WO2023274045A1 - 一种被用于无线通信的方法和设备 - Google Patents

一种被用于无线通信的方法和设备 Download PDF

Info

Publication number
WO2023274045A1
WO2023274045A1 PCT/CN2022/100952 CN2022100952W WO2023274045A1 WO 2023274045 A1 WO2023274045 A1 WO 2023274045A1 CN 2022100952 W CN2022100952 W CN 2022100952W WO 2023274045 A1 WO2023274045 A1 WO 2023274045A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
secondary link
message
node
synchronization
Prior art date
Application number
PCT/CN2022/100952
Other languages
English (en)
French (fr)
Inventor
陈宇
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2023274045A1 publication Critical patent/WO2023274045A1/zh
Priority to US18/539,309 priority Critical patent/US20240114470A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, in particular to a method and device for reducing service interruption, improving service continuity, enhancing reliability, and security in wireless communication.
  • NR new air interface technology
  • WI Work Item, work item
  • LTE Long Term Evolution, long-term evolution
  • 5G NR 5th Generation NR
  • eMBB enhanced Mobile BroadBand, enhanced mobile broadband
  • URLLC Ultra Reliable Low Latency Communication, Ultra-reliable and low-latency communication
  • eMTC enhanced Machine Type Communication, enhanced machine type communication
  • IIoT Industrial Internet of Things, the Internet of Things in the industrial field, in V2X (Vehicular to X, vehicle communication), in the communication between devices (Device to Device), in the communication of unlicensed spectrum, in User communication quality monitoring, network planning optimization, in NTN (Non Territerial Network, non-terrestrial network communication), in TN (Territerial Network, terrestrial network communication), in dual connectivity (Dual connectivity) system, in wireless resource management As well as multi-antenna codebook selection, there are extensive requirements in signaling design, neighbor cell management, service management, and beamforming. Information transmission methods are divided into broadcast and unicast, both of which are 5G Systems are essential because they are very helpful in meeting the above requirements.
  • the UE can connect to the network either directly or through a relay.
  • the 3GPP standardization organization has done relevant standardization work for 5G, and formed a series of standards including 38.304, 38.211, 38.213, etc.
  • the content of the standard can be referred to:
  • a relay In various communication scenarios, the use of a relay is involved. For example, when a UE is not within the coverage area of a cell, it can access the network through a relay, and the relay node can be another UE.
  • Relays mainly include layer 3 relays and layer 2 relays, both of which provide network access services for remote nodes (remote UEs) through relay nodes.
  • Layer 3 relays are transparent to the access network, that is, remote UEs
  • the UE only establishes a connection with the core network, and the access network cannot identify whether the data comes from the remote node or the relay node; in layer 2 relay, the remote node and the access network have an RRC connection, and the access network can manage the remote Radio bearers can be established between nodes, access network and remote nodes.
  • Remote nodes can receive broadcast messages and unicast messages from the network through forwarding by relay nodes. These messages can be used to determine synchronization references. Synchronization reference is a necessary function of secondary link communication, which can make the two sides of the communication relatively synchronized, and obtaining timing information is helpful for signal reception and avoids blind detection. Therefore, each UE performing secondary link communication needs to perform a process of determining a synchronization reference. The determination of the synchronization reference is closely related to the transmission of the synchronization signal. At least two nodes are involved in the concept of synchronization, so in addition to the reception of synchronization signals, the transmission of synchronization signals is generally involved. These are two aspects that go hand in hand.
  • the determination of the synchronization reference involves many factors, including the synchronization priority indicated by the network, whether it is within coverage, the type of the synchronization reference, and so on.
  • a new problem will appear, that is, the message is not directly received from the network, but forwarded through the relay, which means that the remote node and the network are not directly connected.
  • the remote node may mistakenly set the cell that generated these messages as a synchronization reference, thereby causing synchronization problems, affecting secondary link communication, and even causing out-of-synchronization and communication failure.
  • the present application provides a solution to the above-mentioned problems.
  • the present application discloses a method used in a first node of wireless communication, comprising:
  • the first signal including a first message; determining a synchronization reference according to at least whether the first message is transmitted through a direct path; the first message is used to indicate a first secondary link frequency list, the first a list of secondary link frequencies comprising first frequencies for secondary link communications; receiving a first synchronization signal from the determined synchronization reference;
  • the receiving timing for the first synchronization signal is used to determine the sending timing of the second synchronization signal.
  • the problem to be solved in this application includes: in a scenario involving relay, how a node performing secondary link communication, especially a remote node, determines a synchronization reference.
  • the advantages of the above method include: when determining the synchronization reference, the method proposed in this application takes into account the transmission mode of the received specific message, that is, whether it is transmitted through a direct path, and thus adopts different methods for different situations.
  • the received message when the received message is not transmitted through a direct path, it can effectively avoid invalid or poor nodes being determined as synchronization references. Therefore, the reliability is improved, and the normal communication of the secondary link is guaranteed.
  • cell search is performed to determine that it is within the coverage of at least the first cell
  • the first message is not transmitted through a direct path
  • the synchronization priority indicated by the first message is a base station
  • the determined synchronization reference is a synchronization reference UE.
  • a first secondary link main information block is received, and the first secondary link main information block indicates whether it is within coverage;
  • the synchronization signal identity corresponding to the first synchronization signal is the first an identity;
  • the first secondary link master information block and the first identity are used to determine a sequence for generating the second synchronization signal;
  • the first message is used to indicate sending timing information of the second synchronization signal, and the sending timing of the second synchronization signal is different from the sending timing of the first synchronization signal.
  • a cell cannot be detected on the first frequency; the first message is not transmitted through a direct path; the sender of the first synchronization signal is determined to be a synchronization reference;
  • the determined synchronization reference is a synchronization reference UE;
  • the synchronization priority indicated by the first message is the base station;
  • the first message includes first sending timing information and second sending timing information; the first sending timing information is used to indicate sending timing information of the second synchronization signal; the second sending timing information is Used to determine the secondary link synchronization signal identity of the second synchronization signal; the second sending timing information is related to GNSS.
  • a cell search is performed to determine that it is not within the coverage of a first cell but within the coverage of a second cell; the first cell is the generator of the first message; the first The cell is the PCell or the serving cell of the first node; the second cell is a cell other than the PCell or the serving cell of the first node; both the first cell and the second cell are in the first frequency; the first frequency is the main frequency;
  • the first message is not transmitted through a direct path
  • the synchronization priority indicated by the first message is the base station
  • the determined synchronization reference is the second cell.
  • a cell search is performed to determine that it is within the coverage of the first frequency;
  • the first frequency is a frequency other than the main frequency or the secondary frequency;
  • the first message is not transmitted through a direct path, and the determined synchronization reference is the first frequency.
  • the second secondary link main information block is sent; the second secondary link main information block is sent along with the second synchronization signal; whether the first message is transmitted through the direct path is determined It is used to determine whether the second secondary link master information block indicates to cover the inner;
  • whether the first message is transmitted through the direct path is used to determine whether the second secondary link master information block indicates that the coverage includes:
  • the second secondary link master information block does not indicate within coverage; when the first node is within coverage The first frequency is within coverage, and the first message is transmitted through a direct path, and the second secondary link master information block indicates that it is within coverage.
  • a second secondary link main information block is sent; the second secondary link main information block is sent along with the second synchronization signal;
  • GNSS is determined as a synchronization reference; the first message includes second sending timing information; the second sending timing information is used to indicate sending timing information of the second synchronization signal; whether the first message includes The second transmission timing information is used to determine whether the second secondary link master information block indicates that it is within coverage.
  • the first node is a user equipment.
  • the first node is an Internet of Things terminal.
  • the first node is a relay.
  • the first node is a vehicle-mounted terminal.
  • the first node is an aircraft.
  • a method used in a second node for wireless communication comprising:
  • the second signal includes a first message;
  • the first message is used to indicate a first secondary link frequency list, the first secondary link frequency list includes a first frequency, and the first frequency For secondary link communication;
  • the recipient of the first signal determines a synchronization reference based on at least whether the first message is transmitted through a direct path;
  • the receiver of the first signal sends a second synchronization signal; the receiving timing of the first synchronization signal is used to determine the sending timing of the second synchronization signal.
  • the first secondary link main information block is sent, and the first secondary link main information block indicates whether it is within coverage;
  • the synchronization signal identity corresponding to the first synchronization signal is the first an identity;
  • the first secondary link master information block and the first identity are used to determine a sequence for generating the second synchronization signal;
  • the first message is used to indicate sending timing information of the second synchronization signal, and the sending timing of the second synchronization signal is different from the sending timing of the first synchronization signal.
  • the second synchronization signal and the second secondary link main information block are received, and the sending of the second synchronization signal and the second secondary link main information block by the second node
  • the sender provides the relay service; when the first set of conditions is satisfied, the sender of the second synchronization signal and the second secondary link master information block is not determined as a synchronization reference; the synchronization indicated by the first message
  • the priority order is the base station.
  • the second node is a user equipment.
  • the second node is an Internet of Things terminal.
  • the second node is a relay.
  • the second node is a vehicle-mounted terminal.
  • the second node is an aircraft.
  • This application discloses a first node used for wireless communication, including:
  • a first receiver receiving a first signal, the first signal including a first message; determining a synchronization reference according to at least whether the first message is transmitted through a direct path; the first message is used to indicate a first secondary link frequency a list, the first list of secondary link frequencies includes a first frequency, the first frequency is used for secondary link communications; receiving a first synchronization signal from the determined synchronization reference;
  • the first transmitter sends a second synchronization signal; the receiving timing of the first synchronization signal is used to determine the sending timing of the second synchronization signal.
  • the present application discloses a second node used for wireless communication, including:
  • the second receiver receives a second signal, the second signal includes a first message; the first message is used to indicate a first sublink frequency list, and the first sublink frequency list includes a first frequency, the first frequency is used for secondary link communications;
  • a second transmitter transmitting a first signal and a first synchronization signal, said first signal comprising said first message; a receiver of said first signal, determining synchronization based on at least whether said first message is transmitted via a direct path refer to;
  • the receiver of the first signal sends a second synchronization signal; the receiving timing of the first synchronization signal is used to determine the sending timing of the second synchronization signal.
  • this application has the following advantages:
  • the best or better synchronization reference can be efficiently determined, ensuring normal communication.
  • optional synchronization references include UE, GNSS, or frequencies of interest for secondary link communication
  • FIG. 1 shows a flow chart of receiving a first synchronization signal, receiving a first signal, and sending a second synchronization signal according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to the present application
  • Figure 5 shows a flow chart of transmission according to one embodiment of the present application
  • FIG. 6 shows a schematic diagram of a secondary link synchronization signal block according to an embodiment of the present application
  • Fig. 7 shows a schematic diagram of sending timing according to an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of a protocol stack of relay communication according to an embodiment of the present application.
  • FIG. 9 shows a schematic diagram in which the receiving timing of the first synchronization signal is used to determine the sending timing of the second synchronization signal according to an embodiment of the present application
  • FIG. 10 shows a schematic diagram in which the first secondary link master information block and the first identity are used to determine the sequence for generating the second synchronization signal according to an embodiment of the present application
  • FIG. 11 shows a schematic diagram in which a first message is used to indicate sending timing information of a second synchronization signal according to an embodiment of the present application
  • FIG. 12 shows a schematic diagram in which the second transmission timing information is used to determine the secondary link synchronization signal identity of the second synchronization signal according to an embodiment of the present application
  • FIG. 13 shows a schematic diagram of whether the first message includes the second transmission timing information is used to determine whether the second secondary link master information block indicates that it is within coverage according to an embodiment of the present application
  • Fig. 14 illustrates a schematic diagram of a processing device used in a first node according to an embodiment of the present application
  • Fig. 15 illustrates a schematic diagram of a processing device used in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of receiving a first synchronization signal, receiving a first signal, and sending a second synchronization signal according to an embodiment of the present application, as shown in FIG. 1 .
  • each block represents a step, and it should be emphasized that the order of the blocks in the figure does not represent the temporal sequence of the steps represented.
  • the first node in this application receives the first synchronization signal in step 101; receives the first signal in step 102; sends the second synchronization signal in step 103;
  • the first signal includes a first message; the synchronization reference is determined according to at least whether the first message is transmitted through a direct path; the first message is used to indicate a first sub-link frequency list, and the first sub-link
  • the channel frequency list includes a first frequency, the first frequency is used for secondary link communication; the reception timing for the first synchronization signal is used to determine the transmission timing of the second synchronization signal.
  • the first node is UE (User Equipment, user equipment).
  • a direct path refers to a transmission path from UE to the network, and transmission through the direct path means that data is between the remote UE and the network of UE to network (U2N) Send without relaying.
  • U2N UE to network
  • the data includes higher layer data and signaling.
  • the data includes a bit string or a bit block.
  • an indirect path refers to a transmission path from the UE to the network, and transmission through the indirect path means that the data is at the far end of the UE to the network (U2N, UE-to-Network)
  • the data includes higher layer data and signaling.
  • the data includes a bit string or a bit block.
  • the U2N relay UE refers to a UE that provides a function of supporting the connection of the U2N remote UE to the network.
  • the U2N remote UE refers to a UE that needs to pass through a U2N relay UE to communicate with the network.
  • the U2N remote UE refers to a UE that needs to pass through a U2N relay UE to communicate with the network.
  • the U2N remote UE refers to a UE that supports a relay service and communicates with a network.
  • the U2N relay is a U2N relay UE.
  • both the U2N relay and the U2N remote node are in the RRC connection state.
  • the U2N relay UE when the U2N remote UE is in the RRC idle state or the RRC inactive state, the U2N relay UE can be in any RRC state, including the RRC connected state, the RRC idle state and the RRC inactive state.
  • not transmitting over a direct path is equal to transmitting over an indirect path.
  • transmitting not via a direct path includes transmitting via a relay.
  • transmitting via a direct path includes transmitting without a relay.
  • transmitting over a direct path includes forwarding without a relay.
  • the U2N relay UE is a functional UE that provides connectivity (connectivity) support to the network for the U2N remote UE.
  • the U2N relay UE is a UE.
  • the U2N relay UE provides the U2N remote UE with a relay service to the network.
  • the U2N remote UE is a UE that communicates with the network through a U2N relay UE.
  • the secondary link SSB Synchronization Signal Block, synchronization signal block
  • SLSS Segmentlink synchronization Signal, secondary link synchronization signal
  • MasterInformationBlockSidelink SendInformationBlockSidelink
  • the first sending condition set includes a first sending condition, and the first sending condition is: within the coverage of the frequency of NR secondary link communication and selecting GNSS (Global Navigation Satellite Systems, Global Navigation Satellite System) or cell as a synchronization reference.
  • GNSS Global Navigation Satellite Systems, Global Navigation Satellite System
  • the first sending condition set includes a second sending condition
  • the second sending condition is: outside the frequency coverage of NR secondary link communication and used for sending NR secondary link
  • the frequency of communication is included in the RRCReconfiguration message or by SIB12 and GNSS or cell is selected as the synchronization reference and is in the RRC connection state and networkControlledSyncTx is configured as on.
  • the first set of sending conditions includes a third sending condition, and the third sending condition is: outside the frequency coverage of NR secondary link communication and used for sending NR secondary link
  • the frequency of communication is included by RRCReconfiguration message or SIB12 and GNSS or cell is selected as a synchronization reference and networkControlledSyncTx is not configured, and syncTxThreshIC is configured, and the RSRP of the reference cell for NR secondary link communication ((Reference Signal Receiving Power, reference signal received power) measured below the syncTxThreshIC.
  • the first sending condition set includes a fourth sending condition, and the fourth sending condition is: the first sending condition is not satisfied and the second sending condition is not satisfied And the third transmission condition is not satisfied, for the frequency of NR secondary link communication, syncTxThreshOoC is configured, there is no direct synchronization to GNSS, no synchronization reference UE is selected or the PSBCH-RSRP measurement result of the selected synchronization reference UE is lower than The syncTxThreshOoC.
  • the first sending condition set includes a fifth sending condition, and the fifth sending condition is: the first sending condition is not satisfied and the second sending condition is not satisfied And the third sending condition is not satisfied, for the frequency of NR secondary link communication, GNSS is selected as the synchronization reference source.
  • the first set of sending conditions includes: a transmission mode for communicating with the network is changed from non-direct path transmission to direct path transmission.
  • the first set of sending conditions includes: changing the transmission mode of communication with the network from direct path transmission to non-direct path transmission.
  • the first set of sending conditions includes: being a U2N relay UE.
  • the serving cell refers to a cell where the UE camps.
  • Performing the cell search includes that the UE searches for a suitable (suitable) cell of the selected PLMN (Public Land Mobile Network, Public Land Mobile Network) or SNPN (Stand-alone Non-Public Network, independent non-public network), and selects the A suitable cell provides available services, and monitors the control channel of the suitable cell.
  • PLMN Public Land Mobile Network, Public Land Mobile Network
  • SNPN Seand-alone Non-Public Network, independent non-public network
  • the advantages of staying in a cell in the RRC idle state or RRC inactive state are as follows: enabling the UE to receive system messages from the PLMN or SNPN; after registration, if the UE wishes to establish an RRC connection or continue a suspended RRC connection, The UE can achieve this by performing initial access on the control channel of the resident cell; the network can page the UE; so that the UE can receive ETWS (Earthquake and Tsunami Warning System, Earthquake and Tsunami Warning System) and CMAS (Commercial Mobile Alert System, Commercial Mobile Alarm System) Notifications.
  • ETWS Earthquake and Tsunami Warning System, Earthquake and Tsunami Warning System
  • CMAS Common Mobile Alert System, Commercial Mobile Alarm System
  • the serving cell is used to indicate a cell set including a special cell (SpCell, Special Cell) and all secondary cells.
  • the primary cell is an MCG (Master Cell Group) cell, which works on the primary frequency. The UE performs the initial connection establishment process or initiates connection reestablishment on the primary cell.
  • the special cell refers to the PCell (Primary Cell, primary cell) of the MCG or the PSCell (Primary SCG Cell, primary SCG cell) of the SCG (Secondary Cell Group); if it is not a dual connection operation, the special cell refers to the PCell.
  • the frequency at which the SCell (Secondary Cell, secondary cell) works is a secondary frequency.
  • MR-DC Multi-Radio Dual Connectivity, multi-radio dual connectivity refers to dual connectivity between E-UTRA and NR nodes, or dual connectivity between two NR nodes.
  • the radio access node providing the control plane connection to the core network is a master node
  • the master node may be a master eNB, a master ng-eNB, or a master gNB.
  • the MCG refers to a group of serving cells associated with the master node in the MR-DC, including an SpCell, and may, optionally, include one or more SCells.
  • the PCell is the SpCell of the MCG.
  • the PSCell is the SpCell of the SCG.
  • the control plane connection to the core network is not provided, and the wireless access node that provides additional resources to the UE is a slave node.
  • the slave node can be en-gNB, slave ng-eNB or slave gNB.
  • a set of serving cells associated with the secondary node is an SCG (secondary cell group, secondary cell group), including an SpCell and, optionally, one or more SCells.
  • SCG secondary cell group, secondary cell group
  • the access layer function that enables the V2X (Vehicle-to-Everything) communication defined in the 3GPP standard TS 23.285 is V2X sidelink communication (V2X sidelink communication), wherein the V2X sidelink communication It takes place between adjacent UEs and uses E-UTRA technology without traversing network nodes.
  • At least the access layer function that enables the V2X (Vehicle-to-Everything) communication defined in the 3GPP standard TS 23.287 is NR sidelink communication (NR sidelink communication), wherein the NR sidelink communication Occurs between two or more UEs in close proximity, using NR techniques without traversing network nodes.
  • NR sidelink communication NR sidelink communication
  • not or not in or not in coverage equals out of coverage.
  • within coverage equals within coverage.
  • outside of coverage equals outside of coverage
  • the first node is a U2N remote node.
  • the first signal is a physical layer signal.
  • the first signal is transmitted through a secondary link.
  • the first signal is sent using resources in a secondary link resource pool.
  • the sending timing of the first signal depends on the SLSS signal.
  • the sending timing of the first signal depends on the SL-SSB signal.
  • the sending timing of the first signal depends on a synchronization reference.
  • the physical channel occupied by the first signal includes a PSSCH (physical sidelink shared channel, physical sidelink shared channel).
  • PSSCH physical sidelink shared channel, physical sidelink shared channel
  • the physical channel occupied by the first signal includes a PSCCH (physical sidelink control channel, physical sidelink control channel).
  • PSCCH physical sidelink control channel, physical sidelink control channel
  • the first signal is a downlink signal.
  • the first signal is not transmitted through the secondary link.
  • the physical channel occupied by the first signal includes a PDSCH (physical downlink shared channel, physical downlink shared channel).
  • PDSCH physical downlink shared channel, physical downlink shared channel
  • the physical channel occupied by the first signal includes a PSCCH (physical downlink control channel, physical downlink control channel).
  • PSCCH physical downlink control channel, physical downlink control channel
  • the sending timing of the first signal depends on the SSB.
  • the sending timing of the first signal depends on the downlink synchronization signal.
  • the first signal is associated with SSB.
  • the first signal carries the first message.
  • the first signal carries the first message.
  • the first signal includes all fields of the first message.
  • the first signal includes at least one field of the first message.
  • the first message is forwarded to the first node through a PC5-RRC container.
  • the first message is an RRC message.
  • the first message includes a system message.
  • the first message includes a SIB (System Information Block, system information block).
  • SIB System Information Block, system information block
  • the first message includes SIB12.
  • the first message is SIB12.
  • the first message includes at least part of fields of the SIB12.
  • the first message includes or only includes RRCReconfiguration.
  • the first message includes or only includes SIB12.
  • the first message is sent in a broadcast manner.
  • the first message is sent in a unicast manner.
  • the generator of the first message is a cell.
  • the generator of the first message is a base station.
  • the first message is transmitted through a Uu interface.
  • the first secondary link frequency list indicates frequencies used for secondary link communication, and the first secondary link list includes at least one frequency.
  • the first secondary link frequency list is sl-FreqInfoToAddModList.
  • the sl-ConfigDedicatedNR field of the first message includes the first secondary link frequency list.
  • the sl-ConfigCommonNR field of the first message includes the first secondary link frequency list.
  • the first frequency is a concerned frequency.
  • the first frequency is a frequency used by the first node for NR secondary link communication.
  • the first frequency is a frequency that the first node intends or expects to use for NR secondary link communication.
  • the first frequency is a frequency that the first node is using for NR secondary link communication.
  • the first frequency is a frequency to be used by the first node for NR secondary link communication.
  • the first frequency is a frequency determined by the first node to be used when performing NR secondary link communication.
  • the first frequency is a frequency at which the first node performs secondary link communication.
  • the first synchronization signal is SLSS.
  • the S-SS/PSBCH block is SSB.
  • the S-SS/PSBCH block is SL-SSB.
  • the S-SS is SLSS.
  • the SLSS includes a secondary link master synchronization signal and a secondary link slave synchronization signal.
  • the SLSS includes a secondary link master synchronization signal and a secondary link slave synchronization signal.
  • SL means sidelink (secondary link).
  • a UE performs the S-SS/PSBCH block-based synchronization procedure by receiving the following secondary link synchronization signals: Secondary Link Primary Synchronization Signal (S-PSS) and Secondary Link Secondary Synchronization Signal (S-SSS ).
  • S-PSS Secondary Link Primary Synchronization Signal
  • S-SSS Secondary Link Secondary Synchronization Signal
  • one S-SS/PSBCH block occupies 13 OFDM symbols; for an extended cyclic prefix, one S-SS/PSBCH block occupies 11 OFDM symbols.
  • one S-SS/PSBCH includes S-PSS, S-SSS and PSBCH.
  • the S-SS/PSBCH further includes a DM-RS (Demodulation Reference Signal) associated with the PSBCH.
  • DM-RS Demodulation Reference Signal
  • the S-SS/PSBCH is transmitted using the antenna port 4000 .
  • the secondary link synchronization signal has 672 unique physical layer secondary link identities, given by the following formula:
  • the value range is an integer from 0 to 335, The value of is 0 or 1; the 672 unique physical layer secondary link identities can uniquely determine the sequence used to generate the secondary link master synchronization signal and the sequence used to generate the secondary link slave synchronization signal through a predefined formula the sequence of.
  • the 672 unique physical layer secondary link identities are divided into two groups, identified by id_net and id_oon respectively, where id_net includes The physical layer secondary link identity, id_oon includes The identity of the physical layer secondary link.
  • an identity among the 672 unique physical layer secondary link identities included in the id_net group indicates in-coverage.
  • the identity indications in the 672 unique physical layer secondary link identities included in the id_oon group are not covered.
  • an initial value of a parameter of a demodulation reference signal of a PSBCH is the identity of the S-SS, namely The identity of the S-SS is one of the 672 unique physical layer secondary link identities.
  • the length of the sequence used to generate the secondary link primary synchronization signal is 127.
  • the length of the sequence used to generate the secondary link synchronization signal is 127.
  • any one of the 672 unique physical layer secondary link identities is identified as SLSSID.
  • any one of the 672 unique physical layer secondary link identities is identified as an SLSS ID.
  • the SLSSID is any one of the 672 unique physical layer secondary link identities.
  • the secondary link synchronization signal has a one-to-one correspondence with the secondary link synchronization signal identity; a secondary link synchronization signal identity can uniquely determine a secondary link synchronization signal; a secondary link synchronization signal is received The identity of the corresponding secondary link synchronization signal can be uniquely determined.
  • SLSSID is the secondary link synchronization signal identity.
  • any one of the 672 unique physical layer secondary link identities is a secondary link synchronization signal identity.
  • the second synchronization signal is SLSS.
  • the second synchronization signal is a secondary link synchronization signal.
  • the first synchronization signal and the second synchronization signal are generated through the same sequence.
  • the first synchronization signal and the second synchronization signal are generated through different sequences.
  • the identity of the secondary link synchronization signal corresponding to the first synchronization signal is the same as the identity of the secondary link synchronization signal corresponding to the second synchronization signal.
  • the identity of the secondary link synchronization signal corresponding to the first synchronization signal is different from the identity of the secondary link synchronization signal corresponding to the second synchronization signal.
  • the meaning of the sentence receiving the first synchronization signal from the determined synchronization reference includes: the behavior of determining the synchronization reference is performed before the behavior of receiving the first synchronization signal.
  • the meaning of the sentence receiving the first synchronization signal from the determined synchronization reference includes: the behavior of determining the synchronization reference is performed after the behavior receives the first synchronization signal.
  • the meaning of the sentence receiving the first synchronization signal from the determined synchronization reference includes: the act of determining the synchronization reference is independent in time from the act of receiving the first synchronization signal.
  • the meaning of the sentence receiving the first synchronization signal from the determined synchronization reference includes: the behavior of determining the synchronization reference and the behavior of receiving the first synchronization signal do not have an accompanying relationship in time .
  • the meaning of the sentence receiving the first synchronization signal from the determined synchronization reference includes: the first node first receives the first synchronization signal, and then determines the synchronization reference.
  • the first synchronization signal is on the first frequency.
  • the second synchronization signal is on the first frequency.
  • the first synchronization signal and the second synchronization signal are at the same frequency.
  • the first synchronization signal and the second synchronization signal are at different frequencies.
  • the second synchronization signal is used to indicate the type of the synchronization reference.
  • the secondary link synchronization signal identity corresponding to the second synchronization signal is equal to 0, indicating that the type of synchronization reference is GNSS.
  • the identity of the secondary link synchronization signal corresponding to the second synchronization signal is not equal to 0, indicating that the type of the synchronization reference is not GNSS.
  • the identity of the secondary link synchronization signal corresponding to the first synchronization signal is equal to the sl indicated by the SL-SyncConfig field that does not include gnss-Sync for the first frequency indicated by the first message - SSID, indicating that the synchronization reference is a cell.
  • the secondary link synchronization signal identity corresponding to the first synchronization signal is equal to 337, indicating that the synchronization reference is GNSS.
  • the sender of the first signal is the generator of the first message
  • the first message is transmitted through a direct path; if the sender of the first signal is not the generator of the first message The generator, the first message is not transmitted over a direct path.
  • the identity of the secondary link synchronization signal corresponding to the first synchronization signal is equal to 0.
  • the first synchronization signal comes from GNSS.
  • the first synchronization signal is a GNSS signal.
  • the first synchronization signal is a satellite signal.
  • the first synchronization signal comes from a satellite.
  • GNSS includes GPS, as well as satellite-based positioning systems such as Beidou.
  • the first node is in the RRC_CONNECTED state.
  • the first node is in the RRC_IDLE state.
  • the first node is in the RRC_INACTIVE state.
  • the first node is in the RRC_INACTIVE or RRC_IDLE state.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG. 2 .
  • Attached Figure 2 illustrates the V2X communication architecture under the system architecture of 5G NR (New Radio, new air interface), LTE (Long-Term Evolution, long-term evolution) and LTE-A (Long-Term Evolution Advanced, enhanced long-term evolution).
  • the 5G NR or LTE network architecture may be referred to as 5GS (5G System)/EPS (Evolved Packet System, Evolved Packet System) or some other suitable term.
  • the V2X communication architecture of Embodiment 2 includes UE (User Equipment, user equipment) 201, UE 241, NG-RAN (next generation radio access network) 202, 5GC (5G Core Network, 5G core network)/EPC (Evolved Packet Core, Evolved packet core) 210, HSS (Home Subscriber Server, home subscriber server)/UDM (Unified Data Management, unified data management) 220, ProSe function 250 and ProSe application server 230.
  • the V2X communication architecture can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204 .
  • the gNB 203 provides user and control plane protocol termination towards the UE 201 .
  • a gNB 203 may connect to other gNBs 204 via an Xn interface (eg, backhaul).
  • a gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmitting Receiver Node) or some other suitable terminology.
  • the gNB203 provides an access point to the 5GC/EPC210 for the UE201.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, NB-IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, NB-IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management domain
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF 214 S-GW (Service Gateway, service gateway)/UPF (UserPlane Function, user plane function) 212, and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF 213.
  • MME/AMF/SMF211 is a control node that handles signaling between UE201 and 5GC/EPC210. In general, the MME/AMF/SMF 211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 connects to Internet service 230 .
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and specifically may include the Internet, the intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet-switched streaming services.
  • the ProSe function 250 is a logical function for network-related behaviors required by Proximity-based Service (ProSe, Proximity-based Service); including DPF (Direct Provisioning Function, direct supply function), direct discovery name management function (Direct Discovery Name Management Function), EPC-level Discovery ProSe Function (EPC-level Discovery ProSe Function), etc.
  • the ProSe application server 230 has functions such as storing EPC ProSe user IDs, mapping between application layer user IDs and EPC ProSe user IDs, and distributing ProSe-restricted code suffix pools.
  • the UE201 and the UE241 are connected through a PC5 reference point (Reference Point).
  • PC5 reference point Reference Point
  • the ProSe function 250 is respectively connected to the UE 201 and the UE 241 through a PC3 reference point.
  • the ProSe function 250 is connected to the ProSe application server 230 through the PC2 reference point.
  • the ProSe application server 230 is respectively connected to the ProSe application of the UE 201 and the ProSe application of the UE 241 through the PC1 reference point.
  • the first node in this application is UE201.
  • the second node in this application is UE241.
  • the third node in this application is gNB203.
  • the wireless link between the UE201 and the UE241 corresponds to a secondary link (Sidelink, SL) in this application.
  • SL secondary link
  • the radio link from the UE 201 to the NR Node B is an uplink.
  • the wireless link from NR Node B to UE 201 is downlink.
  • the UE 201 supports relay transmission.
  • the UE241 supports relay transmission.
  • the UE 201 is a vehicle including a car.
  • the UE 241 is a vehicle including a car.
  • the gNB203 is a macrocell (MarcoCellular) base station.
  • the gNB203 is a micro cell (Micro Cell) base station.
  • the gNB203 is a pico cell (PicoCell) base station.
  • the gNB203 is a flight platform device.
  • the gNB203 is a satellite device.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300.
  • FIG. 3 shows three layers for the first node (UE, gNB or satellite or aircraft in NTN) and the second Radio protocol architecture of a node (gNB, UE or satellite or aircraft in NTN), or control plane 300 between two UEs: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301 .
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first node and the second node and the two UEs through the PHY 301 .
  • L2 layer 305 includes MAC (Medium Access Control, Media Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers terminate at the second node.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides handoff support to a first node between a second node.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer packets, retransmission of lost packets, and reordering of packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg resource blocks) in a cell among the first nodes.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in the layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (that is, radio bearers) and using the RRC signal between the second node and the first node command to configure the lower layer.
  • the PC5-S (PC5 Signaling Protocol, PC5 signaling protocol) sublayer 307 is responsible for the processing of the signaling protocol of the PC5 interface.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer), the radio protocol architecture for the first node and the second node in the user plane 350 is for the physical layer 351, the L2 layer 355
  • the PDCP sublayer 354, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides for upper Layer packet header compression to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer) , to support business diversity.
  • the first node may have several upper layers above the L2 layer 355 . It also includes a network layer (eg IP layer) terminated at the P-GW on the network side and an application layer terminated at the other end of the connection (eg remote UE, server, etc.).
  • its control plane may also include an adaptation sublayer AP308, and its user plane may also include an adaptation sublayer AP358.
  • adaptation layer helps lower layers, such as the MAC layer, such as the RLC layer , to multiplex and/or differentiate data from multiple source UEs, and for UE-to-UE communications involving relay services, the adaptation sublayer may also not be included.
  • adaptation sublayers AP308 and AP358 can also be used as sublayers in PDCP304 and PDCP354 respectively.
  • the RRC306 can be used to process the RRC signaling of the Uu interface and the signaling of the PC5 interface.
  • the wireless protocol architecture in Fig. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Fig. 3 is applicable to the second node in this application.
  • the wireless protocol architecture in Fig. 3 is applicable to the third node in this application.
  • the first message in this application is generated in RRC306.
  • the first secondary link master information block in this application is generated in PC5-RRC.
  • the second secondary link master information block in this application is generated in PC5-RRC.
  • the first synchronization signal in this application is generated by PHY301.
  • the second synchronization signal in this application is generated by the PHY301.
  • the first signal in this application is generated by PHY301 or MAC302 or RLC303 or RRC306 or PC5-S307.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Fig. 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in an access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452 .
  • Second communications device 410 includes controller/processor 475 , memory 476 , receive processor 470 , transmit processor 416 , multi-antenna receive processor 472 , multi-antenna transmit processor 471 , transmitter/receiver 418 and antenna 420 .
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels. Multiplexing, and allocation of radio resources to said first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communication device 450 .
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 410, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)).
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes with a reference signal (e.g., pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel that carries a time-domain multi-carrier symbol stream. Then the multi-antenna transmit processor 471 performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into an RF stream, which is then provided to a different antenna 420 .
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives a signal via its respective antenna 452 .
  • Each receiver 454 recovers the information modulated onto an RF carrier and converts the RF stream to a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • Receive processor 456 and multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454 .
  • Receive processor 456 converts the baseband multi-carrier symbol stream after the receive analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered in the multi-antenna detection in the multi-antenna receiving processor 458.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 456 and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the second communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 can be associated with memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium.
  • controller/processor 459 In transmission from said second communication device 410 to said second communication device 450, controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459 .
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements a header based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implementing L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communication device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is provided to different antennas 452 via the transmitter 454 after undergoing analog precoding/beamforming operations in the multi-antenna transmit processor 457 .
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into an RF symbol stream, and then provides it to the antenna 452 .
  • each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 can be associated with memory 476 that stores program codes and data.
  • Memory 476 may be referred to as a computer-readable medium.
  • controller/processor 475 In transmission from said first communication device 450 to said second communication device 410, controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression . Control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be compatible with the said at least one processor, said first communication device 450 means at least: receiving a first message, said first message being used to indicate a first frame number and a corresponding first reference time; said first reference time Including the first reference day, the first reference second and the first reference millisecond, the first frame number is a non-negative integer less than 1024; sending a second message, the second message includes the second parameter, the second frame number and The corresponding second reference time; the second reference time includes the first reference day and the first reference second, the second parameter indicates the uncertainty of the second reference time, and the second frame Number is a non-negative integer less than 1024; wherein, the second parameter is generated at the first node.
  • the first communication device 450 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving a first A message, the first message is used to indicate the first frame number and the corresponding first reference time; the first reference time includes the first reference day, the first reference second and the first reference millisecond, the first The frame number is a non-negative integer less than 1024; a second message is sent, and the second message includes a second parameter, a second frame number, and a corresponding second reference time; the second reference time includes the first reference day and the first reference second, the second parameter indicates the uncertainty of the second reference time, and the second frame number is a non-negative integer less than 1024; wherein, the second parameter is in the The first node is generated.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 450 corresponds to the second node in this application.
  • the first communication device 450 is a UE.
  • the first communication device 450 is a vehicle-mounted terminal.
  • the first communication device 450 is a relay.
  • the second communications device 410 is a UE.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used herein to receive the first message.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used herein to receive the second signal.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used herein to receive the third signal.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used herein to receive the fourth signal.
  • transmitter 456 (including antenna 460), transmit processor 455 and controller/processor 490 are used in this application to transmit the second message.
  • the transmitter 456 (including the antenna 460), the transmit processor 455 and the controller/processor 490 are used in this application to transmit the first signal.
  • Embodiment 5 illustrates a flow chart of wireless signal transmission according to an embodiment of the present application, as shown in FIG. 5 .
  • U01 corresponds to the first node of this application
  • U02 corresponds to the second node of this application
  • U03 and the third node is the serving cell or base station. It is particularly noted that the sequence in this example does not limit the signal in this application The order of transmission and the order of implementation, where the steps within F51, F52, F53 are optional.
  • step S5101 For the first node U01 , receive the first signal in step S5101; receive the first synchronization signal in step S5102; receive the first secondary link master information block in step S5103; perform cell search in step S5104; In step S5106, the second synchronization signal is sent.
  • the second signal is received in step S5201; the first signal is sent in step S5202; the first synchronization signal is sent in step S5203; the first secondary link master information block is sent in step S5204.
  • the first signal includes a first message; the first node U01 determines a synchronization reference according to at least whether the first message is transmitted through a direct path; the first message is used to indicate that the first secondary chain frequency list, the first secondary link frequency list includes a first frequency, the first frequency is used for secondary link communication; the receiving timing of the first node U01 for the first synchronization signal is used to determine The sending timing of the second synchronization signal.
  • the first node U01 receives a first synchronization signal from the determined synchronization reference.
  • the receiving the first synchronization signal from the determined synchronization reference in the sentence includes: the first node U01 first determines the synchronization reference, and then receives the first synchronization signal.
  • the receiving the first synchronization signal from the determined synchronization reference in the sentence includes: the first node U01 first receives the first synchronization signal, and then determines the synchronization reference.
  • the said receiving the first synchronization signal from the determined synchronization reference includes: the first node U01 receives the first synchronization signal and determines that the synchronization reference does not exist in a time sequence .
  • the behavior determining the synchronization reference is performed periodically.
  • the behavior determining the synchronization reference is event-triggered.
  • the first node U01 is a U2N relay UE.
  • the first node U01 is a U2N remote UE.
  • the second node U02 is a UE.
  • the second node U02 is a U2N relay of the first node U01.
  • the third node U03 is a serving cell of the first node U01.
  • the third node U03 is the primary cell of the first node U01.
  • the third node U03 is the primary cell group of the first node U01.
  • the third node U03 is a base station corresponding to or belonging to the primary cell of the first node U01.
  • the third node U03 is a base station corresponding to or belonging to the primary cell of the second node U02.
  • the third node U03 is not a serving cell of the first node U01.
  • the third node U03 is not the primary cell of the first node U01.
  • the third node U03 is not the primary cell group of the first node U01.
  • the third node U03 is not a base station corresponding to or belonging to the primary cell of the first node U01.
  • the third node U03 is not a base station corresponding to or belonging to the primary cell of the second node U02.
  • the third node U03 is a serving cell of the second node U02.
  • the third node U03 is the primary cell of the second node U02.
  • the third node U03 is the primary cell group of the second node U02.
  • the third node U03 is a base station corresponding to or belonging to the primary cell of the second node U02.
  • the first node U01 and the second node U02 have the same primary cell (PCell).
  • the cell where the first node U01 resides is the third node U03.
  • the cell where the second node U02 resides is the third node U03.
  • the home cell of the first node U01 is the third node U03.
  • the home cell of the second node U02 is the third node U03.
  • an RRC connection exists between the first node U01 and the third node U03.
  • an RRC connection exists between the second node U02 and the third node U03.
  • the first node U01 applies the system information of the third node U03.
  • the second node U02 applies the system information of the third node U03.
  • the first node U01 communicates with the third node U03 through an indirect path.
  • the first node U01 communicates with the second node U02 through a secondary link.
  • the first node U01 establishes a direct unicast link with the second node U02.
  • the second signal is a downlink wireless signal.
  • the physical channel occupied by the second signal includes a PDSCH (physical downlink shared channel, physical downlink shared channel).
  • PDSCH physical downlink shared channel, physical downlink shared channel
  • the second signal carries the first message.
  • the second signal carries the first message.
  • the second signal includes the first message.
  • the first message is an RRC message.
  • At least part of fields or all fields in the first message are forwarded to the first node U01 through the second node U02.
  • the first message is transmitted to the first node U01 through a Uu interface.
  • the second signal is sent periodically.
  • the second signal is sent aperiodically.
  • the second signal is sent.
  • the second node U02 relays or forwards the first message.
  • the second signal includes a second message, and the second message is SIB12.
  • the first message includes at least part of fields of the second message.
  • the first message includes the second message.
  • the first message indicates that SIB12 is included.
  • step S5203 in F52 does not occur, and the first synchronization signal is sent by a node other than the second node U02.
  • the sender of the first synchronization signal is a GNSS
  • the first synchronization signal is a signal sent by the GNSS.
  • the sender of the first synchronization signal is a UE, and the first synchronization signal is a secondary link synchronization signal.
  • the sender of the first synchronization signal is a satellite
  • the first synchronization signal is a satellite signal
  • step S5204 in F53 does not occur, and the first secondary link master information block is sent by a node other than the second node U02.
  • the sender of the first secondary link master information block is UE.
  • the first secondary link master information block is MasterInformationBlockSidelink.
  • the first secondary link main information block includes 31 bits.
  • the first secondary link main information block includes a field indicating the TDD configuration of the secondary link.
  • the first secondary link main information block includes an indication inCoverage field, and the inCoverage field included in the first secondary link main information block indicates whether it is within coverage; the first secondary link The inCoverage field included in the main information block is set to true to indicate that the network coverage is within or GNSS timing is selected as a synchronization reference source.
  • the inCoverage field included in the first secondary link main information block is set to false, which means that it is not within network coverage and GNSS timing is not selected as a reference synchronization source.
  • the first secondary link main information block includes a field indicating a direct frame number.
  • the first secondary link main information block includes a field indicating a time slot index.
  • the logical channel occupied by the first secondary link main information block is SBCCH (Sidelink Broadcast Control Channel, secondary link broadcast control channel).
  • the physical channel occupied by the first secondary link main information block is PSBCH (physical sidelink broadcast channel, physical sidelink broadcast channel).
  • the first synchronization signal is SLSS
  • the first identity is SLSSID
  • the first synchronization signal is S-SS
  • the first identity is
  • the first node U01 performs a cell search to determine that it is within the coverage of at least the first cell;
  • the first message is not transmitted through a direct path
  • the synchronization priority indicated by the first message is a base station
  • the determined synchronization reference is a synchronization reference UE.
  • the first node U01 performs a cell search, and determines that it is within the coverage of at least the first cell according to a result of the cell search.
  • the first cell belongs to the first frequency.
  • the first cell is on the first frequency.
  • the first cell is the sender of the first message.
  • the first cell is a serving cell of the first node U01.
  • the first cell is the primary cell of the first node U01.
  • the first cell is a secondary cell of the first node U01.
  • the first cell is the third node U02.
  • the base station is gnbEnb.
  • the base station is gnb or Enb.
  • the behavior of performing a cell search to determine that it is within the coverage of at least the first cell includes: receiving a first downlink signal on the first cell, wherein the reception quality of the first downlink signal meets the coverage requirement .
  • the first downlink signal includes a synchronization signal.
  • the first downlink signal includes PBCH.
  • the first downlink signal includes SS/PBCH.
  • the behavior of performing a cell search to determine that it is within the coverage of at least the first cell includes: searching for SS/PBCH (synchronization signal and Physical Broadcast Channel, physical downlink channel) on the first frequency, and the searched SS The /PBCH signal meets the coverage requirement, and it is determined that the cell corresponding to the searched SS/PBCH signal is the first cell.
  • SS/PBCH synchronization signal and Physical Broadcast Channel, physical downlink channel
  • the phrase satisfying the coverage requirement includes a measurement result of a signal received during the cell search being greater than a first search threshold.
  • the phrase satisfying the in-coverage requirement includes that a measurement result of the received SS/PBCH signal during the cell search process is greater than a first search threshold.
  • the phrase satisfying the coverage requirement includes that the quality of the SS/PBCH signal received during the cell search process is greater than the first search threshold.
  • the first search threshold is indicated by the network.
  • the first search threshold is predefined.
  • the behavior of performing cell search includes receiving SIB1.
  • SS/PBCH is SSB.
  • the SS/PBCH block is SSB.
  • the first message includes a sl-SyncPriority field, and the sl-SyncPriority field included in the first message indicates the synchronization priority.
  • the determined synchronization reference is UE.
  • the determined synchronization reference is a sender of the first synchronization signal.
  • the determined synchronization reference is SyncRef UE.
  • the determined synchronization reference is the second node U02.
  • the first message is not transmitted through a direct path, that is, the first message is transmitted through forwarding or relaying.
  • the first message is not transmitted through a direct path, that is, the first message is forwarded by the second node U02.
  • the first message is not transmitted through a direct path, that is, the first message is transmitted through an indirect path.
  • the first node U01 fails to detect a cell on the first frequency in step S5104; the first message is not transmitted through a direct path; the sender of the first synchronization signal is determined is a synchronization reference; the determined synchronization reference is a synchronization reference UE; the synchronization priority indicated by the first message is a base station;
  • the first message includes first sending timing information and second sending timing information; the first sending timing information is used to indicate sending timing information of the second synchronization signal; the second sending timing information is Used to determine the secondary link synchronization signal identity of the second synchronization signal; the second sending timing information is related to GNSS.
  • the failure to detect a cell on the first frequency means that the first node U01 is not within coverage on the first frequency.
  • the failure to detect a cell on the first frequency means that the first node U01 is out of coverage on the first frequency.
  • the determined synchronization reference is SyncRef UE.
  • the sender of the first synchronization signal is UE.
  • the sender of the first synchronization signal is the second node U02.
  • the synchronization priority indicated by the sl-SyncPriority field of the first message is the base station.
  • the first node U01 does not detect a suitable cell on the first frequency.
  • the first node U01 detects no acceptable cell on the first frequency.
  • the first node U01 does not detect a synchronization signal of a suitable cell on the first frequency.
  • the first node U01 does not detect a synchronization signal of an acceptable cell on the first frequency.
  • the first node U01 does not detect the SSB of a suitable cell on the first frequency.
  • the first node U01 does not detect the SSB of an acceptable cell on the first frequency.
  • the first sending timing information indicates the number of secondary link SSBs sent in one period.
  • the first transmission timing information indicates a time slot offset from the beginning of the secondary link SSB period to the first secondary link SSB.
  • the first sending timing information indicates time slot intervals (intervals) of multiple adjacent secondary links SSB.
  • the first sending timing information is sl-SSB-TimeAllocation1.
  • the first sending timing information is sl-SSB-TimeAllocation2.
  • the second sending timing information indicates the number of secondary link SSBs sent in one cycle.
  • the second transmission timing information indicates a time slot offset from the beginning of the secondary link SSB period to the first secondary link SSB.
  • the second sending timing information indicates time slot intervals (intervals) of multiple adjacent secondary links SSB.
  • the second sending timing information is sl-SSB-TimeAllocation3.
  • the sending timing of the second synchronization signal satisfies the sending timing indicated by the second sending timing information.
  • the second sending timing information is determined as sending timing information of the second synchronization signal.
  • the sending timing information of the second synchronization signal is the first sending timing information.
  • the sending timing of the second synchronization signal is determined by the first sending timing information.
  • the sending timing of the second synchronization signal is indicated by the first sending timing information.
  • the first node selects the time slot indicated by the first sending timing information.
  • the first node selects the time slot indicated by the first sending timing information to send the second synchronization signal.
  • the second sending timing information in the sentence is related to GNSS includes the following meaning: when the synchronization reference UE selects GNSS as a synchronization reference, use the time indicated by the second sending timing information The secondary link synchronization reference signal is sent in each slot.
  • the sentence that the second transmission timing information is related to GNSS includes the following meanings: the synchronization reference determined by the first node U01 is a synchronization reference UE, and the synchronization reference UE selects The GNSS is used as a synchronization reference, and the synchronization reference UE uses the time slot indicated by the second transmission timing information to send a secondary link synchronization reference signal.
  • the sentence that the second sending timing information is related to GNSS includes the following meaning: the synchronization reference determined by the first node U01 is the sender of the first synchronization signal, so The sender of the first synchronization signal selects GNSS as a synchronization reference, and the sender of the first synchronization signal uses the time slot indicated by the second sending timing information to send the first synchronization signal.
  • the sentence that the second sending timing information is related to GNSS includes the following meaning: the synchronization reference determined by the first node U01 is the sender of the first synchronization signal, when The sender of the first synchronization signal is not configured with the second transmission timing information and is out of network coverage and selects GNSS as a synchronization reference, the secondary link master information block sent by the sender of the first synchronization signal Instructions are covered.
  • the sentence that the second sending timing information is related to GNSS includes the following meaning: the synchronization reference determined by the first node U01 is the sender of the first synchronization signal, when The sender of the first synchronization signal is configured with the second transmission timing information and is out of network coverage and selects GNSS as a synchronization reference, and the secondary link master information block sent by the sender of the first synchronization signal Instructions are out of coverage.
  • the first secondary link main information block is sent along with the first synchronization signal.
  • the first secondary link main information block and the first synchronization signal form a secondary link SSB (Synchronization Signal and PBCH block).
  • SSB Synchronization Signal and PBCH block
  • the first secondary link main information block and the first synchronization signal form a secondary link S-SS/PSBCH block.
  • the PSBCH channel is only used to transmit or bear the primary information block of the secondary link.
  • the action of performing cell search means detecting a cell.
  • the first node U01 performs a cell search to determine that it is not within the coverage of the first cell but within the coverage of the second cell; the first cell is the generator of the first message; the The first cell is the PCell or the serving cell of the first node; the second cell is a cell other than the PCell or the serving cell of the first node; both the first cell and the second cell are in the on the first frequency; the first frequency is the main frequency;
  • the first message is not transmitted through a direct path
  • the synchronization priority indicated by the first message is the base station
  • the determined synchronization reference is the second cell.
  • the first node U01 performs cell search in step S5104, and the detected cell is the second cell, and the second cell is different from the first cell.
  • whether the first cell is the PCell of the first node U01 or the serving cell is related to the RRC state of the first node U01.
  • the first cell is the PCell of the first node U01.
  • the first cell is a serving cell of the first node U01.
  • the meaning of the sentence that the second cell is the PCell of the first node or a cell other than the serving cell is that the second cell is neither the PCell of the first node It is also not the serving cell of the first node.
  • the meaning of the sentence that the second cell is the PCell of the first node or a cell other than the serving cell is: the first cell is the PCell or cell of the first node A serving cell, the second cell is different from the first cell.
  • the meaning of the sentence that the second cell is a cell other than the PCell of the first node or the serving cell is: when the first node U01 is in the RRC connected state, the The second cell is not the PCell of the first node U01; when the first node U01 is in an RRC state other than the RRC connected state, the second node is not a serving cell of the first node U01.
  • the operating frequency of the first cell is the first frequency.
  • the operating frequency of the second cell is the first frequency.
  • the first frequency is a frequency at which the PCell of the first node U01 works.
  • the main frequency is the frequency at which the PCell of the first node U01 works.
  • the main frequency is the frequency at which the serving cell of the first node U01 works.
  • the second cell is the SCell of the first node.
  • the second cell is a cell other than the MCG of the first node.
  • the second cell is an SCell in the MCG of the first node.
  • step S5104 the first node U01 fails to detect the reference signal of the first cell; it is checked that the receiving quality of the SS/PBCH of the second cell satisfies coverage internal requirements.
  • the first node U01 detects that the SS/PBCH reception quality of the first cell does not meet the coverage requirement; checks that the SS/PBCH of the second cell The receiving quality of PBCH meets the requirements in coverage.
  • the synchronization reference determined by the first node is the second cell.
  • the advantage of the above method is that: when the first node does not receive the first message of the PCell or the serving cell directly, and the PCell or the serving cell of the first node is not within the coverage, but the first The node is within the coverage of the SCell, and the first node selects the SCell instead of the PCell as a synchronization reference to help obtain correct timing information.
  • the first node U01 performs a cell search to determine that it is within the coverage of the first frequency; the first frequency is a frequency other than the main frequency or the secondary frequency;
  • the first message is not transmitted through a direct path, and the determined synchronization reference is the first frequency.
  • step S5104 the first node U01 detects a cell meeting the coverage requirement on the first frequency.
  • the first frequency is neither the primary frequency of the first node U01 nor the secondary frequency of the first node U01.
  • the first node U01 has only a master frequency but no slave frequency, and the first frequency is not the master frequency of the first node.
  • the first node U01 has only PCell and no SCell, and the first frequency is a frequency other than the frequency at which the PCell of the first node U01 works.
  • the sentence performing a cell search to determine that the coverage of the first frequency includes: performing a cell search, and detecting a cell meeting a coverage requirement on the first frequency.
  • the sentence performing a cell search to determine that the coverage of the first frequency includes: performing a cell search, and detecting a suitable cell on the first frequency.
  • the sentence performing cell search to determine the coverage of the first frequency includes: detecting SSB (SS/PBCH) on the first frequency, and the detected SSB (SS /PBCH) to meet the coverage requirements.
  • SS/PBCH SSB/PBCH
  • the sentence performing a cell search to determine the coverage of the first frequency includes: detecting a cell-defined SSB on the first frequency, and the detected reception quality of the cell-defined SSB Meet coverage requirements.
  • the sentence that the determined synchronization reference is the first frequency includes, and the determined synchronization reference is a detected cell on the first frequency.
  • the sentence that the determined synchronization reference is the first frequency includes, and the determined synchronization reference is a detected synchronization signal on the first frequency.
  • the detected reception quality of the synchronization signal satisfies an in-coverage requirement.
  • the received quality of the detected synchronization signal and the PBCH channel sent along with the detected synchronization signal meets the coverage requirement.
  • the sender of the detected synchronization signal is not the generator of the first message.
  • the sentence that the determined synchronization reference is the first frequency includes that the determined synchronization reference is the detected SS/PBCH on the first frequency, the The reception quality of the SS/PBCH can be determined within the coverage of the first frequency.
  • the advantage of the above method is that: when the first node does not receive the first message of the PCell or the serving cell directly, and the PCell or the serving cell of the first node is not within coverage, the first node Selecting the first frequency as the synchronization reference can avoid wrongly determining the PCell or the serving cell as the synchronization reference.
  • the second secondary link master information block is MasterInformationBlockSidelink.
  • the second secondary link main information block includes 31 bits.
  • the second secondary link main information block includes a field indicating a secondary link TDD configuration.
  • the second secondary link main information block includes an indication inCoverage field, and the inCoverage field included in the second secondary link main information block indicates whether it is within coverage; the second secondary link The inCoverage field included in the main information block is set to true to indicate that the network coverage is within or GNSS timing is selected as a synchronization reference source.
  • the inCoverage field included in the second secondary link main information block is set to false to indicate that it is not within network coverage and GNSS timing is not selected as a reference synchronization source.
  • the second secondary link main information block includes a field indicating a direct frame number.
  • the second secondary link main information block includes a field indicating a time slot index.
  • the logical channel occupied by the second secondary link main information block is SBCCH (Sidelink Broadcast Control Channel, secondary link broadcast control channel).
  • the physical channel occupied by the second secondary link main information block is PSBCH (physical sidelink broadcast channel, physical sidelink broadcast channel).
  • the second secondary link main information block and the second synchronization signal are sent in the same SL-SSB.
  • the second secondary link main information block and the second synchronization signal belong to the same secondary link SSB.
  • the second secondary link master information block when the first node U01 is within coverage at the first frequency and the first message is not transmitted through a direct path, the second secondary link master information block does not indicate that it is within coverage; when The first node U01 is within coverage at the first frequency, and the first message is transmitted through a direct path, and the second secondary link master information block indicates that it is within coverage.
  • the first node U01 detects a cell meeting the coverage requirement on the first frequency.
  • the first node U01 detects a signal satisfying the coverage requirement on the first frequency.
  • the first node U01 detects an SSB that meets the coverage requirement on the first frequency.
  • the first node U01 detects on the first frequency the SS/PBCH that meets the coverage requirement.
  • the sentence that the second secondary link main information block does not indicate that it is in coverage means that the inCoverage field of the second secondary link main information block is set to false.
  • the sentence that the second secondary link main information block indicates that it is within coverage means that the inCoverage field of the second secondary link main information block is set to true.
  • the meaning of the sentence GNSS is determined as the synchronization reference is that the determined synchronization reference is GNSS.
  • the second sending timing information indicates the number of secondary link SSBs sent in one period.
  • the second sending timing information indicates a time slot offset from the beginning of the secondary link SSB period to the first secondary link SSB.
  • the second sending timing information indicates time slot intervals (intervals) of multiple adjacent secondary links SSB.
  • the second sending timing information is sl-SSB-TimeAllocation3.
  • the second sending timing information used to indicate the sending timing information of the second synchronization signal in the sentence includes: the sending timing of the second synchronization signal satisfies the indication indicated by the second sending timing information Timing.
  • the second transmission timing information used to indicate the transmission timing information of the second synchronization signal in the sentence includes: the time slot occupied by the second synchronization signal has the second transmission timing information Sure.
  • the sentence that the second sending timing information is used to indicate the sending timing information of the second synchronization signal includes: the second sending timing information determines a time slot of the second synchronization signal.
  • the sentence that the second sending timing information is used to indicate the sending timing information of the second synchronization signal includes: the second sending timing information is sending timing information of the second synchronization signal.
  • the sentence that the second sending timing information is used to indicate the sending timing information of the second synchronization signal includes: the first node U01 uses the information indicated by the second sending timing information to send the second synchronization signal.
  • the first node U01 performs a cell search to determine that it is within the coverage of at least the first cell;
  • the first message is transmitted through a direct path
  • the synchronization priority indicated by the first message is a base station
  • the determined synchronization reference is a generator of the first message
  • the first node U01 performs a cell search to determine that it is within the coverage of at least the first cell;
  • the first message is transmitted through a direct path
  • the synchronization priority indicated by the first message is the base station
  • the determined synchronization reference is the PCell of the first node U01.
  • cell search is performed to determine that it is not within the coverage of the first cell but within the coverage of the second cell; the first cell is the generator of the first message; the first cell is the second cell A PCell of node U01; the second cell is not the PCell of the first node U01; both the first cell and the second cell are on the first frequency; the first frequency is a main frequency;
  • the first message is transmitted through a direct path
  • the synchronization priority indicated by the first message is the base station
  • the determined synchronization reference is the first cell.
  • the second cell is not the serving cell of the first node U01.
  • the second cell is the SCell of the first node U01.
  • the second node U02 receives the second synchronization signal and the second secondary link master information block, and the second node provides the relay service to the first node U01; when the first condition set is satisfied When, the sender of the second synchronization signal and the second secondary link master information block is not determined as a synchronization reference; the synchronization priority indicated by the first message is the base station.
  • the first set of conditions being met means that any condition in the first set of conditions is met.
  • the first set of conditions includes that the second secondary link master information block does not indicate coverage.
  • the first set of conditions includes that the first message is not transmitted through a direct path.
  • the first set of conditions includes that the secondary link synchronization signal identity corresponding to the second synchronization signal belongs to an out-of-coverage secondary link synchronization signal identity set.
  • Embodiment 6 illustrates a schematic diagram of a secondary link synchronization signal block according to an embodiment of the present application, as shown in FIG. 6 .
  • a sub-link S-SS/PSBCH block includes a sub-link primary synchronization signal (S- PSS), Secondary Link Slave Synchronization Signal (S-SSS) and PSBCH channel.
  • S- PSS sub-link primary synchronization signal
  • S-SSS Secondary Link Slave Synchronization Signal
  • the Secondary Link Synchronization Signal that is, S-SS, includes S-PSS and S-SSS.
  • an S-SS/PSBCH block is the smallest unit of transmission.
  • the secondary link synchronization signal is sent along with the PSBCH.
  • S-SS/PSBCH occupies 13 OFDM symbols in the time domain, and one OFDM symbol immediately after each S-SS/PSBCH block is used as a guard time; S-PSS and S-SSS in the frequency domain Occupies 127 subcarriers; PSBCH occupies 132 subcarriers in the frequency domain.
  • the sequence for generating the secondary link synchronization signal is determined by the secondary link synchronization signal identity, and a secondary link synchronization signal identity can uniquely generate a sequence for generating the secondary link synchronization signal; there are 672 unique Secondary link sync signal identity.
  • the 672 unique secondary link synchronization signal identities are identified by an integer from 0 to 671; the 672 secondary link synchronization signal identities may also be referred to as 672 unique physical layer secondary link identities; the secondary link synchronization signal Identity can be SLSSID or SLSS ID or Indicates that the value range is an integer from 0 to 671.
  • the value range of the secondary link synchronization signal identity corresponding to the secondary link synchronization signal sent by the covered UE is an integer from 0 to 335; the secondary link synchronization signal sent by the out-of-coverage UE The value range of the corresponding secondary link synchronization signal identity is an integer from 336 to 671.
  • the sequence for generating the primary synchronization signal of the secondary link is a binary sequence with a length of 127, and whether the value of any bit is 0 or 1 is determined by the first function whose identity of the secondary link synchronization signal is used as an input .
  • the sequence that generates the secondary link synchronization signal is a binary sequence with a length of 127, and whether the value of any bit is 0 or 1 is determined by the second function that takes the identity of the secondary link synchronization signal as input .
  • a DM-RS demodulation reference signal
  • a DM-RS demodulation reference signal
  • Embodiment 7 illustrates a schematic diagram of sending timing according to an embodiment of the present application, as shown in FIG. 7 .
  • the synchronization reference is used to determine the sending timing of the secondary link radio frame.
  • the synchronization reference is used to determine the sending moment of the secondary link radio frame.
  • the receiving timing of the first synchronization signal is used to determine the sending timing of the second synchronization signal.
  • the receiving timing of the first synchronization signal is used to determine the sending timing of the secondary link signal sent by the first node on the first frequency.
  • the receiving timing of the synchronization signal from the synchronization reference is used to determine the sending timing of the second synchronization signal.
  • the receiving timing of the synchronization signal from the synchronization reference is used to determine the sending timing of the secondary link signal sent by the first node on the first frequency.
  • transmission of a secondary link radio frame i from a first UE should start at (N TA, AL + N TA, offset ) ⁇ T c seconds before the start of the corresponding timing reference frame of said first UE .
  • the first UE is not required to receive the secondary link or downlink transmission earlier than the value of N TA, offset after the completion of a secondary link transmission.
  • the first UE has a first serving cell that satisfies the S criterion, wherein the S criterion is defined by the 3GPP protocol TS 38.304, and the timing of the reference radio frame i is equal to the first The downlink radio frame i of the serving cell, and the uplink carrier frequency of the first serving cell is equal to the first frequency; where N TA, the value of offset is defined in section 4.3.1 of 3GPP protocol 38.211.
  • the meaning that the first UE has a first serving cell satisfying the S criterion includes: the synchronization reference of the first UE is a cell.
  • the meaning that the first UE has a first serving cell satisfying the S criterion includes: the synchronization reference of the first UE is the PCell of the first UE.
  • the meaning that the first UE has a first serving cell satisfying the S criterion includes: the synchronization reference of the first UE is the serving cell of the first UE.
  • the meaning that the first UE has a first serving cell satisfying the S criterion includes: the synchronization reference of the first UE is the first frequency.
  • the reference radio frame i is any reference radio frame.
  • the reference radio frame i is an i-th reference radio frame, where i is a non-negative integer less than 1024.
  • the first UE does not have a first serving cell that satisfies the S criterion, wherein the S criterion is defined by the 3GPP protocol TS 38.304, and the timing of the reference radio frame i is passed by the 3GPP protocol 38.213 Obtained implicitly in Chapter 4.2; N TA, the value of offset is equal to 0.
  • the reference radio frame i is any reference radio frame.
  • the reference radio frame i is an i-th reference radio frame, where i is a non-negative integer less than 1024.
  • the i is a non-negative integer less than 1024.
  • N TA,SL is equal to zero.
  • the first UE corresponds to the first node in this application.
  • the first UE is any UE.
  • the first UE is any UE performing or supporting secondary link communication.
  • the first UE is any UE performing secondary link communication on the first frequency.
  • the secondary link radio frame i starts N TA, offset before the start of the timing reference radio frame i.
  • N TA,offset is equal to 0.
  • N TA offset is indicated by the network.
  • N TA offset is defined by section 4.2 of 3GPP protocol 38.213.
  • the timing reference radio frame i is the timing reference radio frame i received by the first UE.
  • the timing reference radio frame i is the radio frame i from the synchronization reference received by the first UE.
  • the timing reference radio frame i is a radio frame i received by the first UE from a synchronization reference source.
  • the start moment at which the timing reference radio frame i is received is equal to the start moment at which the secondary link radio frame i is sent.
  • the start time of the timing reference radio frame i at the receiving end is equal to the start time of the secondary link radio frame i.
  • the timing reference radio frame is a radio frame sent by the determined synchronization reference.
  • the timing reference radio frame i is the radio frame where the synchronization signal sent by the determined synchronization reference is located.
  • the timing reference radio frame i is a radio frame where the first synchronization signal is located.
  • the sending timing of the secondary link radio frame is determined by the UTC time indicated by the GNSS.
  • the behavior of determining the synchronization reference includes receiving a timing reference radio frame i and determining a receiving moment of the timing reference radio frame i.
  • the behavior determining the synchronization reference includes receiving the timing reference radio frame i and determining the sending moment of the secondary link radio frame i according to the receiving moment of the timing reference radio frame i, where i is any nonnegative value less than 1024 integer.
  • the act of determining a synchronization reference includes determining a synchronization reference source.
  • the act of determining a synchronization reference includes determining a synchronization reference source and maintaining synchronization with a synchronization signal sent by the synchronization reference source.
  • the act of determining a synchronization reference includes determining a synchronization reference source and determining a sending timing of a secondary link signal to be sent according to a synchronization signal sent by the synchronization reference source.
  • the act of determining a synchronization reference includes determining a synchronization reference source and determining a timing of a time slot according to a synchronization signal sent by the synchronization reference source.
  • the act of determining a synchronization reference includes determining a synchronization reference source and determining frame timing according to a synchronization signal sent by the synchronization reference source.
  • Embodiment 8 illustrates a schematic diagram of a protocol stack for relay communication according to an embodiment of the present application, as shown in FIG. 8 .
  • Accompanying drawing 8 includes (a) and (b) two kinds of embodiment modes.
  • the first protocol layer is terminated by the relay node and the gNB node.
  • the first protocol layer is respectively terminated at the UE and the relay node, and the relay node and the gNB node.
  • the UE in Figure 8 corresponds to the first node in this application
  • the relay in Figure 8 corresponds to the second node in this application
  • the gNB in Figure 8 corresponds to the Producer of the first message.
  • Embodiment 8 is based on Embodiment 3, showing the protocol stack and interface related to the relay node; in Embodiment 8, NAS is the non-access stratum, and Uu-RRC is the RRC protocol of the Uu interface , Uu-PDCP is the PDCP layer of the Uu interface; Uu-RLC is the RLC layer of the Uu interface, Uu-MAC is the MAC layer of the Uu interface, Uu-PHY is the physical layer of the Uu interface; PC5-RLC is the RLC layer of the PC5 interface ; PC5-MAC is the MAC layer of the PC5 interface; PC5-PHY is the physical layer of the PC5 interface; N2Stack is the protocol stack of the N2 interface, and the N2 interface is the interface between the gNB and the core network; the Uu first protocol layer is the Uu interface The first protocol layer; PC5-The first protocol layer is the first protocol layer of the PC5 interface.
  • the communication interface between the UE and the gNB in FIG. 8 is a Uu interface.
  • the communication interface between the relay and the gNB in FIG. 8 is a Uu interface.
  • the communication interface between the UE and the relay in FIG. 8 is a PC5 interface.
  • the first protocol layer is an adaptation layer.
  • the first protocol layer is a protocol layer between the PDCP layer and the RLC layer.
  • the first protocol layer is used to multiplex data of multiple radio bearers on the same Uu-RLC bearer/entity.
  • the first protocol layer is used to multiplex the data of multiple radio bearers on the same Uu-RLC bearer/entity through the corresponding PC5-RLC bearer/entity.
  • the first protocol layer is used to associate one or more PC5-RLC entities with one Uu-RLC entity.
  • the first protocol layer of PC5 in FIG. 8 is the adaptation layer of the PC5 interface.
  • the Uu first protocol layer in FIG. 8 is the adaptation layer of the Uu interface.
  • the UE and the relay in FIG. 8 select the implementation mode (a) or (b) according to the network configuration.
  • the UE and the relay in FIG. 8 select implementation mode (a) or (b) through signaling negotiation.
  • the first signal is a signal between the UE and the relay, and is generated at the PC5-PHY or PC5-MAC or PC5-RLC or PC5-first protocol layer.
  • the second signal is a signal between the relay and the gNB, and is generated at a Uu-PHY or Uu-MAC or Uu-RLC or Uu-first protocol layer.
  • the first message is generated by the gNB, and the first message is a Uu-RRC message.
  • the second message is generated by the gNB, and the first message is a Uu-RRC message.
  • the first message is transparently transmitted on the relay.
  • the first message is transmitted to the UE through the relayed PC5-RRC message.
  • the UE shown in FIG. 8 is a U2N remote UE.
  • the relay in FIG. 8 is a U2N relay UE.
  • Embodiment 9 illustrates a schematic diagram in which the receiving timing of the first synchronization signal is used to determine the sending timing of the second synchronization signal according to an embodiment of the present application, as shown in FIG. 9 .
  • the sending moment of the second synchronization signal is equal to the receiving moment of the first synchronization signal.
  • the sending moment of the second synchronization signal is equal to the sum of the receiving moment of the first synchronization signal and a first time offset, where the first time offset is a non-zero real number.
  • the first time offset is fixed.
  • the first time offset is specified by the system.
  • the first time offset is indicated by the first message.
  • the first message or SidelinkPreconfigNR indicates the i-th transmission timing information and the j-th transmission timing information
  • the transmission timing of the first synchronization signal is determined by the i-th transmission timing information
  • the j-th transmission timing The information is determined as the transmission timing of the second synchronization signal, i and j are different.
  • the i-th sending timing information is sl-SSB-TimeAllocation1; the j-th sending timing information is sl-SSB-TimeAllocation2.
  • the i-th sending timing information is sl-SSB-TimeAllocation2; the j-th sending timing information is sl-SSB-TimeAllocation1.
  • the receiving time of the first synchronization signal is used to determine whether the sending timing of the first synchronization signal is based on the i-th sending timing information or the j-th sending timing information.
  • the receiving timing of the first synchronization signal is the start time of the time slot where the first synchronization signal is located.
  • the receiving timing of the first synchronization signal is the start moment of the radio frame where the first synchronization signal is located.
  • the sending timing of the second synchronization signal is the start time of the time slot where the second synchronization signal is located.
  • the sending timing of the second synchronization signal is the start moment of the radio frame where the second synchronization signal is located.
  • the receiving timing of the first synchronization signal determines the wireless frame where the first synchronization signal is located; the second synchronization signal and the first synchronization signal are sent in the same wireless frame.
  • the receiving timing of the first synchronization signal determines the time slot where the first synchronization signal is located; the second synchronization signal is sent in the same time slot as the first synchronization signal.
  • the receiving timing of the first synchronization signal determines the wireless frame where the first synchronization signal is located; the second synchronization signal is sent in a different wireless frame from the first synchronization signal.
  • the receiving timing of the first synchronization signal determines the time slot in which the first synchronization signal is located; the second synchronization signal and the first synchronization signal are sent in different time slots.
  • the reception of the first synchronization signal is used to determine a timing reference radio frame i
  • the timing reference radio frame i is used to determine the start moment of the secondary link radio frame i where the second synchronization signal is located
  • the sending timing of the second synchronization signal is the start moment of the secondary link radio frame i where the second synchronization signal is located.
  • the receiving timing of the first synchronization signal is the start moment of the radio frame where the first synchronization signal is located.
  • the radio frame where the first synchronization signal is located is the timing reference radio frame i.
  • Embodiment 10 illustrates a schematic diagram in which the first secondary link master information block and the first identity are used to determine the sequence for generating the second synchronization signal according to an embodiment of the present application, as shown in FIG. 10 .
  • the first identity is a secondary link synchronization signal identity.
  • the first secondary link master information block indicates that within coverage, the first identity is determined to be a secondary link synchronization signal identity of a sequence generating the second synchronization signal.
  • the first secondary link master information block does not indicate that it is within coverage, and the first identity belongs to a set of secondary link synchronization signal identities that are out of coverage, and the first identity is determined to generate the Secondary link sync signal identity for the sequence of second sync signals.
  • the out-of-coverage secondary link synchronization signal identity set is the set identified by the i_oon.
  • the secondary link synchronization signal identities included in the out-of-coverage secondary link synchronization signal identity set are integers ranging from 336 to 671.
  • the first secondary link master information block does not indicate that it is within the coverage, and the first identity does not belong to the secondary link synchronization signal identity set outside the coverage, and the first synchronization signal uses the In the time slot indicated by the second sending timing information, the secondary link synchronization signal identity of the sequence generating the second synchronization signal is 337 .
  • the out-of-coverage secondary link synchronization signal identity set is the set identified by the i_oon.
  • the secondary link synchronization signal identities included in the out-of-coverage secondary link synchronization signal identity set are integers ranging from 336 to 671.
  • the first message indicates the second sending timing information.
  • SidelinkPreconfigNR indicates the second sending timing information.
  • the second sending timing information is sl-SSB-TimeAllocation3.
  • the first secondary link master information block does not indicate that it is within the coverage, and the first identity does not belong to the secondary link synchronization signal identity set outside the coverage, and the first synchronization signal uses the For time slots indicated by timing information other than the second sending timing information, the secondary link synchronization signal identity of the sequence generating the second synchronization signal is the sum of the first identity and 336 .
  • the out-of-coverage secondary link synchronization signal identity set is the set identified by the i_oon.
  • the secondary link synchronization signal identities included in the out-of-coverage secondary link synchronization signal identity set are integers ranging from 336 to 671.
  • the first message indicates the second sending timing information.
  • SidelinkPreconfigNR indicates the second sending timing information.
  • the second sending timing information is sl-SSB-TimeAllocation3.
  • Embodiment 11 illustrates a schematic diagram in which the first message is used to indicate the sending timing information of the second synchronization signal according to an embodiment of the present application, as shown in FIG. 11 .
  • the first message includes sl-SSB-TimeAllocation1, and the sl-SSB-TimeAllocation1 indicates sending timing information of the second synchronization signal.
  • the sl-SSB-TimeAllocation1 indicates the number of secondary link SSBs sent in one cycle.
  • the sl-SSB-TimeAllocation1 indicates the time slot offset from the beginning of the secondary link SSB period to the first secondary link SSB.
  • the sl-SSB-TimeAllocation1 indicates the time slot interval (interval) of multiple adjacent secondary link SSBs.
  • the secondary link SSB includes the second synchronization signal.
  • the first message includes sl-SSB-TimeAllocation2, and the sl-SSB-TimeAllocation2 indicates sending timing information of the second synchronization signal.
  • the sl-SSB-TimeAllocation2 indicates the number of secondary link SSBs sent in one cycle.
  • the sl-SSB-TimeAllocation2 indicates the time slot offset from the beginning of the secondary link SSB period to the first secondary link SSB.
  • the sl-SSB-TimeAllocation2 indicates the time slot interval (interval) of multiple adjacent secondary link SSBs.
  • the secondary link SSB includes the second synchronization signal.
  • the first message includes sl-SSB-TimeAllocation3, where the sl-SSB-TimeAllocation3 indicates sending timing information of the second synchronization signal.
  • the sl-SSB-TimeAllocation3 indicates the number of secondary link SSBs sent in one period.
  • the sl-SSB-TimeAllocation3 indicates the time slot offset from the beginning of the secondary link SSB cycle to the first secondary link SSB.
  • the sl-SSB-TimeAllocation3 indicates the time slot interval (interval) of multiple adjacent secondary link SSBs.
  • the secondary link SSB includes the second synchronization signal.
  • Embodiment 12 illustrates a schematic diagram in which the second transmission timing information is used to determine the secondary link synchronization signal identity of the second synchronization signal according to an embodiment of the present application, as shown in FIG. 12 .
  • the secondary link synchronization signal identity of the second synchronization signal is SLSSID.
  • the secondary link synchronization signal identity of the second synchronization signal is SLSS ID.
  • the secondary link synchronization signal identity of the second synchronization signal is
  • the secondary link synchronization signal identity of the second synchronization signal includes SLSSID.
  • the secondary link synchronization signal identity of the second synchronization signal includes an SLSS ID.
  • the secondary link synchronization signal identity of the second synchronization signal includes
  • the first node receives a first secondary link main information block, and the first secondary link main information block is sent along with the first synchronization signal.
  • the first node receives a first secondary link main information block, and the first secondary link main information block is the same as the sender of the first synchronization signal.
  • the identity of the secondary link synchronization signal corresponding to the first synchronization signal is the first identity.
  • the first secondary link master information block does not indicate that it is within the coverage, and the first identity does not belong to the secondary link synchronization signal identity set outside the coverage, and the first synchronization signal uses the In the time slot indicated by the second sending timing information, the secondary link synchronization signal identity of the second synchronization signal is 337 .
  • the out-of-coverage secondary link synchronization signal identity set is the set identified by the i_oon.
  • the secondary link synchronization signal identities included in the out-of-coverage secondary link synchronization signal identity set are integers ranging from 336 to 671.
  • the first message indicates the second sending timing information.
  • SidelinkPreconfigNR indicates the second sending timing information.
  • the second sending timing information is sl-SSB-TimeAllocation3.
  • the first secondary link master information block does not indicate that it is within the coverage, and the first identity does not belong to the secondary link synchronization signal identity set outside the coverage, and the first synchronization signal uses the For the time slot indicated by the timing information other than the second sending timing information, the secondary link synchronization signal identity of the second synchronization signal is the sum of the value of the first identity and 336 .
  • the out-of-coverage secondary link synchronization signal identity set is the set identified by the i_oon.
  • the secondary link synchronization signal identities included in the out-of-coverage secondary link synchronization signal identity set are integers ranging from 336 to 671.
  • the first message indicates the second sending timing information.
  • SidelinkPreconfigNR indicates the second sending timing information.
  • the second sending timing information is sl-SSB-TimeAllocation3.
  • Embodiment 13 illustrates a schematic diagram in which whether the first message includes the second transmission timing information is used to determine whether the second secondary link master information block indicates that it is within coverage according to an embodiment of the present application, as shown in FIG. 13 .
  • the first message includes the second sending timing information, and the second secondary link main information block does not indicate that it is within coverage; the first message does not include the second sending timing information, The second secondary link master information block indicates that it is within coverage.
  • the inCoverage field of the second secondary link main information block indicates that it is within coverage.
  • the inCoverage field of the second secondary link main information block is false, it does not indicate that it is within coverage.
  • the second sending timing information is sl-SSB-TimeAllocation3.
  • the first message includes SIB12.
  • the first message includes the forwarded SIB12.
  • the first message includes RRCReconfiguration.
  • the first message is transmitted through a direct path.
  • the first message is not transmitted through a direct path.
  • the first message includes the second sending timing information, and the second secondary link master information block indicates that it is within coverage; the first message does not include the second sending timing information, so The above-mentioned second secondary link main information block does not indicate that it is within coverage.
  • the inCoverage field of the second secondary link main information block indicates that it is within coverage.
  • the inCoverage field of the second secondary link main information block is false, it does not indicate that it is within coverage.
  • the second sending timing information is sl-SSB-TimeAllocation3.
  • the first message includes SIB12.
  • the first message includes the forwarded SIB12.
  • the first message includes RRCReconfiguration.
  • the first message is transmitted through a direct path.
  • the first message is not transmitted through a direct path.
  • the advantage of the above method is that determining whether the second secondary link master information block indicates that it is within coverage according to whether the second transmission timing information is included is beneficial to increase flexibility.
  • Embodiment 14 illustrates a structural block diagram of a processing device used in a first node according to an embodiment of the present application; as shown in FIG. 14 .
  • the processing device 1400 in the first node includes a first receiver 1401 and a first transmitter 1402 .
  • Example 14
  • the first receiver 1401 receives a first signal, the first signal includes a first message; determines a synchronization reference according to at least whether the first message is transmitted through a direct path; the first message is used to indicate the first secondary link a frequency list, the first secondary link frequency list including first frequencies for secondary link communications; receiving a first synchronization signal from the determined synchronization reference;
  • the first transmitter 1402 is to send a second synchronization signal; the receiving timing of the first synchronization signal is used to determine the sending timing of the second synchronization signal.
  • the first receiver 1401 performs a cell search to determine that it is within the coverage of at least the first cell;
  • the first message is not transmitted through a direct path
  • the synchronization priority indicated by the first message is a base station
  • the determined synchronization reference is a synchronization reference UE.
  • the first receiver 1401 receives a first secondary link main information block, and the first secondary link main information block indicates whether it is within coverage; the synchronization signal corresponding to the first synchronization signal The identity is a first identity; the first secondary link master information block and the first identity are used to determine a sequence for generating the second synchronization signal;
  • the first message is used to indicate sending timing information of the second synchronization signal, and the sending timing of the second synchronization signal is different from the sending timing of the first synchronization signal.
  • the first receiver 1401 fails to detect a cell on the first frequency; the first message is not transmitted through a direct path; the sender of the first synchronization signal is determined as a synchronization reference; The determined synchronization reference is a synchronization reference UE; the synchronization priority indicated by the first message is a base station;
  • the first message includes first sending timing information and second sending timing information; the first sending timing information is used to indicate sending timing information of the second synchronization signal; the second sending timing information is Used to determine the secondary link synchronization signal identity of the second synchronization signal; the second sending timing information is related to GNSS.
  • the first receiver 1401 performs a cell search to determine that it is not within the coverage of the first cell but within the coverage of the second cell; the first cell is the generator of the first message; the The first cell is the PCell or the serving cell of the first node 1400; the second cell is a cell other than the PCell or the serving cell of the first node 1400; both the first cell and the second cell at said first frequency; said first frequency is a primary frequency;
  • the first message is not transmitted through a direct path
  • the synchronization priority indicated by the first message is the base station
  • the determined synchronization reference is the second cell.
  • the first receiver 1401 performs a cell search to determine that it is within the coverage of the first frequency; the first frequency is a frequency other than the main frequency or the secondary frequency;
  • the first message is not transmitted through a direct path, and the determined synchronization reference is the first frequency.
  • the first transmitter 1402 sends the second secondary link main information block; the second secondary link main information block is sent along with the second synchronization signal; whether the first message is sent directly path transmission is used to determine whether the second secondary link master information block indicates coverage of the inner;
  • whether the first message is transmitted through the direct path is used to determine whether the second secondary link master information block indicates that the coverage includes:
  • the second secondary link master information block does not indicate within coverage; when the first node 1400 The first frequency is within coverage, and the first message is transmitted through a direct path, and the second secondary link master information block indicates that it is within coverage.
  • the first transmitter 1402 sends a second secondary link main information block; the second secondary link main information block is sent along with the second synchronization signal;
  • GNSS is determined as a synchronization reference; the first message includes second sending timing information; the second sending timing information is used to indicate sending timing information of the second synchronization signal; whether the first message includes The second transmission timing information is used to determine whether the second secondary link master information block indicates that it is within coverage.
  • the first node is a user equipment (UE).
  • UE user equipment
  • the first node is a terminal supporting a large delay difference.
  • the first node is a terminal supporting NTN.
  • the first node is an aircraft.
  • the first node is a vehicle-mounted terminal.
  • the first node is a relay.
  • the first node is a ship.
  • the first node is an Internet of Things terminal.
  • the first node is a terminal of the Industrial Internet of Things.
  • the first node is a device supporting low-latency high-reliability transmission.
  • the first node is a secondary link communication node.
  • the first receiver 1401 includes the antenna 452 in Embodiment 4, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, or the data source At least one of 467.
  • the first transmitter 1402 includes the antenna 452 in Embodiment 4, the transmitter 454, the transmission processor 468, the multi-antenna transmission processor 457, the controller/processor 459, the memory 460, or the data source At least one of 467.
  • Embodiment 15 illustrates a structural block diagram of a processing device used in a second node according to an embodiment of the present application; as shown in FIG. 15 .
  • the processing device 1500 in the second node includes a second transmitter 1502 and a second receiver 1501 .
  • Example 15
  • the second receiver 1501 receives a second signal, the second signal includes a first message; the first message is used to indicate a first secondary link frequency list, and the first secondary link frequency list includes a first frequency , the first frequency is used for secondary link communication;
  • the second transmitter 1502 transmits a first signal and a first synchronization signal, the first signal includes the first message; the receiver of the first signal is determined according to at least whether the first message is transmitted through a direct path sync reference;
  • the receiver of the first signal sends a second synchronization signal; the receiving timing of the first synchronization signal is used to determine the sending timing of the second synchronization signal.
  • the second transmitter 1502 transmits a first secondary link main information block, and the first secondary link main information block indicates whether it is within coverage; the synchronization signal corresponding to the first synchronization signal
  • the identity is a first identity; the first secondary link master information block and the first identity are used to determine a sequence for generating the second synchronization signal;
  • the first message is used to indicate sending timing information of the second synchronization signal, and the sending timing of the second synchronization signal is different from the sending timing of the first synchronization signal.
  • the second receiver 1501 receives the second synchronization signal and the second secondary link main information block, and the second node 1500 sends the second synchronization signal and the second secondary link main information block
  • the sender of the information block provides a relay service; when the first set of conditions is met, the sender of the second synchronization signal and the second secondary link main information block is not determined as a synchronization reference; the first The synchronization priority order indicated by the message is the base station.
  • the second node is a satellite.
  • the second node is UE (User Equipment).
  • the second node is an IoT node.
  • the second node is a wearable node.
  • the second node is a relay.
  • the second node is an access point.
  • the second node is a secondary link communication node.
  • the second transmitter 1502 includes at least one of the antenna 420 in Embodiment 4, the transmitter 418, the transmission processor 416, the multi-antenna transmission processor 471, the controller/processor 475, and the memory 476 one.
  • the second receiver 1501 includes at least one of the antenna 420 in Embodiment 4, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, and the memory 476 one.
  • the user equipment, terminal and UE in this application include but are not limited to drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, vehicle communication equipment, wireless sensors, network cards, Internet of things terminal, RFID terminal, NB-IoT terminal, MTC (Machine Type Communication, machine type communication) terminal, eMTC (enhanced MTC, enhanced MTC) terminal, data card, network card, vehicle communication equipment, low-cost mobile phone, low-cost Cost Tablet PC, satellite communication equipment, ship communication equipment, NTN user equipment and other wireless communication equipment.
  • MTC Machine Type Communication, machine type communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes but not limited to macrocell base station, microcell base station, home base station, relay base station, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point, sending and receiving node), NTN base station , satellite equipment, flight platform equipment and other wireless communication equipment.
  • gNB NR Node B
  • TRP Transmitter Receiver Point

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种被用于无线通信的方法和设备,包括接收第一信号,第一信号包括第一消息;根据至少第一消息是否通过直接路径传输确定同步参考;第一消息用于指示第一副链路频率列表,第一副链路频率列表包括第一频率,第一频率用于副链路通信;接收来自被确定的同步参考的第一同步信号;发送第二同步信号;第一同步信号的接收定时被用于确定第二同步信号的发送定时。通过接收第一消息和第一同步信号,可以正确的确定同步参考。

Description

一种被用于无线通信的方法和设备 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中减少业务中断,提高业务连续性,增强可靠性,以及安全等方面的方法和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或Fifth Generation,5G)进行研究,在3GPP RAN#75次全会上通过了NR的WI(Work Item,工作项目),开始对NR进行标准化工作。
在通信中,无论是LTE(Long Term Evolution,长期演进)还是5G NR都会涉及到可靠的信息的准确接收,优化的能效比,信息有效性的确定,灵活的资源分配,可伸缩的系统结构,高效的非接入层信息处理,较低的业务中断和掉线率,对低功耗支持,这对基站和用户设备的正常通信,对资源的合理调度,对系统负载的均衡都有重要的意义,可以说是高吞吐率,满足各种业务的通信需求,提高频谱利用率,提高服务质量的基石,无论是eMBB(ehanced Mobile BroadBand,增强的移动宽带),URLLC(Ultra Reliable Low Latency Communication,超高可靠低时延通信)还是eMTC(enhanced Machine Type Communication,增强的机器类型通信)都不可或缺的。同时在IIoT(Industrial Internet of Things,工业领域的物联网中,在V2X(Vehicular to X,车载通信)中,在设备与设备之间通信(Device to Device),在非授权频谱的通信中,在用户通信质量监测,在网络规划优化,在NTN(Non Territerial Network,非地面网络通信)中,在TN(Territerial Network,地面网络通信)中,在双连接(Dual connectivity)系统中,在无线资源管理以及多天线的码本选择中,在信令设计,邻区管理,业务管理,在波束赋形中都存在广泛的需求,信息的发送方式分为广播和单播,两种发送方式都是5G系统必不可少的,因为它们对满足以上需求十分有帮助。UE与网络连接的方式可以是直接连接也可以通过中继连接。
随着系统的场景和复杂性的不断增加,对降低中断率,降低时延,增强可靠性,增强系统的稳定性,对业务的灵活性,对功率的节省也提出了更高的要求,同时在系统设计的时候还需要考虑不同系统不同版本之间的兼容性。
3GPP标准化组织针对5G做了相关标准化工作,形成了包括38.304,38.211,38.213等一系列标准,标准内容可参考:
https://www.3gpp.org/ftp/Specs/archive/38_series/38.304/38304-g40.zip
https://www.3gpp.org/ftp/Specs/archive/38_series/38.211/38211-g50.zip
https://www.3gpp.org/ftp/Specs/archive/38_series/38.213/38213-g50.zip
发明内容
在多种通信场景中,会涉及中继的使用,例如当一个UE不在小区的覆盖区域内时,可以通过中继接入网络,中继节点可以是另外一个UE。中继主要包括层3中继和层2中继,都是通过中继节点为远端节点(remote UE)提供网络接入服务,其中层3中继对接入网是透明的,即远端UE只与核心网建立连接,接入网无法识别数据是来自远端节点还是中继节点的;而层2中继中,远端节点和接入网具有RRC连接,接入网可以管理远端节点,接入网和远端节点之间可以建立无线承载。远端节点可以通过中继节点的转发而接收来自网络的广播消息和单播消息。这些消息可以被用于确定同步参考。同步参考是副链路通信必须的功能,可以让通信的双方做到相对同步,获得定时信息有助于信号的接收,避免进行盲检测。因此每个进行副链路通信的UE都需要执行确定同步参考的过程。同步参考的确定和同步信号的发送有着密切的关系。至少有两个节点才涉及同步的概念,因此除了同步信号的接收一般还会涉及同步信号的发送。这是相辅相成的两个方面。同步参考的确定涉及多方面的因素,包括网络指示的同步优先顺序,是否在覆盖内,同步参考的类型等等。在支持中继的副链路通信中,会出现新的问题,即消息不是直接从网络接收,而是通过 中继转发的,这意味着远端节点和网络并没有直接的联系,在某些情况下可能会导致,远端节点错误的将生成这些消息的小区,设置为同步参考,从而造成同步方面的问题,进而影响副链路通信,甚至会造成失步而导致通信的失败。
以上所述问题,本申请提供了一种解决方案。
需要说明的是,在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,包括:
接收第一信号,所述第一信号包括第一消息;根据至少所述第一消息是否通过直接路径传输确定同步参考;所述第一消息用于指示第一副链路频率列表,所述第一副链路频率列表包括第一频率,所述第一频率用于副链路通信;接收来自被确定的所述同步参考的第一同步信号;
发送第二同步信号;针对所述第一同步信号的接收定时被用于确定所述第二同步信号的发送定时。
作为一个实施例,本申请要解决的问题包括:在涉及中继的场景中,进行副链路通信的节点,尤其是远端节点,如何确定同步参考。
作为一个实施例,上述方法的好处包括:本申请所提出的方法在确定同步参考时,考虑到了接收的特定消息的传输方式,即是否是通过直接路径传输的,从而针对不同的情况,采取不同的方式;尤其是,当接收的消息不是通过直接路径传输时,可以有效的避免无效的或不佳的节点被确定为同步参考。从而提高了可靠性,保证了副链路通信的正常。
具体的,根据本申请的一个方面,执行小区搜索以确定处于至少第一小区覆盖内;
其中,所述第一消息不通过直接路径传输,所述第一消息指示的同步优先顺序是基站,所述被确定的所述同步参考是一个同步参考UE。
具体的,根据本申请的一个方面,接收第一副链路主信息块,所述第一副链路主信息块指示是否在覆盖内;所述第一同步信号所对应的同步信号身份是第一身份;所述第一副链路主信息块和所述第一身份被用于确定生成所述第二同步信号的序列;
其中,所述第一消息被用于指示所述第二同步信号的发送定时信息,且所述第二同步信号的发送定时与所述第一同步信号的发送定时不同。
具体的,根据本申请的一个方面,未能在第一频率上检测到小区;所述第一消息不通过直接路径传输;所述第一同步信号的发送者被确定为同步参考;所述被确定的所述同步参考是一个同步参考UE;所述第一消息指示的同步优先顺序是基站;
其中,所述第一消息包括第一发送定时信息和第二发送定时信息;所述第一发送定时信息被用于指示所述第二同步信号的发送定时信息;所述第二发送定时信息被用于确定所述第二同步信号的副链路同步信号身份;所述第二发送定时信息与GNSS有关。
具体的,根据本申请的一个方面,执行小区搜索以确定不处于第一小区覆盖内,处于第二小区的覆盖内;所述第一小区是所述第一消息的生成者;所述第一小区是所述第一节点的PCell或服务小区;所述第二小区是所述第一节点的PCell或服务小区以外的小区;所述第一小区和所述第二小区都在所述第一频率上;所述第一频率是主频率;
其中,所述第一消息不通过直接路径传输,所述第一消息指示的同步优先顺序是基站,所述被确定的所述同步参考是所述第二小区。
具体的,根据本申请的一个方面,执行小区搜索以确定在所述第一频率的覆盖内;所述第一频率是主频率或从频率以外的频率;
其中,所述第一消息不通过直接路径传输,所述被确定的所述同步参考是所述第一频率。
具体的,根据本申请的一个方面,发送第二副链路主信息块;所述第二副链路主信息块伴随所述第二同步信号发送;所述第一消息是否通过直接路径传输被用于确定所述第二副链路主信息块是否指示覆盖所述内;
其中,所述第一消息是否通过直接路径传输被用于确定所述第二副链路主信息块是否指示覆盖内包括:
当所述第一节点在所述第一频率处于覆盖内且所述第一消息不通过直接路径传输,所述第二副链路主 信息块不指示在覆盖内;当所述第一节点在所述第一频率处于覆盖内,且所述第一消息通过直接路径传输,所述第二副链路主信息块指示在覆盖内。
具体的,根据本申请的一个方面,发送第二副链路主信息块;所述第二副链路主信息块伴随所述第二同步信号发送;
其中,GNSS被确定为同步参考;所述第一消息包括第二发送定时信息;所述第二发送定时信息被用于指示所述第二同步信号的发送定时信息;所述第一消息是否包括所述第二发送定时信息被用于确定所述第二副链路主信息块是否指示在覆盖内。
具体的,根据本申请的一个方面,所述第一节点是用户设备。
具体的,根据本申请的一个方面,所述第一节点是物联网终端。
具体的,根据本申请的一个方面,所述第一节点是中继。
具体的,根据本申请的一个方面,所述第一节点是车载终端。
具体的,根据本申请的一个方面,所述第一节点是飞行器。
一种被用于无线通信的第二节点中的方法,其中,包括:
接收第二信号,所述第二信号包括第一消息;所述第一消息用于指示第一副链路频率列表,所述第一副链路频率列表包括第一频率,所述第一频率用于副链路通信;
发送第一信号和第一同步信号,所述第一信号包括所述第一消息;所述第一信号的接收者,根据至少所述第一消息是否通过直接路径传输确定同步参考;
所述第一信号的接收者,发送第二同步信号;所述第一同步信号的接收定时被用于确定所述第二同步信号的发送定时。
具体的,根据本申请的一个方面,发送第一副链路主信息块,所述第一副链路主信息块指示是否在覆盖内;所述第一同步信号所对应的同步信号身份是第一身份;所述第一副链路主信息块和所述第一身份被用于确定生成所述第二同步信号的序列;
其中,所述第一消息被用于指示所述第二同步信号的发送定时信息,且所述第二同步信号的发送定时与所述第一同步信号的发送定时不同。
具体的,根据本申请的一个方面,接收第二同步信号和第二副链路主信息块,所述第二节点向所述第二同步信号和所述第二副链路主信息块的发送者提供中继服务;当第一条件集合被满足时,所述第二同步信号和所述第二副链路主信息块的发送者不被确定为同步参考;所述第一消息指示的同步优先顺序是基站。
具体的,根据本申请的一个方面,所述第二节点是用户设备。
具体的,根据本申请的一个方面,所述第二节点是物联网终端。
具体的,根据本申请的一个方面,所述第二节点是中继。
具体的,根据本申请的一个方面,所述第二节点是车载终端。
具体的,根据本申请的一个方面,所述第二节点是飞行器。
本申请公开了一种被用于无线通信的第一节点,包括:
第一接收机,接收第一信号,所述第一信号包括第一消息;根据至少所述第一消息是否通过直接路径传输确定同步参考;所述第一消息用于指示第一副链路频率列表,所述第一副链路频率列表包括第一频率,所述第一频率用于副链路通信;接收来自被确定的所述同步参考的第一同步信号;
第一发射机,发送第二同步信号;针对所述第一同步信号的接收定时被用于确定所述第二同步信号的发送定时。
本申请公开了一种被用于无线通信的第二节点,包括:
第二接收机,接收第二信号,所述第二信号包括第一消息;所述第一消息用于指示第一副链路频率列表,所述第一副链路频率列表包括第一频率,所述第一频率用于副链路通信;
第二发射机,发送第一信号和第一同步信号,所述第一信号包括所述第一消息;所述第一信号的接收者,根据至少所述第一消息是否通过直接路径传输确定同步参考;
所述第一信号的接收者,发送第二同步信号;所述第一同步信号的接收定时被用于确定所述第二同步信号的发送定时。
作为一个实施例,和传统方案相比,本申请具备如下优势:
避免以不是通过直接路径传输的方式而接收到了网络的系统消息或配置消息而错误的将这些消息的生成者确定为同步参考。
在存在中继的副链路通信场景中,可以高效的确定最佳或较佳的同步参考,保证了通信的正常进行。
在可选的同步参考包括UE,GNSS,或副链路通信所关心的频率等各种场景中,都有助于选择恰当的同步参考,排除了那些无效的同步参考源。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的接收第一同步信号,接收第一信号,发送第二同步信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的传输的流程图;
图6示出了根据本申请的一个实施例的副链路同步信号块的示意图;
图7示出了根据本申请的一个实施例的发送定时的示意图;
图8示出了根据本申请的一个实施例的中继通信的协议栈的示意图;
图9示出了根据本申请的一个实施例的针对第一同步信号的接收定时被用于确定第二同步信号的发送定时的示意图;
图10示出了根据本申请的一个实施例的第一副链路主信息块和第一身份被用于确定生成第二同步信号的序列的示意图;
图11示出了根据本申请的一个实施例的第一消息被用于指示第二同步信号的发送定时信息的示意图;
图12示出了根据本申请的一个实施例的第二发送定时信息被用于确定第二同步信号的副链路同步信号身份的示意图;
图13示出了根据本申请的一个实施例的第一消息是否包括第二发送定时信息被用于确定第二副链路主信息块是否指示在覆盖内的示意图;
图14示例了根据本申请的一个实施例的用于第一节点中的处理装置的示意图;
图15示例了根据本申请的一个实施例的用于第二节点中的处理装置的示意图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的接收第一同步信号,接收第一信号,发送第二同步信号的流程图,如附图1所示。附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序并不代表所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的第一节点在步骤101中接收第一同步信号;在步骤102中接收第一信号;在步骤103中发送第二同步信号;
其中,所述第一信号包括第一消息;根据至少所述第一消息是否通过直接路径传输确定同步参考;所述第一消息用于指示第一副链路频率列表,所述第一副链路频率列表包括第一频率,所述第一频率用于副链路通信;针对所述第一同步信号的接收定时被用于确定所述第二同步信号的发送定时。
作为一个实施例,所述第一节点是UE(User Equipment,用户设备)。
作为一个实施例,直接路径(direct path)指的是一种UE到网络的传输路径,通过所述直接路径传输意味着数据在UE到网络(U2N)的远端(remote)UE和网络之间发送不通过中继。
作为该实施例的一个子实施例,所述数据包括更高层的数据和信令。
作为该实施例的一个子实施例,所述数据包括比特串或比特块。
作为一个实施例,非直接路径(indirect path)指的是一种UE到网络的传输路径,通过所述非直接路径传输意味着数据在UE到网络(U2N,UE-to-Network)的远端UE和网络之间经过UE到网络(U2N,UE-to-Network)的中继UE的转发。
作为该实施例的一个子实施例,所述数据包括更高层的数据和信令。
作为该实施例的一个子实施例,所述数据包括比特串或比特块。
作为一个实施例,U2N中继UE指的是提供支持U2N远端UE到网络的连接的功能的UE。
作为一个实施例,U2N远端UE指的是与网络通信需要经过U2N中继UE的UE。
作为一个实施例,U2N远端UE指的是与网络通信需要经过U2N中继UE的UE。
作为一个实施例,U2N远端UE指的是支持中继业务的与网络进行通信的UE。
作为一个实施例,U2N中继是U2N中继UE。
作为一个实施例,在与网络进行单播业务收发时,U2N中继和U2N远端节点都处于RRC连接态。
作为一个实施例,U2N远端UE处于RRC空闲态或RRC非活跃态时,U2N中继UE可以处于任何RRC状态,包括RRC连接态,RRC空闲态和RRC非活跃态。
作为一个实施例,不通过直接路径传输等于通过非直接路径传输。
作为一个实施例,不通过直接路径传输包括通过中继传输。
作为一个实施例,通过直接路径传输包括不通过中继传输。
作为一个实施例,通过直接路径传输包括不通过中继转发。
作为一个实施例,U2N中继UE是为U2N远端UE提供到网络的连接(connectivity)支持的功能(functionality)的UE。
作为该实施例的一个子实施例,U2N中继UE是UE。
作为该实施例的一个子实施例,U2N中继UE为U2N远端UE提供到网络的中继服务。
作为一个实施例,U2N远端UE是通过U2N中继UE与网络通信的UE。
作为一个实施例,具有NR副链路通信和SLSS/PSBCH发送能力的UE,当发送NR副链路通信时,如果NR链路通信操作的条件被满足且第一发送条件集合中的任一条件被满足时,应该在NR副链路通信的频率上发送副链路SSB(Synchronization Signal Block,同步信号块),包括发送SLSS(Sidelink synchronization Signal,副链路同步信号)和发送副链路主信息块(MasterInformationBlockSidelink)。
作为该实施例的一个子实施例,所述第一发送条件集合包括第一发送条件,所述第一发送条件是:在NR副链路通信的频率的覆盖内且选择了GNSS(Global Navigation Satellite Systems,全球导航卫星系统)或小区作为同步参考。
作为该实施例的一个子实施例,所述第一发送条件集合包括第二发送条件,所述第二发送条件是:在NR副链路通信的频率的覆盖外且用于发送NR副链路通信的频率被RRCReconfiguration消息或被SIB12包括且选择了GNSS或小区作为同步参考且处于RRC连接态且networkControlledSyncTx被配置为on。
作为该实施例的一个子实施例,所述第一发送条件集合包括第三发送条件,所述第三发送条件是:在NR副链路通信的频率的覆盖外且用于发送NR副链路通信的频率被RRCReconfiguration消息或被SIB12包括且选择了GNSS或小区作为同步参考且networkControlledSyncTx未被配置,且syncTxThreshIC被配置,且NR副链路通信的参考小区的RSRP((Reference Signal Receiving Power,参考信号接收功率)测量低于所述syncTxThreshIC。
作为该实施例的一个子实施例,所述第一发送条件集合包括第四发送条件,所述第四发送条件是:所述第一发送条件不被满足且所述第二发送条件不被满足且所述第三发送条件不被满足,针对NR副链路通信的频率,syncTxThreshOoC被配置,没有直接同步到GNSS,没有选择同步参考UE或所选择的同步参考UE的PSBCH-RSRP测量结果低于所述syncTxThreshOoC。
作为该实施例的一个子实施例,所述第一发送条件集合包括第五发送条件,所述第五发送条件是:所述第一发送条件不被满足且所述第二发送条件不被满足且所述第三发送条件不被满足,针对NR副链路通信的频率,选择GNSS作为同步参考源。
作为该实施例的一个子实施例,所述第一发送条件集合包括:与网络通信的传输方式由非直接路径传输改为直接路径传输。
作为该实施例的一个子实施例,所述第一发送条件集合包括:与网络通信的传输方式由直接路径传输改为非直接路径传输。
作为该实施例的一个子实施例,所述第一发送条件集合包括:是U2N中继UE。
作为一个实施例,服务小区指的是UE驻留的小区。执行小区搜索包括,UE搜索所选择的PLMN(公共陆地移动网,Public Land Mobile Network)或SNPN(Stand-alone Non-Public Network,独立非公共网络)的一个合适的(suitable)小区,选择所述一个合适的小区提供可用的业务,监测所述一个合适的小区的控制信道,这一过程被定义为驻留在小区上;也就是说,一个被驻留的小区,相对于这个UE,是这个UE的服务小区。在RRC空闲态或RRC非活跃态驻留在一个小区上有如下好处:使得UE可以从PLMN或SNPN接收系统消息;当注册后,如果UE希望建立RRC连接或继续一个被挂起的RRC连接,UE可以通过在驻留小区的控制信道上执行初始接入来实现;网络可以寻呼到UE;使得UE可以接收ETWS(Earthquake and Tsunami Warning System,地震海啸预警系统)和CMAS(Commercial Mobile Alert System,商业移动报警系统)通知。
作为一个实施例,对于没有配置CA/DC(carrier aggregation/dual connectivity,载波聚合/双连接)的处于RRC连接态的UE,只有一个服务小区包括主小区。对于配置了CA/DC(carrier aggregation/dual connectivity,载波聚合/双连接)的处于RRC连接态的UE,服务小区用于指示包括特殊小区(SpCell,Special Cell)和所有从小区的小区集合。主小区(Primary Cell)是MCG(Master Cell Group)小区,工作在主频率上,UE在主小区上执行初始连接建立过程或发起连接重建。对于双连接操作,特殊小区指的是MCG的PCell(Primary Cell,主小区)或SCG(Secondary Cell Group)的PSCell(Primary SCG Cell,主SCG小区);如果不是双连接操作,特殊小区指的是PCell。
作为一个实施例,SCell(Secondary Cell,从小区)工作的频率是从频率。
作为一个实施例,信息元素的单独的内容被称为域。
作为一个实施例,MR-DC(Multi-Radio Dual Connectivity,多无线双连接)指的是E-UTRA和NR节点的双连接,或两个NR节点之间的双连接。
作为一个实施例,在MR-DC中,提供到核心网的控制面连接的无线接入节点是主节点,主节点可以是主eNB,主ng-eNB,或主gNB。
作为一个实施例,MCG指的是,在MR-DC中,与主节点相关联的一组服务小区,包括SpCell,还可以,可选的,包括一个或多个SCell。
作为一个实施例,PCell是MCG的SpCell。
作为一个实施例,PSCell是SCG的SpCell。
作为一个实施例,在MR-DC中,不提供到核心网的控制面连接,给UE提供额外资源的无线接入节点是从节点。从节点可以是en-gNB,从ng-eNB或从gNB。
作为一个实施例,在MR-DC中,与从节点相关联的一组服务小区是SCG(secondary cell group,从小区组),包括SpCell和,可选的,一个或多个SCell。
作为一个实施例,使能定义在3GPP标准TS 23.285中的V2X(Vehicle-to-Everything)通信的接入层功能被是V2X副链路通信(V2X sidelink communication),其中所述V2X副链路通信发生在临近的UE之间,且使用E-UTRA技术但并没有穿过(traversing)网络节点。
作为一个实施例,至少使能定义在3GPP标准TS 23.287中的V2X(Vehicle-to-Everything)通信的接入层功能是NR副链路通信(NR sidelink communication),其中所述NR副链路通信发生在临近的两个或多个UE之间,且使用NR技术但并没有穿过(traversing)网络节点。
作为一个实施例,不是或不在或不处于覆盖内等于覆盖外。
作为一个实施例,覆盖内等于覆盖之内。
作为一个实施例,覆盖外等于覆盖之外。
作为一个实施例,所述第一节点是U2N远端节点。
作为一个实施例,所述第一信号是物理层信号。
作为一个实施例,所述第一信号通过副链路传输。
作为一个实施例,所述第一信号使用副链路资源池中的资源发送。
作为一个实施例,所述第一信号的发送定时取决于SLSS信号。
作为一个实施例,所述第一信号的发送定时取决于SL-SSB信号。
作为一个实施例,所述第一信号的发送定时取决于同步参考。
作为一个实施例,所述第一信号所占用的物理信道包括PSSCH(physical sidelink shared channel,物理副链路共享信道)。
作为一个实施例,所述第一信号所占用的物理信道包括PSCCH(physical sidelink control channel,物理副链路控制信道)。
作为一个实施例,所述第一信号是下行信号。
作为一个实施例,所述第一信号不通过副链路传输。
作为一个实施例,所述第一信号所占用的物理信道包括PDSCH(physical downlink shared channel,物理下行共享信道)。
作为一个实施例,所述第一信号所占用的物理信道包括PSCCH(physical downlink control channel,物理下行控制信道)。
作为一个实施例,所述第一信号的发送定时取决于SSB。
作为一个实施例,所述第一信号的发送定时取决于下行同步信号。
作为一个实施例,所述第一信号与SSB相关联。
作为一个实施例,所述第一信号携带所述第一消息。
作为一个实施例,所述第一信号承载所述第一消息。
作为一个实施例,所述第一信号包括所述第一消息的所有域。
作为一个实施例,所述第一信号包括所述第一消息的至少一个域。
作为一个实施例,所述第一消息通过PC5-RRC的容器被转发给所述第一节点。
作为一个实施例,所述第一消息是RRC消息。
作为一个实施例,所述第一消息包括系统消息。
作为一个实施例,所述第一消息包括SIB(System Information Block,系统消息块)。
作为一个实施例,所述第一消息包括SIB12。
作为一个实施例,所述第一消息是SIB12。
作为一个实施例,所述第一消息包括SIB12的至少部分域。
作为一个实施例,所述第一消息包括或仅包括RRCReconfiguration。
作为一个实施例,所述第一消息包括或仅包括SIB12。
作为一个实施例,所述第一消息以广播的方式发送。
作为一个实施例,所述第一消息以单播的方式发送。
作为一个实施例,所述第一消息的生成者是小区。
作为一个实施例,所述第一消息的生成者是基站。
作为一个实施例,所述第一消息通过Uu接口传输。
作为一个实施例,所述第一副链路频率列表指示用于副链路通信的频率,所述第一副链路列表至少包括一个频率。
作为一个实施例,所述第一副链路频率列表是sl-FreqInfoToAddModList。
作为一个实施例,所述第一消息的sl-ConfigDedicatedNR域包括所述第一副链路频率列表。
作为一个实施例,所述第一消息的sl-ConfigCommonNR域包括所述第一副链路频率列表。
作为一个实施例,所述第一频率是有关的(concerned)频率。
作为一个实施例,所述第一频率是所述第一节点用于NR副链路通信的频率。
作为一个实施例,所述第一频率是所述第一节点打算或希望用于NR副链路通信的频率。
作为一个实施例,所述第一频率是所述第一节点正在用于NR副链路通信的频率。
作为一个实施例,所述第一频率是所述第一节点将要用于NR副链路通信的频率。
作为一个实施例,所述第一频率是所述第一节点确定的进行NR副链路通信时所使用的频率。
作为一个实施例,所述第一频率是所述第一节点进行副链路通信的频率。
作为一个实施例,所述第一同步信号是SLSS。
作为一个实施例,S-SS/PSBCH块是SSB。
作为一个实施例,S-SS/PSBCH块是SL-SSB。
作为一个实施例,所述S-SS是SLSS。
作为该实施例的一个子实施例,所述SLSS包括副链路主同步信号和副链路从同步信号。
作为一个实施例,所述SLSS包括副链路主同步信号和副链路从同步信号。
作为一个实施例,SL意为sidelink(副链路)。
作为一个实施例,一个UE通过接收如下副链路同步信号来执行基于S-SS/PSBCH块的同步过程:副链路主同步信号(S-PSS)和副链路从同步信号(S-SSS)。
作为一个实施例,在时域上,对正常的循环前缀,一个S-SS/PSBCH块占用13个OFDM符号;对扩展的循环前缀,一个S-SS/PSBCH块占用11个OFDM符号。
作为一个实施例,一个S-SS/PSBCH包括S-PSS,S-SSS和PSBCH。
作为以上实施例的一个子实施例,S-SS/PSBCH还包括与PSBCH相关联的DM-RS(解调参考信号)。
作为一个实施例,S-SS/PSBCH使用天线端口4000发送。
作为一个实施例,副链路同步信号有672个唯一的物理层副链路身份,由以下公式给出:
Figure PCTCN2022100952-appb-000001
其中,
Figure PCTCN2022100952-appb-000002
的取值范围是0到335的整数,
Figure PCTCN2022100952-appb-000003
的取值为0或1;所述672个唯一的物理层副链路身份通过预先定义的公式可以唯一的确定用于生成副链路主同步信号的序列和用于生成副链路从同步信号的序列。
作为一个实施例,所述672个唯一的物理层副链路身份分成两组,分别用id_net和id_oon标识,其中id_net包括
Figure PCTCN2022100952-appb-000004
的所述物理层副链路身份,id_oon包括
Figure PCTCN2022100952-appb-000005
的所述物理层副链路身份。
作为一个实施例,所述id_net组所包括的所述所述672个唯一的物理层副链路身份中的身份指示覆盖内。
作为一个实施例,所述id_oon组所包括的所述所述672个唯一的物理层副链路身份中的身份指示不在覆盖内。
作为一个实施例,PSBCH(physical sidelink broadcast channel,物理副链路广播信道)的解调参考信号的一个参数初始值是所述S-SS的身份,即
Figure PCTCN2022100952-appb-000006
所述S-SS的所述身份是所述672个唯一的物理层副链路身份中的一个。
作为一个实施例,用于生成所述副链路主同步信号的序列的长度是127。
作为一个实施例,用于生成所述副链路从同步信号的序列的长度是127。
作为一个实施例,所述672个唯一的物理层副链路身份中的任一身份被标识为SLSSID。
作为一个实施例,所述672个唯一的物理层副链路身份中的任一身份被标识为SLSS ID。
作为一个实施例,SLSSID是所述672个唯一的物理层副链路身份中的任一身份。
作为一个实施例,副链路同步信号与副链路同步信号身份具有一一对应的关系;一个副链路同步信号身份可以唯一的确定一个副链路同步信号;接收到一个副链路同步信号可以唯一的确定对应的副链路同步信号身份。
作为一个实施例,SLSSID是所述副链路同步信号身份。
作为一个实施例,所述672个唯一的物理层副链路身份中的任一身份是副链路同步信号身份。
作为一个实施例,所述第二同步信号是SLSS。
作为一个实施例,所述第二同步信号是副链路同步信号。
作为一个实施例,所述第一同步信号与所述第二同步信号通过相同的序列生成。
作为一个实施例,所述第一同步信号与所述第二同步信号通过不相同的序列生成。
作为一个实施例,所述第一同步信号所对应副链路同步信号身份与所述第二同步信号所对应副链路同步信号身份相同。
作为一个实施例,所述第一同步信号所对应副链路同步信号身份与所述第二同步信号所对应副链路同步信号身份不相同。
作为一个实施例,所述句子接收来自被确定的所述同步参考的第一同步信号的含义包括:所述行为确定同步参考在所述行为接收所述第一同步信号之前被执行。
作为一个实施例,所述句子接收来自被确定的所述同步参考的第一同步信号的含义包括:所述行为确定同步参考在所述行为接收所述第一同步信号之后被执行。
作为一个实施例,所述句子接收来自被确定的所述同步参考的第一同步信号的含义包括:所述行为确定同步参考与所述行为接收所述第一同步信号在时间上独立。
作为一个实施例,所述句子接收来自被确定的所述同步参考的第一同步信号的含义包括:所述行为确定同步参考与所述行为接收所述第一同步信号在时间上不存在伴随关系。
作为一个实施例,所述句子接收来自被确定的所述同步参考的第一同步信号的含义包括:所述第一节点先接收所述第一同步信号,再确定同步参考。
作为一个实施例,所述第一同步信号在所述第一频率上。
作为一个实施例,所述第二同步信号在所述第一频率上。
作为一个实施例,所述第一同步信号和所述第二同步信号处于相同的频率。
作为一个实施例,所述第一同步信号和所述第二同步信号处于不相同的频率。
作为一个实施例,所述第二同步信号被用于指示所述同步参考的类型。
作为以上实施例的一个子实施例,所述第二同步信号所对应的副链路同步信号身份等于0,指示同步参考的类型是GNSS。
作为以上实施例的一个子实施例,所述第二同步信号所对应的副链路同步信号身份不等于0,指示同步参考的类型不是GNSS。
作为一个实施例,所述第一同步信号所对应的副链路同步信号身份等于所述第一消息所指示的针对所述第一频率的不包括gnss-Sync的SL-SyncConfig域所指示的sl-SSID,指示同步参考为小区。
作为一个实施例,所述第一同步信号所对应的副链路同步信号身份等于337,指示同步参考为GNSS。
作为一个实施例,如果所述第一信号的发送者是所述第一消息的生成者,所述第一消息通过直接路径传输;如果所述第一信号的发送者不是所述第一消息的生成者,所述第一消息不通过直接路径传输。
作为一个实施例,所述第一同步信号所对应的副链路同步信号身份等于0。
作为一个实施例,所述第一同步信号来自于GNSS。
作为一个实施例,所述第一同步信号是GNSS信号。
作为一个实施例,所述第一同步信号是卫星信号。
作为一个实施例,所述第一同步信号来自卫星。
作为一个实施例,GNSS包括GPS,也包括北斗等基于卫星的定位系统。
作为一个实施例,所述第一节点处于RRC_CONNECTED状态。
作为一个实施例,所述第一节点处于RRC_IDLE状态。
作为一个实施例,所述第一节点处于RRC_INACTIVE状态。
作为一个实施例,所述第一节点处于RRC_INACTIVE或RRC_IDLE状态。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。附图2说明了5G NR(NewRadio,新空口),LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统架构下的V2X通信架构。5G NR或LTE网络架构可称为5GS(5GSystem)/EPS(Evolved Packet System,演进分组系统)某种其它合适术语。
实施例2的V2X通信架构包括UE(User Equipment,用户设备)201,UE241,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220,ProSe功能250和ProSe应用服务器230。所述V2X通信架构可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,所述V2X通信架构提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(UserPlaneFunction,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。所述ProSe功能250是用于适地服务(ProSe,Proximity-based Service)所需的网络相关行为的逻辑功能;包括DPF(Direct Provisioning Function,直接供应功能),直接发现名称管理功能(Direct Discovery Name Management Function),EPC水平发现ProSe功能(EPC-level Discovery ProSe Function)等。所述ProSe应用服务器230具备存储EPC ProSe用户标识,在应用层用户标识和EPC ProSe用户标识之间映射,分配ProSe限制的码后缀池等功能。
作为一个实施例,所述UE201和所述UE241之间通过PC5参考点(Reference Point)连接。
作为一个实施例,所述ProSe功能250分别通过PC3参考点与所述UE201和所述UE241连接。
作为一个实施例,所述ProSe功能250通过PC2参考点与所述ProSe应用服务器230连接。
作为一个实施例,所述ProSe应用服务器230连接分别通过PC1参考点与所述UE201的ProSe应用和所述UE241的ProSe应用连接。
作为一个实施例,本申请中的第一节点是UE201。
作为一个实施例,本申请中的第二节点是UE241。
作为一个实施例,本申请中的第三节点是gNB203。
作为一个实施例,所述UE201和所述UE241之间的无线链路对应本申请中的副链路(Sidelink,SL)。
作为一个实施例,从所述UE201到NR节点B的无线链路是上行链路。
作为一个实施例,从NR节点B到UE201的无线链路是下行链路。
作为一个实施例,所述UE201支持中继传输。
作为一个实施例,所述UE241支持中继传输。
作为一个实施例,所述UE201是包括汽车在内的交通工具。
作为一个实施例,所述UE241是包括汽车在内的交通工具。
作为一个实施例,所述gNB203是宏蜂窝(MarcoCellular)基站。
作为一个实施例,所述gNB203是微小区(Micro Cell)基站。
作为一个实施例,所述gNB203是微微小区(PicoCell)基站。
作为一个实施例,所述gNB203是一个飞行平台设备。
作为一个实施例,所述gNB203是卫星设备。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一节点(UE,gNB或NTN中的卫星或飞行器)和第二节点(gNB,UE或NTN中的卫星或飞行器),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一节点与第二节点以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二节点之间的对第一节点的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一节点之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点与第一节点之间的RRC信令来配置下部层。PC5-S(PC5Signaling Protocol,PC5信令协议)子层307负责PC5接口的信令协议的处理。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点和第二节点的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一节点可具有在L2层355之上的若干上部层。此外还包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。对于涉及中继服务的UE,其控制面还可包括适配子层AP308,其用户面也可包括适配子层AP358,适配层的引入有助于更低层,例如MAC层,例如RLC层,对来自于多个源UE的数据进行复用和/或区分,对于涉及中继服务的UE到UE之间的通信,也可以不包括适配子层。另外,适配子层AP308和AP358也可以分别作为PDCP304和PDCP354内的子层。RRC306可以用于处理Uu接口的RRC信令和PC5接口的信令。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第三节点。
作为一个实施例,本申请中的所述第一消息生成于RRC306。
作为一个实施例,本申请中的所述第一副链路主信息块生成于PC5-RRC。
作为一个实施例,本申请中的所述第二副链路主信息块生成于PC5-RRC。
作为一个实施例,本申请中的所述第一同步信号生成于PHY301。
作为一个实施例,本申请中的所述第二同步信号生成于PHY301。
作为一个实施例,本申请中的所述第一信号生成于PHY301或MAC302或RLC303或RRC306或PC5-S307。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入 网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基 带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:接收第一消息,所述第一消息被用于指示第一帧号以及对应的第一参考时间;所述第一参考时间包括第一参考天、第一参考秒和第一参考毫秒,所述第一帧号是小于1024的非负整数;发送第二消息,所述第二消息包括第二参数,第二帧号以及对应的第二参考时间;所述第二参考时间包括所述第一参考天和所述第一参考秒,所述第二参数指示所述第二参考时间的不确定性,所述第二帧号是小于1024的非负整数;其中,所述第二参数是在所述第一节点被生成的。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一消息,所述第一消息被用于指示第一帧号以及对应的第一参考时间;所述第一参考时间包括第一参考天、第一参考秒和第一参考毫秒,所述第一帧号是小于1024的非负整数;发送第二消息,所述第二消息包括第二参数,第二帧号以及对应的第二参考时间;所述第二参考时间包括所述第一参考天和所述第一参考秒,所述第二参数指示所述第二参考时间的不确定性,所述第二帧号是小于1024的非负整数;其中,所述第二参数是在所述第一节点被生成的。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备450对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第一通信设备450是一个车载终端。
作为一个实施例,所述第一通信设备450是一个中继。
作为一个实施例,所述第二通信设备410是一个UE。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一消息。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第二信号。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第三信号。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第四信号。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送所述第二消息。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送所述第一信号。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。附图5中,U01对应本申请的第一节点,U02对应本申请的第二节点,U03第三节点是服务小区或基站,特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序,其中F51、F52、F53内的步骤是可选的。
对于 第一节点U01,在步骤S5101中接收第一信号;在步骤S5102中接收第一同步信号;在步骤S5103中接收第一副链路主信息块;在步骤S5104中执行小区搜索;在步骤S5105中发送第二副链路主信息块;在步骤S5106中发送第二同步信号。
对于 第二节点U02,在步骤S5201中接收第二信号;在步骤S5202中发送第一信号;在步骤S5203中发送第一同步信号;在步骤S5204中发送第一副链路主信息块。
对于 第三节点U03,在步骤S5301中发送第二信号。
在实施例5中,所述第一信号包括第一消息;所述第一节点U01根据至少所述第一消息是否通过直接路径传输确定同步参考;所述第一消息用于指示第一副链路频率列表,所述第一副链路频率列表包括第一频率,所述第一频率用于副链路通信;所述第一节点U01针对所述第一同步信号的接收定时被用于确定所述第二同步信号的发送定时。
作为一个实施例,在步骤S5102中,所述第一节点U01接收来自被确定的所述同步参考的第一同步信号。
作为一个实施例,所述句子所述接收来自被确定的所述同步参考的第一同步信号包括:所述第一节点U01先确定同步参考,再接收所述第一同步信号。
作为一个实施例,所述句子所述接收来自被确定的所述同步参考的第一同步信号包括:所述第一节点U01先接收所述第一同步信号,再确定同步参考。
作为一个实施例,所述句子所述接收来自被确定的所述同步参考的第一同步信号包括:所述第一节点U01接收所述第一同步信号和确定同步参考不存在时间上的先后顺序。
作为一个实施例,所述行为确定同步参考是周期性进行的。
作为一个实施例,所述行为确定同步参考是事件触发的的。
作为一个实施例,所述第一节点U01是一个U2N中继UE。
作为一个实施例,所述第一节点U01是一个U2N远端UE。
作为一个实施例,所述第二节点U02是一个UE。
作为一个实施例,所述第二节点U02是所述第一节点U01的U2N中继。
作为一个实施例,所述第三节点U03是所述第一节点U01的服务小区。
作为一个实施例,所述第三节点U03是所述第一节点U01的主小区。
作为一个实施例,所述第三节点U03是所述第一节点U01的主小区组。
作为一个实施例,所述第三节点U03是所述第一节点U01的主小区所对应或所属的基站。
作为一个实施例,所述第三节点U03是所述第二节点U02的主小区所对应或所属的基站。
作为一个实施例,所述第三节点U03不是所述第一节点U01的服务小区。
作为一个实施例,所述第三节点U03不是所述第一节点U01的主小区。
作为一个实施例,所述第三节点U03不是所述第一节点U01的主小区组。
作为一个实施例,所述第三节点U03不是所述第一节点U01的主小区所对应或所属的基站。
作为一个实施例,所述第三节点U03不是所述第二节点U02的主小区所对应或所属的基站。
作为一个实施例,所述第三节点U03是所述第二节点U02的服务小区。
作为一个实施例,所述第三节点U03是所述第二节点U02的主小区。
作为一个实施例,所述第三节点U03是所述第二节点U02的主小区组。
作为一个实施例,所述第三节点U03是所述第二节点U02的主小区所对应或所属的基站。
作为一个实施例,所述第一节点U01和所述第二节点U02有相同的主小区(PCell)。
作为一个实施例,所述第一节点U01的驻留小区是所述第三节点U03。
作为一个实施例,所述第二节点U02的驻留小区是所述第三节点U03。
作为一个实施例,所述第一节点U01的归属小区是所述第三节点U03。
作为一个实施例,所述第二节点U02的归属小区是所述第三节点U03。
作为一个实施例,所述第一节点U01与所述第三节点U03之间存在RRC连接。
作为一个实施例,所述第二节点U02与所述第三节点U03之间存在RRC连接。
作为一个实施例,所述第一节点U01与所述第三节点U03之间不存在RRC连接。
作为一个实施例,所述第二节点U02与所述第三节点U03之间不存在RRC连接。
作为一个实施例,所述第一节点U01应用所述第三节点U03的系统消息。
作为一个实施例,所述第二节点U02应用所述第三节点U03的系统消息。
作为一个实施例,所述第一节点U01通过非直接路径与所述第三节点U03进行通信。
作为一个实施例,所述第一节点U01与所述第二节点U02通过副链路通信。
作为一个实施例,所述第一节点U01与所述第二节点U02建立了直接单播链路。
作为一个实施例,所述第二信号是下行无线信号。
作为一个实施例,所述第二信号所占用的物理信道包括PDSCH(physical downlink shared channel,物理下行共享信道)。
作为一个实施例,所述第二信号承载所述第一消息。
作为一个实施例,所述第二信号携带所述第一消息。
作为一个实施例,所述第二信号包括所述第一消息。
作为一个实施例,所述第一消息是RRC消息。
作为一个实施例,所述第一消息中的至少部分域或全部域通过所述第二节点U02转发给所述第一节点U01。
作为一个实施例,所述第一消息通过Uu接口传输给所述第一节点U01。
作为一个实施例,所述第二信号周期发送。
作为一个实施例,所述第二信号非周期发送。
作为一个实施例,作为所述第二节点U02请求所述第二信号的响应,所述第二信号被发送。
作为一个实施例,所述第二节点U02中继或转发所述第一消息。
作为一个实施例,所述第二信号包括第二消息,所述第二消息是SIB12。
作为以上实施例的一个子实施例,所述第一消息包括所述第二消息的至少部分域。
作为以上实施例的一个子实施例,所述第一消息包括所述第二消息。
作为以上实施例的一个子实施例,所述第一消息指示SIB12被包括在内。
作为一个实施例,F52内的步骤S5203不发生,所述第一同步信号由所述第二节点U02以外的节点发送。
作为以上实施例的一个子实施例,所述第一同步信号的发送者是GNSS,所述第一同步信号是GNSS所发送的信号。
作为以上实施例的一个子实施例,所述第一同步信号的发送者是UE,所述第一同步信号是副链路同步信号。
作为以上实施例的一个子实施例,所述第一同步信号的发送者是卫星,所述第一同步信号是卫星信号。
作为一个实施例,F53内的步骤S5204不发生,所述第一副链路主信息块由所述第二节点U02以外的节点发送。
作为以上实施例的一个子实施例,所述第一副链路主信息块的发送者是UE。
作为一个实施例,所述第一副链路主信息块是MasterInformationBlockSidelink。
作为一个实施例,所述第一副链路主信息块包括31个比特。
作为一个实施例,所述第一副链路主信息块包括指示副链路TDD配置的域。
作为一个实施例,所述第一副链路主信息块包括指示inCoverage域,所述第一副链路主信息块所包括的所述inCoverage域指示是否在覆盖内;所述第一副链路主信息块所包括的所述inCoverage域设置为true表示在网络覆盖内或选择GNSS定时作为同步参考源。
作为该实施例的一个子实施例,所述第一副链路主信息块所包括的所述inCoverage域设置为false表示不在网络覆盖内也没有选择GNSS定时作为参考同步源。
作为一个实施例,所述第一副链路主信息块包括指示直接帧号的域。
作为一个实施例,所述第一副链路主信息块包括指示时隙索引的域。
作为一个实施例,所述第一副链路主信息块所占用的逻辑信道是SBCCH(Sidelink Broadcast Control Channel,副链路广播控制信道)。
作为一个实施例,所述第一副链路主信息块所占用的物理信道是PSBCH(physical sidelink broadcast channel,物理副链路广播信道)。
作为一个实施例,所述第一同步信号是SLSS,所述第一身份是SLSSID。
作为一个实施例,所述第一同步信号是S-SS,所述第一身份是
Figure PCTCN2022100952-appb-000007
作为一个实施例,所述第一节点U01执行小区搜索以确定处于至少第一小区覆盖内;
其中,所述第一消息不通过直接路径传输,所述第一消息指示的同步优先顺序是基站,所述被确定的所述同步参考是一个同步参考UE。
作为一个实施例,步骤S5104中,所述第一节点U01执行小区搜索,根据所述小区搜索的结果确定处于至少第一小区覆盖内。
作为一个实施例,所述第一小区属于所述第一频率。
作为一个实施例,所述第一小区在所述第一频率上。
作为一个实施例,所述第一小区是所述第一消息的发送者。
作为一个实施例,所述第一小区是所述第一节点U01的服务小区。
作为一个实施例,所述第一小区是所述第一节点U01的主小区。
作为一个实施例,所述第一小区是所述第一节点U01的从小区。
作为一个实施例,所述第一小区是所述第三节点U02。
作为一个实施例,所述基站是gnbEnb。
作为一个实施例,所述基站是gnb或者Enb。
作为一个实施例,所述行为执行小区搜索以确定处于至少第一小区覆盖内包括:在第一小区上接收第一下行信号,其中针对所述第一下行信号的接收质量满足覆盖内要求。
作为一个实施例,所述第一下行信号包括同步信号。
作为一个实施例,所述第一下行信号包括PBCH。
作为一个实施例,所述第一下行信号包括SS/PBCH。
作为一个实施例,所述行为执行小区搜索以确定处于至少第一小区覆盖内包括:在所述第一频率上搜索SS/PBCH(同步信号和Physical Broadcast Channel,物理下行信道),搜索到的SS/PBCH信号满足覆盖内要求,确定搜索到的所述SS/PBCH信号所对应的小区是所述第一小区。
作为该实施例的一个子实施例,所述短语满足覆盖内要求包括针对在所述小区搜索过程中所接收到的信号所进行的测量的结果大于第一搜索门限。
作为该实施例的一个子实施例,所述短语满足覆盖内要求包括针对在所述小区搜索过程中所接收到的SS/PBCH信号所进行的测量的结果大于第一搜索门限。
作为该实施例的一个子实施例,所述短语满足覆盖内要求包括在所述小区搜索过程中所接收到的SS/PBCH信号的质量大于第一搜索门限。
作为一个实施例,所述第一搜索门限由网络指示。
作为一个实施例,所述第一搜索门限是预定义的。
作为一个实施例,所述行为执行小区搜索包括接收SIB1。
作为一个实施例,SS/PBCH是SSB。
作为一个实施例,SS/PBCH块是SSB。
作为一个实施例,所述第一消息包括sl-SyncPriority域,所述第一消息所包括的所述sl-SyncPriority域指示所述同步优先顺序。
作为一个实施例,所述所确定的同步参考是UE。
作为一个实施例,所述所确定的同步参考是所述第一同步信号的发送者。
作为一个实施例,所述所确定的同步参考是SyncRef UE。
作为一个实施例,所述所确定的同步参考是所述第二节点U02。
作为一个实施例,所述第一消息不通过直接路径传输,即所述第一消息通过转发或中继被传输。
作为一个实施例,所述第一消息不通过直接路径传输,即所述第一消息通过所述第二节点U02的转发。
作为一个实施例,所述第一消息不通过直接路径传输,即所述第一消息通过非直接路径传输。
作为一个实施例,所述第一节点U01,在步骤S5104中,未能在第一频率上检测到小区;所述第一消息不通过直接路径传输;所述第一同步信号的发送者被确定为同步参考;所述被确定的所述同步参考是一个同步参考UE;所述第一消息指示的同步优先顺序是基站;
其中,所述第一消息包括第一发送定时信息和第二发送定时信息;所述第一发送定时信息被用于指示 所述第二同步信号的发送定时信息;所述第二发送定时信息被用于确定所述第二同步信号的副链路同步信号身份;所述第二发送定时信息与GNSS有关。
作为该实施例的一个子实施例,所述行为未能在第一频率上检测到小区的含义是所述第一节点U01在所述第一频率上不是覆盖内。
作为该实施例的一个子实施例,所述行为未能在第一频率上检测到小区的含义是所述第一节点U01在所述第一频率上是覆盖外。
作为该实施例的一个子实施例,所述所确定的同步参考是SyncRef UE。
作为该实施例的一个子实施例,所述第一同步信号的发送者是UE。
作为该实施例的一个子实施例,所述第一同步信号的发送者是所述第二节点U02。
作为该实施例的一个子实施例,所述第一消息的sl-SyncPriority域指示的同步优先顺序是基站。
作为该实施例的一个子实施例,所述第一节点U01在所述第一频率上未检测到合适的小区。
作为该实施例的一个子实施例,所述第一节点U01在所述第一频率上未检测到可接受的小区。
作为该实施例的一个子实施例,所述第一节点U01在所述第一频率上未检测到合适的小区的同步信号。
作为该实施例的一个子实施例,所述第一节点U01在所述第一频率上未检测到可接受的小区的同步信号。
作为该实施例的一个子实施例,所述第一节点U01在所述第一频率上未检测到合适的小区的SSB。
作为该实施例的一个子实施例,所述第一节点U01在所述第一频率上未检测到可接受的小区的SSB。
作为该实施例的一个子实施例,所述第一发送定时信息指示在一个周期内发送的副链路SSB的个数。
作为该实施例的一个子实施例,所述第一发送定时信息指示从副链路SSB周期的开始到第一个副链路SSB的时隙偏移量。
作为该实施例的一个子实施例,所述第一发送定时信息指示多个相邻的副链路SSB的时隙间隔(interval)。
作为该实施例的一个子实施例,所述第一发送定时信息是sl-SSB-TimeAllocation1。
作为该实施例的一个子实施例,所述第一发送定时信息是sl-SSB-TimeAllocation2。
作为该实施例的一个子实施例,所述第二发送定时信息指示在一个周期内发送的副链路SSB的个数。
作为该实施例的一个子实施例,所述第二发送定时信息指示从副链路SSB周期的开始到第一个副链路SSB的时隙偏移量。
作为该实施例的一个子实施例,所述第二发送定时信息指示多个相邻的副链路SSB的时隙间隔(interval)。
作为该实施例的一个子实施例,所述第二发送定时信息是sl-SSB-TimeAllocation3。
作为该实施例的一个子实施例,所述第二同步信号的发送定时满足所述第二发送定时信息所指示的发送定时。
作为该实施例的一个子实施例,所述第二发送定时信息被确定为所述第二同步信号的发送定时信息。
作为该实施例的一个子实施例,所述第二同步信号的发送定时信息是所述第一发送定时信息。
作为该实施例的一个子实施例,所述第二同步信号的发送定时由所述第一发送定时信息确定。
作为该实施例的一个子实施例,所述第二同步信号的发送定时由所述第一发送定时信息指示。
作为该实施例的一个子实施例,所述第一节点选择所述第一发送定时信息所指示的时隙。
作为该实施例的一个子实施例,所述第一节点选择所述第一发送定时信息所指示的时隙来发送所述第二同步信号。
作为该实施例的一个子实施例,所述句子所述第二发送定时信息与GNSS有关包括以下含义:当同步参考UE选择GNSS做同步参考时,使用所述第二发送定时信息所指示的时隙发送副链路同步参考信号。
作为该实施例的一个子实施例,所述句子所述第二发送定时信息与GNSS有关包括以下含义:所述第一节点U01所确定的同步参考是一个同步参考UE,所述同步参考UE选择GNSS做同步参考,所述同步参考UE使用所述第二发送定时信息所指示的时隙发送副链路同步参考信号。
作为该实施例的一个子实施例,所述句子所述第二发送定时信息与GNSS有关包括以下含义:所述第一节点U01所确定的同步参考是所述第一同步信号的发送者,所述第一同步信号的发送者选择GNSS做同 步参考,所述第一同步信号的发送者使用所述第二发送定时信息所指示的时隙发送所述第一同步信号。
作为该实施例的一个子实施例,所述句子所述第二发送定时信息与GNSS有关包括以下含义:所述第一节点U01所确定的同步参考是所述第一同步信号的发送者,当所述第一同步信号的发送者未被配置所述第二发送定时信息且处于网络覆盖外且选择了GNSS作为同步参考,所述第一同步信号的发送者所发送的副链路主信息块指示在覆盖内。
作为该实施例的一个子实施例,所述句子所述第二发送定时信息与GNSS有关包括以下含义:所述第一节点U01所确定的同步参考是所述第一同步信号的发送者,当所述第一同步信号的发送者被配置了所述第二发送定时信息且处于网络覆盖外且选择了GNSS作为同步参考,所述第一同步信号的发送者所发送的副链路主信息块指示在覆盖外。
作为一个实施例,所述第一副链路主信息块伴随所述第一同步信号发送。
作为一个实施例,所述第一副链路主信息块与所述第一同步信号组成一个副链路SSB(Synchronization Signal and PBCH block)。
作为一个实施例,所述第一副链路主信息块与所述第一同步信号组成一个副链路S-SS/PSBCH块。
作为一个实施例,PSBCH信道只用于传输或承载副链路主信息块。
作为一个实施例,所述行为执行小区搜索的含义是检测小区。
作为一个实施例,所述第一节点U01,执行小区搜索以确定不处于第一小区覆盖内,处于第二小区的覆盖内;所述第一小区是所述第一消息的生成者;所述第一小区是所述第一节点的PCell或服务小区;所述第二小区是所述第一节点的PCell或服务小区以外的小区;所述第一小区和所述第二小区都在所述第一频率上;所述第一频率是主频率;
其中,所述第一消息不通过直接路径传输,所述第一消息指示的同步优先顺序是基站,所述被确定的所述同步参考是所述第二小区。
作为以上实施例的一个子实施例,所述第一节点U01在步骤S5104中执行小区搜索,所检测到的小区是所述第二小区,所述第二小区与所述第一小区不同。
作为以上实施例的一个子实施例,所述第一小区是所述第一节点U01的PCell还是服务小区与所述第一节点U01的RRC状态有关。
作为以上实施例的一个子实施例,当所述第一节点U01处于RRC连接态时,所述第一小区是第一节点U01的PCell。
作为以上实施例的一个子实施例,当所述第一节点U01处于RRC连接态以外的RRC状态时,所述第一小区是第一节点U01的服务小区。
作为以上实施例的一个子实施例,所述句子所述第二小区是所述第一节点的PCell或服务小区以外的小区的含义是:所述第二小区既不是所述第一节点的PCell也不是所述第一节点的服务小区。
作为以上实施例的一个子实施例,所述句子所述第二小区是所述第一节点的PCell或服务小区以外的小区的含义是:所述第一小区是所述第一节点的PCell或服务小区,所述第二小区与所述第一小区不同。
作为以上实施例的一个子实施例,所述句子所述第二小区是所述第一节点的PCell或服务小区以外的小区的含义是:当所述第一节点U01处于RRC连接态时,所述第二小区不是所述第一节点U01的PCell;当所述第一节点U01处于RRC连接态以外的RRC状态时,所述第二节点不是所述第一节点U01的服务小区。
作为以上实施例的一个子实施例,所述第一小区工作的频率是所述第一频率。
作为以上实施例的一个子实施例,所述第二小区工作的频率是所述第一频率。
作为以上实施例的一个子实施例,所述第一频率是所述第一节点U01的PCell工作的频率。
作为以上实施例的一个子实施例,所述主频率是所述第一节点U01的PCell工作的频率。
作为以上实施例的一个子实施例,所述主频率是所述第一节点U01的服务小区工作的频率。
作为以上实施例的一个子实施例,所述第二小区是所述第一节点的SCell。
作为以上实施例的一个子实施例,所述第二小区是所述第一节点的MCG以外的小区。
作为以上实施例的一个子实施例,所述第二小区是所述第一节点的MCG中的SCell。
作为以上实施例的一个子实施例,在步骤S5104中,所述第一节点U01未能检测到所述第一小区的参考信号;检查到所述第二小区的SS/PBCH的接收质量满足覆盖内要求。
作为以上实施例的一个子实施例,在步骤S5104中,所述第一节点U01检测到所述第一小区的SS/PBCH接收质量不满足覆盖内要求;检查到所述第二小区的SS/PBCH的接收质量满足覆盖内要求。
作为以上实施例的一个子实施例,所述第一节点所确定的同步参考是所述第二小区。
作为一个实施例,以上方法的好处在于:当第一节点不是以直接方式接收到PCell或服务小区的第一消息,且第一节点的PCell或服务小区并不在覆盖之内,但是所述第一节点在SCell的覆盖内,所述第一节点选择SCell而不是PCell作为同步参考有助于获得正确的定时信息。
作为一个实施例,所述第一节点U01,执行小区搜索以确定在所述第一频率的覆盖内;所述第一频率是主频率或从频率以外的频率;
其中,所述第一消息不通过直接路径传输,所述被确定的所述同步参考是所述第一频率。
作为以上实施例的一个子实施例,在步骤S5104中,所述第一节点U01在所述第一频率上检测到满足覆盖内要求的小区。
作为以上实施例的一个子实施例,所述第一频率不是所述第一节点U01的主频率,也不是所述第一节点U01的从频率。
作为以上实施例的一个子实施例,所述第一节点U01只有主频率而没有从频率所述第一频率不是所述第一节点的主频率。
作为以上实施例的一个子实施例,所述第一节点U01只有PCell没有SCell,所述第一频率是所述第一节点U01的PCell工作的频率以外的频率。
作为一个实施例,所述句子执行小区搜索以确定在所述第一频率的覆盖内包括:执行小区搜索,在所述第一频率上检测到满足覆盖内要求的小区。
作为一个实施例,所述句子执行小区搜索以确定在所述第一频率的覆盖内包括:执行小区搜索,在所述第一频率上检测到合适的小区。
作为一个实施例,所述句子执行小区搜索以确定在所述第一频率的覆盖内包括:在所述第一频率上检测到SSB(SS/PBCH),且所检测到的所述SSB(SS/PBCH)的接收质量满足覆盖内要求。
作为一个实施例,所述句子执行小区搜索以确定在所述第一频率的覆盖内包括:在所述第一频率上检测到小区定义SSB,且所检测到的所述小区定义SSB的接收质量满足覆盖内要求。
作为一个实施例,所述句子所述被确定的所述同步参考是所述第一频率包括,所确定的所述同步参考是所述第一频率上的所检测到的小区。
作为一个实施例,所述句子所述被确定的所述同步参考是所述第一频率包括,所确定的所述同步参考是所述第一频率上的所检测到的同步信号。
作为该实施例的一个子实施例,所述所检测到的所述同步信号的接收质量满足覆盖内要求。
作为该实施例的一个子实施例,所述所检测到的所述同步信号以及与所述所检测到的所述同步信号伴随发送的PBCH信道的接收质量满足覆盖内要求。
作为该实施例的一个子实施例,所述所检测到的所述同步信号的发送者不是所述第一消息的生成者。
作为一个实施例,所述句子所述被确定的所述同步参考是所述第一频率包括,所确定的所述同步参考是所述第一频率上的所检测到的SS/PBCH,所述SS/PBCH的接收质量能够确定在所述第一频率的覆盖内。
作为一个实施例,以上方法的好处在于:当第一节点不是以直接方式接收到PCell或服务小区的第一消息,且第一节点的PCell或服务小区并不在覆盖之内,所述第一节点选择第一频率作为同步参考可以避免错误的将PCell或服务小区确定为同步参考。
作为一个实施例,所述第二副链路主信息块是MasterInformationBlockSidelink。
作为一个实施例,所述第二副链路主信息块包括31个比特。
作为一个实施例,所述第二副链路主信息块包括指示副链路TDD配置的域。
作为一个实施例,所述第二副链路主信息块包括指示inCoverage域,所述第二副链路主信息块所包括的所述inCoverage域指示是否在覆盖内;所述第二副链路主信息块所包括的所述inCoverage域设置为true表示在网络覆盖内或选择GNSS定时作为同步参考源。
作为该实施例的一个子实施例,所述第二副链路主信息块所包括的所述inCoverage域设置为false表示不在网络覆盖内也没有选择GNSS定时作为参考同步源。
作为一个实施例,所述第二副链路主信息块包括指示直接帧号的域。
作为一个实施例,所述第二副链路主信息块包括指示时隙索引的域。
作为一个实施例,所述第二副链路主信息块所占用的逻辑信道是SBCCH(Sidelink Broadcast Control Channel,副链路广播控制信道)。
作为一个实施例,所述第二副链路主信息块所占用的物理信道是PSBCH(physical sidelink broadcast channel,物理副链路广播信道)。
作为一个实施例,所述第二副链路主信息块与所述第二同步信号在同一个SL-SSB中被发送。
作为一个实施例,所述第二副链路主信息块与所述第二同步信号属于同一个副链路SSB。
作为一个实施例,当所述第一节点U01在所述第一频率处于覆盖内且所述第一消息不通过直接路径传输,所述第二副链路主信息块不指示在覆盖内;当所述第一节点U01在所述第一频率处于覆盖内,且所述第一消息通过直接路径传输,所述第二副链路主信息块指示在覆盖内。
作为以上实施例的一个子实施例,所述第一节点U01在所述第一频率上检测到满足覆盖内要求的小区。
作为以上实施例的一个子实施例,所述第一节点U01在所述第一频率上检测到满足覆盖内要求的信号。
作为以上实施例的一个子实施例,所述第一节点U01在所述第一频率上检测到满足覆盖内要求的SSB。
作为以上实施例的一个子实施例,所述第一节点U01在所述第一频率上检测到满足覆盖内要求的SS/PBCH。
作为以上实施例的一个子实施例,所述句子所述第二副链路主信息块不指示在覆盖内指的是,所述第二副链路主信息块的inCoverage域被设置为false。
作为以上实施例的一个子实施例,所述句子所述第二副链路主信息块指示在覆盖内指的是,所述第二副链路主信息块的inCoverage域被设置为true。
作为一个实施例,所述句子GNSS被确定为同步参考的含义是,所确定的所述同步参考是GNSS。
作为一个实施例,所述第二发送定时信息指示在一个周期内发送的副链路SSB的个数。
作为一个实施例,所述第二发送定时信息指示从副链路SSB周期的开始到第一个副链路SSB的时隙偏移量。
作为一个实施例,所述第二发送定时信息指示多个相邻的副链路SSB的时隙间隔(interval)。
作为一个实施例,所述第二发送定时信息是sl-SSB-TimeAllocation3。
作为一个实施例,所述句子所述第二发送定时信息被用于指示所述第二同步信号的发送定时信息包括:所述第二同步信号的发送定时满足所述第二发送定时信息所指示的定时。
作为一个实施例,所述句子所述第二发送定时信息被用于指示所述第二同步信号的发送定时信息包括:所述第二同步信号所占用的时隙有所述第二发送定时信息确定。
作为一个实施例,所述句子所述第二发送定时信息被用于指示所述第二同步信号的发送定时信息包括:所述第二发送定时信息确定所述第二同步信号的时隙。
作为一个实施例,所述句子所述第二发送定时信息被用于指示所述第二同步信号的发送定时信息包括:所述第二发送定时信息是所述第二同步信号的发送定时信息。
作为一个实施例,所述句子所述第二发送定时信息被用于指示所述第二同步信号的发送定时信息包括:所述第一节点U01使用所述第二发送定时信息所指示的信息发送所述第二同步信号。
作为一个实施例,所述第一节点U01执行小区搜索以确定处于至少第一小区覆盖内;
其中,所述第一消息通过直接路径传输,所述第一消息指示的同步优先顺序是基站,所述被确定的所述同步参考是所述第一消息的生成者。
作为一个实施例,所述第一节点U01执行小区搜索以确定处于至少第一小区覆盖内;
其中,所述第一消息通过直接路径传输,所述第一消息指示的同步优先顺序是基站,所述被确定的所述同步参考是所述第一节点U01的PCell。
作为一个实施例,执行小区搜索以确定不处于第一小区覆盖内,处于第二小区的覆盖内;所述第一小区是所述第一消息的生成者;所述第一小区是所述第一节点U01的PCell;所述第二小区不是所述第一节点U01的PCell;所述第一小区和所述第二小区都在所述第一频率上;所述第一频率是主频率;
其中,所述第一消息通过直接路径传输,所述第一消息指示的同步优先顺序是基站,所述被确定的所 述同步参考是所述第一小区。
作为该实施例的一个子实施例,所述第二小区不是所述第一节点U01的服务小区。
作为该实施例的一个子实施例,所述第二小区是所述第一节点U01的SCell。
作为一个实施例,所述第二节点U02接收第二同步信号和第二副链路主信息块,所述第二节点向所述第一节点U01提供中继服务;当第一条件集合被满足时,所述第二同步信号和所述第二副链路主信息块的发送者不被确定为同步参考;所述第一消息指示的同步优先顺序是基站。
作为以上实施例的一个子实施例,所述第一条件集合被满足指的是所述第一条件集合中的任一条件被满足。
作为以上实施例的一个子实施例,所述第一条件集合包括所述第二副链路主信息块不指示覆盖内。
作为以上实施例的一个子实施例,所述第一条件集合包括所述第一消息不通过直接路径传输。
作为以上实施例的一个子实施例,所述第一条件集合包括所述第二同步信号所对应的副链路同步信号身份属于覆盖外的副链路同步信号身份集合。
实施例6
实施例6示例了根据本申请的一个实施例的副链路同步信号块的示意图,如附图6所示。
附图6示出了正常CP(cyclic prefix,循环前缀)情况下的S-SS/PSBCH块的结构,其中,一个副链路S-SS/PSBCH块,包括副链路主同步信号(S-PSS),副链路从同步信号(S-SSS)和PSBCH信道。
作为一个实施例,副链路同步信号(SLSS),即S-SS,包括S-PSS和S-SSS。
作为一个实施例,S-SS/PSBCH块是发送的最小单位。
作为一个实施例,副链路同步信号与PSBCH伴随发送。
作为一个实施例,S-SS/PSBCH在时域上占用13个OFDM符号,并且每个S-SS/PSBCH块后面紧接着的一个OFDM符号作为保护时间;S-PSS和S-SSS在频域占用127个子载波;PSBCH在频域占用132个子载波。
作为一个实施例,生成副链路同步信号的序列由副链路同步信号身份确定,一个副链路同步信号身份可以唯一的生成一个用于生成副链路同步信号的序列;一共有672个唯一的副链路同步信号身份。所述672个唯一的副链路同步信号身份用0到671的整数标识;所述672个副链路同步信号身份也可以称为672个唯一的物理层副链路身份;副链路同步信号身份可以用SLSSID或SLSS ID或
Figure PCTCN2022100952-appb-000008
表示,取值范围是从0到671的整数。
作为一个实施例,覆盖内的UE所发送的副链路同步信号所对应的副链路同步信号身份的取值范围是从0到335的整数;覆盖外的UE所发送的副链路同步信号所对应的副链路同步信号身份的取值范围是从336到671的整数。
作为一个实施例,生成副链路主同步信号的序列是长度为127的二进制序列,其中的任一位的取值是0还是1由所述副链路同步信号身份作为输入的第一函数确定。
作为一个实施例,生成副链路从同步信号的序列是长度为127的二进制序列,其中的任一位的取值是0还是1由所述副链路同步信号身份作为输入的第二函数确定。
作为一个实施例,在一个S-SS/PSBCH所占用的时频资源内还可以包括DM-RS(解调参考信号)。
实施例7
实施例7示例了根据本申请的一个实施例的发送定时的示意图,如附图7所示。
作为一个实施例,所述同步参考用于确定副链路无线帧的发送定时。
作为一个实施例,所述同步参考用于确定副链路无线帧的发送时刻。
作为一个实施例,所述第一同步信号的接收定时被用于确定所述第二同步信号的发送定时。
作为一个实施例,所述第一同步信号的接收定时被用于确定所述第一节点在所述第一频率上发送的副链路信号的发送定时。
作为一个实施例,来自同步参考的同步信号的接收定时被用于确定所述第二同步信号的发送定时。
作为一个实施例,来自同步参考的同步信号的接收定时被用于确定所述第一节点在所述第一频率上发送的副链路信号的发送定时。
作为一个实施例,从第一UE传输副链路无线帧i应该开始于在所述第一UE的相应的定时参考帧的开 始之前的(N TA,AL+N TA,offset)·T c秒。
作为一个实施例,所述第一UE不被要求,在一个副链路传输结束后,早于N TA,offset的值的副链路或下行传输的接收。
作为一个实施例,对副链路传输,所述第一UE有一个满足S准则的第一服务小区,其中所述S准则由3GPP协议TS 38.304定义,参考无线帧i的定时等于所述第一服务小区的下行无线帧i,且所述第一服务小区的上行载波频率等于所述第一频率;其中N TA,offset的取值由3GPP协议38.211的4.3.1章节定义。
作为该实施例的一个子实施例,所述第一UE有一个满足S准则的第一服务小区的含义包括:所述第一UE的同步参考是小区。
作为该实施例的一个子实施例,所述第一UE有一个满足S准则的第一服务小区的含义包括:所述第一UE的同步参考是所述第一UE的PCell。
作为该实施例的一个子实施例,所述第一UE有一个满足S准则的第一服务小区的含义包括:所述第一UE的同步参考是所述第一UE的服务小区。
作为该实施例的一个子实施例,所述第一UE有一个满足S准则的第一服务小区的含义包括:所述第一UE的同步参考是所述第一频率。
作为该实施例的一个子实施例,所述参考无线帧i为任一参考无线帧。
作为该实施例的一个子实施例,所述参考无线帧i为第i个参考无线帧,其中i为小于1024的非负整数。
作为一个实施例,对副链路传输,所述第一UE没有一个满足S准则的第一服务小区,其中所述S准则由3GPP协议TS 38.304定义,参考无线帧i的定时通过3GPP协议38.213的4.2章节隐式的获得;N TA,offset的取值等于0。
作为该实施例的一个子实施例,所述参考无线帧i为任一参考无线帧。
作为该实施例的一个子实施例,所述参考无线帧i为第i个参考无线帧,其中i为小于1024的非负整数。
作为一个实施例,所述i为小于1024的非负整数。
作为一个实施例,N TA,SL等于0。
作为一个实施例,所述第一UE对应本申请的所述第一节点。
作为一个实施例,所述第一UE是任意UE。
作为一个实施例,所述第一UE是任意进行或支持副链路通信的UE。
作为一个实施例,所述第一UE是任意在所述第一频率上进行副链路通信的UE。
作为一个实施例,T c=1/(Δf max·N f),其中,Δf max=480·10 3Hz,N f=4096。
作为一个实施例,副链路无线帧i的开始与定时参考无线帧i的开始存在固定的时间关系。
作为一个实施例,副链路无线帧i在定时参考无线帧i的开始前N TA,offset开始。
作为一个实施例,N TA,offset等于0。
作为一个实施例,N TA,offset由网络指示。
作为一个实施例,N TA,offset由3GPP协议38.213的4.2章节定义。
作为一个实施例,所述定时参考无线帧i是所述第一UE所接收到的定时参考无线帧i。
作为一个实施例,所述定时参考无线帧i是所述第一UE所接收到的来自同步参考的无线帧i。
作为一个实施例,所述定时参考无线帧i是所述第一UE所接收到的来自同步参考源的无线帧i。
作为一个实施例,所述定时参考无线帧i被接收的开始时刻等于副链路无线帧i被发送的开始时刻。
作为一个实施例,所述定时参考无线帧i在接收端的开始时刻等于副链路无线帧i的开始时刻。
作为一个实施例,所述定时参考无线帧是所确定的同步参考所发送的无线帧。
作为一个实施例,所述定时参考无线帧i是所确定的同步参考所发送的同步信号所在的无线帧。
作为一个实施例,所述定时参考无线帧i是所述第一同步信号所在的无线帧。
作为一个实施例,当所确定的所述同步参考是GNSS时,副链路无线帧的发送定时由GNSS所指示的UTC时间确定。
作为一个实施例,所述行为确定同步参考包括接收定时参考无线帧i并确定所述定时参考无线帧i的接收时刻。
作为一个实施例,所述行为确定同步参考包括接收定时参考无线帧i并根据所述定时参考无线帧i的接收时刻确定副链路无线帧i的发送时刻,其中i为任意小于1024的非负整数。
作为一个实施例,所述行为确定同步参考包括确定同步参考源。
作为一个实施例,所述行为确定同步参考包括确定同步参考源并与所述同步参考源所发送的同步信号保持同步。
作为一个实施例,所述行为确定同步参考包括确定同步参考源并根据所述同步参考源所发送的同步信号确定发送的副链路信号的发送定时。
作为一个实施例,所述行为确定同步参考包括确定同步参考源并根据所述同步参考源所发送的同步信号确定时隙的定时。
作为一个实施例,所述行为确定同步参考包括确定同步参考源并根据所述同步参考源所发送的同步信号确定帧的定时。
实施例8
实施例8示例了根据本申请的一个实施例的中继通信的协议栈的示意图,如附图8所示。附图8包括(a)和(b)两种实施例方式。
在附图8的(a)所示出的协议栈中,第一协议层终结于中继节点和gNB节点。
在附图8的(b)所示出的协议栈中,第一协议层分别终结于UE和中继节点,中继节点和gNB节点。
作为一个实施例,附图8中的UE对应本申请的所述第一节点,附图8中的中继对应本申请的所述第二节点;附图8中的gNB对应本申请的所述第一消息的生成者。
作为一个实施例,实施例8以实施例3为基础,示出了与中继节点有关的协议栈和接口;在实施例8中,NAS是非接入层,Uu-RRC为Uu接口的RRC协议,Uu-PDCP是Uu接口的PDCP层;Uu-RLC是Uu接口的RLC层,Uu-MAC是Uu接口的MAC层,Uu-PHY是Uu接口的物理层;PC5-RLC是PC5接口的RLC层;PC5-MAC是PC5接口的MAC层;PC5-PHY是PC5接口的物理层;N2Stack是N2接口的协议栈,N2接口是gNB与核心网之间的接口;Uu第一协议层是Uu接口的第一协议层;PC5-第一协议层是PC5接口的第一协议层。
作为一个实施例,附图8中的所述UE与所述gNB之间的通信接口是Uu接口。
作为一个实施例,附图8中的所述中继与所述gNB之间的通信接口是Uu接口。
作为一个实施例,附图8中的所述UE与所述中继之间的通信接口是PC5接口。
作为一个实施例,所述第一协议层是适配层。
作为一个实施例,所述第一协议层是PDCP层和RLC层之间的协议层。
作为一个实施例,所述第一协议层用于将多个无线承载的数据复用在同一个Uu-RLC承载/实体上。
作为一个实施例,所述第一协议层用于将复用在同一个Uu-RLC承载/实体上的多个无线承载的数据通过相应的PC5-RLC承载/实体上。
作为一个实施例,所述第一协议层用于将一个或多个PC5-RLC实体与一个Uu-RLC实体关联起来。
作为一个实施例,附图8中的PC5第一协议层是PC5接口的适配层。
作为一个实施例,附图8中的Uu第一协议层是Uu接口的适配层。
作为一个实施例,附图8中的UE和中继根据网络配置选择实施方式(a)或(b)。
作为一个实施例,附图8中的UE和中继通过信令协商选择实施方式(a)或(b)。
作为一个实施例,所述第一信号为所述UE和所述中继之间的信号,生成于PC5-PHY或PC5-MAC或PC5-RLC或PC5-第一协议层。
作为一个实施例,所述第二信号为所述中继和所述gNB之间的信号,生成于Uu-PHY或Uu-MAC或Uu-RLC或Uu-第一协议层。
作为一个实施例,所述第一消息生成于所述gNB,所述第一消息是Uu-RRC消息。
作为一个实施例,所述第二消息生成于所述gNB,所述第一消息是Uu-RRC消息。
作为一个实施例,所述第一消息在所述中继是透传的。
作为一个实施例,所述第一消息通过所述中继的PC5-RRC消息传输给所述UE。
作为一个实施例,附图8中的所述UE是U2N远端UE。
作为一个实施例,附图8中的所述中继是U2N中继UE。
实施例9
实施例9示例了根据本申请的一个实施例的针对第一同步信号的接收定时被用于确定第二同步信号的发送定时的示意图,如附图9所示。
作为一个实施例,所述第二同步信号的发送时刻等于所述第一同步信号的接收时刻。
作为一个实施例,所述第二同步信号的发送时刻等于所述第一同步信号的接收时刻和第一时间偏移量的和,其中第一时间偏移量为非0实数。
作为一个实施例,所述第一时间偏移量是固定的。
作为一个实施例,所述第一时间偏移量是系统指定的。
作为一个实施例,所述第一时间偏移量是所述第一消息指示的。
作为一个实施例,所述第一消息或SidelinkPreconfigNR指示第i发送定时信息和第j发送定时信息,所述第一同步信号的发送定时由所述第i发送定时信息确定,所述第j发送定时信息被确定为所述第二同步信号的发送定时,i与j不同。
作为该实施例的一个子实施例,第i发送定时信息是sl-SSB-TimeAllocation1;第j发送定时信息是sl-SSB-TimeAllocation2。
作为该实施例的一个子实施例,第i发送定时信息是sl-SSB-TimeAllocation2;第j发送定时信息是sl-SSB-TimeAllocation1。
作为该实施例的一个子实施例,所述第一同步信号的接收时刻用于确定,第一同步信号的发送定时是根据所述第i发送定时信息还是根据所述第j发送定时信息。
作为一个实施例,所述第一同步信号的接收定时是所述第一同步信号所在时隙的开始时刻。
作为一个实施例,所述第一同步信号的接收定时是所述第一同步信号所在无线帧的开始时刻。
作为一个实施例,所述第二同步信号的发送定时是所述第二同步信号所在时隙的开始时刻。
作为一个实施例,所述第二同步信号的发送定时是所述第二同步信号所在无线帧的开始时刻。
作为一个实施例,所述第一同步信号的接收定时确定所述第一同步信号所在的无线帧;所述第二同步信号与所述第一同步信号在相同的无线帧内发送。
作为一个实施例,所述第一同步信号的接收定时确定所述第一同步信号所在的时隙;所述第二同步信号与所述第一同步信号在相同的时隙内发送。
作为一个实施例,所述第一同步信号的接收定时确定所述第一同步信号所在的无线帧;所述第二同步信号与所述第一同步信号在不相同的无线帧内发送。
作为一个实施例,所述第一同步信号的接收定时确定所述第一同步信号所在的时隙;所述第二同步信号与所述第一同步信号在不相同的时隙内发送。
作为一个实施例,所述第一同步信号的接收用于确定定时参考无线帧i,所述定时参考无线帧i用于确定所述第二同步信号所在的副链路无线帧i的起始时刻,所述第二同步信号的发送定时即所述第二同步信号所在的副链路无线帧i的起始时刻。
作为该实施例的一个子实施例,所述第一同步信号的接收定时是所述第一同步信号所在的无线帧的开始时刻。
作为该实施例的一个子实施例,所述第一同步信号所在的无线帧是所述定时参考无线帧i。
实施例10
实施例10示例了根据本申请的一个实施例的第一副链路主信息块和第一身份被用于确定生成第二同步信号的序列的示意图,如附图10所示。
作为一个实施例,所述第一身份是副链路同步信号身份。
作为一个实施例,所述第一副链路主信息块指示在覆盖内,所述第一身份被确定为生成所述第二同步信号的序列的副链路同步信号身份。
作为一个实施例,所述第一副链路主信息块不指示在覆盖内,且所述第一身份属于覆盖外的副链路同步信号身份集合,所述第一身份被确定为生成所述第二同步信号的序列的副链路同步信号身份。
作为该实施例的一个子实施例,所述覆盖外的副链路同步信号身份集合是所述i_oon所标识的集合。
作为该实施例的一个子实施例,所述覆盖外的副链路同步信号身份集合所包括的副链路同步信号身份为336到671的整数。
作为一个实施例,所述第一副链路主信息块不指示在覆盖内,且所述第一身份不属于覆盖外的副链路同步信号身份集合,且所述第一同步信号使用所述第二发送定时信息所指示的时隙,生成所述第二同步信号的序列的副链路同步信号身份是337。
作为该实施例的一个子实施例,所述覆盖外的副链路同步信号身份集合是所述i_oon所标识的集合。
作为该实施例的一个子实施例,所述覆盖外的副链路同步信号身份集合所包括的副链路同步信号身份为336到671的整数。
作为该实施例的一个子实施例,所述第一消息指示所述第二发送定时信息。
作为该实施例的一个子实施例,SidelinkPreconfigNR指示所述第二发送定时信息。
作为该实施例的一个子实施例,所述第二发送定时信息是sl-SSB-TimeAllocation3。
作为一个实施例,所述第一副链路主信息块不指示在覆盖内,且所述第一身份不属于覆盖外的副链路同步信号身份集合,且所述第一同步信号使用所述第二发送定时信息以外的定时信息所指示的时隙,生成所述第二同步信号的序列的副链路同步信号身份是所述第一身份与336的和。
作为该实施例的一个子实施例,所述覆盖外的副链路同步信号身份集合是所述i_oon所标识的集合。
作为该实施例的一个子实施例,所述覆盖外的副链路同步信号身份集合所包括的副链路同步信号身份为336到671的整数。
作为该实施例的一个子实施例,所述第一消息指示所述第二发送定时信息。
作为该实施例的一个子实施例,SidelinkPreconfigNR指示所述第二发送定时信息。
作为该实施例的一个子实施例,所述第二发送定时信息是sl-SSB-TimeAllocation3。
实施例11
实施例11示例了根据本申请的一个实施例的第一消息被用于指示第二同步信号的发送定时信息的示意图,如附图11所示。
作为一个实施例,所述第一消息包括sl-SSB-TimeAllocation1,所述sl-SSB-TimeAllocation1指示所述第二同步信号的发送定时信息。
作为该实施例的一个子实施例,所述sl-SSB-TimeAllocation1指示在一个周期内发送的副链路SSB的个数。
作为该实施例的一个子实施例,所述sl-SSB-TimeAllocation1指示从副链路SSB周期的开始到第一个副链路SSB的时隙偏移量。
作为该实施例的一个子实施例,所述sl-SSB-TimeAllocation1指示多个相邻的副链路SSB的时隙间隔(interval)。
作为该实施例的一个子实施例,所述副链路SSB包括所述第二同步信号。
作为一个实施例,所述第一消息包括sl-SSB-TimeAllocation2,所述sl-SSB-TimeAllocation2指示所述第二同步信号的发送定时信息。
作为该实施例的一个子实施例,所述sl-SSB-TimeAllocation2指示在一个周期内发送的副链路SSB的个数。
作为该实施例的一个子实施例,所述sl-SSB-TimeAllocation2指示从副链路SSB周期的开始到第一个副链路SSB的时隙偏移量。
作为该实施例的一个子实施例,所述sl-SSB-TimeAllocation2指示多个相邻的副链路SSB的时隙间隔(interval)。
作为该实施例的一个子实施例,所述副链路SSB包括所述第二同步信号。
作为一个实施例,所述第一消息包括sl-SSB-TimeAllocation3,所述sl-SSB-TimeAllocation3指示所述第二同步信号的发送定时信息。
作为该实施例的一个子实施例,所述sl-SSB-TimeAllocation3指示在一个周期内发送的副链路SSB的个数。
作为该实施例的一个子实施例,所述sl-SSB-TimeAllocation3指示从副链路SSB周期的开始到第一个副链路SSB的时隙偏移量。
作为该实施例的一个子实施例,所述sl-SSB-TimeAllocation3指示多个相邻的副链路SSB的时隙间隔(interval)。
作为该实施例的一个子实施例,所述副链路SSB包括所述第二同步信号。
实施例12
实施例12示例了根据本申请的一个实施例的第二发送定时信息被用于确定第二同步信号的副链路同步信号身份的示意图,如附图12所示。
作为一个实施例,所述第二同步信号的副链路同步信号身份是SLSSID。
作为一个实施例,所述第二同步信号的副链路同步信号身份是SLSS ID。
作为一个实施例,所述第二同步信号的副链路同步信号身份是
Figure PCTCN2022100952-appb-000009
作为一个实施例,所述第二同步信号的副链路同步信号身份包括SLSSID。
作为一个实施例,所述第二同步信号的副链路同步信号身份包括SLSS ID。
作为一个实施例,所述第二同步信号的副链路同步信号身份包括
Figure PCTCN2022100952-appb-000010
作为一个实施例,所述第一节点接收第一副链路主信息块,所述第一副链路主信息块伴随所述第一同步信号发送。
作为一个实施例,所述第一节点接收第一副链路主信息块,所述第一副链路主信息块与所述第一同步信号的发送者相同。
作为一个实施例,所述第一同步信号所对应的副链路同步信号身份是第一身份。
作为一个实施例,所述第一副链路主信息块不指示在覆盖内,且所述第一身份不属于覆盖外的副链路同步信号身份集合,且所述第一同步信号使用所述第二发送定时信息所指示的时隙,所述第二同步信号的副链路同步信号身份是337。
作为该实施例的一个子实施例,所述覆盖外的副链路同步信号身份集合是所述i_oon所标识的集合。
作为该实施例的一个子实施例,所述覆盖外的副链路同步信号身份集合所包括的副链路同步信号身份为336到671的整数。
作为该实施例的一个子实施例,所述第一消息指示所述第二发送定时信息。
作为该实施例的一个子实施例,SidelinkPreconfigNR指示所述第二发送定时信息。
作为该实施例的一个子实施例,所述第二发送定时信息是sl-SSB-TimeAllocation3。
作为一个实施例,所述第一副链路主信息块不指示在覆盖内,且所述第一身份不属于覆盖外的副链路同步信号身份集合,且所述第一同步信号使用所述第二发送定时信息以外的定时信息所指示的时隙,所述第二同步信号的副链路同步信号身份是所述第一身份的取值与336的和。
作为该实施例的一个子实施例,所述覆盖外的副链路同步信号身份集合是所述i_oon所标识的集合。
作为该实施例的一个子实施例,所述覆盖外的副链路同步信号身份集合所包括的副链路同步信号身份为336到671的整数。
作为该实施例的一个子实施例,所述第一消息指示所述第二发送定时信息。
作为该实施例的一个子实施例,SidelinkPreconfigNR指示所述第二发送定时信息。
作为该实施例的一个子实施例,所述第二发送定时信息是sl-SSB-TimeAllocation3。
实施例13
实施例13示例了根据本申请的一个实施例的第一消息是否包括第二发送定时信息被用于确定第二副链路主信息块是否指示在覆盖内的示意图,如附图13所示。
作为一个实施例,所述第一消息包括所述第二发送定时信息,所述第二副链路主信息块不指示在覆盖内;所述第一消息不包括所述第二发送定时信息,所述第二副链路主信息块指示在覆盖内。
作为该实施例的一个子实施例,所述第二副链路主信息块的inCoverage域为true指示在覆盖内。
作为该实施例的一个子实施例,所述第二副链路主信息块的inCoverage域为false不指示在覆盖内。
作为该实施例的一个子实施例,所述第二发送定时信息是sl-SSB-TimeAllocation3。
作为该实施例的一个子实施例,所述第一消息包括SIB12。
作为该实施例的一个子实施例,所述第一消息包括转发的SIB12。
作为该实施例的一个子实施例,所述第一消息包括RRCReconfiguration。
作为该实施例的一个子实施例,所述第一消息通过直接路径传输。
作为该实施例的一个子实施例,所述第一消息不通过直接路径传输。
作为一个实施例,所述第一消息包括所述第二发送定时信息,所述第二副链路主信息块指示在覆盖内;所述第一消息不包括所述第二发送定时信息,所述第二副链路主信息块不指示在覆盖内。
作为该实施例的一个子实施例,所述第二副链路主信息块的inCoverage域为true指示在覆盖内。
作为该实施例的一个子实施例,所述第二副链路主信息块的inCoverage域为false不指示在覆盖内。
作为该实施例的一个子实施例,所述第二发送定时信息是sl-SSB-TimeAllocation3。
作为该实施例的一个子实施例,所述第一消息包括SIB12。
作为该实施例的一个子实施例,所述第一消息包括转发的SIB12。
作为该实施例的一个子实施例,所述第一消息包括RRCReconfiguration。
作为该实施例的一个子实施例,所述第一消息通过直接路径传输。
作为该实施例的一个子实施例,所述第一消息不通过直接路径传输。
作为一个实施例,以上方法的好处在于,根据是否包括第二发送定时信息确定第二副链路主信息块是否指示在覆盖内有利于增加灵活性。
实施例14
实施例14示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;如附图14所示。在附图14中,第一节点中的处理装置1400包括第一接收机1401和第一发射机1402。在实施例14中,
第一接收机1401,接收第一信号,所述第一信号包括第一消息;根据至少所述第一消息是否通过直接路径传输确定同步参考;所述第一消息用于指示第一副链路频率列表,所述第一副链路频率列表包括第一频率,所述第一频率用于副链路通信;接收来自被确定的所述同步参考的第一同步信号;
第一发射机1402,发送第二同步信号;针对所述第一同步信号的接收定时被用于确定所述第二同步信号的发送定时。
作为一个实施例,所述第一接收机1401,执行小区搜索以确定处于至少第一小区覆盖内;
其中,所述第一消息不通过直接路径传输,所述第一消息指示的同步优先顺序是基站,所述被确定的所述同步参考是一个同步参考UE。
作为一个实施例,所述第一接收机1401,接收第一副链路主信息块,所述第一副链路主信息块指示是否在覆盖内;所述第一同步信号所对应的同步信号身份是第一身份;所述第一副链路主信息块和所述第一身份被用于确定生成所述第二同步信号的序列;
其中,所述第一消息被用于指示所述第二同步信号的发送定时信息,且所述第二同步信号的发送定时与所述第一同步信号的发送定时不同。
作为一个实施例,所述第一接收机1401,未能在第一频率上检测到小区;所述第一消息不通过直接路径传输;所述第一同步信号的发送者被确定为同步参考;所述被确定的所述同步参考是一个同步参考UE;所述第一消息指示的同步优先顺序是基站;
其中,所述第一消息包括第一发送定时信息和第二发送定时信息;所述第一发送定时信息被用于指示所述第二同步信号的发送定时信息;所述第二发送定时信息被用于确定所述第二同步信号的副链路同步信号身份;所述第二发送定时信息与GNSS有关。
作为一个实施例,所述第一接收机1401,执行小区搜索以确定不处于第一小区覆盖内,处于第二小区的覆盖内;所述第一小区是所述第一消息的生成者;所述第一小区是所述第一节点1400的PCell或服务小区;所述第二小区是所述第一节点1400的PCell或服务小区以外的小区;所述第一小区和所述第二小区都在所述第一频率上;所述第一频率是主频率;
其中,所述第一消息不通过直接路径传输,所述第一消息指示的同步优先顺序是基站,所述被确定的所述同步参考是所述第二小区。
作为一个实施例,所述第一接收机1401,执行小区搜索以确定在所述第一频率的覆盖内;所述第一频率是主频率或从频率以外的频率;
其中,所述第一消息不通过直接路径传输,所述被确定的所述同步参考是所述第一频率。
作为一个实施例,所述第一发射机1402,发送第二副链路主信息块;所述第二副链路主信息块伴随所述第二同步信号发送;所述第一消息是否通过直接路径传输被用于确定所述第二副链路主信息块是否指示覆盖所述内;
其中,所述第一消息是否通过直接路径传输被用于确定所述第二副链路主信息块是否指示覆盖内包括:
当所述第一节点1400在所述第一频率处于覆盖内且所述第一消息不通过直接路径传输,所述第二副链路主信息块不指示在覆盖内;当所述第一节点1400在所述第一频率处于覆盖内,且所述第一消息通过直接路径传输,所述第二副链路主信息块指示在覆盖内。
作为一个实施例,所述第一发射机1402,发送第二副链路主信息块;所述第二副链路主信息块伴随所述第二同步信号发送;
其中,GNSS被确定为同步参考;所述第一消息包括第二发送定时信息;所述第二发送定时信息被用于指示所述第二同步信号的发送定时信息;所述第一消息是否包括所述第二发送定时信息被用于确定所述第二副链路主信息块是否指示在覆盖内。
作为一个实施例,所述第一节点是一个用户设备(UE)。
作为一个实施例,所述第一节点是一个支持大时延差的终端。
作为一个实施例,所述第一节点是一个支持NTN的终端。
作为一个实施例,所述第一节点是一个飞行器。
作为一个实施例,所述第一节点是一个车载终端。
作为一个实施例,所述第一节点是一个中继。
作为一个实施例,所述第一节点是一个船只。
作为一个实施例,所述第一节点是一个物联网终端。
作为一个实施例,所述第一节点是一个工业物联网的终端。
作为一个实施例,所述第一节点是一个支持低时延高可靠传输的设备。
作为一个实施例,所述第一节点是副链路通信节点。
作为一个实施例,所述第一接收机1401包括实施例4中的天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,或数据源467中的至少之一。
作为一个实施例,所述第一发射机1402包括实施例4中的天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,或数据源467中的至少之一。
实施例15
实施例15示例了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;如附图15所示。在附图15中,第二节点中的处理装置1500包括第二发射机1502和第二接收机1501。在实施例15中,
第二接收机1501,接收第二信号,所述第二信号包括第一消息;所述第一消息用于指示第一副链路频率列表,所述第一副链路频率列表包括第一频率,所述第一频率用于副链路通信;
第二发射机1502,发送第一信号和第一同步信号,所述第一信号包括所述第一消息;所述第一信号的 接收者,根据至少所述第一消息是否通过直接路径传输确定同步参考;
所述第一信号的接收者,发送第二同步信号;所述第一同步信号的接收定时被用于确定所述第二同步信号的发送定时。
作为一个实施例,所述第二发射机1502,发送第一副链路主信息块,所述第一副链路主信息块指示是否在覆盖内;所述第一同步信号所对应的同步信号身份是第一身份;所述第一副链路主信息块和所述第一身份被用于确定生成所述第二同步信号的序列;
其中,所述第一消息被用于指示所述第二同步信号的发送定时信息,且所述第二同步信号的发送定时与所述第一同步信号的发送定时不同。
作为一个实施例,所述第二接收机1501,接收第二同步信号和第二副链路主信息块,所述第二节点1500向所述第二同步信号和所述第二副链路主信息块的发送者提供中继服务;当第一条件集合被满足时,所述第二同步信号和所述第二副链路主信息块的发送者不被确定为同步参考;所述第一消息指示的同步优先顺序是基站。
作为一个实施例,所述第二节点是卫星。
作为一个实施例,所述第二节点是UE(用户设备)。
作为一个实施例,所述第二节点是IoT节点。
作为一个实施例,所述第二节点是可穿戴节点。
作为一个实施例,所述第二节点是中继。
作为一个实施例,所述第二节点是接入点。
作为一个实施例,所述第二节点是副链路通信节点。
作为一个实施例,所述第二发射机1502包括实施例4中的天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476中的至少之一。
作为一个实施例,所述第二接收机1501包括实施例4中的天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IoT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑,卫星通信设备,船只通信设备,NTN用户设备等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点),NTN基站,卫星设备,飞行平台设备等无线通信设备。
本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (18)

  1. 一种被用于无线通信的第一节点,其中,包括:
    第一接收机,接收第一信号,所述第一信号包括第一消息;根据至少所述第一消息是否通过直接路径传输确定同步参考;所述第一消息用于指示第一副链路频率列表,所述第一副链路频率列表包括第一频率,所述第一频率用于副链路通信;接收来自被确定的所述同步参考的第一同步信号;
    第一发射机,发送第二同步信号;针对所述第一同步信号的接收定时被用于确定所述第二同步信号的发送定时。
  2. 根据权利要求1所述的第一节点,其特征在于,包括:
    所述第一接收机,执行小区搜索以确定处于至少第一小区覆盖内;
    其中,所述第一消息不通过直接路径传输,所述第一消息指示的同步优先顺序是基站,所述被确定的所述同步参考是一个同步参考UE。
  3. 根据权利要求1或2所述的第一节点,其特征在于,包括:
    所述第一接收机,接收第一副链路主信息块,所述第一副链路主信息块指示是否在覆盖内;所述第一同步信号所对应的同步信号身份是第一身份;所述第一副链路主信息块和所述第一身份被用于确定生成所述第二同步信号的序列;
    其中,所述第一消息被用于指示所述第二同步信号的发送定时信息,且所述第二同步信号的发送定时与所述第一同步信号的发送定时不同。
  4. 根据权利要求1所述的第一节点,其特征在于,包括:
    所述第一接收机,未能在第一频率上检测到小区;所述第一消息不通过直接路径传输;所述第一同步信号的发送者被确定为同步参考;所述被确定的所述同步参考是一个同步参考UE;所述第一消息指示的同步优先顺序是基站;
    其中,所述第一消息包括第一发送定时信息和第二发送定时信息;所述第一发送定时信息被用于指示所述第二同步信号的发送定时信息;所述第二发送定时信息被用于确定所述第二同步信号的副链路同步信号身份;所述第二发送定时信息与GNSS有关。
  5. 根据权利要求1所述的第一节点,其特征在于,包括:
    所述第一接收机,执行小区搜索以确定不处于第一小区覆盖内,处于第二小区的覆盖内;所述第一小区是所述第一消息的生成者;所述第一小区是所述第一节点的PCell或服务小区;所述第二小区是所述第一节点的PCell或服务小区以外的小区;所述第一小区和所述第二小区都在所述第一频率上;所述第一频率是主频率;
    其中,所述第一消息不通过直接路径传输,所述第一消息指示的同步优先顺序是基站,所述被确定的所述同步参考是所述第二小区。
  6. 根据权利要求1所述的第一节点,其特征在于,包括:
    所述第一接收机,执行小区搜索以确定在所述第一频率的覆盖内;所述第一频率是主频率或从频率以外的频率;
    其中,所述第一消息不通过直接路径传输,所述被确定的所述同步参考是所述第一频率。
  7. 根据权利要求1至6中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一发射机,发送第二副链路主信息块;所述第二副链路主信息块伴随所述第二同步信号发送;所述第一消息是否通过直接路径传输被用于确定所述第二副链路主信息块是否指示覆盖所述内;
    其中,所述第一消息是否通过直接路径传输被用于确定所述第二副链路主信息块是否指示覆盖内包括:
    当所述第一节点在所述第一频率处于覆盖内且所述第一消息不通过直接路径传输,所述第二副链路主信息块不指示在覆盖内;当所述第一节点在所述第一频率处于覆盖内,且所述第一消息通过直接路径传输,所述第二副链路主信息块指示在覆盖内。
  8. 根据权利要求1至6中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一发射机,发送第二副链路主信息块;所述第二副链路主信息块伴随所述第二同步信号发送;
    其中,GNSS被确定为同步参考;所述第一消息包括第二发送定时信息;所述第二发送定时信息被用于指示所述第二同步信号的发送定时信息;所述第一消息是否包括所述第二发送定时信息被用于确定所述第 二副链路主信息块是否指示在覆盖内。
  9. 根据权利要求1至8中任一权利要求所述的第一节点,其特征在于,
    所述第一节点处于RRC_CONNECTED状态。
  10. 根据权利要求1至9中任一权利要求所述的第一节点,其特征在于,
    所述第一消息是SIB12(系统消息块12);所述第一信号通过副链路传输;不通过直接路径传输包括通过中继传输。
  11. 根据权利要求1至10中任一权利要求所述的第一节点,其特征在于,
    所述第一同步信号和所述第二同步信号处于相同的频率。
  12. 根据权利要求1至10中任一权利要求所述的第一节点,其特征在于,
    所述第一同步信号和所述第二同步信号处于不相同的频率。
  13. 根据权利要求1至12中任一权利要求所述的第一节点,其特征在于,
    作为一个实施例,所述第二同步信号被用于指示所述同步参考的类型,当所述第二同步信号所对应的副链路同步信号身份等于0,指示同步参考的类型是GNSS;当所述第二同步信号所对应的副链路同步信号身份不等于0,指示同步参考的类型不是GNSS。
  14. 根据权利要求7或8所述的第一节点,其特征在于,
    所述第二副链路主信息块包括指示副链路TDD配置的域。
  15. 根据权利要求1至14中任一权利要求所述的第一节点,其特征在于,
    所述第二同步信号的发送时刻等于所述第一同步信号的接收时刻和第一时间偏移量的和,其中第一时间偏移量为非0实数;所述第一时间偏移量是所述第一消息指示的。
  16. 一种被用于无线通信的第二节点,其中,包括:
    第二接收机,接收第二信号,所述第二信号包括第一消息;所述第一消息用于指示第一副链路频率列表,所述第一副链路频率列表包括第一频率,所述第一频率用于副链路通信;
    第二发射机,发送第一信号和第一同步信号,所述第一信号包括所述第一消息;所述第一信号的接收者,根据至少所述第一消息是否通过直接路径传输确定同步参考;
    所述第一信号的接收者,发送第二同步信号;所述第一同步信号的接收定时被用于确定所述第二同步信号的发送定时。
  17. 一种被用于无线通信的第一节点中的方法,其中,包括:
    接收第一信号,所述第一信号包括第一消息;根据至少所述第一消息是否通过直接路径传输确定同步参考;所述第一消息用于指示第一副链路频率列表,所述第一副链路频率列表包括第一频率,所述第一频率用于副链路通信;接收来自被确定的所述同步参考的第一同步信号;
    发送第二同步信号;针对所述第一同步信号的接收定时被用于确定所述第二同步信号的发送定时。
  18. 一种被用于无线通信的第二节点中的方法,其中,包括:
    接收第二信号,所述第二信号包括第一消息;所述第一消息用于指示第一副链路频率列表,所述第一副链路频率列表包括第一频率,所述第一频率用于副链路通信;
    发送第一信号和第一同步信号,所述第一信号包括所述第一消息;所述第一信号的接收者,根据至少所述第一消息是否通过直接路径传输确定同步参考;
    所述第一信号的接收者,发送第二同步信号;所述第一同步信号的接收定时被用于确定所述第二同步信号的发送定时。
PCT/CN2022/100952 2021-06-28 2022-06-24 一种被用于无线通信的方法和设备 WO2023274045A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/539,309 US20240114470A1 (en) 2021-06-28 2023-12-14 Method and device for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110719734.5A CN115604784A (zh) 2021-06-28 2021-06-28 一种被用于无线通信的方法和设备
CN202110719734.5 2021-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/539,309 Continuation US20240114470A1 (en) 2021-06-28 2023-12-14 Method and device for wireless communication

Publications (1)

Publication Number Publication Date
WO2023274045A1 true WO2023274045A1 (zh) 2023-01-05

Family

ID=84690055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100952 WO2023274045A1 (zh) 2021-06-28 2022-06-24 一种被用于无线通信的方法和设备

Country Status (3)

Country Link
US (1) US20240114470A1 (zh)
CN (1) CN115604784A (zh)
WO (1) WO2023274045A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170142676A1 (en) * 2015-07-06 2017-05-18 Telefonaktiebolaget L M Ericsson (Publ) Method and Apparatus for Determining Synchronisation References
CN109155907A (zh) * 2018-08-06 2019-01-04 北京小米移动软件有限公司 车联网同步方法及装置
CN112544110A (zh) * 2018-08-10 2021-03-23 中兴通讯股份有限公司 链路通信中用于同步的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170142676A1 (en) * 2015-07-06 2017-05-18 Telefonaktiebolaget L M Ericsson (Publ) Method and Apparatus for Determining Synchronisation References
CN107852682A (zh) * 2015-07-06 2018-03-27 瑞典爱立信有限公司 用于确定同步参考的方法和设备
CN109155907A (zh) * 2018-08-06 2019-01-04 北京小米移动软件有限公司 车联网同步方法及装置
CN112544110A (zh) * 2018-08-10 2021-03-23 中兴通讯股份有限公司 链路通信中用于同步的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Transport option for public safety discovery", 3GPP DRAFT; R2-151285, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Brastislava, Slovakia; 20150420 - 20150424, 10 April 2015 (2015-04-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050953011 *

Also Published As

Publication number Publication date
US20240114470A1 (en) 2024-04-04
CN115604784A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
WO2021088609A1 (zh) 一种被用于无线通信的方法和设备
WO2022194113A1 (zh) 一种被用于无线通信的方法和设备
WO2022111404A1 (zh) 一种被用于无线通信的方法和设备
WO2023274045A1 (zh) 一种被用于无线通信的方法和设备
CN116266918A (zh) 一种被用于无线通信的方法和设备
WO2023061204A1 (zh) 一种被用于无线通信的方法和设备
WO2023046073A1 (zh) 一种被用于无线通信的方法和设备
WO2023160415A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024083056A1 (zh) 一种被用于无线通信的方法和设备
US20230239951A1 (en) Method and device for wireless communication
WO2024055915A1 (zh) 一种被用于无线通信的方法和设备
WO2024078431A1 (zh) 一种被用于无线通信的方法和设备
US20240089772A1 (en) Method and device for wireless communication
WO2024140675A1 (zh) 一种被用于无线通信的方法和设备
WO2024027612A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023231973A1 (zh) 一种被用于无线通信的方法和设备
WO2023040922A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023072046A1 (zh) 一种被用于无线通信的方法和设备
WO2023174229A1 (zh) 一种被用于无线通信的方法和设备
WO2024120139A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
US20230232485A1 (en) Method and device for wireless communication
WO2023186162A1 (zh) 一种被用于无线通信的方法和设备
US20240260082A1 (en) Method and device for wireless communication
US20240063967A1 (en) Method and device for wireless communication
US20240349102A1 (en) Method and device for wireless communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE