WO2021129250A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2021129250A1
WO2021129250A1 PCT/CN2020/129973 CN2020129973W WO2021129250A1 WO 2021129250 A1 WO2021129250 A1 WO 2021129250A1 CN 2020129973 W CN2020129973 W CN 2020129973W WO 2021129250 A1 WO2021129250 A1 WO 2021129250A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
information
timing
time domain
compensation value
Prior art date
Application number
PCT/CN2020/129973
Other languages
English (en)
French (fr)
Inventor
刘铮
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2021129250A1 publication Critical patent/WO2021129250A1/zh
Priority to US17/848,366 priority Critical patent/US20220330330A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions

Definitions

  • This application relates to a transmission method and device in a wireless communication system, and in particular to a transmission scheme and device for random access in wireless communication.
  • NTN Non-Terrestrial Networks
  • NR Non-Terrestrial Networks
  • the research project started in version R15.
  • 3GPP RAN#79 plenary meeting it was decided to start studying solutions in the NTN network, and at the 3GPP RAN#86 plenary meeting, it was decided to start WI to standardize related technologies.
  • NTN networks or networks similar to NTN with large transmission delays and large transmission delay differences due to the large transmission delay differences and the requirements of uplink and downlink synchronous transmission, the existing (such as NR 5G Release) Version 16) based on traditional terrestrial communications (Terrestrial Networks) design cannot be directly reused, especially the traditional random access design may not be suitable for NTN network, so a new design is needed to support large transmission delay and large transmission delay. Time difference of the network to ensure the normal operation of communication.
  • this application discloses a solution. It should be noted that in the description of this application, only the NTN scenario is used as a typical application scenario or example; this application is also applicable to other scenarios (such as other large delay networks) that face similar problems other than NTN. Can achieve similar technical effects in NTN scenes. In addition, different scenarios (including but not limited to NTN scenarios) adopting a unified solution can also help reduce hardware complexity and cost. In the case of no conflict, the embodiment in the first node device of the present application and the features in the embodiment can be applied to the second node device, and vice versa. In particular, for the explanation of the terms (Terminology), nouns, functions, and variables in this application (if no special instructions are added), please refer to the definitions in the TS36 series, TS38 series, and TS37 series of the 3GPP specifications.
  • This application discloses a method used in a first node in wireless communication, which is characterized in that it includes:
  • the length of the time interval between the transmission start time of the first signal and the reference time is equal to the target timing compensation value
  • the transmission start time of the first signal is earlier than the reference time
  • the reference time is the reference time.
  • the boundary moment of the time domain resource unit, the first information is used to determine the position of the reference time domain resource unit in the time domain; the first timing compensation value and the first timing offset value are used together
  • the target timing compensation value is determined, and the first timing offset value is greater than 0; the first signal is used for random access, and the first signal carries a preamble sequence.
  • the first timing offset value is introduced on the basis of the first timing compensation value to determine the target timing compensation value, and then the sending start time of the first signal is determined, like this
  • the user equipment can precompensate the transmission timing of PRACH according to the TA compensation value obtained by itself, and only perform partial precompensation (or there is a backoff offset during precompensation), which avoids the user equipment determining the TA compensation value.
  • Time calculation error (which may be caused by positioning accuracy to a large extent) and timing error cause collisions between PRACH transmission and other uplink transmissions, which improves the success probability of random access or improves resource utilization.
  • the second information is used to determine the first timing offset value, so that when the PRACH transmission timing is partially compensated, the network can perform various corrections based on coverage conditions, satellite delay characteristics, and other aspects. Compensation back-off is used to control, avoid over-compensation or under-compensation, and further improve random access performance.
  • the above method is characterized in that at least one of the first information or the second information is used to determine X candidate formats, and the X is a positive integer greater than 1; At least one of the first timing compensation value or the first timing offset value is used to determine a first format from the X candidate formats, and the first format is the X candidate formats An alternative format in which the first format is used to determine the first signal.
  • the first format is determined from the X candidate formats by using at least one of the first timing compensation value or the first timing offset value, so that the first format is determined according to whether the user equipment can
  • the pre-compensation ability for uplink transmission timing selects the PRACH format, which realizes the support for users with different compensation capabilities in a large delay network.
  • the first format is determined from the X candidate formats according to the first timing offset value, so that the PRACH can be determined according to the backoff value (or offset value) during partial compensation.
  • Format or limit the PRACH format so as to realize the adaptation between the timing pre-compensation and the PRACH format, further avoid the collision of PRACH and other uplink transmissions, and improve the performance of random access.
  • the above method is characterized in that, when only the first timing compensation value among the first timing compensation value and the first timing offset value is used to determine the first format, The first format is used to determine the first timing offset value.
  • the first timing offset value is determined by the first format, so that the backoff value (or offset value) for partial compensation can be determined according to the configured PRACH format, and the PRACH format may allow
  • the offset value of the timing pre-compensation guarantees the margin of collision avoidance between PRACH transmission and previous uplink transmissions, and further avoids collisions between PRACH and other uplink transmissions.
  • the above method is characterized in that the capability of the first node device is used to determine the first timing compensation value, and the first timing offset value is determined by the first node device. Is related to the error of the first timing compensation value.
  • the above method is characterized in that the second information is used to determine a first parameter set, the first parameter set is used to determine the first timing offset value, and the first parameter set is used to determine the first timing offset value.
  • the parameter set is a positive integer number of parameters.
  • the above method is characterized in that at least one of the length of the cyclic prefix included in the first signal in the time domain and the number of time domain resources occupied by the preamble sequence carried by the first signal One is related to the error of the first timing compensation value determined by the first node device.
  • the selected PRACH format when selecting the length of the cyclic prefix and the time domain length of the preamble sequence, can optimize the performance of random access, taking into account the limitation of the pre-compensated error.
  • This application discloses a method used in a second node in wireless communication, which is characterized in that it includes:
  • the length of the time interval between the transmission start time of the first signal and the reference time is equal to the target timing compensation value
  • the transmission start time of the first signal is earlier than the reference time
  • the reference time is the reference time.
  • the boundary moment of the time domain resource unit, the first information is used to indicate the position of the reference time domain resource unit in the time domain; the first timing compensation value and the first timing offset value are used together to determine the For the target timing compensation value, the first timing offset value is greater than 0; the first signal is used for random access, and the first signal carries a preamble sequence.
  • the above method is characterized in that at least one of the first information or the second information is used to determine X candidate formats, and the X is a positive integer greater than 1; At least one of the first timing compensation value or the first timing offset value is used to determine a first format from the X candidate formats, and the first format is the X candidate formats An alternative format in which the first format is used to determine the first signal.
  • the above method is characterized in that, when only the first timing compensation value among the first timing compensation value and the first timing offset value is used to determine the first format, The first format is used to determine the first timing offset value.
  • the above method is characterized in that the capability of the first node device is used to determine the first timing compensation value, and the first timing offset value is determined by the first node device. Is related to the error of the first timing compensation value.
  • the above method is characterized in that the second information is used to determine a first parameter set, the first parameter set is used to determine the first timing offset value, and the first parameter set is used to determine the first timing offset value.
  • the parameter set is a positive integer number of parameters.
  • the above method is characterized in that at least one of the length of the cyclic prefix included in the first signal in the time domain and the number of time domain resources occupied by the preamble sequence carried by the first signal One is related to the error of the first timing compensation value determined by the first node device.
  • This application discloses a first node device used in wireless communication, which is characterized in that it includes:
  • the first receiver receives the first information
  • a second receiver receiving second information, where the second information is used to determine the first timing offset value
  • the first transmitter determines the first timing compensation value, and sends the first signal
  • the length of the time interval between the transmission start time of the first signal and the reference time is equal to the target timing compensation value
  • the transmission start time of the first signal is earlier than the reference time
  • the reference time is the reference time.
  • the boundary moment of the time domain resource unit, the first information is used to determine the position of the reference time domain resource unit in the time domain; the first timing compensation value and the first timing offset value are used together
  • the target timing compensation value is determined, and the first timing offset value is greater than 0; the first signal is used for random access, and the first signal carries a preamble sequence.
  • This application discloses a second node device used in wireless communication, which is characterized in that it includes:
  • the second transmitter sends the first information
  • a third transmitter sending second information, where the second information is used to determine the first timing offset value
  • the third receiver detects the first signal
  • the length of the time interval between the transmission start time of the first signal and the reference time is equal to the target timing compensation value
  • the transmission start time of the first signal is earlier than the reference time
  • the reference time is the reference time.
  • the boundary moment of the time domain resource unit, the first information is used to indicate the position of the reference time domain resource unit in the time domain; the first timing compensation value and the first timing offset value are used together to determine the For the target timing compensation value, the first timing offset value is greater than 0; the first signal is used for random access, and the first signal carries a preamble sequence.
  • the method in this application has the following advantages:
  • the user equipment can only perform partial pre-compensation (or pre-compensation) when pre-compensating the transmission timing of PRACH according to the TA compensation value obtained by itself.
  • There is a back-off offset which avoids the collision between PRACH transmission and other uplink transmissions caused by calculation errors (to a large extent due to positioning accuracy) and timing errors when the user equipment determines the TA compensation value.
  • the method in this application enables the network to control the compensation fallback according to coverage conditions, satellite delay characteristics and other aspects when partially compensating the transmission timing of PRACH, avoiding over-compensation or under-compensation, and further increase Random access performance.
  • the PRACH format is selected according to whether the user equipment can perform the pre-compensation capability of uplink transmission timing, so as to realize the support for users with different compensation capabilities in a large delay network.
  • the method in this application makes it possible to determine the PRACH format or limit the PRACH format according to the backoff value (or offset value) during partial compensation, so as to realize the adaptation between the timing pre-compensation and the PRACH format, and further avoid The collision of PRACH and other uplink transmissions improves the performance of random access.
  • the method in this application makes it possible to determine the backoff value (or offset value) during partial compensation according to the configured PRACH format, and fully consider the allowable timing pre-compensation offset value of the PRACH format to ensure PRACH transmission and before and after
  • the margin for collision avoidance between uplink transmissions can further avoid collisions between PRACH and other uplink transmissions.
  • the selected PRACH format can be optimized for random access while considering the limitation of the pre-compensation error performance.
  • Figure 1 shows a flow chart of the first information, the second information and the first signal according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Fig. 3 shows a schematic diagram of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first node device and a second node device according to an embodiment of the present application
  • Figure 5 shows a wireless signal transmission flow chart according to an embodiment of the present application
  • Fig. 6 shows a wireless signal transmission flow chart according to another embodiment of the present application.
  • FIG. 7 shows a schematic diagram of the relationship between the first timing compensation value, the first timing offset value, and the target timing compensation value according to an embodiment of the present application
  • FIG. 8 shows a schematic diagram of the relationship between the first timing compensation value, the first timing offset value, and the first format according to an embodiment of the present application
  • FIG. 9 shows a schematic diagram of the relationship between the first timing offset value and the first format according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of the relationship between the first timing offset value and the error of the first timing compensation value according to an embodiment of the present application
  • FIG. 11 shows a schematic diagram of the relationship between the first parameter set and the first timing offset value according to an embodiment of the present application
  • FIG. 12 shows a schematic diagram of the relationship between the length of the cyclic prefix, the amount of time domain resources occupied by the preamble sequence, and the error of the timing compensation value according to an embodiment of the present application;
  • Fig. 13 shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application
  • Fig. 14 shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of the first information, the second information, and the first signal according to an embodiment of the present application, as shown in FIG. 1.
  • each box represents a step, and it should be particularly emphasized that the order of each box in the figure does not represent the time sequence relationship between the steps shown.
  • the first node device in this application receives first information in step 101; receives second information in step 102, and the second information is used to determine the first timing offset value;
  • the first timing compensation value is determined in 103, and the first signal is sent; wherein, the length of the time interval between the sending start time of the first signal and the reference time is equal to the target timing compensation value, and the first signal is sent
  • the start time is earlier than the reference time
  • the reference time is a boundary time of a reference time domain resource unit
  • the first information is used to determine the position of the reference time domain resource unit in the time domain
  • the first timing The compensation value and the first timing offset value are used together to determine the target timing offset value, the first timing offset value is greater than 0;
  • the first signal is used for random access, the first The signal carries the leader sequence.
  • the first node device is in an RRC (Radio Resource Control, Radio Resource Control) idle (RRC_IDLE) state (State) when sending the first signal.
  • RRC Radio Resource Control, Radio Resource Control
  • the first node device is in an RRC (Radio Resource Control, radio resource control) connection (RRC_CONNECTED) state (State) when sending the first signal.
  • RRC Radio Resource Control, radio resource control
  • the first node device is in an RRC (Radio Resource Control, radio resource control) inactive (RRC_INACTIVE) state (State) when sending the first signal.
  • RRC Radio Resource Control, radio resource control
  • the first information is transmitted through an air interface.
  • the first information is transmitted through a wireless interface.
  • the first information is transmitted through higher layer signaling.
  • the first information is transmitted through physical layer signaling.
  • the first information includes all or part of a high-layer signaling.
  • the first information includes all or part of a physical layer signaling.
  • the first information includes all or part of an IE (Information Element, information element) in an RRC (Radio Resource Control, radio resource control) signaling.
  • IE Information Element, information element
  • RRC Radio Resource Control, radio resource control
  • the first information includes all or part of a field (Field) in an IE (Information Element, information element) in an RRC (Radio Resource Control, radio resource control) signaling.
  • Field Information Element, information element
  • RRC Radio Resource Control, radio resource control
  • the first information includes all or part of a MAC (Medium Access Control) layer signaling.
  • MAC Medium Access Control
  • the first information includes all or part of a master information block (MIB, Master Information Block).
  • MIB Master Information Block
  • the first information includes all or part of a system information block (SIB, System Information Block).
  • SIB system information block
  • the first information includes all or part of a system information block type 1 (SIB1, System Information Block Type 1).
  • SIB system information block type 1
  • SIB1 System Information Block Type 1
  • the first information is transmitted through a DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the first information is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the first information is carried by a synchronization signal.
  • the first information is carried by a synchronization signal/physical broadcast channel block (SS/PBCH Block).
  • SS/PBCH Block synchronization signal/physical broadcast channel block
  • the first information is carried by a demodulation reference signal (DM-RS, Demodulation Reference Signal) of a PBCH (Physical Broadcast Channel, physical broadcast channel).
  • DM-RS Demodulation Reference Signal
  • PBCH Physical Broadcast Channel, physical broadcast channel
  • the first information is carried jointly by the PBCH payload (Payload) and the PBCH demodulation reference signal (DM-RS, Demodulation Reference Signal).
  • PBCH payload Payload
  • DM-RS Demodulation Reference Signal
  • the first information is cell specific (Cell Specific).
  • the first information is UE-specific.
  • the first information is user equipment group-specific (UE group-specific).
  • the first information is specific to the coverage area (Footprint).
  • the first information is beam specific (Beam Specific).
  • the first information is specific to a geographic area.
  • the first information includes all or part of a field of DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the above sentence "the first information is used to determine the position of the reference time domain resource unit in the time domain” includes the following meaning: the first information is used by the first node device in this application To determine the position of the reference time domain resource unit in the time domain.
  • the above sentence “the first information is used to determine the position of the reference time domain resource unit in the time domain” includes the following meaning: the first information is used to directly indicate the reference time domain resource unit In the time domain.
  • the above sentence "the first information is used to determine the position of the reference time domain resource unit in the time domain” includes the following meaning: the first information is used to indirectly indicate the reference time domain resource unit In the time domain.
  • the above sentence "the first information is used to determine the position of the reference time domain resource unit in the time domain” includes the following meaning: the first information is used to explicitly indicate the reference time domain The resource unit is located in the time domain.
  • the above sentence "the first information is used to determine the position of the reference time domain resource unit in the time domain” includes the following meaning: the first information is used to implicitly indicate the reference time domain The resource unit is located in the time domain.
  • the above sentence “the first information is used to determine the position of the reference time domain resource unit in the time domain” includes the following meaning: the first information is used to determine the first index, and the first information is used to determine the first index.
  • An index is used to determine the position of the reference time domain resource unit in the time domain, and the first index is a non-negative integer.
  • the above sentence "the first information is used to determine the position of the reference time domain resource unit in the time domain” includes the following meaning: the first information is used to determine the first index, and the first information is used to determine the first index.
  • One index is a physical random access channel (PRACH, Physical Random Access Channel) configuration index (Configuration Index), and the first index is used to determine the position of the reference time domain resource unit in the time domain.
  • PRACH Physical Random Access Channel
  • Configuration Index Configuration Index
  • the first information is carried by high-level signaling "prach-ConfigurationIndex".
  • the first information includes a list of high-level signaling "prach-ConfigurationIndex" (List).
  • the above sentence “the first information is used to determine the position of the reference time domain resource unit in the time domain” includes the following meaning: the first information is used to determine the first index, and the first information is used to determine the first index.
  • An index is used to determine the position of the reference time domain resource unit in the time domain according to the mapping table, and the first index is a non-negative integer.
  • the above sentence "the first information is used to determine the position of the reference time domain resource unit in the time domain” includes the following meaning: the first information is used to determine the first index, and the first information is used to determine the first index.
  • An index is used to determine the position of the reference time domain resource unit in the time domain according to the mapping relationship, and the first index is a non-negative integer.
  • the above sentence "the first information is used to determine the position of the reference time domain resource unit in the time domain” includes the following meaning: the first information is used for downlink synchronization (Downlink Synchronization), so The downlink synchronization is used to determine the position of the reference time domain resource unit in the time domain.
  • the above sentence "the first information is used to determine the position of the reference time domain resource unit in the time domain” includes the following meaning: the first information is used to determine the second index, and the first information is used to determine the second index.
  • the second index is an index of a synchronization signal/physical broadcast channel block (SS/PBCH Block), and the second index is used to determine the position of the reference time domain resource unit in the time domain.
  • SS/PBCH Block synchronization signal/physical broadcast channel block
  • the above sentence "the first information is used to determine the position of the reference time domain resource unit in the time domain” includes the following meaning: the first information is used to determine the second index, and the first information is used to determine the second index.
  • the second index is the index of the synchronization signal/physical broadcast channel block (SS/PBCH Block).
  • the second index is used for downlink synchronization (Downlink Synchronization), and the downlink synchronization is used to determine whether the reference time domain resource unit is Time domain location.
  • the above sentence "the first information is used to determine the position of the reference time domain resource unit in the time domain” includes the following meaning: the first information is used to determine the second index, and the first information is used to determine the second index.
  • the second index is the index of the synchronization signal/physical broadcast channel block (SS/PBCH Block), the second index is used to determine the downlink reception timing (Downlink Reception Timing), and the downlink reception timing is used to determine the reference time The location of the domain resource unit in the time domain.
  • the above sentence "the first information is used to determine the position of the reference time domain resource unit in the time domain” includes the following meaning: the first information is used to determine the second index, and the first information is used to determine the second index.
  • the second index is an index of a synchronization signal/physical broadcast channel block (SS/PBCH Block), and the second index is used to determine the position of the frame (Frame) to which the reference time domain resource unit belongs in the time domain.
  • SS/PBCH Block synchronization signal/physical broadcast channel block
  • the above sentence "the first information is used to determine the position of the reference time domain resource unit in the time domain” includes the following meaning: the first information and the second information are jointly used to determine The position of the reference time domain resource unit in the time domain.
  • the second information is transmitted through an air interface.
  • the second information is transmitted through a wireless interface.
  • the second information includes all or part of a high-level signaling.
  • the second information includes all or part of a physical layer signaling.
  • the second information includes all or part of an IE (Information Element, information element) in an RRC (Radio Resource Control, radio resource control) signaling.
  • IE Information Element, information element
  • RRC Radio Resource Control, radio resource control
  • the second information includes all or part of a field (Field) in an IE (Information Element, information element) in an RRC (Radio Resource Control, radio resource control) signaling.
  • Field Information Element, information element
  • RRC Radio Resource Control, radio resource control
  • the second information includes all or part of a MAC (Medium Access Control) layer signaling.
  • MAC Medium Access Control
  • the second information includes all or part of a system information block (SIB, System Information Block).
  • SIB system information block
  • the second information includes all or part of a system information block type 1 (SIB1, System Information Block Type 1).
  • SIB system information block type 1
  • SIB1 System Information Block Type 1
  • the second information is transmitted through a DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the second information is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the second information is cell specific (Cell Specific).
  • the second information is UE-specific.
  • the second information is user equipment group-specific (UE group-specific).
  • the second information is specific to the coverage area (Footprint).
  • the second information is beam specific (Beam Specific).
  • the second information is geographic area specific.
  • the second information includes all or part of a field of a DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the above sentence "the second information is used to determine the first timing offset value” includes the following meaning: the second information is used by the first node device in this application to determine the first timing offset value. Offset value at a certain time.
  • the above sentence "the second information is used to determine the first timing offset value” includes the following meaning: the second information is used to directly indicate the first timing offset value.
  • the above sentence "the second information is used to determine the first timing offset value” includes the following meaning: the second information is used to indirectly indicate the first timing offset value.
  • the above sentence "the second information is used to determine the first timing offset value” includes the following meaning: the second information is used to explicitly indicate the first timing offset value.
  • the above sentence "the second information is used to determine the first timing offset value” includes the following meaning: the second information is used to implicitly indicate the first timing offset value.
  • the above sentence "the second information is used to determine the first timing offset value” includes the following meaning: the second information is used to determine the format adopted by the first signal, and the first signal The format adopted by a signal is used to determine the first timing offset value.
  • the above sentence "the second information is used to determine the first timing offset value” includes the following meaning: the second information is used to determine the third index, and the third index is used to determine The format adopted by the first signal, the format adopted by the first signal is used to determine the first timing offset value, and the third index is a non-negative integer.
  • the above sentence "the second information is used to determine the first timing offset value” includes the following meaning: the second information is used to determine a third index, and the third index is a physical random access Incoming Channel (PRACH, Physical Random Access Channel) configuration index (Configuration Index), the third index is used to determine the format used by the first signal, and the format used by the first signal is used to determine the The first timing offset value.
  • PRACH Physical Random Access Channel
  • Configuration Index configuration index
  • the above sentence "the second information is used to determine the first timing offset value” includes the following meaning: the second information is used to determine the first format in this application, and the first A format is used to determine the first timing offset value.
  • the second information includes a list of high-level signaling "prach-ConfigurationIndex" (List).
  • the first information and the second information are carried by the same RRC signaling.
  • the first information and the second information are carried by different RRC signaling.
  • the first information and the second information are carried by two different IEs (Information Elements) of the same RRC signaling.
  • the first information and the second information are carried by two different fields (Fields) of the same IE (Information Element) of the same RRC signaling.
  • the unit of the first timing offset value is milliseconds (ms).
  • the first timing offset value is represented by the number of OFDM symbols.
  • the first timing offset value is represented by the number of OFDM symbols corresponding to the subcarrier interval of the Initial Bandwidth Part.
  • the first timing offset value is expressed by the number of OFDM symbols corresponding to the subcarrier interval of the non-initial Bandwidth Part (Non-initial Bandwidth Part).
  • the first timing offset value is represented by the number of OFDM symbols corresponding to the subcarrier interval of the subcarrier occupied by the first signal in the frequency domain.
  • the first timing offset value is equal to the time length of the backoff above the first timing compensation value when the first node device sends the first signal.
  • the first timing compensation value is a TA (Timing Advance) used for sending the first signal determined by the first node device itself.
  • the first timing compensation value is equal to N TA when sending the first signal determined by the first node device itself.
  • the first timing compensation value is equal to T TA when sending the first signal determined by the first node device itself.
  • the first timing compensation value is half of the TA (Timing Advance) used for sending the first signal determined by the first node device itself.
  • the first timing compensation value is equal to half of the N TA when sending the first signal determined by the first node device itself.
  • the first timing compensation value is equal to half of the T TA determined by the first node device when sending the first signal.
  • the first timing compensation value is determined by the first node device itself.
  • the unit of the first timing compensation value is milliseconds (ms).
  • the first timing compensation value is greater than zero.
  • the first timing compensation value is represented by the number of OFDM symbols.
  • the first timing compensation value is equal to the time length of the most OFDM symbol that is not greater than the TA (Timing Advance) used to transmit the first signal determined by the first node device itself.
  • the first signal is transmitted through PRACH (Physical Random Access Channel, Physical Random Access Channel).
  • PRACH Physical Random Access Channel, Physical Random Access Channel
  • the first signal is a wireless signal.
  • the first signal is an air interface signal.
  • the first signal is a baseband signal (Baseband Signal).
  • the first signal is a radio frequency (RF, Radio Frequency) signal.
  • RF Radio Frequency
  • the above sentence "the first signal is used for random access” includes the following meaning: the first signal is used for 4-step random access.
  • the above sentence "the first signal is used for random access” includes the following meaning: the first signal is used for 2-step random access.
  • the above sentence "the first signal is used for random access” includes the following meaning: the first signal is used for type 1 (Type-1) random access.
  • the above sentence "the first signal is used for random access” includes the following meaning: the first signal is used for type 2 (Type-2) random access.
  • the first signal is used for Msg1 (message 1) in 4-step random access.
  • the first signal is used for MsgA (message A) in 2-step random access.
  • the above sentence "the first signal carries a preamble sequence” includes the following meaning: a preamble sequence (Preamble) is used to generate the first signal.
  • Preamble a preamble sequence
  • the above sentence "the first signal carries a preamble sequence” includes the following meaning: a Zadoff-Chu (ZC) sequence as a preamble is used to generate the first signal.
  • ZC Zadoff-Chu
  • the above sentence "the first signal carries a preamble sequence” includes the following meaning: a pseudo-random sequence (Pseudo-random sequence) as a preamble is used to generate the first signal.
  • a pseudo-random sequence Pseudo-random sequence
  • the above sentence "the first signal carries a preamble sequence” includes the following meaning: a Zadoff-Chu (ZC) sequence with a length of 839 is used as a preamble to generate the first signal.
  • ZC Zadoff-Chu
  • the above sentence "the first signal carries a preamble sequence” includes the following meaning: a Zadoff-Chu (ZC) sequence with a length of 139 is used as a preamble to generate the first signal.
  • ZC Zadoff-Chu
  • a Zadoff-Chu (ZC) sequence with a length of 839 is used to generate the first signal.
  • a Zadoff-Chu (ZC) sequence with a length of 139 is used to generate the first signal.
  • a Zadoff-Chu (ZC) sequence with a length greater than 839 is used to generate the first signal.
  • the sending start time of the first signal refers to the sending start time of the earliest OFDM symbol occupied by the first signal in the time domain.
  • the sending start time of the first signal refers to the sending start time of the cyclic prefix occupied by the first signal in the time domain.
  • the sending start time of the first signal refers to the sending start time of the cyclic prefix in the earliest OFDM symbol occupied by the first signal in the time domain.
  • the transmission start time of the first signal refers to the transmission start time of the slot to which the earliest OFDM symbol occupied by the first signal in the time domain belongs.
  • the unit of the target timing compensation value is milliseconds (ms).
  • the target timing compensation value is expressed by the number of OFDM symbols.
  • the target timing compensation value is not greater than the first timing compensation value.
  • the above sentence “the reference time is the boundary time of the reference time domain resource unit” includes the following meaning: the reference time is the start time of the reference time domain resource unit.
  • the above sentence “the reference time is the boundary time of the reference time domain resource unit” includes the following meaning: the reference time is the end time of the reference time domain resource unit.
  • the above sentence "the reference time is the boundary time of the reference time domain resource unit” includes the following meaning: the reference time is the starting time of the reference time domain resource unit on the side of the first node device .
  • the above sentence “the reference time is the boundary time of the reference time domain resource unit” includes the following meaning: the reference time is the end time of the reference time domain resource unit on the side of the first node device.
  • the above sentence “the reference time is the boundary time of the reference time domain resource unit” includes the following meaning: the reference time is the receiving start time of the reference time domain resource unit.
  • the above sentence “the reference time is the boundary time of the reference time domain resource unit” includes the following meaning: the reference time is the reception end time of the reference time domain resource unit.
  • the above sentence “the reference time is the boundary time of the reference time domain resource unit” includes the following meaning: the reference time is the reception boundary time of the reference time domain resource unit.
  • the reference time domain resource unit is a time domain resource occupied by a PRACH opportunity (Occasion) in the time domain.
  • the reference time domain resource unit is a time domain resource occupied by a PRACH opportunity (Occasion) in the time domain according to downlink timing.
  • the reference time domain resource unit is a time domain resource occupied in the time domain according to a PRACH opportunity (Occasion) of reception timing.
  • the reference time domain resource unit is a time domain resource occupied by a PRACH opportunity (Occasion) in the time domain when it is assumed that the timing advance (Timing Advance, TA) is equal to 0.
  • the reference time domain resource unit is a downlink time domain resource unit on the first node device side corresponding to an uplink time domain resource unit occupied by a PRACH opportunity (Occasion).
  • the reference time domain resource unit is the earliest OFDM symbol that is assumed to be occupied by the first signal in the time domain according to downlink timing.
  • the reference time domain resource unit is the earliest OFDM symbol that is assumed to be occupied by the first signal in the time domain according to the reception timing.
  • the reference time domain resource unit is the earliest OFDM symbol occupied by the first signal in the time domain when a timing advance (Timing Advance, TA) is assumed to be equal to 0.
  • the reference time domain resource unit includes a positive integer greater than one time domain continuous OFDM symbol (Symbol).
  • the reference time domain resource unit only includes one OFDM symbol (Symbol).
  • the reference time-domain resource unit includes a positive integer number of time-domain continuous time slots (Slots).
  • the reference time domain resource unit is a time domain resource occupied by the earliest OFDM symbol in a PRACH opportunity (Occasion) configured by "prach-ConfigurationIndex" signaling.
  • the reference time domain resource is a time domain resource occupied by an OFDM symbol corresponding to a 15 kHz subcarrier interval.
  • the reference time domain resource is a time domain resource occupied by an OFDM symbol corresponding to a first subcarrier interval, and the first subcarrier interval is equal to one of 30 kHz, 60 kHz, and 120 kHz.
  • the reference time domain resource is the OFDM symbol corresponding to a 15kHz subcarrier interval.
  • Occupied time domain resources when the subcarrier spacing of the subcarriers occupied by the first signal in the frequency domain is greater than 5kHz, the reference time domain resources are the subcarriers occupied by the first signal in the frequency domain The time domain resources occupied by an OFDM symbol corresponding to the subcarrier spacing.
  • the position of the reference time domain resource unit in the time domain includes: the index of the reference time domain resource unit in the time domain.
  • the position of the reference time domain resource unit in the time domain includes: the position of the earliest OFDM symbol included in the reference time domain resource unit in the time domain.
  • the position of the reference time domain resource unit in the time domain includes: the index of the earliest OFDM symbol included in the reference time domain resource unit.
  • the position of the reference time domain resource unit in the time domain includes: the index of the earliest OFDM symbol included in the reference time domain resource unit in the slot to which it belongs.
  • the position of the reference time domain resource unit in the time domain includes: the index of the earliest OFDM symbol included in the reference time domain resource unit in the subframe to which it belongs.
  • the position of the reference time domain resource unit in the time domain includes: the index of the earliest OFDM symbol included in the reference time domain resource unit in the frame to which it belongs.
  • the position of the reference time domain resource unit in the time domain includes: the index of the earliest OFDM symbol included in the reference time domain resource unit in the slot to which it belongs, and the reference The index of the slot (Slot) to which the earliest OFDM symbol included in the time domain resource unit belongs in the subframe (Subframe) to which it belongs, and the subframe to which the earliest OFDM symbol included in the reference time domain resource unit belongs (Subframe) )
  • the position of the reference time domain resource unit in the time domain includes: the index of the earliest OFDM symbol included in the reference time domain resource unit in the slot to which it belongs, and the reference The index in the frame (Frame) to which the earliest OFDM symbol included in the time domain resource unit belongs and the index of the frame (Frame) to which the earliest OFDM symbol included in the reference time domain resource unit belongs. index.
  • the first information is also used to determine the amount of time domain resources occupied by the reference time domain resource unit.
  • the above sentence “the first timing compensation value and the first timing offset value are used together to determine the target timing compensation value” includes the following meanings: the first timing compensation value and the The difference between the first timing offset values is equal to the target timing compensation value.
  • the above sentence “the first timing compensation value and the first timing offset value are used together to determine the target timing compensation value” includes the following meanings: the first timing compensation value and the The first timing offset value is used together by the first node device in this application to determine the target timing compensation value.
  • the above sentence "the first timing compensation value and the first timing offset value are used together to determine the target timing compensation value” includes the following meaning: the target timing compensation value and the first timing compensation value The compensation value at a certain time is linearly related, and the target timing compensation value is linearly related to the first timing offset value.
  • the above sentence "the first timing compensation value and the first timing offset value are used together to determine the target timing compensation value” includes the following meaning: the target timing compensation value and the first timing compensation value A certain timing compensation value is linearly positively correlated, and the target timing compensation value is linearly negatively correlated with the first timing offset value.
  • the above sentence "the first timing compensation value and the first timing offset value are used together to determine the target timing compensation value” includes the following meanings: the first timing compensation value and the The first timing offset value is used together based on an arithmetic function to determine the target timing compensation value.
  • the format adopted by the first signal is used to determine the first timing offset value.
  • the first timing offset value is used to determine the format adopted by the first signal.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2.
  • Figure 2 illustrates a diagram of a network architecture 200 of 5G NR, LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) systems.
  • the 5G NR or LTE network architecture 200 may be referred to as 5GS (5G System)/EPS (Evolved Packet System, evolved packet system) 200 some other suitable terminology.
  • 5GS/EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server)/UDM (Unified Data Management) 220 and Internet Service 230.
  • 5GS/EPS can be interconnected with other access networks, but for simplicity Show these entities/interfaces. As shown in the figure, 5GS/EPS provides packet switching services, but those skilled in the art will easily understand that various concepts presented throughout this application can be extended to networks that provide circuit switching services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an Xn interface (for example, backhaul).
  • the gNB203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive node), or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , Video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine-type communication devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices Video devices
  • digital audio players for example, MP3 players
  • cameras game consoles
  • drones aircraft
  • narrowband IoT devices machine-type communication devices
  • machine-type communication devices land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE201 can also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway)/UPF (User Plane Function, user plane function) 212, and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • MME/AMF/SMF211 is a control node that processes the signaling between UE201 and 5GC/EPC210. In general, MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. The P-GW provides UE IP address allocation and other functions.
  • the P-GW/UPF 213 is connected to the Internet service 230.
  • the Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching streaming service.
  • IMS IP Multimedia Subsystem
  • IP Multimedia Subsystem IP Multi
  • the UE201 corresponds to the first node device in this application.
  • the UE 201 supports transmission in a network with a large transmission delay.
  • the UE 201 supports transmission in a large-scale transmission delay difference network.
  • the UE201 supports an NTN network.
  • the gNB201 corresponds to the second node device in this application.
  • the gNB201 supports transmission in a network with a large transmission delay.
  • the gNB201 supports transmission in a large-scale transmission delay difference network.
  • the gNB201 supports NTN network.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • FIG. 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane 350 and the control plane 300.
  • FIG. 3 shows three layers for the first node device (UE, terminal device in the gNB or NTN network) and the second node device.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first node device and the second node device through PHY301.
  • L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol) sublayer 304. These sublayers terminate at the second node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides cross-zone movement support between the second node device and the first node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logic and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among the first node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the communication between the second node device and the first node device. RRC signaling to configure the lower layer.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture for the first node device and the second node device in the user plane 350 is for the physical layer 351 and the L2 layer 355.
  • the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are basically the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides The header of the upper layer data packet is compressed to reduce the radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol) sublayer 356.
  • SDAP Service Data Adaptation Protocol
  • the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer). To support business diversity.
  • the first node device may have several upper layers above the L2 layer 355, including a network layer (for example, an IP layer) terminating at the P-GW on the network side and terminating at the other end of the connection (For example, remote UE, server, etc.) at the application layer.
  • the wireless protocol architecture in FIG. 3 is applicable to the first node device in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node device in this application.
  • the first information in this application is generated in the RRC306.
  • the first information in this application is generated in the MAC302 or MAC352.
  • the first information in this application is generated in the PHY301 or PHY351.
  • the second information in this application is generated in the RRC306.
  • the second information in this application is generated in the MAC302 or MAC352.
  • the second information in this application is generated in the PHY301 or PHY351.
  • the first signal in this application is generated in the RRC306.
  • the first signal in this application is generated in the MAC302 or MAC352.
  • the first signal in this application is generated in the PHY301 or PHY351.
  • Embodiment 4 shows a schematic diagram of a first node device and a second node device according to the present application, as shown in FIG. 4.
  • the first node device (450) may include a controller/processor 490, a data source/buffer 480, a receiving processor 452, a transmitter/receiver 456, and a transmitting processor 455.
  • the transmitter/receiver 456 includes an antenna. 460.
  • the second node device (410) may include a controller/processor 440, a data source/buffer 430, a receiving processor 412, a transmitter/receiver 416, and a transmitting processor 415.
  • the transmitter/receiver 416 includes an antenna. 420.
  • upper layer packets such as the upper layer information included in the first information and the second information in this application, are provided to the controller/processor 440.
  • the controller/processor 440 implements the functions of the L2 layer and above.
  • the controller/processor 440 provides header compression, encryption, packet segmentation and reordering, multiplexing between logic and transport channels, and multiplexing of the first node device 450 based on various priority measures. Resource allocation.
  • the controller/processor 440 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the first node device 450.
  • the first information and the second information in this application are both generated in the controller/processor 440 .
  • the transmit processor 415 implements various signal processing functions for the L1 layer (ie, physical layer), including coding, interleaving, scrambling, modulation, power control/allocation, precoding and physical layer control signaling generation, etc., such as this
  • L1 layer ie, physical layer
  • the generation of the physical layer signals of the first information and the second information in the application is completed by the transmitting processor 415, the generated modulation symbols are divided into parallel streams and each stream is mapped to the corresponding multi-carrier sub-carrier and/or multi-carrier symbol, and then
  • the transmission processor 415 is mapped to the antenna 420 via the transmitter 416 and transmitted in the form of a radio frequency signal.
  • each receiver 456 receives the radio frequency signal through its corresponding antenna 460, and each receiver 456 recovers the baseband information modulated onto the radio frequency carrier, and provides the baseband information to the receiving processor 452.
  • the reception processor 452 implements various signal reception processing functions of the L1 layer.
  • the signal reception processing function includes the reception of the physical layer signal of the first information and the second information in this application, etc., based on various modulation schemes (for example, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK)), followed by descrambling, decoding and deinterleaving to recover the data or control transmitted by the second node device 410 on the physical channel, and then provide the data and control signals to Controller/processor 490.
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • the controller/processor 490 is responsible for the L2 layer and above, and the controller/processor 490 interprets the first information and the second information in this application.
  • the controller/processor may be associated with a memory 480 that stores program codes and data.
  • the memory 480 may be referred to as a computer-readable medium.
  • the data source/buffer 480 is used to provide high-level data to the controller/processor 490.
  • the data source/buffer 480 represents the L2 layer and all protocol layers above the L2 layer.
  • the controller/processor 490 is implemented for user plane and control by providing header compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels based on the radio resource allocation of the second node 410 Flat L2 layer protocol.
  • the controller/processor 490 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the second node 410.
  • the transmission processor 455 implements various signal transmission processing functions for the L1 layer (ie, the physical layer).
  • the physical layer signal of the first signal is generated by the transmission processor 455.
  • Signal transmission processing functions include sequence generation (for the signal generated by the sequence), coding and interleaving to facilitate forward error correction (FEC) at the UE450, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), Quadrature Phase Shift Keying (QPSK) modulates the baseband signal (for the signal generated by the bit block), divides the sequence-generated signal or modulation symbol into parallel streams and maps each stream to the corresponding multi-carrier subcarrier and/ Or multi-carrier symbols are then mapped to the antenna 460 by the transmitting processor 455 via the transmitter 456 and transmitted in the form of radio frequency signals.
  • BPSK binary phase shift keying
  • QPSK Quadrature Phase Shift Keying
  • the receivers 416 receive radio frequency signals through its corresponding antenna 420, and each receiver 416 recovers the baseband information modulated onto the radio frequency carrier, and provides the baseband information to the receiving processor 412.
  • the receiving processor 412 implements various signal receiving processing functions for the L1 layer (ie, physical layer), including receiving and processing the physical layer signal of the first signal in this application.
  • the signal receiving processing function includes acquiring a multi-carrier symbol stream, and then Perform sequence decorrelation on the multi-carrier symbols in the multi-carrier symbol stream or demodulate based on various modulation schemes (for example, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK)), and then decode and decode Interleaving to recover the data and/or control signals originally transmitted by the first node device 450 on the physical channel.
  • the data and/or control signals are then provided to the controller/processor 440.
  • the functions of the L2 layer are implemented in the controller/processor 440.
  • the controller/processor may be associated with a buffer 430 that stores program codes and data.
  • the buffer 430 may be a computer-readable medium.
  • the first node device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to Used together with the at least one processor, the first node device 450 means at least: receiving first information; receiving second information, where the second information is used to determine the first timing offset value; and the first timing compensation value is determined , And send a first signal; wherein the length of the time interval between the sending start time of the first signal and the reference time is equal to the target timing compensation value, and the sending start time of the first signal is earlier than the reference time ,
  • the reference time is a boundary time of a reference time domain resource unit, and the first information is used to determine the position of the reference time domain resource unit in the time domain; the first timing compensation value and the first timing
  • the offset value is used together to determine the target timing compensation value, the first timing offset value is greater than 0; the first signal is used for random access, and the first signal carries a preamble sequence.
  • the first node device 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving First information; receiving second information, the second information being used to determine the first timing offset value; determining the first timing compensation value, and sending the first signal; wherein, the sending start time of the first signal
  • the length of the time interval between the reference time and the reference time is equal to the target timing compensation value, the transmission start time of the first signal is earlier than the reference time, and the reference time is the boundary time of the reference time domain resource unit, and the first Information is used to determine the position of the reference time domain resource unit in the time domain; the first timing compensation value and the first timing offset value are used together to determine the target timing compensation value, and the first The timing offset value is greater than 0; the first signal is used for random access, and the first signal carries a preamble sequence.
  • the second node device 410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to Use at least one processor together.
  • the second node device 410 means at least: sending first information; sending second information, where the second information is used to determine the first timing offset value; detecting the first signal; wherein, the sending of the first signal
  • the length of the time interval between the start time and the reference time is equal to the target timing compensation value, the transmission start time of the first signal is earlier than the reference time, and the reference time is the boundary time of the reference time domain resource unit, so
  • the first information is used to indicate the position of the reference time domain resource unit in the time domain; the first timing compensation value and the first timing offset value are used together to determine the target timing compensation value, and the second
  • the offset value is greater than 0 at a certain time; the first signal is used for random access, and the first signal carries a preamble sequence.
  • the second node device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending a first One information; sending second information, the second information is used to determine the first timing offset value; detecting the first signal; wherein, the length of the time interval between the sending start time of the first signal and the reference time Equal to the target timing compensation value, the transmission start time of the first signal is earlier than the reference time, the reference time is the boundary time of the reference time domain resource unit, and the first information is used to indicate the reference time The position of the domain resource unit in the time domain; the first timing compensation value and the first timing offset value are used together to determine the target timing compensation value, and the first timing offset value is greater than 0; the first The signal is used for random access, and the first signal carries a preamble sequence.
  • the first node device 450 is a user equipment (UE).
  • UE user equipment
  • the first node device 450 is a user equipment that supports long-delay transmission.
  • the first node device 450 is a user equipment that supports a wide range of transmission delay differences.
  • the first node device 450 is a user equipment supporting an NTN network.
  • the second node device 410 is a base station device (gNB/eNB).
  • the second node device 410 is a base station device that supports a large transmission delay.
  • the second node device 410 is a base station device that supports a wide range of transmission delay differences.
  • the second node device 410 is a base station device supporting an NTN network.
  • the second node device 410 is a satellite device.
  • the second node device 410 is a flight platform device.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used in this application to receive the first information.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used in this application to receive the second information.
  • the transmitter 456 (including the antenna 460), the transmission processor 455 and the controller/processor 490 are used to transmit the first signal in this application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415, and the controller/processor 440 are used to transmit the first information in this application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415 and the controller/processor 440 are used to transmit the second information in this application.
  • the receiver 416 (including the antenna 420), the receiving processor 412 and the controller/processor 440 are used to receive the first signal in this application.
  • Embodiment 5 illustrates a wireless signal transmission flowchart according to an embodiment of the present application, as shown in FIG. 5.
  • the second node device N1 is a maintenance base station of the serving cell of the first node device U2. It is particularly noted that the sequence in this example does not limit the signal transmission sequence and implementation sequence in this application.
  • step S12 transmits second information, the first detection signal in step S13.
  • the timing compensation value is determined in a first step S23, a first transmit signal in step S24.
  • the second information in this application is used to determine the first timing offset value, and the length of the time interval between the sending start time of the first signal and the reference time in this application is equal to Target timing compensation value, the transmission start time of the first signal is earlier than the reference time, the reference time is a boundary time of a reference time domain resource unit, and the first information is used to determine the reference time domain The position of the resource unit in the time domain; the first timing compensation value and the first timing offset value are used together to determine the target timing compensation value, and the first timing offset value is greater than 0; A signal is used for random access, and the first signal carries a preamble sequence.
  • At least one of the first information or the second information is used to determine X candidate formats, where X is a positive integer greater than 1, and the first timing compensation value or the At least one of the first timing offset values is used to determine a first format from the X candidate formats, and the first format is one of the X candidate formats, so The first format is used to determine the first signal.
  • the second information is used to determine a first parameter set
  • the first parameter set is used to determine the first timing offset value
  • the first parameter set is a positive integer number of parameters.
  • Embodiment 6 illustrates a wireless signal transmission flowchart according to another embodiment of the present application, as shown in FIG. 6.
  • the second node device N3 is a maintenance base station of the serving cell of the first node device U4. It is particularly noted that the sequence in this example does not limit the signal transmission sequence and implementation sequence in this application.
  • step S31 transmits the first information, second information transmitting step S32, a first detection signal in step S33, receives the third information in a step S34, in step S35 a fourth received information.
  • the first information For the first node device U4, received at step S41, the first information, the second information received in step S42, the timing compensation value is determined in a first step S43, a first signal transmission step S44, in step S45 transmission
  • the third information, the fourth information is sent in step S46.
  • the second information in this application is used to determine the first timing offset value, and the length of the time interval between the sending start time of the first signal and the reference time in this application is equal to Target timing compensation value, the transmission start time of the first signal is earlier than the reference time, the reference time is a boundary time of a reference time domain resource unit, and the first information is used to determine the reference time domain The position of the resource unit in the time domain; the first timing compensation value and the first timing offset value are used together to determine the target timing compensation value, and the first timing offset value is greater than 0; A signal is used for random access, and the first signal carries a preamble sequence.
  • the third information is used to indicate whether the capabilities of the first node device include uplink timing precompensation capabilities.
  • the third information is used to indicate whether the capability of the first node device includes the pre-compensation capability at the start time of uplink transmission.
  • the fourth information is used to indicate the error of the first timing compensation value determined by the first node device.
  • the fourth information is used to indicate the upper limit of the absolute value of the error of the first timing compensation value determined by the first node device.
  • Embodiment 7 illustrates a schematic diagram of the relationship among the first timing compensation value, the first timing offset value, and the target timing compensation value according to an embodiment of the present application, as shown in FIG. 7.
  • the horizontal axis represents time
  • the rectangle filled with diagonal lines represents the first signal
  • the rectangle filled with cross lines represents the reference time domain resource unit.
  • the length of the time interval between the transmission start time of the first signal and the reference time in this application is equal to the target timing compensation value, and the transmission start time of the first signal is earlier than the reference time.
  • the reference time is the boundary time of the reference time domain resource unit
  • the first information in this application is used to determine the position of the reference time domain resource unit in the time domain;
  • the first in this application The timing compensation value and the first timing offset value in this application are used to determine the target timing compensation value, and the first timing offset value is greater than 0;
  • the first signal is used for random access ,
  • the first signal carries a preamble sequence.
  • Embodiment 8 illustrates a schematic diagram of the relationship between the first timing compensation value and the first timing offset value and the first format according to an embodiment of the present application, as shown in FIG. 8.
  • the first column from the left represents the timing compensation value
  • the second column from the left represents the timing offset value
  • the third column from the left represents the alternative format
  • the timing compensation value in the blacked line represents the first timing
  • the timing offset value in the blacked line represents the first timing offset value
  • the alternate format in the blacked line represents the first format.
  • At least one of the first information in this application or the second information in this application is used to determine X alternative formats, where X is a positive integer greater than 1; At least one of the first timing compensation value in this application or the first timing offset value in this application is used to determine the first format from the X candidate formats, and the first The format is one of the X candidate formats, and the first format is used to determine the first signal in this application.
  • the above sentence "at least one of the first information or the second information is used to determine X alternative formats” includes the following meaning: in the first information or the second information At least one of is used to determine whether the X alternative formats can be used or only one alternative format can be used.
  • the above sentence "at least one of the first information or the second information is used to determine X alternative formats" includes the following meaning: in the first information or the second information At least one of is used to determine whether the X alternative formats can be used.
  • the above sentence "at least one of the first information or the second information is used to determine X alternative formats" includes the following meaning: in the first information or the second information At least one of is used by the first node device in this application to determine the X candidate formats.
  • the above sentence "at least one of the first information or the second information is used to determine X alternative formats" includes the following meaning: in the first information or the second information At least one of is used to directly indicate the X alternative formats.
  • the above sentence "at least one of the first information or the second information is used to determine X alternative formats" includes the following meaning: in the first information or the second information At least one of is used to indirectly indicate the X alternative formats.
  • the above sentence "at least one of the first information or the second information is used to determine X alternative formats” includes the following meaning: in the first information or the second information At least one of is used to explicitly indicate the X alternative formats.
  • the above sentence "at least one of the first information or the second information is used to determine X alternative formats" includes the following meaning: in the first information or the second information At least one of is used to implicitly indicate the X alternative formats.
  • the above sentence "at least one of the first information or the second information is used to determine X candidate formats" includes the following meaning: both the first information and the second information Is used to determine the X alternative formats.
  • the above sentence "at least one of the first information or the second information is used to determine X alternative formats” includes the following meaning: the first information is used to determine the X Alternative formats.
  • the above sentence "at least one of the first information or the second information is used to determine X alternative formats” includes the following meaning: all the second information is used to determine the X alternative formats.
  • the above sentence "at least one of the first information or the second information is used to determine X alternative formats” includes the following meaning: in the first information or the second information At least one of is used to determine X PRACH (Physical Random Access Channel, physical random access channel) configuration indexes (PRACH Configuration Index), and the X PRACH configuration indexes are used to respectively determine the X candidate formats .
  • PRACH Physical Random Access Channel, physical random access channel
  • PRACH Configuration Index Physical Random Access Channel
  • the above sentence "at least one of the first information or the second information is used to determine X alternative formats” includes the following meaning: in the first information or the second information At least one of is used to determine Y PRACH (Physical Random Access Channel, physical random access channel) configuration indexes (PRACH Configuration Index), and the Y PRACH configuration indexes are used to respectively determine the X candidate formats ,
  • the Y is a positive integer greater than the X.
  • any two of the X candidate formats are not the same.
  • any one of the X candidate formats is a PRACH preamble format (Preamble Format).
  • any one of the X alternative formats includes the length of the preamble sequence (Preamble) used to generate the PRACH, the type of the preamble sequence (Preamble) used to generate the PRACH, and the cyclic prefix (CP) included in the PRACH , Cyclic Prefix), at least one of the sub-carrier spacing of sub-carriers occupied by PRACH in the frequency domain, and the time length of useful symbols (excluding CP) occupied by PRACH in the time domain.
  • any one of the X alternative formats includes the sequence length of a preamble sequence, the length of a cyclic prefix, the number of time domain resources occupied by a preamble sequence, and a subcarrier interval.
  • any one of the X alternative formats includes the length of the preamble sequence (Preamble) used to generate the PRACH, the type of the preamble sequence (Preamble) used to generate the PRACH, and the cyclic prefix (CP) included in the PRACH , Cyclic Prefix), the sub-carrier spacing of sub-carriers occupied by PRACH in the frequency domain, and the time length of useful symbols (excluding CP) occupied by PRACH in the time domain.
  • the X is equal to 2.
  • the X is greater than 2.
  • the above sentence "at least one of the first timing compensation value or the first timing offset value is used to determine the first format from the X candidate formats" includes the following meanings: The first timing compensation value and the first timing offset value are used together to determine the first format from the X candidate formats.
  • the above sentence "at least one of the first timing compensation value or the first timing offset value is used to determine the first format from the X candidate formats" includes the following meanings:
  • the first timing compensation value is used to determine the first format from the X candidate formats.
  • the above sentence "at least one of the first timing compensation value or the first timing offset value is used to determine the first format from the X candidate formats" includes the following meanings: The first timing offset value is used together to determine the first format from the X candidate formats.
  • the above sentence "at least one of the first timing compensation value or the first timing offset value is used to determine the first format from the X candidate formats" includes the following meanings: At least one of the first timing compensation value or the first timing offset value is used by the first node device in this application to determine the first format from the X candidate formats.
  • the above sentence "at least one of the first timing compensation value or the first timing offset value is used to determine the first format from the X candidate formats" includes the following meanings: At least one of the first timing compensation value or the first timing offset value is used to determine the first format from the X candidate formats based on a mapping relationship.
  • the above sentence "at least one of the first timing compensation value or the first timing offset value is used to determine the first format from the X candidate formats" includes the following meanings: At least one of the first timing compensation value or the first timing offset value is used to determine the first format from the X candidate formats based on an operation relationship.
  • the above sentence "at least one of the first timing compensation value or the first timing offset value is used to determine the first format from the X candidate formats" includes the following meanings: Whether the first timing compensation value is greater than 0 is used to determine the first format from the X candidate formats.
  • the above sentence "at least one of the first timing compensation value or the first timing offset value is used to determine the first format from the X candidate formats" includes the following meanings: When the first timing compensation value is greater than 0, the first timing compensation value corresponds to the first format, and when the first timing compensation value is equal to 0, the first timing compensation value corresponds to the X An alternative format other than the first format in the alternative format.
  • the above sentence "at least one of the first timing compensation value or the first timing offset value is used to determine the first format from the X candidate formats" includes the following meanings:
  • the first timing compensation value is greater than 0, and the first format is a candidate format in which the length of a GP (Guard Period, guard time) in the X candidate formats is not less than the first timing offset value.
  • the above sentence "at least one of the first timing compensation value or the first timing offset value is used to determine the first format from the X candidate formats” includes the following meanings:
  • the first timing compensation value is used to determine X1 candidate formats from the X candidate formats, and any one of the X1 candidate formats is one of the X candidate formats
  • the X1 is a positive integer smaller than the X and greater than 1; the first timing offset value is used to determine the first format from the X1 alternative formats.
  • the above sentence "at least one of the first timing compensation value or the first timing offset value is used to determine the first format from the X candidate formats” includes the following meanings:
  • the first timing compensation value is used to determine X1 candidate formats from the X candidate formats, and any one of the X1 candidate formats is one of the X candidate formats
  • the X1 is a positive integer less than the X and greater than 1;
  • the first format is that the length of the GP (Guard Period) in the X1 alternative formats is not less than the first Alternative format for the offset value at a certain time.
  • the above sentence "at least one of the first timing compensation value or the first timing offset value is used to determine the first format from the X candidate formats” includes the following meanings:
  • the first timing compensation value is used to determine X1 candidate formats from the X candidate formats, and any one of the X1 candidate formats is one of the X candidate formats
  • An alternative format the X1 is a positive integer less than the X and greater than 1; the first format is that the length of the GP (Guard Period, guard time) in the X1 alternative formats is not less than 2 times Alternative format of the first timing offset value.
  • the above sentence "at least one of the first timing compensation value or the first timing offset value is used to determine the first format from the X candidate formats” includes the following meanings:
  • the first timing compensation value is used to determine X1 candidate formats from the X candidate formats, and any one of the X1 candidate formats is one of the X candidate formats
  • An alternative format where X1 is a positive integer that is less than X and greater than 1, and the first format is that the length of the cyclic prefix (CP, Cyclic Prefix) in the X1 alternative formats is not less than 2 times Alternative format of the first timing offset value.
  • the above sentence "at least one of the first timing compensation value or the first timing offset value is used to determine the first format from the X candidate formats" includes the following meanings:
  • the X candidate formats respectively correspond to X offset value intervals, the first timing offset value belongs to a first offset value interval, and the first offset value interval is among the X offset value intervals
  • An offset value interval of the first format is the candidate format corresponding to the first offset value interval in the X candidate formats.
  • the above sentence "at least one of the first timing compensation value or the first timing offset value is used to determine the first format from the X candidate formats” includes the following meanings:
  • the first timing compensation value is used to determine X1 candidate formats from the X candidate formats, and any one of the X1 candidate formats is one of the X candidate formats
  • An alternative format where the X1 is a positive integer smaller than the X and greater than 1; the X1 alternative formats respectively correspond to X1 offset value intervals, and the first timing offset value belongs to the first offset value Interval, the first offset value interval is an offset value interval in the X1 offset value intervals, and the first format is that the first offset value interval is in the X1 candidate formats
  • the corresponding alternative format where the X1 is a positive integer smaller than the X and greater than 1; the X1 alternative formats respectively correspond to X1 offset value intervals, and the first timing offset value belongs to the first offset value Interval, the first offset value interval is an offset value interval in the X1 offset value intervals
  • the above sentence "the first format is used to determine the first signal” includes the following meaning: the first format is the PRACH preamble format (Preamble Format) adopted by the first signal.
  • the first format is the PRACH preamble format (Preamble Format) adopted by the first signal.
  • the above sentence "the first format is used to determine the first signal” includes the following meaning: the first format is used to determine the amount of time domain resources occupied by the first signal.
  • the above sentence "the first format is used to determine the first signal” includes the following meaning: the first format is used to determine the PRACH preamble format (Preamble Format) adopted by the first signal. ).
  • the above sentence "the first format is used to determine the first signal” includes the following meaning: the first format is used by the first node device in this application to determine the first signal signal.
  • the above sentence "the first format is used to determine the first signal” includes the following meaning: the first format is used to determine the useful symbols occupied by the first signal in the time domain ( The length of time to remove CP).
  • the above sentence "the first format is used to determine the first signal” includes the following meaning: the first format is used to determine the useful symbols occupied by the first signal in the time domain ( Excluding the time length of the CP), the first format and the first timing offset value are used together to determine the length of the CP included in the first signal.
  • the above sentence "the first format is used to determine the first signal” includes the following meaning: the first format is used to determine the useful symbols occupied by the first signal in the time domain ( Excluding the time length of CP), the first format is used to determine the target threshold; when the first timing offset value is less than or equal to the target threshold, the length of the CP included in the first signal is equal to the The length of the CP corresponding to the first format; when the first timing offset value is greater than the target threshold, the length of the CP included in the first signal is less than the length of the CP corresponding to the first format .
  • the above sentence "the first format is used to determine the first signal” includes the following meaning: the first format is used to determine the useful symbols occupied by the first signal in the time domain ( Excluding the time length of CP), the first format is used to determine the target threshold; when the first timing offset value is less than or equal to the target threshold, the length of the CP included in the first signal is equal to the The length of the CP corresponding to the first format; when the first timing offset value is greater than the target threshold, the length of the CP included in the first signal is equal to the length of the CP corresponding to the first format Subtracting a punching length, the punching length is equal to twice the difference between the first timing offset value and the target threshold.
  • Embodiment 9 illustrates a schematic diagram of the relationship between the first timing offset value and the first format according to an embodiment of the present application, as shown in FIG. 9.
  • the first column from the left represents the alternative format
  • the second column from the left represents the timing offset value
  • the timing compensation value in the blacked row represents the first timing compensation value
  • the backup in the blacked row The selected format represents the first format.
  • the first format is used to determine the first timing offset value.
  • the first node device in this application does not expect (Expect) that the length of the GP corresponding to the first format is less than 2 times the upper limit of the first timing offset value.
  • the first node device in this application does not expect (Expect) that the first format cannot meet the requirement of the upper limit of the first timing offset value (Requirement).
  • the first format and the The first timing offset value is irrelevant.
  • the first timing offset value when only the first timing compensation value among the first timing compensation value and the first timing offset value is used to determine the first format, the first timing offset value Other factors are used to determine the first format.
  • the first timing compensation when only the first timing compensation value among the first timing compensation value and the first timing offset value is used to determine the first format, the first timing compensation does not exist Factors other than the value and the first timing offset value are used to determine the first format.
  • the first timing compensation Factors other than the value and the first timing offset value are used to determine the first format.
  • the determination of the first format and the The determination of the first timing offset value is independent.
  • the first format is determined first. In the determination of the first timing offset value.
  • the first format is not affected by the The limitation of the first timing offset value.
  • the above sentence "the first format is used to determine the first timing offset value” includes the following meaning: the first format is used by the first node device in this application to determine the The first timing offset value.
  • the above sentence "the first format is used to determine the first timing offset value” includes the following meaning: the first format is used to determine the upper limit of the first timing offset value.
  • the above sentence "the first format is used to determine the first timing offset value” includes the following meaning: the first format is used to determine the first timing offset value based on a correspondence relationship .
  • the above sentence "the first format is used to determine the first timing offset value” includes the following meaning: the first format is used to determine the first timing offset value based on a table relationship .
  • the above sentence "the first format is used to determine the first timing offset value” includes the following meaning: the first timing offset value and the cyclic prefix corresponding to the first format ( The length of CP, Cyclic Prefix) is linearly related.
  • the above sentence "the first format is used to determine the first timing offset value” includes the following meaning: the first timing offset value and the GP (Guard Guard) corresponding to the first format The length of the period (guard time) is linearly related.
  • the above sentence "the first format is used to determine the first timing offset value” includes the following meaning: the first timing offset value and the preamble sequence corresponding to the first format are The length of time occupied in the time domain is linearly related.
  • the above sentence "the first format is used to determine the first timing offset value” includes the following meaning: the first timing offset value is equal to the GP (Guard Period, protection time) is half of the length.
  • the above sentence "the first format is used to determine the first timing offset value” is implemented by the following formula:
  • t offset represents the first timing offset value
  • T GP represents the length of the GP (Guard Period) corresponding to the first format
  • T CP represents the length of the cyclic prefix corresponding to the first format.
  • Length, T CP_min represents a predefined or configurable lower limit.
  • the above sentence "the first format is used to determine the first timing offset value” is implemented by the following formula:
  • t offset represents the first timing offset value
  • T duration represents the length of time occupied by the PRACH opportunity (Occasion) corresponding to the first format in the time domain
  • T u represents the time corresponding to the first format
  • T CP_min represents a predefined or configurable lower limit.
  • the above sentence "the first format is used to determine the first timing offset value” is implemented by the following formula:
  • t offset represents the first timing offset value
  • T duration represents the length of time occupied by the PRACH opportunity (Occasion) corresponding to the first format in the time domain
  • T u represents the time corresponding to the first format
  • T CP represents the length of the cyclic prefix corresponding to the first format
  • T CP_min represents a predefined or configurable lower limit.
  • Embodiment 10 illustrates a schematic diagram of the relationship between the first timing offset value and the error of the first timing compensation value according to an embodiment of the present application, as shown in FIG. 10.
  • the first column from the left represents the timing compensation error
  • the second column from the left represents the timing offset value
  • the timing compensation error in the blacked line represents the value of the first timing compensation value determined by the first node device. Error, the timing offset value in the blacked line represents the first timing offset value.
  • the capability of the first node device in this application is used to determine the first timing compensation value in this application, and the first timing offset value in this application is compared with the first timing offset value in this application.
  • the error of the first timing compensation value determined by a node device is related.
  • the first node device in this application determines the first timing compensation value by itself.
  • the capability of the first node device includes the positioning capability of the first node device.
  • the capability of the first node device includes a pre-compensation capability (Capability) of the first node device for timing.
  • Capability pre-compensation capability
  • the capability of the first node device includes the positioning accuracy of the first node device.
  • the capability of the first node device includes whether the first node device supports Global Navigation System (GNSS, Global Navigation Satellite System).
  • GNSS Global Navigation Satellite System
  • the capability of the first node device includes the calculation capability of the first node device for the transmission distance between the first node device and the second node device in this application.
  • the capability of the first node device includes the calculation capability of the first node device for the transmission delay between the first node device and the second node device in this application.
  • the capability of the first node device includes the pre-compensation (Pre-compensation of the transmission delay between the first node device and the second node device in this application) by the first node device. Compensation) ability.
  • the capability of the first node device includes the ability of the first node device to estimate (Estimate) uplink timing advance (Timing Advance) by itself.
  • the capability of the first node device includes the ability of the first node device to pre-compensate uplink timing advance (Timing Advance) by itself.
  • Timing Advance uplink timing advance
  • the capability of the first node device includes the maximum error (Error) of the first node device's self-pre-compensation (Pre-Compensate) uplink timing advance (Timing Advance).
  • the first transmitter sends third information
  • the third information is used to indicate whether the capability of the first node device includes uplink timing precompensation capability.
  • the first transmitter sends third information
  • the third information is used to indicate whether the capability of the first node device includes the pre-compensation capability at the start time of uplink transmission.
  • the above sentence "the capability of the first node device is used to determine the first timing compensation value” includes the following meaning: the capability of the first node device is used by the first node in this application The device is used to determine the first timing compensation value.
  • the above sentence "the capability of the first node device is used to determine the first timing compensation value” includes the following meaning: the capability of the first node device is used by the first node in this application The device is used to calculate the first timing compensation value.
  • the above sentence "the capability of the first node device is used to determine the first timing compensation value” includes the following meaning: the capability of the first node device is used by the first node in this application The device is used to determine the first timing compensation value by itself.
  • the above sentence "the capability of the first node device is used to determine the first timing compensation value” includes the following meaning: the capability of the first node device includes an upstream timing advance (Timing Advance) The pre-compensation (Pre-Compensation) capability, the upstream timing advance (Timing Advance) value of the first node device pre-compensation (Pre-Compensate) is used to determine the first timing compensation value.
  • the above sentence "the capability of the first node device is used to determine the first timing compensation value” includes the following meaning: the capability of the first node device includes pre-compensation for uplink timing (Pre- Compensation), the timing offset value pre-compensated by the first node device for uplink timing is used to determine the first timing compensation value.
  • the above sentence "the capability of the first node device is used to determine the first timing compensation value” includes the following meaning: the capability of the first node device includes The ability of pre-compensation (Pre-Compensation) of the transmission delay between the second node devices in the application, the first node device pre-compensated by the first node device in this application The transmission delay between the second node devices is used to determine the first timing compensation value.
  • Pre-Compensation pre-compensation
  • the sentence "the first timing offset value is related to the error of the first timing compensation value determined by the first node device” includes the following meaning: the first timing offset value is related to The upper limit of the absolute value of the error of the first timing compensation value determined by the first node device is related.
  • the sentence "the first timing offset value is related to the error of the first timing compensation value determined by the first node device” includes the following meaning: the first timing offset value is related to The error requirement (Requirement) of the first timing compensation value determined by the first node device is related.
  • the sentence "the first timing offset value is related to the error of the first timing compensation value determined by the first node device” includes the following meaning: the first timing offset value is related to The upper limit of the absolute value of the error of the first timing compensation value determined by the first node device is linearly related.
  • the sentence "the first timing offset value is related to the error of the first timing compensation value determined by the first node device” includes the following meaning: The error requirement (Requirement) of the first timing compensation value is used to determine the first timing offset value.
  • the sentence "the first timing offset value is related to the error of the first timing compensation value determined by the first node device” includes the following meaning: The upper limit of the absolute value of the error of the first timing compensation value is used to determine the first timing offset value.
  • the sentence "the first timing offset value is related to the error of the first timing compensation value determined by the first node device” includes the following meaning:
  • the error requirement (Requirement) of the first timing compensation value is used to determine the range of the first timing offset value.
  • the sentence "the first timing offset value is related to the error of the first timing compensation value determined by the first node device” includes the following meaning: The upper limit of the absolute value of the error of the first timing compensation value is used to determine the range of the first timing offset value.
  • the sentence "the second information is used to determine the first timing offset value” in this application includes: the second information is used to determine within the range of the first timing offset value For the first timing offset value, the upper limit of the absolute value of the error of the first timing compensation value determined by the first node device is used to determine the range of the first timing offset value.
  • the sentence "the second information is used to determine the first timing offset value" in this application includes: the second information is used to determine that the first timing compensation value may not be equal to 0, The upper limit of the absolute value of the error of the first timing compensation value determined by the first node device is used to determine the first timing offset value.
  • the sentence "the second information is used to determine the first timing offset value” in this application includes: the second information is used to determine that the first timing compensation value may not be equal to 0, The error requirement (Requirement) of the first timing compensation value determined by the first node device is used to determine the first timing offset value.
  • the error of the first timing compensation value includes the calculation error of the pre-compensation of the first node device's calculation timing and the error of the first node device's timing.
  • the error of the first timing compensation value includes a calculation error when the first node device calculates the pre-compensation of the timing.
  • the error of the first timing compensation value includes a calculation error when the first node device calculates the pre-compensation of the TA.
  • the error of the first timing compensation value includes the calculation error when the first node device calculates the pre-compensation of the timing and the timing error initially sent by the first node device.
  • the first timing offset value and the first node device transmits the initial (Initial Transmission) of (Timing Error Limit Value) T e relevant.
  • the error of the first timing compensation value is related to the subcarrier interval of the subcarrier occupied by SSB (Synchronization Signal Block) in the frequency domain.
  • SSB Synchronization Signal Block
  • the error of the first timing compensation value is related to the subcarrier interval of the subcarrier occupied by the first signal in the frequency domain.
  • the error of the first timing compensation value and the sub-carrier spacing of the sub-carriers occupied by SSB (Synchronization Signal Block) in the frequency domain and the sub-carriers occupied by the first signal in the frequency domain is related.
  • Embodiment 11 illustrates a schematic diagram of the relationship between the first parameter set and the first timing offset value according to an embodiment of the present application, as shown in FIG. 11.
  • the first column from the left represents the parameter set
  • the second column from the left represents the timing offset value
  • the parameter set in the blacked row represents the first parameter set
  • the timing offset value in the blacked row Represents the first timing offset value
  • a i , b i , and c i respectively represent a parameter in a parameter set.
  • the second information in this application is used to determine a first parameter set
  • the first parameter set is used to determine the first timing offset value in this application
  • the first parameter set is used to determine the first timing offset value in this application.
  • a parameter set is a positive integer number of parameters.
  • the sentence "the second information is used to determine the first timing offset value” in this application refers to: the first parameter set is used to determine the first timing offset value.
  • the above sentence "the second information is used to determine the first parameter set” includes the following meaning: the second information is used by the first node device in this application to determine the first parameter set.
  • the above sentence "the second information is used to determine the first parameter set” includes the following meaning: the second information is used to directly indicate the first parameter set.
  • the above sentence "the second information is used to determine the first parameter set” includes the following meaning: the second information is used to indirectly indicate the first parameter set.
  • the above sentence "the second information is used to determine the first parameter set” includes the following meaning: the second information is used to explicitly indicate the first parameter set.
  • the above sentence "the second information is used to determine the first parameter set” includes the following meaning: the second information is used to implicitly indicate the first parameter set.
  • the first parameter set includes a positive integer number greater than one.
  • the first parameter set includes only one parameter.
  • the above sentence "the first parameter set is used to determine the first timing offset value” includes the following meaning: the first parameter set is used by the first node device in this application Determine the first timing offset value.
  • the above sentence "the first parameter set is used to determine the first timing offset value” includes the following meaning: the first parameter set is used to determine the first timing offset based on a mapping relationship. Shift value.
  • the above sentence "the first parameter set is used to determine the first timing offset value” includes the following meaning: the first parameter set is used to determine the first timing offset based on the correspondence relationship. Shift value.
  • the above sentence "the first parameter set is used to determine the first timing offset value” includes the following meaning: M1 candidate parameter sets correspond to M1 candidate timing offset values, and The first parameter set is a candidate parameter set in the M1 candidate parameter sets, and the first timing offset value is equal to the corresponding first parameter set in the M1 candidate timing offset values M1 is a positive integer greater than 1.
  • the above sentence "the first parameter set is used to determine the first timing offset value” includes the following meaning: M2 candidate parameter sets correspond to M2 candidate timing offset value sets, so The first parameter set is a candidate parameter set in the M2 candidate parameter sets, the first timing offset value belongs to a first timing offset value set, and the first timing offset value set is all The candidate offset value set corresponding to the first parameter set in the M2 candidate timing offset value sets, any one candidate timing offset value set in the M2 candidate timing offset value sets Including a positive integer number of offset values, and the M2 is a positive integer greater than 1.
  • the first parameter set includes at least one of an altitude (Altitude) parameter, a sender type parameter, a delay parameter, an orbit (Orbit) parameter, and a calendar (Ephemeris) parameter. one.
  • the first parameter set includes one or more of a distance parameter, a sender type parameter, a delay parameter, an orbit parameter, or a calendar parameter.
  • the first parameter set includes a delay parameter.
  • the first parameter set includes a first delay parameter, and the first delay parameter is used to determine the start time of a random access response window (Random Access Response Window).
  • the first parameter set includes a first delay parameter, and the first delay parameter is used to determine the starting time of the random access conflict resolution timer.
  • the first parameter set includes a first delay parameter, and the first delay parameter is used to determine a scheduling delay between an uplink grant (Uplink Grant) and a PUSCH (Physical Uplink Shared Channel).
  • Uplink Grant Uplink Grant
  • PUSCH Physical Uplink Shared Channel
  • the first parameter set includes a first delay parameter, and the first delay parameter is used to determine the uplink grant (Uplink Grant) and Msg3 in RAR (Random Access Response). (Message 3) The scheduling delay between.
  • the first parameter set includes a first delay parameter, and the first delay parameter is used to determine the PDCCH (Physical Downlink Control Channel, physical downlink control channel) and the triggered SRS (Sound Reference Signal) , The time delay between sounding reference signals).
  • PDCCH Physical Downlink Control Channel
  • SRS Sound Reference Signal
  • the first parameter set includes a first delay parameter, and the first delay parameter is used to determine the PDCCH (Physical Downlink Control Channel, physical downlink control channel) and the triggered CSI (Channel Status Information) , Channel state information) the time delay between reports.
  • PDCCH Physical Downlink Control Channel
  • CSI Channel Status Information
  • the first parameter set includes a first delay parameter, and the first delay parameter is used to determine the delay between the CSI reference resource and the CSI report.
  • the first parameter set includes a first type parameter, and the first type parameter is used to determine the type of the sender of the second information.
  • the first parameter set includes a first type parameter, and the first type parameter is used to determine whether the sender of the second information is a Low-Earth (LEO) satellite, One of Medium-Earth (Medium-Earth Orbit, MEO) satellites, Geostationary (Earth Orbit, GEO) satellites, Unmanned Aircraft Systems Platform (UAS), High Elliptical Orbit (HEO) satellites .
  • LEO Low-Earth
  • MEO Medium-Earth Orbit
  • GEO Geostationary Satellite
  • UAS Unmanned Aircraft Systems Platform
  • HEO High Elliptical Orbit
  • the first parameter set includes a first distance parameter, and the first distance parameter is used to determine the distance between the sender of the second information and the perigee (Nadir).
  • the first parameter set includes a first delay parameter, and the first delay parameter is used to determine the propagation delay between the sender of the second information and the perigee (Nadir). Delay).
  • the first parameter set includes a first orbit parameter, and the first orbit parameter is used to determine the orbit (Orbit) of the sender of the second information.
  • the first parameter set includes a first calendar parameter, and the first calendar parameter is used to determine the calendar (Ephemeris) of the sender of the second information.
  • Embodiment 12 illustrates a schematic diagram of the relationship between the length of the cyclic prefix, the amount of time domain resources occupied by the preamble sequence, and the error of the timing compensation value according to an embodiment of the present application, as shown in FIG. 12.
  • the rectangle marked "CP” represents the cyclic prefix included in the first signal in the time domain
  • the rectangle marked "SEQ” represents the time domain resources occupied by the preamble sequence carried by the first signal
  • T e represents the error of the first timing compensation value
  • f 1 ( ⁇ ), f 2 ( ⁇ ) and f 4 ( ⁇ ) represent three functions respectively.
  • At least one of the length of the cyclic prefix included in the time domain of the first signal in this application and the number of time domain resources occupied by the preamble sequence carried by the first signal is the same as the current one.
  • the error of the first timing compensation value in this application determined by the first node device in the application is related to the error.
  • At least one of the length of the cyclic prefix included in the first signal in the time domain and the amount of time domain resources occupied by the preamble sequence carried by the first signal refers to: One or all of the length of the cyclic prefix included in the first signal in the time domain, and the amount of time domain resources occupied by the preamble sequence carried by the first signal.
  • At least one of the length of the cyclic prefix included in the first signal in the time domain and the amount of time domain resources occupied by the preamble sequence carried by the first signal refers to: The length of the cyclic prefix included in the first signal in the time domain and the amount of time domain resources occupied by the preamble sequence carried by the first signal.
  • At least one of the length of the cyclic prefix included in the first signal in the time domain and the amount of time domain resources occupied by the preamble sequence carried by the first signal refers to: One of the length of the cyclic prefix included in the first signal in the time domain or the number of time domain resources occupied by the preamble sequence carried by the first signal.
  • the “error related to the first timing compensation value determined by a node device” includes the following meanings: the length of the cyclic prefix included in the first signal in the time domain, and the preamble sequence carried by the first signal
  • the number of time domain resources is all related to the error of the first timing compensation value determined by the first node device.
  • the “error related to the first timing compensation value determined by a node device” includes the following meanings: the length of the cyclic prefix included in the first signal in the time domain is the same as the first node device determined by the first node device. The error of the timing compensation value is related.
  • the “error related to the first timing compensation value determined by a node device” includes the following meaning: the amount of time domain resources occupied by the preamble sequence carried by the first signal is equal to that determined by the first node device. The error of the first timing compensation value is related.
  • the “error related to the first timing compensation value determined by a node device” includes the following meanings: the length of the cyclic prefix included in the first signal in the time domain, and the preamble sequence carried by the first signal At least one of the number of time domain resources is related to the first timing offset value, and the first timing offset value is related to an error of the first timing compensation value determined by the first node device.
  • the “error related to the first timing compensation value determined by a node device” includes the following meaning: the error of the first timing compensation value determined by the first node device is used to determine the time of the first signal. At least one of the length of the cyclic prefix included in the domain and the amount of time domain resources occupied by the preamble sequence carried by the first signal.
  • the “error related to the first timing compensation value determined by a node device” includes the following meaning: the upper limit of the absolute value of the error of the first timing compensation value determined by the first node device is used to determine the At least one of the length of the cyclic prefix included in the first signal in the time domain, and the number of time domain resources occupied by the preamble sequence carried by the first signal.
  • the "error related to the first timing compensation value determined by a node device” includes the following meaning: the requirement for the error of the first timing compensation value determined by the first node device (Requirement) is used to determine the At least one of the length of the cyclic prefix included in the first signal in the time domain, and the number of time domain resources occupied by the preamble sequence carried by the first signal.
  • the “error related to the first timing compensation value determined by a node device” includes the following meaning: the error of the first timing compensation value determined by the first node device is used to determine the time of the first signal. At least one of the lower limit of the length of the cyclic prefix included in the domain and the lower limit of the number of time domain resources occupied by the preamble sequence carried by the first signal.
  • the “error related to the first timing compensation value determined by a node device” includes the following meaning: the upper limit of the absolute value of the error of the first timing compensation value determined by the first node device is used to determine the At least one of the lower limit of the length of the cyclic prefix included in the first signal in the time domain, and the lower limit of the number of time domain resources occupied by the preamble sequence carried by the first signal.
  • the “error related to the first timing compensation value determined by a node device” includes the following meaning: the error of the first timing compensation value determined by the first node device is used to determine the time of the first signal. At least one of the upper limit of the length of the cyclic prefix included in the domain and the upper limit of the number of time domain resources occupied by the preamble sequence carried by the first signal.
  • the “error related to the first timing compensation value determined by a node device” includes the following meaning: the upper limit of the absolute value of the error of the first timing compensation value determined by the first node device is used to determine the At least one of the upper limit of the length of the cyclic prefix included in the first signal in the time domain, and the upper limit of the number of time domain resources occupied by the preamble sequence carried by the first signal.
  • At least one of the length of the cyclic prefix included in the first signal in the time domain, and the amount of time domain resources occupied by the preamble sequence carried by the first signal is also related to the first signal. It is related to the maximum delay spread (Maximum Delay Spread) that may be experienced.
  • the “error related to the first timing compensation value determined by a node device” includes the following meanings: the lower limit of the length of the cyclic prefix included in the first signal in the time domain, and the preamble sequence carried by the first signal At least one of the lower limits of the number of occupied time domain resources is linearly related to the upper limit of the absolute value of the error of the first timing compensation value determined by the first node device.
  • the “error related to the first timing compensation value determined by a node device” includes the following meanings: the upper limit of the length of the cyclic prefix included in the first signal in the time domain, and the preamble sequence carried by the first signal At least one of the upper limits of the number of occupied time domain resources is linearly related to the upper limit of the absolute value of the error of the first timing compensation value determined by the first node device.
  • the error related to the first timing compensation value determined by a node device is realized by the following formula:
  • T CP represents the length of the cyclic prefix included in the first signal in the time domain
  • T SEQ represents the number of time domain resources occupied by the preamble sequence carried by the first signal
  • T e represents the first node device For the determined error of the first timing compensation value
  • T d represents the maximum multipath delay.
  • the error related to the first timing compensation value determined by a node device is realized by the following formula:
  • T CP represents the length of the cyclic prefix included in the first signal in the time domain
  • T SEQ represents the number of time domain resources occupied by the preamble sequence carried by the first signal
  • T e represents the first node device
  • the error related to the first timing compensation value determined by a node device is realized by the following formula:
  • T CP represents the length of the cyclic prefix included in the first signal in the time domain
  • T SEQ represents the number of time domain resources occupied by the preamble sequence carried by the first signal
  • T e represents the first node device
  • the error related to the first timing compensation value determined by a node device is realized by the following formula:
  • T CP represents the length of the cyclic prefix included in the first signal in the time domain
  • T SEQ represents the number of time domain resources occupied by the preamble sequence carried by the first signal
  • T e represents the first node device
  • T d represents the maximum multipath delay
  • the functions f 1 ( ⁇ ) and f 2 ( ⁇ ) respectively represent two fixed functions.
  • the error related to the first timing compensation value determined by a node device is realized by the following formula:
  • T CP represents the length of the cyclic prefix included in the first signal in the time domain
  • T SEQ represents the number of time domain resources occupied by the preamble sequence carried by the first signal
  • T e represents the first node device
  • T OFFSET represents the first timing offset value
  • T DUR represents the length of time occupied by the reference time domain resource unit in the time domain
  • the function f 1 ( ⁇ ) , F 2 ( ⁇ ) and f 3 ( ⁇ ) respectively represent three fixed functions.
  • the error related to the first timing compensation value determined by a node device is realized by the following formula:
  • T CP represents the length of the cyclic prefix included in the first signal in the time domain
  • T SEQ represents the number of time domain resources occupied by the preamble sequence carried by the first signal
  • T e represents the first node device
  • T OFFSET represents the first timing offset value
  • T DUR represents the length of time occupied by the reference time domain resource unit in the time domain.
  • the error related to the first timing compensation value determined by a node device is realized by the following formula:
  • T CP represents the length of the cyclic prefix included in the first signal in the time domain
  • T SEQ represents the number of time domain resources occupied by the preamble sequence carried by the first signal
  • T e represents the first node device
  • T OFFSET represents the first timing offset value
  • T DUR represents the length of time occupied by the reference time domain resource unit in the time domain.
  • the first transmitter in this application sends fourth information; wherein, the fourth information is used to indicate the error of the first timing compensation value determined by the first node device.
  • the first transmitter in this application sends fourth information; wherein, the fourth information is used to indicate the error of the first timing compensation value determined by the first node device The upper limit of the absolute value.
  • Embodiment 13 illustrates a structural block diagram of a processing device in a first node device of an embodiment, as shown in FIG. 13.
  • the first node device processing apparatus 1300 includes a first receiver 1301, a second receiver 1302, and a first transmitter 1303.
  • the first receiver 1301 includes the transmitter/receiver 456 (including the antenna 460), the receiving processor 452, and the controller/processor 490 in Figure 4 of the present application;
  • the second receiver 1302 includes the transmitter/receiver 456 in Figure 4 of the present application.
  • the transmitter/receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490; the first transmitter 1303 includes the transmitter/receiver 456 (including the antenna 460) in Figure 4 of the present application, transmitting The processor 455 and the controller/processor 490.
  • the first receiver 1301 receives the first information; the second receiver 1302 receives the second information, and the second information is used to determine the first timing offset value; the first transmitter 1303 determines the first Timing compensation value, and send the first signal; wherein the length of the time interval between the transmission start time of the first signal and the reference time is equal to the target timing compensation value, and the transmission start time of the first signal is earlier than all
  • the reference time the reference time is a boundary time of a reference time domain resource unit, and the first information is used to determine the position of the reference time domain resource unit in the time domain; the first timing compensation value and the The first timing offset value is used together to determine the target timing compensation value, the first timing offset value is greater than 0; the first signal is used for random access, and the first signal carries a preamble sequence.
  • At least one of the first information or the second information is used to determine X candidate formats, where X is a positive integer greater than 1, and the first timing compensation value or the At least one of the first timing offset values is used to determine a first format from the X candidate formats, and the first format is one of the X candidate formats, so The first format is used to determine the first signal.
  • At least one of the first information or the second information is used to determine X candidate formats, where X is a positive integer greater than 1, and the first timing compensation value or the At least one of the first timing offset values is used to determine a first format from the X candidate formats, and the first format is one of the X candidate formats, so The first format is used to determine the first signal; when only the first timing compensation value among the first timing compensation value and the first timing offset value is used to determine the first format , The first format is used to determine the first timing offset value.
  • the capability of the first node device is used to determine the first timing compensation value, and the first timing offset value is the same as the first timing compensation value determined by the first node device The error is related.
  • the second information is used to determine a first parameter set
  • the first parameter set is used to determine the first timing offset value
  • the first parameter set is a positive integer number of parameters.
  • At least one of the length of the cyclic prefix included in the first signal in the time domain, the number of time domain resources occupied by the preamble sequence carried by the first signal, and the first node device is related.
  • Embodiment 14 illustrates a structural block diagram of the processing device in the second node device of an embodiment, as shown in FIG. 14.
  • the second node device processing apparatus 1400 includes a second transmitter 1401, a third transmitter 1402, and a third receiver 1403.
  • the second transmitter 1401 includes the transmitter/receiver 416 (including the antenna 460) and the transmission processor 415 and the controller/processor 440 in Figure 4 of the present application;
  • the third transmitter 1402 includes the transmitter/receiver 416 in Figure 4 of the present application.
  • the transmitter/receiver 416 (including the antenna 460), the transmitting processor 415 and the controller/processor 440; the third receiver 1403 includes the transmitter/receiver 416 (including the antenna 420) in Figure 4 of the present application, and receiving The processor 412, and the controller/processor 440.
  • the second transmitter 1401 sends the first information
  • the third transmitter 1402 sends the second information
  • the second information is used to determine the first timing offset value
  • the third receiver 1403 detects the first Signal; wherein the length of the time interval between the transmission start time of the first signal and the reference time is equal to the target timing compensation value, the transmission start time of the first signal is earlier than the reference time, the reference time Is the boundary moment of the reference time domain resource unit, the first information is used to indicate the position of the reference time domain resource unit in the time domain; the first timing compensation value and the first timing offset value are used together
  • the target timing compensation value is determined, and the first timing offset value is greater than 0; the first signal is used for random access, and the first signal carries a preamble sequence.
  • At least one of the first information or the second information is used to determine X candidate formats, where X is a positive integer greater than 1, and the first timing compensation value or the At least one of the first timing offset values is used to determine a first format from the X candidate formats, and the first format is one of the X candidate formats, so The first format is used to determine the first signal.
  • At least one of the first information or the second information is used to determine X candidate formats, where X is a positive integer greater than 1, and the first timing compensation value or the At least one of the first timing offset values is used to determine a first format from the X candidate formats, and the first format is one of the X candidate formats, so The first format is used to determine the first signal; when only the first timing compensation value among the first timing compensation value and the first timing offset value is used to determine the first format , The first format is used to determine the first timing offset value.
  • the capability of the first node device is used to determine the first timing compensation value, and the first timing offset value is the same as the first timing compensation value determined by the first node device The error is related.
  • the second information is used to determine a first parameter set
  • the first parameter set is used to determine the first timing offset value
  • the first parameter set is a positive integer number of parameters.
  • At least one of the length of the cyclic prefix included in the first signal in the time domain, the number of time domain resources occupied by the preamble sequence carried by the first signal, and the first node device is related.
  • the detection is a correlation (Correlation) detection.
  • the detection is sequence detection.
  • the detection is energy detection.
  • the detection is sequence auto-correlation and sequence cross-correlation detection.
  • the detection is a sequence correlation (Correlation) detection.
  • the first node device or second node device or UE or terminal in this application includes, but is not limited to, mobile phones, tablets, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, aircraft, Airplanes, drones, remote control aircraft and other wireless communication equipment.
  • the base station equipment or base station or network side equipment in this application includes but not limited to macro cell base station, micro cell base station, home base station, relay base station, eNB, gNB, transmission and receiving node TRP, relay satellite, satellite base station, air base station, etc. Wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种用于无线通信的节点中的方法和装置。节点接收第一信息和第二信息,所述第二信息被用于确定第一定时偏移值;确定第一定时补偿值,并且发送第一信号;其中,所述第一信号的发送起始时刻和参考时刻之间的时间间隔长度等于目标定时补偿值,所述第一信号的发送起始时刻早于所述参考时刻,所述参考时刻是参考时域资源单元的边界时刻,所述第一信息被用于确定所述参考时域资源单元在时域的位置;所述第一定时补偿值和所述第一定时偏移值一起被用于确定所述目标定时补偿值,所述第一定时偏移值大于0;所述第一信号被用于随机接入,所述第一信号携带前导序列。本申请能够提高随机接入性能。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中的随机接入的传输方案和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或5G)进行研究,在3GPP RAN#75次全会上通过了新空口技术(NR,New Radio)的WI(Work Item,工作项目),开始对NR进行标准化工作。
为了能够适应多样的应用场景和满足不同的需求,在3GPP RAN#75次全会上还通过了NR下的非地面网络(NTN,Non-Terrestrial Networks)的研究项目,该研究项目在R15版本开始。在3GPP RAN#79次全会上决定开始研究NTN网络中的解决方案,在3GPP RAN#86次全会上决定启动WI对相关技术进行标准化。
发明内容
在NTN网络或者类似于NTN具有很大的传输延时和很大的传输延时差异的网络中,由于大的传输延时差异和上下行同步传输的要求可能导致现有的(比如NR 5G Release 16版本)的基于传统地面通信(Terrestrial Networks)的设计无法直接重用,尤其传统的随机接入设计可能无法适用于NTN网络中,因而需要新的设计来支持大的传输延时和大的传输延时差异的网络,保证通信正常工作。
针对大延时网络中的由于大延时和大延时差所造成的现有设计无法工作或者无法有效地工作的问题,本申请公开了一种解决方案。需要说明的是,在本申请的的描述中,只是NTN场景作为一个典型应用场景或者例子;本申请也同样适用于面临相似问题的NTN之外的其它场景(比如其它大延时网络),也可以取得类似NTN场景中的技术效果。此外,不同场景(包括但不限于NTN的场景)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的第一节点设备中的实施例和实施例中的特征可以应用到第二节点设备中,反之亦然。特别的,对本申请中的术语(Terminology)、名词、函数、变量的解释(如果未加特别说明)可以参考3GPP的规范协议TS36系列、TS38系列、TS37系列中的定义。
本申请公开了一种用于无线通信中的第一节点中的方法,其特征在于,包括:
接收第一信息;
接收第二信息,所述第二信息被用于确定第一定时偏移值;
确定第一定时补偿值,并且发送第一信号;
其中,所述第一信号的发送起始时刻和参考时刻之间的时间间隔长度等于目标定时补偿值,所述第一信号的发送起始时刻早于所述参考时刻,所述参考时刻是参考时域资源单元的边界时刻,所述第一信息被用于确定所述参考时域资源单元在时域的位置;所述第一定时补偿值和所述第一定时偏移值一起被用于确定所述目标定时补偿值,所述第一定时偏移值大于0;所述第一信号被用于随机接入,所述第一信号携带前导序列。
作为一个实施例,在所述第一定时补偿值的基础之上引入所述第一定时偏移值来确定所述目标定时补偿值,进而确定所述第一信号的发送起始时刻,这样子可以使得用户设备根据自行得到的TA补偿值对PRACH的发送定时进行预补偿的时候只进行部分预补偿(或者预补偿时有一个回退的偏移),避免了由于用户设备在确定TA补偿值时的计算误差(很大程度可能 由于定位精度造成)和定时误差造成PRACH的传输和其它上行传输之间的碰撞,提高随机接入的成功概率或者提高了资源利用率。
作为一个实施例,通过所述第二信息来确定所述第一定时偏移值,从而使得对PRACH的发送定时进行部分补偿的时候,网络可以根据覆盖情况,卫星的延时特征等多方面对补偿回退进行控制,避免过补偿或者欠补偿,进一步调高随机接入性能。
根据本申请的一个方面,上述方法的特征在于,所述第一信息或所述第二信息中的至少之一被用于确定X个备选格式,所述X是大于1的正整数;所述第一定时补偿值或所述第一定时偏移值中的至少之一被用于从所述X个备选格式中确定第一格式,所述第一格式是所述X个备选格式中的一个备选格式,所述第一格式被用于确定所述第一信号。
作为一个实施例,通过所述第一定时补偿值或所述第一定时偏移值中的至少之一从所述X个备选格式中确定所述第一格式,从而使得根据用户设备是否可以进行上行发送定时的预补偿能力选择PRACH的格式,实现了大延时网络中对具有不同的补偿能力的用户的支持。
作为一个实施例,通过所述第一定时偏移值从所述X个备选格式中确定所述第一格式,使得可以根据部分补偿时的回退值(或者偏移值)来确定PRACH的格式或者限制PRACH的格式,从而实现定时预补偿和PRACH格式之间的适配,进一步避免PRACH和其它上行传输的碰撞,提高随机接入的性能。
根据本申请的一个方面,上述方法的特征在于,当所述第一定时补偿值和所述第一定时偏移值中仅所述第一定时补偿值被用于确定所述第一格式时,所述第一格式被用于确定所述第一定时偏移值。
作为一个实施例,通过所述第一格式确定所述第一定时偏移值,使得可以根据所配置的PRACH格式确定部分补偿时的回退值(或者偏移值),全面考虑PRACH格式可以允许的定时预补偿的偏移值,保证PRACH发送和前后的上行发送之间的碰撞避免的余量,进一步避免PRACH和其它上行传输的碰撞。
根据本申请的一个方面,上述方法的特征在于,所述第一节点设备的能力被用于确定所述第一定时补偿值,所述第一定时偏移值与所述第一节点设备所确定的所述第一定时补偿值的误差有关。
根据本申请的一个方面,上述方法的特征在于,所述第二信息被用于确定第一参数集合,所述第一参数集合被用于确定所述第一定时偏移值,所述第一参数集合正整数个参数。
根据本申请的一个方面,上述方法的特征在于,所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一与所述第一节点设备所确定的所述第一定时补偿值的误差有关。
作为一个实施例,在进行循环前缀的长度和前导序列的时域长度的选择的时候,在考虑预补偿的误差的限制的情况下,使得选择的PRACH格式能够优化随机接入的性能。
本申请公开了一种用于无线通信中的第二节点中的方法,其特征在于,包括:
发送第一信息;
发送第二信息,所述第二信息被用于确定第一定时偏移值;
检测第一信号;
其中,所述第一信号的发送起始时刻和参考时刻之间的时间间隔长度等于目标定时补偿值,所述第一信号的发送起始时刻早于所述参考时刻,所述参考时刻是参考时域资源单元的边界时刻,所述第一信息被用于指示所述参考时域资源单元在时域的位置;第一定时补偿值和所述第一定时偏移值一起被用于确定所述目标定时补偿值,所述第一定时偏移值大于0;所述第一信号被用于随机接入,所述第一信号携带前导序列。
根据本申请的一个方面,上述方法的特征在于,所述第一信息或所述第二信息中的至少之一被用于确定X个备选格式,所述X是大于1的正整数;所述第一定时补偿值或所述第一定时偏移值中的至少之一被用于从所述X个备选格式中确定第一格式,所述第一格式是所述 X个备选格式中的一个备选格式,所述第一格式被用于确定所述第一信号。
根据本申请的一个方面,上述方法的特征在于,当所述第一定时补偿值和所述第一定时偏移值中仅所述第一定时补偿值被用于确定所述第一格式时,所述第一格式被用于确定所述第一定时偏移值。
根据本申请的一个方面,上述方法的特征在于,所述第一节点设备的能力被用于确定所述第一定时补偿值,所述第一定时偏移值与所述第一节点设备所确定的所述第一定时补偿值的误差有关。
根据本申请的一个方面,上述方法的特征在于,所述第二信息被用于确定第一参数集合,所述第一参数集合被用于确定所述第一定时偏移值,所述第一参数集合正整数个参数。
根据本申请的一个方面,上述方法的特征在于,所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一与所述第一节点设备所确定的所述第一定时补偿值的误差有关。
本申请公开了一种用于无线通信中的第一节点设备,其特征在于,包括:
第一接收机,接收第一信息;
第二接收机,接收第二信息,所述第二信息被用于确定第一定时偏移值;
第一发射机,确定第一定时补偿值,并且发送第一信号;
其中,所述第一信号的发送起始时刻和参考时刻之间的时间间隔长度等于目标定时补偿值,所述第一信号的发送起始时刻早于所述参考时刻,所述参考时刻是参考时域资源单元的边界时刻,所述第一信息被用于确定所述参考时域资源单元在时域的位置;所述第一定时补偿值和所述第一定时偏移值一起被用于确定所述目标定时补偿值,所述第一定时偏移值大于0;所述第一信号被用于随机接入,所述第一信号携带前导序列。
本申请公开了一种用于无线通信中的第二节点设备,其特征在于,包括:
第二发射机,发送第一信息;
第三发射机,发送第二信息,所述第二信息被用于确定第一定时偏移值;
第三接收机,检测第一信号;
其中,所述第一信号的发送起始时刻和参考时刻之间的时间间隔长度等于目标定时补偿值,所述第一信号的发送起始时刻早于所述参考时刻,所述参考时刻是参考时域资源单元的边界时刻,所述第一信息被用于指示所述参考时域资源单元在时域的位置;第一定时补偿值和所述第一定时偏移值一起被用于确定所述目标定时补偿值,所述第一定时偏移值大于0;所述第一信号被用于随机接入,所述第一信号携带前导序列。
作为一个实施例,本申请中的方法具备如下优势:
-.采用本申请中的方法,可以使得用户设备根据自行得到的TA补偿值对PRACH的发送定时进行预补偿(Pre-Compensation)的时候只进行部分预补偿(Partial Pre-Compensation)(或者预补偿时有一个回退的偏移),避免了由于用户设备在确定TA补偿值时的计算误差(很大程度可能由于定位精度造成)和定时误差造成PRACH的传输和其它上行传输之间的碰撞,提高随机接入的成功概率或者提高了资源利用率。
-.本申请中的方法使得对PRACH的发送定时进行部分补偿的时候,网络可以根据覆盖情况,卫星的延时特征等多方面对补偿回退进行控制,避免过补偿或者欠补偿,进一步调高随机接入性能。
-.采用本申请中的方法,使得根据用户设备是否可以进行上行发送定时的预补偿能力选择PRACH的格式,实现了大延时网络中对具有不同的补偿能力的用户的支持。
-.本申请中的方法使得可以根据部分补偿时的回退值(或者偏移值)来确定PRACH的格式或者限制PRACH的格式,从而实现定时预补偿和PRACH格式之间的适配,进一步避免PRACH 和其它上行传输的碰撞,提高随机接入的性能。
-.本申请中的方法使得可以根据所配置的PRACH格式确定部分补偿时的回退值(或者偏移值),全面考虑PRACH格式可以允许的定时预补偿的偏移值,保证PRACH发送和前后的上行发送之间的碰撞避免的余量,进一步避免PRACH和其它上行传输的碰撞。
-.采用本申请中的方法,在进行循环前缀的长度和前导序列的时域长度的选择的时候,在考虑预补偿的误差的限制的情况下,使得选择的PRACH格式能够优化随机接入的性能。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信息,第二信息和第一信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一节点设备和第二节点设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的另一个实施例的无线信号传输流程图;
图7示出了根据本申请的一个实施例的第一定时补偿值、第一定时偏移值和目标定时补偿值之间的关系的示意图;
图8示出了根据本申请的一个实施例的第一定时补偿值、第一定时偏移值和第一格式之间的关系的示意图;
图9示出了根据本申请的一个实施例的第一定时偏移值和第一格式之间的关系的示意图;
图10示出了根据本申请的一个实施例的第一定时偏移值与第一定时补偿值的误差之间的关系的示意图;
图11示出了根据本申请的一个实施例的第一参数集合和第一定时偏移值之间的关系的示意图;
图12示出了根据本申请的一个实施例的循环前缀的长度、前导序列所占用的时域资源数量和定时补偿值的误差之间的关系的示意图;
图13示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图14示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信息,第二信息和第一信号的流程图,如附图1所示。在附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序并不代表所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的第一节点设备在步骤101中接收第一信息;在步骤102中接收第二信息,所述第二信息被用于确定第一定时偏移值;在步骤103中确定第一定时补偿值,并且发送第一信号;其中,所述第一信号的发送起始时刻和参考时刻之间的时间间隔长度等于目标定时补偿值,所述第一信号的发送起始时刻早于所述参考时刻,所述参考时刻是参考时域资源单元的边界时刻,所述第一信息被用于确定所述参考时域资源单元在时域的位置;所述第一定时补偿值和所述第一定时偏移值一起被用于确定所述目标定时补偿值,所述第一定时偏移值大于0;所述第一信号被用于随机接入,所述第一信号携带前导序列。
作为一个实施例,所述第一节点设备在发送所述第一信号时处于RRC(Radio Resource  Control,无线资源控制)空闲(RRC_IDLE)状态(State)。
作为一个实施例,所述第一节点设备在发送所述第一信号时处于RRC(Radio Resource Control,无线资源控制)连接(RRC_CONNECTED)状态(State)。
作为一个实施例,所述第一节点设备在发送所述第一信号时处于RRC(Radio Resource Control,无线资源控制)非活跃(RRC_INACTIVE)状态(State)。
作为一个实施例,所述第一信息通过空中接口传输。
作为一个实施例,所述第一信息通过无线接口传输。
作为一个实施例,所述第一信息通过高层信令传输。
作为一个实施例,所述第一信息通过物理层信令传输。
作为一个实施例,所述第一信息包括了一个高层信令中的全部或部分。
作为一个实施例,所述第一信息包括了一个物理层信令中的全部或部分。
作为一个实施例,所述第一信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的全部或部分IE(Information Element,信息单元)。
作为一个实施例,所述第一信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的一个IE(Information Element,信息单元)中的全部或部分域(Field)。
作为一个实施例,所述第一信息包括了一个MAC(Medium Access Control,媒体接入控制)层信令中的全部或部分。
作为一个实施例,所述第一信息包括主信息块(MIB,Master Information Block)中的全部或部分。
作为一个实施例,所述第一信息包括了一个系统信息块(SIB,System Information Block)中的全部或部分。
作为一个实施例,所述第一信息包括了一个系统信息块类型1(SIB1,System Information Block Type 1)中的全部或部分。
作为一个实施例,所述第一信息通过一个DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第一信息通过一个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第一信息通过同步信号携带的。
作为一个实施例,所述第一信息通过同步信号/物理广播信道块(SS/PBCH Block)携带的。
作为一个实施例,所述第一信息通过PBCH(Physical Broadcast Channel,物理广播信道)的的解调参考信号(DM-RS,Demodulation Reference Signal)携带的。
作为一个实施例,所述第一信息通过PBCH的负载(Payload)和PBCH的解调参考信号(DM-RS,Demodulation Reference Signal)共同携带的。
作为一个实施例,所述第一信息是小区特定的(Cell Specific)。
作为一个实施例,所述第一信息是用户设备特定的(UE-specific)。
作为一个实施例,所述第一信息是用户设备组特定的(UE group-specific)。
作为一个实施例,所述第一信息是覆盖区域(Footprint)特定的。
作为一个实施例,所述第一信息是波束特定的(Beam Specific)。
作为一个实施例,所述第一信息是地理区域特定的。
作为一个实施例,所述第一信息包括一个DCI(Downlink Control Information)信令的全部或部分域(Field)。
作为一个实施例,上述句子“所述第一信息被用于确定所述参考时域资源单元在时域位置”包括以下含义:所述第一信息被本申请中的所述第一节点设备用于确定所述参考时域资源单元在时域位置。
作为一个实施例,上述句子“所述第一信息被用于确定所述参考时域资源单元在时域位 置”包括以下含义:所述第一信息被用于直接指示所述参考时域资源单元在时域位置。
作为一个实施例,上述句子“所述第一信息被用于确定所述参考时域资源单元在时域位置”包括以下含义:所述第一信息被用于间接指示所述参考时域资源单元在时域位置。
作为一个实施例,上述句子“所述第一信息被用于确定所述参考时域资源单元在时域位置”包括以下含义:所述第一信息被用于显式地指示所述参考时域资源单元在时域位置。
作为一个实施例,上述句子“所述第一信息被用于确定所述参考时域资源单元在时域位置”包括以下含义:所述第一信息被用于隐式地指示所述参考时域资源单元在时域位置。
作为一个实施例,上述句子“所述第一信息被用于确定所述参考时域资源单元在时域的位置”包括以下含义:所述第一信息被用于确定第一索引,所述第一索引被用于确定所述参考时域资源单元在时域的位置,所述第一索引是非负整数。
作为一个实施例,上述句子“所述第一信息被用于确定所述参考时域资源单元在时域的位置”包括以下含义:所述第一信息被用于确定第一索引,所述第一索引是物理随机接入信道(PRACH,Physical Random Access Channel)配置索引(Configuration Index),所述第一索引被用于确定所述参考时域资源单元在时域的位置。
作为一个实施例,所述第一信息是通过高层信令“prach-ConfigurationIndex”携带的。
作为一个实施例,所述第一信息包括高层信令“prach-ConfigurationIndex”的列表(List)。
作为一个实施例,上述句子“所述第一信息被用于确定所述参考时域资源单元在时域的位置”包括以下含义:所述第一信息被用于确定第一索引,所述第一索引根据映射表格被用于确定所述参考时域资源单元在时域的位置,所述第一索引是非负整数。
作为一个实施例,上述句子“所述第一信息被用于确定所述参考时域资源单元在时域的位置”包括以下含义:所述第一信息被用于确定第一索引,所述第一索引根据映射关系被用于确定所述参考时域资源单元在时域的位置,所述第一索引是非负整数。
作为一个实施例,上述句子“所述第一信息被用于确定所述参考时域资源单元在时域的位置”包括以下含义:所述第一信息被用于下行同步(Downlink Synchronization),所述下行同步被用于确定所述参考时域资源单元在时域的位置。
作为一个实施例,上述句子“所述第一信息被用于确定所述参考时域资源单元在时域的位置”包括以下含义:所述第一信息被用于确定第二索引,所述第二索引是同步信号/物理广播信道块(SS/PBCH Block)的索引,所述第二索引被用于确定所述参考时域资源单元在时域的位置。
作为一个实施例,上述句子“所述第一信息被用于确定所述参考时域资源单元在时域的位置”包括以下含义:所述第一信息被用于确定第二索引,所述第二索引是同步信号/物理广播信道块(SS/PBCH Block)的索引,所述第二索引被用于下行同步(Downlink Synchronization),所述下行同步被用于确定所述参考时域资源单元在时域的位置。
作为一个实施例,上述句子“所述第一信息被用于确定所述参考时域资源单元在时域的位置”包括以下含义:所述第一信息被用于确定第二索引,所述第二索引是同步信号/物理广播信道块(SS/PBCH Block)的索引,所述第二索引被用于确定下行接收定时(Downlink Reception Timing),所述下行接收定时被用于确定所述参考时域资源单元在时域的位置。
作为一个实施例,上述句子“所述第一信息被用于确定所述参考时域资源单元在时域的位置”包括以下含义:所述第一信息被用于确定第二索引,所述第二索引是同步信号/物理广播信道块(SS/PBCH Block)的索引,所述第二索引被用于确定所述参考时域资源单元所属的帧(Frame)在时域的位置。
作为一个实施例,上述句子“所述第一信息被用于确定所述参考时域资源单元在时域的位置”包括以下含义:所述第一信息和所述第二信息被共同用于确定所述参考时域资源单元在时域的位置。
作为一个实施例,所述第二信息通过空中接口传输。
作为一个实施例,所述第二信息通过无线接口传输。
作为一个实施例,所述第二信息包括了一个高层信令中的全部或部分。
作为一个实施例,所述第二信息包括了一个物理层信令中的全部或部分。
作为一个实施例,所述第二信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的全部或部分IE(Information Element,信息单元)。
作为一个实施例,所述第二信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的一个IE(Information Element,信息单元)中的全部或部分域(Field)。
作为一个实施例,所述第二信息包括了一个MAC(Medium Access Control,媒体接入控制)层信令中的全部或部分。
作为一个实施例,所述第二信息包括了一个系统信息块(SIB,System Information Block)中的全部或部分。
作为一个实施例,所述第二信息包括了一个系统信息块类型1(SIB1,System Information Block Type 1)中的全部或部分。
作为一个实施例,所述第二信息通过一个DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第二信息通过一个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第二信息是小区特定的(Cell Specific)。
作为一个实施例,所述第二信息是用户设备特定的(UE-specific)。
作为一个实施例,所述第二信息是用户设备组特定的(UE group-specific)。
作为一个实施例,所述第二信息是覆盖区域(Footprint)特定的。
作为一个实施例,所述第二信息是波束特定的(Beam Specific)。
作为一个实施例,所述第二信息是地理区域特定的。
作为一个实施例,所述第二信息包括一个DCI(Downlink Control Information)信令的全部或部分域(Field)。
作为一个实施例,上述句子“所述第二信息被用于确定第一定时偏移值”包括以下含义:所述第二信息被本申请中的所述第一节点设备用于确定所述第一定时偏移值。
作为一个实施例,上述句子“所述第二信息被用于确定第一定时偏移值”包括以下含义:所述第二信息被用于直接指示所述第一定时偏移值。
作为一个实施例,上述句子“所述第二信息被用于确定第一定时偏移值”包括以下含义:所述第二信息被用于间接指示所述第一定时偏移值。
作为一个实施例,上述句子“所述第二信息被用于确定第一定时偏移值”包括以下含义:所述第二信息被用于显式地指示所述第一定时偏移值。
作为一个实施例,上述句子“所述第二信息被用于确定第一定时偏移值”包括以下含义:所述第二信息被用于隐式地指示所述第一定时偏移值。
作为一个实施例,上述句子“所述第二信息被用于确定第一定时偏移值”包括以下含义:所述第二信息被用于确定所述第一信号所采用的格式,所述第一信号所采用的格式被用于确定所述第一定时偏移值。
作为一个实施例,上述句子“所述第二信息被用于确定第一定时偏移值”包括以下含义:所述第二信息被用于确定第三索引,所述第三索引被用于确定所述第一信号所采用的格式,所述第一信号所采用的格式被用于确定所述第一定时偏移值,所述第三索引是非负整数。
作为一个实施例,上述句子“所述第二信息被用于确定第一定时偏移值”包括以下含义:所述第二信息被用于确定第三索引,所述第三索引是物理随机接入信道(PRACH,Physical Random Access Channel)配置索引(Configuration Index),所述第三索引被用于确定所述第一信号所采用的格式,所述第一信号所采用的格式被用于确定所述第一定时偏移值。
作为一个实施例,上述句子“所述第二信息被用于确定第一定时偏移值”包括以下含义:所述第二信息被用于确定本申请中的所述第一格式,所述第一格式被用于确定所述第一定时 偏移值。
作为一个实施例,所述第二信息包括高层信令“prach-ConfigurationIndex”的列表(List)。
作为一个实施例,所述第一信息和所述第二信息通过同一个RRC信令携带的。
作为一个实施例,所述第一信息和所述第二信息通过不同的RRC信令携带的。
作为一个实施例,所述第一信息和所述第二信息通过同一个RRC信令的两个不同的IE(Information Element,信息单元)携带的。
作为一个实施例,所述第一信息和所述第二信息通过同一个RRC信令的同一个IE(Information Element,信息单元)的两个不同的域(Field)携带的。
作为一个实施例,所述第一定时偏移值的单位是毫秒(ms)。
作为一个实施例,所述第一定时偏移值通过Tc的数量表示的,其中Tc=1/(480000*4096)秒。
作为一个实施例,所述第一定时偏移值通过OFDM符号的数量表示的。
作为一个实施例,所述第一定时偏移值通过对应初始带宽部分(Initial Bandwidth Part)的子载波间隔的OFDM符号的数量表示的。
作为一个实施例,所述第一定时偏移值通过对应非初始带宽部分(Non-initial Bandwidth Part)的子载波间隔的OFDM符号的数量表示的。
作为一个实施例,所述第一定时偏移值通过对应所述第一信号在频域所占用的子载波的子载波间隔的OFDM符号的数量表示的。
作为一个实施例,所述第一定时偏移值等于所述第一节点设备在发送所述第一信号时的在所述第一定时补偿值之上的回退的时间长度。
作为一个实施例,所述第一定时补偿值是所述第一节点设备自行确定的发送所述第一信号所采用的TA(Timing Advance,定时提前)。
作为一个实施例,所述第一定时补偿值等于所述第一节点设备自行确定的发送所述第一信号时的N TA
作为一个实施例,所述第一定时补偿值等于所述第一节点设备自行确定的发送所述第一信号时的T TA
作为一个实施例,所述第一定时补偿值等于所述第一节点设备自行确定的发送所述第一信号时的N TA和Tc的乘积,其中Tc=1/(480000*4096)秒。
作为一个实施例,所述第一定时补偿值是所述第一节点设备自行确定的发送所述第一信号所采用的TA(Timing Advance,定时提前)的一半。
作为一个实施例,所述第一定时补偿值等于所述第一节点设备自行确定的发送所述第一信号时的N TA的一半。
作为一个实施例,所述第一定时补偿值等于所述第一节点设备自行确定的发送所述第一信号时的T TA的一半。
作为一个实施例,所述第一定时补偿值等于所述第一节点设备自行确定的发送所述第一信号时的N TA的一半和Tc的乘积,其中Tc=1/(480000*4096)秒。
作为一个实施例,所述第一定时补偿值是所述第一节点设备自行确定的。
作为一个实施例,所述第一定时补偿值的单位是毫秒(ms)。
作为一个实施例,所述第一定时补偿值通过Tc的数量表示的,其中Tc=1/(480000*4096)秒。
作为一个实施例,所述第一定时补偿值大于0。
作为一个实施例,所述第一定时补偿值通过OFDM符号的数量表示的。
作为一个实施例,所述第一定时补偿值等于不大于所述第一节点设备自行确定的发送所述第一信号所采用的TA(Timing Advance,定时提前)的最多的OFDM符号的时间长度。
作为一个实施例,所述第一信号通过PRACH(Physical Random Access Channel,物理随机接入信道)传输。
作为一个实施例,所述第一信号是无线信号。
作为一个实施例,所述第一信号是空口信号。
作为一个实施例,所述第一信号是基带信号(Baseband Signal)。
作为一个实施例,所述第一信号是射频(RF,Radio Frequency)信号。
作为一个实施例,上述句子“所述第一信号被用于随机接入”包括以下含义:所述第一信号被用于4步随机接入。
作为一个实施例,上述句子“所述第一信号被用于随机接入”包括以下含义:所述第一信号被用于2步随机接入。
作为一个实施例,上述句子“所述第一信号被用于随机接入”包括以下含义:所述第一信号被用于类型1(Type-1)的随机接入。
作为一个实施例,上述句子“所述第一信号被用于随机接入”包括以下含义:所述第一信号被用于类型2(Type-2)的随机接入。
作为一个实施例,所述第一信号被用于4步随机接入中的Msg1(消息1)。
作为一个实施例,所述第一信号被用于2步随机接入中的MsgA(消息A)。
作为一个实施例,上述句子“所述第一信号携带前导序列”包括以下含义:一个前导序列(Preamble)被用于生成所述第一信号。
作为一个实施例,上述句子“所述第一信号携带前导序列”包括以下含义:一个Zadoff-Chu(ZC)序列作为前导序列(Preamble)被用于生成所述第一信号。
作为一个实施例,上述句子“所述第一信号携带前导序列”包括以下含义:一个伪随机序列(Pseudo-random sequence)作为前导序列(Preamble)被用于生成所述第一信号。
作为一个实施例,上述句子“所述第一信号携带前导序列”包括以下含义:一个长度为839的Zadoff-Chu(ZC)序列作为前导序列(Preamble)被用于生成所述第一信号。
作为一个实施例,上述句子“所述第一信号携带前导序列”包括以下含义:一个长度为139的Zadoff-Chu(ZC)序列作为前导序列(Preamble)被用于生成所述第一信号。
作为一个实施例,一个长度为839的Zadoff-Chu(ZC)序列被用于生成所述第一信号。
作为一个实施例,一个长度为139的Zadoff-Chu(ZC)序列被用于生成所述第一信号。
作为一个实施例,一个长度大于839的Zadoff-Chu(ZC)序列被用于生成所述第一信号。
作为一个实施例,所述第一信号的发送起始时刻是指:所述第一信号在时域所占用的最早的OFDM符号的发送起始时刻。
作为一个实施例,所述第一信号的发送起始时刻是指:所述第一信号在时域所占用的循环前缀的发送起始时刻。
作为一个实施例,所述第一信号的发送起始时刻是指:所述第一信号在时域所占用的最早的OFDM符号中的循环前缀的发送起始时刻。
作为一个实施例,所述第一信号的发送起始时刻是指:所述第一信号在时域所占用的最早的OFDM符号所属的时隙(Slot)的发送起始时刻。
作为一个实施例,所述目标定时补偿值的单位是毫秒(ms)。
作为一个实施例,所述目标定时补偿值通过Tc的数量表示的,其中Tc=1/(480000*4096)秒。
作为一个实施例,所述目标定时补偿值通过OFDM符号的数量表示的。
作为一个实施例,所述目标定时补偿值不大于所述第一定时补偿值。
作为一个实施例,上述句子“所述参考时刻是参考时域资源单元的边界时刻”包括以下含义:所述参考时刻是所述参考时域资源单元的起始时刻。
作为一个实施例,上述句子“所述参考时刻是参考时域资源单元的边界时刻”包括以下含义:所述参考时刻是所述参考时域资源单元的结束时刻。
作为一个实施例,上述句子“所述参考时刻是参考时域资源单元的边界时刻”包括以下 含义:所述参考时刻是所述参考时域资源单元在所述第一节点设备侧的起始时刻。
作为一个实施例,上述句子“所述参考时刻是参考时域资源单元的边界时刻”包括以下含义:所述参考时刻是所述参考时域资源单元在所述第一节点设备侧的结束时刻。
作为一个实施例,上述句子“所述参考时刻是参考时域资源单元的边界时刻”包括以下含义:所述参考时刻是所述参考时域资源单元的接收起始时刻。
作为一个实施例,上述句子“所述参考时刻是参考时域资源单元的边界时刻”包括以下含义:所述参考时刻是所述参考时域资源单元的接收结束时刻。
作为一个实施例,上述句子“所述参考时刻是参考时域资源单元的边界时刻”包括以下含义:所述参考时刻是所述参考时域资源单元的接收边界时刻。
作为一个实施例,所述参考时域资源单元是一个PRACH机会(Occasion)在时域所占用的时域资源。
作为一个实施例,所述参考时域资源单元是在假定N TA=0时的一个PRACH机会(Occasion)在时域所占用的时域资源。
作为一个实施例,所述参考时域资源单元是按照下行的定时的一个PRACH机会(Occasion)在时域所占用的时域资源。
作为一个实施例,所述参考时域资源单元是按照接收定时的一个PRACH机会(Occasion)在时域所占用的时域资源。
作为一个实施例,所述参考时域资源单元是在假设定时提前(Timing Advance,TA)等于0时的一个PRACH机会(Occasion)在时域所占用的时域资源。
作为一个实施例,所述参考时域资源单元是一个PRACH机会(Occasion)所占用的上行时域资源单元所对应的所述第一节点设备侧的下行时域资源单元。
作为一个实施例,所述参考时域资源单元是在假定N TA=0时的所述第一信号在时域所占用的最早的OFDM符号。
作为一个实施例,所述参考时域资源单元是按照下行的定时假定所述第一信号在时域所占用的最早的OFDM符号。
作为一个实施例,所述参考时域资源单元是按照接收定时假定所述第一信号在时域所占用的最早的OFDM符号。
作为一个实施例,所述参考时域资源单元是在假设定时提前(Timing Advance,TA)等于0时的所述第一信号在时域所占用的最早的OFDM符号。
作为一个实施例,所述参考时域资源单元包括大于1的正整数个时域连续的OFDM符号(Symbol)。
作为一个实施例,所述参考时域资源单元仅包括1个OFDM符号(Symbol)。
作为一个实施例,所述参考时域资源单元包括正整数个时域连续的时隙(Slot)。
作为一个实施例,所述参考时域资源单元是“prach-ConfigurationIndex”信令所配置的一个PRACH机会(Occasion)中的最早的OFDM符号所占用的时域资源。
作为一个实施例,所述参考时域资源是的一个15kHz子载波间隔所对应的OFDM符号所占用的时域资源。
作为一个实施例,所述参考时域资源是的第一子载波间隔所对应的OFDM符号所占用的时域资源,所述第一子载波间隔等于30kHz、60kHz、120kHz中之一。
作为一个实施例,当所述第一信号在频域所占用的子载波的子载波间隔等于1.25kHz或5kHz的时候,所述参考时域资源是的一个15kHz子载波间隔所对应的OFDM符号所占用的时域资源;当所述第一信号在频域所占用的子载波的子载波间隔大于5kHz的时候,所述参考时域资源是所述第一信号在频域所占用的子载波的子载波间隔所对应的一个OFDM符号所占用的时域资源。
作为一个实施例,“所述参考时域资源单元在时域的位置”包括:所述参考时域资源单元在时域的索引。
作为一个实施例,“所述参考时域资源单元在时域的位置”包括:所述参考时域资源单元所包括的最早的OFDM符号在时域的位置。
作为一个实施例,“所述参考时域资源单元在时域的位置”包括:所述参考时域资源单元所包括的最早的OFDM符号的索引。
作为一个实施例,“所述参考时域资源单元在时域的位置”包括:所述参考时域资源单元所包括的最早的OFDM符号在所属的时隙(Slot)中的索引。
作为一个实施例,“所述参考时域资源单元在时域的位置”包括:所述参考时域资源单元所包括的最早的OFDM符号在所属的子帧(Subframe)中的索引。
作为一个实施例,“所述参考时域资源单元在时域的位置”包括:所述参考时域资源单元所包括的最早的OFDM符号在所属的帧(Frame)中的索引。
作为一个实施例,“所述参考时域资源单元在时域的位置”包括:所述参考时域资源单元所包括的最早的OFDM符号在所属的时隙(Slot)中的索引、所述参考时域资源单元所包括的最早的OFDM符号所属的时隙(Slot)在所属的子帧(Subframe)中的索引、所述参考时域资源单元所包括的最早的OFDM符号所属的子帧(Subframe)在所属的帧(Frame)中的索引和所述参考时域资源单元所包括的最早的OFDM符号所属的帧(Frame)的索引。
作为一个实施例,“所述参考时域资源单元在时域的位置”包括:所述参考时域资源单元所包括的最早的OFDM符号在所属的时隙(Slot)中的索引、所述参考时域资源单元所包括的最早的OFDM符号所属的子帧(Subframe)在所属的帧(Frame)中的索引和所述参考时域资源单元所包括的最早的OFDM符号所属的帧(Frame)的索引。
作为一个实施例,所述第一信息还被用于确定所述参考时域资源单元所占用的时域资源的数量。
作为一个实施例,上述句子“所述第一定时补偿值和所述第一定时偏移值一起被用于确定所述目标定时补偿值”包括以下含义:所述第一定时补偿值和所述第一定时偏移值之间的差值等于所述目标定时补偿值。
作为一个实施例,上述句子“所述第一定时补偿值和所述第一定时偏移值一起被用于确定所述目标定时补偿值”包括以下含义:所述第一定时补偿值和所述第一定时偏移值一起被本申请中的所述第一节点设备用于确定所述目标定时补偿值。
作为一个实施例,上述句子“所述第一定时补偿值和所述第一定时偏移值一起被用于确定所述目标定时补偿值”包括以下含义:所述目标定时补偿值和所述第一定时补偿值线性相关,所述目标定时补偿值和所述第一定时偏移值线性相关。
作为一个实施例,上述句子“所述第一定时补偿值和所述第一定时偏移值一起被用于确定所述目标定时补偿值”包括以下含义:所述目标定时补偿值和所述第一定时补偿值线性正相关,所述目标定时补偿值和所述第一定时偏移值线性负相关。
作为一个实施例,上述句子“所述第一定时补偿值和所述第一定时偏移值一起被用于确定所述目标定时补偿值”包括以下含义:所述第一定时补偿值和所述第一定时偏移值一起基于运算函数用于确定所述目标定时补偿值。
作为一个实施例,所述第一信号所采用的格式和所述第一定时偏移值之间是相关联的。
作为一个实施例,所述第一信号所采用的格式被用于确定所述第一定时偏移值。
作为一个实施例,所述第一定时偏移值被用于确定所述第一信号所采用的格式。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网 络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点设备。
作为一个实施例,所述UE201支持在大传输时延网络中的传输。
作为一个实施例,所述UE201支持在大范围传输时延差异网络中的传输。
作为一个实施例,所述UE201支持NTN网络。
作为一个实施例,所述gNB201对应本申请中的所述第二节点设备。
作为一个实施例,所述gNB201支持大传输时延网络中的传输。
作为一个实施例,所述gNB201支持大范围传输时延差异网络中的传输。
作为一个实施例,所述gNB201支持NTN网络。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一节点设备(UE,gNB或NTN网络中的终端设备)和第二节点设备(gNB,UE或NTN网络中的卫星设备或飞行器平台设备)的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一节点设备与第二节点设备之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet  Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二节点设备之间的对第一节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点设备与第一节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点设备和第二节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点设备。
作为一个实施例,本申请中的所述第一信息生成于所述RRC306。
作为一个实施例,本申请中的所述第一信息生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一信息生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二信息生成于所述RRC306。
作为一个实施例,本申请中的所述第二信息生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第二信息生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一信号生成于所述RRC306。
作为一个实施例,本申请中的所述第一信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一信号生成于所述PHY301或者PHY351。
实施例4
实施例4示出了根据本申请的一个第一节点设备和第二节点设备的示意图,如附图4所示。
在第一节点设备(450)中可以包括控制器/处理器490,数据源/缓存器480,接收处理器452,发射器/接收器456和发射处理器455,发射器/接收器456包括天线460。
在第二节点设备(410)中可以包括控制器/处理器440,数据源/缓存器430,接收处理器412,发射器/接收器416和发射处理器415,发射器/接收器416包括天线420。
在DL(Downlink,下行)中,上层包,比如本申请中的第一信息和第二信息中所包括的高层信息提供到控制器/处理器440。控制器/处理器440实施L2层及以上层的功能。在DL中,控制器/处理器440提供包头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对第一节点设备450的无线电资源分配。控制器/处理器440还负责HARQ操作、丢失包的重新发射,和到第一节点设备450的信令,比如本申请中的第一信息和第二信息均在控制器/处理器440中生成。发射处理器415实施用于L1层(即,物理层)的各种信号处理功能,包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等,比如本申请中的第一信息和第二信息的物理层信号的生成在发射处理器415完成,生成的调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符 号,然后由发射处理器415经由发射器416映射到天线420以射频信号的形式发射出去。在接收端,每一接收器456通过其相应天线460接收射频信号,每一接收器456恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器452。接收处理器452实施L1层的各种信号接收处理功能。信号接收处理功能包括对本申请中的第一信息和第二信息的物理层信号的接收等,通过多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解扰,解码和解交织以恢复在物理信道上由第二节点设备410发射的数据或者控制,随后将数据和控制信号提供到控制器/处理器490。控制器/处理器490负责L2层及以上层,控制器/处理器490对本申请中的第一信息和第二信息进行解读。控制器/处理器可与存储程序代码和数据的存储器480相关联。存储器480可称为计算机可读媒体。
在上行(UL)传输中,数据源/缓存器480用来提供高层数据到控制器/处理器490。数据源/缓存器480表示L2层和L2层之上的所有协议层。控制器/处理器490通过基于第二节点410的无线电资源分配提供标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,来实施用于用户平面和控制平面的L2层协议。控制器/处理器490还负责HARQ操作、丢失包的重新发射,和到第二节点410的信令。发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能,本申请中第一信号的物理层信号在发射处理器455生成。信号发射处理功能包括序列生成(对于由序列生成的信号)、编码和交织以促进UE450处的前向错误校正(FEC)以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))对基带信号进行调制(对于由比特块生成的信号),将序列生成的信号或者调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号,然后由发射处理器455经由发射器456映射到天线460以射频信号的形式发射出去。接收器416通过其相应天线420接收射频信号,每一接收器416恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器412。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能,包括接收处理本申请中的第一信号的物理层信号,信号接收处理功能包括获取多载波符号流,接着对多载波符号流中的多载波符号进行序列解相关或者基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解码和解交织以恢复在物理信道上由第一节点设备450原始发射的数据和/或控制信号。随后将数据和/或控制信号提供到控制器/处理器440。在控制器/处理器440实施L2层的功能。控制器/处理器可与存储程序代码和数据的缓存器430相关联。缓存器430可以为计算机可读媒体。
作为一个实施例,所述第一节点设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一节点设备450装置至少:接收第一信息;接收第二信息,所述第二信息被用于确定第一定时偏移值;确定第一定时补偿值,并且发送第一信号;其中,所述第一信号的发送起始时刻和参考时刻之间的时间间隔长度等于目标定时补偿值,所述第一信号的发送起始时刻早于所述参考时刻,所述参考时刻是参考时域资源单元的边界时刻,所述第一信息被用于确定所述参考时域资源单元在时域的位置;所述第一定时补偿值和所述第一定时偏移值一起被用于确定所述目标定时补偿值,所述第一定时偏移值大于0;所述第一信号被用于随机接入,所述第一信号携带前导序列。
作为一个实施例,所述第一节点设备450装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信息;接收第二信息,所述第二信息被用于确定第一定时偏移值;确定第一定时补偿值,并且发送第一信号;其中,所述第一信号的发送起始时刻和参考时刻之间的时间间隔长度等于目标定时补偿值,所述第一信号的发送起始时刻早于所述参考时刻,所述参考时刻是参考时域资源单元的边界时刻,所述第一信息被用于确定所述参考时域资源单元在时域的位置;所述第一定时补偿值和所述第一定时偏移值一起被用于确定所述目标定时补偿值,所述第一定时偏移值大于0;所述第一信号被用于随机接入,所述第一信号携带前导序列。
作为一个实施例,所述第二节点设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二节点设备410装置至少:发送第一信息;发送第二信息,所述第二信息被用于确定第一定时偏移值;检测第一信号;其中,所述第一信号的发送起始时刻和参考时刻之间的时间间隔长度等于目标定时补偿值,所述第一信号的发送起始时刻早于所述参考时刻,所述参考时刻是参考时域资源单元的边界时刻,所述第一信息被用于指示所述参考时域资源单元在时域的位置;第一定时补偿值和所述第一定时偏移值一起被用于确定所述目标定时补偿值,所述第一定时偏移值大于0;所述第一信号被用于随机接入,所述第一信号携带前导序列。
作为一个实施例,所述第二节点设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信息;发送第二信息,所述第二信息被用于确定第一定时偏移值;检测第一信号;其中,所述第一信号的发送起始时刻和参考时刻之间的时间间隔长度等于目标定时补偿值,所述第一信号的发送起始时刻早于所述参考时刻,所述参考时刻是参考时域资源单元的边界时刻,所述第一信息被用于指示所述参考时域资源单元在时域的位置;第一定时补偿值和所述第一定时偏移值一起被用于确定所述目标定时补偿值,所述第一定时偏移值大于0;所述第一信号被用于随机接入,所述第一信号携带前导序列。
作为一个实施例,所述第一节点设备450是一个用户设备(UE)。
作为一个实施例,所述第一节点设备450是一个支持大延时传输的用户设备。
作为一个实施例,所述第一节点设备450是一个支持大范围传输延时差异的用户设备。
作为一个实施例,所述第一节点设备450是一个支持NTN网络的用户设备。
作为一个实施例,所述第二节点设备410是一个基站设备(gNB/eNB)。
作为一个实施例,所述第二节点设备410是一个支持大传输延时的基站设备。
作为一个实施例,所述第二节点设备410是一个支持大范围传输延时差异的基站设备。
作为一个实施例,所述第二节点设备410是一个支持NTN网络的基站设备。
作为一个实施例,所述第二节点设备410是一个卫星设备。
作为一个实施例,所述第二节点设备410是一个飞行平台设备。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一信息。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第二信息。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送所述第一信号。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第一信息。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第二信息。
作为一个实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于接收本申请中的所述第一信号。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。在附图5中,第二节点设备N1是第一节点设备U2的服务小区的维持基站。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于 第二节点设备N1,在步骤S11中发送第一信息,在步骤S12中发送第二信息,在步骤S13中检测第一信号。
对于 第一节点设备U2,在步骤S21中接收第一信息,在步骤S22中接收第二信息,在步骤S23中确定第一定时补偿值,在步骤S24中发送第一信号。
在实施例5中,本申请中的所述第二信息被用于确定第一定时偏移值,本申请中的所述第一信号的发送起始时刻和参考时刻之间的时间间隔长度等于目标定时补偿值,所述第一信号的发送起始时刻早于所述参考时刻,所述参考时刻是参考时域资源单元的边界时刻,所述第一信息被用于确定所述参考时域资源单元在时域的位置;所述第一定时补偿值和所述第一定时偏移值一起被用于确定所述目标定时补偿值,所述第一定时偏移值大于0;所述第一信号被用于随机接入,所述第一信号携带前导序列。
作为一个实施例,所述第一信息或所述第二信息中的至少之一被用于确定X个备选格式,所述X是大于1的正整数;所述第一定时补偿值或所述第一定时偏移值中的至少之一被用于从所述X个备选格式中确定第一格式,所述第一格式是所述X个备选格式中的一个备选格式,所述第一格式被用于确定所述第一信号。
作为一个实施例,所述第二信息被用于确定第一参数集合,所述第一参数集合被用于确定所述第一定时偏移值,所述第一参数集合正整数个参数。
实施例6
实施例6示例了根据本申请的另一个实施例的无线信号传输流程图,如附图6所示。在附图6中,第二节点设备N3是第一节点设备U4的服务小区的维持基站。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于 第二节点设备N3,在步骤S31中发送第一信息,在步骤S32中发送第二信息,在步骤S33中检测第一信号,在步骤S34中接收第三信息,在步骤S35中接收第四信息。
对于 第一节点设备U4,在步骤S41中接收第一信息,在步骤S42中接收第二信息,在步骤S43中确定第一定时补偿值,在步骤S44中发送第一信号,在步骤S45中发送第三信息,在步骤S46中发送第四信息。
在实施例6中,本申请中的所述第二信息被用于确定第一定时偏移值,本申请中的所述第一信号的发送起始时刻和参考时刻之间的时间间隔长度等于目标定时补偿值,所述第一信号的发送起始时刻早于所述参考时刻,所述参考时刻是参考时域资源单元的边界时刻,所述第一信息被用于确定所述参考时域资源单元在时域的位置;所述第一定时补偿值和所述第一定时偏移值一起被用于确定所述目标定时补偿值,所述第一定时偏移值大于0;所述第一信号被用于随机接入,所述第一信号携带前导序列。
作为一个实施例,所述第三信息被用于指示所述第一节点设备的能力是否包括上行定时的预补偿能力。
作为一个实施例,所述第三信息被用于指示所述第一节点设备的能力是否包括上行发送起始时刻的预补偿能力。
作为一个实施例,所述第四信息被用于指示所述第一节点设备所确定的所述第一定时补偿值的误差。
作为一个实施例,所述第四信息被用于指示所述第一节点设备所确定的所述第一定时补偿值的误差的绝对值的上限。
实施例7
实施例7示例了根据本申请的一个实施例的第一定时补偿值、第一定时偏移值和目标定时补偿值之间的关系的示意图,如附图7所示。在附图7中,横轴代表时间,斜线填充的矩形代表第一信号,交叉线填充的矩形代表参考时域资源单元。
在实施例7中,本申请中的所述第一信号的发送起始时刻和参考时刻之间的时间间隔长度等于目标定时补偿值,所述第一信号的发送起始时刻早于所述参考时刻,所述参考时刻是参考时域资源单元的边界时刻,本申请中的所述第一信息被用于确定所述参考时域资源单元 在时域的位置;本申请中的所述第一定时补偿值和本申请中的所述第一定时偏移值一起被用于确定所述目标定时补偿值,所述第一定时偏移值大于0;所述第一信号被用于随机接入,所述第一信号携带前导序列。
实施例8
实施例8示例了根据本申请的一个实施例的第一定时补偿值和第一定时偏移值和第一格式之间的关系的示意图,如附图8所示。在附图8中,左数第一列代表定时补偿值,左数第二列代表定时偏移值,左数第三列代表备选格式,加黑的一行中的定时补偿值代表第一定时补偿值,加黑的一行中的定时偏移值代表第一定时偏移值,加黑的一行中的备选格式代表第一格式。
在实施例8中,本申请中的所述第一信息或本申请中的所述第二信息中的至少之一被用于确定X个备选格式,所述X是大于1的正整数;本申请中的所述第一定时补偿值或本申请中的所述第一定时偏移值中的至少之一被用于从所述X个备选格式中确定第一格式,所述第一格式是所述X个备选格式中的一个备选格式,所述第一格式被用于确定本申请中的所述第一信号。
作为一个实施例,上述句子“所述第一信息或所述第二信息中的至少之一被用于确定X个备选格式”包括以下含义:所述第一信息或所述第二信息中的至少之一被用于确定是所述X个备选格式可以被使用还是只有一个备选格式可以被使用。
作为一个实施例,上述句子“所述第一信息或所述第二信息中的至少之一被用于确定X个备选格式”包括以下含义:所述第一信息或所述第二信息中的至少之一被用于确定所述X个备选格式是否可以被使用。
作为一个实施例,上述句子“所述第一信息或所述第二信息中的至少之一被用于确定X个备选格式”包括以下含义:所述第一信息或所述第二信息中的至少之一被本申请中的第一节点设备用于确定所述X个备选格式。
作为一个实施例,上述句子“所述第一信息或所述第二信息中的至少之一被用于确定X个备选格式”包括以下含义:所述第一信息或所述第二信息中的至少之一被用于直接指示所述X个备选格式。
作为一个实施例,上述句子“所述第一信息或所述第二信息中的至少之一被用于确定X个备选格式”包括以下含义:所述第一信息或所述第二信息中的至少之一被用于间接指示所述X个备选格式。
作为一个实施例,上述句子“所述第一信息或所述第二信息中的至少之一被用于确定X个备选格式”包括以下含义:所述第一信息或所述第二信息中的至少之一被用于显式地指示所述X个备选格式。
作为一个实施例,上述句子“所述第一信息或所述第二信息中的至少之一被用于确定X个备选格式”包括以下含义:所述第一信息或所述第二信息中的至少之一被用于隐式地指示所述X个备选格式。
作为一个实施例,上述句子“所述第一信息或所述第二信息中的至少之一被用于确定X个备选格式”包括以下含义:所述第一信息和所述第二信息都被用于确定所述X个备选格式。
作为一个实施例,上述句子“所述第一信息或所述第二信息中的至少之一被用于确定X个备选格式”包括以下含义:所述第一信息被用于确定所述X个备选格式。
作为一个实施例,上述句子“所述第一信息或所述第二信息中的至少之一被用于确定X个备选格式”包括以下含义:所述第二信息都被用于确定所述X个备选格式。
作为一个实施例,上述句子“所述第一信息或所述第二信息中的至少之一被用于确定X个备选格式”包括以下含义:所述第一信息或所述第二信息中的至少之一被用于确定X个PRACH(Physical Random Access Channel,物理随机接入信道)配置索引(PRACH Configuration Index),所述X个PRACH配置索引被用于分别确定所述X个备选格式。
作为一个实施例,上述句子“所述第一信息或所述第二信息中的至少之一被用于确定X个备选格式”包括以下含义:所述第一信息或所述第二信息中的至少之一被用于确定Y个PRACH(Physical Random Access Channel,物理随机接入信道)配置索引(PRACH Configuration Index),所述Y个PRACH配置索引被用于分别确定所述X个备选格式,所述Y是大于所述X的正整数。
作为一个实施例,所述X个备选格式中的任意两个备选格式不相同。
作为一个实施例,所述X个备选格式中存在两个备选格式相同。
作为一个实施例,所述X个备选格式中的任意一个备选格式是一个PRACH前导格式(Preamble Format)。
作为一个实施例,所述X个备选格式中的任意一个备选格式包括生成PRACH的前导序列(Preamble)的长度、生成PRACH的前导序列(Preamble)的类型、PRACH所包括的循环前缀(CP,Cyclic Prefix)的时间长度、PRACH在频域所占用的子载波的子载波间隔,PRACH在时域所占用的有用符号(除去CP)的时间长度中的至少之一。
作为一个实施例,所述X个备选格式中的任意一个备选格式包括一个前导序列的序列长度、一个循环前缀的长度、一个前导序列所占用的时域资源数量和一个子载波间隔。
作为一个实施例,所述X个备选格式中的任意一个备选格式包括生成PRACH的前导序列(Preamble)的长度、生成PRACH的前导序列(Preamble)的类型、PRACH所包括的循环前缀(CP,Cyclic Prefix)的时间长度、PRACH在频域所占用的子载波的子载波间隔和PRACH在时域所占用的有用符号(除去CP)的时间长度。
作为一个实施例,所述X等于2。
作为一个实施例,所述X大于2。
作为一个实施例,上述句子“所述第一定时补偿值或所述第一定时偏移值中的至少之一被用于从所述X个备选格式中确定第一格式”包括以下含义:所述第一定时补偿值和所述第一定时偏移值一起被用于从所述X个备选格式中确定所述第一格式。
作为一个实施例,上述句子“所述第一定时补偿值或所述第一定时偏移值中的至少之一被用于从所述X个备选格式中确定第一格式”包括以下含义:所述第一定时补偿值被用于从所述X个备选格式中确定所述第一格式。
作为一个实施例,上述句子“所述第一定时补偿值或所述第一定时偏移值中的至少之一被用于从所述X个备选格式中确定第一格式”包括以下含义:所述第一定时偏移值一起被用于从所述X个备选格式中确定所述第一格式。
作为一个实施例,上述句子“所述第一定时补偿值或所述第一定时偏移值中的至少之一被用于从所述X个备选格式中确定第一格式”包括以下含义:所述第一定时补偿值或所述第一定时偏移值中的至少之一被本申请中的所述第一节点设备用于从所述X个备选格式中确定所述第一格式。
作为一个实施例,上述句子“所述第一定时补偿值或所述第一定时偏移值中的至少之一被用于从所述X个备选格式中确定第一格式”包括以下含义:所述第一定时补偿值或所述第一定时偏移值中的至少之一基于映射关系被用于从所述X个备选格式中确定所述第一格式。
作为一个实施例,上述句子“所述第一定时补偿值或所述第一定时偏移值中的至少之一被用于从所述X个备选格式中确定第一格式”包括以下含义:所述第一定时补偿值或所述第一定时偏移值中的至少之一基于运算关系被用于从所述X个备选格式中确定所述第一格式。
作为一个实施例,上述句子“所述第一定时补偿值或所述第一定时偏移值中的至少之一被用于从所述X个备选格式中确定第一格式”包括以下含义:所述第一定时补偿值是否大于0被用于从所述X个备选格式中确定所述第一格式。
作为一个实施例,上述句子“所述第一定时补偿值或所述第一定时偏移值中的至少之一被用于从所述X个备选格式中确定第一格式”包括以下含义:当所述第一定时补偿值大于0时,所述第一定时补偿值对应所述第一格式,当所述第一定时补偿值等于0时,所述第一定 时补偿值对应所述X个备选格式中的所述第一格式之外的备选格式。
作为一个实施例,上述句子“所述第一定时补偿值或所述第一定时偏移值中的至少之一被用于从所述X个备选格式中确定第一格式”包括以下含义:所述第一定时补偿值大于0,所述第一格式是所述X个备选格式中的GP(Guard Period,保护时间)的长度不小于所述第一定时偏移值的备选格式。
作为一个实施例,上述句子“所述第一定时补偿值或所述第一定时偏移值中的至少之一被用于从所述X个备选格式中确定第一格式”包括以下含义:所述第一定时补偿值被用于从所述X个备选格式中确定X1个备选格式,所述X1个备选格式中的任意一个备选格式是所述X个备选格式中的一个备选格式,所述X1是小于所述X并且大于1的正整数;所述第一定时偏移值被用于从所述X1个备选格式中确定所述第一格式。
作为一个实施例,上述句子“所述第一定时补偿值或所述第一定时偏移值中的至少之一被用于从所述X个备选格式中确定第一格式”包括以下含义:所述第一定时补偿值被用于从所述X个备选格式中确定X1个备选格式,所述X1个备选格式中的任意一个备选格式是所述X个备选格式中的一个备选格式,所述X1是小于所述X并且大于1的正整数;所述第一格式是所述X1个备选格式中的GP(Guard Period,保护时间)的长度不小于所述第一定时偏移值的备选格式。
作为一个实施例,上述句子“所述第一定时补偿值或所述第一定时偏移值中的至少之一被用于从所述X个备选格式中确定第一格式”包括以下含义:所述第一定时补偿值被用于从所述X个备选格式中确定X1个备选格式,所述X1个备选格式中的任意一个备选格式是所述X个备选格式中的一个备选格式,所述X1是小于所述X并且大于1的正整数;所述第一格式是所述X1个备选格式中的GP(Guard Period,保护时间)的长度不小于2倍的所述第一定时偏移值的备选格式。
作为一个实施例,上述句子“所述第一定时补偿值或所述第一定时偏移值中的至少之一被用于从所述X个备选格式中确定第一格式”包括以下含义:所述第一定时补偿值被用于从所述X个备选格式中确定X1个备选格式,所述X1个备选格式中的任意一个备选格式是所述X个备选格式中的一个备选格式,所述X1是小于所述X并且大于1的正整数;所述第一格式是所述X1个备选格式中的循环前缀(CP,Cyclic Prefix)的长度不小于2倍的所述第一定时偏移值的备选格式。
作为一个实施例,上述句子“所述第一定时补偿值或所述第一定时偏移值中的至少之一被用于从所述X个备选格式中确定第一格式”包括以下含义:所述X个备选格式分别对应X个偏移值区间,所述第一定时偏移值属于第一偏移值区间,所述第一偏移值区间是所述X个偏移值区间中的一个偏移值区间,所述第一格式是所述第一偏移值区间在所述X个备选格式中所对应的备选格式。
作为一个实施例,上述句子“所述第一定时补偿值或所述第一定时偏移值中的至少之一被用于从所述X个备选格式中确定第一格式”包括以下含义:所述第一定时补偿值被用于从所述X个备选格式中确定X1个备选格式,所述X1个备选格式中的任意一个备选格式是所述X个备选格式中的一个备选格式,所述X1是小于所述X并且大于1的正整数;所述X1个备选格式分别对应X1个偏移值区间,所述第一定时偏移值属于第一偏移值区间,所述第一偏移值区间是所述X1个偏移值区间中的一个偏移值区间,所述第一格式是所述第一偏移值区间在所述X1个备选格式中所对应的备选格式。
作为一个实施例,上述句子“所述第一格式被用于确定所述第一信号”包括以下含义:所述第一格式是所述第一信号所采用的PRACH前导格式(Preamble Format)。
作为一个实施例,上述句子“所述第一格式被用于确定所述第一信号”包括以下含义:所述第一格式被用于确定所述第一信号所占用的时域资源的数量。
作为一个实施例,上述句子“所述第一格式被用于确定所述第一信号”包括以下含义:所述第一格式被用于确定所述第一信号所采用的PRACH前导格式(Preamble Format)。
作为一个实施例,上述句子“所述第一格式被用于确定所述第一信号”包括以下含义:所述第一格式被本申请中的所述第一节点设备用于确定所述第一信号。
作为一个实施例,上述句子“所述第一格式被用于确定所述第一信号”包括以下含义:所述第一格式被用于确定所述第一信号在时域所占用的有用符号(除去CP)的时间长度。
作为一个实施例,上述句子“所述第一格式被用于确定所述第一信号”包括以下含义:所述第一格式被用于确定所述第一信号在时域所占用的有用符号(除去CP)的时间长度,所述第一格式和所述第一定时偏移值一起被用于确定所述第一信号所包括的CP的长度。
作为一个实施例,上述句子“所述第一格式被用于确定所述第一信号”包括以下含义:所述第一格式被用于确定所述第一信号在时域所占用的有用符号(除去CP)的时间长度,所述第一格式被用于确定目标门限;当所述第一定时偏移值小于或者等于所述目标门限时,所述第一信号所包括的CP的长度等于所述第一格式所对应的CP的长度;当所述第一定时偏移值大于所述目标门限时,所述第一信号所包括的CP的长度小于所述第一格式所对应的CP的长度。
作为一个实施例,上述句子“所述第一格式被用于确定所述第一信号”包括以下含义:所述第一格式被用于确定所述第一信号在时域所占用的有用符号(除去CP)的时间长度,所述第一格式被用于确定目标门限;当所述第一定时偏移值小于或者等于所述目标门限时,所述第一信号所包括的CP的长度等于所述第一格式所对应的CP的长度;当所述第一定时偏移值大于所述目标门限时,所述第一信号所包括的CP的长度等于所述第一格式所对应的CP的长度减去打孔(Puncture)长度,所述打孔长度等于所述第一定时偏移值和所述目标门限之间的差的2倍。
实施例9
实施例9示例了根据本申请的一个实施例的第一定时偏移值和第一格式之间的关系的示意图,如附图9所示。在附图9中,左数第一列代表备选格式,左数第二列代表定时偏移值,加黑的一行中的定时补偿值代表第一定时补偿值,加黑的一行中的备选格式代表第一格式。
在实施例9中,当本申请中的所述第一定时补偿值和本申请中的所述第一定时偏移值中仅所述第一定时补偿值被用于确定本申请中的所述第一格式时,所述第一格式被用于确定所述第一定时偏移值。
作为一个实施例,本申请中的所述第一节点设备不会期望(Expect)所述第一格式所对应的GP的长度小于2倍的所述第一定时偏移值的上限。
作为一个实施例,本申请中的所述第一节点设备不会期望(Expect)所述第一格式不能满足所述第一定时偏移值的上限的要求(Requirement)。
作为一个实施例,当所述第一定时补偿值和所述第一定时偏移值中仅所述第一定时补偿值被用于确定所述第一格式时,所述第一格式和所述第一定时偏移值无关。
作为一个实施例,当所述第一定时补偿值和所述第一定时偏移值中仅所述第一定时补偿值被用于确定所述第一格式时,所述第一定时偏移值之外的因素被用于确定所述第一格式。
作为一个实施例,当所述第一定时补偿值和所述第一定时偏移值中仅所述第一定时补偿值被用于确定所述第一格式时,不存在所述第一定时补偿值和所述第一定时偏移值之外的因素被用于确定所述第一格式。
作为一个实施例,当所述第一定时补偿值和所述第一定时偏移值中仅所述第一定时补偿值被用于确定所述第一格式时,还存在所述第一定时补偿值和所述第一定时偏移值之外的因素被用于确定所述第一格式。
作为一个实施例,当所述第一定时补偿值和所述第一定时偏移值中仅所述第一定时补偿值被用于确定所述第一格式时,所述第一格式的确定和所述第一定时偏移值的确定是独立的。
作为一个实施例,当所述第一定时补偿值和所述第一定时偏移值中仅所述第一定时补偿 值被用于确定所述第一格式时,所述第一格式的确定先于所述第一定时偏移值的确定。
作为一个实施例,当所述第一定时补偿值和所述第一定时偏移值中仅所述第一定时补偿值被用于确定所述第一格式时,所述第一格式不受到所述第一定时偏移值的限制。
作为一个实施例,上述句子“所述第一格式被用于确定所述第一定时偏移值”包括以下含义:所述第一格式被本申请中的所述第一节点设备用于确定所述第一定时偏移值。
作为一个实施例,上述句子“所述第一格式被用于确定所述第一定时偏移值”包括以下含义:所述第一格式被用于确定所述第一定时偏移值的上限。
作为一个实施例,上述句子“所述第一格式被用于确定所述第一定时偏移值”包括以下含义:所述第一格式基于对应关系被用于确定所述第一定时偏移值。
作为一个实施例,上述句子“所述第一格式被用于确定所述第一定时偏移值”包括以下含义:所述第一格式基于表格关系被用于确定所述第一定时偏移值。
作为一个实施例,上述句子“所述第一格式被用于确定所述第一定时偏移值”包括以下含义:所述第一定时偏移值和所述第一格式所对应的循环前缀(CP,Cyclic Prefix)的长度是线性相关的。
作为一个实施例,上述句子“所述第一格式被用于确定所述第一定时偏移值”包括以下含义:所述第一定时偏移值和所述第一格式所对应的GP(Guard Period,保护时间)的长度是线性相关的。
作为一个实施例,上述句子“所述第一格式被用于确定所述第一定时偏移值”包括以下含义:所述第一定时偏移值和所述第一格式所对应的前导序列所占用的时域时间长度是线性相关的。
作为一个实施例,上述句子“所述第一格式被用于确定所述第一定时偏移值”包括以下含义:所述第一定时偏移值等于所述第一格式所对应的GP(Guard Period,保护时间)的长度的一半。
作为一个实施例,上述句子“所述第一格式被用于确定所述第一定时偏移值”是通过下式实现的:
Figure PCTCN2020129973-appb-000001
其中,t offset代表所述第一定时偏移值,T GP代表所述第一格式所对应的GP(Guard Period,保护时间)的长,T CP代表所述第一格式所对应的循环前缀的长度,T CP_min代表一个预定义的或者可配置的下限值。
作为一个实施例,上述句子“所述第一格式被用于确定所述第一定时偏移值”是通过下式实现的:
Figure PCTCN2020129973-appb-000002
其中,t offset代表所述第一定时偏移值,T duration代表所述第一格式所对应的PRACH机会(Occasion)在时域所占用的时间长度,T u代表所述第一格式所对应的前导序列所占用的时间长度,T CP_min代表一个预定义的或者可配置的下限值。
作为一个实施例,上述句子“所述第一格式被用于确定所述第一定时偏移值”是通过下式实现的:
Figure PCTCN2020129973-appb-000003
其中,t offset代表所述第一定时偏移值,T duration代表所述第一格式所对应的PRACH机会(Occasion)在时域所占用的时间长度,T u代表所述第一格式所对应的前导序列所占用的 时间长度,T CP代表所述第一格式所对应的循环前缀的长度,T CP_min代表一个预定义的或者可配置的下限值。
实施例10
实施例10示例了根据本申请的一个实施例的第一定时偏移值与第一定时补偿值的误差之间的关系的示意图,如附图10所示。在附图10中,左数第一列代表定时补偿误差,左数第二列代表定时偏移值,加黑的一行中的定时补偿误差代表第一节点设备所确定的第一定时补偿值的误差,加黑的一行中的定时偏移值代表第一定时偏移值。
在实施例10中,本申请中的所述第一节点设备的能力被用于确定本申请中的所述第一定时补偿值,本申请中的所述第一定时偏移值与所述第一节点设备所确定的所述第一定时补偿值的误差有关。
作为一个实施例,本申请中的所述第一节点设备自行确定所述第一定时补偿值。
作为一个实施例,所述第一节点设备的能力包括所述第一节点设备的定位能力。
作为一个实施例,所述第一节点设备的能力包括所述第一节点设备对定时的预补偿(Pre-Compensation)能力(Capability)。
作为一个实施例,所述第一节点设备的能力包括所述第一节点设备的定位精度。
作为一个实施例,所述第一节点设备的能力包括所述第一节点设备是否支持全球定位系统(GNSS,Global Navigation Satellite System)。
作为一个实施例,所述第一节点设备的能力包括所述第一节点设备对于所述第一节点设备到本申请中的所述第二节点设备之间的传输距离的计算能力。
作为一个实施例,所述第一节点设备的能力包括所述第一节点设备对于所述第一节点设备到本申请中的所述第二节点设备之间的传输延时的计算能力。
作为一个实施例,所述第一节点设备的能力包括所述第一节点设备对于所述第一节点设备到本申请中的所述第二节点设备之间的传输延时的预补偿(Pre-Compensation)能力。
作为一个实施例,所述第一节点设备的能力包括所述第一节点设备自行估计(Estimate)上行定时提前(Timing Advance)的能力。
作为一个实施例,所述第一节点设备的能力包括所述第一节点设备自行预补偿(Pre-Compensate)上行定时提前(Timing Advance)的能力。
作为一个实施例,所述第一节点设备的能力包括所述第一节点设备自行预补偿(Pre-Compensate)上行定时提前(Timing Advance)的最大误差(Error)。
作为一个实施例,所述第一发射机发送第三信息;
其中,所述第三信息被用于指示所述第一节点设备的能力是否包括上行定时的预补偿能力。
作为一个实施例,所述第一发射机发送第三信息;
其中,所述第三信息被用于指示所述第一节点设备的能力是否包括上行发送起始时刻的预补偿能力。
作为一个实施例,上述句子“所述第一节点设备的能力被用于确定所述第一定时补偿值”包括以下含义:所述第一节点设备的能力被本申请中的所述第一节点设备用于确定所述第一定时补偿值。
作为一个实施例,上述句子“所述第一节点设备的能力被用于确定所述第一定时补偿值”包括以下含义:所述第一节点设备的能力被本申请中的所述第一节点设备用于计算所述第一定时补偿值。
作为一个实施例,上述句子“所述第一节点设备的能力被用于确定所述第一定时补偿值”包括以下含义:所述第一节点设备的能力被本申请中的所述第一节点设备用于自行确定所述第一定时补偿值。
作为一个实施例,上述句子“所述第一节点设备的能力被用于确定所述第一定时补偿值” 包括以下含义:所述第一节点设备的能力包括对上行定时提前(Timing Advance)的预补偿(Pre-Compensation)的能力,所述第一节点设备预补偿(Pre-Compensate)的上行定时提前(Timing Advance)的值被用于确定所述第一定时补偿值。
作为一个实施例,上述句子“所述第一节点设备的能力被用于确定所述第一定时补偿值”包括以下含义:所述第一节点设备的能力包括对上行定时的预补偿(Pre-Compensation)的能力,所述第一节点设备对上行定时的预补偿的定时偏移值被用于确定所述第一定时补偿值。
作为一个实施例,上述句子“所述第一节点设备的能力被用于确定所述第一定时补偿值”包括以下含义:所述第一节点设备的能力包括对所述第一节点设备到本申请中的所述第二节点设备之间的传输延时的预补偿(Pre-Compensation)的能力,所述第一节点设备预补偿(Pre-Compensate)的所述第一节点设备到本申请中的所述第二节点设备之间的传输延时被用于确定所述第一定时补偿值。
作为一个实施例,上述句子“所述第一定时偏移值与所述第一节点设备所确定的所述第一定时补偿值的误差有关”包括以下含义:所述第一定时偏移值与所述第一节点设备所确定的所述第一定时补偿值的误差的绝对值的上限有关。
作为一个实施例,上述句子“所述第一定时偏移值与所述第一节点设备所确定的所述第一定时补偿值的误差有关”包括以下含义:所述第一定时偏移值与所述第一节点设备所确定的所述第一定时补偿值的误差的要求(Requirement)有关。
作为一个实施例,上述句子“所述第一定时偏移值与所述第一节点设备所确定的所述第一定时补偿值的误差有关”包括以下含义:所述第一定时偏移值与所述第一节点设备所确定的所述第一定时补偿值的误差的绝对值的上限线性相关。
作为一个实施例,上述句子“所述第一定时偏移值与所述第一节点设备所确定的所述第一定时补偿值的误差有关”包括以下含义:所述第一节点设备所确定的所述第一定时补偿值的误差的要求(Requirement)被用于确定所述第一定时偏移值。
作为一个实施例,上述句子“所述第一定时偏移值与所述第一节点设备所确定的所述第一定时补偿值的误差有关”包括以下含义:所述第一节点设备所确定的所述第一定时补偿值的误差的绝对值的上限被用于确定所述第一定时偏移值。
作为一个实施例,上述句子“所述第一定时偏移值与所述第一节点设备所确定的所述第一定时补偿值的误差有关”包括以下含义:所述第一节点设备所确定的所述第一定时补偿值的误差的要求(Requirement)被用于确定所述第一定时偏移值的范围。
作为一个实施例,上述句子“所述第一定时偏移值与所述第一节点设备所确定的所述第一定时补偿值的误差有关”包括以下含义:所述第一节点设备所确定的所述第一定时补偿值的误差的绝对值的上限被用于确定所述第一定时偏移值的范围。
作为一个实施例,本申请中的句子“所述第二信息被用于确定第一定时偏移值”包括:所述第二信息被用于在所述第一定时偏移值的范围内确定所述第一定时偏移值,所述第一节点设备所确定的所述第一定时补偿值的误差的绝对值的上限被用于确定所述第一定时偏移值的范围。
作为一个实施例,本申请中的句子“所述第二信息被用于确定第一定时偏移值”包括:所述第二信息被用于确定所述第一定时补偿值可以不等于0,所述第一节点设备所确定的所述第一定时补偿值的误差的绝对值的上限被用于确定所述第一定时偏移值。
作为一个实施例,本申请中的句子“所述第二信息被用于确定第一定时偏移值”包括:所述第二信息被用于确定所述第一定时补偿值可以不等于0,所述第一节点设备所确定的所述第一定时补偿值的误差的要求(Requirement)被用于确定所述第一定时偏移值。
作为一个实施例,所述第一定时补偿值的误差包括所述第一节点设备计算定时的预补偿时的计算误差和所述第一节点设备定时的误差。
作为一个实施例,所述第一定时补偿值的误差包括所述第一节点设备计算定时的预补偿时的计算误差。
作为一个实施例,所述第一定时补偿值的误差包括所述第一节点设备计算TA的预补偿时的计算误差。
作为一个实施例,所述第一定时补偿值的误差包括所述第一节点设备计算定时的预补偿时的计算误差和所述第一节点设备初始发送的定时误差。
作为一个实施例,所述第一定时偏移值和所述第一节点设备初始发送(Initial Transmission)的定时误差限制(Timing Error Limit Value)T e有关。
作为一个实施例,所述第一定时补偿值的误差和SSB(Synchronization Signal Block,同步信号块)在频域所占用的子载波的子载波间隔有关。
作为一个实施例,所述第一定时补偿值的误差和所述第一信号在频域所占用的子载波的子载波间隔有关。
作为一个实施例,所述第一定时补偿值的误差和SSB(Synchronization Signal Block,同步信号块)在频域所占用的子载波的子载波间隔以及所述第一信号在频域所占用的子载波的子载波间隔有关。
实施例11
实施例11示例了根据本申请的一个实施例的第一参数集合和第一定时偏移值之间的关系的示意图,如附图11所示。在附图11中,左数第一列代表参数集合,左数第二列代表定时偏移值,加黑的一行中的参数集合代表第一参数集合,加黑的一行中的定时偏移值代表第一定时偏移值,a i、b i、c i分别代表一个参数集合中的一个参数。
在实施例11中,本申请中的所述第二信息被用于确定第一参数集合,所述第一参数集合被用于确定本申请中的所述第一定时偏移值,所述第一参数集合正整数个参数。
作为一个实施例,本申请中的句子“所述第二信息被用于确定第一定时偏移值”是指:所述第一参数集合被用于确定所述第一定时偏移值。
作为一个实施例,上述句子“所述第二信息被用于确定第一参数集合”包括以下含义:所述第二信息被本申请中的所述第一节点设备用于确定所述第一参数集合。
作为一个实施例,上述句子“所述第二信息被用于确定第一参数集合”包括以下含义:所述第二信息被用于直接指示所述第一参数集合。
作为一个实施例,上述句子“所述第二信息被用于确定第一参数集合”包括以下含义:所述第二信息被用于间接指示所述第一参数集合。
作为一个实施例,上述句子“所述第二信息被用于确定第一参数集合”包括以下含义:所述第二信息被用于显式地指示所述第一参数集合。
作为一个实施例,上述句子“所述第二信息被用于确定第一参数集合”包括以下含义:所述第二信息被用于隐式地指示所述第一参数集合。
作为一个实施例,所述第一参数集合包括大于1的正整数个参数。
作为一个实施例,所述第一参数集合仅包括1个参数。
作为一个实施例,上述句子“所述第一参数集合被用于确定所述第一定时偏移值”包括以下含义:所述第一参数集合被本申请中的所述第一节点设备用于确定所述第一定时偏移值。
作为一个实施例,上述句子“所述第一参数集合被用于确定所述第一定时偏移值”包括以下含义:所述第一参数集合基于映射关系被用于确定所述第一定时偏移值。
作为一个实施例,上述句子“所述第一参数集合被用于确定所述第一定时偏移值”包括以下含义:所述第一参数集合基于对应关系被用于确定所述第一定时偏移值。
作为一个实施例,上述句子“所述第一参数集合被用于确定所述第一定时偏移值”包括以下含义:M1个备选参数集合分别对应M1个备选定时偏移值,所述第一参数集合是所述M1个备选参数集合中的一个备选参数集合,所述第一定时偏移值等于所述第一参数集合在所述M1个备选定时偏移值中所对应的备选偏移值,所述M1是大于1的正整数。
作为一个实施例,上述句子“所述第一参数集合被用于确定所述第一定时偏移值”包括 以下含义:M2个备选参数集合分别对应M2个备选定时偏移值集合,所述第一参数集合是所述M2个备选参数集合中的一个备选参数集合,所述第一定时偏移值属于第一定时偏移值集合,所述第一定时偏移值集合是所述第一参数集合在所述M2个备选定时偏移值集合中所对应的备选偏移值集合,所述M2个备选定时偏移值集合中的任意一个备选定时偏移值集合包括正整数个偏移值,所述M2是大于1的正整数。
作为一个实施例,作为一个实施例所述第一参数集合包括一个高度(Altitude)参数、一个发送者类型参数、一个时延参数、一个轨道(Orbit)参数、一个日历(Ephemeris)参数中的至少之一。
作为一个实施例,所述第一参数集合包括一个距离参数、一个发送者类型参数、一个时延参数、一个轨道参数或一个日历参数中的一个或多个参数。
作为一个实施例,所述第一参数集合包括一个时延参数。
作为一个实施例,所述第一参数集合包括第一时延参数,所述第一时延参数被用于确定随机接入响应窗口(Random Access Response Window)的起始时刻。
作为一个实施例,所述第一参数集合包括第一时延参数,所述第一时延参数被用于确定随机接入冲突解决计时器的计时的起始时刻。
作为一个实施例,所述第一参数集合包括第一时延参数,所述第一时延参数被用于确定上行授予(Uplink Grant)和PUSCH(Physical Uplink Shared Channel)之间的调度时延。
作为一个实施例,所述第一参数集合包括第一时延参数,所述第一时延参数被用于确定RAR(Random Access Response,随机接入响应)中的上行授予(Uplink Grant)和Msg3(消息3)之间的调度时延。
作为一个实施例,所述第一参数集合包括第一时延参数,所述第一时延参数被用于确定PDCCH(Physical Downlink Control Channel,物理下行控制信道)和所触发的SRS(Sound Reference Signal,探测参考信号)之间的时延。
作为一个实施例,所述第一参数集合包括第一时延参数,所述第一时延参数被用于确定PDCCH(Physical Downlink Control Channel,物理下行控制信道)和所触发的CSI(Channel Status Information,信道状态信息)报告之间的时延。
作为一个实施例,所述第一参数集合包括第一时延参数,所述第一时延参数被用于确定CSI参考资源和CSI汇报之间的时延。
作为一个实施例,所述第一参数集合包括第一类型参数,所述第一类型参数被用于确定所述第二信息的发送者的类型。
作为一个实施例,所述第一参数集合包括第一类型参数,所述第一类型参数被用于确定所述第二信息的发送者是是低轨(Low-Earth Orbit,LEO)卫星、中轨(Medium-Earth Orbit,MEO)卫星、地球同步(Geostationary Earth Orbit,GEO)卫星、无人控制飞行系统平台(Unmanned Aircraft Systems Platform,UAS)、高轨(High Elliptical Orbit,HEO)卫星中之一。
作为一个实施例,所述第一参数集合包括第一距离参数,所述第一距离参数被用于确定所述第二信息的发送者到近地点(Nadir)之间距离。
作为一个实施例,所述第一参数集合包括第一时延参数,所述第一时延参数被用于确定所述第二信息的发送者到近地点(Nadir)之间的传输延时(Propagation Delay)。
作为一个实施例,所述第一参数集合包括第一轨道参数,所述第一轨道参数被用于确定所述第二信息的发送者的轨道(Orbit)。
作为一个实施例,所述第一参数集合包括第一日历参数,所述第一日历参数被用于确定所述第二信息的发送者的日历(Ephemeris)。
实施例12
实施例12示例了根据本申请的一个实施例的循环前缀的长度、前导序列所占用的时域 资源数量和定时补偿值的误差之间的关系的示意图,如附图12所示。在附图12中,标有“CP”的矩形代表第一信号在时域所包括的循环前缀,标有“SEQ”的矩形代表第一信号所携带的前导序列所占用的时域资源,T e代表第一定时补偿值的误差,f 1(·)、f 2(·)和f 4(·)分别代表三个函数。
在实施例12中,本申请中的所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一与本申请中的所述第一节点设备所确定的本申请中的所述第一定时补偿值的误差有关。
作为一个实施例,“所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一”是指:所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的一个或者全部。
作为一个实施例,“所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一”是指:所述第一信号在时域所包括的循环前缀的长度和所述第一信号所携带的前导序列所占用的时域资源数量。
作为一个实施例,“所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一”是指:所述第一信号在时域所包括的循环前缀的长度或所述第一信号所携带的前导序列所占用的时域资源数量中之一。
作为一个实施例,上述句子“所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一与所述第一节点设备所确定的所述第一定时补偿值的误差有关”包括以下含义:所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中都与所述第一节点设备所确定的所述第一定时补偿值的误差有关。
作为一个实施例,上述句子“所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一与所述第一节点设备所确定的所述第一定时补偿值的误差有关”包括以下含义:所述第一信号在时域所包括的循环前缀的长度与所述第一节点设备所确定的所述第一定时补偿值的误差有关。
作为一个实施例,上述句子“所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一与所述第一节点设备所确定的所述第一定时补偿值的误差有关”包括以下含义:所述第一信号所携带的前导序列所占用的时域资源数量中与所述第一节点设备所确定的所述第一定时补偿值的误差有关。
作为一个实施例,上述句子“所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一与所述第一节点设备所确定的所述第一定时补偿值的误差有关”包括以下含义:所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一与所述第一定时偏移值有关,所述第一定时偏移值与所述第一节点设备所确定的所述第一定时补偿值的误差有关。
作为一个实施例,上述句子“所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一与所述第一节点设备所确定的所述第一定时补偿值的误差有关”包括以下含义:所述第一节点设备所确定的所述第一定时补偿值的误差被用于确定所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一。
作为一个实施例,上述句子“所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一与所述第一节点设备所确定的所述第一定时补偿值的误差有关”包括以下含义:所述第一节点设备所确定的所述第一定时补偿值的误差的绝对值的上限被用于确定所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一。
作为一个实施例,上述句子“所述第一信号在时域所包括的循环前缀的长度、所述第一 信号所携带的前导序列所占用的时域资源数量中的至少之一与所述第一节点设备所确定的所述第一定时补偿值的误差有关”包括以下含义:所述第一节点设备所确定的所述第一定时补偿值的误差的要求(Requirement)被用于确定所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一。
作为一个实施例,上述句子“所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一与所述第一节点设备所确定的所述第一定时补偿值的误差有关”包括以下含义:所述第一节点设备所确定的所述第一定时补偿值的误差被用于确定所述第一信号在时域所包括的循环前缀的长度的下限、所述第一信号所携带的前导序列所占用的时域资源数量的下限中的至少之一。
作为一个实施例,上述句子“所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一与所述第一节点设备所确定的所述第一定时补偿值的误差有关”包括以下含义:所述第一节点设备所确定的所述第一定时补偿值的误差的绝对值的上限被用于确定所述第一信号在时域所包括的循环前缀的长度的下限、所述第一信号所携带的前导序列所占用的时域资源数量的下限中的至少之一。
作为一个实施例,上述句子“所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一与所述第一节点设备所确定的所述第一定时补偿值的误差有关”包括以下含义:所述第一节点设备所确定的所述第一定时补偿值的误差被用于确定所述第一信号在时域所包括的循环前缀的长度的上限、所述第一信号所携带的前导序列所占用的时域资源数量的上限中的至少之一。
作为一个实施例,上述句子“所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一与所述第一节点设备所确定的所述第一定时补偿值的误差有关”包括以下含义:所述第一节点设备所确定的所述第一定时补偿值的误差的绝对值的上限被用于确定所述第一信号在时域所包括的循环前缀的长度的上限、所述第一信号所携带的前导序列所占用的时域资源数量的上限中的至少之一。
作为一个实施例,所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一还与所述第一信号有可能经历的最大时延扩展(Maximum Delay Spread)有关。
作为一个实施例,上述句子“所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一与所述第一节点设备所确定的所述第一定时补偿值的误差有关”包括以下含义:所述第一信号在时域所包括的循环前缀的长度的下限、所述第一信号所携带的前导序列所占用的时域资源数量的下限中的至少之一与所述第一节点设备所确定的所述第一定时补偿值的误差的绝对值的上限线性相关。
作为一个实施例,上述句子“所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一与所述第一节点设备所确定的所述第一定时补偿值的误差有关”包括以下含义:所述第一信号在时域所包括的循环前缀的长度的上限、所述第一信号所携带的前导序列所占用的时域资源数量的上限中的至少之一与所述第一节点设备所确定的所述第一定时补偿值的误差的绝对值的上限线性相关。
作为一个实施例,上述句子“所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一与所述第一节点设备所确定的所述第一定时补偿值的误差有关”是通过下式实现的:
Figure PCTCN2020129973-appb-000004
T SEQ≥2T e+T d
其中,T CP代表所述第一信号在时域所包括的循环前缀的长度,T SEQ所述第一信号所携带的前导序列所占用的时域资源数量,T e代表所述第一节点设备所确定的所述第一定时补偿值 的误差,T d代表最大多径时延。
作为一个实施例,上述句子“所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一与所述第一节点设备所确定的所述第一定时补偿值的误差有关”是通过下式实现的:
T CP≥f 1(T e)
T SEQ≥f 2(T e)
其中,T CP代表所述第一信号在时域所包括的循环前缀的长度,T SEQ所述第一信号所携带的前导序列所占用的时域资源数量,T e代表所述第一节点设备所确定的所述第一定时补偿值的误差,函数f 1(·)和f 2(·)分别代表两个固定的函数。
作为一个实施例,上述句子“所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一与所述第一节点设备所确定的所述第一定时补偿值的误差有关”是通过下式实现的:
T CP≥f 1(T e)
T SEQ≥f 2(T e)
T CP+T SEQ≤f 3(T e)
其中,T CP代表所述第一信号在时域所包括的循环前缀的长度,T SEQ所述第一信号所携带的前导序列所占用的时域资源数量,T e代表所述第一节点设备所确定的所述第一定时补偿值的误差,函数f 1(·)、f 2(·)和f 3(·)分别代表三个固定的函数。
作为一个实施例,上述句子“所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一与所述第一节点设备所确定的所述第一定时补偿值的误差有关”是通过下式实现的:
Figure PCTCN2020129973-appb-000005
Figure PCTCN2020129973-appb-000006
其中,T CP代表所述第一信号在时域所包括的循环前缀的长度,T SEQ所述第一信号所携带的前导序列所占用的时域资源数量,T e代表所述第一节点设备所确定的所述第一定时补偿值的误差,T d代表最大多径时延,函数f 1(·)和f 2(·)分别代表两个固定的函数。
作为一个实施例,上述句子“所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一与所述第一节点设备所确定的所述第一定时补偿值的误差有关”是通过下式实现的:
T CP≥f 1(T e)
T SEQ≥f 2(T e)
T CP+T SEQ+T OFFSET≤T DUR-f 3(T e)
其中,T CP代表所述第一信号在时域所包括的循环前缀的长度,T SEQ所述第一信号所携带的前导序列所占用的时域资源数量,T e代表所述第一节点设备所确定的所述第一定时补偿值的误差,T OFFSET代表所述第一定时偏移值,T DUR代表所述参考时域资源单元在时域所占用的时间长度,函数f 1(·)、f 2(·)和f 3(·)分别代表三个固定的函数。
作为一个实施例,上述句子“所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一与所述第一节点设备所确定的所述第一定时补偿值的误差有关”是通过下式实现的:
Figure PCTCN2020129973-appb-000007
T SEQ≥2T e+T d
T CP+T SEQ+T OFFSET≤T DUR-T e
其中,T CP代表所述第一信号在时域所包括的循环前缀的长度,T SEQ所述第一信号所携带的前导序列所占用的时域资源数量,T e代表所述第一节点设备所确定的所述第一定时补偿值的误差,T OFFSET代表所述第一定时偏移值,T DUR代表所述参考时域资源单元在时域所占用的时间长度。
作为一个实施例,上述句子“所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一与所述第一节点设备所确定的所述第一定时补偿值的误差有关”是通过下式实现的:
Figure PCTCN2020129973-appb-000008
T SEQ≥2T e+T d
T CP+T SEQ+T OFFSET≤T DUR
其中,T CP代表所述第一信号在时域所包括的循环前缀的长度,T SEQ所述第一信号所携带的前导序列所占用的时域资源数量,T e代表所述第一节点设备所确定的所述第一定时补偿值的误差,T OFFSET代表所述第一定时偏移值,T DUR代表所述参考时域资源单元在时域所占用的时间长度。
作为一个实施例,本申请中的所述第一发射机发送第四信息;其中,所述第四信息被用于指示所述第一节点设备所确定的所述第一定时补偿值的误差。
作为一个实施例,本申请中的所述第一发射机发送第四信息;其中,所述第四信息被用于指示所述第一节点设备所确定的所述第一定时补偿值的误差的绝对值的上限。
实施例13
实施例13示例了一个实施例的第一节点设备中的处理装置的结构框图,如附图13所示。在附图13中,第一节点设备处理装置1300包括第一接收机1301,第二接收机1302和第一发射机1303。第一接收机1301包括本申请附图4中的发射器/接收器456(包括天线460),接收处理器452和控制器/处理器490;第二接收机1302包括本申请附图4中的发射器/接收器456(包括天线460),接收处理器452和控制器/处理器490;第一发射机1303包括本申请附图4中的发射器/接收器456(包括天线460),发射处理器455和控制器/处理器490。
在实施例13中,第一接收机1301接收第一信息;第二接收机1302接收第二信息,所述第二信息被用于确定第一定时偏移值;第一发射机1303确定第一定时补偿值,并且发送第一信号;其中,所述第一信号的发送起始时刻和参考时刻之间的时间间隔长度等于目标定时补偿值,所述第一信号的发送起始时刻早于所述参考时刻,所述参考时刻是参考时域资源单元的边界时刻,所述第一信息被用于确定所述参考时域资源单元在时域的位置;所述第一定时补偿值和所述第一定时偏移值一起被用于确定所述目标定时补偿值,所述第一定时偏移值大于0;所述第一信号被用于随机接入,所述第一信号携带前导序列。
作为一个实施例,所述第一信息或所述第二信息中的至少之一被用于确定X个备选格式,所述X是大于1的正整数;所述第一定时补偿值或所述第一定时偏移值中的至少之一被用于从所述X个备选格式中确定第一格式,所述第一格式是所述X个备选格式中的一个备选格式,所述第一格式被用于确定所述第一信号。
作为一个实施例,所述第一信息或所述第二信息中的至少之一被用于确定X个备选格式,所述X是大于1的正整数;所述第一定时补偿值或所述第一定时偏移值中的至少之一被用于从所述X个备选格式中确定第一格式,所述第一格式是所述X个备选格式中的一个备选格式,所述第一格式被用于确定所述第一信号;当所述第一定时补偿值和所述第一定时偏移值中仅所述第一定时补偿值被用于确定所述第一格式时,所述第一格式被用于确定所述第一定时偏移值。
作为一个实施例,所述第一节点设备的能力被用于确定所述第一定时补偿值,所述第一定时偏移值与所述第一节点设备所确定的所述第一定时补偿值的误差有关。
作为一个实施例,所述第二信息被用于确定第一参数集合,所述第一参数集合被用于确定所述第一定时偏移值,所述第一参数集合正整数个参数。
作为一个实施例,所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一与所述第一节点设备所确定的所述第一定时补偿值的误差有关。
实施例14
实施例14示例了一个实施例的第二节点设备中的处理装置的结构框图,如附图14所示。在附图14中,第二节点设备处理装置1400包括第二发射机1401,第三发射机1402和第三接收机1403。第二发射机1401包括本申请附图4中的发射器/接收器416(包括天线460)和发射处理器415和控制器/处理器440;第三发射机1402包括本申请附图4中的发射器/接收器416(包括天线460)和发射处理器415和控制器/处理器440;第三接收机1403包括本申请附图4中的发射器/接收器416(包括天线420),接收处理器412,和控制器/处理器440。
在实施例14中,第二发射机1401发送第一信息;第三发射机1402发送第二信息,所述第二信息被用于确定第一定时偏移值;第三接收机1403检测第一信号;其中,所述第一信号的发送起始时刻和参考时刻之间的时间间隔长度等于目标定时补偿值,所述第一信号的发送起始时刻早于所述参考时刻,所述参考时刻是参考时域资源单元的边界时刻,所述第一信息被用于指示所述参考时域资源单元在时域的位置;第一定时补偿值和所述第一定时偏移值一起被用于确定所述目标定时补偿值,所述第一定时偏移值大于0;所述第一信号被用于随机接入,所述第一信号携带前导序列。
作为一个实施例,所述第一信息或所述第二信息中的至少之一被用于确定X个备选格式,所述X是大于1的正整数;所述第一定时补偿值或所述第一定时偏移值中的至少之一被用于从所述X个备选格式中确定第一格式,所述第一格式是所述X个备选格式中的一个备选格式,所述第一格式被用于确定所述第一信号。
作为一个实施例,所述第一信息或所述第二信息中的至少之一被用于确定X个备选格式,所述X是大于1的正整数;所述第一定时补偿值或所述第一定时偏移值中的至少之一被用于从所述X个备选格式中确定第一格式,所述第一格式是所述X个备选格式中的一个备选格式,所述第一格式被用于确定所述第一信号;当所述第一定时补偿值和所述第一定时偏移值中仅所述第一定时补偿值被用于确定所述第一格式时,所述第一格式被用于确定所述第一定时偏移值。
作为一个实施例,所述第一节点设备的能力被用于确定所述第一定时补偿值,所述第一定时偏移值与所述第一节点设备所确定的所述第一定时补偿值的误差有关。
作为一个实施例,所述第二信息被用于确定第一参数集合,所述第一参数集合被用于确定所述第一定时偏移值,所述第一参数集合正整数个参数。
作为一个实施例,所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一与所述第一节点设备所确定的所述第一定时补偿值的误差有关。
作为一个实施例,所述检测是相关(Correlation)检测。
作为一个实施例,所述检测是序列检测。
作为一个实施例,所述检测是能量检测。
作为一个实施例,所述检测是序列自相关和序列互相关检测。
作为一个实施例,所述检测是序列相关(Correlation)检测。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备或者第二节点设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (9)

  1. 一种用于无线通信中的第一节点设备,其特征在于,包括:
    第一接收机,接收第一信息;
    第二接收机,接收第二信息,所述第二信息被用于确定第一定时偏移值;
    第一发射机,确定第一定时补偿值,并且发送第一信号;
    其中,所述第一信号的发送起始时刻和参考时刻之间的时间间隔长度等于目标定时补偿值,所述第一信号的发送起始时刻早于所述参考时刻,所述参考时刻是参考时域资源单元的边界时刻,所述第一信息被用于确定所述参考时域资源单元在时域的位置;所述第一定时补偿值和所述第一定时偏移值一起被用于确定所述目标定时补偿值,所述第一定时偏移值大于0;所述第一信号被用于随机接入,所述第一信号携带前导序列。
  2. 根据权利要求1中所述的第一节点设备,其特征在于,所述第一信息或所述第二信息中的至少之一被用于确定X个备选格式,所述X是大于1的正整数;所述第一定时补偿值或所述第一定时偏移值中的至少之一被用于从所述X个备选格式中确定第一格式,所述第一格式是所述X个备选格式中的一个备选格式,所述第一格式被用于确定所述第一信号。
  3. 根据权利要求2中所述的第一节点设备,其特征在于,当所述第一定时补偿值和所述第一定时偏移值中仅所述第一定时补偿值被用于确定所述第一格式时,所述第一格式被用于确定所述第一定时偏移值。
  4. 根据权利要求1至3中任一权利要求所述的第一节点设备,其特征在于,所述第一节点设备的能力被用于确定所述第一定时补偿值,所述第一定时偏移值与所述第一节点设备所确定的所述第一定时补偿值的误差有关。
  5. 根据权利要求1至4中任一权利要求所述的第一节点设备,其特征在于,所述第二信息被用于确定第一参数集合,所述第一参数集合被用于确定所述第一定时偏移值,所述第一参数集合正整数个参数。
  6. 根据权利要求1至5中任一权利要求所述的第一节点设备,其特征在于,所述第一信号在时域所包括的循环前缀的长度、所述第一信号所携带的前导序列所占用的时域资源数量中的至少之一与所述第一节点设备所确定的所述第一定时补偿值的误差有关。
  7. 一种用于无线通信中的第二节点设备,其特征在于,包括:
    第二发射机,发送第一信息;
    第三发射机,发送第二信息,所述第二信息被用于确定第一定时偏移值;
    第三接收机,检测第一信号;
    其中,所述第一信号的发送起始时刻和参考时刻之间的时间间隔长度等于目标定时补偿值,所述第一信号的发送起始时刻早于所述参考时刻,所述参考时刻是参考时域资源单元的边界时刻,所述第一信息被用于指示所述参考时域资源单元在时域的位置;第一定时补偿值和所述第一定时偏移值一起被用于确定所述目标定时补偿值,所述第一定时偏移值大于0;所述第一信号被用于随机接入,所述第一信号携带前导序列。
  8. 一种用于无线通信中的第一节点中的方法,其特征在于,包括:
    接收第一信息;
    接收第二信息,所述第二信息被用于确定第一定时偏移值;
    确定第一定时补偿值,并且发送第一信号;
    其中,所述第一信号的发送起始时刻和参考时刻之间的时间间隔长度等于目标定时补偿值,所述第一信号的发送起始时刻早于所述参考时刻,所述参考时刻是参考时域资源单元的边界时刻,所述第一信息被用于确定所述参考时域资源单元在时域的位置;所述第一定时补偿值和所述第一定时偏移值一起被用于确定所述目标定时补偿值,所述第一定时偏移值大于0;所述第一信号被用于随机接入,所述第一信号携带前导序列。
  9. 一种用于无线通信中的第二节点中的方法,其特征在于,包括:
    发送第一信息;
    发送第二信息,所述第二信息被用于确定第一定时偏移值;
    检测第一信号;
    其中,所述第一信号的发送起始时刻和参考时刻之间的时间间隔长度等于目标定时补偿值,所述第一信号的发送起始时刻早于所述参考时刻,所述参考时刻是参考时域资源单元的边界时刻,所述第一信息被用于指示所述参考时域资源单元在时域的位置;第一定时补偿值和所述第一定时偏移值一起被用于确定所述目标定时补偿值,所述第一定时偏移值大于0;所述第一信号被用于随机接入,所述第一信号携带前导序列。
PCT/CN2020/129973 2019-12-26 2020-11-19 一种被用于无线通信的节点中的方法和装置 WO2021129250A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/848,366 US20220330330A1 (en) 2019-12-26 2022-06-23 Method and device in nodes used for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911365303.2A CN113056026B (zh) 2019-12-26 2019-12-26 一种被用于无线通信的节点中的方法和装置
CN201911365303.2 2019-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/848,366 Continuation US20220330330A1 (en) 2019-12-26 2022-06-23 Method and device in nodes used for wireless communication

Publications (1)

Publication Number Publication Date
WO2021129250A1 true WO2021129250A1 (zh) 2021-07-01

Family

ID=76506019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129973 WO2021129250A1 (zh) 2019-12-26 2020-11-19 一种被用于无线通信的节点中的方法和装置

Country Status (3)

Country Link
US (1) US20220330330A1 (zh)
CN (2) CN115802512A (zh)
WO (1) WO2021129250A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116782360A (zh) * 2022-03-09 2023-09-19 华为技术有限公司 一种定时提前量的确定方法和装置
CN117479283A (zh) * 2022-07-18 2024-01-30 上海朗帛通信技术有限公司 一种用于无线通信的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160049192A1 (en) * 2014-08-17 2016-02-18 Peter Wung Lee Vsl-based vt-compensation and analog program scheme for nand array without csl
CN110545138A (zh) * 2019-09-29 2019-12-06 中兴通讯股份有限公司 一种信息指示方法、装置及计算机可读存储介质
CN110557239A (zh) * 2019-08-30 2019-12-10 北京展讯高科通信技术有限公司 小区特定参考信号crs序列的确定方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102156798B1 (ko) * 2014-01-16 2020-09-16 삼성전자주식회사 무선 통신 시스템에서 단말의 타이밍을 제어하기 위한 방법 및 그 전자 장치
CN109462462B (zh) * 2017-09-06 2021-07-27 上海朗帛通信技术有限公司 一种被用于无线通信的用户、基站中的方法和装置
CN112867059A (zh) * 2018-06-01 2021-05-28 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
US11438931B2 (en) * 2019-03-28 2022-09-06 Ofinno, Llc Selecting a random access procedure type in a wireless system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160049192A1 (en) * 2014-08-17 2016-02-18 Peter Wung Lee Vsl-based vt-compensation and analog program scheme for nand array without csl
CN110557239A (zh) * 2019-08-30 2019-12-10 北京展讯高科通信技术有限公司 小区特定参考信号crs序列的确定方法及装置
CN110545138A (zh) * 2019-09-29 2019-12-06 中兴通讯股份有限公司 一种信息指示方法、装置及计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "TP for section 6.3 on UL timing and PRACH", 3GPP DRAFT; R1-1912614, vol. RAN WG1, 8 November 2019 (2019-11-08), Reno, USA, pages 1 - 4, XP051820125 *

Also Published As

Publication number Publication date
CN113056026A (zh) 2021-06-29
CN115802512A (zh) 2023-03-14
US20220330330A1 (en) 2022-10-13
CN113056026B (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
WO2019119411A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2018145607A1 (zh) 一种用于无线通信中的方法和装置
WO2019109270A1 (zh) 一种用于无线通信的通信节点中的方法和装置
CN110557782B (zh) 一种用于无线通信的通信节点中的方法和装置
CN111918379B (zh) 一种用于无线通信的通信节点中的方法和装置
US20220330330A1 (en) Method and device in nodes used for wireless communication
WO2020233406A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2020216019A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2021103925A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021115035A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020244385A1 (zh) 一种用于无线通信的通信节点中的方法和装置
CN112911697B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020156247A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2021129248A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113079580B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021098468A1 (zh) 一种被用于无线通信的方法和设备
CN113114435B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021139551A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113141240B (zh) 一种被用于无线通信的节点中的方法和装置
CN113207172A (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907953

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20907953

Country of ref document: EP

Kind code of ref document: A1