WO2024055915A1 - 一种被用于无线通信的方法和设备 - Google Patents

一种被用于无线通信的方法和设备 Download PDF

Info

Publication number
WO2024055915A1
WO2024055915A1 PCT/CN2023/117907 CN2023117907W WO2024055915A1 WO 2024055915 A1 WO2024055915 A1 WO 2024055915A1 CN 2023117907 W CN2023117907 W CN 2023117907W WO 2024055915 A1 WO2024055915 A1 WO 2024055915A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
radio bearer
signaling
service
node
Prior art date
Application number
PCT/CN2023/117907
Other languages
English (en)
French (fr)
Inventor
陈宇
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024055915A1 publication Critical patent/WO2024055915A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast

Definitions

  • the present application relates to transmission methods and devices in wireless communication systems, and in particular to methods and devices in broadcast multicast services of wireless communications, continuity of service reception, and other aspects.
  • LTE Long Term Evolution, Long Term Evolution
  • 5G NR 5th Generation NR
  • eMBB enhanced Mobile BroadBand, enhanced mobile broadband
  • URLLC Ultra Reliable Low Latency Communication, Ultra-high reliability and low-latency communication
  • eMTC enhanced Machine Type Communication, enhanced machine type communication
  • IIoT Industrial Internet of Things, the Internet of Things in the industrial field, in V2X (Vehicular to X, vehicle communication), in communication between devices (Device to Device), in communication in unlicensed spectrum, in User communication quality monitoring, in network planning and optimization, in NTN (Non Territorial Network, non-terrestrial network communication), in TN (Territorial Network, terrestrial network communication), in dual connectivity (Dual connectivity) systems, in wireless resource management As well as multi-antenna codebook selection, there are extensive needs in signaling design, neighbor cell management, service management, and beamforming. Information transmission methods are divided into broadcast and unicast. Both transmission methods are 5G. Systems are essential because they are very helpful in meeting the above requirements.
  • the UE can be connected to the network either directly or through a relay.
  • Multicast and Broadcast Service is an important communication method in 5G networks. It is often used for video transmission, occupies large bandwidth and consumes large power. On the other hand, MBS may also be applied to a large number of IoT In devices, it is very important for IoT devices to reduce the consumption of network resources and save power. Therefore, terminals using MBS services have a general need to save power.
  • One possible way to save power is to enter the RRC inactive state (RRC_INACTIVE) to receive MBS services when there are no other services. It is a challenge to receive multicast services in the RRC inactive state, especially to continuously receive MBS services from the RRC connected state to the RRC inactive state, which was not supported by the previous protocol.
  • this application provides a solution.
  • any node of this application can be applied to any other node.
  • the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily without conflict.
  • the method proposed by this application can also be used to solve other problems in communication, such as the need to use unicast wireless bearer reception in the RRC inactive state, especially to ensure that unicast wireless is used when going from the RRC connected state to the RRC inactive state. Carrying continuous reception scenarios.
  • This application discloses a method used in a first node of wireless communication, including:
  • Receive the first signaling in response to receiving the first signaling, enter the RRC inactive state. Whether the first cell is maintained in the RRC inactive state depends on whether the execution of the first signaling will suspend the first signaling.
  • the first cell when the execution of the first signaling will not suspend at least one radio bearer in the first radio bearer set, the first cell is maintained in the RRC inactive state; when the first signaling When the execution of the command suspends all radio bearers in the first radio bearer set, whether to maintain the first cell in the RRC inactive state depends on a first criterion, and the first criterion is used for cell selection;
  • the first cell is a serving cell of the first node, and the first cell provides a first service;
  • the first radio bearer set includes non-unicast radio bearers for multicast;
  • the first radio bearer set The radio bearer that is not suspended during the execution of the first signaling is used to carry the first service, and the first service is a non-unicast service.
  • the problems to be solved by the present application include: how to better support communications in the RRC inactive state, how to save more power, how to better support the reception of broadcast and multicast services, how to receive broadcast and multicast services in the RRC inactive state, and how to ensure the continuity of broadcast and multicast service reception; how to ensure the continuity of service reception from the RRC connected state to the RRC inactive state, how to determine the service cell in the RRC inactive state, and how to select a cell based on the requirements for service reception.
  • the benefits of the above method include: it can save power, improve service quality, support service continuity, support receiving services in an inactive state, avoid service interruption, and have better adaptability.
  • the cell selection process is performed according to the first criterion; when the When the execution of the first signaling does not suspend at least one radio bearer in the first radio bearer set, the cell selection process is not performed, and the cell selection process is not performed and is used to determine that the RRC is inactive. The first cell state is maintained.
  • the first service before receiving the first signaling, the first service is received.
  • the execution of the first signaling when the execution of the first signaling does not suspend at least one radio bearer in the first radio bearer set, maintaining the first radio bearer in the RRC inactive state
  • the meaning of a cell includes: the execution of the first signaling includes cell selection, and the first cell is preferentially selected in the cell selection.
  • the meaning of the phrase that the first cell is preferentially selected includes: directly selecting the first cell without performing a comparison of the reception quality of candidate cells during cell selection.
  • the meaning of the phrase that the first cell is preferentially selected includes: during the process of performing cell selection, a first offset is applied to the first cell.
  • a first signal is sent, and the first signal is used to request to continue the RRC connection;
  • whether the second condition set includes the second condition is related to whether the non-unicast service for multicast is received in the RRC discontinuous state; when the non-unicast service for multicast is not received in the RRC discontinuous state, the The second condition set does not include the second condition; when receiving non-unicast services for multicast in the RRC discontinuous state, the second condition set includes the second condition; the second condition is service The quality of the cell is worse than the second quality threshold.
  • the first service in the RRC inactive state, as a response that the first service is received and the radio bearer used by the first service does not carry other non-unicast services, the first service is suspended.
  • a radio bearer used by a service in the RRC inactive state, as a response that the first service is received and the radio bearer used by the first service does not carry other non-unicast services, the first service is suspended.
  • a radio bearer used by a service is suspended.
  • the first node is user equipment.
  • the first node is an Internet of Things terminal.
  • the first node is a relay.
  • the first node is a vehicle-mounted terminal.
  • the first node is an aircraft.
  • This application discloses a first node used for wireless communication, including:
  • the first receiver receives the first signaling; in response to receiving the first signaling, enters the RRC inactive state. Whether the first cell is maintained in the RRC inactive state depends on whether the execution of the first signaling is The radio bearers in the first radio bearer set will be suspended;
  • the first cell when the execution of the first signaling will not suspend at least one radio bearer in the first radio bearer set, the first cell is maintained in the RRC inactive state; when the first signaling When the execution of the command suspends all radio bearers in the first radio bearer set, whether to maintain the first cell in the RRC inactive state depends on a first criterion, and the first criterion is used for cell selection;
  • the first cell is a serving cell of the first node, and the first cell provides a first service;
  • the first radio bearer set includes non-unicast radio bearers for multicast;
  • the first radio bearer set The radio bearer that is not suspended during the execution of the first signaling is used to carry the first service, and the first service is a non-unicast service.
  • this application has the following advantages:
  • the continuity of service reception is ensured, that is, reception in the RRC connected state can be smoothly transitioned to reception in the RRC inactive state.
  • the RRC connection can be restored or continued at the appropriate time, which is beneficial to ensuring the reception quality of the service.
  • Figure 1 shows a flow chart of receiving the first signaling and entering the RRC inactive state as a response to receiving the first signaling according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Figure 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a flow chart of wireless signal transmission according to an embodiment of the present application
  • Figure 6 shows a schematic diagram of cell selection and reselection criteria according to an embodiment of the present application
  • Figure 7 shows a schematic diagram in which the cell selection process is not executed and is used to determine that the first cell is maintained in the RRC inactive state according to an embodiment of the present application
  • Figure 8 illustrates a schematic diagram of a processing device used in a first node according to an embodiment of the present application
  • Figure 9 illustrates a schematic diagram of a processing device used in a first node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of receiving the first signaling and entering the RRC inactive state in response to receiving the first signaling according to an embodiment of the present application, as shown in FIG. 1 .
  • each box represents a step. It should be particularly emphasized that the order of the boxes in the figure does not represent the temporal relationship between the steps represented.
  • the first node in this application receives the first signaling in step 101; and enters the RRC inactive state in response to receiving the first signaling in step 102.
  • whether the first node maintains the first cell in the RRC inactive state depends on whether the execution of the first signaling will suspend the radio bearers in the first radio bearer set.
  • the first cell when the execution of the first signaling will not suspend at least one radio bearer in the first radio bearer set, the first cell is maintained in the RRC inactive state; when the When the execution of the first signaling will suspend all radio bearers in the first radio bearer set, whether to maintain the first cell in the RRC inactive state depends on the first criterion, the first criterion is used Cell selection; the first cell is the serving cell of the first node, and the first cell provides the first service; the first radio bearer set includes non-unicast radio bearers for multicast; the first The radio bearers in the radio bearer set that are not suspended during the first signaling execution are used to carry the first service, and the first service is a non-unicast service.
  • the first node is UE (User Equipment).
  • the first node is an MS (Mobile Station).
  • bandwidth adaptation is supported in 5G NR; a subset of the total cell bandwidth of a cell is called a BWP; the base station configures the BWP to the UE and tells the UE which of the configured BWPs is currently active. BWP to achieve bandwidth adaptation.
  • the SpCell of the first node refers to the PCell of the first node.
  • the SpCell of the first node refers to the PSCell of the first node.
  • the serving cell refers to the cell where the UE resides; performing cell search includes the UE searching for the selected PLMN (Public Land Mobile Network) or SNPN (Stand-alone Non-Public Network, independent A suitable cell in a non-public network), selects the suitable cell to provide available services, and monitors the control channel of the suitable cell. This process is defined as staying on the cell; that is, It is said that a camped cell is the serving cell of this UE relative to this UE.
  • PLMN Public Land Mobile Network
  • SNPN Seand-alone Non-Public Network, independent
  • This process is defined as staying on the cell; that is, It is said that a camped cell is the serving cell of this UE relative to this UE.
  • camphas on a cell in RRC idle state or RRC inactive state has the following benefits: it allows the UE to receive system messages from the PLMN or SNPN; after registration, if the UE wants to establish an RRC connection or continue a suspended RRC connection, The UE can be implemented by performing initial access on the control channel of the resident cell; the network can page the UE; allowing the UE to receive ETWS (Earthquake and Tsunami Warning System) and CMAS (Commercial Mobile Alert System), Commercial mobile alarm systems) notifications.
  • ETWS Earthquake and Tsunami Warning System
  • CMAS Common Mobile Alert System
  • the serving cell is used to indicate the cell set including the special cell (SpCell, Special Cell) and all slave cells; primary The cell (Primary Cell, PCell) is a cell in the MCG (Master Cell Group).
  • the primary cell works on the primary frequency, and the UE performs the initial connection establishment process or initiates connection reestablishment on the primary cell; for dual connection operations, There can also be SCG (Secondary Cell Group, secondary cell group).
  • SCG Secondary Cell Group, secondary cell group.
  • the special cell refers to the PCell (Primary Cell, primary cell) of MCG or the PSCell (Primary SCG Cell, primary SCG cell) of SCG; if it is not a dual connection operation, the special cell Cell refers to PCell.
  • the frequency at which SCell (Secondary Cell) works is the secondary frequency.
  • MR-DC Multi-Radio Dual Connectivity refers to dual connectivity of E-UTRA and NR nodes, or dual connectivity between two NR nodes.
  • the wireless access node that provides control plane connection to the core network is the master node.
  • the master node may be the master eNB, the master ng-eNB, or the master gNB.
  • MCG refers to, in the MR-DC, a group of serving cells associated with the master node, including SpCell, and may also, optionally, include one or more SCells.
  • a control plane connection to the core network is not provided, and the radio access node that provides additional resources to the UE is a slave node.
  • the slave node can be en-gNB, slave ng-eNB or slave gNB.
  • a group of serving cells associated with a slave node is SCG (secondary cell group), including SpCell and, optionally, one or more SCells.
  • the PCell is MCG's SpCell.
  • the PSCell is the SpCell of SCG.
  • the individual contents of an information element are called fields.
  • an information element is a structural element that includes one or more fields.
  • a multicast radio bearer is a radio bearer configured for MBS multicast or broadcast transmission.
  • Multicast Broadcast Service is a point-to-multipoint service. See 3GPP TS 23.247 for detailed definition.
  • PTP transmission refers to: gNB sends separate copies of MBS packets to each UE independently, that is, gNB uses, such as C-RNTI, UE-specific RNTI scrambled UE-specific
  • a specific PDCCH (physical downlink control channel, physical downlink control channel) is used to schedule the UE-specific PDSCH, and the UE-specific PDSCH (physical downlink shared channel, physical downlink shared channel) is scrambled by the UE-specific RNTI.
  • PTM transmission refers to: gNB sends a copy of the MBS data packet to a UE set.
  • gNB uses the group common RNTI scrambled group common PDCCH to schedule the group common PDSCH.
  • the group common PDSCH is composed of the Scrambled by the group common RNTI.
  • the UE only has complete communication functions in the RRC connected state.
  • MRB can carry broadcast services and multicast services.
  • the MBS service is a unicast service.
  • each MBS service is associated with a TMGI (Temporary Mobile Group Identity).
  • TMGI Temporal Mobile Group Identity
  • services identified by TMGI such as PDU sessions or QoS flows, are applicable to the non-unicast services described in this application.
  • the first service is an MBS service.
  • the first service is a multicast service.
  • the first service is an MBS multicast service.
  • the first service is or corresponds to a multicast QoS flow.
  • the first service is or corresponds to the QoS flow of MBS.
  • the first service is or corresponds to a multicast session.
  • the first signaling includes MAC CE.
  • the first signaling includes RRC signaling.
  • the first signaling is transmitted using SRB1 (signaling radio bearer 1, signaling radio bearer 1).
  • the first signaling includes RRCReconfiguration.
  • the first signaling is or includes RRCRelease.
  • the first signaling is used to suspend the RRC connection.
  • the RRC connection of the first node is not released.
  • the first node before receiving the first signaling, the first node is configured with at least one radio bearer.
  • the first node executes the first signaling 60 ms after receiving the first signaling or the first signaling is successfully fed back by the protocol layer below the RRC of the first node. the operation instructed by the order.
  • the first signaling includes a suspend configuration.
  • the first signaling indicates the RNTI used in the RRC inactive state.
  • the length of the RNTI used when the RRC is inactive is greater than 16 bits.
  • the RNTI used when the RRC is inactive includes an I-RNTI.
  • the first signaling indicates a paging cycle.
  • the first signaling indicates an extended paging cycle.
  • the first signaling indicates RAN notification area information.
  • the first signaling indicates next hop link count (nextHopChainingCount).
  • next hop link count is used to generate a key.
  • the first signaling indicates a first configuration
  • the first configuration is for small data transmission.
  • the radio bearer involved in the first configuration is DRB (data radio bearer, data radio bearer) and/or SRB (signaling radio bearer, signaling radio bearer).
  • the first signaling includes a first field, and the first field is used to configure positioning in an RRC inactive state.
  • the first signaling includes a suspendConfig field.
  • the first node in response to receiving the first signaling, performs a first set of operations.
  • the first operation set includes at least one operation.
  • the first set of operations includes stopping all timers in the first set of timers.
  • the first timer set includes at least one of T380, T320, T316, T350, T346g, T331, T390, T420, T430, T319, T319a, timers related to MBS. one.
  • the first set of operations includes starting at least one timer in the second set of timers.
  • the second timer set includes at least one of the MBS-related timers T302.
  • the first set of operations includes performing cell selection.
  • the first set of operations includes performing frequency selection.
  • the first set of operations includes resetting at least one parameter of the MAC.
  • the first set of operations includes resetting some but not all parameters of the MAC.
  • the first set of operations includes reconstructing the RLC entity of SRB1.
  • the first operation set includes suspending all SRBs except SRBO.
  • the first set of operations includes suspending all DRBs.
  • the first set of operations does not include suspending the first radio bearer.
  • the first signaling is sent in a unicast manner.
  • the first signaling is received in the RRC connected state.
  • the meaning of the phrase “entering the RRC inactive state” includes: entering the RRC inactive state from the RRC connected state.
  • the meaning of the phrase entering the RRC inactive state includes: entering the RRC inactive state from the RRC inactive state.
  • the first cell is the serving cell of the first node before receiving the first signaling.
  • the first cell is the sender of the first signaling.
  • the first cell is the PCell of the first node.
  • the first cell is the PSCell of the first node.
  • the first cell is the SpCell of the first node.
  • the first cell is the SCell of the first node.
  • the first cell is a serving cell in the MCG of the first node.
  • the first cell is a serving cell in the SCG of the first node.
  • the first node receives the first service through the first cell before receiving the first signaling.
  • the SIB message of the first cell indicates that the first service is provided or supported.
  • the cell selection process of this application does not include cell reselection.
  • the USD (User service description) of the first node includes the first service provided by the first cell.
  • the USD of the first node includes the frequency of the first cell to provide the first service.
  • the continuity of reception of the first service needs to be guaranteed.
  • the first node receives the first service in an RRC inactive state.
  • the first service is not a broadcast service.
  • the meaning of the phrase “maintain the first cell” includes: determining the first cell as the serving cell of the first node after entering the RRC inactive state.
  • the meaning of the phrase “maintain the first cell” includes: selecting the first cell as the serving cell for the first node after entering the RRC inactive state.
  • the meaning of the phrase “maintain the first cell” includes: after the first node enters the RRC inactive state and before entering the RRC inactive state, the first cell is the serving cell of the first node.
  • the meaning of the phrase “maintain the first cell” includes: the execution of the first signaling includes a cell selection process, in which the reception of the first service is considered.
  • the execution of the first signaling in the phrase does not suspend at least one radio bearer in the first radio bearer set.
  • the meaning includes: after performing the first signaling, at least one radio bearer in the first radio bearer set is not suspended.
  • the meaning of the phrase that execution of the first signaling will not suspend at least one radio bearer in the first radio bearer set includes: after entering the RRC inactive state, the first radio bearer set At least one radio bearer in is not suspended.
  • At least one radio bearer in the first radio bearer set is not suspended.
  • all radio bearers in the first radio bearer set are not suspended.
  • the meaning of the phrase execution of the first signaling will not suspend at least one radio bearer in the first radio bearer set includes: the first operation set does not include suspending the first radio bearer. At least one radio bearer in the bearer set.
  • the meaning of the phrase that execution of the first signaling will not suspend at least one radio bearer in the first radio bearer set includes: in response to receiving the first signaling, only suspending all Some radio bearers in the first radio bearer set.
  • the meaning of the phrase that execution of the first signaling will not suspend at least one radio bearer in the first radio bearer set includes: in response to receiving the first signaling, only suspending all Radio bearers other than the first radio bearer set.
  • the meaning of the phrase that execution of the first signaling will suspend all radio bearers in the first radio bearer set includes: after executing the first signaling, the first radio bearer set All radio bearers in are suspended.
  • the meaning of the phrase that execution of the first signaling will suspend all radio bearers in the first radio bearer set includes: after entering the RRC inactive state, all radio bearers in the first radio bearer set will be suspended. All radio bearers are suspended.
  • the meaning of the phrase that execution of the first signaling will suspend all radio bearers in the first radio bearer set includes: the first set of operations includes suspending the first radio bearer set. All wireless bearers.
  • the meaning of the phrase that execution of the first signaling will suspend all radio bearers in the first radio bearer set includes: in response to receiving the first signaling, suspending the first All radio bearers in the radio bearer set.
  • the radio bearers in the first radio bearer set are all radio bearers related to broadcast or multicast.
  • the radio bearers in the first radio bearer set are all multicast MRBs received in the RRC inactive state.
  • the radio bearers in the first radio bearer set are all MRBs.
  • the radio bearers in the first radio bearer set are all MRBs for multicast.
  • the first radio bearer set includes all MRBs of the first node.
  • the first radio bearer set includes all multicast-oriented MRBs of the first node.
  • the first radio bearer set has nothing to do with SDT (small data transmission).
  • the phrase "execute the first set of operations" means to execute each operation in the first set of operations.
  • first information is stored in a first inactive context, the first information including at least a first key.
  • the first inactive context is a context for an RRC inactive state.
  • the first inactive context is a UE Inactive AS Context (UE Inactive AS Context).
  • the first node can only be in one RRC state at any time.
  • the behavior of entering the RRC inactive state means leaving the RRC connected state.
  • the behavior of entering the RRC inactive state means releasing the RRC connection.
  • the first node when the first node enters the RRC inactive state from the RRC connected state, it only stores the content included in the first information.
  • the first node when the first node enters the RRC inactive state from the RRC connected state, all the information stored belongs to the first information.
  • the first key includes a key used to encrypt the SRB1.
  • the first key includes a control plane key.
  • the first key includes a user plane key.
  • the first key includes K gNB .
  • the first key includes K RRCint .
  • the first key includes KRRCenc .
  • the first key is used to encrypt the first signaling.
  • parameters of radio bearers that are not suspended in the first radio bearer set are not stored in the first inactive context.
  • the meaning of the phrase multicast radio bearer includes broadcast radio bearer.
  • the meaning of the phrase multicast radio bearer includes multicast radio bearer.
  • the meaning of the phrase multicast radio bearer includes MRB for broadcast.
  • the meaning of the phrase multicast radio bearer includes MRB for multicast.
  • the meaning of the phrase multicast radio bearer does not include MRBs for broadcast.
  • the meaning of the phrase multicast radio bearer does not include MRB for multicast.
  • MRB is MBS Radio Bearer (MBS Radio Bearer).
  • MBS refers specifically to non-unicast services.
  • MBS refers specifically to broadcasting services.
  • MBS refers specifically to multicast service.
  • MBS refers specifically to broadcast and multicast services.
  • MBS is Multicast Broadcast Service.
  • the first node receives data through the first radio bearer in the RRC inactive state.
  • the first radio bearer is a radio bearer that is not suspended in the first radio bearer set.
  • the first radio bearer is any one of the radio bearers in the first radio bearer set that is not suspended when the first signaling is performed.
  • the meaning of the sentence "receiving data through the first radio bearer in the RRC inactive state” includes: receiving MBS through the first radio bearer in the RRC inactive state.
  • the meaning of the sentence "receiving data through the first radio bearer in the RRC inactive state” includes: receiving the first service through the first radio bearer in the RRC inactive state, and the first service is a non-unicast service.
  • the first service is associated with an identity related to broadcast multicast.
  • the G-RNTI is used to receive data through the first radio bearer in the RRC inactive state.
  • G-CS-RNTI Group Configured Scheduling RNTI, group configured scheduling RNTI
  • G-CS-RNTI is used to receive data through the first radio bearer in the RRC inactive state.
  • RNTI is (Radio Network Temporary Identifier, Wireless Network Temporary Identifier).
  • the radio bearers suspended during the execution of the first signaling include at least SRB1.
  • the meaning of the sentence that radio bearers in the first radio bearer set that are not suspended during the first signaling execution are used to carry the first service includes: the first service is mapped to On the radio bearer in the first radio bearer set that is not suspended during the first signaling execution.
  • the meaning of the sentence that the radio bearers in the first radio bearer set that are not suspended during the first signaling execution are used to carry the first service includes: a session of the first service or The QoS flow is mapped to the radio bearer in the first radio bearer set that is not suspended during the first signaling execution.
  • the meaning of the sentence that radio bearers in the first radio bearer set that are not suspended during the first signaling execution are used to carry the first service includes: before entering the RRC inactive state and After entering the RRC inactive state, the first services are transmitted through the radio bearers in the first radio bearer set that are not suspended during the first signaling execution.
  • cell selection is a cell selection process.
  • the first criterion includes the S criterion.
  • the first criterion includes at least one condition.
  • the first criterion includes selecting a cell with the largest RSRP (Reference Signal Received Power).
  • the first criterion is a cell selection criterion.
  • the first criterion includes selecting a cell with the best channel quality.
  • the first criterion includes selecting the cell with the best evaluation result.
  • the first criterion includes that the selected cells are all suitable cells.
  • the phrase the first cell is maintained has the same meaning as maintaining the first cell.
  • the second criterion is the first criterion.
  • the second criterion is not the first criterion.
  • the second criterion does not include all of the first criterion.
  • the second criterion includes part of the first criterion.
  • the second criterion includes that at least the quality of the first cell satisfies a first quality threshold.
  • the second criterion includes that the first signaling does not indicate preferential selection of the first frequency and the first cell does not belong to the first frequency.
  • satisfying the second criterion requires satisfying each item in the second criterion.
  • the cell selection process is performed according to the first criterion.
  • the cell selection process is not performed, and the cell selection process is not performed. Upon determining that the first cell is maintained in the RRC inactive state.
  • the meaning of not performing the cell selection process includes: not selecting a cell through the cell selection process.
  • the meaning of not performing the cell selection process includes: not determining that the first cell is maintained through the cell selection process.
  • the meaning of not executing the cell selection process includes: not determining that the first cell is a serving cell in the RRC inactive state through the cell selection process.
  • the meaning of the phrase "performing a cell selection process according to the first criterion" includes: the best cell evaluated by the first criterion is selected.
  • the first criterion has nothing to do with whether to receive the MBS service or the first service in the RRC inactive state.
  • the first criterion is independent of whether the MBS service or the continuous rows received by the first service need to be considered.
  • the first criterion has nothing to do with whether all radio bearers in the first radio bearer set are suspended.
  • any cell in the first cell set provides the first service, and at least one cell in the first cell set is not a serving cell of the first node.
  • the first node before entering the RRC inactive state, the first node receives the first service only through the first cell in the first cell set.
  • the meaning of the sentence that the execution of the first signaling will suspend the radio bearers in the first radio bearer set includes: the first signaling does not indicate not to suspend the radio bearers in the first radio bearer set. At least one radio bearer.
  • the first signaling indicates whether to receive the first service in an RRC inactive state.
  • the first signaling indicates whether to receive services through at least one radio bearer in the first radio bearer set in an RRC inactive state.
  • the first signaling indicates that the continuity of reception of the first service or MBS service needs to be considered when selecting a cell.
  • the reception or continuous reception of the first signaling service is given priority in cell selection.
  • the first node before receiving the first signaling, receives the first service through a first radio bearer; the first radio bearer belongs to the first radio bearer set; the The execution of the first signaling does not suspend the first radio bearer.
  • the first node before receiving the first signaling, receives the first service through a first radio bearer; the first radio bearer belongs to the first radio bearer set; the The execution of the first signaling will suspend the first radio bearer, but will not suspend the second radio bearer.
  • the second radio bearer belongs to the first radio bearer set and the second radio bearer is used to carry The first business.
  • the first signaling indicates that the second radio bearer is used to carry the first service.
  • the first signaling indicates that the first radio bearer no longer carries the first service.
  • the meaning of maintaining the first cell in the RRC inactive state when the execution of the first signaling will not suspend at least one radio bearer in the first radio bearer set includes: :
  • the execution of the first signaling includes cell selection, and the first cell is preferentially selected in the cell selection.
  • the meaning of maintaining the first cell in the RRC inactive state when the execution of the first signaling will not suspend at least one radio bearer in the first radio bearer set includes: : The cell selection process is executed, and the first cell is prioritized in the cell selection process.
  • the meaning of the phrase that the first cell is preferentially selected includes: directly selecting the first cell without performing a comparison of the reception quality of candidate cells during the cell selection process.
  • the reception quality comparison includes: comparing the cell quality of the first cell and other candidate cells, and selecting the one with the best cell quality.
  • the reception quality comparison includes: comparing the RSRP of the first cell and other candidate cells, and selecting the one with the highest RSRP.
  • the reception quality comparison includes: comparing the first cell and other candidate cells.
  • the meaning of the phrase that the first cell is preferentially selected includes: directly selecting the first cell without performing reception quality evaluation of candidate cells during the cell selection process.
  • the meaning of the phrase that the first cell is preferentially selected includes: during the process of performing cell selection, a first offset is applied to the first cell.
  • the meaning of the phrase “the first cell is preferentially selected” includes: the first signaling indicates that the first cell is preferentially selected during the cell selection process.
  • the meaning of the phrase “the first cell is preferentially selected” includes: the first signaling indicates that the first cell has high priority.
  • the first node before receiving the first signaling, the first node has multiple serving cells.
  • cell selection in this application includes cell reselection.
  • cell selection in this application includes cell selection and cell reselection.
  • cell selection in this application only includes the latter of cell selection and cell reselection.
  • the first node after receiving the first signaling, the first node does not receive any suspension or release information in the first radio bearer set that is not in the first signaling in the RRC inactive state. Indication of radio bearers that are suspended in execution.
  • the first cell is the cell selected when the first node enters the RRC inactive state from the RRC connected state.
  • the first cell is a cell where the first node resides in the RRC inactive state.
  • the first cell before receiving the first signaling, is not a serving cell of the first node.
  • the first node can suspend the radio bearers in the first radio bearer set only in the RRC connected state.
  • the meaning of the sentence related to whether the first cell is maintained in the RRC inactive state and whether the execution of the first signaling will suspend the radio bearers in the first radio bearer set is or includes: in the Whether the RRC inactive state is maintained in the first cell depends on whether the execution of the first signaling will suspend the radio bearers in the first radio bearer set.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in Figure 2.
  • Figure 2 illustrates the V2X communication architecture under 5G NR (New Radio), LTE (Long-Term Evolution, Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) system architecture.
  • the 5G NR or LTE network architecture can be called 5GS (5G System)/EPS (Evolved Packet System) or some other suitable term.
  • the V2X communication architecture of Embodiment 2 includes UE (User Equipment) 201, UE241, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, Home Subscriber Server)/UDM (Unified Data Management, Unified Data Management) 220, ProSe function 250 and ProSe application server 230.
  • the V2X communication architecture can be interconnected with other access networks, but These entities/interfaces are not shown for simplicity.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201.
  • gNB 203 may connect to other gNBs 204 via the Xn interface (eg, backhaul).
  • gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmitting and receiving node) or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radio, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radio non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management domain
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway, service gateway)/UPF (UserPlaneFunction, user plane function) 212 and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles signaling between UE201 and 5GC/EPC210. Basically, MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 is connected to Internet service 230.
  • the Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, an intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching streaming services.
  • the network architecture may also include network elements related to near field communication, such as the ProSe function 250, the ProSe application server 230, etc.
  • the ProSe function 250 is a logical function for network-related behaviors required by ProSe (Proximity-based Service); including DPF (Direct Provisioning Function, Direct Provisioning Function), Direct Discovery Name Management Function (Direct Discovery Name Management Function), EPC-level Discovery ProSe Function (EPC-level Discovery ProSe Function), etc.
  • the ProSe application server 230 has functions such as storing EPC ProSe user IDs, mapping between application layer user IDs and EPC ProSe user IDs, and allocating ProSe restricted code suffix pools.
  • the first node in this application is UE201.
  • the serving base station of the first node in this application is gNB203.
  • the wireless link from the UE 201 to the NR Node B is an uplink.
  • the wireless link from the NR Node B to the UE 201 is the downlink.
  • the UE 201 supports relay transmission.
  • the UE201 supports broadcast multicast service.
  • the UE 201 does not support relay transmission.
  • the UE 201 supports multi-TRP transmission.
  • the UE 201 is a vehicle including a car.
  • the gNB 203 is a base station.
  • the gNB 203 is a base station that supports multiple TRPs.
  • the gNB 203 is a base station that supports broadcast multicast services.
  • the gNB 203 is a flying platform device.
  • the gNB 203 is a satellite device.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for user plane 350 and control plane 300
  • Figure 3 shows with three layers for a first node (UE, satellite or aircraft in gNB or NTN) and a second Node (gNB, UE or NTN (satellite or aircraft), or the radio protocol architecture of the control plane 300 between two UEs: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions. The L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first node and the second node and the two UEs through the PHY 301.
  • L2 layer 305 includes MAC (Medium Access Control, media access control) sublayer 302, RLC (Radio Link Control, wireless link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304, these sub-layers terminate at the second node.
  • PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels. The PDCP sublayer 304 also provides security by encrypting data packets, and provides handoff support for the first node between second nodes.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • MAC sublayer 302 provides multiplexing between logical and transport channels. The MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among the first nodes. MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, Radio Resource Control) sublayer 306 in layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the RRC signaling between the second node and the first node. command to configure the lower layer.
  • PC5-S (PC5 Signaling Protocol, PC5 signaling protocol) sublayer 307 is responsible for processing the signaling protocol of the PC5 interface.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the L2 layer 355 The PDCP sublayer 354, the RLC sublayer 353 in the L2 layer 355 and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides for upper Header compression of layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes an SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • DRB Data Radio Bearer
  • the first node may have several upper layers above the L2 layer 355. Also included are the network layer (eg, IP layer) terminating at the P-GW on the network side and the application layer terminating at the other end of the connection (eg, remote UE, server, etc.).
  • the wireless bearer is the interface or service provided by the PDCP protocol layer to the upper layer.
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the first signaling in this application is generated in RRC306.
  • the first signal in this application is generated by RRC306 or MAC302 or PHY301.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in the access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a receive processor 470, a transmit processor 416, a multi-antenna receive processor 472, a multi-antenna transmit processor 471, a transmitter/receiver 418 and an antenna 420.
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and radio resource allocation to the first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer). Transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 410, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for M-phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for M-phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams. Transmit processor 416 then maps each spatial stream to a subcarrier, multiplexes it with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the first communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial stream that is the destination. The symbols on each spatial stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover upper layer data and control signals transmitted by the second communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media.
  • the controller/processor 459 In transmission from the second communication device 410 to the second communication device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements headers based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 In transmission from the first communications device 450 to the second communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the used with at least one of the above processors.
  • the first communication device 450 at least: receives the first signaling; in response to receiving the first signaling, enters the RRC inactive state.
  • Whether to maintain the first cell in the RRC inactive state depends on the first Whether the execution of the signaling will suspend the radio bearers in the first radio bearer set; wherein, when the execution of the first signaling will not suspend at least one radio bearer in the first radio bearer set, the Maintain the first cell in the RRC inactive state; when execution of the first signaling will suspend all radio bearers in the first radio bearer set, whether to maintain the first cell in the RRC inactive state
  • a cell relies on a first criterion, the first criterion is used for cell selection; the first cell is a serving cell of the first node, the first cell provides a first service; the first radio bearer set Including non-unicast radio bearers for multicast; radio bearers in the first radio bearer set that are not suspended during the first signaling execution are used to carry the first service, and the first service is a non-unicast radio bearer.
  • Unicast service
  • the first communication device 450 device includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: receiving First signaling; as a response to receiving the first signaling, enter the RRC inactive state.
  • Whether to maintain the first cell in the RRC inactive state depends on whether the execution of the first signaling will suspend the first radio Radio bearers in the bearer set; wherein, when the execution of the first signaling does not suspend the radio bearers in the first radio bearer set When at least one radio bearer in the first radio bearer set is maintained, the first cell is maintained in the RRC inactive state; when execution of the first signaling will suspend all radio bearers in the first radio bearer set, in the Whether the RRC inactive state is maintained in the first cell depends on the first criterion, and the first criterion is used for cell selection; the first cell is the serving cell of the first node, and the first cell provides the first service; the first radio bearer set includes non-unicast radio bearers for multicast; radio bearers in the first radio bearer set that are not suspended during the first signaling execution are used to carry the third One service, the first service is a non-unicast service.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a UE.
  • the first communication device 450 is a vehicle-mounted terminal.
  • the first communication device 450 is a relay.
  • the second communication device 410 is a base station.
  • a receiver 456 (including an antenna 460), a reception processor 452 and a controller/processor 490 are used in this application to receive the first signaling.
  • transmitter 456 (including antenna 460), transmit processor 455 and controller/processor 490 are used in this application to transmit the first signal.
  • Embodiment 5 illustrates a wireless signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 5 .
  • U01 corresponds to the first node of this application. It is particularly noted that the order in this example does not limit the signal transmission sequence and implementation order in this application, and the steps in F51 are optional.
  • step S5101 For the first node U01 , receive the first signaling in step S5101; receive data through the first radio bearer in the RRC inactive state in step S5102; and send the first signal in step S5103.
  • the first signaling is sent in step S5201; the first signal is received in step S5202.
  • whether to maintain the first cell in the RRC inactive state depends on whether the execution of the first signaling will suspend the radio bearers in the first radio bearer set; when the execution of the first signaling When at least one radio bearer in the first radio bearer set will not be suspended, the first cell is maintained in the RRC inactive state; when execution of the first signaling will suspend the first radio bearer,
  • whether to maintain the first cell in the RRC inactive state depends on a first criterion, and the first criterion is used for cell selection; the first cell is the first node A serving cell, the first cell provides a first service; the first radio bearer set includes non-unicast radio bearers for multicast; there is no signal in the first radio bearer set during the first signaling execution.
  • the suspended radio bearer is used to carry the first service, and the first service is a non-unicast service.
  • the second node N02 is the serving cell of the first node U01.
  • the second node N02 is the primary cell (PCell) of the first node U01.
  • the second node N02 is a special cell (SpCell) of the first node U01.
  • the second node N02 is the PSCell of the first node U01.
  • the second node N02 is a base station.
  • the second node N02 is a DU (data unit).
  • the first signaling is sent in a unicast manner.
  • the interface between the first node U01 and the second node U02 is a Uu interface.
  • the second node N02 corresponds to the first cell or the base station of the first cell.
  • the second node N02 corresponds to the cell group to which the first cell belongs.
  • step S5101 there is still a mapped broadcast or multicast stream on the first radio bearer.
  • the first radio bearer is a radio bearer in the first radio bearer set.
  • the mapped multicast stream still exists on the first radio bearer.
  • the first radio bearer is not suspended.
  • the first radio bearer is not released.
  • the first node U01 is in an RRC inactive state.
  • the first signaling is an RRC message.
  • the first signaling is the last unicast RRC signaling received by the first node U01 in the RRC connected state.
  • execution of the first signaling results in the reestablishment of the first radio bearer.
  • execution of the first signaling will not cause the first radio bearer to be reestablished.
  • the first signaling does not indicate reestablishing the first radio bearer.
  • execution of the first signaling results in RRC connection reestablishment.
  • execution of the first signaling will not cause RRC connection reestablishment.
  • the first signaling does not indicate reestablishing the RRC connection.
  • the first node U01 before receiving the first signaling, the first node U01 receives the first service through a radio bearer other than the first radio bearer; after executing the first signaling, the first node U01 A node U01 is in the RRC inactive state and receives the first service through the first radio bearer.
  • the first signaling includes an RLC entity or a configuration of an RLC bearer associated with the first radio bearer.
  • the first node receives data from the first cell through the first radio bearer.
  • the first signal includes an RRC message.
  • the first signal includes a msg3 message.
  • the first signal includes a signal of a random access process.
  • the first signal is sent through SRBO.
  • the first signal is used to restore or continue the RRC connection.
  • the first node U01 continues the SRB1 radio bearer.
  • the first signal includes RRCResumeRequest.
  • the first signal includes RRCResumeRequest1.
  • the first signal includes a reason for RRC continuation.
  • the first signal includes an identity of the first node U01.
  • the first node U01 in response to any condition in the second condition set being satisfied, sends a first signal, and the first signal is used to request to continue the RRC connection.
  • whether the second set of conditions includes the second condition is related to whether non-unicast services for multicast are received in the RRC discontinuous state.
  • the second condition set does not include the second condition.
  • the second condition set includes the second condition.
  • the second condition is that the quality of the serving cell is worse than the second quality threshold.
  • the second condition set when non-unicast services for multicast are not received in the RRC discontinuous state, the second condition set includes a NAS instruction.
  • the second condition set when non-unicast services for multicast are not received in the RRC discontinuous state, the second condition set requires small data transmission.
  • the second set of conditions includes the need to perform a RAN (radio access network, radio access network) area update.
  • RAN radio access network, radio access network
  • the second condition set includes the need to send user data or user signaling.
  • the second set of conditions includes receiving a paging message.
  • the first signaling includes the second quality threshold.
  • the second quality threshold is an RSRP threshold.
  • the quality of the serving cell includes the quality of the first cell.
  • the quality of the serving cell includes the RSRP of the serving cell.
  • the first node in the RRC discontinuous state, has only one serving cell.
  • the first node U01 in the RRC inactive state, suspends all operations in response to the completion of receiving the first service and the radio bearer used by the first service does not carry other non-unicast services.
  • the radio bearer used by the first service is not carried other non-unicast services.
  • the first radio bearer receives an indication of completion of the first service.
  • the network sends an indication that the first service is completed.
  • the network sends the first service completion indication in a broadcast multicast manner.
  • the first node U01 determines by itself that the first service is completed, for example, the first service is completed at the appointed time.
  • any radio bearer used by the first service does not carry other non-unicast services, then any radio bearer used by the first service is suspended.
  • the other non-unicast services include MBS services.
  • the other non-unicast services include broadcast multicast services.
  • any radio bearer used by the first service does not carry other non-unicast services, then any radio bearer used by the first service is released.
  • the other non-unicast services include MBS services.
  • the other non-unicast services include broadcast multicast services.
  • the radio bearer used by the first service when the first service is received and the radio bearer used by the first service still carries other non-unicast services, the radio bearer used by the first service is neither suspended nor released. carry.
  • the radio bearer used by the first service is a radio bearer that carries the first service.
  • the radio bearer used by the first service is the radio bearer mapped by the first service.
  • Embodiment 6 illustrates a schematic diagram of cell selection and reselection criteria according to an embodiment of the present application, as shown in FIG. 6 .
  • Srxlev in Figure 6 is the cell selection RX (reception) level value.
  • the unit of Srxlev in Figure 6 is dB.
  • Squal in Figure 6 is the cell selection quality level.
  • the unit of Squal in Figure 6 is dB.
  • Q rxlevmeas in Figure 6 is the measured cell RX level value, that is, RSRP.
  • Q qualmeas in Figure 6 is the measured cell quality value, that is, RSRQ (Reference Signal Receiving Quality).
  • Q rxlevmin in Figure 6 is the minimum required RX level in a cell, and the unit is dBm.
  • the first signaling indicates Q rxlevmin .
  • the SIB message sent by the network indicates Q rxlevmin .
  • Q qualmin in Figure 6 is the minimum required RX level in a cell, and the unit is dBm.
  • the first signaling indicates Q qualmin .
  • the SIB message sent by the network indicates Q qualmin .
  • Q rxlevminoffset in FIG. 6 is the offset applied to Q rxlevmin indicated by the network.
  • the Q qualminoffset in Figure 6 is the offset applied to the Q qualmin indicated by the network.
  • P compensation pair FR2 in Figure 6 is set to 0.
  • P compensation in Figure 6 is set to max(P EMAX1 –P PowerClass ,0)– (min(P EMAX2 ,P PowerClass )–min(P EMAX1 ,P PowerClass ))(dB), where max() is the maximum value and min() is the minimum value.
  • P compensation in Figure 6 is set to max (P EMAX1 –P PowerClass ,0)(dB).
  • PEMAX1 and PEMAX2 are respectively the maximum uplink transmit power level of a UE, such as the first node U01.
  • PEMAX1 and PEMAX2 are fixed.
  • PEMAX1 and PEMAX2 are network configured.
  • PEMAX1 and PEMAX2 are respectively one UE, for example, the uplink maximum transmit power level of the first node U01 in the first cell.
  • P PowerClass is the maximum radio frequency output power of the UE, such as the first node U01.
  • Qoffset temp is a temporary offset
  • the second node N02 indicates the Qoffset temp .
  • the first signaling indicates the Qoffset temp .
  • the first criterion includes Srxlev being greater than 0.
  • the first criterion includes Squal being greater than 0.
  • the first criterion includes the S criterion.
  • the first criterion includes Srxlev being greater than a first threshold.
  • the first criterion includes that Srxlev is greater than a second threshold.
  • the first signaling indicates the first threshold.
  • the first signaling indicates the second threshold.
  • the second criterion includes Srxlev being greater than 0.
  • the second criterion includes Squal being greater than 0.
  • the second criterion includes Srxlev being greater than a third threshold.
  • the second criterion includes Squal being greater than a fourth threshold.
  • the first signaling indicates the third threshold.
  • the first signaling indicates the fourth threshold.
  • the meaning of the phrase that the first offset is applied to the first cell includes: the first offset is included in Qoffset temp .
  • the first signaling indicates the first offset.
  • a network broadcast message indicates the first offset.
  • the SIB message of the second node N02 indicates the first offset.
  • the first offset is only applied to a cell that provides the first service.
  • R s is for the serving cell.
  • R n is for neighboring cells.
  • Q meas,s is the RSRP measurement result of the serving cell for cell reselection.
  • Q meas,n is the RSRP measurement result for cell reselection of neighboring cells.
  • Qoffset s,n is available, Qoffset is equal to Qoffset s,n , otherwise Qoffset s,n is equal to 0.
  • Qoffset s,n is available, Qoffset is equal to Qoffset s,n +Qoffset frequency , otherwise Qoffset s,n is equal to Qoffset frequency .
  • Qoffset s,n is available when the network indicates Qoffset s , n.
  • R s Q meas,s +Q hyst -Qoffset temp for the first cell
  • Qoffset temp includes the first offset
  • R s Q meas,s +Q hyst -Qoffset temp +Q 3 for the first cell, where Q 3 is the first offset quantity.
  • Q hyst is the hysteresis factor.
  • the network configures Qhyst .
  • R n Q meas,n -Qoffset-Qoffset temp for the first cell
  • Qoffset temp includes the first offset
  • R n Q meas,n -Qoffset-Qoffset temp +Q 4 for the first cell, where Q 4 is the first offset .
  • R s Q meas,s +Q hyst -Qoffset temp .
  • R n Q meas,n -Qoffset-Qoffset temp .
  • R s and R n are sorted, and the largest corresponding cell is selected.
  • R s or R n of all candidate cells are sorted, and the largest corresponding cell is selected.
  • the second criterion is the S criterion.
  • the second criterion includes that the RSRP of the first cell is greater than a specific threshold.
  • the first signaling indicates the one specific threshold.
  • the network indicates said one specific threshold.
  • the network indicates the specific threshold through a SIB message.
  • the first criterion includes sorting R s or R n of all candidate cells among the candidate cells, and the largest corresponding cell is selected.
  • the first criterion includes selecting the cell with the best reception quality among all suitable cells.
  • the first criterion includes selecting the serving cell among all suitable cells, unless the reception quality of a neighboring cell is better than the reception quality of the serving cell by a given threshold.
  • the first criterion includes not reselecting a neighboring cell among all suitable cells unless the reception quality of one neighboring cell is better than the reception quality of the serving cell by a given threshold.
  • Embodiment 7 illustrates a schematic diagram in which the cell selection process is not executed and is used to determine that the first cell is maintained in the RRC inactive state according to an embodiment of the present application, as shown in FIG. 7 .
  • the cell selection process includes selecting a cell according to reception quality among all candidate cells.
  • the cell selection process includes selecting a cell according to reception strength among all candidate cells.
  • the cell selection process includes pre-stored information to select a cell.
  • the first cell when the cell selection process is not performed, the first cell is maintained in the RRC inactive state.
  • the first cell when the cell selection process is not performed, the first cell is maintained when entering the RRC inactive state.
  • whether the first cell is maintained depends on the first criterion.
  • whether the first cell is maintained depends on the reception quality of the first cell.
  • whether the first cell is maintained depends on the signal strength of the first cell.
  • whether the first cell is maintained is related to whether the first cell provides the first service.
  • whether the first cell is maintained has nothing to do with whether the first cell provides the first service.
  • Embodiment 8 illustrates a structural block diagram of a processing device used in a first node according to an embodiment of the present application; as shown in FIG. 8 .
  • the processing device 1000 in the first node includes a first receiver 1001 and a first transmitter 1002.
  • the processing device 1000 in the first node includes a first receiver 1001 and a first transmitter 1002.
  • the first receiver 1001 receives the first signaling; in response to receiving the first signaling, it enters the RRC inactive state. Whether to maintain the first cell in the RRC inactive state depends on the execution of the first signaling. Whether the radio bearers in the first radio bearer set will be suspended;
  • the first cell when the execution of the first signaling will not suspend at least one radio bearer in the first radio bearer set, the first cell is maintained in the RRC inactive state; when the first signaling When the execution of the command suspends all radio bearers in the first radio bearer set, whether to maintain the first cell in the RRC inactive state depends on a first criterion, and the first criterion is used for cell selection;
  • the first cell is a serving cell of the first node, and the first cell provides a first service;
  • the first radio bearer set includes non-unicast radio bearers for multicast;
  • the first radio bearer set The radio bearer that is not suspended during the execution of the first signaling is used to carry the first service, and the first service is a non-unicast service.
  • the cell selection process is performed according to the first criterion; when the execution of the first signaling When executing without suspending at least one radio bearer in the first radio bearer set, the cell selection process is not performed, and the cell selection process is not performed and is used to determine that the first radio bearer is in the RRC inactive state. The neighborhood is maintained.
  • the first receiver 1001 receives the first service before receiving the first signaling.
  • the meaning of maintaining the first cell in the RRC inactive state when the execution of the first signaling will not suspend at least one radio bearer in the first radio bearer set includes: :
  • the execution of the first signaling includes cell selection, and the first cell is preferentially selected in the cell selection.
  • the meaning of the phrase that the first cell is preferentially selected includes: directly selecting the first cell without performing a comparison of the reception quality of candidate cells during cell selection.
  • the meaning of the phrase that the first cell is preferentially selected includes: during the process of performing cell selection, a first offset is applied to the first cell.
  • the first transmitter 100 in response to any condition in the second condition set being satisfied, sends a first signal, and the first signal is used to request to continue the RRC connection;
  • whether the second condition set includes the second condition is related to whether the non-unicast service for multicast is received in the RRC discontinuous state; when the non-unicast service for multicast is not received in the RRC discontinuous state, the The second condition set does not include the second condition; when receiving non-unicast services for multicast in the RRC discontinuous state, the second condition set includes the second condition; the second condition is service The quality of the cell is worse than the second quality threshold.
  • the first receiver 1001 in the RRC inactive state, suspends as a response that the first service has been received and the radio bearer used by the first service does not carry other non-unicast services.
  • the radio bearer used by the first service is not carried other non-unicast services.
  • the first node is a user equipment (UE).
  • UE user equipment
  • the first node is a terminal that supports a large delay difference.
  • the first node is a terminal supporting NTN.
  • the first node is an aircraft.
  • the first node is a vehicle-mounted terminal.
  • the first node is a relay.
  • the first node is a ship.
  • the first node is an Internet of Things terminal.
  • the first node is an industrial Internet of Things terminal.
  • the first receiver 1001 includes the antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, or data source in Embodiment 4. At least one of 467.
  • the first transmitter 1002 includes the antenna 452, transmitter 454, transmission processor 468, multi-antenna transmission processor 457, controller/processor 459, memory 460, or data source in Embodiment 4. At least one of 467.
  • Embodiment 9 illustrates a structural block diagram of a processing device used in a first node according to an embodiment of the present application; as shown in FIG. 9 .
  • the processing device 1100 in the first node includes a first receiver 1101 and a first transmitter 1102.
  • Example 9
  • the first receiver 1101 receives the first signaling; in response to receiving the first signaling, enters the RRC inactive state;
  • the first receiver 110 in the RRC inactive state, receives the first service through the first radio bearer;
  • the first radio bearer does not carry other non-unicast services; the first service is a non-unicast service; the sentence is in the RRC inactive state, and when the first service is received, whether to suspend the first
  • the meaning of the radio bearer related to the type of the first radio bearer includes: when the first radio bearer is an MRB for multicast, suspend the first radio bearer by itself; when the first radio bearer is a DRB , the first radio bearer is not suspended by itself.
  • the first receiver 1101 in the RRC inactive state, continues the first radio bearer in response to receiving the second signaling; wherein, the first radio bearer receives the second Signaling was previously suspended.
  • the second signaling indicates that the first radio bearer is used to carry a second service, and the second service is a non-unicast service.
  • the second signaling is used to indicate that the second service is about to start transmission.
  • the second service is the first service, or the second service is a service other than the first service.
  • the meaning of suspending the first radio bearer by oneself includes: there is no need to receive signaling indicating to suspend the first radio bearer.
  • the meaning of self-suspending the first radio bearer includes: when no signaling indicating to suspend the first radio bearer is received, the first radio bearer can also be suspended.
  • the meaning of self-suspending the first radio bearer includes: when the RRCRelease message is not received, the first radio bearer can also be suspended.
  • the meaning of self-suspending the first radio bearer includes: when the RRCReject message is not received, the first radio bearer can also be suspended.
  • the meaning of not suspending the first radio bearer by oneself includes: needing to receive signaling indicating to suspend the first radio bearer to suspend the first radio bearer.
  • the meaning of not suspending the first radio bearer by oneself includes: not suspending the first radio bearer when no signaling indicating to suspend the first radio bearer is received.
  • the meaning of not suspending the first radio bearer by itself includes: not suspending the first radio bearer when RRCRelease is not received.
  • the meaning of not suspending the first radio bearer by itself includes: not suspending the first radio bearer when no RRCReject is received.
  • the first transmitter 1102 sends a first report, where the first report includes a reception report of the first service in the RRC inactive state.
  • the first transmitter 1102 sends a first report, where the first report includes a reception report of the second service in the RRC inactive state.
  • the first node after entering the RRC inactive state, the first node is always in the RRC inactive state.
  • the first node after entering the RRC inactive state, the first node is always in the RRC inactive state at least before the first report is sent.
  • whether the first cell is preferentially selected is related to whether the first cell provides the first service.
  • whether the first cell is preferentially selected is related to whether the first cell provides the second service.
  • the second information includes the first key.
  • the first node is a user equipment (UE).
  • UE user equipment
  • the first node is a terminal that supports a large delay difference.
  • the first node is a terminal supporting NTN.
  • the first node is an aircraft.
  • the first node is a vehicle-mounted terminal.
  • the first node is a relay.
  • the first node is a ship.
  • the first node is an Internet of Things terminal.
  • the first node is an industrial Internet of Things terminal.
  • the first receiver 1101 includes the antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, or data source in Embodiment 4. At least one of 467.
  • the first transmitter 1102 includes the antenna 452, transmitter 454, transmit processor 468, multi-antenna transmit processor 457, controller/processor 459, memory 460, or data source in Embodiment 4. At least one of 467.
  • User equipment, terminals and UEs in this application include but are not limited to drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IoT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC, enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost Cost tablet computers, satellite communication equipment, ship communication equipment, NTN user equipment and other wireless communication equipment.
  • drones communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IoT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC, enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile
  • the base station or system equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point, sending and receiving node), NTN base station , satellite equipment, flight platform equipment and other wireless communication equipment.
  • gNB NR Node B
  • TRP Transmitter Receiver Point

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的方法和设备,包括接收第一信令;作为接收所述第一信令的响应,进入RRC不活跃态,在所述RRC不活跃态是否维持第一小区依赖所述第一信令的执行是否会挂起第一无线承载集合中的无线承载;其中,当所述第一信令的执行不会挂起所述第一无线承载集合中的至少一个无线承载时,在所述RRC不活跃态维持所述第一小区;当所述第一信令的执行会挂起所述第一无线承载集合中的所有无线承载时,在所述RRC不活跃态是否维持所述第一小区依赖第一准则,所述第一准则被用于小区选择;所述第一小区是所述第一节点的服务小区,所述第一小区提供第一业务。本申请所提出的方法可以保证业务接收的质量。

Description

一种被用于无线通信的方法和设备 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信的广播组播业务,业务接收的连续性等方面的方法和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或Fifth Generation,5G)进行研究,在3GPP RAN#75次全会上通过了NR的WI(Work Item,工作项目),开始对NR进行标准化工作。
在通信中,无论是LTE(Long Term Evolution,长期演进)还是5G NR都会涉及到可靠的信息的准确接收,优化的能效比,信息有效性的确定,灵活的资源分配,可伸缩的系统结构,高效的非接入层信息处理,较低的业务中断和掉线率,对低功耗支持,这对基站和用户设备的正常通信,对资源的合理调度,对系统负载的均衡都有重要的意义,可以说是高吞吐率,满足各种业务的通信需求,提高频谱利用率,提高服务质量的基石,无论是eMBB(enhanced Mobile BroadBand,增强的移动宽带),URLLC(Ultra Reliable Low Latency Communication,超高可靠低时延通信)还是eMTC(enhanced Machine Type Communication,增强的机器类型通信)都不可或缺的。同时在IIoT(Industrial Internet of Things,工业领域的物联网中,在V2X(Vehicular to X,车载通信)中,在设备与设备之间通信(Device to Device),在非授权频谱的通信中,在用户通信质量监测,在网络规划优化,在NTN(Non Territorial Network,非地面网络通信)中,在TN(Territorial Network,地面网络通信)中,在双连接(Dual connectivity)系统中,在无线资源管理以及多天线的码本选择中,在信令设计,邻区管理,业务管理,在波束赋形中都存在广泛的需求,信息的发送方式分为广播和单播,两种发送方式都是5G系统必不可少的,因为它们对满足以上需求十分有帮助。UE与网络连接的方式可以是直接连接也可以通过中继连接。
随着系统的场景和复杂性的不断增加,对降低中断率,降低时延,增强可靠性,增强系统的稳定性,对业务的灵活性,对功率的节省也提出了更高的要求,同时在系统设计的时候还需要考虑不同系统不同版本之间的兼容性。
本申请中的概念、术语与缩写的含义可参考3GPP标准,包括但不限于:
https://www.3gpp.org/ftp/Specs/archive/21_series/21.905/21905-h10.zip
https://www.3gpp.org/ftp/Specs/archive/38_series/38.300/38300-h10.zip
https://www.3gpp.org/ftp/Specs/archive/38_series/38.331/38331-h10.zip
https://www.3gpp.org/ftp/Specs/archive/38_series/38.321/38321-h10.zip
https://www.3gpp.org/ftp/Specs/archive/38_series/38.304/38304-h10.zip
发明内容
多播广播业务(Multicast and Broadcast Service,MBS),是5G网络中的重要通信方式,经常用于视频的传输,占用较大的带宽,功率消耗较大,另一方面MBS也可能应用到大量IoT设备中,以减少网络资源的消耗,节省功率对IoT设备十分重要。因此使用MBS业务的终端对节省功率有着普遍的需求。一种可能的节省功率的方式是在没有其它业务的时候进入RRC不活跃态(RRC_INACTIVE)接收MBS业务。在RRC不活跃态接收多播业务,尤其是从RRC连接态进入RRC不活跃态连续的接收MBS业务是一个挑战,这在之前的协议是不支持的。当一个用户从RRC连接态开始就接收一个MBS业务,然后为了节省电力进入RRC不活跃态继续接收,这会带来一个连续接收的问题。在现有技术中,不存在从RRC连接态到RRC不活跃态连续接收的问题,因为一般情况下,用户已经完成了当前的业务之后才进入RRC不活跃态。因此,现有技术中,当用户设备进入RRC不活跃态后,首先需要选择一个驻留的小区,一般来说是根据信号强度选择那个最强的,但是要接收的MBS业务可能并不在那个小区上提供,或者即使提供可能和当前小区的传输也是不 同步的,因此,选择一个其它小区开始接收在RRC连接态就在接收的业务,会造成业务接收上的中断,影响用户的体验。因此,如何从RRC连接态进入RRC不活跃态时能够保证业务接收的连续性是一个要解决的问题。
针对以上所述问题,本申请提供了一种解决方案。
需要说明的是,在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。本申请所提出的方法也可以用于解决通信中的其它问题,例如包括需要在RRC不活跃态使用单播无线承载接收,尤其是要保证从RRC连接态到RRC不活跃态时使用单播无线承载连续接收的场景。
本申请公开了一种被用于无线通信的第一节点中的方法,包括:
接收第一信令;作为接收所述第一信令的响应,进入RRC不活跃态,在所述RRC不活跃态是否维持第一小区依赖所述第一信令的执行是否会挂起第一无线承载集合中的无线承载;
其中,当所述第一信令的执行不会挂起所述第一无线承载集合中的至少一个无线承载时,在所述RRC不活跃态维持所述第一小区;当所述第一信令的执行会挂起所述第一无线承载集合中的所有无线承载时,在所述RRC不活跃态是否维持所述第一小区依赖第一准则,所述第一准则被用于小区选择;所述第一小区是所述第一节点的服务小区,所述第一小区提供第一业务;所述第一无线承载集合包括针对多播的非单播无线承载;所述第一无线承载集合中在所述第一信令执行中未被挂起的无线承载用于承载所述第一业务,所述第一业务是非单播业务。
作为一个实施例,本申请要解决的问题包括:如何更好的支持RRC不活跃态的通信,如何更加省电,如何更好的支持接收广播多播业务,如何在RRC不活跃态接收广播多播业务,如何保证广播多播业务接收的连续性;如何保证从RRC连接态到RRC不活跃态业务接收的连续性,如何确定在RRC不活跃态的服务小区,如何根据业务接收方面的要求来进行小区选择。
作为一个实施例,上述方法的好处包括:可以节省电力,提高业务质量,支持业务的连续性,支持在不活跃状态下接收业务,避免了业务的中断,更好的适应性。
具体的,根据本申请的一个方面,仅当所述第一小区满足第二准则时,所述句子“当所述第一无线承载集合中的至少一个无线承载未被挂起时,所述第一小区被维持”才成立。
具体的,根据本申请的一个方面,当所述第一信令的执行会挂起所述第一无线承载集合中的所有无线承载时,根据所述第一准则执行小区选择过程;当所述第一信令的执行不会挂起所述第一无线承载集合中的至少一个无线承载时,小区选择过程不被执行,所述小区选择过程不被执行被用于确定在所述RRC不活跃态所述第一小区被维持。
具体的,根据本申请的一个方面,在接收所述第一信令之前,接收所述第一业务。
具体的,根据本申请的一个方面,句子当所述第一信令的执行不会挂起所述第一无线承载集合中的至少一个无线承载时,在所述RRC不活跃态维持所述第一小区的含义包括:所述第一信令的执行包括小区选择,所述第一小区在小区选择中被优先选择。
具体的,根据本申请的一个方面,短语所述第一小区被优先选择的含义包括:在小区选择的时候不执行候选小区的接收质量的比较,直接选择所述第一小区。
具体的,根据本申请的一个方面,短语所述第一小区被优先选择的含义包括:在执行小区选择的过程中,所述第一小区被施加第一偏移量。
具体的,根据本申请的一个方面,作为第二条件集合中任一条件被满足的响应,发送第一信号,所述第一信号被用于请求继续RRC连接;
其中,所述第二条件集合是否包括第二条件与是否在RRC不连续状态接收针对多播的非单播业务有关;当未在RRC不连续状态接收针对多播的非单播业务时,所述第二条件集合不包括所述第二条件;当在RRC不连续状态接收针对多播的非单播业务时,所述第二条件集合包括所述第二条件;所述第二条件是服务小区的质量差于第二质量阈值。
具体的,根据本申请的一个方面,在RRC不活跃态,作为所述第一业务接收完毕且所述第一业务所使用的无线承载未承载其它非单播业务的响应,挂起所述第一业务所使用的无线承载。
具体的,根据本申请的一个方面,所述第一节点是用户设备。
具体的,根据本申请的一个方面,所述第一节点是物联网终端。
具体的,根据本申请的一个方面,所述第一节点是中继。
具体的,根据本申请的一个方面,所述第一节点是车载终端。
具体的,根据本申请的一个方面,所述第一节点是飞行器。
本申请公开了一种被用于无线通信的第一节点,包括:
第一接收机,接收第一信令;作为接收所述第一信令的响应,进入RRC不活跃态,在所述RRC不活跃态是否维持第一小区依赖所述第一信令的执行是否会挂起第一无线承载集合中的无线承载;
其中,当所述第一信令的执行不会挂起所述第一无线承载集合中的至少一个无线承载时,在所述RRC不活跃态维持所述第一小区;当所述第一信令的执行会挂起所述第一无线承载集合中的所有无线承载时,在所述RRC不活跃态是否维持所述第一小区依赖第一准则,所述第一准则被用于小区选择;所述第一小区是所述第一节点的服务小区,所述第一小区提供第一业务;所述第一无线承载集合包括针对多播的非单播无线承载;所述第一无线承载集合中在所述第一信令执行中未被挂起的无线承载用于承载所述第一业务,所述第一业务是非单播业务。
作为一个实施例,和传统方案相比,本申请具备如下优势:
支持在RRC不活跃态接收广播和/或多播业务,更加省电。
保证了业务接收的连续性,即可以在RRC连接态接收较为平滑的过渡到RRC不活跃态的接收。
避免了由于需要进入RRC连接态,或者由于其它RRC不活跃态通信而发起RRC继续请求时,导致的通信中断。
在由RRC不活跃态重新进入RRC连接态后,可以保证业务的连续接收。
支持那些不在RRC不活跃接收的广播和/或多播业务的挂起和继续。
可以在恰当的时候恢复或继续RRC连接,有利于保证业务的接收质量。
可以在进入RRC不连续态后选择恰当的小区以保证业务的连续行。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的接收第一信令,作为接收第一信令的响应进入RRC不活跃态,的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输的流程图;
图6示出了根据本申请的一个实施例的小区选择重选的准则的示意图;
图7示出了根据本申请的一个实施例的小区选择过程不被执行被用于确定在RRC不活跃态第一小区被维持的示意图;
图8示例了根据本申请的一个实施例的用于第一节点中的处理装置的示意图;
图9示例了根据本申请的一个实施例的用于第一节点中的处理装置的示意图。
实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的接收第一信令,作为接收第一信令的响应进入RRC不活跃态的流程图,如附图1所示。附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序并不代表所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的第一节点在步骤101中接收第一信令;在步骤102中作为接收第一信令的响应进入RRC不活跃态。
作为一个实施例,第一节点在所述RRC不活跃态是否维持第一小区依赖所述第一信令的执行是否会挂起第一无线承载集合中的无线承载。
作为一个实施例,当所述第一信令的执行不会挂起所述第一无线承载集合中的至少一个无线承载时,在所述RRC不活跃态维持所述第一小区;当所述第一信令的执行会挂起所述第一无线承载集合中的所有无线承载时,在所述RRC不活跃态是否维持所述第一小区依赖第一准则,所述第一准则被用于小区选择;所述第一小区是所述第一节点的服务小区,所述第一小区提供第一业务;所述第一无线承载集合包括针对多播的非单播无线承载;所述第一无线承载集合中在所述第一信令执行中未被挂起的无线承载用于承载所述第一业务,所述第一业务是非单播业务。
作为一个实施例,所述第一节点是UE(User Equipment,用户设备)。
作为一个实施例,所述第一节点是MS(Mobile Station,移动台)。
作为一个实施例,在5G NR中支持带宽自适应;一个小区的总的小区带宽的一个子集被称为一个BWP;基站通过向UE配置BWP并告诉UE所配置的BWP中哪一个是当前活跃的BWP来实现带宽自适应。
作为一个实施例,所述第一节点的SpCell指的是所述第一节点的PCell。
作为一个实施例,所述第一节点的SpCell指的是所述第一节点的PSCell。
作为一个实施例,服务小区指的是UE驻留的小区;执行小区搜索包括,UE搜索所选择的PLMN(公共陆地移动网,Public Land Mobile Network)或SNPN(Stand-alone Non-Public Network,独立非公共网络)的一个合适的(suitable)小区,选择所述一个合适的小区提供可用的业务,监测所述一个合适的小区的控制信道,这一过程被定义为驻留在小区上;也就是说,一个被驻留的小区,相对于这个UE,是这个UE的服务小区。在RRC空闲态或RRC非活跃态驻留在一个小区上有如下好处:使得UE可以从PLMN或SNPN接收系统消息;当注册后,如果UE希望建立RRC连接或继续一个被挂起的RRC连接,UE可以通过在驻留小区的控制信道上执行初始接入来实现;网络可以寻呼到UE;使得UE可以接收ETWS(Earthquake and Tsunami Warning System,地震海啸预警系统)和CMAS(Commercial Mobile Alert System,商业移动报警系统)通知。
作为一个实施例,对于没有配置CA/DC(carrier aggregation/dual connectivity,载波聚合/双连接)的处于RRC连接态的UE,只有一个服务小区包括主小区;如果UE只与一个小区连接,那么这个小区就是UE的主小区。对于配置了CA/DC(carrier aggregation/dual connectivity,载波聚合/双连接)的处于RRC连接态的UE,服务小区用于指示包括特殊小区(SpCell,Special Cell)和所有从小区的小区集合;主小区(Primary Cell,PCell)是MCG(Master Cell Group,主小区组)中的小区,主小区工作在主频率上,UE在主小区上执行初始连接建立过程或发起连接重建;对于双连接操作,还可以有SCG(Secondary Cell Group,从小区组),特殊小区指的是MCG的PCell(Primary Cell,主小区)或SCG的PSCell(Primary SCG Cell,主SCG小区);如果不是双连接操作,特殊小区指的是PCell。
作为一个实施例,SCell(Secondary Cell,从小区)工作的频率是从频率。
作为一个实施例,MR-DC(Multi-Radio Dual Connectivity,多无线双连接)指的是E-UTRA和NR节点的双连接,或两个NR节点之间的双连接。
作为一个实施例,在MR-DC中,提供到核心网的控制面连接的无线接入节点是主节点,主节点可以是主eNB,主ng-eNB,或主gNB。
作为一个实施例,MCG指的是,在MR-DC中,与主节点相关联的一组服务小区,包括SpCell,还可以,可选的,包括一个或多个SCell。
作为一个实施例,在MR-DC中,不提供到核心网的控制面连接,给UE提供额外资源的无线接入节点是从节点。从节点可以是en-gNB,从ng-eNB或从gNB。
作为一个实施例,在MR-DC中,与从节点相关联的一组服务小区是SCG(secondary cell group,从小区组),包括SpCell和,可选的,一个或多个SCell。
作为一个实施例,PCell是MCG的SpCell。
作为一个实施例,PSCell是SCG的SpCell。
作为一个实施例,信息元素的单独的内容被称为域。
作为一个实施例,信息元素是一个包括一个或多个域的结构性的元素。
作为一个实施例,多播无线承载(MRB)是被配置为MBS多播或广播传输的无线承载。
作为一个实施例,多播广播业务(MBS)是一个点到多点的业务,详细定义见3GPP TS 23.247。
作为一个实施例,PTP传输指的是:gNB独立地向每个UE各自地发送MBS数据包分离的拷贝,也就是gNB使用,例如C-RNTI在内的,UE特定的RNTI加扰的UE特而定的PDCCH(physical downlink control channel,物理下行控制信道)来调度UE特定的PDSCH,所述UE特定的PDSCH(physical downlink shared channel,物理下行共享信道)被所述UE特定的RNTI所加扰。
作为一个实施例,PTM传输指的是:gNB向一个UE集合发送MBS数据包的一个拷贝,例如gNB使用组公共RNTI加扰的组公共PDCCH来调度组公共PDSCH,所述组公共PDSCH由所述组公共RNTI所加扰。
作为一个实施例,在RRC不活跃态仅存在PCell。
作为一个实施例,UE只在RRC连接态具有完整的通信功能。
作为一个实施例,MRB可以承载广播业务,也可以承载多播业务。
作为一个实施例,MBS业务是单播业务。
作为一个实施例,每个MBS业务都关联一个TMGI(Temporary Mobile Group Identity,临时移动组身份)。
作为一个实施例,被TMGI标识的业务,例如包括PDU会话或QoS流,都适用于本申请所述的非单播业务。
作为一个实施例,所述第一业务是MBS业务。
作为一个实施例,所述第一业务是多播业务。
作为一个实施例,所述第一业务是MBS多播业务。
作为一个实施例,所述第一业务是或对应多播QoS流。
作为一个实施例,所述第一业务是或对应MBS的QoS流。
作为一个实施例,所述第一业务是或对应多播会话。
作为一个实施例,所述第一信令包括MAC CE。
作为一个实施例,所述第一信令包括RRC信令。
作为一个实施例,所述第一信令使用SRB1(signaling radio bearer 1,信令无线承载1)承载传输。
作为一个实施例,所述第一信令包括RRCReconfiguration。
作为一个实施例,所述第一信令是或包括RRCRelease。
作为一个实施例,所述第一信令用于挂起RRC连接。
作为一个实施例,在应用所述第一信令之后,所述第一节点的RRC连接未被释放。
作为一个实施例,在在接收到所述第一信令之前,所述第一节点被配置了至少一个无线承载。
作为一个实施例,所述第一节点在接收到所述第一信令之后的60ms或者所述第一信令被所述第一节点的RRC以下的协议层成功反馈,执行所述第一信令所指示的操作。
作为一个实施例,所述第一信令包括挂起配置。
作为一个实施例,所述第一信令指示在RRC不活跃状态下使用的RNTI。
作为该实施例的一个子实施例,所述RRC不活跃下使用的所述RNTI的长度大于16比特。
作为该实施例的一个子实施例,所述RRC不活跃下使用的所述RNTI包括I-RNTI。
作为一个实施例,所述第一信令指示寻呼周期。
作为一个实施例,所述第一信令指示扩展的寻呼周期。
作为一个实施例,所述第一信令指示RAN通知区域信息。
作为一个实施例,所述第一信令指示下一跳链路计数(nextHopChainingCount)。
作为一个实施例,所述下一跳链路计数用于生成密钥。
作为一个实施例,所述第一信令指示第一配置,是第一配置是针对小数据传输的。
作为一个实施例,所述第一配置所涉及的无线承载是DRB(data radio bearer,数据无线承载)和/或者是SRB(signaling radio bearer,信令无线承载)。
作为一个实施例,所述第一信令包括第一域,所述第一域用于配置在RRC不活跃状态下的定位。
作为一个实施例,所述第一信令包括suspendConfig域。
作为一个实施例,作为接收所述第一信令的响应,所述第一节点,执行第一操作集合。
作为一个实施例,所述第一操作集合包括至少一个操作。
作为一个实施例,所述第一操作集合包括停止第一计时器集合中的所有计时器。
作为该实施例的一个子实施例,所述第一计时器集合包括T380,T320,T316,T350,T346g,T331,T390,T420,T430,T319,T319a,与MBS有关的计时器,中的至少之一。
作为一个实施例,所述第一操作集合包括开始第二计时器集合中的至少一个计时器。
作为该实施例的一个子实施例,所述第二计时器集合包括与MBS有关的计时器,T302中的至少之一。
作为一个实施例,所述第一操作集合包括执行小区选择。
作为一个实施例,所述第一操作集合包括执行频率选择。
作为一个实施例,所述第一操作集合包括重置MAC的至少一个参数。
作为一个实施例,所述第一操作集合包括重置MAC的部分而非全部参数。
作为一个实施例,所述第一操作集合包括重建SRB1的RLC实体。
作为一个实施例,所述第一操作集合包括挂起SRB0以外的所有的SRB。
作为一个实施例,所述第一操作集合包括挂起所有的DRB。
作为一个实施例,所述第一操作集合不包括挂起所述第一无线承载。
作为一个实施例,所述第一信令通过单播的方式发送。
作为一个实施例,所述第一信令在RRC连接态被接收。
作为一个实施例,短语进入RRC不活跃态的含义包括:从RRC连接态进入RRC不活跃态。
作为一个实施例,短语进入RRC不活跃态的含义包括:从RRC不活跃态进入RRC不活跃态。
作为一个实施例,所述第一小区是所述第一节点在接收所述第一信令之前的服务小区。
作为一个实施例,所述第一小区是所述第一信令的发送者。
作为一个实施例,所述第一小区是所述第一节点的PCell。
作为一个实施例,所述第一小区是所述第一节点的PSCell。
作为一个实施例,所述第一小区是所述第一节点的SpCell。
作为一个实施例,所述第一小区是所述第一节点的SCell。
作为一个实施例,所述第一小区是所述第一节点的MCG中的一个服务小区。
作为一个实施例,所述第一小区是所述第一节点的SCG中的一个服务小区。
作为一个实施例,所述第一节点与所述第一小区之间具有RRC连接。
作为一个实施例,所述第一节点在接收所述第一信令之前通过所述第一小区接收所述第一业务。
作为一个实施例,所述第一小区的SIB消息指示提供或支持所述第一业务。
作为一个实施例,本申请的小区选择过程不包括小区重选。
作为一个实施例,所述第一节点的USD(User service description,用户业务描述)包括所述第一小区提供所述第一业务。
作为一个实施例,所述第一节点的USD包括所述第一小区的频率提供所述第一业务。
作为一个实施例,所述第一业务的接收的连续性需要被保证。
作为一个实施例,所述第一节点在RRC不活跃态接收所述第一业务。
作为一个实施例,所述第一业务不是广播业务。
作为一个实施例,短语维持第一小区的含义包括:确定所述第一小区为所述第一节点在进入RRC不活跃态后的服务小区。
作为一个实施例,短语维持第一小区的含义包括:选择所述第一小区为所述第一节点在进入RRC不活跃态后的服务小区。
作为一个实施例,短语维持第一小区的含义包括:所述第一节点在进入RRC不活跃态后和进入RRC不活跃态之前,所述第一小区都是所述第一节点的服务小区。
作为一个实施例,短语维持第一小区的含义包括:所述第一信令的执行包括小区选择过程,在所述小区选择过程中考虑所述第一业务的接收这一情况。
作为一个实施例,短语所述第一信令的执行不会挂起所述第一无线承载集合中的至少一个无线承载的 含义包括:在执行所述第一信令之后,所述第一无线承载集合中的至少一个无线承载未被挂起。
作为一个实施例,短语所述第一信令的执行不会挂起所述第一无线承载集合中的至少一个无线承载的含义包括:在进入RRC不活跃态之后,所述第一无线承载集合中的至少一个无线承载未被挂起。
作为一个实施例,在执行所述第一信令之前,所述第一无线承载集合中至少一个无线承载未被挂起。
作为一个实施例,在执行所述第一信令之前,所述第一无线承载集合中所有无线承载都未被挂起。
作为一个实施例,短语所述第一信令的执行不会挂起所述第一无线承载集合中的至少一个无线承载的含义包括:所述第一操作集合不包括挂起所述第一无线承载集合中至少一个无线承载。
作为一个实施例,短语所述第一信令的执行不会挂起所述第一无线承载集合中的至少一个无线承载的含义包括:作为接收所述第一信令的响应,仅挂起所述第一无线承载集合中的部分无线承载。
作为一个实施例,短语所述第一信令的执行不会挂起所述第一无线承载集合中的至少一个无线承载的含义包括:作为接收所述第一信令的响应,仅挂起所述第一无线承载集合以外的无线承载。
作为一个实施例,短语所述第一信令的执行会挂起所述第一无线承载集合中的所有无线承载的含义包括:在执行所述第一信令之后,所述第一无线承载集合中的所有无线承载都被挂起。
作为一个实施例,短语所述第一信令的执行会挂起所述第一无线承载集合中的所有无线承载的含义包括:在进入RRC不活跃态之后,所述第一无线承载集合中的所有无线承载都是挂起的。
作为一个实施例,短语所述第一信令的执行会挂起所述第一无线承载集合中的所有无线承载的含义包括:所述第一操作集合包括挂起所述第一无线承载集合的所有无线承载。
作为一个实施例,短语所述第一信令的执行会挂起所述第一无线承载集合中的所有无线承载的含义包括:作为接收所述第一信令的响应,挂起所述第一无线承载集合中的所有无线承载。
作为一个实施例,所述第一无线承载集合中的无线承载都是与广播或组播有关的无线承载。
作为一个实施例,所述第一无线承载集合中的无线承载都是在RRC不活跃态接收的多播MRB。
作为一个实施例,所述第一无线承载集合中的无线承载都是MRB。
作为一个实施例,所述第一无线承载集合中的无线承载都是针对多播的MRB。
作为一个实施例,所述第一无线承载集合包括所述第一节点的所有MRB。
作为一个实施例,所述第一无线承载集合包括所述第一节点的所有针对多播的MRB。
作为一个实施例,所述第一无线承载集合与SDT(small data transmission)无关。
作为一个实施例,短语执行第一操作集合的含义是,执行所述第一操作集合中的每个操作。
作为一个实施例,作为接收所述第一信令的响应,在第一不活跃上下文中存储第一信息,所述第一信息包括至少第一密钥。
作为一个实施例,所述第一不活跃上下文是针对RRC不活跃态的上下文。
作为一个实施例,当UE从RRC连接态进入到RRC不活跃态时,需要保存的信息都存储于所述第一不活跃上下文内。
作为一个实施例,所述第一不活跃上下文是UE不活跃AS上下文(UE Inactive AS Context)。
作为一个实施例,所述第一节点任意时刻只能处于一个RRC状态。
作为一个实施例,所述行为进入RRC不活跃态意味着离开RRC连接态。
作为一个实施例,所述行为进入RRC不活跃态意味着释放RRC连接。
作为一个实施例,所述第一节点从RRC连接态进入RRC不活跃态时,仅存储所述第一信息所包括的内容。
作为一个实施例,所述第一节点从RRC连接态进入RRC不活跃态时,所存储的所有信息都属于所述第一信息。
作为一个实施例,所述第一密钥包括用于加密所述SRB1的密钥。
作为一个实施例,所述第一密钥包括控制面的密钥。
作为一个实施例,所述第一密钥包括用户面的密钥。
作为一个实施例,所述第一密钥包括KgNB
作为一个实施例,所述第一密钥包括KRRCint
作为一个实施例,所述第一密钥包括KRRCenc
作为一个实施例,所述第一密钥被用于加密所述第一信令。
作为一个实施例,所述第一无线承载集合中的未被挂起的无线承载的参数不存储于所述第一不活跃上下文中。
作为一个实施例,短语多播无线承载的含义包括广播无线承载。
作为一个实施例,短语多播无线承载的含义包括多播无线承载。
作为一个实施例,短语多播无线承载的含义包括针对广播的MRB。
作为一个实施例,短语多播无线承载的含义包括针对多播的MRB。
作为一个实施例,短语多播无线承载的含义不包括针对广播的MRB。
作为一个实施例,短语多播无线承载的含义不包括针对多播的MRB。
作为一个实施例,MRB是MBS Radio Bearer(MBS无线承载)。
作为一个实施例,MBS特指非单播业务。
作为一个实施例,MBS特指广播业务。
作为一个实施例,MBS特指多播业务。
作为一个实施例,MBS特指广播和多播业务。
作为一个实施例,MBS是Multicast Broadcast Service(多播广播业务)。
作为一个实施例,所述第一节点在RRC不活跃态通过第一无线承载接收数据。
作为一个实施例,所述第一无线承载是所述第一无线承载集合中未被挂起的无线承载。
作为一个实施例,所述第一无线承载是所述第一无线承载集合中的在执行所述第一信令时未被挂起的无线承载中的任意一个。
作为一个实施例,句子在RRC不活跃态通过第一无线承载接收数据的含义包括:在RRC不活跃态通过第一无线承载接收MBS。
作为一个实施例,句子在RRC不活跃态通过第一无线承载接收数据的含义包括:在RRC不活跃态通过第一无线承载接收第一业务,所述第一业务是非单播业务。
作为一个实施例,所述第一业务与一个与广播组播有关的身份相关联。
作为一个实施例,G-RNTI用于在RRC不活跃态通过第一无线承载接收数据。
作为一个实施例,G-CS-RNTI(Group Configured Scheduling RNTI,组配置的调度RNTI)用于在RRC不活跃态通过第一无线承载接收数据。
作为一个实施例,RNTI是(Radio Network Temporary Identifier,无线网络临时身份)。
作为一个实施例,在执行所述第一信令的过程中被挂起的无线承载包括至少SRB1。
作为一个实施例,句子所述第一无线承载集合中在所述第一信令执行中未被挂起的无线承载用于承载所述第一业务的含义包括:所述第一业务被映射到所述第一无线承载集合中在所述第一信令执行中未被挂起的所述无线承载上。
作为一个实施例,句子所述第一无线承载集合中在所述第一信令执行中未被挂起的无线承载用于承载所述第一业务的含义包括:所述第一业务的会话或QoS流被映射到所述第一无线承载集合中在所述第一信令执行中未被挂起的所述无线承载上。
作为一个实施例,句子所述第一无线承载集合中在所述第一信令执行中未被挂起的无线承载用于承载所述第一业务的含义包括:在进入RRC不活跃态之前和进入RRC不活跃态之后,所述第一业务都通过所述第一无线承载集合中在所述第一信令执行中未被挂起的所述无线承载传输。
作为一个实施例,小区选择是cell selection过程。
作为一个实施例,所述第一准则包括S准则。
作为一个实施例,所述第一准则包括至少一个条件。
作为一个实施例,所述第一准则包括RSRP(Reference Signal Received Power参考信号接收功率)最大的小区被选择。
作为一个实施例,所述第一准则是小区选择准则。
作为一个实施例,所述第一准则包括信道质量最好的小区被选择。
作为一个实施例,所述第一准则包括评估结果最好的小区被选择。
作为一个实施例,所述第一准则包括被选择的小区都是合适的(suitable)小区。
作为一个实施例,仅当所述第一小区满足第二准则时,所述句子“当所述第一无线承载集合中的至少一个无线承载未被挂起时,所述第一小区被维持”才成立。
作为一个实施例,短语所述第一小区被维持的含义和维持第一小区的含义相同。
作为一个实施例,所述第二准则是所述第一准则。
作为一个实施例,所述第二准则不是所述第一准则。
作为一个实施例,所述第二准则不包括所述第一准则中的全部。
作为一个实施例,所述第二准则包括所述第一准则中的部分。
作为一个实施例,所述第二准则包括至少所述第一小区的质量满足第一质量阈值。
作为一个实施例,所述第二准则包括所述第一信令未指示优先选择第一频率且所述第一小区不属于所述第一频率。
作为一个实施例,满足第二准则需要满足所述第二准则中的每项内容。
作为一个实施例,当所述第一信令的执行会挂起所述第一无线承载集合中的所有无线承载时,根据所述第一准则执行小区选择过程。
作为一个实施例,当所述第一信令的执行不会挂起所述第一无线承载集合中的至少一个无线承载时,小区选择过程不被执行,所述小区选择过程不被执行被用于确定在所述RRC不活跃态所述第一小区被维持。
作为一个实施例,小区选择过程不被执行的含义包括:不通过小区选择过程来选择小区。
作为一个实施例,小区选择过程不被执行的含义包括:不通过小区选择过程来确定所述第一小区被维持。
作为一个实施例,小区选择过程不被执行的含义包括:不通过小区选择过程来确定所述第一小区为RRC不活跃态的服务小区。
作为一个实施例,短语根据所述第一准则执行小区选择过程的含义包括:由所述第一准则所评价出的最好的小区被选择。
作为一个实施例,所述第一准则与是否在RRC不活跃态接收MBS业务或第一业务无关。
作为一个实施例,所述第一准则与是否需要考虑MBS业务或第一业务接收的连续行无关。
作为一个实施例,所述第一准则与是否所述第一无线承载集合中的无线承载是否全部被挂起无关。
作为一个实施例,第一小区集合中的任一小区都提供所述第一业务,所述第一小区集合中的至少一个小区不是所述第一节点的服务小区。
作为一个实施例,在进入RRC不活跃态之前,所述第一节点仅通过所述第一小区集合中的所述第一小区接收所述第一业务。
作为一个实施例,句子所述第一信令的执行会挂起第一无线承载集合中的无线承载的含义包括:所述第一信令未指示不挂起所述第一无线承载集合中的至少一个无线承载。
作为一个实施例,所述第一信令指示是否在RRC不活跃态接收所述第一业务。
作为一个实施例,所述第一信令指示是否在RRC不活跃态通过所述第一无线承载集合中的至少一个无线承载接收业务。
作为一个实施例,所述第一信令指示小区选择的时候需要考虑第一业务或MBS业务接收的连续性。
作为一个实施例,所述第一信令业务的接收或连续接收在小区选择中被优先考虑。
作为一个实施例,所述第一节点,在接收所述第一信令之前,通过第一无线承载接收所述第一业务;所述第一无线承载属于所述第一无线承载集合;所述第一信令的执行不会挂起所述第一无线承载。
作为一个实施例,所述第一节点,在接收所述第一信令之前,通过第一无线承载接收所述第一业务;所述第一无线承载属于所述第一无线承载集合;所述第一信令的执行会挂起所述第一无线承载,但不会挂起第二无线承载,所述第二无线承载属于所述第一无线承载集合,所述第二无线承载用于承载所述第一业务。
作为该实施例的一个子实施例,所述第一信令指示所述第二无线承载用于承载所述第一业务。
作为该实施例的一个子实施例,所述第一信令指示所述第一无线承载不再承载所述第一业务。
作为一个实施例,句子当所述第一信令的执行不会挂起所述第一无线承载集合中的至少一个无线承载时,在所述RRC不活跃态维持所述第一小区的含义包括:所述第一信令的执行包括小区选择,所述第一小区在小区选择中被优先选择。
作为一个实施例,句子当所述第一信令的执行不会挂起所述第一无线承载集合中的至少一个无线承载时,在所述RRC不活跃态维持所述第一小区的含义包括:小区选择过程被执行,所述第一小区在小区选择过程中被优先选择。
作为一个实施例,短语所述第一小区被优先选择的含义包括:在小区选择的过程中不执行候选小区的接收质量的比较,直接选择所述第一小区。
作为一个实施例,所述接收质量比较包括:比较所述第一小区和其它候选小区的小区质量,从中选择小区质量最好的一个。
作为一个实施例,所述接收质量比较包括:比较所述第一小区和其它候选小区的RSRP,从中选择RSRP最高的一个。
作为一个实施例,所述接收质量比较包括:比较所述第一小区和其它候选小区的
作为一个实施例,短语所述第一小区被优先选择的含义包括:在小区选择的过程中不执行候选小区的接收质量评估,直接选择所述第一小区。
作为一个实施例,短语所述第一小区被优先选择的含义包括:在执行小区选择的过程中,所述第一小区被施加第一偏移量。
作为一个实施例,短语所述第一小区被优先选择的含义包括:所述第一信令指示所述第一小区在小区选择过程中被优先选择。
作为一个实施例,短语所述第一小区被优先选择的含义包括:所述第一信令指示所述第一小区具有高优先级。
作为一个实施例,在接收所述第一信令之前,所述第一节点有多个服务小区。
作为一个实施例,本申请的小区选择包括小区重选。
作为一个实施例,本申请的小区选择包括小区选择和小区重选。
作为一个实施例,本申请的小区选择仅包括小区选择和小区重选二者中的后者。
作为一个实施例,在接收到所述第一信令之后,所述第一节点在RRC不活跃态未接收到挂起或释放所述第一无线承载集合中未在所述第一信令的执行中被挂起的无线承载的指示。
作为一个实施例,所述第一小区是所述第一节点从RRC连接态进入RRC不活跃态时所选择的小区。
作为一个实施例,所述第一小区是所述第一节点在所述RRC不活跃态的驻留小区。
作为一个实施例,在接收到所述第一信令之前,所述第一小区不是所述第一节点的服务小区。
作为一个实施例,所述第一节点仅在RRC连接态可以挂起所述第一无线承载集合中的无线承载。
作为一个实施例,句子在所述RRC不活跃态是否维持第一小区与所述第一信令的执行是否会挂起第一无线承载集合中的无线承载有关的含义是或包括:在所述RRC不活跃态是否维持第一小区依赖所述第一信令的执行是否会挂起第一无线承载集合中的无线承载。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。附图2说明了5G NR(NewRadio,新空口),LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统架构下的V2X通信架构。5G NR或LTE网络架构可称为5GS(5GSystem)/EPS(Evolved Packet System,演进分组系统)某种其它合适术语。
实施例2的V2X通信架构包括UE(User Equipment,用户设备)201,UE241,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220,ProSe功能250和ProSe应用服务器230。所述V2X通信架构可与其它接入网络互连,但 为了简单未展示这些实体/接口。如图所示,所述V2X通信架构提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(UserPlaneFunction,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。如果涉及近场通信(ProSe),网络架构还可以包括与近场通信有关的网元,例如ProSe功能250,ProSe应用服务器230等。所述ProSe功能250是用于适地服务(ProSe,Proximity-based Service)所需的网络相关行为的逻辑功能;包括DPF(Direct Provisioning Function,直接供应功能),直接发现名称管理功能(Direct Discovery Name Management Function),EPC水平发现ProSe功能(EPC-level Discovery ProSe Function)等。所述ProSe应用服务器230具备存储EPC ProSe用户标识,在应用层用户标识和EPC ProSe用户标识之间映射,分配ProSe限制的码后缀池等功能。
作为一个实施例,本申请中的第一节点是UE201。
作为一个实施例,本申请中的第一节点的服务基站是gNB203。
作为一个实施例,从所述UE201到NR节点B的无线链路是上行链路。
作为一个实施例,从NR节点B到UE201的无线链路是下行链路。
作为一个实施例,所述UE201支持中继传输。
作为一个实施例,所述UE201支持广播多播业务。
作为一个实施例,所述UE201不支持中继传输。
作为一个实施例,所述UE201支持多TRP传输。
作为一个实施例,所述UE201是包括汽车在内的交通工具。
作为一个实施例,所述gNB203是基站。
作为一个实施例,所述gNB203是支持多TRP的基站。
作为一个实施例,所述gNB203是支持广播多播业务的基站。
作为一个实施例,所述gNB203是一个飞行平台设备。
作为一个实施例,所述gNB203是卫星设备。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一节点(UE,gNB或NTN中的卫星或飞行器)和第二节点(gNB,UE或NTN 中的卫星或飞行器),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一节点与第二节点以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二节点之间的对第一节点的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一节点之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点与第一节点之间的RRC信令来配置下部层。PC5-S(PC5 Signaling Protocol,PC5信令协议)子层307负责PC5接口的信令协议的处理。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点和第二节点的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一节点可具有在L2层355之上的若干上部层。此外还包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。无线承载是PDCP协议层向上层提供的接口或服务。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,本申请中的所述第一信令生成于RRC306。
作为一个实施例,本申请中的所述第一信号生成于RRC306或MAC302或PHY301。
实施例4
实施例4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456译码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备450装置至少:接收第一信令;作为接收所述第一信令的响应,进入RRC不活跃态,在所述RRC不活跃态是否维持第一小区依赖所述第一信令的执行是否会挂起第一无线承载集合中的无线承载;其中,当所述第一信令的执行不会挂起所述第一无线承载集合中的至少一个无线承载时,在所述RRC不活跃态维持所述第一小区;当所述第一信令的执行会挂起所述第一无线承载集合中的所有无线承载时,在所述RRC不活跃态是否维持所述第一小区依赖第一准则,所述第一准则被用于小区选择;所述第一小区是所述第一节点的服务小区,所述第一小区提供第一业务;所述第一无线承载集合包括针对多播的非单播无线承载;所述第一无线承载集合中在所述第一信令执行中未被挂起的无线承载用于承载所述第一业务,所述第一业务是非单播业务。
作为一个实施例,所述第一通信设备450装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令;作为接收所述第一信令的响应,进入RRC不活跃态,在所述RRC不活跃态是否维持第一小区依赖所述第一信令的执行是否会挂起第一无线承载集合中的无线承载;其中,当所述第一信令的执行不会挂起所述第一无线承载集合中 的至少一个无线承载时,在所述RRC不活跃态维持所述第一小区;当所述第一信令的执行会挂起所述第一无线承载集合中的所有无线承载时,在所述RRC不活跃态是否维持所述第一小区依赖第一准则,所述第一准则被用于小区选择;所述第一小区是所述第一节点的服务小区,所述第一小区提供第一业务;所述第一无线承载集合包括针对多播的非单播无线承载;所述第一无线承载集合中在所述第一信令执行中未被挂起的无线承载用于承载所述第一业务,所述第一业务是非单播业务。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第一通信设备450是一个车载终端。
作为一个实施例,所述第一通信设备450是一个中继。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一信令。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送所述第一信号。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。附图5中,U01对应本申请的第一节点,特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序,其中F51内的步骤是可选的。
对于第一节点U01,在步骤S5101中接收第一信令;在步骤S5102中在RRC不活跃态通过第一无线承载接收数据;在步骤S5103中发送第一信号。
对于第二节点N02,在步骤S5201中发送第一信令;在步骤S5202中接收第一信号。
在实施例5中,在所述RRC不活跃态是否维持第一小区依赖所述第一信令的执行是否会挂起第一无线承载集合中的无线承载;当所述第一信令的执行不会挂起所述第一无线承载集合中的至少一个无线承载时,在所述RRC不活跃态维持所述第一小区;当所述第一信令的执行会挂起所述第一无线承载集合中的所有无线承载时,在所述RRC不活跃态是否维持所述第一小区依赖第一准则,所述第一准则被用于小区选择;所述第一小区是所述第一节点的服务小区,所述第一小区提供第一业务;所述第一无线承载集合包括针对多播的非单播无线承载;所述第一无线承载集合中在所述第一信令执行中未被挂起的无线承载用于承载所述第一业务,所述第一业务是非单播业务。
作为一个实施例,所述第二节点N02是所述第一节点U01的服务小区。
作为一个实施例,所述第二节点N02是所述第一节点U01的主小区(PCell)。
作为一个实施例,所述第二节点N02是所述第一节点U01的特殊小区(SpCell)。
作为一个实施例,所述第二节点N02是所述第一节点U01的PSCell。
作为一个实施例,所述第二节点N02是基站。
作为一个实施例,所述第二节点N02是DU(数据单元)。
作为一个实施例,所述第一信令以单播的方式被发送。
作为一个实施例,所述第一节点U01和所述第二节点U02之间的接口是Uu接口。
作为一个实施例,所述第二节点N02对应第一小区或所述第一小区的基站。
作为一个实施例,所述第二节点N02对应第一小区所属的小区组。
作为一个实施例,在步骤S5101中,所述第一无线承载上仍然存在被映射的广播或多播流。
作为一个实施例,第一无线承载是第一无线承载集合中的一个无线承载。
作为一个实施例,在执行所述第一信令之后,在所述第一无线承载上仍然存在被映射的多播流。
作为一个实施例,在执行所述第一信令之后,所述第一无线承载未被挂起。
作为一个实施例,在执行所述第一信令之后,所述第一无线承载未被释放。
作为一个实施例,在执行S5101之后且在步骤S5102之前所述第一节点U01处于RRC不活跃态。
作为一个实施例,所述第一信令是一个RRC消息。
作为一个实施例,所述第一信令是所述第一节点U01在RRC连接态接收到的最后一个单播RRC信令。
作为一个实施例,所述第一信令的执行导致所述第一无线承载重建。
作为一个实施例,所述第一信令的执行不会导致所述第一无线承载重建。
作为一个实施例,所述第一信令未指示重建所述第一无线承载。
作为一个实施例,所述第一信令的执行导致RRC连接重建。
作为一个实施例,所述第一信令的执行不会导致RRC连接重建。
作为一个实施例,所述第一信令未指示重建RRC连接。
作为一个实施例,在接收所述第一信令之前,所述第一节点U01通过所述第一无线承载以外的无线承载接收第一业务;在执行所述第一信令之后,所述第一节点U01在RRC不活跃态,通过所述第一无线承载接收所述第一业务。
作为一个实施例,所述第一信令包括与所述第一无线承载相关联的RLC实体或RLC承载的配置。
作为一个实施例,在步骤S5102,所述第一节点从第一小区通过第一无线承载接收数据。
作为一个实施例,所述第一信号包括RRC消息。
作为一个实施例,所述第一信号包括msg3消息。
作为一个实施例,所述第一信号包括随机接入过程的信号。
作为一个实施例,所述第一信号通过SRB0发送。
作为一个实施例,所述第一信号用于恢复或继续RRC连接。
作为一个实施例,伴随所述第一信号的发送,所述第一节点U01继续SRB1无线承载。
作为一个实施例,所述第一信号包括RRCResumeRequest。
作为一个实施例,所述第一信号包括RRCResumeRequest1。
作为一个实施例,所述第一信号包括RRC继续的原因。
作为一个实施例,所述第一信号包括所述第一节点U01的一个身份。
作为一个实施例,所述第一节点U01,作为第二条件集合中任一条件被满足的响应,发送第一信号,所述第一信号被用于请求继续RRC连接。
作为一个实施例,所述第二条件集合是否包括第二条件与是否在RRC不连续状态接收针对多播的非单播业务有关。
作为一个实施例,当未在RRC不连续状态接收针对多播的非单播业务时,所述第二条件集合不包括所述第二条件。
作为一个实施例,当在RRC不连续状态接收针对多播的非单播业务时,所述第二条件集合包括所述第二条件。
作为一个实施例,所述第二条件是服务小区的质量差于第二质量阈值。
作为一个实施例,当未在RRC不连续状态接收针对多播的非单播业务时,所述第二条件集合包括NAS指令。
作为一个实施例,当未在RRC不连续状态接收针对多播的非单播业务时,所述第二条件集合需要进行小数据传输。
作为一个实施例,当未在RRC不连续状态接收针对多播的非单播业务时,所述第二条件集合包括需要执行RAN(radio access network,无线接入网)区域更新。
作为一个实施例,当未在RRC不连续状态接收针对多播的非单播业务时,所述第二条件集合包括需要发送用户数据或用户信令。
作为一个实施例,当未在RRC不连续状态接收针对多播的非单播业务时,所述第二条件集合包括接收到寻呼消息。
作为一个实施例,所述第一信令包括所述第二质量阈值。
作为一个实施例,所述第二质量阈值是RSRP阈值。
作为一个实施例,所述服务小区的质量包括所述第一小区的质量。
作为一个实施例,所述服务小区的质量包括所述服务小区的RSRP。
作为一个实施例,在RRC不连续态,所述第一节点仅有一个服务小区。
作为一个实施例,所述第一节点U01,在RRC不活跃态,作为所述第一业务接收完毕且所述第一业务所使用的无线承载未承载其它非单播业务的响应,挂起所述第一业务所使用的无线承载。
作为一个实施例,所述第一无线承载接收所述第一业务完毕的指示。
作为一个实施例,网络发送所述第一业务完毕的指示。
作为一个实施例,网络通过广播多播的方式发送所述第一业务完毕的指示。
作为一个实施例,所述第一节点U01自行确定所述第一业务完毕,例如所述第一业务在约定时间完毕。
作为一个实施例,所述第一业务所使用的任意一个无线承载未承载其它非单播业务,则挂起所述第一业务所使用的所述任意一个无线承载。
作为该实施例的一个子实施例,所述其它非单播业务包括MBS业务。
作为该实施例的一个子实施例,所述其它非单播业务包括广播组播业务。
作为一个实施例,所述第一业务所使用的任意一个无线承载未承载其它非单播业务,则释放所述第一业务所使用的所述任意一个无线承载。
作为该实施例的一个子实施例,所述其它非单播业务包括MBS业务。
作为该实施例的一个子实施例,所述其它非单播业务包括广播组播业务。
作为一个实施例,当所述第一业务接收完毕且所述第一业务所使用的无线承载仍然承载其它非单播业务,则不挂起也不释放所述第一业务所使用的所述无线承载。
作为一个实施例,所述第一业务所使用的无线承载是承载所述第一业务的无线承载。
作为一个实施例,所述第一业务所使用的无线承载是所述第一业务映射的无线承载。
实施例6
实施例6示例了根据本申请的一个实施例的小区选择重选的准则的示意图,如附图6所示。
作为一个实施例,附图6中的Srxlev是小区选择RX(接收)级别值。
作为一个实施例,附图6中的Srxlev的单位是dB。
作为一个实施例,附图6中的Squal是小区选择质量别值。
作为一个实施例,附图6中的Squal的单位是dB。
作为一个实施例,附图6中的Qrxlevmeas是测量的小区RX级别值,即RSRP。
作为一个实施例,附图6中的Qqualmeas是测量的小区质量值,即RSRQ(Reference Signal Receiving Quality,参考信号接收质量)。
作为一个实施例,附图6中的Qrxlevmin是在一个小区中最小要求的RX级别,单位是dBm。
作为一个实施例,所述第一信令指示Qrxlevmin
作为一个实施例,所述网络发送的SIB消息指示Qrxlevmin
作为一个实施例,附图6中的Qqualmin是在一个小区中最小要求的RX级别,单位是dBm。
作为一个实施例,所述第一信令指示Qqualmin
作为一个实施例,所述网络发送的SIB消息指示Qqualmin
作为一个实施例,附图6中的Qrxlevminoffset是施加给网络指示的Qrxlevmin的偏移量。
作为一个实施例,附图6中的Qqualminoffset是施加给网络指示的Qqualmin的偏移量。
作为一个实施例,附图6中的Pcompensation对FR2被设置为0。
作为一个实施例,对FR1,如果网络发送的SIB1,SIB2和SIB4在NR-NS-PmaxList中指示了additionalPmax,则附图6中的Pcompensation被设置为max(PEMAX1–PPowerClass,0)–(min(PEMAX2,PPowerClass)–min(PEMAX1,PPowerClass))(dB),其中max()为取最大值,min()为取最小值。
作为一个实施例,对FR1,如果网络发送的SIB1,SIB2和SIB4未包括NR-NS-PmaxList或在NR-NS-PmaxList中未指示additionalPmax,则附图6中的Pcompensation被设置为max(PEMAX1–PPowerClass,0)(dB)。
作为一个实施例,PEMAX1,PEMAX2分别是一个UE,例如所述第一节点U01,的上行最大发射功率级别。
作为一个实施例,PEMAX1,PEMAX2是固定的。
作为一个实施例,PEMAX1,PEMAX2是网络配置的。
作为一个实施例,PEMAX1,PEMAX2分别是一个UE,例如所述第一节点U01在所述第一小区的上行最大发射功率级别。
作为一个实施例,PPowerClass是UE,例如所述第一节点U01,的最大射频输出功率。
作为一个实施例,Qoffsettemp是临时的偏移量。
作为一个实施例,所述第二节点N02指示所述Qoffsettemp
作为一个实施例,所述第一信令指示所述Qoffsettemp
作为一个实施例,所述第一准则包括Srxlev大于0。
作为一个实施例,所述第一准则包括Squal大于0。
作为一个实施例,所述第一准则包括S准则。
作为一个实施例,所述第一准则包括Srxlev大于第一阈值。
作为一个实施例,所述第一准则包括Srxlev大于第二阈值。
作为一个实施例,所述第一信令指示所述第一阈值。
作为一个实施例,所述第一信令指示所述第二阈值。
作为一个实施例,所述第二准则包括Srxlev大于0。
作为一个实施例,所述第二准则包括Squal大于0。
作为一个实施例,所述第二准则包括Srxlev大于第三阈值。
作为一个实施例,所述第二准则包括Squal大于第四阈值。
作为一个实施例,所述第一信令指示所述第三阈值。
作为一个实施例,所述第一信令指示所述第四阈值。
作为一个实施例,短语所述第一小区被施加第一偏移量的含义包括:所述第一偏移量被包括在Qoffsettemp
作为一个实施例,短语所述第一小区被施加第一偏移量的含义包括:在确定针对所述第一小区的Srxlev时,Srxlev=Qrxlevmeas–(Qrxlevmin+Qrxlevminoffset)–Pcompensation-Qoffsettemp+Q1,其中Q1是所述第一偏移量。
作为一个实施例,短语所述第一小区被施加第一偏移量的含义包括:在确定针对所述第一小区的Squal时,Squal=Qqualmeas–(Qqualmin+Qqualminoffset)-Qoffsettemp+Q2,其中Q2是所述第一偏移量。
作为一个实施例,所述第一信令指示所述第一偏移量。
作为一个实施例,一个网络的广播消息指示所述第一偏移量。
作为一个实施例,所述第二节点N02的SIB消息指示所述第一偏移量。
作为一个实施例,所述第一偏移量仅被施加给提供所述第一业务的小区。
作为一个实施例,Rs是针对服务小区的。
作为一个实施例,Rn是针对邻小区的。
作为一个实施例,Qmeas,s是针对服务小区的用于小区重选的RSRP测量结果。
作为一个实施例,Qmeas,n是针对邻小区的用于小区重选的RSRP测量结果。
作为一个实施例,针对同频,如果Qoffsets,n是可用的,Qoffset等于Qoffsets,n,否则Qoffsets,n等于0.
作为一个实施例,针对异频,如果Qoffsets,n是可用的,Qoffset等于Qoffsets,n+Qoffsetfrequency,否则Qoffsets,n等于Qoffsetfrequency
作为一个实施例,当网络指示Qoffsets,n时,Qoffsets,n是可用的。
作为一个实施例,当所述第一小区是服务小区时,针对所述第一小区的Rs=Qmeas,s+Qhyst-Qoffsettemp
,其中Qoffsettemp包括所述第一偏移量。
作为一个实施例,当所述第一小区是服务小区时,针对所述第一小区的Rs=Qmeas,s+Qhyst-Qoffsettemp+Q3,其中Q3是所述第一偏移量。
作为一个实施例,Qhyst是迟滞因子。
作为一个实施例,网络配置Qhyst
作为一个实施例,当所述第一小区是邻小区时,针对所述第一小区的Rn=Qmeas,n-Qoffset-Qoffsettemp
,其中Qoffsettemp包括所述第一偏移量。
作为一个实施例,当所述第一小区是邻小区时,针对所述第一小区的Rn=Qmeas,n-Qoffset-Qoffsettemp+Q4,其中Q4是所述第一偏移量。
作为一个实施例,对于任一未提供所述第一业务的服务小区,则Rs=Qmeas,s+Qhyst-Qoffsettemp
作为一个实施例,对于任一未提供所述第一业务的邻小区,则Rn=Qmeas,n-Qoffset-Qoffsettemp。
作为一个实施例,短语所述第一小区被施加第一偏移量的含义包括:在计算所述第一小区的Rs时,所述第一小区的Rs=Qmeas,s+Qhyst-Qoffsettemp+Q3,其中Q3是所述第一偏移量。
作为一个实施例,短语所述第一小区被施加第一偏移量的含义包括:在计算所述第一小区的Rn时,所述第一小区的Rn=Qmeas,n-Qoffset-Qoffsettemp+Q4,其中Q4是所述第一偏移量。
作为一个实施例,在小区重选中,将Rs,Rn排序,最大的一个对应的小区被选择。
作为一个实施例,在小区重选中,将所有候选小区的Rs或者Rn排序,最大的一个对应的小区被选择。
作为一个实施例,所述第二准则是S准则。
作为一个实施例,所述第二准则包括所述第一小区的RSRP大于一个特定阈值。
作为该实施例的一个子实施例,所述第一信令指示所述一个特定阈值。
作为一个实施例,网络指示所述一个特定阈值。
作为一个实施例,网络通过SIB消息指示所述一个特定阈值。
作为一个实施例,所述第一准则包括在候选小区中,将所有候选小区的Rs或者Rn排序,最大的一个对应的小区被选择。
作为一个实施例,所述第一准则包括选择所有合适的小区中接收质量最好的小区。
作为一个实施例,所述第一准则包括选择所有合适的小区中的服务小区,除非所述一个邻小区的接收质量比服务小区的接收质量好过给定的一个阈值。
作为一个实施例,所述第一准则包括不重新选择所有合适的小区中的邻小区,除非所述一个邻小区的接收质量比服务小区的接收质量好过给定的一个阈值。
实施例7
实施例7示例了根据本申请的一个实施例的小区选择过程不被执行被用于确定在RRC不活跃态第一小区被维持的示意图,如附图7所示。
作为一个实施例,所述小区选择过程包括在所有候选小区中根据接收质量选择小区。
作为一个实施例,所述小区选择过程包括在所有候选小区中根据接收强度选择小区。
作为一个实施例,所述小区选择过程包括预存信息选择小区。
作为一个实施例,当小区选择过程不被执行时,在RRC不活跃态第一小区被维持。
作为一个实施例,当小区选择过程不被执行时,在进入RRC不活跃态时,所述第一小区被维持。
作为一个实施例,当小区选择过程被执行时,所述第一小区是否被维持取决于第一准则。
作为一个实施例,当小区选择过程被执行时,所述第一小区是否被维持取决于所述第一小区的接收质量。
作为一个实施例,当小区选择过程被执行时,所述第一小区是否被维持取决于所述第一小区的信号强度。
作为一个实施例,当小区选择过程被执行时,所述第一小区是否被维持与所述第一小区是否提供所述第一业务有关。
作为一个实施例,当小区选择过程被执行时,所述第一小区是否被维持与所述第一小区是否提供所述第一业务无关。
实施例8
实施例8示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;如附图8所示。在附图8中,第一节点中的处理装置1000包括第一接收机1001和第一发射机1002。在实施例8中,
第一接收机1001,接收第一信令;作为接收所述第一信令的响应,进入RRC不活跃态,在所述RRC不活跃态是否维持第一小区依赖所述第一信令的执行是否会挂起第一无线承载集合中的无线承载;
其中,当所述第一信令的执行不会挂起所述第一无线承载集合中的至少一个无线承载时,在所述RRC不活跃态维持所述第一小区;当所述第一信令的执行会挂起所述第一无线承载集合中的所有无线承载时,在所述RRC不活跃态是否维持所述第一小区依赖第一准则,所述第一准则被用于小区选择;所述第一小区是所述第一节点的服务小区,所述第一小区提供第一业务;所述第一无线承载集合包括针对多播的非单播无线承载;所述第一无线承载集合中在所述第一信令执行中未被挂起的无线承载用于承载所述第一业务,所述第一业务是非单播业务。
作为一个实施例,仅当所述第一小区满足第二准则时,所述句子“当所述第一无线承载集合中的至少一个无线承载未被挂起时,所述第一小区被维持”才成立。
作为一个实施例,当所述第一信令的执行会挂起所述第一无线承载集合中的所有无线承载时,根据所述第一准则执行小区选择过程;当所述第一信令的执行不会挂起所述第一无线承载集合中的至少一个无线承载时,小区选择过程不被执行,所述小区选择过程不被执行被用于确定在所述RRC不活跃态所述第一小区被维持。
作为一个实施例,所述第一接收机1001,在接收所述第一信令之前,接收所述第一业务。
作为一个实施例,句子当所述第一信令的执行不会挂起所述第一无线承载集合中的至少一个无线承载时,在所述RRC不活跃态维持所述第一小区的含义包括:所述第一信令的执行包括小区选择,所述第一小区在小区选择中被优先选择。
作为一个实施例,短语所述第一小区被优先选择的含义包括:在小区选择的时候不执行候选小区的接收质量的比较,直接选择所述第一小区。
作为一个实施例,短语所述第一小区被优先选择的含义包括:在执行小区选择的过程中,所述第一小区被施加第一偏移量。
作为一个实施例,第一发射机1002,作为第二条件集合中任一条件被满足的响应,发送第一信号,所述第一信号被用于请求继续RRC连接;
其中,所述第二条件集合是否包括第二条件与是否在RRC不连续状态接收针对多播的非单播业务有关;当未在RRC不连续状态接收针对多播的非单播业务时,所述第二条件集合不包括所述第二条件;当在RRC不连续状态接收针对多播的非单播业务时,所述第二条件集合包括所述第二条件;所述第二条件是服务小区的质量差于第二质量阈值。
作为一个实施例,所述第一接收机1001,在RRC不活跃态,作为所述第一业务接收完毕且所述第一业务所使用的无线承载未承载其它非单播业务的响应,挂起所述第一业务所使用的无线承载。
作为一个实施例,所述第一节点是一个用户设备(UE)。
作为一个实施例,所述第一节点是一个支持大时延差的终端。
作为一个实施例,所述第一节点是一个支持NTN的终端。
作为一个实施例,所述第一节点是一个飞行器。
作为一个实施例,所述第一节点是一个车载终端。
作为一个实施例,所述第一节点是一个中继。
作为一个实施例,所述第一节点是一个船只。
作为一个实施例,所述第一节点是一个物联网终端。
作为一个实施例,所述第一节点是一个工业物联网的终端。
作为一个实施例,所述第一接收机1001包括实施例4中的天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,或数据源467中的至少之一。
作为一个实施例,所述第一发射机1002包括实施例4中的天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,或数据源467中的至少之一。
实施例9
实施例9示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;如附图9所示。在附图9中,第一节点中的处理装置1100包括第一接收机1101和第一发射机1102。在实施例9中,
第一接收机1101,接收第一信令;作为接收所述第一信令的响应,进入RRC不活跃态;
所述第一接收机1101,在RRC不活跃态,通过第一无线承载接收第一业务;
所述第一接收机1101,在RRC不活跃态,当所述第一业务接收完毕时,是否自行挂起所述第一无线承载与所述第一无线承载的类型有关;
其中,所述第一无线承载未承载其它非单播业务;所述第一业务是非单播业务;句子在RRC不活跃态,当所述第一业务接收完毕时,是否挂起所述第一无线承载与所述第一无线承载的类型有关的含义包括:当所述第一无线承载是针对多播的MRB时,自行挂起所述第一无线承载;当所述第一无线承载是DRB时,不自行挂起所述第一无线承载。
作为一个实施例,所述第一接收机1101,在RRC不活跃态,作为接收第二信令的响应,继续所述第一无线承载;其中,所述第一无线承载在接收所述第二信令之前是被挂起的。
作为一个实施例,所述第二信令指示所述第一无线承载用于承载第二业务,所述第二业务是非单播业务。
作为一个实施例,所述第二信令被用于指示所述第二业务即将开始传输。
作为一个实施例,所述第二业务是所述第一业务,或者,所述第二业务是所述第一业务以外的业务。
作为一个实施例,自行挂起所述第一无线承载的含义包括:不需要接收指示挂起所述第一无线承载的信令。
作为一个实施例,自行挂起所述第一无线承载的含义包括:当未接收指示挂起所述第一无线承载的信令时,也可以挂起所述第一无线承载。
作为一个实施例,自行挂起所述第一无线承载的含义包括:当未接收到RRCRelease消息时,也可以挂起所述第一无线承载。
作为一个实施例,自行挂起所述第一无线承载的含义包括:当未接收到RRCReject消息时,也可以挂起所述第一无线承载。
作为一个实施例,不自行挂起所述第一无线承载的含义包括:需要接收指示挂起所述第一无线承载的信令而挂起所述第一无线承载。
作为一个实施例,不自行挂起所述第一无线承载的含义包括:当未接收到指示挂起所述第一无线承载的信令时,则不挂起所述第一无线承载。
作为一个实施例,不自行挂起所述第一无线承载的含义包括:当未接收到RRCRelease时,则不挂起所述第一无线承载。
作为一个实施例,不自行挂起所述第一无线承载的含义包括:当未接收到RRCReject时,则不挂起所述第一无线承载。
作为一个实施例,第一发射机1102,发送第一报告,所述第一报告包括所述第一业务在RRC不活跃态的接收报告。
作为一个实施例,第一发射机1102,发送第一报告,所述第一报告包括所述第二业务在RRC不活跃态的接收报告。
作为一个实施例,所述第一节点在进入RRC不活跃态后,始终在RRC不活跃态。
作为一个实施例,所述第一节点在进入RRC不活跃态后,至少在所述第一报告被发送前,始终在RRC不活跃态。
作为一个实施例,在小区重选时,第一小区是否被优先选择与所述第一小区是否提供所述第一业务有关。
作为一个实施例,在小区重选时,第一小区是否被优先选择与所述第一小区是否提供所述第二业务有关。
作为一个实施例,所述第二信息包括所述第一密钥。
作为一个实施例,所述第一节点是一个用户设备(UE)。
作为一个实施例,所述第一节点是一个支持大时延差的终端。
作为一个实施例,所述第一节点是一个支持NTN的终端。
作为一个实施例,所述第一节点是一个飞行器。
作为一个实施例,所述第一节点是一个车载终端。
作为一个实施例,所述第一节点是一个中继。
作为一个实施例,所述第一节点是一个船只。
作为一个实施例,所述第一节点是一个物联网终端。
作为一个实施例,所述第一节点是一个工业物联网的终端。
作为一个实施例,所述第一接收机1101包括实施例4中的天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,或数据源467中的至少之一。
作为一个实施例,所述第一发射机1102包括实施例4中的天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,或数据源467中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IoT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑,卫星通信设备,船只通信设备,NTN用户设备等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点),NTN基站,卫星设备,飞行平台设备等无线通信设备。
本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (15)

  1. 一种被用于无线通信的第一节点,其中,包括:
    第一接收机,接收第一信令;作为接收所述第一信令的响应,进入RRC(Radio Resource Control,无线资源控制)不活跃态,在所述RRC不活跃态是否维持第一小区与所述第一信令的执行是否会挂起第一无线承载集合中的无线承载有关;
    其中,当所述第一信令的执行不会挂起所述第一无线承载集合中的至少一个无线承载时,在所述RRC不活跃态维持所述第一小区;当所述第一信令的执行会挂起所述第一无线承载集合中的所有无线承载时,在所述RRC不活跃态是否维持所述第一小区依赖第一准则,所述第一准则被用于小区选择;所述第一小区是所述第一节点的服务小区,所述第一小区提供第一业务;所述第一无线承载集合包括针对多播的非单播无线承载;所述第一无线承载集合中在所述第一信令执行中未被挂起的无线承载用于承载所述第一业务,所述第一业务是非单播业务。
  2. 根据权利要求1所述的第一节点,其特征在于,
    仅当所述第一小区满足第二准则时,所述句子“当所述第一无线承载集合中的至少一个无线承载未被挂起时,所述第一小区被维持”才成立。
  3. 根据权利要求2所述的第一节点,其特征在于,
    所述第二准则包括所述第一小区的RSRP(Reference Signal Receiving Power,参考信号接收功率)大于一个特定阈值。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,
    当所述第一信令的执行会挂起所述第一无线承载集合中的所有无线承载时,根据所述第一准则执行小区选择过程;当所述第一信令的执行不会挂起所述第一无线承载集合中的至少一个无线承载时,小区选择过程不被执行,所述小区选择过程不被执行被用于确定在所述RRC不活跃态所述第一小区被维持。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一接收机,在接收所述第一信令之前,接收所述第一业务。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,
    句子当所述第一信令的执行不会挂起所述第一无线承载集合中的至少一个无线承载时,在所述RRC不活跃态维持所述第一小区的含义包括:所述第一信令的执行包括小区选择,所述第一小区在小区选择中被优先选择。
  7. 根据权利要求6所述的第一节点,其特征在于,
    短语所述第一小区被优先选择的含义包括:在小区选择的时候不执行候选小区的接收质量的比较,直接选择所述第一小区。
  8. 根据权利要求6所述的第一节点,其特征在于,
    短语所述第一小区被优先选择的含义包括:在执行小区选择的过程中,所述第一小区被施加第一偏移量。
  9. 根据权利要求1至8中任一权利要求所述的第一节点,其特征在于,包括:
    第一发射机,作为第二条件集合中任一条件被满足的响应,发送第一信号,所述第一信号被用于请求继续RRC连接;
    其中,所述第二条件集合是否包括第二条件与是否在RRC不连续状态接收针对多播的非单播业务有关;当未在RRC不连续状态接收针对多播的非单播业务时,所述第二条件集合不包括所述第二条件;当在RRC不连续状态接收针对多播的非单播业务时,所述第二条件集合包括所述第二条件;所述第二条件是服务小区的质量差于第二质量阈值。
  10. 根据权利要求1至9中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一接收机,在RRC不活跃态,作为所述第一业务接收完毕且所述第一业务所使用的无线承载未承载其它非单播业务的响应,挂起所述第一业务所使用的无线承载。
  11. 根据权利要求1至10中任一权利要求所述的第一节点,其特征在于,
    所述第一操作集合包括执行频率选择。
  12. 根据权利要求1至11中任一权利要求所述的第一节点,其特征在于,
    所述第一节点的USD(User Service Description,用户业务描述)包括所述第一小区的频率提供所 述第一业务。
  13. 根据权利要求1至12中任一权利要求所述的第一节点,其特征在于,
    所述第一无线承载集合中的无线承载都是MRB(Multicast Broadcast Service Radio Bearer)。
  14. 根据权利要求1至13中任一权利要求所述的第一节点,其特征在于,
    句子当所述第一信令的执行不会挂起所述第一无线承载集合中的至少一个无线承载时,在所述RRC不活跃态维持所述第一小区的含义包括:小区选择过程被执行,所述第一小区在小区选择过程中被优先选择;短语所述第一小区被优先选择的含义包括:在执行小区选择的过程中,所述第一小区被施加第一偏移量。
  15. 一种被用于无线通信的第一节点中的方法,其中,包括:
    接收第一信令;作为接收所述第一信令的响应,进入RRC不活跃态,在所述RRC不活跃态是否维持第一小区与所述第一信令的执行是否会挂起第一无线承载集合中的无线承载有关;
    其中,当所述第一信令的执行不会挂起所述第一无线承载集合中的至少一个无线承载时,在所述RRC不活跃态维持所述第一小区;当所述第一信令的执行会挂起所述第一无线承载集合中的所有无线承载时,在所述RRC不活跃态是否维持所述第一小区依赖第一准则,所述第一准则被用于小区选择;所述第一小区是所述第一节点的服务小区,所述第一小区提供第一业务;所述第一无线承载集合包括针对多播的非单播无线承载;所述第一无线承载集合中在所述第一信令执行中未被挂起的无线承载用于承载所述第一业务,所述第一业务是非单播业务。
PCT/CN2023/117907 2022-09-13 2023-09-11 一种被用于无线通信的方法和设备 WO2024055915A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211109323.5A CN117750311A (zh) 2022-09-13 2022-09-13 一种被用于无线通信的方法和设备
CN202211109323.5 2022-09-13

Publications (1)

Publication Number Publication Date
WO2024055915A1 true WO2024055915A1 (zh) 2024-03-21

Family

ID=90274244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117907 WO2024055915A1 (zh) 2022-09-13 2023-09-11 一种被用于无线通信的方法和设备

Country Status (2)

Country Link
CN (1) CN117750311A (zh)
WO (1) WO2024055915A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113556687A (zh) * 2020-04-23 2021-10-26 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备
WO2022031127A1 (en) * 2020-08-06 2022-02-10 Samsung Electronics Co., Ltd. Methods and systems for managing mbs service continuity for a ue
CN114071805A (zh) * 2020-08-03 2022-02-18 大唐移动通信设备有限公司 业务处理方法、信息指示方法、终端和网络设备
WO2022077442A1 (en) * 2020-10-16 2022-04-21 Lenovo (Beijing) Limited Method and apparatus for multicast and broadcast services
CN114499790A (zh) * 2020-10-27 2022-05-13 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113556687A (zh) * 2020-04-23 2021-10-26 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备
CN114071805A (zh) * 2020-08-03 2022-02-18 大唐移动通信设备有限公司 业务处理方法、信息指示方法、终端和网络设备
WO2022031127A1 (en) * 2020-08-06 2022-02-10 Samsung Electronics Co., Ltd. Methods and systems for managing mbs service continuity for a ue
WO2022077442A1 (en) * 2020-10-16 2022-04-21 Lenovo (Beijing) Limited Method and apparatus for multicast and broadcast services
CN114499790A (zh) * 2020-10-27 2022-05-13 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备

Also Published As

Publication number Publication date
CN117750311A (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
WO2022143481A1 (zh) 一种被用于无线通信的方法和设备
US20230300936A1 (en) Method and device for wireless communication
US20230156535A1 (en) Method and device for wireless communication
WO2024055915A1 (zh) 一种被用于无线通信的方法和设备
CN115397038A (zh) 一种被用于无线通信的方法和设备
WO2023072046A1 (zh) 一种被用于无线通信的方法和设备
WO2023046073A1 (zh) 一种被用于无线通信的方法和设备
WO2023174229A1 (zh) 一种被用于无线通信的方法和设备
US20240080926A1 (en) Method and device for wireless communication
WO2024078431A1 (zh) 一种被用于无线通信的方法和设备
WO2023134591A1 (zh) 一种被用于无线通信中的方法和装置
WO2024083056A1 (zh) 一种被用于无线通信的方法和设备
US20230232485A1 (en) Method and device for wireless communication
US20230239951A1 (en) Method and device for wireless communication
WO2023061204A1 (zh) 一种被用于无线通信的方法和设备
WO2022194113A1 (zh) 一种被用于无线通信的方法和设备
WO2023186162A1 (zh) 一种被用于无线通信的方法和设备
US20240063967A1 (en) Method and device for wireless communication
WO2023231973A1 (zh) 一种被用于无线通信的方法和设备
WO2023174376A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
US20240179611A1 (en) Method and device for wireless communication
WO2023143226A1 (zh) 一种被用于无线通信中的方法和装置
WO2023274045A1 (zh) 一种被用于无线通信的方法和设备
US20230156844A1 (en) Method and device for wireless communication
WO2023001216A1 (zh) 一种被用于无线通信的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864647

Country of ref document: EP

Kind code of ref document: A1