed by the MME. .
  • the source MME may not process the second cell, and send the bearer information in the first cell and the second cell to the target MME, and perform the foregoing release action by the target MME.
  • the MMEs can exchange their respective capability information through the S10 interface signaling to learn the bearer support capabilities of each other.
  • the bearer support capability of each other can be learned between the base station and the MME through operations and management (OAM) functions or signaling interactions.
  • OAM operations and management
  • the receiving network element of the first message receives the first message sent by the source network element, where the first message includes information of N bearers that need to be switched, where The N is less than or equal to the maximum number of bearers supported by the source network element, and the first cell in the first message includes information about M bearers in the N bearers, where the first message is The second cell includes information about other NM bearers except the M bearers in the N bearers, where the M is the maximum number of bearers supported by the first cell, and the second letter
  • the element is an unrecognizable message of the target network element of the handover, releasing the other NM bearers, and transmitting the information of the N bearers to the target network element of the handover.
  • the priority of any one of the M bearers is higher than or equal to the priority of any one of the N-M bearers. Therefore, the target network element or the control network element can retain the bearer with higher priority.
  • the source base station may further receive priority information of the N bearers.
  • the priority information may be sent by the control network element of the source base station to the source base station.
  • the priority information described in the embodiment of the present application may be a QoS class identifier (QCI), an allocation and retention priority (ARP), and a service guarantee bit rate (S-GBR). ) etc.
  • QCI QoS class identifier
  • ARP allocation and retention priority
  • S-GBR service guarantee bit rate
  • the source base station determines, according to the foregoing at least one priority information, configuration of the bearer information on the cell. For example, the source base station configures the bearer according to the QCI according to the QCI from the highest to the lowest in the first cell and the second. On the cell.
  • the source base station obtains the priority information of the bearer when the bearer is established.
  • the E-RAB setup request signaling sent by the MME may be received, and the E-RAB Level QoS Parameters cell in the signaling may be used to indicate Priority information carried.
  • the M is a maximum number of bearers supported by the target network element of the handover.
  • the maximum number of bearers supported by the first cell can be defined as the maximum number of bearers supported by the target network element, so as to better improve the compatibility of the entire network.
  • the source base station may configure the information of the N bearers in the first cell.
  • the second cell is used to trigger the target network element to carry at least one of the N bearers. Full configuration.
  • the second cell may not contain any information, or contain at least one bearer, and the at least one bearer may be any one of the N bearers.
  • the target network element receives the first message sent by the source network element, where the first message includes the information of the N bearers that need to be switched, where the N is less than or equal to the maximum number of bearers supported by the source network element.
  • the first cell in the first message includes information about M bearers in the N bearers, and the second cell in the first message includes the M carriers in the N bearers.
  • the N bearer information determines the bearer that can accept the handover and the bearer that is unacceptable handover, and sends the bearer information of the bearer that can be switched and the bearer that is unacceptable to the source network element.
  • the target network element performs full configuration on the bearer that can be switched according to the first message, and sends configuration information of the bearer that can be switched to the source network element.
  • the first cell and the second cell can still be used.
  • the source network element and the target network element support a newer version of the protocol or both support a larger maximum number of bearers
  • the source network element is placed in the bearer information in the first cell and the bearer in the second cell.
  • the information can be identified by the target network element, and the target network element can determine acceptable and unacceptable bearers according to the information carried in the first cell and the second cell, and according to any of the methods in FIG. 3a to FIG. 3c The process completes the switch.
  • the embodiment of the present application further provides a method for a user equipment to perform bearer remapping.
  • the user equipment receives the bearer remapping indication, where the bearer remapping indication is used to indicate that the terminal device performs bearer remapping on the un-loaded service flow, and maps the un-beared service flow to the valid bearer according to the bearer remapping indication. .
  • the bearer used by the user equipment may be interrupted or broken due to various reasons, and the user equipment may have a part of the service flow that cannot be transmitted because there is no bearer.
  • the user equipment may have a part of the service flow because there is no bearer. It cannot be transferred.
  • the user equipment may perform the foregoing bearer remapping, and map the un-beared service flow to the currently valid bearer for transmission.
  • the bearer remapping indication may be sent by the source base station to the user equipment, or may be sent by the target base station to the user equipment.
  • the user equipment may configure the service according to the air interface configuration of the target network element and according to the indication of the network side device (for example, NAS signaling).
  • Stream remapping may not be fully completed.
  • the base station initiating a path switch request (eg, path switch request signaling) to the MME may be performed concurrently with the user equipment remapping service flow.
  • the user equipment may also receive the rule information of the bearer remapping, where the service flow that is not carried is mapped to the valid bearer, and the service flow that is not carried is mapped to the valid bearer according to the rule of the bearer remapping. on.
  • the rule information of the bearer remapping indication and/or the bearer remapping may be pre-agreed or may be sent by using, for example, air interface signaling or a non-access stratum (NAS).
  • NAS non-access stratum
  • the core network indicates that the user equipment performs bearer remapping through NAS signaling, and the rule that the user equipment performs bearer remapping is predefined in the protocol.
  • the method of carrying the remapping may be: the user equipment originally maps the service flows 1, 2, and 3 (the identifications of the service flows are 1, 2, 3 respectively) to the bearers 1, 2, and 3 (the identifiers of the bearers are 1, respectively).
  • the user equipment may perform the following bearer remapping according to the bearer remapping indication information and/or the bearer remapping rule information: mapping the service flow 2, 3 On the new bearer 2, 3, traffic 1 is remapped to the new bearer 4.
  • the embodiment of the present application further provides a method for carrying out the bearer reconstruction, so that the user equipment performs switching between network elements with different supporting capabilities.
  • the source network element can learn the bearer support capability of other network elements through the signaling interaction between the core network or the signaling interaction between the base stations or the neighboring area configuration information, and then determine whether the current need is performed by combining the measurement information of the user equipment. Switching, and the bearer support capability of the target network element. According to the above information, the source network element may trigger the core network to re-establish the bearer, and the number of bearers of the core network may be the same as or less than the bearer support capability of the target network element, so that the service flow is non-destructively switched.
  • the source network element may send indication information to the core network, where the indication information is used to indicate that the core network uses data on the N bearers. Mapped to M bearers, the N being an integer greater than M.
  • N is the number of bearers that the source NE needs to switch
  • M is the maximum number of bearers supported by the target NE.
  • the process may be used in combination with the method shown in Figure 4.
  • the source network element first notifies the core network to perform bearer reestablishment. If the bearer rebuild cannot be completed, or after the reestablishment, the number of bearers that the source NE needs to switch is still The method provided in FIG. 4 can be further used, more than the maximum number of bearers supported by the target network element.
  • the target network element may send indication information to the core network after the handover, where the indication information is used to indicate the core network.
  • the N is the number of bearers that complete the handover
  • M is the maximum number of bearers supported by the target network element or an integer greater than N.
  • the present application provides a communication method for a scenario in which a network element with different support capabilities exists in the system described above. That is, the handover is cancelled or rejected according to the number of bearers supported by the source network element and the target network element (or the capability is different, or the extended cell cannot be read).
  • the method can be applied to a scenario where the complexity of the user equipment or the network side device is required, or the power consumption of the user equipment is required.
  • NB-IOT narrow band Internet of Things
  • MTC machine type communication
  • a user equipment cannot support an excessively complex function, and needs to save power as much as possible. Avoid complex processes, so the system may not support NB-IoT or MTC user terminals to switch between networks supporting different numbers of bearers.
  • the target network element or the control network element of the source network element or the control network element of the target network element identifies that the first message includes a message that is not supported by the target network element.
  • the handover request rejection signaling for example, HO request reject
  • the source network element may determine, according to the acceptable handover bearer and the non-switchable bearer fed back by the target network element, whether the target network element can be All the bearers that need to be handed over are identified. For example, when the bearer of the switch that is supported by the target network element and the bearer that cannot be switched does not include the bearer that needs to be handed over, the target network element can be considered as not identifying all bearers that need to be handed over.
  • the source network element may cancel the handover, that is, no longer perform RRC connection reconfiguration and subsequent processes, but send an indication of handover cancellation or handover termination to the target network element, for example, sending handover cancellation (for example, handover cancel letter)
  • the command may carry a specific reason, for example, carrying a partial handover reason, or carrying a DiffBearerNum reason, indicating that the source terminates the handover because the number of bearers that the two parties can support is different, or because the capabilities of the two parties are different.
  • the foregoing signaling which cancels the handover or rejects the reason for the handover, and the naming of the specific cause, may be involved according to system requirements.
  • the foregoing signaling and cause names are only examples.
  • each network element such as a source network element, a target network element, a control network element, a user equipment, etc.
  • each network element includes hardware structures and/or software modules corresponding to performing respective functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • FIG. 5 is a schematic diagram showing a possible structure of an access network device involved in the embodiment of the present application.
  • the access network device may be the source network element or the target network element in the foregoing embodiment, where the source network element or the target network element may be an independent network side device or device, or may be other network side
  • the functional entities or devices integrated with the device may be embodied in a chip system, a discrete device, an integrated circuit, or the like.
  • the access network device includes a processor 502 coupled to a memory, the processor 502 configured to support an access network device to perform the processing performed by a source network element (e.g., a source base station) in the above embodiments.
  • the access network device may further include a memory 503, where the memory 503 is configured to store program codes and data for the source network element.
  • the access network device may include a communication unit 504, where the communication unit 504 is configured to support the access network device to perform other network-side devices (for example, control) performed by the source network element in the foregoing embodiment. Signaling and/or data of a network element or a target network element, and a function of transmitting signaling and/or data to other network side devices.
  • the access network device may further include a transceiver 501, where the transceiver 501 is configured to support the access network device to perform the function of sending signaling or data to the user equipment by using the source network element in the foregoing embodiment. And the function of receiving signaling and/or data sent by the user equipment.
  • the transceiver 501 is configured to support the access network device to perform the function of sending signaling or data to the user equipment by using the source network element in the foregoing embodiment. And the function of receiving signaling and/or data sent by the user equipment.
  • the access network device includes a processor 502 coupled to a memory, the processor 502 configured to support the access network device to perform the processing performed by the target network element (e.g., the target base station) in the above embodiments. .
  • the access network device may further include a memory 503, configured to store program codes and data for the target network element.
  • the access network device may include a communication unit 504, where the communication unit 504 is configured to support the access network device to perform other network-side devices (for example, control) performed by the target network element in the foregoing embodiment. Signaling and/or data of a network element or a source network element, and a function of transmitting signaling and/or data to other network side devices.
  • the access network device may further include a transceiver 501, where the transceiver 501 is configured to support the access network device to perform the function of sending signaling or data to the user equipment by performing the target network element in the foregoing embodiment. And the function of receiving signaling and/or data sent by the user equipment.
  • the transceiver 501 is configured to support the access network device to perform the function of sending signaling or data to the user equipment by performing the target network element in the foregoing embodiment. And the function of receiving signaling and/or data sent by the user equipment.
  • the structure of the access network device involved in the present application includes a transceiver 501, a processor 502, a memory 503, and a communication unit 504.
  • FIG. 6 is a schematic diagram showing a possible structure of a core network device involved in the embodiment of the present application.
  • the core network device may be the control network element or the source base station control network element or the target base station control network element in the foregoing embodiment, for example, an MME or an AMF.
  • the core network device may be a separate network side device or device, or may be a functional entity or device integrated with other network side devices.
  • the specific implementation form may include a chip system, a discrete device, an integrated circuit, and the like.
  • the core network device includes a processor 602 coupled to a memory, the processor 602 configured to support a core network device to perform the processing performed by a control network element (e.g., a source base station) in the above embodiments.
  • the core network device may further include a memory 603, where the memory 603 is configured to store program codes and data for the control network element.
  • the core network device may include a communication unit 601, where the communication unit 601 is configured to support the core network device to perform other network side devices (for example, source network elements) performed by the control network element in the foregoing embodiment. Signaling and/or data of the target network element and the function of transmitting signaling and/or data to other network side devices.
  • the structure of the core network device involved in the present application includes a communication unit 601, a processor 602, and a memory 603.
  • FIG. 7 is a schematic structural diagram of an apparatus for implementing a function of a user equipment involved in an embodiment of the present application.
  • the device may be a user equipment, or may be a functional module or a functional entity in the user equipment, for example, may be a chip, a chip system, a discrete device, an integrated circuit, or the like in the user equipment.
  • the apparatus includes a processor 703 coupled to a memory, the processor 703 configured to support the apparatus to perform the processing performed by the user equipment in the above-described embodiments.
  • the apparatus can also include a memory 704 for storing program code and data for the apparatus.
  • the device may include a transmitter 701 and a receiver 702, where the device is configured to perform the function of signaling interaction and/or data interaction with the network side device performed by the user equipment in the foregoing embodiment.
  • the specific implementation form of the transmitter and the receiver may be embodied as an input/output interface, for example, an input/output interface in the form of a circuit or a chip pin.
  • the apparatus for implementing the function of the user equipment involved in the present application includes a transmitter 701, a receiver 702, a processor 703, and a memory 704.
  • the processor for performing any of the above devices or devices of the present application may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and a field programmable gate array (FPGA). Or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the memory of any of the above devices or devices may also be integrated inside the processor.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware or may be implemented by a processor executing software instructions.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in any of the above devices or devices.
  • the processor and the storage medium may also be present as discrete components in any of the devices or devices described above.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及无线通信技术领域,尤其涉及无线通信系统中的切换处理过程。本文描述了一种通信方法、装置、系统及存储介质,旨在提供一种方法,以支持用户设备在承载支持能力不同的网络侧设备或者网络之间进行切换。该方法包括:发送第一消息,所述第一消息中包含需要切换的N个承载的信息,当所述N大于M时,所述第一消息中的第一信元包含所述N个承载中的M个承载的信息,所述第一消息中的第二信元包含所述N个承载中的除所述M个承载之外的其他N-M个承载的信息,其中,所述M为所述第一信元支持的最大承载数,所述第二信元为所述切换的目标网元不可识别的信元。

Description

一种通信方法、装置、系统及存储介质 技术领域
本申请涉及无线通信技术领域,尤其涉及无线通信系统中的切换处理过程。
背景技术
随着网络功能的不断升级以及业务类型的丰富,通信网络为同一个用户设备提供的承载数量需要进行提升,以便支持用户设备同时进行不同业务数据的传输。但网络侧设备需要逐步升级才能支持整网的承载数量提升。在这个升级的过程中,就会存在一部分网络侧设备可以支持更大数量的承载,而一部分网络侧设备只能支持较少的承载的混合组网的场景,用户设备就可能需要在不同支持能力之间的网络侧设备之间进行切换,如何支持这种类型的切换,是网络演进过程中亟待解决的问题。
发明内容
本文描述了一种通信方法、装置、系统及存储介质,旨在提供一种方法,以支持用户设备在承载支持能力不同的网络侧设备或者网络之间进行切换。
一方面,本申请提供一种通信方法,该方法包括:发送第一消息,所述第一消息中包含需要切换的N个承载的信息,其中,所述N小于或等于需要进行所述切换的源网元支持的最大承载数,当所述N大于M时,所述第一消息中的第一信元包含所述N个承载中的M个承载的信息,所述第一消息中的第二信元包含所述N个承载中的除所述M个承载之外的其他N-M个承载的信息,其中,所述M为所述第一信元支持的最大承载数,所述第二信元为所述切换的目标网元不可识别的信元。
在一个可能的设计中,所述M个承载中的任一个承载的优先级高于或等于所述N-M个承载中任一个承载的优先级。
在一个可能的设计中,所述方法还包括:接收所述N个承载的优先级信息。
在一个可能的设计中,所述M为所述切换的目标网元支持的最大承载数。
在一个可能的设计中,所述发送第一消息,包括:向所述切换的目标网元发送所述第一消息;或向所述切换的目标网元的控制网元发送所述第一消息;或向所述源网元的控制网元发送所述第一消息。
在一个可能的设计中,所述方法还包括:当所述N小于或等于所述M时,所述第一信元包含所述N个承载的信息。
在一个可能的设计中,所述发送第一消息包括向所述切换的目标网元发送所述第一消息,所述第二信元用于触发所述目标网元对所述N个承载中的至少一个承载的全配置。
另一方面,本申请实施例提供一种通信方法,该方法包括:接收源网元发送的第一消息,所述第一消息中包含需要切换的N个承载的信息,其中,所述N小于或等于所述源网元支持的最大承载数,所述第一消息中的第一信元包含所述N个承载中的M个承载的信息,所述第一消息中的第二信元包含所述N个承载中的除所述M个承载之外的其他N-M个承载的信息,其中,所述M为所述第一信元支持的最大承载数,所述第二信元为所述切换的目标网元不可识别的信元;释放所述其他N-M个承载;向所述切换的目标网元发送所述N个承载的信息。
在一个可能的设计中,所述M为所述目标网元支持的最大承载数。
又一方面,本申请实施例提供一种通信方法,该方法包括:接收源网元发送的第一消息,所述第一消息中包含需要切换的N个承载的信息,其中,所述N小于或等于所述源网元支持的最大承载数,所述第一消息中的第一信元包含所述N个承载中的M个承载的信息,所述第一消息中的第二信元包含所述N个承载中的除所述M个承载之外的其他N-M个承载的信息,所述M为所述第一信元支持的最大承载数,所述第二信元为所述切换的目标网元不可识别的信元;根据所述N个承载的信息,确定可接受切换的承载和不可接受切换的承载;向所述源网元发送所述可接受切换的承载和不可接受切换的承载的信息。
在一个可能的设计中,所述方法还包括:根据所述第一消息,对所述可接受切换的承载进行全配置;向所述源网元发送所述可接受切换的承载的配置信息。
又一方面,本申请实施例提供一种通信方法,该方法包括:接收承载重映射指示,所述承载重映射指示用于指示终端设备对没有承载的业务流进行承载重映射;根据所述承载重映射指示,将没有承载的业务流映射到有效承载上。
在一个可能的设计中,所述方法还包括:接收承载重映射的规则信息;所述将没有承载的业务流映射到有效承载上,包括,根据所述承载重映射的规则将没有承载的业务流映射到有效承载上。
又一方面,本申请实施例提供了一种装置,该装置具有实现上述任一方面或任一方面中任一种可能的设计中所述的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,上述装置的结构中包括与存储器耦合的处理器,所述处理器被配置为处理该装置执行上述方法中相应的功能。所述存储器保存该装置必要的程序指令和数据。可选的,所述装置还可以包括所述存储器。
又一方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
又一方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
又一方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持上述装置实现上述方面中所涉及的功能,例如,生成或处理上述方法中所涉及的信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存执行所述功能必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
下面将参照所示附图对本申请实施例进行更详细的描述。
图1为本申请实施例的一种可能的应用场景示意图;
图2为本申请实施例的又一种可能的应用场景示意图;
图3a-图3c为本申请实施例提供的三种可能的切换流程示意图;
图4为本申请实施例提供的一种通信方法的流程示意图;
图5为本申请实施例提供的一种接入网设备的结构示意图;
图6为本申请实施例提供的一种核心网设备的结构示意图;
图7为本申请实施例提供的一种装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请描述的技术可以适用于LTE系统以及后续的演进系统,例如,新空口(new radio,NR)系统、第五代移动通信(the 5th Generation mobile communication,5G)系统等,或其他采用正交频分复用(orthogonal frequency division multiplexing,OFDM)接入技术的无线通信系统,尤其适用于存在切换,特别是存在承载支持能力不同的网元之间切换的通信系统。如图1所示,是本申请实施例的一种可能的应用场景示意图。用户设备(user equipment,UE)通过无线接口接入网络侧设备进行通信,也可以与另一用户设备进行通信,如设备对设备(device to device,D2D)或机器对机器(machine to machine,M2M)场景下的通信。网络侧设备可以与用户设备进行通信,也可以与另一网络侧设备进行通信,如宏基站和接入点之间的通信或者接入网设备与核心网设备之间的通信。本申请中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。网络侧设备可以包含接入网设备和核心网设备,接入网设备通常包括通过无线空口与用户设备进行通信或者为用户设备提供无线接入的设备,核心网设备通常包括用于提供用户设备连接、对用户设备的管理以及对业务完成承载,提供用户设备到外部网络的接口等功能的设备。
本申请所涉及到的用户设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备、控制设备或连接到无线调制解调器的其它处理设备,以及各种形式的UE、移动台(mobile station,MS)、终端(terminal)或终端设备(terminal equipment)等。为方便描述,本申请中,上面提到的设备统称为用户设备(UE)。
本申请所涉及到的网络侧设备包括基站(base station,BS)、网络控制器或移动交换中心等,其中通过无线信道与用户设备进行直接通信的装置通常是基站,所述基站可以包括各种形式的宏基站、微基站、中继站、接入点或射频拉远单元(remote radio unit,RRU)等。当然,与用户设备进行无线通信的也可以是其他具有无线通信功能的网络侧设备,本申请对此不做唯一限定。在不同系统中,具备基站功能的设备的名称可能会有所不同,例如,在LTE网络中,称为演进的节点B(evolved nodeB,eNB或eNodeB),在第三代(the 3rd Generation,3G)网络中,称为节点B(node B),在5G系统中称为gNB等。
在本申请中,基站可以属于上述定义的接入网设备,网络控制器或移动交换中心等可以属于上述定义的核心网设备,其中,与基站向连接并对该基站的业务或者连接进行控制和管理的设备,例如,移动性管理实体(mobility management entity,MME)或接入和移动性管理功能(access and mobility management function,AMF))实体等也可以属于本申请中所定义的核心网设备,这些设备在本申请中定义为基站的控制设备。在本申请中,还使用“网元”来描述上述设备,例如,切换过程中源网元,可以是切换过程中的源接入网设备,例如源基站,切换过程中的目标网元,可以是切换的目标接入网设备,例如目标基站,再如,源网元的控制网元,可以是与该源网元相连接的核心网设备,例如MME、AMF、服务网关(serving gateway,S-GW)、分组数据网络网关(packet data network gateway,P-GW)、会话管理功 能(session management function,SMF)或用户面功能(user plane function,UPF)等,目标网元的控制网元,可以是与该目标网元相连接的核心网设备,例如MME、AMF、S-GW、P-GW、SMP或UPF等。
本申请实施例中,源(source)基站或者源网元是指在切换之前为用户设备提供服务的基站或网元,目标(target)基站或者目标网元是指用户设备需要切换到的基站或者网元,也就是说通过切换过程,为用户设备提供服务的网络侧设备从源基站(或源网元)变更成了目标基站(或目标网元)。
下面对本申请实施例中所涉及到的一些通用概念或者定义做出解释,需要说明的是,本文中的一些英文简称为以LTE系统为例对本申请实施例进行的描述,其可能随着网络的演进发生变化,具体演进可以参考相应标准中的描述。
本申请中所述的“数据”或“数据包”,通常情况下指业务数据或者承载业务数据的数据包,但也可以包括系统需要传输的信令、消息等内容,例如,参考信号、上下行控制消息等。
本申请中所述的承载(bearer),包括用户设备和基站之间建立的无线承载(radio bearer,RB),无线承载可以包括数据无线承载(data radio bearer,DRB)和信令无线承载(signaling radio bearer,SRB)。本申请中所述的承载,还可以包括演进的无线接入承载(evolved radio access bearer,E-RAB),E-RAB是指用户面的承载,用于用户设备和核心网(core network,CN)之间传送语音、数据或多媒体业务。本申请中所述的承载,还可以包括演进分组系统(evolved packet system,EPS)承载,这是指用户设备至核心网P-GW的承载。本申请中所述的承载,还可以包括S5/S8承载,S5/S8承载是建立在S5/S8接口上的承载。本申请中所述的承载,还可以包括用户设备和核心网间其他类型的承载、S1接口上的承载等。示例性的,上述不同类型的承载之间可以是一一对应的,例如,1个DRB对应1个E-RAB以及1个EPS bearer。不同协议版本或者不同制式的网络可支持的承载数目可以不同,例如,LTE R14网络可支持的承载数目最大为8个,可以包括,LTE R14网络可支持的数据无线承载的数目最大为8个,NR R15网络可支持的承载数目最大为15个,可以包括,NR R15网络可支持的数据无线承载的数目最大为15个。由于可支持的数据无线承载的数目不同,可能造成网络可支持的所有承载(即数据无线承载和信令无线承载的总和)的数目不同。本说明书中所述的承载数目不同既可以指数据无线承载数目不同,也可以指信令无线承载数目不同,也可以指包括数据无线承载和信令无线承载的总承载的数目不同。本申请中所述的有效承载,是指用户设备当前留存的或者正在使用或者可以使用的承载。
本申请中所述的业务流(traffic flow),是对用户设备发起的上行数据,或,网络侧设备发送的下行数据的描述。业务流被映射在承载上,在网元之间的接口上进行传输。本申请中所述的没有承载业务流,是指因为切换或者承载断链等原因造成的,没有可以映射的承载的业务流。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图2是本申请实施例又一种可能的应用场景示意图。如图2所示,用户设备20处在接入网设备10和接入网设备11的覆盖重叠区域,此时,用户设备20可能需要在接入网设备10和接入网设备11之间进行切换。接入网设备10和接入网设备11可以直接通过X2接口进行信令交互,从而支持切换的完成,也可以通过与核心网设备之间的信令交互支持切换的完成。 其中X2接口是指基站之间进行通信的接口。在图2a中,接入网设备10和接入网设备11连接在相同的核心网设备30下,核心网设备30对接入网设备10和接入网设备11的接入和业务进行控制和管理。在图2b中,接入网设备10连接在核心网设备30下,接入网设备11连接在核心网设备31下,核心网设备30对接入网设备10的接入和业务进行控制和管理,核心网设备31对入网设备11的接入和业务进行控制和管理。
本申请实施例中所述的切换可以是,不同制式网络之间的切换,或者,同一制式不同协议版本网络之间的切换。例如,可以是LTE和5G网络之间的切换,或者,LTE系统中支持不同协议版本的网元或网络之间的切换,或者,LTE和LTE/5GC(接入网使用LTE协议,核心网使用5G协议的系统)网络之间的切换,或者,LTE/5GC和5G网络之间的切换,等等。
图3a是本申请实施例提供的一种切换流程示意图。该切换过程中,源基站直接通过X2接口与目标基站进行信令交互支持切换的完成。
源基站确定其提供服务的用户设备需要进行切换,则发送切换请求给目标基站,该切换请求中包括需要切换的承载的信息,对该用户设备的配置信息等内容。该配置信息包括上述需要切换的承载的配置信息,可以包括空口资源的配置信息等。该切换请求可以是handover request(HO request)信令。
目标基站接收到切换请求后,会回复切换请求确认给源基站。该切换请求确认中可以包括目标基站可以接受的承载的信息,不可接受的承载的信息,以及目标基站给用户设备的配置信息等。这些配置信息可以包括目标基站对可以接受的承载提供的配置信息,可以包括空口资源的配置信息等。该切换请求确认可以是handover request acknowledge(HO request ACK)信令。
源基站根据切换请求确认中接收到的信息,向该用户设备发送无线资源控制(radio resource control,RRC)连接重配置消息,该消息基于目标基站提供的配置信息,对用户设备进行重新配置,也即,将目标基站提供的配置信息发送给用户设备。该RRC连接重配置消息可以是RRC connection reconfiguration信令。
源基站将用户设备与源基站之间的承载所使用的分组数据汇聚层协议(Packet Data Convergence Protocol,PDCP)的序列号(sequence number,SN)和超帧号(hyper frame number,HFN)通知给目标基站,以便目标基站实现与用户设备的同步。该PDCP SN和HFN信息可以通过SN status transfer信令发送。
用户设备根据接收到的RRC连接重配置消息,与目标基站进行同步,并实现接入到目标基站,包括用户设备发送上行同步信号,目标基站给用户设备配置上行资源、时间提前量(timing advance,TA)等过程。
上述过程完成后,目标基站会进一步与其控制网元(未在图3a中示出),例如MME,进行通信,实现承载信息的更新,目标基站还会与源基站进行信令交互(未在图3a中示出),以实现资源的释放等。
图3b是本申请实施例提供的另一种切换流程示意图。该切换过程中,源基站与目标基站连接于相同的控制网元下,源基站和目标基站通过该控制网元进行信令交互支持切换的完成。其中,当控制网元为MME时,基站与MME的接口为S1接口,当控制网元为AMF时,基站与AMF的接口为NG接口,当然该控制网元也可以是其他完成如下流程中控制网元功能的网络侧设备,本申请对此不作限定。不失一般性的,下文以控制网元为MME为例,进行流程的说明。
源基站确定其提供服务的用户设备需要进行切换,则发送切换请求给MME,该切换请求中包括需要切换的承载的信息,对该用户设备的配置信息等内容。该配置信息包括上述需要 切换的承载的配置信息,可以包括空口资源的配置信息等。该切换请求可以源基站与MME之间的S1接口上的handover required(HO required)信令。
MME将上述需要切换的承载的信息,源基站对该用户设备的配置信息等内容通过切换请求发送给目标基站。该切换请求可以目标基站与MME之间的S1接口上的handover request(HO request)信令。
目标基站接收到切换请求后,会回复切换请求确认给MME。该切换请求确认中可以包括目标基站可以接受的承载的信息,不可接受的承载的信息,以及目标基站给用户设备的配置信息等。这些配置信息可以包括目标基站对可以接受的承载提供的配置信息,可以包括空口资源的配置信息等。该切换请求确认可以是handover request acknowledge(HO request ACK)信令。
MME将上述目标基站可以接受的承载的信息,不可接受的承载的信息,以及目标基站给用户设备的配置信息等通过切换命令发送给源基站。该切换命令可以是handover command(HO command)信令。
源基站根据切换命令中接收到的信息,向该用户设备发送无线资源控制(radio resource control,RRC)连接重配置消息,该消息基于目标基站提供的配置信息,对用户设备进行重新配置,也即,将目标基站提供的配置信息发送给用户设备。该RRC连接重配置消息可以是RRC connection reconfiguration信令。
源基站将用户设备与源基站之间的承载所使用的分组数据汇聚层协议(Packet Data Convergence Protocol,PDCP)的序列号(sequence number,SN)和超帧号(hyper frame number,HFN)通过MME通知给目标基站,以便目标基站实现与用户设备的同步。该PDCP SN和HFN信息可以通过SN status transfer信令发送。
用户设备根据接收到的RRC连接重配置消息,与目标基站进行同步,并实现接入到目标基站,包括用户设备发送上行同步信号,目标基站给用户设备配置上行资源、时间提前量(timing advance,TA)等过程。
图3c是本申请实施例提供的再一种切换流程示意图。该切换过程中,源基站与目标基站连接于不同的控制网元下,源基站和目标基站通过源基站控制网元以及目标基站控制网元进行信令交互支持切换的完成。源基站控制网元或者目标基站控制网元的类型,以及与基站之间的接口可以参考图3b所对应的流程中的说明。当源基站控制网元和目标基站控制网元均为MME时,则简称为源MME和目标MME,源MME与目标MME之间的接口为S10接口。
图3c所对应的切换流程与图3b所对应的切换流程的不同之处在于,源基站将切换请求(例如,HO required信令)发送给源MME,源MME通过S10信令将需要切换的承载的信息,源基站对该用户设备的配置信息等内容发送给目标MME,目标MME通过切换请求(例如,HO request信令)将上述信息发送给目标基站。
目标基站江切换请求确定发送给目标MME,目标MME将切换请求确定中的目标基站可以接受的承载的信息,不可接受的承载的信息,以及目标基站给用户设备的配置信息等内容通过S10信令爱送给源MME。源MME再将上述信息通过切换命令发送给源基站。
上述切换请求、切换请求确认以及切换命令中所包含的信息以及可能的信令形式可以参考对图3b的描述。图3c中其他的流程与图3b中一致,不再赘述。
图3aˉ图3c中所示的切换流程,以基站为例进行切换流程的描述,不失一般性的,图中的基站还可以是其他类型的网络侧设备或者网元,例如,其他用于与用户设备进行无线通信的接入网设备或者接入网网元。接入网设备(图3aˉ图3c中以基站为例)所对应的控制网元, 可以是与该接入网设备相连接并对该接入网设备的连接和业务进行控制和管理的网络侧设备,例如,可以是核心网设备,如MME或AMF等。
图3a或图3b所示的切换流程,可以应用于图2a或图2b所示的应用场景中,图3c所示的切换流程,可以应用于图2b所示的应用场景中。
随着网络功能的不断升级以及业务类型的丰富,通信网络为同一个用户设备提供的承载数量需要进行提升,以便支持用户设备同时进行不同业务数据的传输。但网络侧设备需要逐步升级才能支持整网的承载数量提升。在这个升级的过程中,就会存在一部分网络侧设备可以支持更大数量的承载,而一部分网络侧设备只能支持较少的承载的混合组网的场景,用户设备就可能需要在不同支持能力之间的网络侧设备之间进行切换。这种切换可以基于上述图3a-图3c所示的任一种切换流程来进行。一种可能的场景下,源基站可能已经经过升级或者支持较新的协议版本,从而可以为同一个用户设备提供较多的承载数,而目标基站可能未经升级或者只能支持较老的协议版本,只能为同一个用户设备提供较少的承载数。例如,用户设备从支持较新协议版本的4G基站向只能支持较老协议版本的4G基站切换,或者用户设备从5G基站向只能支持较老协议版本的4G基站切换。在这种情况下,目标基站无法支持源基站为用户设备提供的承载数量,如何支持这种类型的切换,是网络演进过程中亟待解决的问题。
图4为本申请实施例提供的一种通信方法的流程示意图,该方法可以应用在上一段落所述的场景,并结合图3a-图3c所示的任一种切换流程来使用。当图4所示的方法应该在图3a-图3c所示的任一种切换流程中时,图4中的源网元可以是源基站,该方法中所涉及到的目标网元,可以是目标基站。当图4所示的方法应用于图3a所示的切换流程中时,其中的第一消息接收网元,可以是图3a中的目标基站。当图4所示的方法应用于图3b所示的切换流程中时,其中的第一消息接收网元,可以是图3b中的控制网元。当图4所示的方法应用于图3c所示的切换流程中时,其中的第一消息接收网元,可以是图3c中的源基站控制网元。当然,图4中的源网元也可以是其他类型的网络侧设备,例如接入网设备或接入网网元,第一消息接收网元也可以是其他类型网络侧设备,例如接入网设备、接入网网元、核心网设备或核心网网元等,目标网元也可以是其他类型的网络侧设备,例如接入网设备或接入网网元。下文以源网元和目标网元均为基站,第一消息接收网元为目标基站、MME或源MM为例进行说明。
记N为源基站为用户设备提供的且需要进行切换的有效承载的个数,其中,N可以是当前源基站为用户设备提供的所有的有效承载的全部或者一部分。图4所示的方法包括,源基站发送第一消息,所述第一消息中包含需要切换的N个承载的信息,其中,所述N小于或等于需要进行所述切换的源网元支持的最大承载数。当所述N大于M时,所述第一消息中的第一信元包含所述N个承载中的M个承载的信息,所述第一消息中的第二信元包含所述N个承载中的除所述M个承载之外的其他N-M个承载的信息,其中,所述M为所述第一信元支持的最大承载数,所述第二信元为所述切换的目标网元不可识别的信元。结合上述场景,当源基站可以支持较新的协议版本但目标基站不能支持较新的协议版本时,源基站和目标基站之间直接交互的信令,或者通过MME交互的信令中,可以包含源基站可以支持(或者说可以识别),但是目标基站不能支持(或者说不能识别)的信元,以及源基站和目标基站都可以支持(或者说都可以识别)的信元。而源基站很可能并不知道目标基站对承载的支持能力,基于这种情况,当源基站需要通知目标基站需要切换的承载的时候,源基站可以将需要切换的承载分成两组,一组承载的信息放在第一信元中,这个第一信元可以是老版本协议定义的信元,无论目标基站是否可以支持较新的协议版本,都可以识别该第一信元,而将另一组承载的信息 放在第二信元中,这个第二信元可以是新版本协议定义的信元,当目标基站不能支持较新的协议版本时,则目标基站不能识别该第二信元,但目标基站仍可以根据第一信元中的承载的信息进行切换的后续流程。
在源基站需要切换的承载数N大于第一信元所能支持的承载数M的时候。
在一个具体的示例中,当图4所示的方法应用于图3a所示的流程中时,所示第一消息可以是图3a中的切换请求。
该切换请求中的第一信元可以是HO request中的E-RABs To Be Setup List信元,或RRC Context信元,或E-RABs To Be Setup List信元和RRC Context信元组合。其中,E-RABs To Be Setup List信元用于提供承载的标识、服务质量(quality of service,QoS)等承载信息,RRC Context信元中包含切换准备信息,其中包含了源基站给用户设备配置的空口信息,例如,DL-DCCH-Message信息。E-RABs To Be Setup List信元和RRC Context信元均尽可以支持M个承载信息的传递,以第三代合作伙伴计划(third generation partnership project,3GPP)TS 36.423(version f00,Release 15)中对E-RABs To Be Setup List信元和RRC Context信元定义为例,M的取值为8,即第一信元中最多可以支持8个承载的信息。
该切换请求中的第二信元可以是按照E-RABs To Be Setup List信元,或RRC Context信元进行设计,具体包含的内容可以参照3GPP TS 36.423(version f00,Release 15)中对E-RABs To Be Setup List信元和RRC Context信元定义。不同的是,第二信元需与第一信元使用不同的信元名称或者信元标识,以与第一信元进行区分。例如,当第二信元与E-RABs To Be Setup List信元采用相同的设计时,其名称可以定义为E-RABs To Be Setup List Ext,当第二信元与RRC Context信元采用相同的设计时,其名称可以定义为RRC Context Ext,其中RRC Context Ext中与DL-DCCH-Message信息功能相同的信息可以定义为DL-DCCH-Ext-Message。所述第二信元也可以是按照E-RABs To Be Setup List信元和RRC Context信元进行设计,例如,包含上述的E-RABs To Be Setup List Ext信元和RRC Context Ext信元。第二信元所支持的最大承载数,可以根据系统需求进行涉及,例如当第一信元支持的最大承载数为8,新版本协议定义的最大承载数为15时,第二信元所支持的最大承载数可以定义为7(即新版本协议定义的最大承载数与第一信元支持的最大承载数的差值)。
可以理解的,上述第一信元和第二信元的名称和具体设计仅为举例,还可以有其他的命名和设计方式,本申请对此不作限定。
相应的,目标基站接收源网元发送的第一消息,所述第一消息中包含需要切换的N个承载的信息,其中,所述N小于或等于所述源网元支持的最大承载数,所述第一消息中的第一信元包含所述N个承载中的M个承载的信息,所述第一消息中的第二信元包含所述N个承载中的除所述M个承载之外的其他N-M个承载的信息,所述M为所述第一信元支持的最大承载数,所述第二信元为所述切换的目标网元不可识别的信元,并根据所述第一信元中的N个承载的信息,确定可接受切换的承载和不可接受切换的承载,并向所述源网元发送所述可接受切换的承载和不可接受切换的承载的信息。
可选的,所述可接受切换的承载和不可接受切换的承载的信息,可以通过图3a中的切换请求确定来发送。
例如,切换请求确定可以是3GPP TS 36.423(version f00,Release 15)所定义的HO ACK信令,其中的E-RABs Admitted Item信元用于传递可接受切换的承载的信息,E-RABs Not Admitted List信元用于传递不可接受切换的承载的信息。
可选的,目标基站还可以通过该切换请求确定向源基站发送可接受的承载的配置信息。 例如,切换请求确定可以是3GPP TS 36.423(version f00,Release 15)所定义的HO ACK信令,该信令中的所包含的DL-DCCH-Message信息,用于传递目标基站针对可接受的承载给用户设备提供的配置信息。
可选的,目标基站根据所述第一消息,对所述可接受切换的承载进行全配置,并向所述源网元发送所述可接受切换的承载的配置信息。因为第一消息中存在目标基站不能识别的第二信元,目标基站可以获知当前自己对承载的支持能力与源基站不同,因此可以对可接受切换的承载进行全配置。本申请中所述的全配置的作用是刷新源基站给用户设备的配置信息,使用户设备接收由目标基站配置的完整信息,可以释放源基站给用户设备配置的信息,防止用户设备侧携带目标基站不识别的信元。
在另一个具体的示例中,当图4所示的方法应用于图3b或图3c所示的流程中时,所示第一消息可以是图3b中的源基站发送给MME的切换请求或者图3c中源基站发送给源MME的切换请求。
可选的,第一信元可以是HO required中的E-RABs Information Item信元、或RRC Container信元,或者E-RABs Information Item信元和RRC Container信元。E-RABs Information Item信元和RRC Container信元的具体定义和涉及可以参照3GPP TS36.423(version f00,Release 15)中的定义。
第二信元可以采用与E-RABs Information Item信元、或RRC Container信元,或者E-RABs Information Item信元和RRC Container信元相同的设计方式。不同的是,第二信元需与第一信元使用不同的信元名称或者信元标识,以与第一信元进行区分。例如,当第二信元与E-RABs Information Item信元采用相同的设计时,其名称可以定义为E-RABs Information Item Ext,当第二信元与RRC Container信元采用相同的设计时,其名称可以定义为RRC Container Ext,其中RRC Container Ext中与DL-DCCH-Message信息功能相同的信息可以定义为DL-DCCH-Ext-Message。所述第二信元也可以是按照E-RABs Information Item信元和RRC Container信元进行设计,例如,包含上述的E-RABs Information Item Ext信元和RRC Container Ext信元。第二信元所支持的最大承载数,可以根据系统需求进行涉及,例如当第一信元支持的最大承载数为8,新版本协议定义的最大承载数为15时,第二信元所支持的最大承载数可以定义为7(即新版本协议定义的最大承载数与第一信元支持的最大承载数的差值)。
由于目标基站不支持第二信元或者说只能支持较少的承载(或者说,只能支持第一信元所支持的最大承载数),所以,图3b中的MME或者图3c中的源MME或者图3c中的目标MME需要在向目标基站传递需要切换的承载的信息时,释放掉第二信元中的承载,仅将第一信元中的承载信息传递到目标基站。具体的,在图3b中,该释放可以由MME进行。在图3c中,当目标MME也不支持第二信元或者说只能支持较少的承载(或者说,只能支持第一信元所支持的最大承载数)时,该释放可以由MME进行。当目标MME可以支持第二信元时,源MME可以不对第二信元进行处理,将第一信元和第二信元中的承载信息都发送给目标MME,由目标MME进行上述释放的动作。可选的,MME之间可以通过S10接口信令交互各自的能力信息,以便获知彼此的承载支持能力。基站和MME之间可以通过运营管理(operations and management,OAM)功能,或者信令交互等方式获知彼此的承载支持能力。
也就是说,第一消息的接收网元(如,图3中的控制网元)接收源网元发送的第一消息,所述第一消息中包含需要切换的N个承载的信息,其中,所述N小于或等于所述源网元支持的最大承载数,所述第一消息中的第一信元包含所述N个承载中的M个承载的信息,所述第 一消息中的第二信元包含所述N个承载中的除所述M个承载之外的其他N-M个承载的信息,其中,所述M为所述第一信元支持的最大承载数,所述第二信元为所述切换的目标网元不可识别的信,释放所述其他N-M个承载,并向所述切换的目标网元发送所述N个承载的信息。
结合上述任一个具体的示例,可选的,所述M个承载中的任一个承载的优先级高于或等于所述N-M个承载中任一个承载的优先级。以便目标网元或者控制网元可以保留优先级较高的承载。
可选的,源基站还可以接收所述N个承载的优先级信息。该优先级信息可以是源基站的控制网元发送给源基站的。本申请实施例中所述的优先级信息可以是QoS分类识别码(QoS class identifier,QCI)、分配保持优先级(allocation and retention priority,ARP)、业务保证速率(Service Guarantee Bit Rate,S-GBR)等可以表征或者用于确定承载的优先级的信息。可选的,源基站根据以上至少一项优先级信息确定承载信息在信元上的配置,例如,源基站根据QCI信息,将承载按照QCI从高到低依次配置在第一信元及第二信元上。
例如,源基站在承载建立的时候就获知该承载的优先级信息,例如,可以接收MME发送的E-RAB setup request信令,该信令中的E-RAB Level QoS Parameters信元可以用于指示承载的优先级信息。
可选的,所述M为所述切换的目标网元支持的最大承载数。第一信元所支持的最大承载数可以定义为目标网元所支持的最大承载数,以便更好的提升整个网络的兼容性。
可选的,在源基站需要切换的承载数N小于或者等于第一信元所能支持的承载数M的时候,源基站可以将所述N个承载的信息都配置在第一信元中。可选的,当第一消息是源基站直接发送目标基站(图3a所示的流程)时,所述第二信元用于触发所述目标网元对所述N个承载中的至少一个承载的全配置。在这种情况下,第二信元中可以不包含任何信息,或者包含至少一个承载的信息,该至少一个承载可以是所述N个承载中任意的至少一个。
相应的,目标网元接收源网元发送的第一消息,所述第一消息中包含需要切换的N个承载的信息,其中,所述N小于或等于所述源网元支持的最大承载数,所述第一消息中的第一信元包含所述N个承载中的M个承载的信息,所述第一消息中的第二信元包含所述N个承载中的除所述M个承载之外的其他N-M个承载的信息,所述M为所述第一信元支持的最大承载数,所述第二信元为所述切换的目标网元不可识别的信元,根据所述N个承载的信息,确定可接受切换的承载和不可接受切换的承载,向所述源网元发送所述可接受切换的承载和不可接受切换的承载的信息。可选的,目标网元根据所述第一消息,对所述可接受切换的承载进行全配置,并向所述源网元发送所述可接受切换的承载的配置信息。
需要说明的是,当源网元和目标网元可支持的最大承载数相同时,仍然可以使用上述第一信元和第二信元。具体的,源网元和目标网元都支持较新版本的协议或者说都支持较大的最大承载数时,源网元放在第一信元中的承载信息和第二信元中的承载信息都可以被目标网元所识别,目标网元可以根据第一信元和第二信元中的承载的信息确定可接受以及不可接受的承载,并按照图3a-图3c中的任一种流程完成切换。
本申请实施例还提供一种用户设备进行承载重映射的方法。
用户设备接收承载重映射指示,所述承载重映射指示用于指示终端设备对没有承载的业务流进行承载重映射,并根据所述承载重映射指示,将没有承载的业务流映射到有效承载上。
具体的,用户设备所使用的承载,可能因为各种原因而中断或者断链,用户设备就可能会有一部分业务流因为没有承载而无法传输。或者,在切换过程中,在用户设备连接到目标基站上之后,由于目标基站不能支持源基站的所有承载或者目标基站没有接收所有识别出的 承载,用户设备就可能会有一部分业务流因为没有承载而无法传输。此时,用户设备可以进行上述承载重映射,将没有承载的业务流映射到当前有效的承载上进行传输。该承载重映射指示可能是源基站发送给用户设备的,也可以是目标基站发送给用户设备的。在一个具体的示例中,用户设备收到网络侧设备发送的RRCconnect ionReconfiguration信令时,用户设备可以根据目标网元的空口配置,并根据网络侧设备的指示(例如,NAS信令),将业务流重新映射。此时,切换流程可能还未完全完成。例如,基站向MME发起路径切换请求(例如,path switch request信令)可与用户设备重映射业务流同时进行。
可选的,用户设备还可以接收承载重映射的规则信息,所述将没有承载的业务流映射到有效承载上,包括,根据所述承载重映射的规则将没有承载的业务流映射到有效承载上。
上述承载重映射指示和/或承载重映射的规则信息可以是预先约定的,也可以是通过信令发送的,例如空口信令或者非接入层(non-access stratum,NAS)。例如,核心网通过NAS信令指示用户设备进行承载重映射,而用户设备进行承载重映射的规则预定义在协议中。承载重映射的方法可以是:用户设备原本将业务流1,2,3(业务流的标识分别是1,2,3)顺序依次映射到承载1,2,3(承载的标识分别是1,2,3)上,由于承载重新配置为承载2,3,4,用户设备根据承载重映射指示信息和/或承载重映射的规则信息,可以进行如下承载重映射:将业务流2,3映射到新的承载2,3上,将业务流1重新映射到新承载4上。
上述承载重映射的方法,可以与图4所对应的实施例结合使用。
针对前文所述的系统中存在承载支持能力不同的网元的场景,本申请实施例还提供一种承载重建的方法,以便用户设备在不同支持能力的网元之间进行切换。
源网元可以通过核心网之间的信令交互或者基站之间的信令交互或者邻区配置信息等,获知其他网元的承载支持能力,再结合用户设备的测量信息等判断当前是否需要进行切换,以及目标网元的承载支持能力。根据上述信息,源网元可以触发核心网重建承载,核心网重建的承载个数可以和目标网元的承载支持能力相同或少于目标网元的承载支持能力,使业务流无损切换。
在一个具体的示例中,当目标网元无法支持源网元当前提供的承载数时,源网元可以向核心网发送指示信息,所述指示信息用于指示核心网将N个承载上的数据映射到M个承载上,所述N为大于M的整数。可选的,N为源网元需要切换的承载数,M为目标网元支持的最大承载数。可选的,该过程可以与图4所示的方法结合使用,例如,源网元首先通知核心网进行承载重建,如果承载重建无法完成,或者经过重建后,源网元需要切换的承载数仍然比目标网元所支持的最大承载数多,则可以进一步使用图4所提供的方法。
在另一个具体的示例中,当目标网元所支持的承载数大于当前需要切换的承载数时,在切换之后,目标网元可以向核心网发送指示信息,所述指示信息用于指示核心网将N个承载上的数据映射到M个承载上,所述N为小于M的整数。可选的,所述N为完成切换的承载数,M为目标网元支持的最大承载数或者大于N的整数。经过上述承载重建,用户设备的业务流可以映射到更多的承载上,以便为业务提供更灵活的配置和管理。可选的,该过程可以与图4所示的方法结合使用。
针对前文所述的系统中存在承载支持能力不同的网元的场景,本申请提供一种通信方法。即,根据源网元和目标网元支持的承载个数不同(或者,能力不同,或者,无法读取扩展信元等情况)取消切换或拒绝切换。该方法可以应用于对用户设备或网络侧设备实现复杂度有要求,或者,对用户设备的耗电有要求的场景。例如,在窄带物联网(narrow band Internet of Things,NB-IOT)、机器类通信(machine type communication,MTC)场景中,用户设备 不能支持过高复杂度的功能,也需要尽量省电,因此可以避免复杂的流程,所以系统可以不支持NB-IoT或MTC用户终端在支持不同承载数目的网络间的切换。
在一个具体的示例中,结合图4所示的方法,当目标网元或者源网元的控制网元或者目标网元的控制网元识别出第一消息中包含目标网元所不支持的信元时,可以拒绝当前的切换。即,不再进行切换请求确认以及之后的流程,而是可以通过在目标基站反馈的切换请求拒绝信令(例如,HO request reject)中,携带原因(cause),该原因用于指示由于基站能力不同因此拒绝切换。
在另一个具体的实例中,结合图4所示的方法,源网元接收到切换请求确认之后,可以根据目标网元反馈的可接受切换的承载以及不可切换的承载,判断目标网元是否可以识别需要切换的所有的承载,例如当目标网元反馈的可接受切换的承载以及不可切换的承载不包括当前需要切换的承载时,则可以认为目标网元没有识别出所有需要切换的承载。此时,源网元可以取消切换,即,不再进行RRC连接重配置以及之后的流程,而是向目标网元发送切换取消或者切换终止的指示,例如,发送切换取消(例如,handover cancel信令)消息,该指示中可以携带具体的原因,例如,携带partial handover原因,或者,携带DiffBearerNum原因,指示由于双方可支持的承载数不同,或者,由于双方的能力不同,所以源终止切换。可以理解上,上述承载取消切换或者拒绝切换原因的信令,以及具体原因的命名等均可以根据系统需求进行涉及,上述信令以及原因名称仅做举例。
需要说明的是,本申请中对符号序列所做的编号,如“第一”、“第二”等等,仅为了描述清晰,不构成限定。不同实施例中相同编号的消息或者信元可以是相同的信元也可以是不同的信元。
上述本申请提供的实施例中,分别从各个网元本身、以及从各个网元之间交互的角度对本申请实施例提供的通信方法进行了介绍。可以理解的是,各个网元,例如源网元、目标网元、控制网元、用户设备等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
图5示出了本申请实施例中所涉及的接入网设备的一种可能的结构示意图。
可选的,该接入网设备可以是上述实施例中的源网元或者目标网元,该源网元或者目标网元可以是一个独立的网络侧设备或装置,也可以是与其他网络侧设备集成在一起的功能实体或装置,其具体的实现形式可以包含芯片系统、分立器件、集成电路等。
在一个示例中,该接入网设备包括与存储器耦合的处理器502,该处理器502被配置为支持接入网设备完成上述实施例中源网元(例如源基站)所执行的处理过程。可选的,所述接入网设备还可以包括存储器503,该存储器503用于存储用于所述源网元的程序代码和数据。可选的,所述接入网设备可以包括通信单元504,所述通信单元504用于支持接入网设备完成上述实施例中,源网元所进行的,接收其他网络侧设备(例如,控制网元或目标网元)的信令和/或数据,以及向其他网络侧设备发送信令和/或数据的功能。可选的,所述接入网设备还可以包括收发器501,该收发器501用于支持接入网设备完成上述实施例中源网元所进行的,向用户设备发送信令或数据的功能以及接收用户设备发送的信令和/或数据的功能。
在另一个示例中,该接入网设备包括与存储器耦合的处理器502,该处理器502被配置 为支持接入网设备完成上述实施例中目标网元(例如目标基站)所执行的处理过程。可选的,所述接入网设备还可以包括存储器503,该存储器503用于存储用于所述目标网元的程序代码和数据。可选的,所述接入网设备可以包括通信单元504,所述通信单元504用于支持接入网设备完成上述实施例中,目标网元所进行的,接收其他网络侧设备(例如,控制网元或源网元网元)的信令和/或数据,以及向其他网络侧设备发送信令和/或数据的功能。可选的,所述接入网设备还可以包括收发器501,该收发器501用于支持接入网设备完成上述实施例中目标网元所进行的,向用户设备发送信令或数据的功能以及接收用户设备发送的信令和/或数据的功能。
具体的,在图5对应的示例中,本申请所涉及的接入网设备的结构中包括收发器501,处理器502,存储器503以及通信单元504。
图6示出了本申请实施例中所涉及的核心网设备的一种可能的结构示意图。
可选的,该核心网设备可以是上述实施例中的控制网元或源基站控制网元或目标基站控制网元,例如,MME或AMF。该核心网设备可以是一个独立的网络侧设备或装置,也可以是与其他网络侧设备集成在一起的功能实体或装置,其具体的实现形式可以包含芯片系统、分立器件、集成电路等。
在一个示例中,该核心网设备包括与存储器耦合的处理器602,该处理器602被配置为支持核心网设备完成上述实施例中控制网元(例如源基站)所执行的处理过程。可选的,所述核心网设备还可以包括存储器603,该存储器603用于存储用于所述控制网元的程序代码和数据。可选的,所述核心网设备可以包括通信单元601,所述通信单元601用于支持核心网设备完成上述实施例中,控制网元所进行的,接收其他网络侧设备(例如,源网元或目标网元)的信令和/或数据,以及向其他网络侧设备发送信令和/或数据的功能。
具体的,在图6对应的示例中,本申请所涉及的核心网设备的结构中包括通信单元601,处理器602以及存储器603。
图7示出了本申请实施例中所涉及的实现用户设备功能的一种装置的结构示意图。
可选的,该装置可以是一个用户设备,也可以是用户设备中的一个功能模块或者功能实体,例如,可以是用户设备中的芯片、芯片系统、分立器件、集成电路等。
在一个示例中,该装置包括与存储器耦合的处理器703,该处理器703被配置为支持该装置完成上述实施例中用户设备所执行的处理过程。可选的,所述装置还可以包括存储器704,该存储器704用于存储用于所述装置的程序代码和数据。可选的,所述装置可以包括发射器701和接收器702,用于支持所述装置完成上述实施例中,用户设备所进行的,与网络侧设备的信令交互和/或数据交互的功能。可选的,当所述装置为芯片或者芯片系统时,所述发射器和接收器的具体实现形式可以体现为输入输出接口,例如,可以是电路形式或者芯片管脚形式的输入输出接口。
具体的,在图7对应的示例中,本申请所涉及的实现用户设备功能的一种装置的结构中包括发射器701、接收器702、处理器703以及存储器704。
用于执行本申请上述任意一种设备或装置的处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多于一个微处理器组合,DSP和微处理器的组合等等。上述任一种设备或装置的存储器还可以集成在处理器的内部。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于上述任一种设备或装置中。当然,处理器和存储介质也可以作为分立组件存在于上述任一种设备或装置中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (25)

  1. 一种通信方法,其特征在于,包括:
    发送第一消息,所述第一消息中包含需要切换的N个承载的信息,
    当所述N大于M时,所述第一消息中的第一信元包含所述N个承载中的M个承载的信息,所述第一消息中的第二信元包含所述N个承载中的除所述M个承载之外的其他N-M个承载的信息,其中,所述M为所述第一信元支持的最大承载数,所述第二信元为所述切换的目标网元不可识别的信元。
  2. 如权利要求1所述的方法,其特征在于,所述M个承载中的任一个承载的优先级高于或等于所述N-M个承载中任一个承载的优先级。
  3. 如权利要求2所述的方法,其特征在于,还包括:接收所述N个承载的优先级信息。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述M为所述切换的目标网元支持的最大承载数。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述发送第一消息,包括:
    向所述切换的目标网元发送所述第一消息;或
    向控制网元发送所述第一消息。
  6. 如权利要求1-5任一项所述的方法,其特征在于,还包括:
    当所述N小于或等于所述M时,所述第一信元包含所述N个承载的信息。
  7. 如权利要求6所述的方法,其特征在于,所述发送第一消息包括向所述切换的目标网元发送所述第一消息,所述第二信元用于触发所述目标网元对所述N个承载中的至少一个承载的全配置。
  8. 一种通信方法,其特征在于,包括:
    接收源网元发送的第一消息,所述第一消息中包含需要切换的N个承载的信息,所述第一消息中的第一信元包含所述N个承载中的M个承载的信息,所述第一消息中的第二信元包含所述N个承载中的除所述M个承载之外的其他N-M个承载的信息,其中,所述M为所述第一信元支持的最大承载数,所述第二信元为所述切换的目标网元不可识别的信元;
    释放所述其他N-M个承载;
    向所述切换的目标网元发送所述N个承载的信息。
  9. 如权利要求8所述的方法,其特征在于,所述M为所述目标网元支持的最大承载数。
  10. 一种通信方法,其特征在于,包括:
    接收源网元发送的第一消息,所述第一消息中包含需要切换的N个承载的信息,所述第一消息中的第一信元包含所述N个承载中的M个承载的信息,所述第一消息中的第二信元包含所述N个承载中的除所述M个承载之外的其他N-M个承载的信息,所述M为所述第一信元支持的最大承载数,所述第二信元为所述切换的目标网元不可识别的信元;
    根据所述N个承载的信息,确定可接受切换的承载和不可接受切换的承载;
    向所述源网元发送所述可接受切换的承载和不可接受切换的承载的信息。
  11. 如权利要求10所述的方法,其特征在于,还包括:
    根据所述第一消息,对所述可接受切换的承载进行全配置;
    向所述源网元发送所述可接受切换的承载的配置信息。
  12. 一种通信方法,其特征在于,包括:
    接收承载重映射指示,所述承载重映射指示用于指示终端设备对没有承载的业务流进行承载重映射;
    根据所述承载重映射指示,将没有承载的业务流映射到有效承载上。
  13. 如权利要求12所述的方法,其特征在于,还包括:
    接收承载重映射的规则信息;
    所述将没有承载的业务流映射到有效承载上,包括,根据所述承载重映射的规则将没有承载的业务流映射到有效承载上。
  14. 一种通信装置,其特征在于,包括处理器,所述处理器用于与存储器耦合,读取并执行所述存储器中的指令,以实现:
    发送第一消息,所述第一消息中包含需要切换的N个承载的信息,
    当所述N大于M时,所述第一消息中的第一信元包含所述N个承载中的M个承载的信息,所述第一消息中的第二信元包含所述N个承载中的除所述M个承载之外的其他N-M个承载的信息,其中,所述M为所述第一信元支持的最大承载数,所述第二信元为所述切换的目标网元不可识别的信元。
  15. 如权利要求14所述的通信装置,其特征在于,所述M个承载中的任一个承载的优先级高于或等于所述N-M个承载中任一个承载的优先级。
  16. 如权利要求15所述的通信装置,其特征在于,所述处理器还用于执行所述指令,以实现:接收所述N个承载的优先级信息。
  17. 如权利要求14-16任一项所述的通信装置,其特征在于,所述M为所述切换的目标网元支持的最大承载数。
  18. 如权利要求14-17任一项所述的通信装置,其特征在于,所述发送第一消息,包括:
    向所述切换的目标网元发送所述第一消息;或
    向控制网元发送所述第一消息。
  19. 如权利要求14-18任一项所述的通信装置,其特征在于,所述处理器还用于执行所述指令,以实现:当所述N小于或等于所述M时,所述第一信元包含所述N个承载的信息。
  20. 如权利要求19所述的通信装置,其特征在于,所述发送第一消息包括向所述切换的目标网元发送所述第一消息,所述第二信元用于触发所述目标网元对所述N个承载中的至少一个承载的全配置。
  21. 如权利要求14-20任一项所述的通信装置,其特征在于,还包括所述存储器。
  22. 一种通信装置,其特征在于,包括处理器,所述处理器用于与存储器耦合,读取并执行所述存储器中的指令,以实现权利要求8-13任一项所述的方法。
  23. 如权利要求22所述的通信装置,其特征在于,还包括所述存储器。
  24. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-13任意一项所述的方法。
  25. 一种通信系统,其特征在于,包括如权利要求14-21任一项所述的通信装置和如权利要求22或23所述的通信装置。
PCT/CN2019/081903 2018-04-13 2019-04-09 一种通信方法、装置、系统及存储介质 WO2019196833A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020555888A JP2021519028A (ja) 2018-04-13 2019-04-09 通信方法および装置、システム、ならびに記憶媒体
EP19784416.0A EP3755056A4 (en) 2018-04-13 2019-04-09 COMMUNICATION PROCESS, DEVICE AND SYSTEM AND STORAGE MEDIA
US17/028,705 US20210007028A1 (en) 2018-04-13 2020-09-22 Communications method and apparatus, system, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810333103.8 2018-04-13
CN201810333103.8A CN110381557B (zh) 2018-04-13 2018-04-13 一种通信方法、装置、系统及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/028,705 Continuation US20210007028A1 (en) 2018-04-13 2020-09-22 Communications method and apparatus, system, and storage medium

Publications (1)

Publication Number Publication Date
WO2019196833A1 true WO2019196833A1 (zh) 2019-10-17

Family

ID=68163445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081903 WO2019196833A1 (zh) 2018-04-13 2019-04-09 一种通信方法、装置、系统及存储介质

Country Status (5)

Country Link
US (1) US20210007028A1 (zh)
EP (1) EP3755056A4 (zh)
JP (1) JP2021519028A (zh)
CN (1) CN110381557B (zh)
WO (1) WO2019196833A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110337825B (zh) * 2019-05-23 2021-12-21 北京小米移动软件有限公司 业务切换方法及装置
CN113630909B (zh) * 2020-05-09 2023-07-25 大唐移动通信设备有限公司 承载释放方法、装置、电子设备及计算机可读存储介质
CN114095978B (zh) * 2020-06-22 2023-03-28 华为技术有限公司 一种配置终端设备的方法及设备
WO2022082688A1 (zh) * 2020-10-22 2022-04-28 华为技术有限公司 一种通信方法、装置及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102387606A (zh) * 2010-09-02 2012-03-21 中兴通讯股份有限公司 一种实现承载处理的方法和系统
CN105917727A (zh) * 2014-01-30 2016-08-31 夏普株式会社 用于双连接操作的系统和方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299879B (zh) * 2007-04-30 2013-08-07 华为技术有限公司 重定位方法、通信系统及无线网络控制器
US9392504B2 (en) * 2007-06-19 2016-07-12 Qualcomm Incorporated Delivery of handover command
WO2013033883A1 (zh) * 2011-09-05 2013-03-14 华为技术有限公司 处理切换的方法、移动性管理网元、无线接入网元和系统
CN103428768B (zh) * 2012-05-16 2016-12-14 华为技术有限公司 一种接入方法、基站、接入点和用户设备
GB2504937B (en) * 2012-08-13 2014-11-12 Ip Access Ltd Network elements, cellular communication system and methods therefor
KR20150048611A (ko) * 2013-10-28 2015-05-07 삼성전자주식회사 이동성에 강인한 그룹 통신을 위한 방법 및 장치
KR102143792B1 (ko) * 2014-01-29 2020-08-12 삼성전자주식회사 단말의 이동성을 보장하면서 효율적으로 세션을 관리하기 위한 방법 및 장치
WO2017171506A1 (en) * 2016-04-01 2017-10-05 Samsung Electronics Co., Ltd. Method and enb equipment for supporting seamless handover
CN106792936B (zh) * 2016-12-08 2020-04-03 上海华为技术有限公司 一种保持业务连续性的pgw切换方法及通信设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102387606A (zh) * 2010-09-02 2012-03-21 中兴通讯股份有限公司 一种实现承载处理的方法和系统
CN105917727A (zh) * 2014-01-30 2016-08-31 夏普株式会社 用于双连接操作的系统和方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP3755056A4 *
VIVO: "Priority Handling for KI4", 3GPP SA WG2 MEETING #126 S2-181652, 20 February 2018 (2018-02-20), pages 1, XP051408266 *
ZTE: "Discussion on Bearer Handling When Node Capability is Not Known", 3GPP SA WG2 MEETING #126 S2-181824, 19 February 2018 (2018-02-19), pages 1 - 4, XP051408155 *

Also Published As

Publication number Publication date
EP3755056A1 (en) 2020-12-23
US20210007028A1 (en) 2021-01-07
JP2021519028A (ja) 2021-08-05
CN110381557B (zh) 2021-09-21
EP3755056A4 (en) 2021-07-14
CN110381557A (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
TWI747078B (zh) 協定資料單元會話建立程序期間資源不足處理方法及其使用者設備
TWI733216B (zh) 無效協定資料單元會話之處理方法及其使用者設備
WO2019196833A1 (zh) 一种通信方法、装置、系统及存储介质
TWI754074B (zh) 測量間隔配置方法、裝置、設備、終端及系統
CN109076383A (zh) 用于由终端配置双连接的方法及其装置
WO2018202165A1 (zh) 一种失败处理方法、切换方法及终端设备、网络设备
US11115880B2 (en) Path switch method between LTE and 5G node
KR20180100381A (ko) 무선 단말, 무선국, 및 이들의 방법
BR112019020398A2 (pt) método de comunicação de retransmissão e aparelho e sistema de comunicações de retransmissão
WO2017214975A1 (zh) 获取终端无线能力信息的方法、核心网实体、基站和终端
TWI657679B (zh) 處理系統間行動中的封包資料流的裝置及方法
US9877307B2 (en) Method for implementing radio resource control protocol function, macro base station, and micro cell node
AU2017425816A1 (en) Method for obtaining data radio bearer identifier and base station
TW201826833A (zh) 處理系統間行動中的新無線連結的裝置及方法
KR20200058478A (ko) 복제 전송을 위한 방법 및 장치
CN108781403B (zh) 终端设备、接入网设备、空口配置方法和无线通信系统
US20230262557A1 (en) Methods and devices for enhancing integrated access backhaul networks for new radio
CN112262594B (zh) 处理pdn连接的方法及用户设备
US20220353941A1 (en) Ma pdu reactivation requested handling
WO2019062794A1 (zh) 一种建立承载的方法及设备
JP2019092055A (ja) 端末装置および方法
US20230199879A1 (en) Methods and devices for enhancing integrated access backhaul networks for new radio
US20230133792A1 (en) Handling of collision between pdu session establishment and modification procedure
WO2024019062A1 (ja) 通信装置、基地局及び通信方法
CN117322051A (zh) 业务处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19784416

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019784416

Country of ref document: EP

Effective date: 20200915

ENP Entry into the national phase

Ref document number: 2020555888

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE