WO2021129248A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2021129248A1
WO2021129248A1 PCT/CN2020/129962 CN2020129962W WO2021129248A1 WO 2021129248 A1 WO2021129248 A1 WO 2021129248A1 CN 2020129962 W CN2020129962 W CN 2020129962W WO 2021129248 A1 WO2021129248 A1 WO 2021129248A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
signal
time length
node
length
Prior art date
Application number
PCT/CN2020/129962
Other languages
English (en)
French (fr)
Inventor
蒋琦
刘铮
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2021129248A1 publication Critical patent/WO2021129248A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • H04W48/06Access restriction performed under specific conditions based on traffic conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • This application relates to a transmission method and device in a wireless communication system, and in particular to a transmission method and device in a non-terrestrial network (NTN, Non-Terrestrial Networks) in wireless communication.
  • NTN non-terrestrial network
  • NTN Non-Terrestrial Networks
  • WI Wireless Fidelity
  • the user equipment when the user equipment (UE, User Equipment) itself has positioning capabilities and can estimate the transmission delay with the satellite, the user equipment can automatically advance the transmission when sending the uplink signal to the satellite, and realize the self-determination and Adjust the TA (Timing Advance) operation to ensure that the signal arriving at the satellite can align with the satellite's own timing.
  • UE User Equipment
  • this application provides a solution.
  • the NTN scenario is only used as an example of an application scenario of the solution provided by this application; this application is also applicable to scenarios such as terrestrial networks to achieve similar technical effects in the NTN scenario.
  • this application is also applicable to scenarios where there is a UAV (Unmanned Aerial Vehicle, unmanned aerial vehicle) or a network of Internet of Things devices, for example, to achieve technical effects similar to NTN scenarios.
  • UAV Unmanned Aerial Vehicle, unmanned aerial vehicle
  • a network of Internet of Things devices for example
  • different scenarios including but not limited to NTN scenarios and terrestrial network scenarios
  • adopting a unified solution can also help reduce hardware complexity and cost.
  • This application discloses a method used in a first node of wireless communication, including:
  • the first information includes a first parameter; both the first signal and the third signal are used to initiate random access, and the detection of the second signal is used to determine the origin of the first signal.
  • the initiated random access is unsuccessful; the second signal carries a first indication, and the first indication and the first parameter are used together to determine the first time length; the second time window starts in the time domain The time interval between the start time and the end time of the first time window in the time domain is equal to the second time length; the first time length is used to determine the second time length.
  • the advantage of the above method is that for the NTN system, the transmission delay caused by the long distance between the base station and the UE should not affect the BI indication, that is, for the UE, it is actually after sending the PRACH to receiving the BI. In the previous period of time, there will still be more opportunities to retransmit PRACH, and if the UE does not retransmit PRACH during this period of time, it is equivalent to that the UE is performing a fallback; in this case, according to the received The back-off time determined by the value of BI needs to take this period of natural delay caused by RTT (Round Trip Time) into consideration.
  • RTT Red Trip Time
  • the first time length is equal to K1 milliseconds
  • the second time length is equal to K2 milliseconds
  • the K1 is a non-negative integer
  • the K2 is the first node between 0 and K1 according to A non-negative integer randomly selected uniformly.
  • the first indication is used to indicate a third time length
  • the first time length is equal to the difference between the third time length and a target time length
  • the target time length is compared with the first time length.
  • One parameter is associated.
  • the advantage of the above method is that RTT needs to be removed from the back-off time indicated by the received BI, that is, from the system side, after sending the first signal, the first node has already waited for one RTT time, the above time should not be included in the fallback time.
  • the first indication is used to indicate a third time length; when the difference between the third time length and the target time length is not less than 0, the first time length is equal to the third time length.
  • the difference between the time length and the target time length; when the difference between the third time length and the target time length is less than 0, the first time length is equal to 0.
  • the advantage of the above method is that the existing set of backoff parameter values (Backoff Parameter Values) is still used; when the value indicated by BI is less than RTT, the first node considers that no additional backoff is required, when When the value indicated by BI is greater than RTT, the extra value is used as the back-off time; the above method takes the influence of transmission delay into consideration in the design of BI under the premise of minor changes to the protocol.
  • Backoff Parameter Values Backoff Parameter Values
  • the first indication is used to indicate the first time length from a first time length set, the first time length set includes Q1 first-type time lengths, and the first time length set includes Q1 time lengths of the first type.
  • the time length is one of the Q1 first type time lengths; the first time length set is one of the M1 candidate time length sets; the first parameter is used to follow
  • the first time length set is determined from the M1 candidate time length sets; the Q1 is a positive integer greater than 1, and the M1 is a positive integer greater than 1.
  • the advantage of the above method is that the M1 candidate time length sets respectively correspond to M1 different RTTs, and then correspond to M1 different satellite types or satellite heights; the essence of the above method is to configure different satellite types.
  • Different BI parameter value tables are created, which can indicate the value of BI more flexibly and effectively.
  • the first parameter is related to the height of the sender of the second signal, or the first parameter is related to the type of the sender of the second signal, or the first parameter It is related to the distance from the first node to the sender of the second signal.
  • the advantage of the above method is that the interpretation of BI is related to RTT.
  • the fourth signal is used to determine the first time unit, the first signal is sent in the second time unit, the start time of the first time unit and the start of the second time unit
  • the length of the time interval between the times is not less than the target time length; the start time of the second time unit is earlier than the start time of the first time unit.
  • the feature of the above method is that the first node determines the downlink timing according to the fourth signal, and according to the downlink timing in combination with its own positioning capability, sends the first signal after the pre-compensation timing advances.
  • the fifth signal is used to determine a first target time window, and the sender of the fifth signal detects the first signal in the first target time window.
  • the advantage of the above method is that the second node in this application informs the first node of the receiving time slot (Slot) of the first signal through the fifth signal, and then when the first signal is received When a node performs TA pre-compensation, it can determine the transmission time slot in which the first signal is actually transmitted.
  • Slot receiving time slot
  • This application discloses a method used in a second node of wireless communication, including:
  • the first information includes a first parameter; both the first signal and the third signal are used to initiate random access; the sender of the first signal is the first node, and the first node
  • the detection of the second signal is used by the first node to determine that the random access initiated by the first signal is unsuccessful; the second signal carries a first indication, the first indication and the first indication
  • a parameter is jointly used to determine the first time length; the first node detects the second signal in the first time window, and the first node sends the third signal in the second time window; so The time interval between the start time of the second time window in the time domain and the end time of the first time window in the time domain is equal to a second time length; the first time length is used to determine the second time length of time.
  • the first time length is equal to K1 milliseconds
  • the second time length is equal to K2 milliseconds
  • the K1 is a non-negative integer
  • the K2 is the first node between 0 and K1 according to A non-negative integer randomly selected uniformly.
  • the first indication is used to indicate a third time length
  • the first time length is equal to the difference between the third time length and a target time length
  • the target time length is compared with the first time length.
  • One parameter is associated.
  • the first indication is used to indicate a third time length; when the difference between the third time length and the target time length is not less than 0, the first time length is equal to the third time length.
  • the difference between the time length and the target time length; when the difference between the third time length and the target time length is less than 0, the first time length is equal to 0.
  • the first indication is used to indicate the first time length from a first time length set, the first time length set includes Q1 first-type time lengths, and the first The time length is one of the Q1 first type time lengths; the first time length set is one of the M1 candidate time length sets; the first parameter is used to follow The first time length set is determined from the M1 candidate time length sets.
  • the first parameter is related to the height of the sender of the second signal, or the first parameter is related to the type of the sender of the second signal, or the first parameter It is related to the distance from the first node to the sender of the second signal.
  • the fourth signal is used to determine the first time unit, the first signal is sent in the second time unit, the start time of the first time unit and the start of the second time unit
  • the length of the time interval between the times is not less than the target time length; the start time of the second time unit is earlier than the start time of the first time unit.
  • the fifth signal is used to determine a target time window, and the second node receives the first signal in the target time window.
  • This application discloses a first node used for wireless communication, which is characterized in that it includes:
  • the first receiver receives the first information
  • the first transmitter sends the first signal
  • the second receiver detects the second signal in the first time window
  • the second transmitter sends the third signal in the second time window
  • the first information includes a first parameter; both the first signal and the third signal are used to initiate random access, and the detection of the second signal is used to determine the origin of the first signal.
  • the initiated random access is unsuccessful; the second signal carries a first indication, and the first indication and the first parameter are used together to determine the first time length; the second time window starts in the time domain The time interval between the start time and the end time of the first time window in the time domain is equal to the second time length; the first time length is used to determine the second time length.
  • This application discloses a second node used for wireless communication, which is characterized in that it includes:
  • the third transmitter sends the first information
  • the third receiver detects the first signal
  • the fourth transmitter sends the second signal
  • the fourth receiver detects the third signal
  • the first information includes a first parameter; both the first signal and the third signal are used to initiate random access; the sender of the first signal is the first node, and the first node
  • the detection of the second signal is used by the first node to determine that the random access initiated by the first signal is unsuccessful; the second signal carries a first indication, the first indication and the first indication
  • a parameter is jointly used to determine the first time length; the first node detects the second signal in the first time window, and the first node sends the third signal in the second time window; so The time interval between the start time of the second time window in the time domain and the end time of the first time window in the time domain is equal to a second time length; the first time length is used to determine the second time length of time.
  • this application has the following advantages:
  • the transmission delay caused by the long distance between the base station and the UE should not affect the BI indication, that is, for the UE, it will still be in the period between sending the PRACH and receiving the BI.
  • the fallback time is determined according to the value of the received BI Need to take into account the natural delay caused by RTT in this paragraph;
  • RTT needs to be removed from the back-off time indicated by the received BI, that is, from the system side, after sending the first signal, the first node has waited for an RTT time, and the above time should not be changed Included in the fallback time; at the same time, the existing set of fallback parameter values are still used; when the value indicated by BI is less than RTT, the first node considers that no additional fallback is required, and when the value indicated by BI is greater than RTT When the time, the extra value is used as the back-off time; the above method takes the influence of transmission delay into consideration in the design of BI under the premise of minor changes to the protocol;
  • the M1 candidate time length sets correspond to M1 different RTTs, and then to M1 different satellite types or satellite heights; the essence of the above method is to configure different BI parameter value tables for different satellite types, and then You can flexibly and effectively indicate the value of BI.
  • Fig. 1 shows a processing flowchart of a first node according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Fig. 5 shows a flow chart of the first signal according to an embodiment of the present application
  • Fig. 6 shows a schematic diagram of a first time window and a second time window according to an embodiment of the present application
  • Fig. 7 shows a schematic diagram of a first time length set according to an embodiment of the present application
  • Fig. 8 shows a schematic diagram of transmission delay according to an embodiment of the present application.
  • Fig. 9 shows a schematic diagram of a first time unit and a second time unit according to an embodiment of the present application.
  • Fig. 10 shows a structural block diagram used in the first node according to an embodiment of the present application
  • Fig. 11 shows a structural block diagram used in the second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flowchart of the first node, as shown in FIG. 1.
  • each box represents a step.
  • the first node in this application receives the first information in step 101; sends the first signal in step 102; detects the second signal in the first time window in step 103; and in step 104 The third signal is sent in the second time window.
  • the first information includes a first parameter; both the first signal and the third signal are used to initiate random access, and the detection of the second signal is used to determine the first parameter.
  • the random access initiated by a signal is unsuccessful; the second signal carries a first indication, and the first indication and the first parameter are used together to determine the first time length; the second time window is in time The time interval between the start time of the domain and the end time of the first time window in the time domain is equal to the second time length; the first time length is used to determine the second time length.
  • the channel carrying the first information is a broadcast channel.
  • the signaling that carries the first information is higher layer (Higher Layer) signaling.
  • the signaling that carries the first information is RRC (Radio Resource Control, radio resource control) signaling.
  • RRC Radio Resource Control, radio resource control
  • the SIB System Information Block
  • the SIB bears the first information.
  • the first information is cell-specific.
  • the first parameter is used to determine a target time length
  • the first indication is used to indicate a third time length
  • the target time length and the third time length are jointly used to determine the target time length.
  • the first length of time is used to determine a target time length
  • the unit of the target time length is milliseconds.
  • the unit of the third time length is milliseconds.
  • the unit of the first time length is milliseconds.
  • the target time length is equal to T1 milliseconds
  • the T1 is equal to the quotient of L1 divided by 300,000
  • the L1 is the distance from the sender of the second signal to the ground.
  • the target time length is equal to T1 milliseconds
  • the T1 is equal to the quotient of 2*L1 divided by 300,000
  • the L1 is the distance from the sender of the second signal to the ground.
  • the unit of L1 is meters.
  • the target time length is equal to T2 milliseconds
  • the T2 is equal to the quotient of L2 divided by 300,000
  • the L2 is between the sender of the second signal and the first node
  • the first node estimates the L2 according to the first parameter and the positioning capability of the first node.
  • the target time length is equal to T2 milliseconds
  • the T2 is equal to the quotient of 2*L2 divided by 300,000
  • the L2 is the sender of the second signal to the first node
  • the first node estimates the L2 according to the first parameter and the positioning capability of the first node.
  • the unit of L2 is meters.
  • the physical layer channel carrying the first signal is PRACH.
  • the physical layer channel carrying the third signal is PRACH.
  • it is the Preamble that generates the first signal.
  • it is the Preamble that generates the third signal.
  • the second signal is a feedback for the first signal.
  • the second signal is RAR.
  • the first time window is a random access response window (RAR Window).
  • RAR Window random access response window
  • the first time window includes a positive integer number of consecutive time slots in the time domain.
  • the second time window includes a positive integer number of consecutive time slots in the time domain.
  • the second signal includes PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • the PDCCH included in the second signal is scrambled by RA-RNTI (Random Access Radio Network Temporary Identifier).
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • the second signal includes PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the PDSCH included in the second signal includes a MAC (Medium Access Control) subheader, and the MAC subheader includes the first indication.
  • MAC Medium Access Control
  • the PDSCH included in the second signal includes a MAC subPDU
  • the MAC subPDU includes the first indication
  • the above sentence means that the detection of the second signal for the second signal is used to determine that the random access initiated by the first signal is unsuccessful includes: the first node is not in the first time window The second signal is correctly received, and the first node considers that the random access initiated by the first signal is unsuccessful.
  • the above sentence means that the detection of the second signal is used to determine that the random access initiated by the first signal is unsuccessful includes: the first node only Upon receiving the first indication in the second signal, the first node considers that the random access initiated by the first signal is unsuccessful.
  • the above sentence means that the detection of the second signal is used to determine that the random access initiated by the first signal is unsuccessful includes: the first node receives in the first time window To the second signal, the MAC subheader carried by the second signal cannot find the same random access preamble sequence identifier (Random Access Preamble identifiers) as the PREAMBLE_INDEX used by the first signal, and the first The node considers that the random access initiated by the first signal is unsuccessful.
  • the above sentence means that the detection of the second signal used to determine that the random access initiated by the first signal is unsuccessful includes: the first node receives in the first time window To the second signal, the MAC subPDU (Protocol Data Unit) carried by the second signal cannot find the same random access preamble sequence identifier as the PREAMBLE_INDEX used by the first signal.
  • the MAC subPDU Protocol Data Unit
  • the first node determines that the detection of the second signal is used to determine that the random access initiated by the first signal is unsuccessful, and the first node is in the second time window Send the third signal.
  • the first indication is BI (Backoff Indicator).
  • the first node has positioning capability.
  • the first node has a pre-compensation capability.
  • the first node in this application is always in the RRC_IDLE state from when the first signal is sent to the third signal.
  • the first node in this application has been in an uplink out-of-synchronization state from when the first signal is sent to when the third signal is sent.
  • the first signal is a wireless signal.
  • the first signal is a baseband signal.
  • the second signal is a wireless signal.
  • the second signal is a baseband signal.
  • the third signal is a wireless signal.
  • the third signal is a baseband signal.
  • the first signal includes a preamble in a two-step RACH (Random Access Channel).
  • RACH Random Access Channel
  • the first signal includes MsgA (message A) in the two-step RACH.
  • the second signal includes MsgB (message B) in the two-step RACH.
  • the first signal includes a preamble in a four-step RACH (Random Access Channel).
  • RACH Random Access Channel
  • the first signal includes Msg1 (message 1) in the four-step RACH.
  • the second signal includes one Msg2 (message 2) in the two-step RACH.
  • the sender of the second signal is a second node
  • the first parameter includes location information of the second node
  • the location information of the second node includes ephemeris information (Ephemeris) of the second node.
  • the location information of the second node includes operating speed and direction information of the second node.
  • the location information of the second node includes spatial location information of the second node when receiving the first signal.
  • the first time window is configured through ra-ResponseWindow IE (Information Elements).
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG. 2.
  • FIG. 2 illustrates a diagram of a network architecture 200 of 5G NR, LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) systems.
  • the 5G NR or LTE network architecture 200 may be referred to as EPS (Evolved Packet System, evolved packet system) 200 with some other suitable terminology.
  • EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server, home subscriber server) 220 and Internet service 230.
  • UE User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core, Evolved Packet Core
  • 5G-CN 5G-Core Network
  • HSS Home Subscriber Server, home subscriber server
  • Internet service 230 Internet
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in the figure, EPS provides packet switching services, but those skilled in the art will easily understand that various concepts presented throughout this application can be extended to networks that provide circuit-switched services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an Xn interface (for example, backhaul).
  • the gNB203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive node), or some other suitable terminology.
  • gNB203 provides UE201 with an access point to EPC/5G-CN 210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , Video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine-type communication devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices Video devices
  • digital audio players for example, MP3 players
  • cameras game consoles
  • drones aircraft
  • narrowband IoT devices machine-type communication devices
  • machine-type communication devices land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • EPC/5G-CN 210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/UPF (User Plane Function, user plane function) 211, other MME/AMF/UPF214, S-GW (Service Gateway) 212 and P-GW (Packet Date Network Gateway) 213.
  • MME Mobility Management Entity
  • AMF Authentication Management Field
  • UPF User Plane Function, user plane function
  • S-GW Service Gateway
  • P-GW Packet Date Network Gateway
  • MME/AMF/UPF211 is a control node that processes the signaling between UE201 and EPC/5G-CN 210.
  • MME/AMF/UPF211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through the S-GW212, and the S-GW212 itself is connected to the P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching streaming service.
  • the UE201 corresponds to the first node in this application.
  • the gNB203 corresponds to the second node in this application.
  • the air interface between the UE201 and the gNB203 is a Uu interface.
  • the wireless link between the UE201 and the gNB203 is a cellular link.
  • the wireless link between the gNB203 and the ground station is Feeder Link.
  • the first node in this application is a terminal within the coverage of the gNB203.
  • the UE 201 supports transmission on a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • the UE 201 supports transmission in a large delay network.
  • the gNB203 supports transmission on a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • the gNB203 supports transmission in a large delay network.
  • the first node has GPS (Global Positioning System, Global Positioning System) capability.
  • GPS Global Positioning System, Global Positioning System
  • the first node has a GNSS (Global Navigation Satellite System, Global Navigation Satellite System) capability.
  • GNSS Global Navigation Satellite System, Global Navigation Satellite System
  • the first node has a BDS (BeiDou Navigation Satellite System) capability.
  • BDS BeiDou Navigation Satellite System
  • the first node has GALILEO (Galileo Satellite Navigation System) capability.
  • GALILEO Globalileo Satellite Navigation System
  • the first node has a pre-compensation (Capability).
  • the first node has uplink synchronization precompensation capability.
  • the first node has the ability to estimate the uplink TA by itself.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • Figure 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane 350 and the control plane 300.
  • Figure 3 shows three layers for the first communication node device (UE, gNB or RSU in V2X) and the second The radio protocol architecture of the control plane 300 between communication node devices (gNB, UE or RSU in V2X): layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first communication node device and the second communication node device through PHY301.
  • L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers terminate at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, as well as providing support for cross-zone movement between the second communication node devices and the first communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture used for the first communication node device and the second communication node device is for the physical layer 351, L2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 is also Provides header compression for upper layer data packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol) sublayer 356.
  • SDAP Service Data Adaptation Protocol
  • the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer). To support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (for example, an IP layer) terminating at the P-GW on the network side and another terminating at the connection.
  • Application layer at one end for example, remote UE, server, etc.).
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the PDCP 304 of the second communication node device is used to generate the schedule of the first communication node device.
  • the PDCP 354 of the second communication node device is used to generate the schedule of the first communication node device.
  • the first information is generated in the MAC352 or the MAC302.
  • the first information is generated in the RRC306.
  • the first signal is generated in the PHY301 or the PHY351.
  • the first signal is generated in the MAC352 or the MAC302.
  • the second signal is generated in the PHY301 or the PHY351.
  • the second signal is generated in the MAC352 or the MAC302.
  • the third signal is generated in the PHY301 or the PHY351.
  • the third signal is generated in the MAC352 or the MAC302.
  • the fourth signal is generated in the PHY301 or the PHY351.
  • the fourth signal is generated in the MAC352 or the MAC302.
  • the fourth signal is generated in the RRC306.
  • the fifth signal is generated in the PHY301 or the PHY351.
  • the fifth signal is generated in the MAC352 or the MAC302.
  • the fifth signal is generated in the RRC306.
  • the second node in this application sends a positioning signal
  • the first node in this application receives a positioning signal
  • SMLC Serving Mobile Location Centre
  • E-SMLC Evolved Serving Mobile Location Centre
  • SUPL Secure User Plane Location (Secure User Plane Location).
  • LMU Location Measurement Unit
  • the operation that triggers the sending of the positioning signal comes from the core network.
  • Embodiment 4 shows a schematic diagram of the first communication device and the second communication device according to the present application, as shown in FIG. 4.
  • 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in an access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmitting processor 468, a receiving processor 456, a multi-antenna transmitting processor 457, a multi-antenna receiving processor 458, and a transmitter/receiver 454 And antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter/receiver 418, and an antenna 420.
  • the upper layer data packet from the core network is provided to the controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels. Multiplexing, and allocation of radio resources to the first communication device 450 based on various priority measures.
  • the controller/processor 475 is also responsible for retransmission of lost packets and signaling to the first communication device 450.
  • the transmission processor 416 and the multi-antenna transmission processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 410, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for keying (QPSK), M phase shift keying (M-PSK), and M quadrature amplitude modulation (M-QAM)).
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmission processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes it with a reference signal (e.g., pilot) in the time domain and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate The physical channel that carries the multi-carrier symbol stream in the time domain.
  • IFFT inverse fast Fourier transform
  • the multi-antenna transmission processor 471 performs transmission simulation precoding/beamforming operations on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmission processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated on the radio frequency carrier, and converts the radio frequency stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna reception processor 458 performs reception analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a Fast Fourier Transform (FFT) to convert the baseband multi-carrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the physical layer data signal and reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after the multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial flow of the destination. The symbols on each spatial stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decision to recover the upper layer data and control signals transmitted by the second communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , Control signal processing to recover upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals can also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements the header based on the radio resource allocation Compression, encryption, packet segmentation and reordering, as well as multiplexing between logic and transport channels, implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets and signaling to the second communication device 410.
  • the transmission processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmission processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is subjected to an analog precoding/beamforming operation in the multi-antenna transmission processor 457 and then provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then supplies it to the antenna 452.
  • the function at the second communication device 410 is similar to that in the transmission from the second communication device 410 to the first communication device 450.
  • Each receiver 418 receives a radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the multi-antenna receiving processor 472 and the receiving processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • the memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 In the transmission from the first communication device 450 to the second communication device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, and header decompression. , Control signal processing to recover upper layer data packets from UE450.
  • the upper layer data packet from the controller/processor 475 may be provided to the core network.
  • the first communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to Used together with the at least one processor, the first communication device 450 means at least: receiving first information; sending a first signal; detecting a second signal in a first time window; and sending a third signal in a second time window
  • the first information includes a first parameter; the first signal and the third signal are both used to initiate random access, and the detection of the second signal is used to determine the origin of the first signal
  • the random access of is unsuccessful; the second signal carries a first indication, and the first indication and the first parameter are used together to determine the first time length; the second time window is at the beginning of the time domain The time interval between the time and the expiration time of the first time window in the time domain is equal to the second time length; the first time length is used to determine the second time length.
  • the first communication device 450 includes: a memory storing a computer-readable program of instructions, the computer-readable program of instructions generates actions when executed by at least one processor, and the actions include: receiving the first A message; send a first signal; detect a second signal in a first time window; and send a third signal in a second time window; the first information includes a first parameter; the first signal and the first signal The three signals are used to initiate random access, and the detection of the second signal is used to determine that the random access initiated by the first signal is unsuccessful; the second signal carries a first indication, and the second signal An indication and the first parameter are used together to determine the first time length; the time interval between the start time of the second time window in the time domain and the end time of the first time window in the time domain is equal to The second length of time; the first length of time is used to determine the second length of time.
  • the second communication device 410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to Use at least one processor together.
  • the second communication device 410 means at least: sending first information; detecting a first signal; sending a second signal; and detecting a third signal; the first information includes a first parameter; the first signal and the first signal The three signals are used to initiate random access; the sender of the first signal is the first node, and the detection of the second signal by the first node is used by the first node to determine the first The random access initiated by the signal is unsuccessful; the second signal carries a first indication, and the first indication and the first parameter are used together to determine the first time length; the first node is at the first time The second signal is detected in the window, and the first node sends the third signal in the second time window; the start time of the second time window in the time domain and the first time window in time The time interval between the cutoff moments of the domain is equal to
  • the second communication device 410 device includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending First information; detecting a first signal; sending a second signal; and detecting a third signal; the first information includes a first parameter; both the first signal and the third signal are used to initiate random access;
  • the sender of the first signal is the first node, and the detection of the second signal by the first node is used by the first node to determine that the random access initiated by the first signal is unsuccessful;
  • the second signal carries a first indication, and the first indication and the first parameter are used together to determine the first time length; the first node detects the second signal in the first time window, and so The first node sends the third signal in a second time window; the time interval between the start time of the second time window in the time domain and the end time of the first time window in the time domain is equal to the first Two length of time; the first length of time is used to determine the
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a UE.
  • the first communication device 450 is a ground terminal.
  • the first communication device 450 is a ground device.
  • the first communication device 450 is a near ground terminal.
  • the first communication device 450 is an airplane.
  • the first communication device 450 is an aircraft.
  • the first communication device 450 is a surface vehicle.
  • the second communication device 410 is a base station.
  • the second communication device 410 is a non-terrestrial base station.
  • the second communication device 410 is a GEO satellite.
  • the second communication device 410 is an MEO satellite.
  • the second communication device 410 is a LEO satellite.
  • the second communication device 410 is a HEO satellite.
  • the second communication device 410 is Airborne Platform.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used for receiving First information; the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and at least the first four of the controller/processor 475 are used to transmit the first One information.
  • At least the first four of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 are used to transmit the A signal; the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 at least the first four are used to detect the first signal.
  • the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used in The second signal is detected in the first time window; the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and at least the first four of the controller/processor 475 The person is used to send the second signal.
  • the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 are used in the first
  • the third signal is sent in the second time window; at least the first four of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 Used to detect the third signal.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used for receiving The fourth signal; the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and at least the first four of the controller/processor 475 are used to transmit the first Four signals.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used for receiving Fifth signal; the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and at least the first four of the controller/processor 475 are used to transmit the first Five signals.
  • Embodiment 5 illustrates a flow chart of the first signal, as shown in FIG. 5.
  • the first node U1 and the second node N2 communicate via a wireless link.
  • a fourth signal For the first node U1, received in step S10, a fourth signal; receiving a fifth signal in step S11; first information received in step S12; transmitting a first signal in step S13; step S14 in the first time
  • the second signal is detected in the window; the third signal is sent in the second time window in step S15.
  • step S20 transmits a fourth signal; a fifth signal transmitted in step S21; first information transmitted in the step S22; first detection signal in step S23; second transmit signal in step S24 ; The third signal is detected in step S25.
  • the first information includes a first parameter; both the first signal and the third signal are used to initiate random access, and the detection of the second signal is used to determine the first parameter.
  • the random access initiated by a signal is unsuccessful; the second signal carries a first indication, and the first indication and the first parameter are used together to determine the first time length; the second time window is in time The time interval between the start time of the domain and the end time of the first time window in the time domain is equal to the second time length; the first time length is used to determine the second time length; the fourth The signal is used to determine the first time unit, the first signal is sent in the second time unit, and the time interval between the start time of the first time unit and the start time of the second time unit The length is not less than the target time length; the start time of the second time unit is earlier than the start time of the first time unit; the fifth signal is used to determine the first target time window, the first The second node N2 receives the first signal in the first target time window.
  • the first time length is equal to K1 milliseconds
  • the second time length is equal to K2 milliseconds
  • the K1 is a non-negative integer
  • the K2 is the uniformity between 0 and K1 of the first node U1.
  • the K2 is not greater than the K1.
  • the first node U1 determines the second time length by itself according to the first time length.
  • the first indication is used to indicate a third time length, the first time length is equal to the difference between the third time length and a target time length, and the target time length is equal to the first parameter Associated.
  • the first parameter is used to determine the target time length.
  • the first indication includes 4 bits, and the 4 bits included in the first indication are used to indicate the third time length from 16 time lengths.
  • the third time length is equal to K3 milliseconds
  • the target time length is equal to T1 milliseconds
  • the T1 is not greater than the K3
  • the first time length is equal to (K3-T1) millisecond.
  • the first node U1 determines the target time length according to the first parameter.
  • the first node U1 determines the target time length according to the first parameter and its own positioning capability.
  • the first node U1 estimates the target time length according to the first parameter and its own positioning capability.
  • the first indication is used to indicate a third time length; when the difference between the third time length and the target time length is not less than 0, the first time length is equal to the third time length The difference with the target time length; when the difference between the third time length and the target time length is less than 0, the first time length is equal to 0.
  • the third time length is equal to K3 milliseconds, and the target time length is equal to T1 milliseconds; when T1 is not greater than K3, the first time length is equal to (K3- T1) milliseconds; when the T1 is greater than the K3, the first time length is equal to 0 milliseconds.
  • the first node U1 determines the target time length according to the first parameter and its own positioning capability.
  • the first indication includes 4 bits, and the 4 bits included in the first indication are used to indicate the third time length from 16 time lengths.
  • the first indication is used to indicate the first time length from a first time length set
  • the first time length set includes Q1 time lengths of the first type, and the first time length Is one of the Q1 first-type time lengths
  • the first time-length set is one of the M1 candidate time-length sets
  • the first parameter is used from the M1
  • the first time length set is determined from the candidate time length sets.
  • the first indication includes 4 bits, the Q1 is equal to 16, and the 4 bits included in the first indication are used to indicate from the 16 first-type time lengths The first length of time.
  • the type of the second node N2 in this application is a target type
  • the target type is one of the M1 candidate types
  • the M1 candidate types correspond to all
  • the first parameter is used to determine the first time length set corresponding to the target type from the M1 candidate time length sets.
  • the M1 candidate types include GEO (Geostationary Earth Orbiting, synchronous earth orbit) satellites, MEO (Medium Earth Orbiting, medium earth orbit) satellites, and LEO (Low Earth Orbit) satellites.
  • GEO Globalstar Earth Orbit
  • MEO Medium Earth Orbiting, medium earth orbit
  • LEO Low Earth Orbit
  • satellites One or more of satellites, HEO (Highly Elliptical Orbiting) satellites, and Airborne Platform.
  • the height of the second node N2 in this application belongs to a first height interval
  • the first height interval is a candidate height interval among M1 candidate height intervals
  • the M1 Each candidate height interval corresponds to the M1 candidate time length sets
  • the first parameter is used to determine the first time length set corresponding to the first height interval from the M1 candidate time length sets .
  • the distance between the second node N2 and the first node U1 in this application belongs to a first distance interval, and the first distance interval is among the M1 candidate distance intervals
  • the M1 candidate distance intervals respectively correspond to the M1 candidate time length sets
  • the first parameter is used to determine the first distance interval from the M1 candidate time length sets The corresponding first time length set.
  • the unit of any first-type time length among the Q1 first-type time lengths is milliseconds.
  • any candidate time length set in the M1 candidate time length set includes a positive integer number of candidate time lengths greater than 1, and any candidate of the positive integer number of candidate time lengths
  • the unit of time length is milliseconds.
  • the first parameter is related to the height of the second node N2, or the first parameter is related to the type of the second node N2, or the first parameter is related to the first node
  • the distance between U1 and the second node N2 is related.
  • the first parameter is used to determine the height of the second node N2.
  • the first parameter is used to determine the type of the second node N2.
  • the first parameter is used to determine the distance from the first node U1 to the second node N2.
  • the first parameter is used to indicate the height of the second node N2.
  • the first parameter is used to indicate the type of the second node N2.
  • the first parameter is used to indicate the distance from the first node U1 to the second node N2.
  • the fourth signal includes PSS (Primary Synchronization Signal, primary synchronization signal).
  • PSS Primary Synchronization Signal, primary synchronization signal
  • the fourth signal includes SSS (Secondary Synchronization Signal, secondary synchronization signal).
  • the fourth signal includes SSB (SS/PBCH Block, synchronization signal/physical broadcast signal block).
  • SSB SS/PBCH Block, synchronization signal/physical broadcast signal block.
  • the fourth signal is used to determine downlink timing.
  • the first time unit is a multi-carrier symbol in a time slot.
  • the first time unit is a plurality of multi-carrier symbols in a time slot.
  • the use of the fourth signal in the foregoing sentence to determine the meaning of the first time unit includes: the fourth signal is used to indicate the position of the first time unit in the time domain.
  • the meaning that the fourth signal in the above sentence is used to determine the first time unit includes: the first node U1 determines the downlink timing according to the fourth signal, and determines the first node U1 according to the downlink timing The time slot occupied by a time unit.
  • the determining the downlink timing includes determining the downlink SFN (System Frame Number, system frame number).
  • the determining the downlink timing includes determining the boundary of the downlink time slot.
  • the determining the downlink timing includes determining a downlink OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol boundary.
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • the meaning that the fourth signal is used to determine the first time unit in the above sentence includes: the fourth signal is used to determine the synchronization timing of the first time unit.
  • the synchronization timing of the first time unit includes the start time of the first time unit and the end time of the first time unit.
  • the synchronization timing of the first time unit includes the start time of each time slot in the first time unit and each time slot in the first time unit The deadline.
  • the synchronization timing of the first time unit includes the start time of each multi-carrier symbol in the first time unit and each multi-carrier symbol in the first time unit.
  • the starting time of the first time unit is equal to T1 milliseconds
  • the starting time of the second time unit is equal to T2 milliseconds
  • the T2 is equal to the difference of T1 minus the target time length.
  • the start time of the first time unit is equal to T1 milliseconds
  • the start time of the second time unit is equal to T2 milliseconds
  • the T2 is equal to the difference of T1 minus the first timing offset value, so The first timing offset value is not less than the target time length.
  • the fourth signal is a wireless signal.
  • the fourth signal is a baseband signal.
  • the fifth signal is a wireless signal.
  • the fifth signal is a baseband signal.
  • the fifth signal is used to determine the format adopted by the first signal.
  • the format adopted by the first signal includes the sequence length of a preamble sequence, the length of a cyclic prefix, the number of time domain resources occupied by a preamble sequence, and a subcarrier interval. .
  • the fifth signal is used to determine the generation sequence of the first signal.
  • the fifth signal is used to determine a first candidate time window and a second candidate time window, and the first target time window is one of the first candidate time window and the second candidate time window.
  • the start time of the first candidate time window is earlier than the start time of the second candidate time window.
  • the first node U1 performs pre-compensation, and the first node U1 determines that the target time window is the first candidate time window.
  • the first node U1 sends the first signal in a second target time window
  • the start time of the second target time window is equal to the difference between the start time of the second target time window and the first candidate time window.
  • the time interval between the starting moments is equal to the transmission delay between the first node U1 and the second node N2.
  • the first node U1 does not perform pre-compensation, and the first node U1 determines that the target time window is the second candidate time window.
  • the first node U1 sends the first signal in a second target time window
  • the start time of the second target time window is equal to the difference between the start time of the second target time window and the second candidate time window.
  • the time interval between the starting moments is equal to the transmission delay between the first node U1 and the second node N2.
  • the first time unit in this application is a time slot.
  • the second time unit in this application is a time slot.
  • the first target time window in this application includes a positive integer number of consecutive time slots.
  • Embodiment 6 illustrates a schematic diagram of the first time window and the second time window, as shown in FIG. 6.
  • the first time window corresponds to the RAR window of the first node in the present application
  • the second time window corresponds to the RAR window of the first node in the present application when determining the location of the first signal.
  • the time window corresponding to the retransmission of the PRACH after the random access is re-initiated after the initiated random access fails; the second time window is between the start time of the time domain and the end time of the first time window in the time domain
  • the time interval is equal to the second time length.
  • the first time window includes a positive integer number of consecutive time slots (Slot).
  • the first time window includes a positive integer number of consecutive subframes (Subframe).
  • the first time window includes a positive integer number of consecutive radio frames (Frame).
  • the second time window includes a positive integer number of consecutive time slots.
  • the second time window includes a positive integer number of consecutive subframes.
  • the second time window includes a positive integer number of consecutive radio frames.
  • the first node does not send random access-related wireless signals from the end time of the first time window to the start time of the second time window.
  • the random access related signal includes one of a preamble sequence, Msg3 or MsgA.
  • Embodiment 7 illustrates a schematic diagram of the first time length set, as shown in FIG. 7.
  • the first indication is used to indicate the first time length from a first time length set, and the first time length set includes Q1 time lengths of the first type, and the first time The length is one of the Q1 first-type time lengths; the first time length set is one of the M1 candidate time length sets; the first parameter is used from the The first time length set is determined from the M1 candidate time length sets.
  • the M1 candidate time length sets respectively correspond to the candidate time length set #1 to the candidate time length set #M1 in the figure;
  • the candidate time length set #i includes the candidate time length #i_1 to the candidate time length #i_Q1, where i is A positive integer greater than 0 and not greater than Q1;
  • the Q1 first type time lengths correspond to the first type time length #1 to the first type time length #Q1 in the figure.
  • the first parameter is used to determine the type to which the second node belongs in the M1 candidate types, and the M1 candidate time length sets respectively correspond to the M1 types of the second node.
  • the first parameter is used to determine the height interval where the second node is located in the M1 candidate height intervals, and the M1 candidate time length sets correspond to the M1 types of the second node respectively.
  • the height interval is used to determine the height interval where the second node is located in the M1 candidate height intervals, and the M1 candidate time length sets correspond to the M1 types of the second node respectively.
  • Embodiment 8 illustrates a schematic diagram of transmission delay according to the present application; as shown in FIG. 8.
  • the first node sends a first signal in a target time unit, and the first signal reaches the second node in the first target time window of the second node after Td milliseconds;
  • the second node does not detect the first signal in the first target time window, or although the second node detects the first signal, it cannot allocate resources to the first node; the following
  • the second node sends the second signal in a third time window, and the second signal reaches the first node in the first time window again after Td milliseconds have passed.
  • the first node will not receive the RAR from the second node for at least 2*Td milliseconds after sending the first signal, and the above time can be changed. It is used for random access of other UEs, and for the first node, the time of 2*Td milliseconds is a naturally occurring backoff time.
  • Embodiment 9 illustrates a schematic diagram of a first time unit and a second time unit according to the present application; as shown in FIG. 9.
  • the first time unit is a time unit reserved for sending the first signal determined by the first node according to the downlink timing
  • the second time unit is the time unit that the first node is Precompensation for the time unit of actual transmission of the first signal after the transmission delay.
  • the transmission delay only includes the transmission delay from the second node to the perigee.
  • the transmission delay includes a transmission delay from the second node to the first node.
  • the TA shown in the figure is equal to twice the transmission delay from the second node to the perigee.
  • the TA shown in the figure is equal to twice the transmission delay from the second node to the first node.
  • Embodiment 10 illustrates a structural block diagram in the first node, as shown in FIG. 10.
  • the first node 1000 includes a first receiver 1001, a first transmitter 1002, a second receiver 1003, and a second transmitter 1004.
  • the first receiver 1001 receives first information
  • the first transmitter 1002 transmits the first signal
  • the second receiver 1003 detects the second signal in the first time window
  • the second transmitter 1004 sends the third signal in the second time window
  • the first information includes a first parameter; both the first signal and the third signal are used to initiate random access, and the detection of the second signal is used to determine the first parameter.
  • the random access initiated by a signal is unsuccessful; the second signal carries a first indication, and the first indication and the first parameter are used together to determine the first time length; the second time window is in time The time interval between the start time of the domain and the end time of the first time window in the time domain is equal to the second time length; the first time length is used to determine the second time length.
  • the first time length is equal to K1 milliseconds
  • the second time length is equal to K2 milliseconds
  • the K1 is a non-negative integer
  • the K2 is that the first node is uniformly distributed between 0 and K1 A randomly selected non-negative integer.
  • the first indication is used to indicate a third time length, the first time length is equal to the difference between the third time length and a target time length, and the target time length is equal to the first parameter Associated.
  • the first indication is used to indicate a third time length; when the difference between the third time length and the target time length is not less than 0, the first time length is equal to the third time length The difference with the target time length; when the difference between the third time length and the target time length is less than 0, the first time length is equal to 0.
  • the first indication is used to indicate the first time length from a first time length set
  • the first time length set includes Q1 time lengths of the first type, and the first time length Is one of the Q1 first-type time lengths
  • the first time-length set is one of the M1 candidate time-length sets
  • the first parameter is used from the M1
  • the first time length set is determined from the candidate time length sets
  • the Q1 is a positive integer greater than 1
  • the M1 is a positive integer greater than 1.
  • the first parameter is related to the height of the sender of the second signal, or the first parameter is related to the type of the sender of the second signal, or the first parameter is related to the height of the sender of the second signal.
  • the distance from the first node to the sender of the second signal is related.
  • the first receiver 1001 receives a fourth signal; the fourth signal is used to determine a first time unit, the first signal is sent in a second time unit, and the first time
  • the length of the time interval between the start time of the unit and the start time of the second time unit is not less than the target time length; the start time of the second time unit is earlier than the start time of the first time unit The beginning moment.
  • the first receiver 1001 receives a fifth signal; the fifth signal is used to determine a first target time window, and the sender of the fifth signal detects in the first target time window The first signal.
  • the first receiver 1001 includes at least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 in the fourth embodiment.
  • the first transmitter 1002 includes at least the first four of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 in the fourth embodiment.
  • the second receiver 1003 includes at least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 in the fourth embodiment.
  • the second transmitter 1004 includes at least the first four of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 in the fourth embodiment.
  • Embodiment 11 illustrates a structural block diagram in the second node, as shown in FIG. 11.
  • the second node 1100 includes a third transmitter 1101, a third receiver 1102, a fourth transmitter 1103, and a fourth receiver 1104.
  • the third transmitter 1101 sends the first information
  • the third receiver 1102 detects the first signal
  • the fourth transmitter 1103 sends the second signal
  • the fourth receiver 1104 detects the third signal
  • the first information includes a first parameter; both the first signal and the third signal are used to initiate random access; the sender of the first signal is the first node, and the The first node's detection of the second signal is used by the first node to determine that the random access initiated by the first signal is unsuccessful; the second signal carries a first indication, the first indication and The first parameter is jointly used to determine the first time length; the first node detects the second signal in a first time window, and the first node sends the third signal in a second time window Signal; the time interval between the start time of the second time window in the time domain and the end time of the first time window in the time domain is equal to the second time length; the first time length is used to determine the The second length of time.
  • the first time length is equal to K1 milliseconds
  • the second time length is equal to K2 milliseconds
  • the K1 is a non-negative integer
  • the K2 is that the first node is uniformly distributed between 0 and K1 A randomly selected non-negative integer.
  • the first indication is used to indicate a third time length, the first time length is equal to the difference between the third time length and a target time length, and the target time length is equal to the first parameter Associated.
  • the first indication is used to indicate a third time length; when the difference between the third time length and the target time length is not less than 0, the first time length is equal to the third time length The difference with the target time length; when the difference between the third time length and the target time length is less than 0, the first time length is equal to 0.
  • the first indication is used to indicate the first time length from a first time length set
  • the first time length set includes Q1 time lengths of the first type, and the first time length Is one of the Q1 first-type time lengths
  • the first time-length set is one of the M1 candidate time-length sets
  • the first parameter is used from the M1
  • the first time length set is determined from the candidate time length sets.
  • the first parameter is related to the height of the sender of the second signal, or the first parameter is related to the type of the sender of the second signal, or the first parameter is related to the height of the sender of the second signal.
  • the distance from the first node to the sender of the second signal is related.
  • the third transmitter 1101 sends a fourth signal; the fourth signal is used to determine a first time unit, the first signal is sent in a second time unit, and the first time unit
  • the length of the time interval between the start time of the unit and the start time of the second time unit is not less than the target time length; the start time of the second time unit is earlier than the start time of the first time unit The beginning moment.
  • the third transmitter 1101 sends a fifth signal; the fifth signal is used to determine a target time window, and the second node receives the first signal in the target time window.
  • the third transmitter 1101 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 in the fourth embodiment.
  • the third receiver 1102 includes at least the first four of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 in the fourth embodiment.
  • the fourth transmitter 1103 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 in the fourth embodiment.
  • the fourth receiver 1104 includes at least the first four of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 in the fourth embodiment.
  • the first and second nodes in this application include, but are not limited to, mobile phones, tablets, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, vehicles, vehicles, RSUs, and aircraft , Aircraft, drones, remote control aircraft and other wireless communication equipment.
  • the base stations in this application include, but are not limited to, macro cell base stations, micro cell base stations, home base stations, relay base stations, eNBs, gNBs, transmission and reception nodes TRP, GNSS, relay satellites, satellite base stations, air base stations, RSUs and other wireless communication equipment .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点首先接收第一信息,并发送第一信号,随后在第一时间窗中检测第二信号,并在第二时间窗中发送第三信号;所述第一信息包括第一参数;所述第一信号和所述第三信号均被用于发起随机接入,针对所述第二信号的检测被用于确定随机接入不成功;所述第二信号携带第一指示,所述第一指示和所述第一参数被共同用于确定第一时间长度;所述第二时间窗与所述第一时间窗之间的时间间隔等于第二时间长度;所述第一时间长度被用于确定所述第二时间长度。本申请通过将所述第一指示和所述第一参数联合用于确定所述第一时间长度,以优化大延迟系统中回退指示的获得,提高系统性能。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中非地面网络(NTN,Non-Terrestrial Networks)中的传输方法和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或5G)进行研究,在3GPP RAN#75次全会上通过了新空口技术(NR,New Radio)的WI(Work Item,工作项目),开始对NR进行标准化工作。
为了能够适应多样的应用场景和满足不同的需求,在3GPP RAN#75次全会上还通过了NR下的非地面网络(NTN,Non-Terrestrial Networks)的研究项目,该研究项目在R15版本开始。在3GPP RAN#79次全会上决定开始研究NTN网络中的解决方案,然后在R16或R17版本中启动WI对相关技术进行标准化。
发明内容
在NTN网络中,当用户设备(UE,User Equipment)自身具有定位能力,且能够估计与卫星之间的传输延迟时,用户设备能够在给卫星发送上行信号时自行将发送提前,实现自行确定并调整TA(Timing Advance,定时提前)的操作,以保证到达卫星的信号能够对齐卫星自身的定时。
传统的LTE(Long-Term Evolution,长期演进)及5G系统中,出于调整负载的需要,当基站侧接入的用户数量较多导致基站无法一一响应时,基站会在RAR(Random Access Response,随机接入响应)中指示BI(Backoff Indicator,回退指示)。当发起随机接入的UE在RAR窗中确定发送的前导Preamble没有被基站响应时,UE会根据BI指示的值去确定一段等待时间,随后再次发送PRACH(Physical Random Access Channel,物理随机接入信道),上述方式能够有效防止过多的UE同时发送Preamble而导致的碰撞。NTN系统中,因为基站和UE之间的传输延迟较大,当上述BI指示从基站到达UE时,已经花费较多时间。
针对上述问题的,本申请提供了一种解决方案。需要说明的是,上述问题描述中,NTN场景仅作为本申请所提供方案的一个应用场景的举例;本申请也同样适用于例如地面网络的场景,取得类似NTN场景中的技术效果。类似的,本申请也同样适用于例如存在UAV(Unmanned Aerial Vehicle,无人驾驶空中飞行器),或物联网设备的网络的场景,以取得类似NTN场景中的技术效果。此外,不同场景(包括但不限于NTN场景和地面网络场景)采用统一解决方案还有助于降低硬件复杂度和成本。
需要说明的是,在不冲突的情况下,本申请的第一节点中的实施例和实施例中的特征可以应用到第二节点中,反之亦然。进一步的,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,包括:
接收第一信息;
发送第一信号;
在第一时间窗中检测第二信号;
在第二时间窗中发送第三信号;
其中,所述第一信息包括第一参数;所述第一信号和所述第三信号均被用于发起随机接入,针对所述第二信号的检测被用于确定所述第一信号所发起的随机接入不成功;所述第二信号携带第一指示,所述第一指示和所述第一参数被共同用于确定第一时间长度;所述第二时间窗在时域的起始时刻与所述第一时间窗在时域的截止时刻之间的时间间隔等于第二时间长度;所述第一时间长度被用于确定所述第二时间长度。
作为一个实施例,上述方法的好处在于:对于NTN系统,因为基站和UE较远的距离所导致的传输延迟不应该影响BI的指示,即对于UE而言,其实在发送完PRACH到收到BI前的这段时间里,依然会存在较多的重新发送PRACH的机会,进而若UE没有在这段时间中重发PRACH,即相当于UE在执行回退;此种情况下,根据收到的BI的值所确定的回退时间需要将这一段因为RTT(Round Trip Time,往返时间)导致的天然的延迟考虑进去。
根据本申请的一个方面,所述第一时间长度等于K1毫秒,所述第二时间长度等于K2毫秒,所述K1是非负整数,所述K2是所述第一节点在0到K1之间按照均匀分布随机选择的一个非负整数。
根据本申请的一个方面,所述第一指示被用于指示第三时间长度,所述第一时间长度等于所述第三时间长度与目标时间长度的差,所述目标时间长度与所述第一参数相关联。
作为一个实施例,上述方法的好处在于:接收到的BI指示的回退时间中需要去除RTT,即从系统侧来看,发送过所述第一信号后,所述第一节点已经等待了一个RTT的时间,上述时间不应该被计入回退时间中。
根据本申请的一个方面,所述第一指示被用于指示第三时间长度;当所述第三时间长度与目标时间长度的差不小于0时,所述第一时间长度等于所述第三时间长度与目标时间长度的差;当所述第三时间长度与目标时间长度的差小于0时,所述第一时间长度等于0。
作为一个实施例,上述方法的好处在于:依然沿用现有的回退参数值(Backoff Parameter Values)的集合;当BI指示的值小于RTT时,第一节点认为不需要再额外的回退,当BI指示的值大于RTT时,则多出的值被作为回退时间被采用;上述方法在对协议改动较小的前提下,将传输延迟的影响考虑到BI的设计中。
根据本申请的一个方面,所述第一指示被用于从第一时间长度集合中指示所述第一时间长度,所述第一时间长度集合包括Q1个第一类时间长度,所述第一时间长度是所述Q1个第一类时间长度中的一个第一类时间长度;所述第一时间长度集合是M1个候选时间长度集合中的之一;所述第一参数被用于从所述M1个候选时间长度集合中确定所述第一时间长度集合;所述Q1是大于1的正整数,所述M1是大于1的正整数。
作为一个实施例,上述方法的好处在于:所述M1个候选时间长度集合分别对应M1种不同的RTT,进而对应M1种不同的卫星类型或者卫星高度;上述方式的实质就是为不同的卫星类型配置了不同的BI参数值表格,进而更为灵活和有效的指示BI的值。
根据本申请的一个方面,所述第一参数与所述第二信号的发送者的高度有关,或者所述第一参数与所述第二信号的发送者的类型有关,或者所述第一参数与所述第一节点到所述第二信号的发送者的距离有关。
作为一个实施例,上述方法的好处在于:BI的解读与RTT有关。
根据本申请的一个方面,包括:
接收第四信号;
其中,所述第四信号被用于确定第一时间单元,所述第一信号在第二时间单元中被发送,所述第一时间单元的起始时刻和所述第二时间单元的起始时刻之间的时间间隔长度不小于所述目标时间长度;所述第二时间单元的起始时刻早于所述第一时间单元的起始时刻。
作为一个实施例,上述方法的特质在于:所述第一节点根据所述第四信号确定下行定时,并根据下行定时结合自身的定位能力,在预补偿定时提前后发送所述第一信号。
根据本申请的一个方面,包括:
接收第五信号;
其中,所述第五信号被用于确定第一目标时间窗,所述第五信号的发送者在所述第一目标时间窗中检测所述第一信号。
作为一个实施例,上述方法的好处在于:本申请中的所述第二节点通过所述第五信号告诉所述第一节点所述第一信号的接收时隙(Slot),进而当所述第一节点进行TA预补偿时,能够确定实际发送所述第一信号的发送时隙。
本申请公开了一种被用于无线通信的第二节点中的方法,包括:
发送第一信息;
检测第一信号;
发送第二信号;
检测第三信号;
其中,所述第一信息包括第一参数;所述第一信号和所述第三信号均被用于发起随机接入;所述第一信号的发送者是第一节点,所述第一节点针对所述第二信号的检测被所述第一节点用于确定所述第一信号所发起的随机接入不成功;所述第二信号携带第一指示,所述第一指示和所述第一参数被共同用于确定第一时间长度;所述第一节点在第一时间窗中检测所述第二信号,且所述第一节点在第二时间窗中发送所述第三信号;所述第二时间窗在时域的起始时刻与所述第一时间窗在时域的截止时刻之间的时间间隔等于第二时间长度;所述第一时间长度被用于确定所述第二时间长度。
根据本申请的一个方面,所述第一时间长度等于K1毫秒,所述第二时间长度等于K2毫秒,所述K1是非负整数,所述K2是所述第一节点在0到K1之间按照均匀分布随机选择的一个非负整数。
根据本申请的一个方面,所述第一指示被用于指示第三时间长度,所述第一时间长度等于所述第三时间长度与目标时间长度的差,所述目标时间长度与所述第一参数相关联。
根据本申请的一个方面,所述第一指示被用于指示第三时间长度;当所述第三时间长度与目标时间长度的差不小于0时,所述第一时间长度等于所述第三时间长度与目标时间长度的差;当所述第三时间长度与目标时间长度的差小于0时,所述第一时间长度等于0。
根据本申请的一个方面,所述第一指示被用于从第一时间长度集合中指示所述第一时间长度,所述第一时间长度集合包括Q1个第一类时间长度,所述第一时间长度是所述Q1个第一类时间长度中的一个第一类时间长度;所述第一时间长度集合是M1个候选时间长度集合中的之一;所述第一参数被用于从所述M1个候选时间长度集合中确定所述第一时间长度集合。
根据本申请的一个方面,所述第一参数与所述第二信号的发送者的高度有关,或者所述第一参数与所述第二信号的发送者的类型有关,或者所述第一参数与所述第一节点到所述第二信号的发送者的距离有关。
根据本申请的一个方面,包括:
发送第四信号;
其中,所述第四信号被用于确定第一时间单元,所述第一信号在第二时间单元中被发送,所述第一时间单元的起始时刻和所述第二时间单元的起始时刻之间的时间间隔长度不小于所述目标时间长度;所述第二时间单元的起始时刻早于所述第一时间单元的起始时刻。
根据本申请的一个方面,包括:
发送第五信号;
其中,所述第五信号被用于确定目标时间窗,所述第二节点在所述目标时间窗中接收所述第一信号。
本申请公开了一种被用于无线通信的第一节点,其特征在于包括:
第一接收机,接收第一信息;
第一发射机,发送第一信号;
第二接收机,在第一时间窗中检测第二信号;
第二发射机,在第二时间窗中发送第三信号;
其中,所述第一信息包括第一参数;所述第一信号和所述第三信号均被用于发起随机接入,针对所述第二信号的检测被用于确定所述第一信号所发起的随机接入不成功;所述第二信号携带第一指示,所述第一指示和所述第一参数被共同用于确定第一时间长度;所述第二时间窗在时域的起始时刻与所述第一时间窗在时域的截止时刻之间的时间间隔等于第二时间长度;所述第一时间长度被用于确定所述第二时间长度。
本申请公开了一种被用于无线通信的第二节点,其特征在于包括:
第三发射机,发送第一信息;
第三接收机,检测第一信号;
第四发射机,发送第二信号;
第四接收机,检测第三信号;
其中,所述第一信息包括第一参数;所述第一信号和所述第三信号均被用于发起随机接入;所述第一信号的发送者是第一节点,所述第一节点针对所述第二信号的检测被所述第一节点用于确定所述第一信号所发起的随机接入不成功;所述第二信号携带第一指示,所述第一指示和所述第一参数被共同用于确定第一时间长度;所述第一节点在第一时间窗中检测所述第二信号,且所述第一节点在第二时间窗中发送所述第三信号;所述第二时间窗在时域的起始时刻与所述第一时间窗在时域的截止时刻之间的时间间隔等于第二时间长度;所述第一时间长度被用于确定所述第二时间长度。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.对于NTN系统,因为基站和UE较远的距离所导致的传输延迟不应该影响BI的指示,即对于UE而言,其实在发送完PRACH到收到BI前的这段时间里,依然会存在较多的重新发送PRACH的机会,进而若UE没有在这段时间中重发PRACH,即相当于UE在进行回退;此种情况下,根据收到的BI的值所确定的回退时间需要将这一段因为RTT导致的天然的延迟考虑进去;
-.接收到的BI指示的回退时间中需要去除RTT,即从系统侧来看,发送过所述第一信号后,所述第一节点已经等待了一个RTT的时间,上述时间不应该被计入回退时间中;与此同时依然沿用现有的回退参数值的集合;当BI指示的值小于RTT时,第一节点认为不需要再额外的回退,当BI指示的值大于RTT时,则多出的值被作为回退时间被采用;上述方法在对协议改动较小的前提下,将传输延迟的影响考虑到BI的设计中;
-.所述M1个候选时间长度集合分别对应M1种不同的RTT,进而对应M1种不同的卫星类型或者卫星高度;上述方式的实质就是为不同的卫星类型配置了不同的BI参数值表格,进而各位灵活和有效的指示BI的值。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目 的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的第一信号的流程图;
图6示出了根据本申请的一个实施例的第一时间窗和第二时间窗的示意图;
图7示出了根据本申请的一个实施例的一个第一时间长度集合的示意图;
图8示出了根据本申请的一个实施例的传输延迟的示意图;
图9示出了根据本申请的一个实施例的第一时间单元和第二时间单元的示意图;
图10示出了根据本申请的一个实施例的用于第一节点中的结构框图;
图11示出了根据本申请的一个实施例的用于第二节点中的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了一个第一节点的处理流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。在实施例1中,本申请中的第一节点在步骤101中接收第一信息;在步骤102中发送第一信号;在步骤103中在第一时间窗中检测第二信号;在步骤104中在第二时间窗中发送第三信号。
实施例1中,所述第一信息包括第一参数;所述第一信号和所述第三信号均被用于发起随机接入,针对所述第二信号的检测被用于确定所述第一信号所发起的随机接入不成功;所述第二信号携带第一指示,所述第一指示和所述第一参数被共同用于确定第一时间长度;所述第二时间窗在时域的起始时刻与所述第一时间窗在时域的截止时刻之间的时间间隔等于第二时间长度;所述第一时间长度被用于确定所述第二时间长度。
作为一个实施例,承载所述第一信息的信道是广播信道。
作为一个实施例,承载所述第一信息的信令是更高层(Higher Layer)信令。
作为一个实施例,承载所述第一信息的信令是RRC(Radio Resource Control,无线资源控制)信令。
作为一个实施例,承载所述第一信息的是SIB(System Information Block,系统信息块)。
作为一个实施例,所述第一信息是小区专属的。
作为一个实施例,所述第一参数被用于确定目标时间长度,所述第一指示被用于指示第三时间长度,所述目标时间长度和所述第三时间长度被共同用于确定所述第一时间长度。
作为该实施例的一个子实施例,所述目标时间长度的单位是毫秒。
作为该实施例的一个子实施例,所述第三时间长度的单位是毫秒。
作为该实施例的一个子实施例,所述第一时间长度的单位是毫秒。
作为该实施例的一个子实施例,所述目标时间长度等于T1毫秒,所述T1等于L1除以300000的商,所述L1是所述第二信号的发送者到地面的距离。
作为该实施例的一个子实施例,所述目标时间长度等于T1毫秒,所述T1等于2*L1除以300000的商,所述L1是所述第二信号的发送者到地面的距离。
作为上述两个子实施例的附属实施例,所述L1的单位是米。
作为该实施例的一个子实施例,所述目标时间长度等于T2毫秒,所述T2等于L2除以300000的商,所述L2是所述第二信号的发送者到所述第一节点之间的距离,所述第一节点根据所述第一参数以及所述第一节点的定位能力估计所述L2。
作为该实施例的一个子实施例,所述目标时间长度等于T2毫秒,所述T2等于2*L2除以300000的商,所述L2是所述第二信号的发送者到所述第一节点之间的距离,所述第一节点根据所述第一参数以及所述第一节点的定位能力估计所述L2。
作为上述两个子实施例的附属实施例,所述L2的单位是米。
作为一个实施例,承载所述第一信号的物理层信道是PRACH。
作为一个实施例,承载所述第三信号的物理层信道是PRACH。
作为一个实施例,生成所述第一信号的是Preamble。
作为一个实施例,生成所述第三信号的是Preamble。
作为一个实施例,所述第二信号是针对所述第一信号的反馈。
作为一个实施例,所述第二信号是RAR。
作为一个实施例,所述第一时间窗是随机接入响应窗(RAR Window)。
作为一个实施例,所述第一时间窗在时域包括正整数个连续的时隙。
作为一个实施例,所述第二时间窗在时域包括正整数个连续的时隙。
作为一个实施例,所述第二信号包括PDCCH(Physical Downlink Control Channel,物理下行控制信道)。
作为该实施例的一个子实施例,所述第二信号所包括的PDCCH通过RA-RNTI(Random Access Radio Network Temporary Identifier,随机接入无线网络临时标识)加扰。
作为一个实施例,所述第二信号包括PDSCH(Physical Downlink Shared Channel,物理下行共享信道)。
作为该实施例的一个子实施例,所述第二信号所包括的PDSCH包括MAC(Medium Access Control,媒体接入控制)subheader(子头),所述MAC subheader包括所述第一指示。
作为该实施例的一个子实施例,所述第二信号所包括的PDSCH包括MAC subPDU,所述MAC subPDU包括所述第一指示。
作为一个实施例,上述句子针对所述第二信号的检测被用于确定所述第一信号所发起的随机接入不成功的意思包括:所述第一节点在所述第一时间窗中没有正确接收到所述第二信号,所述第一节点认为所述第一信号所发起的随机接入不成功。
作为一个实施例,上述句子针对所述第二信号的检测被用于确定所述第一信号所发起的随机接入不成功的意思包括:所述第一节点在所述第一时间窗中仅接收到所述第二信号中的所述第一指示,所述第一节点认为所述第一信号所发起的随机接入不成功。
作为一个实施例,上述句子针对所述第二信号的检测被用于确定所述第一信号所发起的随机接入不成功的意思包括:所述第一节点在所述第一时间窗中接收到所述第二信号,所述第二信号所携带的MAC subheader中找不到与所述第一信号所采用的PREAMBLE_INDEX相同的随机接入前导序列标识(Random Access Preamble identifiers),所述第一节点认为所述第一信号所发起的随机接入不成功。
作为一个实施例,上述句子针对所述第二信号的检测被用于确定所述第一信号所发起的随机接入不成功的意思包括:所述第一节点在所述第一时间窗中接收到所述第二信号,所述第二信号所携带的MAC subPDU(Protocol Data Unit,协议数据单元)中找不到与所述第一信号所采用的PREAMBLE_INDEX相同的随机接入前导序列标识。
作为一个实施例,所述第一节点确定针对所述第二信号的检测被用于确定所述第一信号所发起的随机接入不成功,所述第一节点在所述第二时间窗中发送所述第三信号。
作为一个实施例,所述第一指示是BI(Backoff Indicator,回退指示)。
作为一个实施例,所述第一节点具有定位能力。
作为一个实施例,所述第一节点具有预补偿能力。
作为一个实施例,本申请中的所述第一节点从发送所述第一信号时开始到发送所述第三信号一直处于RRC_IDLE状态。
作为一个实施例,本申请中的所述第一节点从发送所述第一信号时开始到发送所述第三 信号一直处于上行失步状态。
作为一个实施例,所述第一信号是无线信号。
作为一个实施例,所述第一信号是基带信号。
作为一个实施例,所述第二信号是无线信号。
作为一个实施例,所述第二信号是基带信号。
作为一个实施例,所述第三信号是无线信号。
作为一个实施例,所述第三信号是基带信号。
作为一个实施例,所述第一信号包括两步RACH(Random Access Channel,随机接入信道)中的Preamble。
作为一个实施例,所述第一信号包括两步RACH中的MsgA(消息A)。
作为一个实施例,所述第二信号包括两步RACH中的MsgB(消息B)。
作为一个实施例,所述第一信号包括四步RACH(Random Access Channel,随机接入信道)中的Preamble。
作为一个实施例,所述第一信号包括四步RACH中的Msg1(消息1)。
作为一个实施例,所述第二信号包括两步RACH中的一个Msg2(消息2)。
作为一个实施例,所述第二信号的发送者是第二节点,所述第一参数包括所述第二节点的位置信息。
作为该实施例的一个子实施例,所述第二节点的所述位置信息包括所述第二节点的星历信息(Ephemeris)。
作为该实施例的一个子实施例,所述第二节点的所述位置信息包括所述第二节点的运行速度和方向信息。
作为该实施例的一个子实施例,所述第二节点的所述位置信息包括所述第二节点在接收所述第一信号时的空间位置信息。
作为一个实施例,所述第一时间窗是通过ra-ResponseWindow IE(Information Elements,信息单元)配置的。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、 移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述UE201与所述gNB203之间的空中接口是Uu接口。
作为一个实施例,所述UE201与所述gNB203之间的无线链路是蜂窝链路。
作为一个实施例,所述gNB203与地面站之间的无线链路是Feeder Link。
作为一个实施例,本申请中的所述第一节点是所述gNB203覆盖内的一个终端。
作为一个实施例,所述UE201支持在非地面网络(NTN)的传输。
作为一个实施例,所述UE201支持大延迟网络中的传输。
作为一个实施例,所述gNB203支持在非地面网络(NTN)的传输。
作为一个实施例,所述gNB203支持在大延迟网络中的传输。
作为一个实施例,所述第一节点具有GPS(Global Positioning System,全球定位系统)能力。
作为一个实施例,所述第一节点具有GNSS(Global Navigation Satellite System,全球导航卫星系统)能力。
作为一个实施例,所述第一节点具有BDS(BeiDou Navigation Satellite System,北斗卫星导航系统)能力。
作为一个实施例,所述第一节点具有GALILEO(Galileo Satellite Navigation System,伽利略卫星导航系统)能力。
作为一个实施例,所述第一节点具有预补偿(Pre-Compensation)的能力(Capability)。
作为一个实施例,所述第一节点具备上行同步预补偿能力。
作为一个实施例,所述第一节点具有自行估计上行TA的能力。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复 用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第二通信节点设备的PDCP304被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述第二通信节点设备的PDCP354被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述第一信息生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第一信息生成于所述RRC306。
作为一个实施例,所述第一信号生成于所述PHY301,或者所述PHY351。
作为一个实施例,所述第一信号生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第二信号生成于所述PHY301,或者所述PHY351。
作为一个实施例,所述第二信号生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第三信号生成于所述PHY301,或者所述PHY351。
作为一个实施例,所述第三信号生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第四信号生成于所述PHY301,或者所述PHY351。
作为一个实施例,所述第四信号生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第四信号生成于所述RRC306。
作为一个实施例,所述第五信号生成于所述PHY301,或者所述PHY351。
作为一个实施例,所述第五信号生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第五信号生成于所述RRC306。
作为一个实施例,本申请中的所述第二节点发送定位信号,且本申请中的所述第一节点接收定位信号。
作为该实施例的一个子实施例,触发所述定位信号发送的是SMLC(Serving Mobile Location Centre,移动台定位服务中心)。
作为该实施例的一个子实施例,触发所述定位信号发送的是E-SMLC(Evolved Serving Mobile Location Centre,演进的移动台定位服务中心)。
作为该实施例的一个子实施例,触发所述定位信号发送的是SLP(SUPL Location Platform,SUPL定位平台);其中,SUPL是Secure User Plane Location(安全用户面定位)。
作为该实施例的一个子实施例,触发所述定位信号发送的是LMU(Location Measurement Unit,定位测量单元)。
作为该实施例的一个子实施例,触发所述定位信号发送的操作来自核心网。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备 410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:接收第一信息;发送第一信号;在第一时间窗中检测第二信号;以及在第二时间窗中发送第三信号;所述第一信息包括第一参数;所述第一信号和所述第三信号均被用于发起随机接入,针对所述第二信号的检测被用于确定所述第一信号所发起的随机接入不成功;所述第二信号携带第一指示,所述第一指示和所述第一参数被共同用于确定第一时间长度;所述第二时间窗在时域的起始时刻与所述第一时间窗在时域的截止时刻之间的时间间隔等于第二时间长度;所述第一时间长度被用于确定所述第二时间长度。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信息;发送第一信号;在第一时间窗中检测第二信号;以及在第二时间窗中发送第三信号;所述第一信息包括第一参数;所述第一信号和所述第三信号均被用于发起随机接入,针对所述第二信号的检测被用于确定所述第一信号所发起的随机接入不成功;所述第二信号携带第一指示,所述第一指示和所述第一参数被共同用于确定第一时间长度;所述第二时间窗在时域的起始时刻与所述第一时间窗在时域的截止时刻之间的时间间隔等于第二时间长度;所述第一时间长度被用于确定所述第二时间长度。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:发送第一信息;检测第一信号;发送第二信号;以及检测第三信号;所述第一信息包括第一参数;所述第一信号和所述第三信号均被用于发起随机接入;所述第一信号的发送者是第一节点,所述第一节点针对所述第二信号的检测被所述第一节点用于确定所述第一信号所发起的随机接入不成功;所述第二信号携带第一指示,所述第一指示和所述第一参数被共同用于确定第一时间长度;所述第一节点在第一时间窗中检测所述第二信号,且所述第一节点在第二时间窗中发送所述第三信号;所述第二时间窗在时域的起始时刻与所述第一时间窗在时域的截止时刻之间的时间间隔等于第二时间长度;所述第一时间长度被用于确定所述第二时间长度。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信息;检测第一信号;发送第二信号;以及检测第三信号;所述第一信息包括第一参数;所述第一信号和所述第三信号均被用于发起随机接入;所述第一信号的发送者是第一节点, 所述第一节点针对所述第二信号的检测被所述第一节点用于确定所述第一信号所发起的随机接入不成功;所述第二信号携带第一指示,所述第一指示和所述第一参数被共同用于确定第一时间长度;所述第一节点在第一时间窗中检测所述第二信号,且所述第一节点在第二时间窗中发送所述第三信号;所述第二时间窗在时域的起始时刻与所述第一时间窗在时域的截止时刻之间的时间间隔等于第二时间长度;所述第一时间长度被用于确定所述第二时间长度。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第一通信设备450是一个地面终端。
作为一个实施例,所述第一通信设备450是一个地面设备。
作为一个实施例,所述第一通信设备450是一个近地终端。
作为一个实施例,所述第一通信设备450是一架飞机。
作为一个实施例,所述第一通信设备450是一个飞行器。
作为一个实施例,所述第一通信设备450是一艘水面交通工具。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,所述第二通信设备410是一个非地面基站。
作为一个实施例,所述第二通信设备410是GEO卫星。
作为一个实施例,所述第二通信设备410是MEO卫星。
作为一个实施例,所述第二通信设备410是LEO卫星。
作为一个实施例,所述第二通信设备410是HEO卫星。
作为一个实施例,所述第二通信设备410是Airborne Platform。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第一信息;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第一信息。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于发送第一信号;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于检测第一信号。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于在第一时间窗中检测第二信号;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第二信号。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于在第二时间窗中发送第三信号;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于检测第三信号。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第四信号;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第四信号。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第五信号;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第五信号。
实施例5
实施例5示例了一个第一信号的流程图,如附图5所示。在附图5中,第一节点U1与第二节点N2之间通过无线链路进行通信。
对于 第一节点U1,在步骤S10中接收第四信号;在步骤S11中接收第五信号;在步骤S12中接收第一信息;在步骤S13中发送第一信号;在步骤S14中在第一时间窗中检测第二信号;在步骤S15中在第二时间窗中发送第三信号。
对于 第二节点N2,在步骤S20中发送第四信号;在步骤S21中发送第五信号;在步骤S22中发送第一信息;在步骤S23中检测第一信号;在步骤S24中发送第二信号;在步骤S25中检测第三信号。
实施例5中,所述第一信息包括第一参数;所述第一信号和所述第三信号均被用于发起随机接入,针对所述第二信号的检测被用于确定所述第一信号所发起的随机接入不成功;所述第二信号携带第一指示,所述第一指示和所述第一参数被共同用于确定第一时间长度;所述第二时间窗在时域的起始时刻与所述第一时间窗在时域的截止时刻之间的时间间隔等于第二时间长度;所述第一时间长度被用于确定所述第二时间长度;所述第四信号被用于确定第一时间单元,所述第一信号在第二时间单元中被发送,所述第一时间单元的起始时刻和所述第二时间单元的起始时刻之间的时间间隔长度不小于所述目标时间长度;所述第二时间单元的起始时刻早于所述第一时间单元的起始时刻;所述第五信号被用于确定第一目标时间窗,所述第二节点N2在所述第一目标时间窗中接收所述第一信号。
作为一个实施例,所述第一时间长度等于K1毫秒,所述第二时间长度等于K2毫秒,所述K1是非负整数,所述K2是所述第一节点U1在0到K1之间按照均匀分布随机选择的一个非负整数。
作为该实施例的一个子实施例,所述K2不大于所述K1。
作为该实施例的一个子实施例,所述第一节点U1根据所述第一时间长度自行确定所述第二时间长度。
作为一个实施例,所述第一指示被用于指示第三时间长度,所述第一时间长度等于所述第三时间长度与目标时间长度的差,所述目标时间长度与所述第一参数相关联。
作为该实施例的一个子实施例,所述第一参数被用于确定所述目标时间长度。
作为该实施例的一个子实施例,所述第一指示包括4比特,所述第一指示所包括的4比特被用于从16个时间长度中指示所述第三时间长度。
作为该实施例的一个子实施例,所述第三时间长度等于K3毫秒,所述目标时间长度等于T1毫秒,所述T1不大于所述K3,所述第一时间长度等于(K3-T1)毫秒。
作为该实施例的一个子实施例,所述第一节点U1根据所述第一参数确定所述目标时间长度。
作为该实施例的一个子实施例,所述第一节点U1根据所述第一参数和自身的定位能力确定所述目标时间长度。
作为该实施例的一个子实施例,所述第一节点U1根据所述第一参数和自身的定位能力估计所述目标时间长度。
作为一个实施例,所述第一指示被用于指示第三时间长度;当所述第三时间长度与目标时间长度的差不小于0时,所述第一时间长度等于所述第三时间长度与目标时间长度的差;当所述第三时间长度与目标时间长度的差小于0时,所述第一时间长度等于0。
作为该实施例的一个子实施例,所述第三时间长度等于K3毫秒,所述目标时间长度等于T1毫秒;当所述T1不大于所述K3时,所述第一时间长度等于(K3-T1)毫秒;当所述T1大于所述K3时,所述第一时间长度等于0毫秒。
作为该实施例的一个子实施例,所述第一节点U1根据所述第一参数和自身的定位能力确定所述目标时间长度。
作为该实施例的一个子实施例,所述第一指示包括4比特,所述第一指示所包括的4 比特被用于从16个时间长度中指示所述第三时间长度。
作为一个实施例,所述第一指示被用于从第一时间长度集合中指示所述第一时间长度,所述第一时间长度集合包括Q1个第一类时间长度,所述第一时间长度是所述Q1个第一类时间长度中的一个第一类时间长度;所述第一时间长度集合是M1个候选时间长度集合中的之一;所述第一参数被用于从所述M1个候选时间长度集合中确定所述第一时间长度集合。
作为该实施例的一个子实施例,所述第一指示包括4比特,所述Q1等于16,所述第一指示所包括的4比特被用于从所述16个第一类时间长度中指示所述第一时间长度。
作为该实施例的一个子实施例,本申请中的所述第二节点N2的类型是目标类型,所述目标类型是M1个候选类型中的一个候选类型,所述M1个候选类型分别对应所述M1个候选时间长度集合,所述第一参数被用于从所述M1个候选时间长度集合中确定与所述目标类型对应的所述第一时间长度集合。
作为该子实施例的一个附属实施例,所述M1个候选类型包括GEO(Geostationary Earth Orbiting,同步地球轨道)卫星、MEO(Medium Earth Orbiting,中地球轨道)卫星、LEO(Low Earth Orbit,低地球轨道)卫星、HEO(Highly Elliptical Orbiting,高椭圆轨道)卫星、Airborne Platform(空中平台)中的一种或多种。
作为该实施例的一个子实施例,本申请中的所述第二节点N2的高度属于第一高度区间,所述第一高度区间是M1个候选高度区间中的一个候选高度区间,所述M1个候选高度区间分别对应所述M1个候选时间长度集合,所述第一参数被用于从所述M1个候选时间长度集合中确定与所述第一高度区间对应的所述第一时间长度集合。
作为该实施例的一个子实施例,本申请中的所述第二节点N2与所述第一节点U1之间的距离属于第一距离区间,所述第一距离区间是M1个候选距离区间中的一个候选距离区间,所述M1个候选距离区间分别对应所述M1个候选时间长度集合,所述第一参数被用于从所述M1个候选时间长度集合中确定与所述第一距离区间对应的所述第一时间长度集合。
作为该实施例的一个子实施例,所述Q1个第一类时间长度中的任一第一类时间长度的单位是毫秒。
作为该实施例的一个子实施例,所述M1个候选时间长度集合中的任一候选时间长度集合包括大于1的正整数个候选时间长度,所述正整数个候选时间长度中的任一候选时间长度的单位是毫秒。
作为一个实施例,所述第一参数与所述第二节点N2的高度有关,或者所述第一参数与所述第二节点N2的类型有关,或者所述第一参数与所述第一节点U1到所述第二节点N2的距离有关。
作为该实施例的一个子实施例,所述第一参数被用于确定所述第二节点N2的高度。
作为该实施例的一个子实施例,所述第一参数被用于确定所述第二节点N2的类型。
作为该实施例的一个子实施例,所述第一参数被用于确定所述第一节点U1到所述第二节点N2的距离。
作为该实施例的一个子实施例,所述第一参数被用于指示所述第二节点N2的高度。
作为该实施例的一个子实施例,所述第一参数被用于指示所述第二节点N2的类型。
作为该实施例的一个子实施例,所述第一参数被用于指示所述第一节点U1到所述第二节点N2的距离。
作为一个实施例,所述第四信号包括PSS(Primary Synchronization Signal,主同步信号)。
作为一个实施例,所述第四信号包括SSS(Secondary Synchronization Signal,辅同步信号)。
作为一个实施例,所述第四信号包括SSB(SS/PBCH Block,同步信号/物理广播信号块)。
作为一个实施例,所述第四信号被用于确定下行定时。
作为一个实施例,所述第一时间单元是一个时隙中的一个多载波符号。
作为一个实施例,所述第一时间单元是一个时隙中的多个多载波符号。
作为一个实施例,上述句子所述第四信号被用于确定第一时间单元的意思包括:所述第四信号被用于指示所述第一时间单元在时域的位置。
作为一个实施例,上述句子所述第四信号被用于确定第一时间单元的意思包括:所述第一节点U1根据所述第四信号确定下行定时,并按照所述下行定时确定所述第一时间单元所占用的时隙。
作为该实施例的一个子实施例,所述确定下行定时包括确定下行SFN(System Frame Number,系统帧号)。
作为该实施例的一个子实施例,所述确定下行定时包括确定下行时隙边界。
作为该实施例的一个子实施例,所述确定下行定时包括确定下行OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号边界。
作为一个实施例,上述句子所述第四信号被用于确定第一时间单元的意思包括:所述第四信号被用于确定所述第一时间单元的同步定时。
作为该子实施例的一个附属实施例,所述第一时间单元的所述同步定时包括所述第一时间单元的起始时刻和所述第一时间单元的截止时刻。
作为该子实施例的一个附属实施例,所述第一时间单元的所述同步定时包括所述第一时间单元中每个时隙的起始时刻和所述第一时间单元中每个时隙的截止时刻。
作为该子实施例的一个附属实施例,所述第一时间单元的所述同步定时包括所述第一时间单元中每个多载波符号的起始时刻和所述第一时间单元中每个多载波符号的截止时刻。
作为一个实施例,所述第一时间单元的起始时刻等于T1毫秒,所述第二时间单元的起始时刻等于T2毫秒,所述T2等于T1减去所述目标时间长度的差。
作为一个实施例,所述第一时间单元的起始时刻等于T1毫秒,所述第二时间单元的起始时刻等于T2毫秒,所述T2等于T1减去第一定时偏移值的差,所述第一定时偏移值不小于所述目标时间长度。
作为一个实施例,所述第四信号是无线信号。
作为一个实施例,所述第四信号是基带信号。
作为一个实施例,所述第五信号是无线信号。
作为一个实施例,所述第五信号是基带信号。
作为一个实施例,所述第五信号被用于确定所述第一信号所采用的格式。
作为该实施例的一个子实施例,所述第一信号所采用的所述格式包括一个前导序列的序列长度、一个循环前缀的长度、一个前导序列所占用的时域资源数量和一个子载波间隔。
作为一个实施例,所述第五信号被用于确定所述第一信号的生成序列。
作为一个实施例,所述第五信号被用于确定第一候选时间窗和第二候选时间窗,所述第一目标时间窗是所述第一候选时间窗和第二候选时间窗中的之一。
作为该实施例的一个子实施例,所述第一候选时间窗的起始时刻早于所述第二候选时间窗的起始时刻。
作为该实施例的一个子实施例,所述第一节点U1进行预补偿(Pre-compensation),所述第一节点U1确定所述目标时间窗是所述第一候选时间窗。
作为该子实施例的一个附属实施例,所述第一节点U1在第二目标时间窗发送所述第一信号,所述第二目标时间窗的起始时刻与所述第一候选时间窗的起始时刻之间的时间间隔等于所述第一节点U1到所述第二节点N2之间的传输延迟。
作为该实施例的一个子实施例,所述第一节点U1不进行预补偿(Pre-compensation),所述第一节点U1确定所述目标时间窗是所述第二候选时间窗。
作为该子实施例的一个附属实施例,所述第一节点U1在第二目标时间窗发送所述第一信 号,所述第二目标时间窗的起始时刻与所述第二候选时间窗的起始时刻之间的时间间隔等于所述第一节点U1到所述第二节点N2之间的传输延迟。
作为一个实施例,本申请中的所述第一时间单元是一个时隙。
作为一个实施例,本申请中的所述第二时间单元是一个时隙。
作为一个实施例,本申请中的所述第一目标时间窗包括正整数个连续的时隙。
实施例6
实施例6示例了一个第一时间窗和第二时间窗的示意图,如附图6所示。在附图6中,所述第一时间窗对应本申请中的所述第一节点的RAR窗,所述第二时间窗对应本申请中的所述第一节点在确定所述第一信号所发起的随机接入失败后重新发起随机接入后重发PRACH所对应的时间窗;所述第二时间窗在时域的起始时刻与所述第一时间窗在时域的截止时刻之间的时间间隔等于第二时间长度。
作为一个实施例,所述第一时间窗包括正整数个连续的时隙(Slot)。
作为一个实施例,所述第一时间窗包括正整数个连续的子帧(Subframe)。
作为一个实施例,所述第一时间窗包括正整数个连续的无线帧(Frame)。
作为一个实施例,所述第二时间窗包括正整数个连续的时隙。
作为一个实施例,所述第二时间窗包括正整数个连续的子帧。
作为一个实施例,所述第二时间窗包括正整数个连续的无线帧。
作为一个实施例,所述第一节点从所述第一时间窗的截止时刻到所述第二时间窗的起始时刻之间不发送随机接入相关的无线信号。
作为该实施例的一个子实施例,所述随机接入的相关信号包括前导序列、Msg3或MsgA中的之一。
实施例7
实施例7示例了一个第一时间长度集合的示意图,如附图7所示。在附图7中,所述第一指示被用于从第一时间长度集合中指示所述第一时间长度,所述第一时间长度集合包括Q1个第一类时间长度,所述第一时间长度是所述Q1个第一类时间长度中的一个第一类时间长度;所述第一时间长度集合是M1个候选时间长度集合中的之一;所述第一参数被用于从所述M1个候选时间长度集合中确定所述第一时间长度集合。所述M1个候选时间长度集合分别对应图中的候选时间长度集合#1至候选时间长度集合#M1;候选时间长度集合#i包括候选时间长度#i_1至候选时间长度#i_Q1,所述i是大于0且不大于Q1的正整数;所述Q1个第一类时间长度对应图中的第一类时间长度#1至第一类时间长度#Q1。
作为一个实施例,所述第一参数被用于确定M1种候选类型中所述第二节点属于的类型,所述M1个候选时间长度集合分别对应所述M1种所述第二节点的类型。
作为一个实施例,所述第一参数被用于确定M1种候选高度区间中所述第二节点所在的高度区间,所述M1个候选时间长度集合分别对应所述M1种所述第二节点所在的高度区间。
实施例8
实施例8示例了根据本申请的一个传输延迟的示意图;如附图8所示。在附图8中,所述第一节点在目标时间单元中发送第一信号,所述第一信号经过Td毫秒后在所述第二节点的第一目标时间窗到达所述第二节点;所述第二节点在所述第一目标时间窗中没有检测出所述第一信号,或者所述第二节点虽然检测出所述第一信号但无法为所述第一节点分配资源;随后所述第二节点在第三时间窗中发送所述第二信号,所述第二信号再次经过Td毫秒后在第一时间窗中到达所述第一节点。从图中能够看到,所述第一节点在发送完所述第一信号后,至少在后续2*Td毫秒的时间内不会收到来自所述第二节点的RAR,而上述时间能够被用于其他UE的随机接入,而对于所述第一节点而言,上述2*Td毫秒的时间是天然存在的回退时间。
实施例9
实施例9示例了根据本申请的一个第一时间单元和第二时间单元的示意图;如附图9所示。在附图9中,所述第一时间单元是所述第一节点按照下行定时确定的预留用于所述第一信号发送的时间单元,所述第二时间单元是所述第一节点在预补偿传输延迟后所述第一信号实际发送的时间单元。
作为一个实施例,所述传输延迟仅包括所述第二节点到近地点的传输延迟。
作为一个实施例,所述传输延迟包括所述第二节点到所述第一节点的传输延迟。
作为一个实施例,图中所示的TA等于2倍的所述第二节点到近地点的传输延迟。
作为一个实施例,图中所示的TA等于2倍的所述第二节点到所述第一节点的传输延迟。
实施例10
实施例10示例了一个第一节点中的结构框图,如附图10所示。附图10中,第一节点1000包括第一接收机1001、第一发射机1002、第二接收机1003和第二发射机1004。
第一接收机1001,接收第一信息;
第一发射机1002,发送第一信号;
第二接收机1003,在第一时间窗中检测第二信号;
第二发射机1004,在第二时间窗中发送第三信号;
实施例10中,所述第一信息包括第一参数;所述第一信号和所述第三信号均被用于发起随机接入,针对所述第二信号的检测被用于确定所述第一信号所发起的随机接入不成功;所述第二信号携带第一指示,所述第一指示和所述第一参数被共同用于确定第一时间长度;所述第二时间窗在时域的起始时刻与所述第一时间窗在时域的截止时刻之间的时间间隔等于第二时间长度;所述第一时间长度被用于确定所述第二时间长度。
作为一个实施例,所述第一时间长度等于K1毫秒,所述第二时间长度等于K2毫秒,所述K1是非负整数,所述K2是所述第一节点在0到K1之间按照均匀分布随机选择的一个非负整数。
作为一个实施例,所述第一指示被用于指示第三时间长度,所述第一时间长度等于所述第三时间长度与目标时间长度的差,所述目标时间长度与所述第一参数相关联。
作为一个实施例,所述第一指示被用于指示第三时间长度;当所述第三时间长度与目标时间长度的差不小于0时,所述第一时间长度等于所述第三时间长度与目标时间长度的差;当所述第三时间长度与目标时间长度的差小于0时,所述第一时间长度等于0。
作为一个实施例,所述第一指示被用于从第一时间长度集合中指示所述第一时间长度,所述第一时间长度集合包括Q1个第一类时间长度,所述第一时间长度是所述Q1个第一类时间长度中的一个第一类时间长度;所述第一时间长度集合是M1个候选时间长度集合中的之一;所述第一参数被用于从所述M1个候选时间长度集合中确定所述第一时间长度集合;所述Q1是大于1的正整数,所述M1是大于1的正整数。
作为一个实施例,所述第一参数与所述第二信号的发送者的高度有关,或者所述第一参数与所述第二信号的发送者的类型有关,或者所述第一参数与所述第一节点到所述第二信号的发送者的距离有关。
作为一个实施例,所述第一接收机1001接收第四信号;所述第四信号被用于确定第一时间单元,所述第一信号在第二时间单元中被发送,所述第一时间单元的起始时刻和所述第二时间单元的起始时刻之间的时间间隔长度不小于所述目标时间长度;所述第二时间单元的起始时刻早于所述第一时间单元的起始时刻。
作为一个实施例,所述第一接收机1001接收第五信号;所述第五信号被用于确定第一目标时间窗,所述第五信号的发送者在所述第一目标时间窗中检测所述第一信号。
作为一个实施例,所述第一接收机1001包括实施例4中的天线452、接收器454、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前4者。
作为一个实施例,所述第一发射机1002包括实施例4中的天线452、发射器454、多天线发射处理器457、发射处理器468、控制器/处理器459中的至少前4者。
作为一个实施例,所述第二接收机1003包括实施例4中的天线452、接收器454、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前4者。
作为一个实施例,所述第二发射机1004包括实施例4中的天线452、发射器454、多天线发射处理器457、发射处理器468、控制器/处理器459中的至少前4者。
实施例11
实施例11示例了一个第二节点中的结构框图,如附图11所示。附图11中,第二节点1100包括第三发射机1101、第三接收机1102、第四发射机1103和第四接收机1104。
第三发射机1101,发送第一信息;
第三接收机1102,检测第一信号;
第四发射机1103,发送第二信号;
第四接收机1104,检测第三信号;
实施例11中,所述第一信息包括第一参数;所述第一信号和所述第三信号均被用于发起随机接入;所述第一信号的发送者是第一节点,所述第一节点针对所述第二信号的检测被所述第一节点用于确定所述第一信号所发起的随机接入不成功;所述第二信号携带第一指示,所述第一指示和所述第一参数被共同用于确定第一时间长度;所述第一节点在第一时间窗中检测所述第二信号,且所述第一节点在第二时间窗中发送所述第三信号;所述第二时间窗在时域的起始时刻与所述第一时间窗在时域的截止时刻之间的时间间隔等于第二时间长度;所述第一时间长度被用于确定所述第二时间长度。
作为一个实施例,所述第一时间长度等于K1毫秒,所述第二时间长度等于K2毫秒,所述K1是非负整数,所述K2是所述第一节点在0到K1之间按照均匀分布随机选择的一个非负整数。
作为一个实施例,所述第一指示被用于指示第三时间长度,所述第一时间长度等于所述第三时间长度与目标时间长度的差,所述目标时间长度与所述第一参数相关联。
作为一个实施例,所述第一指示被用于指示第三时间长度;当所述第三时间长度与目标时间长度的差不小于0时,所述第一时间长度等于所述第三时间长度与目标时间长度的差;当所述第三时间长度与目标时间长度的差小于0时,所述第一时间长度等于0。
作为一个实施例,所述第一指示被用于从第一时间长度集合中指示所述第一时间长度,所述第一时间长度集合包括Q1个第一类时间长度,所述第一时间长度是所述Q1个第一类时间长度中的一个第一类时间长度;所述第一时间长度集合是M1个候选时间长度集合中的之一;所述第一参数被用于从所述M1个候选时间长度集合中确定所述第一时间长度集合。
作为一个实施例,所述第一参数与所述第二信号的发送者的高度有关,或者所述第一参数与所述第二信号的发送者的类型有关,或者所述第一参数与所述第一节点到所述第二信号的发送者的距离有关。
作为一个实施例,所述第三发射机1101发送第四信号;所述第四信号被用于确定第一时间单元,所述第一信号在第二时间单元中被发送,所述第一时间单元的起始时刻和所述第二时间单元的起始时刻之间的时间间隔长度不小于所述目标时间长度;所述第二时间单元的起始时刻早于所述第一时间单元的起始时刻。
作为一个实施例,所述第三发射机1101发送第五信号;所述第五信号被用于确定目标时间窗,所述第二节点在所述目标时间窗中接收所述第一信号。
作为一个实施例,所述第三发射机1101包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器416、控制器/处理器475中的至少前4者。
作为一个实施例,所述第三接收机1102包括实施例4中的天线420、接收器418、多天线接收处理器472、接收处理器470、控制器/处理器475中的至少前4者。
作为一个实施例,所述第四发射机1103包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器416、控制器/处理器475中的至少前4者。
作为一个实施例,所述第四接收机1104包括实施例4中的天线420、接收器418、多天线接收处理器472、接收处理器470、控制器/处理器475中的至少前4者。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点和第二节点包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,交通工具,车辆,RSU,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站,RSU等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种用于无线通信中的第一节点,其特征在于包括:
    第一接收机,接收第一信息;
    第一发射机,发送第一信号;
    第二接收机,在第一时间窗中检测第二信号;
    第二发射机,在第二时间窗中发送第三信号;
    其中,所述第一信息包括第一参数;所述第一信号和所述第三信号均被用于发起随机接入,针对所述第二信号的检测被用于确定所述第一信号所发起的随机接入不成功;所述第二信号携带第一指示,所述第一指示和所述第一参数被共同用于确定第一时间长度;所述第二时间窗在时域的起始时刻与所述第一时间窗在时域的截止时刻之间的时间间隔等于第二时间长度;所述第一时间长度被用于确定所述第二时间长度。
  2. 根据权利要求1所述的第一节点,其特征在于,所述第一时间长度等于K1毫秒,所述第二时间长度等于K2毫秒,所述K1是非负整数,所述K2是所述第一节点在0到K1之间按照均匀分布随机选择的一个非负整数。
  3. 根据权利要求1或2所述的第一节点,其特征在于,所述第一指示被用于指示第三时间长度,所述第一时间长度等于所述第三时间长度与目标时间长度的差,所述目标时间长度与所述第一参数相关联。
  4. 根据权利要求1或2所述的第一节点,其特征在于,所述第一指示被用于指示第三时间长度;当所述第三时间长度与目标时间长度的差不小于0时,所述第一时间长度等于所述第三时间长度与目标时间长度的差;当所述第三时间长度与目标时间长度的差小于0时,所述第一时间长度等于0。
  5. 根据权利要求1或2所述的第一节点,其特征在于,所述第一指示被用于从第一时间长度集合中指示所述第一时间长度,所述第一时间长度集合包括Q1个第一类时间长度,所述第一时间长度是所述Q1个第一类时间长度中的一个第一类时间长度;所述第一时间长度集合是M1个候选时间长度集合中的之一;所述第一参数被用于从所述M1个候选时间长度集合中确定所述第一时间长度集合;所述Q1是大于1的正整数,所述M1是大于1的正整数。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,所述第一参数与所述第二信号的发送者的高度有关,或者所述第一参数与所述第二信号的发送者的类型有关,或者所述第一参数与所述第一节点到所述第二信号的发送者的距离有关。
  7. 根据权利要求1至6中任一权利要求所述的第一节点,其特征在于,所述第一接收机接收第四信号;所述第四信号被用于确定第一时间单元,所述第一信号在第二时间单元中被发送,所述第一时间单元的起始时刻和所述第二时间单元的起始时刻之间的时间间隔长度不小于所述目标时间长度;所述第二时间单元的起始时刻早于所述第一时间单元的起始时刻。
  8. 根据权利要求1至7中任一权利要求所述的第一节点的方法,其特征在于,所述第一接收机接收第五信号;所述第五信号被用于确定第一目标时间窗,所述第五信号的发送者在所述第一目标时间窗中检测所述第一信号。
  9. 一种用于无线通信中的第二节点,其特征在于包括:
    第三发射机,发送第一信息;
    第三接收机,检测第一信号;
    第四发射机,发送第二信号;
    第四接收机,检测第三信号;
    其中,所述第一信息包括第一参数;所述第一信号和所述第三信号均被用于发起随机接入;所述第一信号的发送者是第一节点,所述第一节点针对所述第二信号的检测被所述第一节点用于确定所述第一信号所发起的随机接入不成功;所述第二信号携带第一指示,所述第一指示和所述第一参数被共同用于确定第一时间长度;所述第一节点在第一时间 窗中检测所述第二信号,且所述第一节点在第二时间窗中发送所述第三信号;所述第二时间窗在时域的起始时刻与所述第一时间窗在时域的截止时刻之间的时间间隔等于第二时间长度;所述第一时间长度被用于确定所述第二时间长度。
  10. 一种用于无线通信中的第一节点中的方法,其特征在于包括:
    接收第一信息;
    发送第一信号;
    在第一时间窗中检测第二信号;
    在第二时间窗中发送第三信号;
    其中,所述第一信息包括第一参数;所述第一信号和所述第三信号均被用于发起随机接入,针对所述第二信号的检测被用于确定所述第一信号所发起的随机接入不成功;所述第二信号携带第一指示,所述第一指示和所述第一参数被共同用于确定第一时间长度;所述第二时间窗在时域的起始时刻与所述第一时间窗在时域的截止时刻之间的时间间隔等于第二时间长度;所述第一时间长度被用于确定所述第二时间长度。
  11. 一种用于无线通信中的第二节点中的方法,其特征在于包括:
    发送第一信息;
    检测第一信号;
    发送第二信号;
    检测第三信号;
    其中,所述第一信息包括第一参数;所述第一信号和所述第三信号均被用于发起随机接入;所述第一信号的发送者是第一节点,所述第一节点针对所述第二信号的检测被所述第一节点用于确定所述第一信号所发起的随机接入不成功;所述第二信号携带第一指示,所述第一指示和所述第一参数被共同用于确定第一时间长度;所述第一节点在第一时间窗中检测所述第二信号,且所述第一节点在第二时间窗中发送所述第三信号;所述第二时间窗在时域的起始时刻与所述第一时间窗在时域的截止时刻之间的时间间隔等于第二时间长度;所述第一时间长度被用于确定所述第二时间长度。
PCT/CN2020/129962 2019-12-24 2020-11-19 一种被用于无线通信的节点中的方法和装置 WO2021129248A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911345495.0 2019-12-24
CN201911345495.0A CN113038585B (zh) 2019-12-24 2019-12-24 一种被用于无线通信的节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2021129248A1 true WO2021129248A1 (zh) 2021-07-01

Family

ID=76451554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129962 WO2021129248A1 (zh) 2019-12-24 2020-11-19 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN113038585B (zh)
WO (1) WO2021129248A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109587812A (zh) * 2017-09-28 2019-04-05 中兴通讯股份有限公司 随机接入参数确定方法及装置
US20190110242A1 (en) * 2017-10-10 2019-04-11 Qualcomm Incorporated Beam specific backoff indicator
CN110536349A (zh) * 2018-05-25 2019-12-03 中国移动通信有限公司研究院 一种确定回退时间的方法及装置、设备、存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108347307B (zh) * 2017-01-25 2021-02-09 华为技术有限公司 传输数据的方法、终端设备和网络设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109587812A (zh) * 2017-09-28 2019-04-05 中兴通讯股份有限公司 随机接入参数确定方法及装置
US20190110242A1 (en) * 2017-10-10 2019-04-11 Qualcomm Incorporated Beam specific backoff indicator
CN110536349A (zh) * 2018-05-25 2019-12-03 中国移动通信有限公司研究院 一种确定回退时间的方法及装置、设备、存储介质

Also Published As

Publication number Publication date
CN113038585A (zh) 2021-06-25
CN113038585B (zh) 2022-01-25

Similar Documents

Publication Publication Date Title
CN114205735B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020034848A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2021129250A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20220286256A1 (en) Method and device for wireless communication
US12063634B2 (en) Method and device in nodes used for wireless communication
WO2022194113A1 (zh) 一种被用于无线通信的方法和设备
EP4247104A1 (en) Method and apparatus of communication node used for radio communication
WO2021103925A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113709911B (zh) 一种被用于无线通信的节点中的方法和装置
CN112911697B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021129248A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113079580B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021115079A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021098468A1 (zh) 一种被用于无线通信的方法和设备
CN113141240B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023061204A1 (zh) 一种被用于无线通信的方法和设备
CN113114435B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023160415A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN114205915B (zh) 一种被用于无线通信的方法和装置
WO2024046155A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2021098469A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN118400810A (zh) 一种被用于无线通信中的方法和装置
CN116961849A (zh) 一种被用于无线通信的通信节点中的方法和装置
CN117812645A (zh) 一种被用于无线通信的方法和设备
CN116133132A (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908370

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20908370

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20908370

Country of ref document: EP

Kind code of ref document: A1