WO2020244385A1 - 一种用于无线通信的通信节点中的方法和装置 - Google Patents

一种用于无线通信的通信节点中的方法和装置 Download PDF

Info

Publication number
WO2020244385A1
WO2020244385A1 PCT/CN2020/091147 CN2020091147W WO2020244385A1 WO 2020244385 A1 WO2020244385 A1 WO 2020244385A1 CN 2020091147 W CN2020091147 W CN 2020091147W WO 2020244385 A1 WO2020244385 A1 WO 2020244385A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
time
signal
target
communication node
Prior art date
Application number
PCT/CN2020/091147
Other languages
English (en)
French (fr)
Inventor
刘铮
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2020244385A1 publication Critical patent/WO2020244385A1/zh
Priority to US17/536,128 priority Critical patent/US20220086918A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18519Operations control, administration or maintenance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • This application relates to a transmission method and device in a wireless communication system, in particular to a transmission scheme and device with a large delay difference.
  • NTN Non-Terrestrial Networks
  • R15 3GPP RAN#75 plenary meeting
  • 3GPP RAN#79 plenary meeting it was decided to start studying solutions in the NTN network, and then to start WI in the R16 or R17 version to standardize related technologies.
  • the NTN network user equipment (UE, User Equipment) and satellites or aircraft communicate through the 5G network. Since the distance from the satellite or aircraft to the user equipment is much greater than the distance from the ground base station to the user equipment, the satellite or aircraft is Propagation Delay during communication and transmission between user equipment. In addition, when the satellite is used as the relay device of the ground station, the delay of the feeder link between the satellite and the ground station will further increase the transmission delay between the user equipment and the base station. On the other hand, because the coverage of satellites and aircraft is much larger than that of terrestrial networks (Terrestrial Networks), and the inclination angles of ground equipment to satellites or aircraft are different, the difference between the delays in NTN is very large. .
  • Terrestrial Networks Terrestrial Networks
  • the maximum delay difference is only a few microseconds or tens of microseconds, but the maximum delay difference in NTN can reach several milliseconds or even tens of milliseconds. Since the existing random access in LTE or NR is designed for traditional terrestrial communications and cannot be directly applied to NTN networks, new designs are needed to support large delay networks, especially NTN communications.
  • this application provides a solution. It should be noted that, in the case of no conflict, the embodiments in the base station equipment of this application and the features in the embodiments can be applied to the user equipment, and vice versa. Further, in the case of no conflict, the embodiments of the application and the features in the embodiments can be combined with each other arbitrarily.
  • This application discloses a method used in a first communication node in wireless communication, which is characterized in that it includes:
  • the first signaling carries a target characteristic identifier, and the position of the target time-frequency resource block in the time-frequency domain is used to determine the target characteristic identifier; the first sequence is used to generate the first signal, so The first sequence is one of the W candidate sequences, and the W is a positive integer greater than 1; the second signal carries the target sequence index, the first information, and the first timing advance; when the When the target sequence index corresponds to the index of the first sequence in the W candidate sequences, the first information is used to determine whether the first timing advance is used to determine the first communication node device The sending timing.
  • the introduction of the first information solves the problem of ambiguity in uplink timing caused by large delay differences.
  • the target sequence index and the first information jointly determine whether the transmission timing adjustment information received by the first communication node device is for the first communication node device.
  • the existing preamble design can be reused as much as possible in the network or the preamble design that takes up less time domain resources can be supported, thereby reducing the resource overhead of random access.
  • the above method is characterized in that it further includes:
  • the second information is used to determine the W candidate sequences, and the first communication node device randomly selects the first sequence among the W candidate sequences; the third information is used Determining that the second signal carries the first information.
  • the third information is used to switch whether the second signal carries the first information, so that the network side can flexibly configure the information format of the second signal according to resource configuration needs and implementation needs.
  • the above method is characterized in that the first information is used to determine the first time length, and the time interval between the sending moment of the first signal and the receiving moment of the second signal is equal to the first Two time lengths; the sum of the first time length and 2 times the first timing advance is equal to the target time length, and the relationship between the second time length and the target time length is used to determine the Whether the first timing advance is used to determine the transmission timing of the first communication node device.
  • the user equipment can accurately determine whether the first timing advance can be used to determine the transmission timing, which provides an accuracy for solving timing ambiguity. Effective solution.
  • the above method is characterized in that it further includes:
  • the target measurement value belongs to a target measurement interval
  • the target measurement interval is one candidate measurement interval among X candidate measurement intervals, and any two candidate measurement intervals in the X candidate measurement intervals are not
  • the X is a positive integer greater than 1.
  • the above method is characterized in that it further includes:
  • the fourth information is used to determine X candidate time-frequency resource pools, the X candidate time-frequency resource pools and the X candidate measurement intervals have a one-to-one correspondence, and the target time-frequency resource block It belongs to a target time-frequency resource pool, and the target time-frequency resource pool is a candidate time-frequency resource pool corresponding to the target measurement interval in the X candidate time-frequency resource pools.
  • the corresponding random access resources are separately configured for each candidate measurement interval, which achieves the effect of grouping user equipments according to distance or delay, reduces the requirement for preamble length, and reduces header overhead and Improve resource utilization and random access capacity.
  • the above method is characterized in that the first information is used to determine a first measurement interval, and the first measurement interval is one candidate measurement interval among the X candidate measurement intervals; Whether the first measurement interval is the same as the target measurement interval is used to determine whether the first timing advance can be used to determine the sending timing of the first communication node device.
  • the above method is characterized in that, when the first communication node device can obtain the positioning information of the first communication node device, the target measurement value includes the first communication node device and the local The distance between the second communication node devices in the application; conversely, the target measurement value includes tilt angle information between the first communication node device and the second communication node device in the application.
  • This application discloses a method used in a second communication node in wireless communication, which is characterized in that it includes:
  • the first signaling carries a target characteristic identifier, and the position of the target time-frequency resource block in the time-frequency domain is used to determine the target characteristic identifier; the first sequence is used to generate the first signal, so The first sequence is one of the W candidate sequences, and the W is a positive integer greater than 1; the second signal carries the target sequence index, the first information, and the first timing advance; when the When the target sequence index corresponds to the index of the first sequence in the W candidate sequences, the first information is used to indicate whether the first timing advance is used to determine the transmission of the first signal The sending timing of the person.
  • the above method is characterized in that it further includes:
  • the second information is used to determine the W candidate sequences, and the first communication node device randomly selects the first sequence among the W candidate sequences; the third information is used Determining that the second signal carries the first information.
  • the above method is characterized in that the first information is used to determine the first time length, and the time interval between the sending moment of the first signal and the receiving moment of the second signal is equal to the first Two time lengths; the sum of the first time length and 2 times the first timing advance is equal to the target time length, and the relationship between the second time length and the target time length is used to determine the Whether the first timing advance is used to determine the transmission timing of the sender of the first signal.
  • the above method is characterized in that it further includes:
  • the fourth information is used to determine X candidate time-frequency resource pools, the X candidate time-frequency resource pools and X candidate measurement intervals have a one-to-one correspondence, among the X candidate measurement intervals Any two candidate measurement intervals of are different, and the X is a positive integer greater than 1; the target time-frequency resource block belongs to the target time-frequency resource pool.
  • the above method is characterized in that the first information is used to determine a first measurement interval, and the first measurement interval is one candidate measurement interval among the X candidate measurement intervals.
  • the above method is characterized in that when the sender of the first signal can obtain the location information of the sender of the first signal, one candidate among the X candidate measurement intervals
  • the measurement interval includes the distance between the sender of the first signal and the receiver of the first signal; conversely, one of the X candidate measurement intervals includes the distance of the first signal Inclination information between the sender and the receiver of the first signal.
  • This application discloses a first communication node device used in wireless communication, which is characterized in that it includes:
  • the first transmitter transmits a first signal, and the first signal occupies a target time-frequency resource block in the time-frequency domain;
  • the first receiver receives the first signaling
  • a second receiver receiving a second signal, and the first signaling is used to determine the time-frequency resource occupied by the second signal
  • the first signaling carries a target characteristic identifier, and the position of the target time-frequency resource block in the time-frequency domain is used to determine the target characteristic identifier; the first sequence is used to generate the first signal, so The first sequence is one of the W candidate sequences, and the W is a positive integer greater than 1; the second signal carries the target sequence index, the first information, and the first timing advance; when the When the target sequence index corresponds to the index of the first sequence in the W candidate sequences, the first information is used to determine whether the first timing advance is used to determine the first communication node device The sending timing.
  • This application discloses a second communication node device used in wireless communication, which is characterized in that it includes:
  • a third receiver receiving a first signal, where the first signal occupies a target time-frequency resource block in the time-frequency domain;
  • the second transmitter sends the first signaling
  • a third transmitter sending a second signal, and the first signaling is used to determine the time-frequency resource occupied by the second signal;
  • the first signaling carries a target characteristic identifier, and the position of the target time-frequency resource block in the time-frequency domain is used to determine the target characteristic identifier; the first sequence is used to generate the first signal, so The first sequence is one of the W candidate sequences, and the W is a positive integer greater than 1; the second signal carries the target sequence index, the first information, and the first timing advance; when the When the target sequence index corresponds to the index of the first sequence in the W candidate sequences, the first information is used to indicate whether the first timing advance is used to determine the transmission of the first signal The sending timing of the person.
  • this application compared with the random access method in the existing terrestrial network, this application has the following main technical advantages:
  • the existing preamble design can be reused as much as possible in the network with large delay differences or the preamble design that takes up less time domain resources can be supported, thereby reducing the resource overhead of random access.
  • the network side can flexibly configure the information format in the RAR according to resource configuration needs and implementation needs, which improves configuration flexibility and supports optimized random access design.
  • the network side indicates the delay information between receiving the preamble and sending the RAR in the RAR, so that the problem of timing ambiguity can be solved accurately and effectively.
  • Figure 1 shows a flow chart of the first signal, the first signaling and the second signal according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of the protocol architecture of the user plane and the control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication node and a second communication node according to an embodiment of the present application
  • Figure 5 shows a flow chart of signal transmission according to an embodiment of the present application
  • Fig. 6 shows a flow chart of signal transmission according to another embodiment of the present application.
  • Fig. 7 shows a schematic diagram of a first timing advance according to an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of the relationship between the third information, the first information and the first timing advance according to an embodiment of the present application
  • FIG. 9 shows a schematic diagram of the relationship between the first time length, the second time length and the first timing advance according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of X candidate measurement intervals according to an embodiment of the present application.
  • FIG. 11 shows a schematic diagram of X candidate time-frequency resource pools according to an embodiment of the present application.
  • FIG. 12 shows a schematic diagram of the relationship between the first measurement interval and the target measurement interval according to an embodiment of the present application
  • Fig. 13 shows a schematic diagram of a target measurement value according to an embodiment of the present application
  • Fig. 14 shows a structural block diagram of a processing device in a first communication node device according to an embodiment of the present application
  • Fig. 15 shows a structural block diagram of a processing device in a second communication node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of the transmission of the first signal, the first signaling and the second signal according to an embodiment of the present application, as shown in FIG. 1.
  • each box represents a step, and it should be particularly emphasized that the order of each box in the figure does not represent the time sequence of the steps shown.
  • the first communication node in this application sends a first signal in step 101; receives a first signal in step 102; receives a second signal in step 103; and the first signal is in time-frequency Domain occupies a target time-frequency resource block; the first signaling is used to determine the time-frequency resource occupied by the second signal, the first signaling carries a target feature flag, and the target time-frequency resource block is in time The position in the frequency domain is used to determine the target feature identifier; a first sequence is used to generate the first signal, the first sequence is one candidate sequence among W candidate sequences, and the W is greater than A positive integer of 1; the second signal carries the target sequence index, the first information, and the first timing advance; when the target sequence index corresponds to the index of the first sequence in the W candidate sequences, The first information is used to determine whether the first timing advance is used to determine the transmission timing of the first communication node device.
  • the first communication node device is in an RRC (Radio Resource Control, radio resource control) idle state (RRC_IDLE).
  • RRC Radio Resource Control, radio resource control
  • the first communication node device is in an RRC (Radio Resource Control, radio resource control) connected state (RRC_CONNECTED).
  • RRC Radio Resource Control, radio resource control
  • the first communication node device is in an RRC (Radio Resource Control, radio resource control) inactive state (RRC_INACTIVE).
  • RRC Radio Resource Control, radio resource control
  • the first signal is a baseband signal.
  • the first signal is a radio frequency signal.
  • the first information is transmitted through an air interface.
  • the first signal is transmitted through a wireless interface.
  • the first signal is used for random access.
  • the first signal is transmitted through a physical random access channel (PRACH, Physical Random Access Channel).
  • PRACH Physical Random Access Channel
  • the first signal carries Msg1 (message 1) in 4-step random access.
  • the first signal carries MsgA (message A) in 2-step random access.
  • the first signal carries a preamble sequence (Preamble Sequence).
  • the first signal includes CP (Cyclic Prefix), Preamble (Preamble) and GP (Guard Period, guard time).
  • CP Cyclic Prefix
  • Preamble Preamble
  • GP Guard Period, guard time
  • the target time-frequency resource block is the time-frequency resource to which the first sequence is mapped to physical resources (Mapping to Physical Resources).
  • the target time-frequency resource block is a time-frequency resource occupied by a physical random access signal opportunity (PRACH Occasion).
  • PRACH Occasion a physical random access signal opportunity
  • the target time-frequency resource block includes continuous time-domain resources.
  • the target time-frequency resource block includes continuous frequency domain resources.
  • the target time-frequency resource block in the time domain includes time domain resources occupied by CP (Cyclic Prefix), time domain resources occupied by Preamble (preamble) and GP (Guard Period, guard time) Time domain resources occupied.
  • CP Cyclic Prefix
  • Preamble Preamble
  • GP Guard Period, guard time
  • the target time-frequency resource block includes idle time-domain resources in the time domain.
  • the target time-frequency resource block includes a positive integer number of REs.
  • the first sequence is a random access preamble (Random-Access Preamble).
  • the first sequence is used for random access.
  • the first sequence is a pseudo-random sequence.
  • the first sequence is a Zadoff-Chu (ZC) sequence.
  • the first sequence includes all elements of a Zadoff-Chu (ZC) sequence.
  • ZC Zadoff-Chu
  • the first sequence only includes a partial element of a Zadoff-Chu (ZC) sequence.
  • ZC Zadoff-Chu
  • the first sequence is a Zadoff-Chu (ZC) sequence with a length of 839.
  • ZC Zadoff-Chu
  • the first sequence is a Zadoff-Chu (ZC) sequence with a length of 139.
  • ZC Zadoff-Chu
  • all elements in the first sequence are the same.
  • two elements in the first sequence are different.
  • all elements in the first sequence are 1.
  • the first sequence includes CP (Cyclic Prefix).
  • the first sequence is transmitted through PRACH (Physical Random Access Channel, Physical Random Access Channel).
  • PRACH Physical Random Access Channel, Physical Random Access Channel
  • the first sequence is a random-access preamble (Random-Access Preamble) in 2-step random access.
  • the first sequence is a random access sequence (Random-Access Preamble) in 4-step random access.
  • the first sequence is a random access preamble (Random-Access Preamble) in MsgA (message A) in 2-step random access.
  • the first sequence is a Zadoff-Chu (ZC) sequence obtained by repeating M times, and the M is a positive integer greater than 1.
  • the first sequence is a Zadoff-Chu (ZC) sequence obtained by repeating M times in the time domain, and the M is a positive integer greater than 1.
  • ZC Zadoff-Chu
  • the first sequence is a random access preamble (Random-Access Preamble) of a given physical random access channel preamble format (PRACH Preamble Format).
  • Random-Access Preamble Random-Access Preamble
  • PRACH Preamble Format Physical Random access channel preamble Format
  • the above sentence "the first sequence is used to generate the first signal” includes the following meanings: the first sequence is sequentially mapped to physical resources (Mapping to Physical Resources), OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) baseband signal generation (OFDM Baseband Signal Generation) obtains the first signal.
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • the above sentence "the first sequence is used to generate the first signal” includes the following meanings: the first sequence is sequentially mapped to physical resources (Mapping to Physical Resources), OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal frequency division multiplexing) baseband signal generation (OFDM Baseband Signal Generation), modulation and upconversion (Modulation and Upconversion) to obtain the first signal.
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal frequency division multiplexing
  • baseband signal generation OFDM Baseband Signal Generation
  • modulation and upconversion Modulation and Upconversion
  • the above sentence "the first sequence is used to generate the first signal” includes the following meanings: the first sequence is repeated in the time domain, cyclic prefix insertion (CP Insertion), and mapped to physical resources (Mapping to Physical Resources, OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) baseband signal generation (OFDM Baseband Signal Generation) to obtain the first signal.
  • CP Insertion cyclic prefix insertion
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDM Baseband Signal Generation OFDM Baseband Signal Generation
  • the above sentence "the first sequence is used to generate the first signal” includes the following meanings: the first sequence is repeated in the time domain, cyclic prefix insertion (CP Insertion), and mapped to physical resources (Mapping to Physical Resources), OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) baseband signal generation (OFDM Baseband Signal Generation), modulation and upconversion (Modulation and Upconversion) to obtain the first signal.
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • OFDM Baseband Signal Generation OFDM Baseband Signal Generation
  • modulation and upconversion Modulation and Upconversion
  • the first signaling is transmitted through an air interface.
  • the first signaling is transmitted through a wireless interface.
  • the first signaling is transmitted through a Uu interface.
  • the first signaling is physical layer signaling.
  • the first signaling is transmitted through PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel, Physical Downlink Control Channel
  • the first signaling includes all or part of fields in DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • the first signaling includes all or part of the DCI in a given DCI (Downlink Control Information) format (Format).
  • DCI Downlink Control Information
  • Form Downlink Control Information
  • the first signaling includes all or part of fields in DCI (Downlink Control Information) of DCI format (Format) 1-0.
  • the first signaling is transmitted in a common search space (CSS, Common Search Space).
  • CSS Common Search Space
  • the first signaling is a DCI for scheduling a physical downlink shared channel (PDSCH, Physical Downlink Shared Channel) carrying a random access response.
  • PDSCH Physical Downlink Shared Channel
  • the first signaling is a PDCCH that schedules a physical downlink shared channel (PDSCH, Physical Downlink Shared Channel) carrying a random access response.
  • PDSCH Physical Downlink Shared Channel
  • the first signaling is a DCI for scheduling a physical downlink shared channel (PDSCH, Physical Downlink Shared Channel) carrying MsgB (message B).
  • PDSCH Physical Downlink Shared Channel
  • MsgB messages B
  • the first signaling is a PDCCH that schedules a physical downlink shared channel (PDSCH, Physical Downlink Shared Channel) carrying MsgB (message B).
  • PDSCH Physical Downlink Shared Channel
  • MsgB messages B
  • the sentence "the first signaling is used to determine the time-frequency resources occupied by the second signal” includes the following meaning: the first signaling is used by the first communication in this application The node device is used to determine the time-frequency resource occupied by the second signal.
  • the above sentence "the first signaling is used to determine the time-frequency resources occupied by the second signal” includes the following meaning: the first signaling is used to directly indicate the second signal Time-frequency resources occupied.
  • the above sentence "the first signaling is used to determine the time-frequency resources occupied by the second signal” includes the following meaning: the first signaling is used to indirectly indicate the second signal Time-frequency resources occupied.
  • the sentence “the first signaling is used to determine the time-frequency resources occupied by the second signal” includes the following meaning: the first signaling is used to explicitly indicate the first signaling 2. Time-frequency resources occupied by signals.
  • the sentence "the first signaling is used to determine the time-frequency resources occupied by the second signal” includes the following meaning: the first signaling is used to implicitly indicate the first signaling 2. Time-frequency resources occupied by signals.
  • the first signaling is also used to determine the modulation and coding scheme (MCS, Modulation and Coding Scheme) adopted by the second signal.
  • MCS modulation and coding scheme
  • the target feature identifier is a non-negative integer.
  • the target feature identifier is an RNTI (Radio Network Temporary Identity, Radio Network Temporary Identity).
  • RNTI Radio Network Temporary Identity, Radio Network Temporary Identity
  • the target feature identifier is an RA-RNTI (Random Access Radio Network Temporary Identity, random access radio network temporary identifier).
  • RA-RNTI Random Access Radio Network Temporary Identity, random access radio network temporary identifier
  • the target feature identifier is equal to an integer from FFF0 to FFFD in hexadecimal notation.
  • the above sentence "the position of the target time-frequency resource block in the time-frequency domain is used to determine the target feature identifier" includes the following meaning: the position of the target time-frequency resource block in the time-frequency domain is The first communication node device in the application is used to determine the target feature identifier.
  • the above sentence "the position of the target time-frequency resource block in the time-frequency domain is used to determine the target feature identifier" includes the following meaning: the earliest time-frequency resource block included in the target time-frequency resource block The index of the OFDM symbol in the slot to which it belongs is used to determine the target feature identifier.
  • the above sentence "the position of the target time-frequency resource block in the time-frequency domain is used to determine the target feature identifier" includes the following meaning: the earliest OFDM that the target time-frequency resource block includes in the time domain The index of the time slot to which the symbol belongs in a system frame (System Frame) is used to determine the target feature identifier.
  • the above sentence "the position of the target time-frequency resource block in the time-frequency domain is used to determine the target feature identifier" includes the following meaning: the earliest OFDM that the target time-frequency resource block includes in the time domain
  • the index of the symbol in the slot to which the symbol belongs is used to determine the target feature identifier
  • the slot to which the earliest OFDM symbol included in the target time-frequency resource block in the time domain belongs is in a system frame (System Frame)
  • System Frame System Frame
  • the above sentence "the position of the target time-frequency resource block in the time-frequency domain is used to determine the target feature identifier" includes the following meaning: a PRB included in the target time-frequency resource block in the frequency domain The index of (Physical Resource Block) is used to determine the target feature identifier
  • the above sentence "the position of the target time-frequency resource block in the time-frequency domain is used to determine the target feature identifier" includes the following meaning: the target time-frequency resource block includes the lowest frequency in the frequency domain The index of PRB (Physical Resource Block) is used to determine the target feature identifier.
  • PRB Physical Resource Block
  • the above sentence "the position of the target time-frequency resource block in the time-frequency domain is used to determine the target feature identifier" includes the following meaning: the target time-frequency resource block includes the highest frequency in the frequency domain The index of PRB (Physical Resource Block) is used to determine the target feature identifier.
  • PRB Physical Resource Block
  • the above sentence "the position of the target time-frequency resource block in the time-frequency domain is used to determine the target feature identifier" includes the following meaning: a PRB included in the target time-frequency resource block in the frequency domain The index of the Physical Resource Block (Group) group is used to determine the target feature identifier.
  • the above sentence "the position of the target time-frequency resource block in the time-frequency domain is used to determine the target feature identifier" is implemented by the following formula:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id
  • RA-RNTI represents the target feature identifier
  • s_id represents the index of the earliest multi-carrier symbol (OFDM symbol) in the time domain included in the target time-frequency resource block (0 ⁇ s_id ⁇ 14)
  • t_id represents the target The index in the system frame (0 ⁇ t_id ⁇ 80) of the slot to which the earliest multi-carrier symbol in the time domain included in the time-frequency resource block belongs
  • f_id represents the target time-frequency resource block
  • the index of the frequency domain resource (0 ⁇ f_id ⁇ 8)
  • ul_carrier_id represents the identifier of the carrier to which the target time-frequency resource block belongs in the frequency domain.
  • the sentence "the first signaling carries a target feature identifier” includes the following meaning: the CRC included in the first signaling carries the target feature identifier.
  • the above sentence "the first signaling carries a target characteristic identifier” includes the following meaning: the payload of the first signaling (Payload) carries the target characteristic identifier.
  • the above sentence "the first signaling carries a target characteristic identifier” includes the following meaning: the check bit of the first type of signaling carries the target characteristic identifier.
  • the above sentence "the first signaling carries a target characteristic identifier” includes the following meaning: the CRC of the first type of signaling is scrambled by the target characteristic identifier.
  • the W is equal to 64.
  • the W is equal to 32.
  • the W is greater than 64.
  • the W is less than 64.
  • any one of the W candidate sequences is a random access preamble (Random-Access Preamble).
  • any one of the W candidate sequences is used for random access.
  • any one of the W candidate sequences is a pseudo-random sequence.
  • any one of the W candidate sequences is a Zadoff-Chu (ZC) sequence.
  • any one of the W candidate sequences includes all elements of a Zadoff-Chu (ZC) sequence.
  • ZC Zadoff-Chu
  • any one of the W candidate sequences only includes a part of the elements of a Zadoff-Chu (ZC) sequence.
  • ZC Zadoff-Chu
  • any one of the W candidate sequences is a Zadoff-Chu (ZC) sequence with a length of 839.
  • ZC Zadoff-Chu
  • any one of the W candidate sequences is a Zadoff-Chu (ZC) sequence with a length of 139.
  • ZC Zadoff-Chu
  • any one of the W candidate sequences includes a CP (Cyclic Prefix).
  • any one of the W candidate sequences is transmitted through PRACH (Physical Random Access Channel, physical random access channel).
  • PRACH Physical Random Access Channel, physical random access channel
  • any one of the W candidate sequences is a random access preamble (Random-Access Preamble) in 2-step random access.
  • any one of the W candidate sequences is a random access sequence (Random-Access Preamble) in 4-step random access.
  • any one of the W candidate sequences is a random access preamble (Random-Access Preamble) in MsgA (message A) in 2-step random access.
  • any one of the W candidate sequences is obtained by repeating a Zadoff-Chu (ZC) sequence M times, and the M is a positive integer greater than 1.
  • any one of the W candidate sequences is a Zadoff-Chu (ZC) sequence obtained by repeating M times in the time domain, and the M is a positive integer greater than 1.
  • ZC Zadoff-Chu
  • any one of the W candidate sequences is a random access preamble (Random-Access Preamble) of a given physical random access channel preamble format (PRACH Preamble Format).
  • Random-Access Preamble Random-Access Preamble
  • PRACH Preamble Format Physical Random access channel preamble Format
  • the second signal is a baseband signal.
  • the second signal is a radio frequency signal.
  • the second information is transmitted through an air interface.
  • the second signal is transmitted through a wireless interface.
  • the second signal is used for random access.
  • the second signal carries Msg2 (random access information 2).
  • the second signal carries MsgB (random access information B).
  • the second signal carries RAR (Random Access Response, Random Access Response).
  • the second signal is transmitted through DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the second signal is transmitted through PDSCH (Physical Downlink Shared Channel, physical downlink shared channel).
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • the target sequence index is RAPID (Random Access Preamble Identity, Random Access Preamble Identity).
  • the target sequence index is "ra-PreambleIndex”.
  • the target sequence index is "PREAMBLE_INDEX”.
  • the target sequence index is an index represented by 6 bits.
  • the target sequence index is a non-negative integer less than 64.
  • the sentence "the second signal carries the target sequence index” includes the following meaning: MAC (Medium Access Control) PDU (Protocol Data Units) carried by the second signal
  • MAC Medium Access Control
  • PDU Protocol Data Units
  • the MAC subheader (Subheader) in one MAC subPDU (Sub Protocol Data Unit) in) includes the target sequence index.
  • the sentence "the second signal carries the target sequence index” includes the following meaning: MAC (Medium Access Control) PDU (Protocol Data Units) carried by the second signal A MAC header (header) in) includes the target sequence index.
  • MAC Medium Access Control
  • PDU Protocol Data Units
  • the sentence "the second signal carries the target sequence index” includes the following meaning: MAC (Medium Access Control) PDU (Protocol Data Units) carried by the second signal
  • a MAC CE (Control Element, control element) in a MAC subPDU (Sub Protocol Data Unit) in) includes the target sequence index.
  • the sentence "the second signal carries the target sequence index” includes the following meaning: MAC (Medium Access Control) PDU (Protocol Data Units) carried by the second signal
  • the MAC payload (Payload) in one MAC subPDU (Sub Protocol Data Unit) in) includes the target sequence index.
  • the first information is high-level information.
  • the first information is all or part of MAC layer information.
  • the first information is all or part of a field in a MAC header (Header).
  • the first information is all or part of a field in a MAC subheader (subHeader).
  • the first information is all or part of a domain in a MAC CE (Control Element).
  • the first information is all or part of a domain in a MAC payload (Payload).
  • the above sentence "the second signal carries first information” includes the following meaning: MAC (Medium Access Control) PDU (Protocol Data Units) carried by the second signal
  • MAC Medium Access Control
  • PDU Protocol Data Units
  • the MAC subheader (Subheader) in one MAC subPDU (Sub Protocol Data Unit) in) includes the first information.
  • the above sentence "the second signal carries first information” includes the following meaning: MAC (Medium Access Control) PDU (Protocol Data Units) carried by the second signal One of the MAC headers in) includes the first information.
  • MAC Medium Access Control
  • PDU Protocol Data Units
  • the above sentence "the second signal carries first information” includes the following meaning: MAC (Medium Access Control) PDU (Protocol Data Units) carried by the second signal
  • a MAC CE (Control Element, control element) in a MAC subPDU (Sub Protocol Data Unit) in) includes the first information.
  • the above sentence "the second signal carries first information” includes the following meaning: MAC (Medium Access Control) PDU (Protocol Data Units) carried by the second signal
  • the MAC payload (Payload) in one MAC subPDU (Sub Protocol Data Unit) in) includes the first information.
  • the first timing advance belongs to high-level information.
  • the first timing advance belongs to all or part of the MAC layer information.
  • the first timing advance belongs to all or part of a field in a MAC header (Header).
  • the first timing advance belongs to all or part of a field in a MAC subheader (subHeader).
  • the first timing advance belongs to all or part of a domain in a MAC CE (Control Element).
  • the first timing advance belongs to all or part of a domain in a MAC payload (Payload).
  • the first timing advance is a non-negative real number.
  • the unit of the first timing advance is all microseconds.
  • the unit of the first timing advance is all seconds.
  • the first timing advance is equal to a value of a timing advance (TA, Timing Advance) of a signal sent by the first communication node device later than the first signal.
  • TA Timing Advance
  • the first timing advance is equal to the timing advance of the first communication node device later than the start time of the first signal transmission with respect to a downlink slot boundary.
  • the first timing advance is equal to a non-negative integer number of Tc, where the second
  • the first timing adjustment is related to the type of the second communication node in this application.
  • the first timing adjustment is related to the height of the second communication node in this application.
  • the first timing adjustment is related to the type of satellite to which the second communication node belongs in this application.
  • the above sentence "the second signal carries the first timing advance” includes the following meaning: MAC (Medium Access Control) PDU (Protocol Data Units, protocol) carried by the second signal
  • MAC Medium Access Control
  • PDU Protocol Data Units, protocol
  • the MAC subheader (Subheader) in one MAC subPDU (Sub Protocol Data Unit) in the data unit includes the first timing advance.
  • the above sentence "the second signal carries the first timing advance” includes the following meaning: MAC (Medium Access Control) PDU (Protocol Data Units, protocol) carried by the second signal
  • MAC Medium Access Control
  • PDU Protocol Data Units, protocol
  • the above sentence "the second signal carries the first timing advance” includes the following meaning: MAC (Medium Access Control) PDU (Protocol Data Units, protocol) carried by the second signal
  • the MAC CE (Control Element, control element) in one MAC subPDU (subprotocol data unit) in the data unit includes the first timing advance.
  • the above sentence "the second signal carries the first timing advance” includes the following meaning: MAC (Medium Access Control) PDU (Protocol Data Units, protocol) carried by the second signal
  • the MAC payload (Payload) in one MAC subPDU (sub-protocol data unit) in the data unit includes the first timing advance.
  • the first information and the first timing advance are both associated with the target sequence index.
  • the first information and the first timing advance are both for the target sequence index.
  • the target sequence index, the first information and the first timing advance all belong to the same MAC subPDU (sub-protocol data unit).
  • the target sequence index belongs to the MAC subheader (Subheader) in the target MAC subPDU
  • the first information belongs to the MAC CE (Control Element, control element) in the target MAC subPDU
  • the first The timing advance belongs to the MAC payload (Payload) in the target MAC subPDU
  • the target MAC subPDU is one MAC subPDU in one MAC PDU.
  • the target sequence index belongs to the MAC subheader (Subheader) in the target MAC subPDU
  • the first information belongs to the MAC payload (Payload) in the target MAC subPDU
  • the first timing advance belongs to The MAC payload (Payload) in the target MAC subPDU
  • the target MAC subPDU is one MAC subPDU in one MAC PDU.
  • the target sequence index is transmitted through a MAC subheader (Subheader) in a target MAC subPDU
  • the first information is transmitted through a MAC CE (Control Element, control element) in the target MAC subPDU.
  • the first timing advance is transmitted through the MAC payload (Payload) in the target MAC subPDU, and the target MAC subPDU is one MAC subPDU in one MAC PDU.
  • the target sequence index is transmitted through the MAC subheader (Subheader) in the target MAC subPDU
  • the first information is transmitted through the MAC payload (Payload) in the target MAC subPDU
  • the first timing advance The quantity is transmitted through the MAC payload (Payload) in the target MAC subPDU
  • the target MAC subPDU is one MAC subPDU in one MAC PDU.
  • the sentence “the target sequence index corresponds to the index of the first sequence in the W candidate sequences” includes the following meaning: the target sequence index is equal to the first sequence The index in the W candidate sequences.
  • the sentence "the target sequence index corresponds to the index of the first sequence in the W candidate sequences” includes the following meaning: the target sequence index and the first sequence are in the W The indexes in the candidate sequences are the same.
  • the sentence "the target sequence index corresponds to the index of the first sequence in the W candidate sequences” includes the following meanings: the sequence identified by the target sequence index and the first sequence the same.
  • the sentence "the target sequence index corresponds to the index of the first sequence in the W candidate sequences” includes the following meaning: the target sequence index and the first sequence are in the W The indexes in the candidate sequences have a unique correspondence.
  • the above sentence "the first information is used to determine whether the first timing advance can be used to determine the transmission timing of the first communication node device” includes the following meaning: the first information It is used by the first communication node device in this application to determine whether the first timing advance can be used to determine the sending timing of the first communication node device.
  • the above sentence "the first information is used to determine whether the first timing advance can be used to determine the transmission timing of the first communication node device” includes the following meaning: the first information Is used to indirectly indicate whether the first timing advance can be used to determine the sending timing of the first communication node device.
  • the above sentence "the first information is used to determine whether the first timing advance can be used to determine the transmission timing of the first communication node device” includes the following meaning: the first information Is used to implicitly indicate whether the first timing advance can be used to determine the transmission timing of the first communication node device.
  • the above sentence "the first information is used to determine whether the first timing advance can be used to determine the transmission timing of the first communication node device” includes the following meaning: the first information Is used to determine whether the first communication node device belongs to the target receiver of the second signal; when the first communication node device belongs to the target receiver of the second signal, the first timing The advance is used to determine the transmission timing of the first communication node device.
  • the first timing advance is not used to determine the first communication node The sending timing of the device.
  • the first timing advance when used to determine the transmission timing of the first communication node device, the first timing advance is equal to the timing of the first communication node device when transmitting Advance (Timing Advance, TA).
  • the first timing advance when used to determine the transmission timing of the first communication node device, the sum of the first timing advance and the first timing offset is equal to the first timing advance
  • the timing advance (Timing Advance, TA) of the communication node device during transmission, and the first timing offset is configurable.
  • it also includes:
  • the sixth information is used to determine the first timing offset, and when the first timing advance is used to determine the transmission timing of the first communication node device, the first timing advance and The sum of the first timing offset is equal to the timing advance (Timing Advance, TA) of the first communication node device when transmitting,
  • the sum of the first timing advance and the first timing offset is equal to the first timing advance
  • the timing advance (Timing Advance, TA) of the communication node device during transmission, and the first timing offset is related to the altitude (Altitude) of the second communication node device in this application.
  • the sum of the first timing advance and the first timing offset is equal to the first timing advance
  • the timing advance (Timing Advance, TA) of the communication node device during transmission, the first timing offset and the type of the second communication node device in this application (synchronous satellite, low orbit satellite, medium orbit satellite, etc.) related.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2.
  • FIG. 2 is a diagram illustrating a system network architecture 200 of NR 5G, LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced).
  • the NR 5G or LTE network architecture 200 may be called EPS (Evolved Packet System) 200.
  • EPS Evolved Packet System
  • EPS 200 can include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server, home subscriber server) 220 and Internet service 230.
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in the figure, EPS provides packet switching services. However, those skilled in the art will easily understand that various concepts presented throughout this application can be extended to networks that provide circuit switching services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an Xn interface (for example, backhaul).
  • gNB203 can also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive point) or some other suitable terminology.
  • BSS basic service set
  • ESS extended service set
  • TRP transmit and receive point
  • gNB203 can be a satellite or a ground base station relayed by satellite.
  • gNB203 provides UE201 with an access point to EPC/5G-CN210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircrafts, narrowband physical network equipment, machine type communication equipment, land vehicles, automobiles, wearable devices, or any other similar functional devices.
  • UE201 can also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to EPC/5G-CN210 through the S1/NG interface.
  • EPC/5G-CN210 includes MME/AMF/UPF 211, other MME/AMF/UPF 214, S-GW (Service Gateway) 212, and P-GW (Packet Date Network Gateway) 213.
  • MME/AMF/UPF211 is a control node that processes the signaling between UE201 and EPC/5G-CN210.
  • MME/AMF/UPF211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW212, and S-GW212 itself is connected to P-GW213.
  • the P-GW213 provides UE IP address allocation and other functions.
  • the P-GW213 is connected to the Internet service 230.
  • the Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, an intranet, and IMS (IP Multimedia Subsystem, IP Multimedia Subsystem).
  • the UE201 corresponds to the first communication node device in this application.
  • the UE 201 supports transmission on a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • the UE 201 supports transmission in a large delay difference network.
  • the gNB203 corresponds to the second communication node device in this application.
  • the gNB203 supports transmission on a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • the gNB203 supports transmission in a large delay difference network.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • FIG. 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane 350 and the control plane 300.
  • FIG. 3 shows three layers for the first communication node device (UE, satellite or aircraft in gNB or NTN) and The second communication node device (gNB, UE or satellite or aircraft in NTN), or the radio protocol architecture of the control plane 300 between two UEs: layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first communication node device and the second communication node device and the two UEs through PHY301.
  • L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers terminate at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, as well as providing support for handover between the second communication node devices and the first communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logic and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, Radio Resource Control) sublayer 306 in layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the difference between the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is for the physical layer 351, L2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are basically the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also Provides header compression for upper layer data packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the Data Radio Bearer (DRB). To support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (for example, an IP layer) terminating at the P-GW on the network side and another terminating at the connection.
  • Application layer at one end for example, remote UE, server, etc.).
  • the wireless protocol architecture in FIG. 3 is applicable to the first communication node device in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second communication node device in this application.
  • the first signal in this application is generated in the RRC306.
  • the first signal in this application is generated in the MAC302 or MAC352.
  • the first signal in this application is generated in the PHY301 or PHY351.
  • the first signaling in this application is generated in the RRC306.
  • the first signaling in this application is generated in the MAC302 or MAC352.
  • the first signaling in this application is generated in the PHY301 or PHY351.
  • the second signal in this application is generated in the RRC306.
  • the second signal in this application is generated in the MAC302 or MAC352.
  • the second signal in this application is generated in the PHY301 or PHY351.
  • the second information in this application is generated in the RRC306.
  • the second information in this application is generated in the MAC302 or MAC352.
  • the second information in this application is generated in the PHY301 or PHY351.
  • the third information in this application is generated in the RRC306.
  • the third information in this application is generated in the MAC302 or MAC352.
  • the third information in this application is generated in the PHY301 or PHY351.
  • the fourth information in this application is generated in the RRC306.
  • the fourth information in this application is generated in the MAC302 or MAC352.
  • the fourth information in this application is generated in the PHY301 or PHY351.
  • Embodiment 4 shows a schematic diagram of a first communication node device and a second communication node device according to the present application, as shown in FIG. 4.
  • the first communication node device (450) includes a controller/processor 490, a data source/buffer 480, a receiving processor 452, a transmitter/receiver 456, and a transmitting processor 455.
  • the transmitter/receiver 456 includes an antenna 460.
  • the data source/buffer 480 provides upper layer packets to the controller/processor 490, and the controller/processor 490 provides header compression and decompression, encryption and decryption, packet segment connection and reordering, and multiplexing between logic and transmission channels. Demultiplexing is used to implement the L2 layer and above protocols for the user plane and the control plane, and the upper layer packets may include data or control information, such as DL-SCH or UL-SCH or SL-SCH.
  • the transmission processor 455 implements various signal transmission processing functions for the L1 layer (ie, physical layer) including coding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer control signaling generation, etc.
  • the reception processor 452 implements various signal reception processing functions for the L1 layer (ie, physical layer) including decoding, deinterleaving, descrambling, demodulation, deprecoding, physical layer control signaling extraction, and the like.
  • the transmitter 456 is configured to convert the baseband signal provided by the transmitting processor 455 into a radio frequency signal and transmit it via the antenna 460, and the receiver 456 is configured to convert the radio frequency signal received through the antenna 460 into a baseband signal and provide it to the receiving processor 452.
  • the second communication node device (410) may include a controller/processor 440, a data source/buffer 430, a receiving processor 412, a transmitter/receiver 416, and a transmitting processor 415.
  • the transmitter/receiver 416 includes Antenna 420.
  • the data source/buffer 430 provides upper layer packets to the controller/processor 440, and the controller/processor 440 provides header compression and decompression, encryption and decryption, packet segmentation connection and reordering, and multiplexing between logic and transmission channels. Use demultiplexing to implement the L2 layer protocol for the user plane and the control plane.
  • the upper layer packet may include data or control information, such as DL-SCH or UL-SCH or SL-SCH.
  • the transmission processor 415 implements various signal transmission processing functions for the L1 layer (ie, physical layer) including coding, interleaving, scrambling, modulation, power control/distribution, precoding, and physical layer signaling (including synchronization signals and reference Signal etc.) generation etc.
  • the reception processor 412 implements various signal reception processing functions for the L1 layer (ie, physical layer) including decoding, deinterleaving, descrambling, demodulation, deprecoding, physical layer signaling extraction, and the like.
  • the transmitter 416 is used for converting the baseband signal provided by the transmitting processor 415 into a radio frequency signal and transmitting it via the antenna 420, and the receiver 416 is used for converting the radio frequency signal received by the antenna 420 into a baseband signal and providing it to the receiving processor 412.
  • DL Downlink, downlink
  • upper layer packets such as the first signaling in this application (if the first signaling includes high-level information), the second signal, the second information, the third information and the fourth information
  • the included high-level information is provided to the controller/processor 440.
  • the controller/processor 440 implements the functions of the L2 layer and above.
  • the controller/processor 440 provides packet header compression, encryption, packet segmentation and reordering, multiplexing between logic and transport channels, and multiplexing of the first communication node device 450 based on various priority metrics. Radio resource allocation.
  • the controller/processor 440 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the first communication node device 450, such as the first signaling, second signal, second information, and third information in this application. Both the high-level information (if included) included in the fourth information and the fourth information are generated in the controller/processor 440.
  • the transmit processor 415 implements various signal processing functions for the L1 layer (ie, physical layer), including coding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer control signaling generation, etc. This application The first signaling, the second signal, the second information, the third information, and the fourth information in the physical layer signal are generated by the transmitting processor 415.
  • the generated modulation symbols are divided into parallel streams and each stream is mapped to the corresponding
  • the multi-carrier sub-carriers and/or multi-carrier symbols are then mapped to the antenna 420 by the transmitting processor 415 via the transmitter 416 and transmitted in the form of radio frequency signals.
  • each receiver 456 receives the radio frequency signal through its corresponding antenna 460, and each receiver 456 recovers the baseband information modulated onto the radio frequency carrier, and provides the baseband information to the receiving processor 452.
  • the reception processor 452 implements various signal reception processing functions of the L1 layer.
  • the signal reception processing function includes the reception of the physical layer signals of the first signaling, the second signal, the second information, the third information and the fourth information in this application, etc., based on the multi-carrier symbols in the multi-carrier symbol stream.
  • a modulation scheme for example, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK)
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • the transmitted data or control is then provided to the controller/processor 490 with data and control signals.
  • the controller/processor 490 is responsible for the L2 layer and above.
  • the controller/processor 490 responds to the second signal, second information, third information, fourth information and high-level information included in the first signaling in this application ( If it includes high-level information) interpret it.
  • the controller/processor may be associated with a memory 480 that stores program codes and data.
  • the memory 480 may be referred to as a computer-readable medium.
  • the data source/buffer 480 is used to provide high-level data to the controller/processor 490.
  • the data source/buffer 480 represents the L2 layer and all protocol layers above the L2 layer.
  • the controller/processor 490 is implemented for the user plane and by providing header compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels based on the radio resource allocation of the second communication node 410. L2 layer protocol of the control plane.
  • the controller/processor 490 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the second communication node 410.
  • the first signal in this application is generated in the data source/buffer 480 or the controller/processor 490.
  • the transmission processor 455 implements various signal transmission processing functions for the L1 layer (ie, physical layer), and the physical layer signal of the first signal in the present application is generated by the transmission processor 455.
  • Signal transmission processing functions include coding and interleaving to facilitate forward error correction (FEC) at the UE450 and pair based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK))
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • the baseband signal is modulated, the modulation symbols are divided into parallel streams and each stream is mapped to the corresponding multi-carrier sub-carrier and/or multi-carrier symbol, and then the transmit processor 455 is mapped to the antenna 460 via the transmitter 456 to transmit as a radio frequency signal Get out.
  • the receivers 416 receive radio frequency signals through its corresponding antenna 420, and each receiver 416 recovers the baseband information modulated onto the radio frequency carrier and provides the baseband information to the receiving processor 412.
  • the receiving processor 412 implements various signal receiving processing functions for the L1 layer (ie, physical layer), including receiving and processing the physical layer signal of the first signal in this application.
  • the signal receiving processing function includes acquiring a multi-carrier symbol stream, and then The multi-carrier symbols in the multi-carrier symbol stream are demodulated based on various modulation schemes (for example, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK)), and then decoded and deinterleaved to recover The data and/or control signal originally transmitted by the first communication node device 450 on the physical channel.
  • the data and/or control signals are then provided to the controller/processor 440.
  • the controller/processor 440 implements the functions of the L2 layer, including the interpretation of the information carried by the first signal in this application.
  • the controller/processor may be associated with a buffer 430 that stores program codes and data.
  • the buffer 430 may be a computer-readable medium.
  • the first communication node device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to Used together with the at least one processor, the first communication node device 450 means at least: sending a first signal, the first signal occupies a target time-frequency resource block in the time-frequency domain; receiving the first signaling; receiving the second signal Signal, the first signaling is used to determine the time-frequency resource occupied by the second signal; wherein, the first signaling carries a target feature flag, and the position of the target time-frequency resource block in the time-frequency domain Is used to determine the target feature identifier; a first sequence is used to generate the first signal, the first sequence is one candidate sequence among W candidate sequences, and the W is a positive integer greater than 1.
  • the second signal carries a target sequence index, first information, and a first timing advance; when the target sequence index corresponds to the index of the first sequence in the W candidate sequences, the first The information is used to determine whether the first timing advance is used to determine the transmission timing of the first communication node device.
  • the first communication node device 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: Send a first signal, the first signal occupies a target time-frequency resource block in the time-frequency domain; receive a first signaling; receive a second signal, the first signaling is used to determine the occupied by the second signal Time-frequency resources; wherein, the first signaling carries a target feature identifier, and the position of the target time-frequency resource block in the time-frequency domain is used to determine the target feature identifier; the first sequence is used to generate the first A signal, the first sequence is one of the W candidate sequences, and the W is a positive integer greater than 1; the second signal carries the target sequence index, the first information, and the first timing advance When the target sequence index corresponds to the index of the first sequence in the W candidate sequences, the first information is used to determine whether the first timing advance is used to determine the first The transmission timing of a communication no
  • the second communication node device 410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to The at least one processor is used together.
  • the device of the second communication node device 410 at least: receives a first signal that occupies a target time-frequency resource block in the time-frequency domain; sends a first signaling; sends a second signal, and the first signaling is Used to determine the time-frequency resource occupied by the second signal; wherein, the first signaling carries a target characteristic identifier, and the position of the target time-frequency resource block in the time-frequency domain is used to determine the target characteristic identifier ;
  • the first sequence is used to generate the first signal, the first sequence is one of the W candidate sequences, and the W is a positive integer greater than 1;
  • the second signal carries the target sequence Index, first information, and first timing advance; when the target sequence index corresponds to the index of the first sequence in the W candidate sequences, the
  • the second communication node device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: receiving The first signal, the first signal occupies the target time-frequency resource block in the time-frequency domain; the first signaling is sent; the second signal is sent, the first signaling is used to determine the time occupied by the second signal Frequency resource; wherein, the first signaling carries a target feature identifier, and the position of the target time-frequency resource block in the time-frequency domain is used to determine the target feature identifier; the first sequence is used to generate the first Signal, the first sequence is one candidate sequence among W candidate sequences, and the W is a positive integer greater than 1; the second signal carries the target sequence index, the first information, and the first timing advance; When the target sequence index corresponds to the index of the first sequence in the W candidate sequences, the first information is used to indicate whether the first timing advance is used to determine the first The transmission timing of the signal sender
  • the first communication node device 450 is a user equipment (UE).
  • UE user equipment
  • the first communication node device 450 is a user equipment that supports a large delay difference.
  • the first communication node device 450 is a user equipment supporting NTN.
  • the first communication node device 450 is an aircraft device.
  • the second communication node device 410 is a base station device (gNB/eNB).
  • the second communication node device 410 is a base station device supporting a large delay difference.
  • the second communication node device 410 is a base station device supporting NTN.
  • the second communication node device 410 is a satellite device.
  • the second communication node device 410 is a flight platform device.
  • the receiver 456 (including the antenna 460), the receiving processor 452, and the controller/processor 490 are used in this application to receive the first signaling.
  • the transmitter 456 (including the antenna 460), the transmission processor 455 and the controller/processor 490 are used to transmit the first signal in this application.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used in this application to receive the second signal
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used in this application to receive the second information.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used to receive the third information in this application.
  • the receiver 456 (including the antenna 460), the receiving processor 452, and the controller/processor 490 are used in this application to receive the fourth information.
  • the receiver 416 (including the antenna 420), the receiving processor 412 and the controller/processor 440 are used to receive the first signal in this application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415, and the controller/processor 440 are used to send the first signaling in this application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415, and the controller/processor 440 are used to transmit the second signal in this application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415 and the controller/processor 440 are used to transmit the second information in this application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415, and the controller/processor 440 are used to transmit the third information in this application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415, and the controller/processor 440 are used to transmit the fourth information in this application.
  • Embodiment 5 illustrates a signal transmission flowchart according to an embodiment of the present application, as shown in FIG. 5.
  • the second communication node N1 is a maintenance base station of the serving cell of the first communication node U2. It is particularly noted that the sequence in this example does not limit the signal transmission sequence and implementation sequence in this application.
  • a second transmission information in step S11, the third transmission information in step S12, the fourth information transmitted in step S13, the received signal at a first step S14, in step S15 the first transmission Signaling, the second signal is sent in step S16.
  • step S21 For the first communication node U2, received in step S21, the second information, third information is received in step S22, the fourth information received in step S23, the measured value in determining the target step S24, in step S25 the first transmission Signal, the first signal is received in step S26, and the second signal is received in step S27.
  • the first signal in this application occupies a target time-frequency resource block in the time-frequency domain; the first signaling in this application is used to determine where the second signal in this application is. Occupied time-frequency resources; the first signaling carries a target characteristic identifier, and the position of the target time-frequency resource block in the time-frequency domain is used to determine the target characteristic identifier; the first sequence is used to generate the first sequence A signal, the first sequence is one of the W candidate sequences, and the W is a positive integer greater than 1; the second signal carries the target sequence index, the first information, and the first timing advance When the target sequence index corresponds to the index of the first sequence in the W candidate sequences, the first information is used to determine whether the first timing advance is used to determine the first The transmission timing of a communication node device; the second information is used to determine the W candidate sequences, and the first communication node device randomly selects the first sequence from the W candidate sequences; The third information is used to determine that the second signal carries the first information
  • the second information and the third information are two independent information.
  • the second information and the third information are joint coding (Joint Coding).
  • the second information and the third information are two sub-information in one information.
  • the second information and the third information are carried through the same signaling.
  • the second information and the third information are carried through two different signalings.
  • the second information is the third information
  • the second information and the third information are two different fields in the same signaling.
  • the second information and the third information are two different IEs (Information Elements) in the same signaling.
  • the second information and the third information are carried through a PDSCH (Physical Downlink Shared Channel, physical downlink shared channel).
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • the second information and the third information are carried through two different PDSCHs (Physical Downlink Shared Channel, Physical Downlink Shared Channel).
  • PDSCHs Physical Downlink Shared Channel, Physical Downlink Shared Channel.
  • the second information is transmitted through higher layer signaling.
  • the second information is transmitted through physical layer signaling.
  • the second information includes all or part of a high-level signaling.
  • the second information includes all or part of a physical layer signaling.
  • the second information includes all or part of an IE (Information Element, information element) in an RRC (Radio Resource Control, radio resource control) signaling.
  • IE Information Element, information element
  • RRC Radio Resource Control, radio resource control
  • the second information includes all or part of a field (Field) in an IE (Information Element, information element) in an RRC (Radio Resource Control, radio resource control) signaling.
  • Field Information Element, information element
  • RRC Radio Resource Control, radio resource control
  • the second information includes all or part of a field in a MAC (Medium Access Control) layer signaling.
  • MAC Medium Access Control
  • the second information includes all or part of a system information block (SIB, System Information Block).
  • SIB system information block
  • the second information includes all or part of a MAC (Medium Access Control) CE (Control Element, control element).
  • MAC Medium Access Control
  • CE Control Element, control element
  • the second information includes all or part of a MAC (Medium Access Control) header (Header).
  • MAC Medium Access Control
  • the second information is transmitted through a DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the second information is transmitted through a PDSCH (Physical Downlink Shared Channel, physical downlink shared channel).
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • the second information is broadcast.
  • the second information is cell specific (Cell Specific).
  • the second information is user equipment specific (UE-specific).
  • the second information is user equipment group-specific (UE group-specific).
  • the second information is geographic area specific.
  • the second information includes all or part of a field of DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the third information is transmitted through higher layer signaling.
  • the third information is transmitted through physical layer signaling.
  • the third information includes all or part of a high-layer signaling.
  • the third information includes all or part of a physical layer signaling.
  • the third information includes all or part of an IE (Information Element, information element) in an RRC (Radio Resource Control, radio resource control) signaling.
  • IE Information Element, information element
  • RRC Radio Resource Control, radio resource control
  • the third information includes all or part of a field (Field) in an IE (Information Element) in an RRC (Radio Resource Control, radio resource control) signaling.
  • Field Information Element
  • RRC Radio Resource Control, radio resource control
  • the third information includes all or part of fields in a MAC (Medium Access Control) layer signaling.
  • MAC Medium Access Control
  • the third information includes all or part of a system information block (SIB, System Information Block).
  • SIB system information block
  • the third information includes all or part of a MAC (Medium Access Control) CE (Control Element, control element).
  • MAC Medium Access Control
  • CE Control Element, control element
  • the third information includes all or part of a MAC (Medium Access Control) header (Header).
  • MAC Medium Access Control
  • the third information is transmitted through a DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the third information is transmitted through a PDSCH (Physical Downlink Shared Channel, physical downlink shared channel).
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • the third information is broadcast.
  • the third information is cell specific (Cell Specific).
  • the third information is user equipment specific (UE-specific).
  • the third information is user equipment group-specific (UE group-specific).
  • the third information is geographic area specific.
  • the third information includes all or part of a field of DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the above sentence "the second information is used to determine the W candidate sequences" includes the following meaning: the second information is used by the first communication node device in this application to determine the Describe W candidate sequences.
  • the above sentence "the second information is used to determine the W candidate sequences” includes the following meaning: the second information is used to directly indicate the W candidate sequences.
  • the sentence "the second information is used to determine the W candidate sequences" includes the following meaning: the second information is used to indirectly indicate the W candidate sequences.
  • the above sentence "the second information is used to determine the W candidate sequences” includes the following meaning: the second information is used to explicitly indicate the W candidate sequences.
  • the above sentence "the second information is used to determine the W candidate sequences” includes the following meaning: the second information is used to implicitly indicate the W candidate sequences.
  • the sentence "the second information is used to determine the W candidate sequences" includes the following meaning: the second information indicates the index of the starting sequence in the W candidate sequences.
  • the above sentence "the first communication node device randomly selects the first sequence among the W candidate sequences” includes the following meaning: the first communication node device is in the W candidate sequences The sequence randomly selects the first sequence with medium probability.
  • the above sentence "the first communication node device randomly selects the first sequence among the W candidate sequences” includes the following meaning: the first communication node device is in the W candidate sequences The first sequence is randomly selected in the sequence according to a probability distribution.
  • Embodiment 6 illustrates a signal transmission flowchart according to another embodiment of the present application, as shown in FIG. 6.
  • the second communication node N3 is a maintenance base station of the serving cell of the first communication node U4. It is particularly noted that the sequence in this example does not limit the signal transmission sequence and implementation sequence in this application.
  • U4 to the first communication node receives the second message in step S41, the fourth information received in step S42, determines a target value is measured in step S43, the first transmission signal in step S44, in step S45 the first receiving Signaling, the second signal is received in step S46.
  • the first signal in this application occupies a target time-frequency resource block in the time-frequency domain; the first signaling in this application is used to determine where the second signal in this application is. Occupied time-frequency resources; the first signaling carries a target characteristic identifier, and the position of the target time-frequency resource block in the time-frequency domain is used to determine the target characteristic identifier; the first sequence is used to generate the first sequence A signal, the first sequence is one of the W candidate sequences, and the W is a positive integer greater than 1; the second signal carries the target sequence index, the first information, and the first timing advance When the target sequence index corresponds to the index of the first sequence in the W candidate sequences, the first information is used to determine whether the first timing advance is used to determine the first The transmission timing of a communication node device; the second information is used to determine the W candidate sequences, and the first communication node device randomly selects the first sequence from the W candidate sequences; The target measurement value belongs to the target measurement interval, and the target measurement interval
  • the fourth information is transmitted through higher layer signaling.
  • the fourth information is transmitted through physical layer signaling.
  • the fourth information includes all or part of a high-level signaling.
  • the fourth information includes all or part of a physical layer signaling.
  • the fourth information includes all or part of an IE (Information Element, information element) in an RRC (Radio Resource Control, radio resource control) signaling.
  • IE Information Element, information element
  • RRC Radio Resource Control, radio resource control
  • the fourth information includes all or part of a field (Field) in an IE (Information Element) in an RRC (Radio Resource Control, radio resource control) signaling.
  • Field Information Element
  • RRC Radio Resource Control, radio resource control
  • the fourth information includes all or part of a field in a MAC (Medium Access Control) layer signaling.
  • MAC Medium Access Control
  • the fourth information includes all or part of a system information block (SIB, System Information Block).
  • SIB system information block
  • the fourth information includes all or part of a MAC (Medium Access Control) CE (Control Element, control element).
  • MAC Medium Access Control
  • the fourth information includes all or part of a MAC (Medium Access Control) header (Header).
  • MAC Medium Access Control
  • the fourth information is transmitted through a DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the fourth information is transmitted through a PDSCH (Physical Downlink Shared Channel, physical downlink shared channel).
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • the fourth information is broadcast.
  • the fourth information is cell specific (Cell Specific).
  • the fourth information is user equipment specific (UE-specific).
  • the fourth information is user equipment group-specific (UE group-specific).
  • the fourth information is geographic area specific.
  • the fourth information includes all or part of a field of DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the above sentence "the fourth information is used to determine X candidate time-frequency resource pools” includes the following meaning: the fourth information is used by the first communication node device in this application to determine The X candidate time-frequency resource pools.
  • the fourth information is used to determine X candidate time-frequency resource pools
  • the fourth information is used to directly indicate the X candidate time-frequency resource pools .
  • the fourth information is used to determine X candidate time-frequency resource pools
  • the fourth information is used to indirectly indicate the X candidate time-frequency resource pools .
  • the fourth information is used to determine X candidate time-frequency resource pools
  • the fourth information is used to explicitly indicate the X candidate time-frequency resources Resource pool.
  • the fourth information is used to determine X candidate time-frequency resource pools
  • the fourth information is used to implicitly indicate the X candidate time-frequency resource pools Resource pool.
  • the fourth information indicates that each of the X candidate measurement intervals indicates a corresponding candidate time-frequency resource pool in the X candidate time-frequency resource pools.
  • Embodiment 7 illustrates a schematic diagram of the first timing advance according to an embodiment of the present application, as shown in FIG. 7.
  • the horizontal axis represents time
  • two rectangular boxes respectively represent the signal sent by the first communication node of the receiving end and the signal sent by the first communication node of the sending end (ie, the first communication node).
  • the first timing adjustment amount and the first timing offset in this application are jointly used to determine the TA (Timing Advance) value of the signal sent by the first communication node in this application.
  • the first timing advance when used to determine the transmission timing of the first communication node device, the sum of the first timing advance and the first timing offset is equal to the first timing advance
  • the timing advance (Timing Advance, TA) of the communication node device during transmission, and the first timing offset is configurable.
  • it also includes:
  • the sixth information is used to determine the first timing offset, and when the first timing advance is used to determine the transmission timing of the first communication node device, the first timing advance and The sum of the first timing offset is equal to the timing advance (Timing Advance, TA) of the first communication node device when transmitting,
  • the sum of the first timing advance and the first timing offset is equal to the first timing advance
  • the timing advance (Timing Advance, TA) of the communication node device during transmission, and the first timing offset is related to the altitude (Altitude) of the second communication node device in this application.
  • the timing advance (Timing Advance, TA) of the communication node device when transmitting, the first timing offset and the type of the second communication node device in this application (synchronous satellite, low orbit satellite, medium orbit satellite, flying Platform, etc.).
  • Embodiment 8 illustrates a schematic diagram of the relationship between the third information, the first information and the first timing adjustment amount according to an embodiment of the present application, as shown in FIG. 8.
  • the second signal carries a MAC PDU.
  • This MAC PDU is divided into one or more MAC subPDUs.
  • Each MAC subPDU contains one or more fields, third information, and first information. It belongs to the same MAC subPDU as the first timing adjustment value.
  • the third information in this application is used to determine that the second signal in this application carries the first information.
  • the target sequence index, the first information, the first timing advance, and the third information are transmitted through the same MAC subPDU.
  • the third information is transmitted through a MAC subheader (Subheader) in a target MAC subPDU, and the target sequence index, the first information, and the first timing advance are also transmitted through the target MAC subPDU transmission.
  • Subheader MAC subheader
  • the third information is transmitted through reserved bits in the MAC subheader (Subheader) in the target MAC subPDU, the target sequence index, the first information, and the first timing
  • the advance amount is also transmitted through the target MAC subPDU.
  • the third information is transmitted through the F field (Format Field) in the MAC subheader (Subheader) in the target MAC subPDU, the target sequence index, the first information, and the first timing
  • the advance amount is also transmitted through the target MAC subPDU.
  • the third information is transmitted through the L field (Length Field) in the MAC subheader (Subheader) in the target MAC subPDU, the target sequence index, the first information, and the first timing
  • the advance amount is also transmitted through the target MAC subPDU.
  • the above sentence "the third information is used to determine that the second signal carries the first information” includes the following meaning: the third information is used to determine whether the second signal carries the first information. ⁇ Said first information.
  • the above sentence "the third information is used to determine that the second signal carries the first information” includes the following meaning: the third information is used by the first communication node device in this application Used to determine that the second signal carries the first information.
  • the above sentence "the third information is used to determine that the second signal carries the first information” includes the following meaning: the third information is used to directly indicate that the second signal carries the first information. ⁇ Said first information.
  • the above sentence "the third information is used to determine that the second signal carries the first information” includes the following meaning: the third information is used to indirectly indicate that the second signal carries the first information. ⁇ Said first information.
  • the sentence "the third information is used to determine that the second signal carries the first information” includes the following meaning: the third information is used to explicitly indicate the second signal Carry the first information.
  • the above sentence "the third information is used to determine that the second signal carries the first information” includes the following meaning: the third information is used to implicitly indicate the second signal Carry the first information.
  • the third information is used to indicate whether the second signal carries the first information, and the second signal carries the first information.
  • Embodiment 9 illustrates a schematic diagram of the relationship between the first time length, the second time length and the first timing advance according to an embodiment of the present application, as shown in FIG. 9.
  • the horizontal axis represents time
  • the upper part represents the signal on the side of the second communication node
  • the lower part represents the signal on the side of the first communication node
  • the rectangle filled with diagonal lines represents the first signal
  • the rectangle filled with horizontal lines represents the first signal.
  • the rectangle filled with crossed lines represents the second signal.
  • the first information in this application is used to determine the first time length, the time between the sending time of the first signal in this application and the receiving time of the second signal in this application
  • the length of the time interval is equal to the second time length
  • the sum of the first time length and the 2 times the first timing advance is equal to the target time length
  • the relationship between the second time length and the target time length is It is used to determine whether the first timing advance in this application is used to determine the sending timing of the first communication node device in this application.
  • the unit of the first time length is seconds.
  • the unit of the first time length is milliseconds.
  • the first time length is equal to the time length of a positive integer number of slots (Slot).
  • the first time length is equal to the time length of a positive integer number of OFDM symbols (Symbol).
  • the first time length is the time from the end of the reception of the first signal assumed by the first communication node device in this application to the start of the transmission of the second signal The length of the interval.
  • the first time length is the time from the beginning of the reception of the first signal to the end of the transmission of the second signal that the first communication node device assumes in this application The length of the interval.
  • the first time length is the time between the start time of receiving the first signal that the first communication node device assumes in this application and the start time of sending the second signal The length of the time interval.
  • the first time length is the time interval between the end of the reception of the first signal and the end of the transmission of the second signal that the first communication node device assumes in this application length.
  • the above sentence "the first information is used to determine the first time length” includes the following meaning: the first information is used by the first communication node device in this application to determine the first length of time.
  • the above sentence "the first information is used to determine the first time length” includes the following meaning: the first information is used to directly indicate the first time length.
  • the above sentence "the first information is used to determine the first time length” includes the following meaning: the first information is used to indirectly indicate the first time length.
  • the above sentence "the first information is used to determine the first time length” includes the following meaning: the first information is used to explicitly indicate the first time length.
  • the above sentence "the first information is used to determine the first time length” includes the following meaning: the first information is used to implicitly indicate the first time length.
  • the above sentence "the first information is used to determine the first time length” includes the following meaning: the first information is used to indicate the third time length, and the first signaling is used For indicating the fourth time length, the first time length is equal to the sum of the third time length and the fourth time sub-length.
  • the above sentence "the first information is used to determine the first time length” includes the following meaning: the first information is used to indicate the third time length, and the first signaling is used In order to indicate the fourth time length, the first time length is equal to the sum of the third time length and the fourth time sub-length; the fourth time length is equal to the sum of the receiving start time of the first signaling The length of the time interval at the start time of receiving the second signal.
  • the unit of the second time length is seconds.
  • the unit of the second time length is milliseconds.
  • the second time length is equal to the time length of a positive integer number of time slots (Slot).
  • the second time length is equal to the time length of a positive integer number of OFDM symbols (Symbol).
  • the sentence "the length of the time interval between the sending moment of the first signal and the receiving moment of the second signal is equal to the second time length” includes the following meanings: the sending start moment of the first signal and The length of the time interval of the receiving start moment of the second signal is equal to the second time length.
  • the sentence "the length of the time interval between the sending moment of the first signal and the receiving moment of the second signal is equal to the second time length” includes the following meanings: the sending start moment of the first signal and The length of the time interval of the receiving end moment of the second signal is equal to the second time length.
  • the sentence "the length of the time interval between the sending moment of the first signal and the receiving moment of the second signal is equal to the second time length” includes the following meaning: the sending end moment of the first signal and the The length of the time interval of the receiving start time of the second signal is equal to the second time length.
  • the sentence "the length of the time interval between the sending moment of the first signal and the receiving moment of the second signal is equal to the second time length” includes the following meaning: the sending end moment of the first signal and the The length of the time interval of the receiving end moment of the second signal is equal to the second time length.
  • Timing includes the following meaning: the magnitude relationship between the second time length and the target time length is used to determine whether the first timing advance can be used to determine the transmission timing of the first communication node device .
  • Timing includes the following meaning: whether the second time length and the target time length are equal are used to determine whether the first timing advance can be used to determine the transmission timing of the first communication node device.
  • Timing includes the following meaning: the mathematical relationship between the second time length and the target time length is used to determine whether the first timing advance can be used to determine the transmission timing of the first communication node device .
  • Timing includes the following meaning: the magnitude relationship between the second time length and the target time length is used to determine whether the first timing advance can be used to determine the transmission timing of the first communication node device .
  • the above sentence "The relationship between the first time length and the target time length is used to determine whether the first timing advance can be used to determine the transmission of the first communication node device "Timing" includes the following meaning: when the first time length is equal to the target time length, the first timing advance is used to determine the transmission timing of the first communication node device; When the time length is not equal to the target time length, the first timing advance is not used to determine the sending timing of the first communication node device
  • the above sentence "The relationship between the second time length and the target time length is used to determine whether the first timing advance can be used to determine the transmission of the first communication node device "Timing" includes the following meanings: the length of the time interval between the transmission start time of the first signal and the reception start time of the second signal is equal to the second time length, and whether the second time length is equal to the target The length of time and the length of time (including GP) occupied by the first signal in the time domain are used to determine whether the first timing advance can be used to determine the transmission timing of the first communication node device.
  • the above sentence "The relationship between the second time length and the target time length is used to determine whether the first timing advance can be used to determine the transmission of the first communication node device "Timing" includes the following meanings: the length of the time interval between the transmission start time of the first signal and the reception end time of the second signal is equal to the second time length, whether the second time length is equal to the target time The sum of the length, the length of time occupied by the first signal in the time domain (including GP), and the length of time occupied by the second signal in the time domain is used to determine whether the first timing advance can be used To determine the sending timing of the first communication node device.
  • the above sentence "The relationship between the second time length and the target time length is used to determine whether the first timing advance can be used to determine the transmission of the first communication node device "Timing" includes the following meanings: the length of the time interval between the end of transmission of the first signal (including GP) and the end of reception of the second signal is equal to the second time length, and whether the second time length is equal to The sum of the target time length and the time length occupied by the second signal in the time domain is used to determine whether the first timing advance can be used to determine the transmission timing of the first communication node device.
  • Embodiment 10 illustrates a schematic diagram of X candidate measurement intervals according to an embodiment of the present application, as shown in FIG. 10.
  • each geographic location interval represents one candidate measurement interval among X candidate measurement intervals.
  • the target measurement value in the present application belongs to a target measurement interval, and the target measurement interval is one candidate measurement interval among X candidate measurement intervals, and among the X candidate measurement intervals Any two candidate measurement intervals are not the same, and the X is a positive integer greater than 1.
  • any one of the X candidate measurement intervals is a numerical range.
  • any one candidate measurement interval of the X candidate measurement intervals is a possible numerical range of the target measurement quantity.
  • the target measurement value is a measurement value of the distance between the first communication node device and the second communication node device in this application.
  • the target measurement value is a measurement value of its own geographic location by the first communication node device in this application.
  • the target measurement value is a measurement value of the coordinate position of the first communication node device in this application.
  • the target measurement value is a measurement value of the transmission delay between the first communication node device and the second communication node device in this application.
  • the target measurement value includes RSRP (Reference Signal Received Power, reference signal received power).
  • the target measurement value includes RSRQ (Reference Signal Received Quality, reference signal received quality).
  • the target measurement value includes RS-SINR (reference signal-signal to noise and interference ratio, reference signal signal-to-noise ratio).
  • the target measurement value includes RSSI (Received Signal Strength indicator, received signal strength indicator).
  • the first receiver receives fifth information, and the fifth information is used to determine the X candidate measurement intervals.
  • the X candidate measurement intervals are predefined.
  • the X candidate measurement intervals are predefined.
  • the X candidate measurement intervals are predefined.
  • any two candidate measurement intervals in the X candidate measurement intervals are non-overlapped.
  • two candidate measurement intervals have overlapped parts.
  • Embodiment 11 illustrates a schematic diagram of X candidate time-frequency resource pools according to an embodiment of the present application, as shown in FIG. 11.
  • the horizontal axis represents the time domain
  • the vertical axis represents the frequency domain.
  • Each rectangle represents one time-frequency resource block in one candidate time-frequency resource pool in X candidate time-frequency resource pools, which have the same
  • the time-frequency resource block represented by the filled rectangle belongs to the same candidate time-frequency resource pool among the X candidate time-frequency resource pools.
  • the fourth information of the present application is used to determine X candidate time-frequency resource pools, the X candidate time-frequency resource pools and the X candidate measurement intervals in this application
  • the target time-frequency resource block in this application belongs to a target time-frequency resource pool
  • the target time-frequency resource pool is one of the X candidate time-frequency resource pools corresponding to the target measurement interval Alternative time-frequency resource pool.
  • the fourth information is also used to determine X candidate sequence sets, the X candidate sequence sets correspond to the X candidate measurement intervals in a one-to-one correspondence, and the W candidate sequences Belongs to a candidate sequence set in the X candidate sequence sets, and the candidate sequence set to which the W candidate sequences belong is one of the X candidate sequence sets corresponding to the target measurement interval Collection of candidate sequences.
  • each of the X candidate time-frequency resource pools includes a positive integer number of time-frequency resource blocks greater than 1, and each of the X candidate time-frequency resource pools includes A time-frequency resource block is a time-frequency resource block occupied by a physical random access channel opportunity (PRACH Occasion).
  • PRACH Occasion physical random access channel opportunity
  • each time-frequency resource pool in the X candidate time-frequency resource pools includes a positive integer number of time-frequency resource blocks greater than 1 that periodically appear in the time domain, and the X candidate time-frequency resource blocks
  • Each time-frequency resource block included in the resource pool is a time-frequency resource block occupied by a physical random access channel opportunity (PRACH Occasion).
  • the target time-frequency resource block is a time-frequency resource block occupied by a physical random access channel opportunity (PRACH Occasion)
  • non-orthogonal (Non-orthogonal) candidate time-frequency resource pools there are two non-orthogonal (Non-orthogonal) candidate time-frequency resource pools in the X candidate time-frequency resource pools.
  • RE Resource Element
  • any two candidate time-frequency resource pools in the X candidate time-frequency resource pools are orthogonal (orthogonal).
  • any two candidate time-frequency resource pools in the X candidate time-frequency resource pools are different.
  • the first communication node device automatically selects the target time-frequency resource block in the target time-frequency resource pool.
  • the first communication node device randomly selects the target time-frequency resource block in the target time-frequency resource pool.
  • the first communication node device in the target time-frequency resource pool in the physical random access channel opportunity corresponding to the selected SSB (Synchronization Signal Block) with equal probability A time-frequency resource block occupied by a physical random access channel opportunity is randomly selected as the target time-frequency resource block.
  • SSB Synchronization Signal Block
  • the first communication node device in the target time-frequency resource pool in the physical random access channel opportunity corresponding to the selected synchronous broadcast block (SS/PBCH Block) randomly with equal probability Select a time-frequency resource block occupied by a physical random access channel opportunity as the target time-frequency resource block.
  • SS/PBCH Block synchronous broadcast block
  • Embodiment 12 illustrates a schematic diagram of the relationship between the first measurement interval and the target measurement interval according to an embodiment of the present application, as shown in FIG. 12.
  • each rectangle represents an operation, and each diamond represents a judgment.
  • the first timing advance is not used to determine the transmission timing of the first communication node device.
  • the first timing advance is used to determine the transmission timing of the first communication node device.
  • the first information in this application is used to determine a first measurement interval, and the first measurement interval is one candidate measurement interval among the X candidate measurement intervals in this application; Whether the first measurement interval is the same as the target measurement interval in this application is used to determine whether the first timing advance in this application can be used to determine the first communication node device in this application The sending timing.
  • the sentence “the first information is used to determine the first measurement interval” includes the following meaning: the first information is used by the first communication node device in this application to determine the first Measurement interval.
  • the above sentence "the first information is used to determine the first measurement interval” includes the following meanings: the first information is used to directly indicate the first measurement interval.
  • the above sentence "the first information is used to determine the first measurement interval” includes the following meaning: the first information is used to indirectly indicate the first measurement interval.
  • the above sentence "the first information is used to determine the first measurement interval” includes the following meaning: the first information is used to explicitly indicate the first measurement interval.
  • the sentence "the first information is used to determine the first measurement interval” includes the following meaning: the first information is used to implicitly indicate the first measurement interval.
  • the sentence “the first information is used to determine the first measurement interval” includes the following meaning: the first information is used to indicate that the first measurement interval is in the X candidate measurement intervals Index in.
  • the sentence “the first information is used to determine the first measurement interval” includes the following meaning: the first information is used to indicate that the first measurement interval is in the X candidate measurement intervals In the order.
  • the sentence “the first information is used to determine the first measurement interval” includes the following meaning: the first information is used to indicate that the first measurement interval is in the X candidate measurement intervals In the logo.
  • the above sentence “whether the first measurement interval is the same as the target measurement interval is used to determine whether the first timing advance can be used to determine the transmission timing of the first communication node device” It includes the following meanings: whether the first measurement interval is the same as the target measurement interval is used by the first communication node device in this application to determine whether the first timing advance can be used to determine the first The transmission timing of the communication node device.
  • the above sentence “whether the first measurement interval is the same as the target measurement interval is used to determine whether the first timing advance can be used to determine the transmission timing of the first communication node device” It includes the following meanings: when the first measurement interval and the target measurement interval are the same, the first timing advance is used to determine the transmission timing of the first communication node device; when the first measurement interval is When the target measurement intervals are not the same, the first timing advance is not used to determine the sending timing of the first communication node device.
  • the first measurement interval and the target measurement interval are the same.
  • the first measurement interval and the target measurement interval are different.
  • Embodiment 13 illustrates a schematic diagram of a target measurement value according to an embodiment of the present application, as shown in FIG. 13.
  • each rectangle represents an operation, and each diamond represents a judgment.
  • the target measurement value includes the distance between the first communication node device and the second communication node device, and in 1304
  • the medium target measurement value includes the tilt angle information between the first communication node device and the second communication node device.
  • the target measurement value in this application includes the first communication node device and the local The distance between the second communication node devices in the application; conversely, the target measurement value includes tilt angle information between the first communication node device and the second communication node device in the application.
  • the positioning information of the first communication node device includes positioning capability information of the first communication node device.
  • the positioning information of the first communication node device includes whether the first communication node device can calculate the first communication node device and the second communication node device according to its own geographic location. The distance between communication node devices.
  • the positioning information of the first communication node device includes whether the first communication node device can calculate the first communication node device and the second communication node device according to its own geographic location. The distance between communication node devices and the accuracy of the distance obtained.
  • the positioning information of the first communication node device includes whether the first communication node device can calculate the first communication node device and the second communication node device according to its own geographic location. Propagation Delay between communication node devices.
  • the positioning information of the first communication node device includes whether the first communication node device can calculate the first communication node device and the second communication node device according to its own geographic location.
  • the transmission delay between communication node devices and the accuracy of the obtained transmission delay includes
  • the positioning information of the first communication node device includes a positioning method of the first communication node device.
  • the positioning information of the first communication node device includes whether the first communication node device supports GNSS (Global Navigation Satellite System, Global Navigation Satellite System).
  • GNSS Global Navigation Satellite System, Global Navigation Satellite System
  • the positioning information of the first communication node device includes whether the first communication node device supports GNSS (Global Navigation Satellite System, Global Navigation Satellite System) and the positioning accuracy when it supports GNSS.
  • GNSS Global Navigation Satellite System, Global Navigation Satellite System
  • the positioning information of the first communication node device includes the accuracy of the positioning of the first communication node device.
  • the positioning information of the first communication node device includes whether the first communication node device supports GNSS (Global Navigation Satellite System, Global Navigation Satellite System) and the type of GNSS when it supports GNSS.
  • GNSS Global Navigation Satellite System, Global Navigation Satellite System
  • the inclination information between the first communication node device and the second communication node device in this application includes: the first communication node device sends a signal to the second communication node device in this application The departure angle (AoD, Angle of Departure) information at the time.
  • the inclination information between the first communication node device and the second communication node device in this application includes: the first communication node device receives the information sent by the second communication node device in this application The angle of arrival (AoA, Angle of Arrival) information at the time of the signal.
  • the angle of arrival AoA, Angle of Arrival
  • Embodiment 14 illustrates a structural block diagram of a processing device in a first communication node device, as shown in FIG. 14.
  • the first communication node equipment processing apparatus 1400 includes a first transmitter 1401, a first receiver 1402, and a second receiver 1403.
  • the first transmitter 1401 includes the transmitter/receiver 456 (including the antenna 460), the transmission processor 455 and the controller/processor 490 in Figure 4 of the present application;
  • the first receiver 1402 includes the transmitter/receiver 456 in Figure 4 of the present application The transmitter/receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490;
  • the second receiver 1403 includes the transmitter/receiver 456 (including the antenna 460) in Figure 4 of the present application, and the receiving Processor 452 and controller/processor 490.
  • the first transmitter 1401 transmits the first signal, and the first signal occupies the target time-frequency resource block in the time-frequency domain; the first receiver 1402 receives the first signaling; the second receiver 1403 receives the first signal The second signal, the first signaling is used to determine the time-frequency resource occupied by the second signal; the first signaling carries a target feature flag, and the position of the target time-frequency resource block in the time-frequency domain is Used to determine the target feature identifier; a first sequence is used to generate the first signal, the first sequence is one candidate sequence among W candidate sequences, and the W is a positive integer greater than 1; The second signal carries a target sequence index, first information, and a first timing advance; when the target sequence index corresponds to the index of the first sequence in the W candidate sequences, the first information Is used to determine whether the first timing advance is used to determine the transmission timing of the first communication node device.
  • the first receiver 1402 receives second information and third information, where the second information is used to determine the W candidate sequences, and the first communication node device is in the W candidate sequences.
  • the first sequence is randomly selected among the candidate sequences; the third information is used to determine that the second signal carries the first information.
  • the first information is used to determine the first time length, and the length of the time interval between the sending time of the first signal and the receiving time of the second signal is equal to the second time length;
  • the sum of the time length and 2 times the first timing advance is equal to the target time length, and the relationship between the second time length and the target time length is used to determine whether the first timing advance is used To determine the sending timing of the first communication node device.
  • the second receiver 1403 determines a target measurement value; wherein, the target measurement value belongs to a target measurement interval, and the target measurement interval is one candidate measurement interval among X candidate measurement intervals, and the X Any two candidate measurement intervals in the two candidate measurement intervals are not the same, and the X is a positive integer greater than 1.
  • the second receiver 1403 determines the target measurement value; the target measurement value belongs to the target measurement interval, and the target measurement interval is one candidate measurement interval among the X candidate measurement intervals, and the X spare Any two candidate measurement intervals in the selected measurement interval are different, and the X is a positive integer greater than 1; the first receiver 1402 receives the fourth information; the fourth information is used to determine X candidate time-frequency Resource pool, the X candidate time-frequency resource pools correspond to the X candidate measurement intervals one-to-one, the target time-frequency resource block belongs to the target time-frequency resource pool, and the target time-frequency resource pool is the The candidate time-frequency resource pool corresponding to the target measurement interval in the X candidate time-frequency resource pools.
  • the second receiver 1403 determines a target measurement value; wherein, the target measurement value belongs to a target measurement interval, and the target measurement interval is one candidate measurement interval among X candidate measurement intervals, and the X Any two candidate measurement intervals in the two candidate measurement intervals are different, and the X is a positive integer greater than 1; the first information is used to determine the first measurement interval, and the first measurement interval is the One of the X candidate measurement intervals; whether the first measurement interval is the same as the target measurement interval is used to determine whether the first timing advance can be used to determine the first communication The sending timing of the node device.
  • the second receiver 1403 determines a target measurement value; wherein, the target measurement value belongs to a target measurement interval, and the target measurement interval is one candidate measurement interval among X candidate measurement intervals, and the X Any two candidate measurement intervals in the two candidate measurement intervals are not the same, and the X is a positive integer greater than 1.
  • the target measurement value includes the distance between the first communication node device and the second communication node device in this application; conversely, the target measurement value includes the first communication node device and all the distances in this application. The tilt angle information between the second communication node devices.
  • Embodiment 15 illustrates a structural block diagram of a processing device in a second communication node device, as shown in FIG. 15.
  • the second communication node device processing apparatus 1500 includes a third receiver 1501, a second transmitter 1502, and a third transmitter 1503.
  • the third receiver 1501 includes the transmitter/receiver 416 (including the antenna 420) in Figure 4 of the present application, the receiving processor 412 and the controller/processor 440;
  • the second transmitter 1502 includes the transmitter/receiver 416 in Figure 4 of the present application
  • the transmitter/receiver 416 (including the antenna 420), the transmitting processor 415 and the controller/processor 440;
  • the third transmitter 1503 includes the transmitter/receiver 416 (including the antenna 420) in Figure 4 of the present application, transmitting Processor 415 and controller/processor 440.
  • the third receiver 1501 receives the first signal, and the first signal occupies the target time-frequency resource block in the time-frequency domain; the second transmitter 1502 sends the first signaling; the third transmitter 1503 sends the first signal
  • the second signal the first signaling is used to determine the time-frequency resource occupied by the second signal; the first signaling carries a target feature flag, and the position of the target time-frequency resource block in the time-frequency domain is Used to determine the target feature identifier; a first sequence is used to generate the first signal, the first sequence is one candidate sequence among W candidate sequences, and the W is a positive integer greater than 1;
  • the second signal carries a target sequence index, first information, and a first timing advance; when the target sequence index corresponds to the index of the first sequence in the W candidate sequences, the first information Is used to indicate whether the first timing advance is used to determine the transmission timing of the sender of the first signal.
  • the second transmitter 1502 sends second information and third information; the second information is used to determine the W candidate sequences, and the first communication node device is in the W candidate sequences.
  • the first sequence is randomly selected from the sequence; the third information is used to determine that the second signal carries the first information.
  • the first information is used to determine the first time length, and the length of the time interval between the sending time of the first signal and the receiving time of the second signal is equal to the second time length;
  • the sum of the time length and 2 times the first timing advance is equal to the target time length, and the relationship between the second time length and the target time length is used to determine whether the first timing advance is used To determine the transmission timing of the sender of the first signal.
  • the second transmitter 1502 sends fourth information; where the fourth information is used to determine X candidate time-frequency resource pools, the X candidate time-frequency resource pools and the X candidates There is a one-to-one correspondence between the measurement intervals, any two candidate measurement intervals in the X candidate measurement intervals are different, and the X is a positive integer greater than 1; the target time-frequency resource block belongs to the target time-frequency resource pool.
  • the second transmitter 1502 sends fourth information; the fourth information is used to determine X candidate time-frequency resource pools, the X candidate time-frequency resource pools and X candidate measurement intervals There is a one-to-one correspondence, any two of the X candidate measurement intervals are different, and the X is a positive integer greater than 1; the target time-frequency resource block belongs to the target time-frequency resource pool; The first information is used to determine a first measurement interval, and the first measurement interval is one candidate measurement interval among the X candidate measurement intervals.
  • the second transmitter 1502 sends fourth information; the fourth information is used to determine X candidate time-frequency resource pools, the X candidate time-frequency resource pools and X candidate measurement intervals One-to-one correspondence, any two candidate measurement intervals in the X candidate measurement intervals are not the same, and X is a positive integer greater than 1; the target time-frequency resource block belongs to the target time-frequency resource pool;
  • the sender of the first signal can obtain the location information of the sender of the first signal, one of the X candidate measurement intervals includes the sender of the first signal and the The distance between the receivers of the first signal; conversely, one of the X candidate measurement intervals includes the inclination angle between the sender of the first signal and the receiver of the first signal information.
  • each module unit in the above-mentioned embodiment can be realized in the form of hardware or software function module, and this application is not limited to the combination of software and hardware in any specific form.
  • the first type of communication node device or UE or terminal in this application includes but is not limited to mobile phones, tablets, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, aircraft, airplanes, etc.
  • Wireless communication equipment such as man-machine, remote control aircraft.
  • the second type of communication node equipment or base station or network side equipment in this application includes, but is not limited to, macro cell base station, micro cell base station, home base station, relay base station, eNB, gNB, transmission receiving node TRP, relay satellite, satellite base station , Wireless communication equipment such as air base stations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种用于无线通信的通信节点中的方法和装置。通信节点发送第一信号,所述第一信号在时频域占用目标时频资源块;接收第一信令;接收第二信号,所述第一信令被用于确定所述第二信号所占用的时频资源;所述第一信令携带目标特征标志,所述目标时频资源块在时频域的位置被用于确定所述目标特征标识;第一序列被用于生成所述第一信号,所述第一序列是W个备选序列中的一个备选序列;所述第二信号携带目标序列索引、第一信息和第一定时提前量;当所述目标序列索引对应所述第一序列在所述W个备选序列中的索引时,所述第一信息被用于确定所述第一定时提前量是否被用于确定所述第一通信节点设备的发送定时。本申请提高随机接入性能。

Description

一种用于无线通信的通信节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及大的延时差的传输方案和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或5G)进行研究,在3GPP RAN#75次全会上通过了新空口技术(NR,New Radio)的WI(Work Item,工作项目),开始对NR进行标准化工作。
为了能够适应多样的应用场景和满足不同的需求,在3GPP RAN#75次全会上还通过了NR下的非地面网络(NTN,Non-Terrestrial Networks)的研究项目,该研究项目在R15版本开始。在3GPP RAN#79次全会上决定开始研究NTN网络中的解决方案,然后在R16或R17版本中启动WI对相关技术进行标准化。
发明内容
在NTN网络中,用户设备(UE,User Equipment)和卫星或者飞行器通过5G网络进行通信,由于卫星或飞行器到达用户设备的距离要远远大于地面基站到达用户设备的距离,因而导致卫星或飞行器与用户设备间通信传输时的较长的传输延时(Propagation Delay)。另外,当卫星被用作地面站的中继设备时,卫星与地面站之间的支线链路(Feeder Link)的延时会更加增大用户设备与基站间传输延时。另一方面,由于卫星和飞行器的覆盖范围和地面网络(Terrestrial Networks)相比要大得多,同时由于地面设备到卫星或飞行器的倾角不同,导致在NTN中的延时之间的差别非常大。在现有的LTE(Long Term Evolution,长期演进)或5G NR系统中,最大延时差只有几微秒或者几十微秒,但是在NTN中最大延时差可以达到几毫秒甚至几十毫秒。由于现有的LTE或NR中的随机接入都是为传统地面通信设计的,无法直接应用到NTN网络中,因而需要新的设计来支持大延时差网络,特别是NTN通信。
针对大延时差网络,特别是NTN通信中的随机接入中的问题,本申请提供了一种解决方案。需要说明的是,在不冲突的情况下,本申请的基站设备中的实施例和实施例中的特征可以应用到用户设备中,反之亦然。进一步的,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种用于无线通信中的第一通信节点中的方法,其特征在于,包括:
发送第一信号,所述第一信号在时频域占用目标时频资源块;
接收第一信令;
接收第二信号,所述第一信令被用于确定所述第二信号所占用的时频资源;
其中,所述第一信令携带目标特征标志,所述目标时频资源块在时频域的位置被用于确定所述目标特征标识;第一序列被用于生成所述第一信号,所述第一序列是W个备选序列中的一个备选序列,所述W是大于1的正整数;所述第二信号携带目标序列索引、第一信息和第一定时提前量;当所述目标序列索引对应所述第一序列在所述W个备选序列中的索引时,所述第一信息被用于确定所述第一定时提前量是否被用于确定所述第一通信节点设备的发送定时。
作为一个实施例,通过所述第一信息的引入,解决了由于大的延时差异造成的上行 定时模糊的问题。
作为一个实施例,所述目标序列索引和所述第一信息共同确定所述第一通信节点设备收到的发送定时调整信息是否是针对所述第一通信节点设备的,可以在大延时差异的网络中可以尽量重用现有的前导设计或者支持占用时域资源少的前导设计,从而降低了随机接入的资源开销。
根据本申请的一个方面,上述方法的特征在于,还包括:
接收第二信息和第三信息;
其中,所述第二信息被用于确定所述W个备选序列,所述第一通信节点设备在所述W个备选序列中随机选择所述第一序列;所述第三信息被用于确定所述第二信号携带所述第一信息。
作为一个实施例,通过所述第三信息对所述第二信号是否携带所述第一信息进行开关控制,从而网络侧可以根据资源配置需要和实现需要灵活配置所述第二信号的信息格式。
根据本申请的一个方面,上述方法的特征在于,所述第一信息被用于确定第一时间长度,所述第一信号的发送时刻和所述第二信号的接收时刻的时间间隔长度等于第二时间长度;所述第一时间长度和2倍的所述第一定时提前量的和等于目标时间长度,所述第二时间长度和所述目标时间长度之间的关系被用于确定所述第一定时提前量是否被用于确定所述第一通信节点设备的发送定时。
作为一个实施例,通过比较所述第二时间长度和所述目标时间长度使得用户设备可以准确判断所述第一定时提前量是否能被用于确定发送定时,为解决定时模糊提供了一种准确有效的解决方案。
根据本申请的一个方面,上述方法的特征在于,还包括:
确定目标测量值;
其中,所述目标测量值属于目标测量区间,所述目标测量区间是X个备选测量区间中的一个备选测量区间,所述X个备选测量区间中的任意两个备选测量区间不相同,所述X是大于1的正整数。
根据本申请的一个方面,上述方法的特征在于,还包括:
接收第四信息;
其中,所述第四信息被用于确定X个备选时频资源池,所述X个备选时频资源池和所述X个备选测量区间一一对应,所述目标时频资源块属于目标时频资源池,所述目标时频资源池是所述X个备选时频资源池中的和所述目标测量区间所对应的备选时频资源池。
作为一个实施例,针对每个备选测量区间单独配置相应的随机接入资源,达到了根据距离或者延时对用户设备进行分组的效果,降低了对前导长度的需求,进而减少了头开销并提高资源利用率以及随机接入容量。
根据本申请的一个方面,上述方法的特征在于,所述第一信息被用于确定第一测量区间,所述第一测量区间是所述X个备选测量区间中的一个备选测量区间;所述第一测量区间是否和所述目标测量区间相同被用于确定所述第一定时提前量是否能被用于确定所述第一通信节点设备的发送定时。
根据本申请的一个方面,上述方法的特征在于,当所述第一通信节点设备能够获得所述第一通信节点设备的定位信息时,所述目标测量值包括所述第一通信节点设备和本申请中的第二通信节点设备之间的距离;反之,所述目标测量值包括所述第一通信节点设备和本申请中的第二通信节点设备之间的倾角信息。
本申请公开了一种用于无线通信中的第二通信节点中的方法,其特征在于,包括:
接收第一信号,所述第一信号在时频域占用目标时频资源块;
发送第一信令;
发送第二信号,所述第一信令被用于确定所述第二信号所占用的时频资源;
其中,所述第一信令携带目标特征标志,所述目标时频资源块在时频域的位置被用于确定所述目标特征标识;第一序列被用于生成所述第一信号,所述第一序列是W个备选序列中的一个备选序列,所述W是大于1的正整数;所述第二信号携带目标序列索引、第一信息和第一定时提前量;当所述目标序列索引对应所述第一序列在所述W个备选序列中的索引时,所述第一信息被用于指示所述第一定时提前量是否被用于确定所述第一信号的发送者的发送定时。
根据本申请的一个方面,上述方法的特征在于,还包括:
发送第二信息和第三信息;
其中,所述第二信息被用于确定所述W个备选序列,所述第一通信节点设备在所述W个备选序列中随机选择所述第一序列;所述第三信息被用于确定所述第二信号携带所述第一信息。
根据本申请的一个方面,上述方法的特征在于,所述第一信息被用于确定第一时间长度,所述第一信号的发送时刻和所述第二信号的接收时刻的时间间隔长度等于第二时间长度;所述第一时间长度和2倍的所述第一定时提前量的和等于目标时间长度,所述第二时间长度和所述目标时间长度之间的关系被用于确定所述第一定时提前量是否被用于确定所述第一信号的发送者的发送定时。
根据本申请的一个方面,上述方法的特征在于,还包括:
发送第四信息;
其中,所述第四信息被用于确定X个备选时频资源池,所述X个备选时频资源池和X个备选测量区间一一对应,所述X个备选测量区间中的任意两个备选测量区间不相同,所述X是大于1的正整数;所述目标时频资源块属于目标时频资源池。
根据本申请的一个方面,上述方法的特征在于,所述第一信息被用于确定第一测量区间,所述第一测量区间是所述X个备选测量区间中的一个备选测量区间。
根据本申请的一个方面,上述方法的特征在于,当所述第一信号的发送者能够获得所述第一信号的发送者的定位信息时,所述X个备选测量区间中的一个备选测量区间包括包括所述第一信号的发送者和所述第一信号的接收者之间的距离;反之,所述X个备选测量区间中的一个备选测量区间包括所述第一信号的发送者和所述第一信号的接收者之间的倾角信息。
本申请公开了一种用于无线通信中的第一通信节点设备,其特征在于,包括:
第一发射机,发送第一信号,所述第一信号在时频域占用目标时频资源块;
第一接收机,接收第一信令;
第二接收机,接收第二信号,所述第一信令被用于确定所述第二信号所占用的时频资源;
其中,所述第一信令携带目标特征标志,所述目标时频资源块在时频域的位置被用于确定所述目标特征标识;第一序列被用于生成所述第一信号,所述第一序列是W个备选序列中的一个备选序列,所述W是大于1的正整数;所述第二信号携带目标序列索引、第一信息和第一定时提前量;当所述目标序列索引对应所述第一序列在所述W个备选序列中的索引时,所述第一信息被用于确定所述第一定时提前量是否被用于确定所述第一通信节点设备的发送定时。
本申请公开了一种用于无线通信中的第二通信节点设备,其特征在于,包括:
第三接收机,接收第一信号,所述第一信号在时频域占用目标时频资源块;
第二发射机,发送第一信令;
第三发射机,发送第二信号,所述第一信令被用于确定所述第二信号所占用的时频资源;
其中,所述第一信令携带目标特征标志,所述目标时频资源块在时频域的位置被用于确定所述目标特征标识;第一序列被用于生成所述第一信号,所述第一序列是W个备选序列中的一个备选序列,所述W是大于1的正整数;所述第二信号携带目标序列索引、第一信息和第一定时提前量;当所述目标序列索引对应所述第一序列在所述W个备选序列中的索引时,所述第一信息被用于指示所述第一定时提前量是否被用于确定所述第一信号的发送者的发送定时。
作为一个实施例,本申请和现有地面网络中的随机接入的方法相比,具有如下主要技术优势:
-.采用本申请中的方法,解决了由于大的延时差异造成的上行定时模糊的问题。
-.采用本申请中的方法,可以在大延时差异的网络中尽量重用现有的前导设计或者支持占用时域资源少的前导设计,从而降低了随机接入的资源开销。
-.采用本申请中的方法,网络侧可以根据资源配置需要和实现需要灵活配置RAR中的信息格式,提高了配置灵活性,支持优化的随机接入设计。
-.采用本申请中的方法,网络侧在RAR中指示出在接收前导和发送RAR之间的延时信息,从而可以准确有效地解决定时模糊的问题。
-.采用本申请中的方法,达到了根据距离或者延时对用户设备进行分组的效果,降低了对前导长度的需求,进而减少了头开销并提高资源利用率以及随机接入容量。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信号,第一信令和第二信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的协议架构的示意图;
图4示出了根据本申请的一个实施例的第一通信节点和第二通信节点的示意图;
图5示出了根据本申请的一个实施例的信号传输流程图;
图6示出了根据本申请的另一个实施例的信号传输流程图;
图7示出了根据本申请的一个实施例的第一定时提前量的示意图;
图8示出了根据本申请的一个实施例的第三信息,第一信息和第一定时提前量之间的关系的示意图;
图9示出了根据本申请的一个实施例的第一时间长度,第二时间长度和第一定时提前量之间的关系的示意图;
图10示出了根据本申请的一个实施例的X个备选测量区间的示意图;
图11示出了根据本申请的一个实施例的X个备选时频资源池的示意图;
图12示出了根据本申请的一个实施例的第一测量区间和目标测量区间之间的关系的示意图;
图13示出了根据本申请的一个实施例的目标测量值的示意图;
图14示出了根据本申请的一个实施例的第一通信节点设备中的处理装置的结构框图;
图15示出了根据本申请的一个实施例的第二通信节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信号,第一信令和第二信号的传输的流程图,如附图1所示。附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序并不代表所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的第一通信节点在步骤101中发送第一信号;在步骤102中接收第一信令;在步骤103中接收第二信号;所述第一信号在时频域占用目标时频资源块;所述第一信令被用于确定所述第二信号所占用的时频资源,所述第一信令携带目标特征标志,所述目标时频资源块在时频域的位置被用于确定所述目标特征标识;第一序列被用于生成所述第一信号,所述第一序列是W个备选序列中的一个备选序列,所述W是大于1的正整数;所述第二信号携带目标序列索引、第一信息和第一定时提前量;当所述目标序列索引对应所述第一序列在所述W个备选序列中的索引时,所述第一信息被用于确定所述第一定时提前量是否被用于确定所述第一通信节点设备的发送定时。
作为一个实施例,所述第一通信节点设备处于RRC(Radio Resource Control,无线资源控制)空闲状态(RRC_IDLE)。
作为一个实施例,所述第一通信节点设备处于RRC(Radio Resource Control,无线资源控制)连接状态(RRC_CONNECTED)。
作为一个实施例,所述第一通信节点设备处于RRC(Radio Resource Control,无线资源控制)非活跃状态(RRC_INACTIVE)。
作为一个实施例,所述第一信号是基带信号。
作为一个实施例,所述第一信号是射频信号。
作为一个实施例,所述第一信息通过空中接口传输。
作为一个实施例,所述第一信号通过无线接口传输。
作为一个实施例,所述第一信号被用于随机接入。
作为一个实施例,所述第一信号通过物理随机接入信道(PRACH,Physical Random Access Channel)传输。
作为一个实施例,所述第一信号携带4步随机接入中的Msg1(消息1)。
作为一个实施例,所述第一信号携带2步随机接入中的MsgA(消息A)。
作为一个实施例,所述第一信号携带前导序列(Preamble Sequence)。
作为一个实施例,所述第一信号包括CP(Cyclic Prefix,循环前缀),Preamble(前导)和GP(Guard Period,保护时间)。
作为一个实施例,所述目标时频资源块是所述第一序列映射到物理资源(Mapping to Physical Resources)时所映射到的时频资源。
作为一个实施例,所述目标时频资源块是一个物理随机接入信号机会(PRACH Occasion)所占用的时频资源。
作为一个实施例,所述目标时频资源块包括连续的时域资源。
作为一个实施例,所述目标时频资源块包括连续的频域资源。
作为一个实施例,所述目标时频资源块在时域包括CP(Cyclic Prefix,循环前缀)所占用的时域资源,Preamble(前导)所占用的时域资源和GP(Guard Period,保护时间)所占用的时域资源。
作为一个实施例,所述目标时频资源块在时域包括空闲时域资源。
作为一个实施例,所述目标时频资源块包括正整数个RE。
作为一个实施例,所述第一序列是随机接入前导(Random-Access Preamble)。
作为一个实施例,所述第一序列被用于随机接入。
作为一个实施例,所述第一序列是伪随机序列。
作为一个实施例,所述第一序列是Zadoff-Chu(ZC)序列。
作为一个实施例,所述第一序列包括了一个Zadoff-Chu(ZC)序列的全部元素。
作为一个实施例,所述第一序列只包括了一个Zadoff-Chu(ZC)序列的部分元素。
作为一个实施例,所述第一序列是一个长度为839的Zadoff-Chu(ZC)序列。
作为一个实施例,所述第一序列是一个长度为139的Zadoff-Chu(ZC)序列。
作为一个实施例,所述第一序列中的所有的元素都相同。
作为一个实施例,所述第一序列中存在两个元素不相同。
作为一个实施例,所述第一序列中的所有的元素都为1。
作为一个实施例,所述第一序列包括CP(Cyclic Prefix,循环前缀)。
作为一个实施例,所述第一序列通过PRACH(Physical Random Access Channel,物理随机接入信道)传输。
作为一个实施例,所述第一序列是2步随机接入中的随机接入前导(Random-Access Preamble)。
作为一个实施例,所述第一序列是4步随机接入中的随机接入序列(Random-Access Preamble)。
作为一个实施例,所述第一序列是2步随机接入中的MsgA(消息A)中的随机接入前导(Random-Access Preamble)。
作为一个实施例,所述第一序列是一个Zadoff-Chu(ZC)序列经过重复M次得到的,所述M是大于1的正整数。
作为一个实施例,所述第一序列是一个Zadoff-Chu(ZC)序列经过时域重复M次得到的,所述M是大于1的正整数。
作为一个实施例,所述第一序列是一个给定的物理随机接入信道前导格式(PRACH Preamble Format)的随机接入前导(Random-Access Preamble)。
作为一个实施例,上述句子“第一序列被用于生成所述第一信号”包括以下含义:所述第一序列依次经过映射到物理资源(Mapping to Physical Resources),OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)基带信号生成(OFDM Baseband Signal Generation)得到所述第一信号。
作为一个实施例,上述句子“第一序列被用于生成所述第一信号”包括以下含义:所述第一序列依次经过映射到物理资源(Mapping to Physical Resources),OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)得到所述第一信号。
作为一个实施例,上述句子“第一序列被用于生成所述第一信号”包括以下含义:所述第一序列依次经过时域重复,循环前缀添加(CP Insertion),映射到物理资源(Mapping to Physical Resources),OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)基带信号生成(OFDM Baseband Signal Generation)得到所述第一信号。
作为一个实施例,上述句子“第一序列被用于生成所述第一信号”包括以下含义:所述第一序列依次经过时域重复,循环前缀添加(CP Insertion),映射到物理资源(Mapping to Physical Resources),OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)得到所述第一信号。
作为一个实施例,所述第一信令是通过空中接口传输的。
作为一个实施例,所述第一信令是通过无线接口传输的。
作为一个实施例,所述第一信令是通过Uu接口传输的。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是通过PDCCH(Physical Downlink Control Channel,物理下行控制信道)传输的。
作为一个实施例,所述第一信令包括DCI(Downlink Control Information,下行控制信息) 中的全部或部分域(Field)。
作为一个实施例,所述第一信令包括一个给定的DCI(Downlink Control Information,下行控制信息)格式(Format)的DCI中的全部或部分域(Field)。
作为一个实施例,所述第一信令包括DCI格式(Format)1-0的DCI(Downlink Control Information,下行控制信息)中的全部或部分域(Field)。
作为一个实施例,所述第一信令是在公共搜索空间(CSS,Common Search Space)中被传输的。
作为一个实施例,所述第一信令是调度携带随机接入响应的物理下行共享信道(PDSCH,Physical Downlink Shared Channel)的DCI。
作为一个实施例,所述第一信令是调度携带随机接入响应的物理下行共享信道(PDSCH,Physical Downlink Shared Channel)的PDCCH。
作为一个实施例,所述第一信令是调度携带MsgB(消息B)的物理下行共享信道(PDSCH,Physical Downlink Shared Channel)的DCI。
作为一个实施例,所述第一信令是调度携带MsgB(消息B)的物理下行共享信道(PDSCH,Physical Downlink Shared Channel)的PDCCH。
作为一个实施例,上述句子“所述第一信令被用于确定所述第二信号所占用的时频资源”包括以下含义:所述第一信令被本申请中的所述第一通信节点设备用于确定所述第二信号所占用的时频资源。
作为一个实施例,上述句子“所述第一信令被用于确定所述第二信号所占用的时频资源”包括以下含义:所述第一信令被用于直接指示所述第二信号所占用的时频资源。
作为一个实施例,上述句子“所述第一信令被用于确定所述第二信号所占用的时频资源”包括以下含义:所述第一信令被用于间接指示所述第二信号所占用的时频资源。
作为一个实施例,上述句子“所述第一信令被用于确定所述第二信号所占用的时频资源”包括以下含义:所述第一信令被用于显式地指示所述第二信号所占用的时频资源。
作为一个实施例,上述句子“所述第一信令被用于确定所述第二信号所占用的时频资源”包括以下含义:所述第一信令被用于隐式地指示所述第二信号所占用的时频资源。
作为一个实施例,所述第一信令还被用于确定所述第二信号所采用的调制编码方式(MCS,Modulation and Coding Scheme)。
作为一个实施例,所述目标特征标识是一个非负的整数。
作为一个实施例,所述目标特征标识是一个RNTI(Radio Network Temporary Identity,无线网络临时标识)。
作为一个实施例,所述目标特征标识是一个RA-RNTI(Random Access Radio Network Temporary Identity,随机接入无线网络临时标识)。
作为一个实施例,所述目标特征标识等于十六进制的从FFF0到FFFD中的一个整数。
作为一个实施例,上述句子“所述目标时频资源块在时频域的位置被用于确定所述目标特征标识”包括以下含义:所述目标时频资源块在时频域的位置被本申请中的所述第一通信节点设备用于确定所述目标特征标识。
作为一个实施例,上述句子“所述目标时频资源块在时频域的位置被用于确定所述目标特征标识”包括以下含义:所述目标时频资源块中在时域包括的最早的OFDM符号在所属的时隙(Slot)中的索引被用于确定所述目标特征标识。
作为一个实施例,上述句子“所述目标时频资源块在时频域的位置被用于确定所述目标特征标识”包括以下含义:所述目标时频资源块在时域包括的最早的OFDM符号所属的时隙在一个系统帧(System Frame)中的索引被用于确定所述目标特征标识。
作为一个实施例,上述句子“所述目标时频资源块在时频域的位置被用于确定所述目标特征标识”包括以下含义:所述目标时频资源块在时域包括的最早的OFDM符号在所属的时隙(Slot)中的索引被用于确定所述目标特征标识,所述目标时频资源块在时域包括的最早的 OFDM符号所属的时隙在一个系统帧(System Frame)中的索引也被用于确定所述目标特征标识。
作为一个实施例,上述句子“所述目标时频资源块在时频域的位置被用于确定所述目标特征标识”包括以下含义:所述目标时频资源块在频域所包括的一个PRB(Physical Resource Block,物理资源块)的索引被用于确定所述目标特征标识
作为一个实施例,上述句子“所述目标时频资源块在时频域的位置被用于确定所述目标特征标识”包括以下含义:所述目标时频资源块在频域所包括的频率最低的PRB(Physical Resource Block,物理资源块)的索引被用于确定所述目标特征标识。
作为一个实施例,上述句子“所述目标时频资源块在时频域的位置被用于确定所述目标特征标识”包括以下含义:所述目标时频资源块在频域所包括的频率最高的PRB(Physical Resource Block,物理资源块)的索引被用于确定所述目标特征标识。
作为一个实施例,上述句子“所述目标时频资源块在时频域的位置被用于确定所述目标特征标识”包括以下含义:所述目标时频资源块在频域所包括的一个PRB(Physical Resource Block,物理资源块)组(Group)的索引被用于确定所述目标特征标识。
作为一个实施例,上述句子“所述目标时频资源块在时频域的位置被用于确定所述目标特征标识”是通过下式实现的:
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id
其中RA-RNTI代表所述目标特征标识,s_id代表所述目标时频资源块中所包括的时域最早的多载波符号(OFDM symbol)的索引(0≤s_id<14),t_id代表所述目标时频资源块中所包括的时域最早的多载波符号所属的时隙(slot)在系统帧(system frame)中的索引(0≤t_id<80),f_id代表所述目标时频资源块中的频域资源的索引(0≤f_id<8),ul_carrier_id代表所述目标时频资源块在频域所属的载波的标识。
作为一个实施例,上述句子“所述第一信令携带目标特征标识”包括以下含义:所述第一信令所包括的CRC中携带所述目标特征标识。
作为一个实施例,上述句子“所述第一信令携带目标特征标识”包括以下含义:所述第一信令的负载(Payload)中携带所述目标特征标识。
作为一个实施例,上述句子“所述第一信令携带目标特征标识”包括以下含义:所述第一类信令的校验比特中携带所述目标特征标识。
作为一个实施例,上述句子“所述第一信令携带目标特征标识”包括以下含义:所述第一类信令的CRC经过所述目标特征标识的加扰。
作为一个实施例,所述W等于64。
作为一个实施例,所述W等于32。
作为一个实施例,所述W大于64。
作为一个实施例,所述W小于64。
作为一个实施例,所述W个备选序列中的任意一个备选序列是随机接入前导(Random-Access Preamble)。
作为一个实施例,所述W个备选序列中的任意一个备选序列被用于随机接入。
作为一个实施例,所述W个备选序列中的任意一个备选序列是伪随机序列。
作为一个实施例,所述W个备选序列中的任意一个备选序列是Zadoff-Chu(ZC)序列。
作为一个实施例,所述W个备选序列中的任意一个备选序列包括了一个Zadoff-Chu(ZC)序列的全部元素。
作为一个实施例,所述W个备选序列中的任意一个备选序列只包括了一个Zadoff-Chu(ZC)序列的部分元素。
作为一个实施例,所述W个备选序列中的任意一个备选序列是一个长度为839的Zadoff-Chu(ZC)序列。
作为一个实施例,所述W个备选序列中的任意一个备选序列是一个长度为139的 Zadoff-Chu(ZC)序列。
作为一个实施例,所述W个备选序列中的任意一个备选序列包括CP(Cyclic Prefix,循环前缀)。
作为一个实施例,所述W个备选序列中的任意一个备选序列通过PRACH(Physical Random Access Channel,物理随机接入信道)传输。
作为一个实施例,所述W个备选序列中的任意一个备选序列是2步随机接入中的随机接入前导(Random-Access Preamble)。
作为一个实施例,所述W个备选序列中的任意一个备选序列是4步随机接入中的随机接入序列(Random-Access Preamble)。
作为一个实施例,所述W个备选序列中的任意一个备选序列是2步随机接入中的MsgA(消息A)中的随机接入前导(Random-Access Preamble)。
作为一个实施例,所述W个备选序列中的任意一个备选序列是一个Zadoff-Chu(ZC)序列经过重复M次得到的,所述M是大于1的正整数。
作为一个实施例,所述W个备选序列中的任意一个备选序列是一个Zadoff-Chu(ZC)序列经过时域重复M次得到的,所述M是大于1的正整数。
作为一个实施例,所述W个备选序列中的任意一个备选序列是一个给定的物理随机接入信道前导格式(PRACH Preamble Format)的随机接入前导(Random-Access Preamble)。
作为一个实施例,所述第二信号是基带信号。
作为一个实施例,所述第二信号是射频信号。
作为一个实施例,所述第二信息通过空中接口传输。
作为一个实施例,所述第二信号通过无线接口传输。
作为一个实施例,所述第二信号被用于随机接入。
作为一个实施例,所述第二信号携带Msg2(随机接入信息2)。
作为一个实施例,所述第二信号携带MsgB(随机接入信息B)。
作为一个实施例,所述第二信号携带RAR(Random Access Response,随机接入响应)。
作为一个实施例,所述第二信号通过DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第二信号通过PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述目标序列索引是RAPID(Random Access Preamble Identity,随机接入前导标识)。
作为一个实施例,所述目标序列索引是“ra-PreambleIndex”。
作为一个实施例,所述目标序列索引是“PREAMBLE_INDEX”。
作为一个实施例,所述目标序列索引是一个用6比特表示的索引。
作为一个实施例,所述目标序列索引是一个小于64的非负整数。
作为一个实施例,上述句子“所述第二信号携带目标序列索引”包括以下含义:所述第二信号所携带的MAC(Medium Access Control,媒体接入控制)PDU(Protocol Data Units,协议数据单元)中的一个MAC subPDU(子协议数据单元)中的MAC子头(Subheader)中包括所述目标序列索引。
作为一个实施例,上述句子“所述第二信号携带目标序列索引”包括以下含义:所述第二信号所携带的MAC(Medium Access Control,媒体接入控制)PDU(Protocol Data Units,协议数据单元)中的一个MAC头(header)中包括所述目标序列索引。
作为一个实施例,上述句子“所述第二信号携带目标序列索引”包括以下含义:所述第二信号所携带的MAC(Medium Access Control,媒体接入控制)PDU(Protocol Data Units,协议数据单元)中的一个MAC subPDU(子协议数据单元)中的MAC CE(Control Element,控制单元)中包括所述目标序列索引。
作为一个实施例,上述句子“所述第二信号携带目标序列索引”包括以下含义:所述第二信号所携带的MAC(Medium Access Control,媒体接入控制)PDU(Protocol Data Units,协议数据单元)中的一个MAC subPDU(子协议数据单元)中的MAC负载(Payload)中包括所述目标序列索引。
作为一个实施例,所述第一信息是高层信息。
作为一个实施例,所述第一信息是MAC层信息全部或部分。
作为一个实施例,所述第一信息是一个MAC头(Header)中一个域的全部或部分。
作为一个实施例,所述第一信息是一个MAC子头(subHeader)中一个域的全部或部分。
作为一个实施例,所述第一信息是一个MAC CE(Control Element,控制单元)中一个域的全部或部分。
作为一个实施例,所述第一信息是一个MAC负载(Payload)中一个域的全部或部分。
作为一个实施例,上述句子“所述第二信号携带第一信息”包括以下含义:所述第二信号所携带的MAC(Medium Access Control,媒体接入控制)PDU(Protocol Data Units,协议数据单元)中的一个MAC subPDU(子协议数据单元)中的MAC子头(Subheader)中包括所述第一信息。
作为一个实施例,上述句子“所述第二信号携带第一信息”包括以下含义:所述第二信号所携带的MAC(Medium Access Control,媒体接入控制)PDU(Protocol Data Units,协议数据单元)中的一个MAC头(header)中包括所述第一信息。
作为一个实施例,上述句子“所述第二信号携带第一信息”包括以下含义:所述第二信号所携带的MAC(Medium Access Control,媒体接入控制)PDU(Protocol Data Units,协议数据单元)中的一个MAC subPDU(子协议数据单元)中的MAC CE(Control Element,控制单元)中包括所述第一信息。
作为一个实施例,上述句子“所述第二信号携带第一信息”包括以下含义:所述第二信号所携带的MAC(Medium Access Control,媒体接入控制)PDU(Protocol Data Units,协议数据单元)中的一个MAC subPDU(子协议数据单元)中的MAC负载(Payload)中包括所述第一信息。
作为一个实施例,所述第一定时提前量属于高层信息。
作为一个实施例,所述第一定时提前量属于MAC层信息中的全部或部分。
作为一个实施例,所述第一定时提前量属于一个MAC头(Header)中一个域的全部或部分。
作为一个实施例,所述第一定时提前量属于一个MAC子头(subHeader)中一个域的全部或部分。
作为一个实施例,所述第一定时提前量属于一个MAC CE(Control Element,控制单元)中一个域的全部或部分。
作为一个实施例,所述第一定时提前量属于一个MAC负载(Payload)中一个域的全部或部分。
作为一个实施例,所述第一定时提前量是非负的实数。
作为一个实施例,所述第一定时提前量的单位都是微秒。
作为一个实施例,所述第一定时提前量的单位都是秒。
作为一个实施例,所述第一定时提前量等于所述第一通信节点设备晚于所述第一信号发送的信号的定时提前(TA,Timing Advance)的值。
作为一个实施例,所述第一定时提前量等于所述第一通信节点设备晚于所述第一信号发送信号的起始时刻相对于一个下行时隙(Slot)边界的时间提前量。
作为一个实施例,所述第一定时提前量等于非负整数个Tc,其中秒
作为一个实施例,所述第一定时提前量大于0时,所述第一定时调整量和本申请中的所述第二通信节点的类型有关。
作为一个实施例,所述第一定时提前量大于0时,所述第一定时调整量和本申请中的所述第二通信节点的高度有关。
作为一个实施例,所述第一定时提前量大于0时,所述第一定时调整量和本申请中的所述第二通信节点所属的卫星的类型有关。
作为一个实施例,上述句子“所述第二信号携带第一定时提前量”包括以下含义:所述第二信号所携带的MAC(Medium Access Control,媒体接入控制)PDU(Protocol Data Units,协议数据单元)中的一个MAC subPDU(子协议数据单元)中的MAC子头(Subheader)中包括所述第一定时提前量。
作为一个实施例,上述句子“所述第二信号携带第一定时提前量”包括以下含义:所述第二信号所携带的MAC(Medium Access Control,媒体接入控制)PDU(Protocol Data Units,协议数据单元)中的一个MAC头(header)中包括所述第一定时提前量。
作为一个实施例,上述句子“所述第二信号携带第一定时提前量”包括以下含义:所述第二信号所携带的MAC(Medium Access Control,媒体接入控制)PDU(Protocol Data Units,协议数据单元)中的一个MAC subPDU(子协议数据单元)中的MAC CE(Control Element,控制单元)中包括所述第一定时提前量。
作为一个实施例,上述句子“所述第二信号携带第一定时提前量”包括以下含义:所述第二信号所携带的MAC(Medium Access Control,媒体接入控制)PDU(Protocol Data Units,协议数据单元)中的一个MAC subPDU(子协议数据单元)中的MAC负载(Payload)中包括所述第一定时提前量。
作为一个实施例,所述第一信息和所述第一定时提前量都和所述目标序列索引相关联。
作为一个实施例,所述第一信息和所述第一定时提前量都是针对所述目标序列索引。
作为一个实施例,所述目标序列索引,所述第一信息和所述第一定时提前量都属于同一个MAC subPDU(子协议数据单元)。
作为一个实施例,所述目标序列索引属于目标MAC subPDU中的MAC子头(Subheader),所述第一信息属于所述目标MAC subPDU中的MAC CE(Control Element,控制单元),所述第一定时提前量属于所述目标MAC subPDU中的MAC负载(Payload),所述目标MAC subPDU是一个MAC PDU中的一个MAC subPDU。
作为一个实施例,所述目标序列索引属于目标MAC subPDU中的MAC子头(Subheader),所述第一信息属于所述目标MAC subPDU中的MAC负载(Payload),所述第一定时提前量属于所述目标MAC subPDU中的MAC负载(Payload),所述目标MAC subPDU是一个MAC PDU中的一个MAC subPDU。
作为一个实施例,所述目标序列索引通过目标MAC subPDU中的MAC子头(Subheader)传输,所述第一信息通过所述目标MAC subPDU中的MAC CE(Control Element,控制单元)传输,所述第一定时提前量通过所述目标MAC subPDU中的MAC负载(Payload)传输,所述目标MAC subPDU是一个MAC PDU中的一个MAC subPDU。
作为一个实施例,所述目标序列索引通过目标MAC subPDU中的MAC子头(Subheader)传输,所述第一信息通过所述目标MAC subPDU中的MAC负载(Payload)传输,所述第一定时提前量通过所述目标MAC subPDU中的MAC负载(Payload)传输,所述目标MAC subPDU是一个MAC PDU中的一个MAC subPDU。
作为一个实施例,上述句子“所述目标序列索引对应(Correspond to)所述第一序列在所述W个备选序列中的索引”包括以下含义:所述目标序列索引等于所述第一序列在所述W个备选序列中的索引。
作为一个实施例,上述句子“所述目标序列索引对应所述第一序列在所述W个备选序列中的索引”包括以下含义:所述目标序列索引和所述第一序列在所述W个备选序列中的索引相同。
作为一个实施例,上述句子“所述目标序列索引对应所述第一序列在所述W个备选序列 中的索引”包括以下含义:所述目标序列索引所标识的序列和所述第一序列相同。
作为一个实施例,上述句子“所述目标序列索引对应所述第一序列在所述W个备选序列中的索引”包括以下含义:所述目标序列索引和所述第一序列在所述W个备选序列中的索引具有唯一的对应关系。
作为一个实施例,上述句子“所述第一信息被用于确定所述第一定时提前量是否能被用于确定所述第一通信节点设备的发送定时”包括以下含义:所述第一信息被本申请中的所述第一通信节点设备用于确定所述第一定时提前量是否能被用于确定所述第一通信节点设备的发送定时。
作为一个实施例,上述句子“所述第一信息被用于确定所述第一定时提前量是否能被用于确定所述第一通信节点设备的发送定时”包括以下含义:所述第一信息被用于间接指示所述第一定时提前量是否能被用于确定所述第一通信节点设备的发送定时。
作为一个实施例,上述句子“所述第一信息被用于确定所述第一定时提前量是否能被用于确定所述第一通信节点设备的发送定时”包括以下含义:所述第一信息被用于隐式地指示所述第一定时提前量是否能被用于确定所述第一通信节点设备的发送定时。
作为一个实施例,上述句子“所述第一信息被用于确定所述第一定时提前量是否能被用于确定所述第一通信节点设备的发送定时”包括以下含义:所述第一信息被用于确定所述第一通信节点设备是否属于所述第二信号的目标接收者;当所述第一通信节点设备属于所述第二信号的所述目标接收者时,所述第一定时提前量被用于确定所述第一通信节点设备的发送定时。
作为一个实施例,当所述目标序列索引和所述第一序列在所述W个备选序列中的索引不对应时,所述第一定时提前量不被用于确定所述第一通信节点设备的发送定时。
作为一个实施例,当所述第一定时提前量被用于确定所述第一通信节点设备的发送定时的时候,所述第一定时提前量等于所述第一通信节点设备在发送时的定时提前(Timing Advance,TA)。
作为一个实施例,当所述第一定时提前量被用于确定所述第一通信节点设备的发送定时的时候,所述第一定时提前量和第一定时偏移的和等于所述第一通信节点设备在发送时的定时提前(Timing Advance,TA),所述第一定时偏移是可配置的。
作为一个实施例,还包括:
接收第六信息;
其中,所述第六信息被用于确定第一定时偏移,当所述第一定时提前量被用于确定所述第一通信节点设备的发送定时的时候,所述第一定时提前量和所述第一定时偏移的和等于所述第一通信节点设备在发送时的定时提前(Timing Advance,TA),
作为一个实施例,当所述第一定时提前量被用于确定所述第一通信节点设备的发送定时的时候,所述第一定时提前量和第一定时偏移的和等于所述第一通信节点设备在发送时的定时提前(Timing Advance,TA),所述第一定时偏移和本申请中的所述第二通信节点设备的高度(Altitude)有关。
作为一个实施例,当所述第一定时提前量被用于确定所述第一通信节点设备的发送定时的时候,所述第一定时提前量和第一定时偏移的和等于所述第一通信节点设备在发送时的定时提前(Timing Advance,TA),所述第一定时偏移和本申请中的所述第二通信节点设备的类型(同步卫星,低轨卫星,中轨卫星等)有关。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2是说明了NR 5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统网络架构200的图。NR 5G或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200。EPS 200可包括一个或一个以上UE(User Equipment, 用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语,在NTN网络中,gNB203可以是卫星或通过卫星中继的地面基站。gNB203为UE201提供对EPC/5G-CN210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN210。EPC/5G-CN210包括MME/AMF/UPF 211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocol,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)。
作为一个实施例,所述UE201对应本申请中的所述第一通信节点设备。
作为一个实施例,所述UE201支持在非地面网络(NTN)的传输。
作为一个实施例,所述UE201支持大延时差网络中的传输。
作为一个实施例,所述gNB203对应本申请中的所述第二通信节点设备。
作为一个实施例,所述gNB203支持在非地面网络(NTN)的传输。
作为一个实施例,所述gNB203支持在大延时差网络中的传输。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或NTN中的卫星或飞行器)和第二通信节点设备(gNB,UE或NTN中的卫星或飞行器),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302 提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一通信节点设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二通信节点设备。
作为一个实施例,本申请中的所述第一信号生成于所述RRC306。
作为一个实施例,本申请中的所述第一信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一信令生成于所述RRC306。
作为一个实施例,本申请中的所述第一信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二信号生成于所述RRC306。
作为一个实施例,本申请中的所述第二信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第二信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二信息生成于所述RRC306。
作为一个实施例,本申请中的所述第二信息生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第二信息生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第三信息生成于所述RRC306。
作为一个实施例,本申请中的所述第三信息生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第三信息生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第四信息生成于所述RRC306。
作为一个实施例,本申请中的所述第四信息生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第四信息生成于所述PHY301或者PHY351。
实施例4
实施例4示出了根据本申请的一个第一通信节点设备和第二通信节点设备的示意图,如附图4所示。
在第一通信节点设备(450)中包括控制器/处理器490,数据源/缓存器480,接收处理器452,发射器/接收器456和发射处理器455,发射器/接收器456包括天线460。数据源/缓存器480提供上层包到控制器/处理器490,控制器/处理器490提供包头压缩解压缩、加密解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层及以上层协议,上层包中可以包括数据或者控制信息,例如DL-SCH或UL-SCH或SL-SCH。发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等。接收处理器452实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层控制信令提取等。发射器456用于将发射处理器455提供的基带信号转换 成射频信号并经由天线460发射出去,接收器456用于通过天线460接收的射频信号转换成基带信号提供给接收处理器452。
在第二通信节点设备(410)中可以包括控制器/处理器440,数据源/缓存器430,接收处理器412,发射器/接收器416和发射处理器415,发射器/接收器416包括天线420。数据源/缓存器430提供上层包到达控制器/处理器440,控制器/处理器440提供包头压缩解压缩、加密解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议。上层包中可以包括数据或者控制信息,例如DL-SCH或UL-SCH或SL-SCH。发射处理器415实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层信令(包括同步信号和参考信号等)生成等。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层信令提取等。发射器416用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去,接收器416用于通过天线420接收的射频信号转换成基带信号提供给接收处理器412。
在DL(Downlink,下行)中,上层包,比如本申请中的第一信令(如果第一信令中包括高层信息),第二信号,第二信息,第三信息和第四信息中所包括的高层信息提供到控制器/处理器440。控制器/处理器440实施L2层及以上层的功能。在DL中,控制器/处理器440提供包头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对第一通信节点设备450的无线电资源分配。控制器/处理器440还负责HARQ操作、丢失包的重新发射,和到第一通信节点设备450的信令,比如本申请中的第一信令,第二信号,第二信息,第三信息和第四信息中所包括的高层信息(如果包括的话)均在控制器/处理器440中生成。发射处理器415实施用于L1层(即,物理层)的各种信号处理功能,包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等,本申请中的第一信令,第二信号,第二信息,第三信息和第四信息的物理层信号的生成在发射处理器415完成,生成的调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号,然后由发射处理器415经由发射器416映射到天线420以射频信号的形式发射出去。在接收端,每一接收器456通过其相应天线460接收射频信号,每一接收器456恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器452。接收处理器452实施L1层的各种信号接收处理功能。信号接收处理功能包括对本申请中的第一信令,第二信号,第二信息,第三信息和第四信息的物理层信号的接收等,通过多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解扰,解码和解交织以恢复在物理信道上由第二通信节点设备410发射的数据或者控制,随后将数据和控制信号提供到控制器/处理器490。控制器/处理器490负责L2层及以上层,控制器/处理器490对本申请中的第二信号,第二信息,第三信息,第四信息和第一信令中所包括的高层信息(如果包括高层信息的话)进行解读。控制器/处理器可与存储程序代码和数据的存储器480相关联。存储器480可称为计算机可读媒体。
在上行(UL)传输中,数据源/缓存器480用来提供高层数据到控制器/处理器490。数据源/缓存器480表示L2层和L2层之上的所有协议层。控制器/处理器490通过基于第二通信节点410的无线电资源分配提供标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,来实施用于用户平面和控制平面的L2层协议。控制器/处理器490还负责HARQ操作、丢失包的重新发射,和到第二通信节点410的信令。本申请中的第一信号在数据源/缓存器480生成或者在控制器/处理器490生成。发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能,本申请中的第一信号的物理层信号在发射处理器455生成。信号发射处理功能包括编码和交织以促进UE450处的前向错误校正(FEC)以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))对基带信号进行调制,将调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号,然后由发射处理器455经由发射器456映射到天线460以射频信号的形式发射出去。接收器416通过其相应天 线420接收射频信号,每一接收器416恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器412。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能,包括接收处理本申请中的第一信号的物理层信号,信号接收处理功能包括获取多载波符号流,接着对多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解码和解交织以恢复在物理信道上由第一通信节点设备450原始发射的数据和/或控制信号。随后将数据和/或控制信号提供到控制器/处理器440。在控制器/处理器440实施L2层的功能,包括对本申请中的第一信号所携带的信息的解读。控制器/处理器可与存储程序代码和数据的缓存器430相关联。缓存器430可以为计算机可读媒体。
作为一个实施例,所述第一通信节点设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信节点设备450装置至少:发送第一信号,所述第一信号在时频域占用目标时频资源块;接收第一信令;接收第二信号,所述第一信令被用于确定所述第二信号所占用的时频资源;其中,所述第一信令携带目标特征标志,所述目标时频资源块在时频域的位置被用于确定所述目标特征标识;第一序列被用于生成所述第一信号,所述第一序列是W个备选序列中的一个备选序列,所述W是大于1的正整数;所述第二信号携带目标序列索引、第一信息和第一定时提前量;当所述目标序列索引对应所述第一序列在所述W个备选序列中的索引时,所述第一信息被用于确定所述第一定时提前量是否被用于确定所述第一通信节点设备的发送定时。
作为一个实施例,所述第一通信节点设备450装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信号,所述第一信号在时频域占用目标时频资源块;接收第一信令;接收第二信号,所述第一信令被用于确定所述第二信号所占用的时频资源;其中,所述第一信令携带目标特征标志,所述目标时频资源块在时频域的位置被用于确定所述目标特征标识;第一序列被用于生成所述第一信号,所述第一序列是W个备选序列中的一个备选序列,所述W是大于1的正整数;所述第二信号携带目标序列索引、第一信息和第一定时提前量;当所述目标序列索引对应所述第一序列在所述W个备选序列中的索引时,所述第一信息被用于确定所述第一定时提前量是否被用于确定所述第一通信节点设备的发送定时。
作为一个实施例,所述第二通信节点设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信节点设备410装置至少:接收第一信号,所述第一信号在时频域占用目标时频资源块;发送第一信令;发送第二信号,所述第一信令被用于确定所述第二信号所占用的时频资源;其中,所述第一信令携带目标特征标志,所述目标时频资源块在时频域的位置被用于确定所述目标特征标识;第一序列被用于生成所述第一信号,所述第一序列是W个备选序列中的一个备选序列,所述W是大于1的正整数;所述第二信号携带目标序列索引、第一信息和第一定时提前量;当所述目标序列索引对应所述第一序列在所述W个备选序列中的索引时,所述第一信息被用于指示所述第一定时提前量是否被用于确定所述第一信号的发送者的发送定时。
作为一个实施例,所述第二通信节点设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信号,所述第一信号在时频域占用目标时频资源块;发送第一信令;发送第二信号,所述第一信令被用于确定所述第二信号所占用的时频资源;其中,所述第一信令携带目标特征标志,所述目标时频资源块在时频域的位置被用于确定所述目标特征标识;第一序列被用于生成所述第一信号,所述第一序列是W个备选序列中的一个备选序列,所述W是大于1的正整数;所述第二信号携带目标序列索引、第一信息和第一定时提前量;当所述目标序列索引对应所述第一序列在所述W个备选序列中的索引时,所述第一信息被用于指示所述第一定时 提前量是否被用于确定所述第一信号的发送者的发送定时。
作为一个实施例,所述第一通信节点设备450是一个用户设备(UE)。
作为一个实施例,所述第一通信节点设备450是一个支持大延时差的用户设备。
作为一个实施例,所述第一通信节点设备450是一个支持NTN的用户设备。
作为一个实施例,所述第一通信节点设备450是一个飞行器设备。
作为一个实施例,所述第二通信节点设备410是一个基站设备(gNB/eNB)。
作为一个实施例,所述第二通信节点设备410是一个支持大延时差的基站设备。
作为一个实施例,所述第二通信节点设备410是一个支持NTN的基站设备。
作为一个实施例,所述第二通信节点设备410是一个卫星设备。
作为一个实施例,所述第二通信节点设备410是一个飞行平台设备。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一信令。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送所述第一信号。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第二信号
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第二信息。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第三信息。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第四信息。
作为一个实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于接收本申请中的所述第一信号。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第一信令。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第二信号。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第二信息。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第三信息。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第四信息。
实施例5
实施例5示例了根据本申请的一个实施例的信号传输流程图,如附图5所示。附图5中,第二通信节点N1是第一通信节点U2的服务小区的维持基站,特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于 第二通信节点N1,在步骤S11中发送第二信息,在步骤S12中发送第三信息,在步骤S13中发送第四信息,在步骤S14中接收第一信号,在步骤S15中发送第一信令,在步骤S16中发送第二信号。
对于 第一通信节点U2,在步骤S21中接收第二信息,在步骤S22中接收第三信息,在步骤S23中接收第四信息,在步骤S24中确定目标测量值,在步骤S25中发送第一信号,在步骤S26中接收第一信令,在步骤S27中接收第二信号。
在实施例5中,本申请中的所述第一信号在时频域占用目标时频资源块;本申请中的所 述第一信令被用于确定本申请中的所述第二信号所占用的时频资源;所述第一信令携带目标特征标志,所述目标时频资源块在时频域的位置被用于确定所述目标特征标识;第一序列被用于生成所述第一信号,所述第一序列是W个备选序列中的一个备选序列,所述W是大于1的正整数;所述第二信号携带目标序列索引、第一信息和第一定时提前量;当所述目标序列索引对应所述第一序列在所述W个备选序列中的索引时,所述第一信息被用于确定所述第一定时提前量是否被用于确定所述第一通信节点设备的发送定时;所述第二信息被用于确定所述W个备选序列,所述第一通信节点设备在所述W个备选序列中随机选择所述第一序列;所述第三信息被用于确定所述第二信号携带所述第一信息;所述目标测量值属于目标测量区间,所述目标测量区间是X个备选测量区间中的一个备选测量区间,所述X个备选测量区间中的任意两个备选测量区间不相同,所述X是大于1的正整数;所述第四信息被用于确定X个备选时频资源池,所述X个备选时频资源池和所述X个备选测量区间一一对应,所述目标时频资源块属于目标时频资源池,所述目标时频资源池是所述X个备选时频资源池中的和所述目标测量区间所对应的备选时频资源池。
作为一个实施例,所述第二信息和所述第三信息是两个独立的信息。
作为一个实施例,所述第二信息和所述第三信息是经过联合编码(Joint Coding)的。
作为一个实施例,所述第二信息和所述第三信息是一个信息中的两个子信息。
作为一个实施例,所述第二信息和所述第三信息是通过同一个信令携带的。
作为一个实施例,所述第二信息和所述第三信息是通过两个不同的信令携带的。
作为一个实施例,所述第二信息就是所述第三信息;
作为一个实施例,所述第二信息和所述第三信息是同一个信令中的两个不同的域(Field)。
作为一个实施例,所述第二信息和所述第三信息是同一个信令中的两个不同的IE(Information Element,信息元素)。
作为一个实施例,所述第二信息和所述第三信息是通过一个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)携带的。
作为一个实施例,所述第二信息和所述第三信息是通过两个不同的PDSCH(Physical Downlink Shared Channel,物理下行共享信道)携带的。
作为一个实施例,所述第二信息通过高层信令传输。
作为一个实施例,所述第二信息通过物理层信令传输。
作为一个实施例,所述第二信息包括了一个高层信令中的全部或部分。
作为一个实施例,所述第二信息包括了一个物理层信令中的全部或部分。
作为一个实施例,所述第二信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的全部或部分IE(Information Element,信息单元)。
作为一个实施例,所述第二信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的一个IE(Information Element,信息单元)中的全部或部分域(Field)。
作为一个实施例,所述第二信息包括了一个MAC(Medium Access Control,媒体接入控制)层信令中的全部或部分域(Field)。
作为一个实施例,所述第二信息包括了一个系统信息块(SIB,System Information Block)中的全部或部分。
作为一个实施例,所述第二信息包括了一个MAC(Medium Access Control,媒体接入控制)CE(Control Element,控制单元)中的全部或部分。
作为一个实施例,所述第二信息包括了一个MAC(Medium Access Control,媒体接入控制)头(Header)中的全部或部分。
作为一个实施例,所述第二信息通过一个DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第二信息通过一个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第二信息是广播的。
作为一个实施例,所述第二信息是小区特定的(Cell Specific)。
作为一个实施例,所述第二信息是用户设备特定的(UE-specific)。
作为一个实施例,所述第二信息是用户设备组特定的(UE group-specific)。
作为一个实施例,所述第二信息是地理区域特定的。
作为一个实施例,所述第二信息包括一个DCI(Downlink Control Information)信令的全部或部分域(Field)。
作为一个实施例,所述第三信息通过高层信令传输。
作为一个实施例,所述第三信息通过物理层信令传输。
作为一个实施例,所述第三信息包括了一个高层信令中的全部或部分。
作为一个实施例,所述第三信息包括了一个物理层信令中的全部或部分。
作为一个实施例,所述第三信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的全部或部分IE(Information Element,信息单元)。
作为一个实施例,所述第三信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的一个IE(Information Element,信息单元)中的全部或部分域(Field)。
作为一个实施例,所述第三信息包括了一个MAC(Medium Access Control,媒体接入控制)层信令中的全部或部分域(Field)。
作为一个实施例,所述第三信息包括了一个系统信息块(SIB,System Information Block)中的全部或部分。
作为一个实施例,所述第三信息包括了一个MAC(Medium Access Control,媒体接入控制)CE(Control Element,控制单元)中的全部或部分。
作为一个实施例,所述第三信息包括了一个MAC(Medium Access Control,媒体接入控制)头(Header)中的全部或部分。
作为一个实施例,所述第三信息通过一个DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第三信息通过一个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第三信息是广播的。
作为一个实施例,所述第三信息是小区特定的(Cell Specific)。
作为一个实施例,所述第三信息是用户设备特定的(UE-specific)。
作为一个实施例,所述第三信息是用户设备组特定的(UE group-specific)。
作为一个实施例,所述第三信息是地理区域特定的。
作为一个实施例,所述第三信息包括一个DCI(Downlink Control Information)信令的全部或部分域(Field)。
作为一个实施例,上述句子“所述第二信息被用于确定所述W个备选序列”包括以下含义:所述第二信息被本申请中的所述第一通信节点设备用于确定所述W个备选序列。
作为一个实施例,上述句子“所述第二信息被用于确定所述W个备选序列”包括以下含义:所述第二信息被用于直接指示所述W个备选序列。
作为一个实施例,上述句子“所述第二信息被用于确定所述W个备选序列”包括以下含义:所述第二信息被用于间接指示所述W个备选序列。
作为一个实施例,上述句子“所述第二信息被用于确定所述W个备选序列”包括以下含义:所述第二信息被用于显式地指示所述W个备选序列。
作为一个实施例,上述句子“所述第二信息被用于确定所述W个备选序列”包括以下含义:所述第二信息被用于隐式地指示所述W个备选序列。
作为一个实施例,上述句子“所述第二信息被用于确定所述W个备选序列”包括以下含义:所述第二信息指示所述W个备选序列中起始序列的索引。
作为一个实施例,上述句子“所述第一通信节点设备在所述W个备选序列中随机选择所述第一序列”包括以下含义:所述第一通信节点设备在所述W个备选序列中等概率地随机选择所述第一序列。
作为一个实施例,上述句子“所述第一通信节点设备在所述W个备选序列中随机选择所述第一序列”包括以下含义:所述第一通信节点设备在所述W个备选序列中按照一个概率分布随机选择所述第一序列。
实施例6
实施例6示例了根据本申请的另一个实施例的信号传输流程图,如附图6所示。附图6中,第二通信节点N3是第一通信节点U4的服务小区的维持基站,特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于 第二通信节点N3,在步骤S31中发送第二信息,在步骤S32中发送第四信息,在步骤S33中接收第一信号,在步骤S34中发送第一信令,在步骤S35中发送第二信号。
对于 第一通信节点U4,在步骤S41中接收第二信息,在步骤S42中接收第四信息,在步骤S43中确定目标测量值,在步骤S44中发送第一信号,在步骤S45中接收第一信令,在步骤S46中接收第二信号。
在实施例6中,本申请中的所述第一信号在时频域占用目标时频资源块;本申请中的所述第一信令被用于确定本申请中的所述第二信号所占用的时频资源;所述第一信令携带目标特征标志,所述目标时频资源块在时频域的位置被用于确定所述目标特征标识;第一序列被用于生成所述第一信号,所述第一序列是W个备选序列中的一个备选序列,所述W是大于1的正整数;所述第二信号携带目标序列索引、第一信息和第一定时提前量;当所述目标序列索引对应所述第一序列在所述W个备选序列中的索引时,所述第一信息被用于确定所述第一定时提前量是否被用于确定所述第一通信节点设备的发送定时;所述第二信息被用于确定所述W个备选序列,所述第一通信节点设备在所述W个备选序列中随机选择所述第一序列;所述目标测量值属于目标测量区间,所述目标测量区间是X个备选测量区间中的一个备选测量区间,所述X个备选测量区间中的任意两个备选测量区间不相同,所述X是大于1的正整数;所述第四信息被用于确定X个备选时频资源池,所述X个备选时频资源池和所述X个备选测量区间一一对应,所述目标时频资源块属于目标时频资源池,所述目标时频资源池是所述X个备选时频资源池中的和所述目标测量区间所对应的备选时频资源池。
作为一个实施例,所述第四信息通过高层信令传输。
作为一个实施例,所述第四信息通过物理层信令传输。
作为一个实施例,所述第四信息包括了一个高层信令中的全部或部分。
作为一个实施例,所述第四信息包括了一个物理层信令中的全部或部分。
作为一个实施例,所述第四信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的全部或部分IE(Information Element,信息单元)。
作为一个实施例,所述第四信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的一个IE(Information Element,信息单元)中的全部或部分域(Field)。
作为一个实施例,所述第四信息包括了一个MAC(Medium Access Control,媒体接入控制)层信令中的全部或部分域(Field)。
作为一个实施例,所述第四信息包括了一个系统信息块(SIB,System Information Block)中的全部或部分。
作为一个实施例,所述第四信息包括了一个MAC(Medium Access Control,媒体接入控制)CE(Control Element,控制单元)中的全部或部分。
作为一个实施例,所述第四信息包括了一个MAC(Medium Access Control,媒体接入控制)头(Header)中的全部或部分。
作为一个实施例,所述第四信息通过一个DL-SCH(Downlink Shared Channel,下行共享 信道)传输。
作为一个实施例,所述第四信息通过一个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第四信息是广播的。
作为一个实施例,所述第四信息是小区特定的(Cell Specific)。
作为一个实施例,所述第四信息是用户设备特定的(UE-specific)。
作为一个实施例,所述第四信息是用户设备组特定的(UE group-specific)。
作为一个实施例,所述第四信息是地理区域特定的。
作为一个实施例,所述第四信息包括一个DCI(Downlink Control Information)信令的全部或部分域(Field)。
作为一个实施例,上述句子“所述第四信息被用于确定X个备选时频资源池”包括以下含义:所述第四信息被本申请中的所述第一通信节点设备用于确定所述X个备选时频资源池。
作为一个实施例,上述句子“所述第四信息被用于确定X个备选时频资源池”包括以下含义:所述第四信息被用于直接指示所述X个备选时频资源池。
作为一个实施例,上述句子“所述第四信息被用于确定X个备选时频资源池”包括以下含义:所述第四信息被用于间接指示所述X个备选时频资源池。
作为一个实施例,上述句子“所述第四信息被用于确定X个备选时频资源池”包括以下含义:所述第四信息被用于显式地指示所述X个备选时频资源池。
作为一个实施例,上述句子“所述第四信息被用于确定X个备选时频资源池”包括以下含义:所述第四信息被用于隐式地指示所述X个备选时频资源池。
作为一个实施例,所述第四信息为所述X个备选测量区间中的每个测量区间指示在所述X个备选时频资源池中的所对应的备选时频资源池。
实施例7
实施例7示例了根据本申请的一个实施例的第一定时提前量的示意图,如附图7所示。附图7中,横轴代表时间,两个矩形框分别代表接收端的第一通信节点发送的信号和发送端(即第一通信节点)的第一通信节点发送的信号。在实施例7中,本申请中的第一定时调整量和第一定时偏移共同被用于确定本申请中的第一通信节点发送的信号的TA(Timing Advance,定时提前)值。
作为一个实施例,当所述第一定时提前量被用于确定所述第一通信节点设备的发送定时的时候,所述第一定时提前量和第一定时偏移的和等于所述第一通信节点设备在发送时的定时提前(Timing Advance,TA),所述第一定时偏移是可配置的。
作为一个实施例,还包括:
接收第六信息;
其中,所述第六信息被用于确定第一定时偏移,当所述第一定时提前量被用于确定所述第一通信节点设备的发送定时的时候,所述第一定时提前量和所述第一定时偏移的和等于所述第一通信节点设备在发送时的定时提前(Timing Advance,TA),
作为一个实施例,当所述第一定时提前量被用于确定所述第一通信节点设备的发送定时的时候,所述第一定时提前量和第一定时偏移的和等于所述第一通信节点设备在发送时的定时提前(Timing Advance,TA),所述第一定时偏移和本申请中的所述第二通信节点设备的高度(Altitude)有关。
作为一个实施例,当所述第一定时提前量被用于确定所述第一通信节点设备的发送定时的时候,所述第一定时提前量和第一定时偏移的和等于所述第一通信节点设备在发送时的定时提前(Timing Advance,TA),所述第一定时偏移和本申请中的所述第二通信节点设备的类型(同步卫星,低轨卫星,中轨卫星,飞行平台等)有关。
实施例8
实施例8示例了根据本申请的一个实施例的第三信息,第一信息和第一定时调整量之间的关系的示意图,如附图8所示。在附图8中,第二信号携带一个MAC PDU,这个MAC PDU被分成1个或多个MAC subPDU,每个MAC subPDU中包含1个或多个域(Field),第三信息,第一信息和第一定时调整量都属于同一个MAC subPDU。
在实施例8中,本申请中的所述第三信息被用于确定本申请中的所述第二信号携带所述第一信息。
作为一个实施例,所述目标序列索引、所述第一信息、所述第一定时提前量和所述第三信息通过同一个MAC subPDU传输。
作为一个实施例,所述第三信息通过目标MAC subPDU中的MAC子头(Subheader)传输,所述目标序列索引、所述第一信息、和所述第一定时提前量也都通过所述目标MAC subPDU传输。
作为一个实施例,所述第三信息通过目标MAC subPDU中的MAC子头(Subheader)中的保留比特(Reserved Bit)传输,所述目标序列索引、所述第一信息、和所述第一定时提前量也都通过所述目标MAC subPDU传输。
作为一个实施例,所述第三信息通过目标MAC subPDU中的MAC子头(Subheader)中的F域(Format Field)传输,所述目标序列索引、所述第一信息、和所述第一定时提前量也都通过所述目标MAC subPDU传输。
作为一个实施例,所述第三信息通过目标MAC subPDU中的MAC子头(Subheader)中的L域(Length Field)传输,所述目标序列索引、所述第一信息、和所述第一定时提前量也都通过所述目标MAC subPDU传输。
作为一个实施例,上述句子“所述第三信息被用于确定所述第二信号携带所述第一信息”包括以下含义:所述第三信息被用于确定所述第二信号是否携带所述第一信息。
作为一个实施例,上述句子“所述第三信息被用于确定所述第二信号携带所述第一信息”包括以下含义:所述第三信息被本申请中的所述第一通信节点设备用于确定所述第二信号携带所述第一信息。
作为一个实施例,上述句子“所述第三信息被用于确定所述第二信号携带所述第一信息”包括以下含义:所述第三信息被用于直接指示所述第二信号携带所述第一信息。
作为一个实施例,上述句子“所述第三信息被用于确定所述第二信号携带所述第一信息”包括以下含义:所述第三信息被用于间接指示所述第二信号携带所述第一信息。
作为一个实施例,上述句子“所述第三信息被用于确定所述第二信号携带所述第一信息”包括以下含义:所述第三信息被用于显式地指示所述第二信号携带所述第一信息。
作为一个实施例,上述句子“所述第三信息被用于确定所述第二信号携带所述第一信息”包括以下含义:所述第三信息被用于隐式地指示所述第二信号携带所述第一信息。
作为一个实施例,所述第三信息被用于指示所述第二信号是否携带所述第一信息,所述第二信号携带所述第一信息。
实施例9
实施例9示例了根据本申请的一个实施例的第一时间长度,第二时间长度和第一定时提前量的关系的示意图,如附图9所示。在附图9中,横轴代表时间,上部分代表第二通信节点侧的信号,下部分代表第一通信节点侧的信号,斜线填充的矩形代表第一信号,横线填充的矩形代表第一信令,交叉线填充的矩形代表第二信号。
在实施例9中,本申请中的所述第一信息被用于确定第一时间长度,本申请中的所述第一信号的发送时刻和本申请中的所述第二信号的接收时刻的时间间隔长度等于第二时间长度;所述第一时间长度和2倍的所述第一定时提前量的和等于目标时间长度,所述第二时间长度和所述目标时间长度之间的关系被用于确定本申请中的所述第一定时提前量是否被用于确定 本申请中的所述第一通信节点设备的发送定时。
作为一个实施例,所述第一时间长度的单位是秒。
作为一个实施例,所述第一时间长度的单位是毫秒。
作为一个实施例,在给定子载波间隔(SCS,Subcarrier Spacing)的情况下,所述第一时间长度等于正整数个时隙(Slot)的时间长度。
作为一个实施例,在给定子载波间隔(SCS,Subcarrier Spacing)的情况下,所述第一时间长度等于正整数个OFDM符号(Symbol)的时间长度。
作为一个实施例,所述第一时间长度是本申请中的所述第一通信节点设备认为(assume)的所述第一信号的接收结束时刻到所述第二信号的发送起始时刻的时间间隔长度。
作为一个实施例,所述第一时间长度是本申请中的所述第一通信节点设备认为(assume)的所述第一信号的接收起始时刻到所述第二信号的发送结束时刻的时间间隔长度。
作为一个实施例,所述第一时间长度是本申请中的所述第一通信节点设备认为(assume)的所述第一信号的接收起始时刻到所述第二信号的发送起始时刻的时间间隔长度。
作为一个实施例,所述第一时间长度是本申请中的所述第一通信节点设备认为(assume)的所述第一信号的接收结束时刻到所述第二信号的发送结束时刻的时间间隔长度。
作为一个实施例,上述句子“所述第一信息被用于确定第一时间长度”包括以下含义:所述第一信息被本申请中的所述第一通信节点设备用于确定所述第一时间长度。
作为一个实施例,上述句子“所述第一信息被用于确定第一时间长度”包括以下含义:所述第一信息被用于直接指示所述第一时间长度。
作为一个实施例,上述句子“所述第一信息被用于确定第一时间长度”包括以下含义:所述第一信息被用于间接指示所述第一时间长度。
作为一个实施例,上述句子“所述第一信息被用于确定第一时间长度”包括以下含义:所述第一信息被用于显式地指示所述第一时间长度。
作为一个实施例,上述句子“所述第一信息被用于确定第一时间长度”包括以下含义:所述第一信息被用于隐式地指示所述第一时间长度。
作为一个实施例,上述句子“所述第一信息被用于确定第一时间长度”包括以下含义:所述第一信息被用于指示所述第三时间长度,所述第一信令被用于指示第四时间长度,所述第一时间长度等于所述第三时间长度和所述第四时间子长度的和。
作为一个实施例,上述句子“所述第一信息被用于确定第一时间长度”包括以下含义:所述第一信息被用于指示所述第三时间长度,所述第一信令被用于指示第四时间长度,所述第一时间长度等于所述第三时间长度和所述第四时间子长度的和;所述第四时间长度等于所述第一信令的接收起始时刻和所述第二信号的接收起始时刻的时间间隔长度。
作为一个实施例,所述第二时间长度的单位是秒。
作为一个实施例,所述第二时间长度的单位是毫秒。
作为一个实施例,在给定子载波间隔(SCS,Subcarrier Spacing)的情况下,所述第二时间长度等于正整数个时隙(Slot)的时间长度。
作为一个实施例,在给定子载波间隔(SCS,Subcarrier Spacing)的情况下,所述第二时间长度等于正整数个OFDM符号(Symbol)的时间长度。
作为一个实施例,上述句子“所述第一信号的发送时刻和所述第二信号的接收时刻的时间间隔长度等于第二时间长度”包括以下含义:所述第一信号的发送起始时刻和所述第二信号的接收起始时刻的时间间隔长度等于所述第二时间长度。
作为一个实施例,上述句子“所述第一信号的发送时刻和所述第二信号的接收时刻的时间间隔长度等于第二时间长度”包括以下含义:所述第一信号的发送起始时刻和所述第二信号的接收结束时刻的时间间隔长度等于所述第二时间长度。
作为一个实施例,上述句子“所述第一信号的发送时刻和所述第二信号的接收时刻的时间间隔长度等于第二时间长度”包括以下含义:所述第一信号的发送结束时刻和所述第二信 号的接收起始时刻的时间间隔长度等于所述第二时间长度。
作为一个实施例,上述句子“所述第一信号的发送时刻和所述第二信号的接收时刻的时间间隔长度等于第二时间长度”包括以下含义:所述第一信号的发送结束时刻和所述第二信号的接收结束时刻的时间间隔长度等于所述第二时间长度。
作为一个实施例,上述句子“所述第二时间长度和所述目标时间长度之间的关系被用于确定所述第一定时提前量是否能被用于确定所述第一通信节点设备的发送定时”包括以下含义:所述第二时间长度和所述目标时间长度之间的大小关系被用于确定所述第一定时提前量是否能被用于确定所述第一通信节点设备的发送定时。
作为一个实施例,上述句子“所述第二时间长度和所述目标时间长度之间的关系被用于确定所述第一定时提前量是否能被用于确定所述第一通信节点设备的发送定时”包括以下含义:所述第二时间长度和所述目标时间长度是否相等被用于确定所述第一定时提前量是否能被用于确定所述第一通信节点设备的发送定时。
作为一个实施例,上述句子“所述第二时间长度和所述目标时间长度之间的关系被用于确定所述第一定时提前量是否能被用于确定所述第一通信节点设备的发送定时”包括以下含义:所述第二时间长度和所述目标时间长度之间的数学关系被用于确定所述第一定时提前量是否能被用于确定所述第一通信节点设备的发送定时。
作为一个实施例,上述句子“所述第二时间长度和所述目标时间长度之间的关系被用于确定所述第一定时提前量是否能被用于确定所述第一通信节点设备的发送定时”包括以下含义:所述第二时间长度和所述目标时间长度之间的大小关系被用于确定所述第一定时提前量是否能被用于确定所述第一通信节点设备的发送定时。
作为一个实施例,上述句子“所述第一时间长度和所述目标时间长度之间的关系被用于确定所述第一定时提前量是否能被用于确定所述第一通信节点设备的发送定时”包括以下含义:当所述第一时间长度和所述目标时间长度相等的时候,所述第一定时提前量被用于确定所述第一通信节点设备的发送定时;当所述第一时间长度和所述目标时间长度不相等的时候,所述第一定时提前量不被用于确定所述第一通信节点设备的发送定时
作为一个实施例,上述句子“所述第二时间长度和所述目标时间长度之间的关系被用于确定所述第一定时提前量是否能被用于确定所述第一通信节点设备的发送定时”包括以下含义:所述第一信号的发送起始时刻和所述第二信号的接收起始时刻的时间间隔长度等于所述第二时间长度,所述第二时间长度是否等于所述目标时间长度与所述第一信号在时域所占用的时间长度(包括GP)被用于确定所述第一定时提前量是否能被用于确定所述第一通信节点设备的发送定时。
作为一个实施例,上述句子“所述第二时间长度和所述目标时间长度之间的关系被用于确定所述第一定时提前量是否能被用于确定所述第一通信节点设备的发送定时”包括以下含义:所述第一信号的发送起始时刻和所述第二信号的接收结束时刻的时间间隔长度等于所述第二时间长度,所述第二时间长度是否等于所述目标时间长度、所述第一信号在时域所占用的时间长度(包括GP)、所述第二信号在时域所占用的时间长度的和被用于确定所述第一定时提前量是否能被用于确定所述第一通信节点设备的发送定时。
作为一个实施例,上述句子“所述第二时间长度和所述目标时间长度之间的关系被用于确定所述第一定时提前量是否能被用于确定所述第一通信节点设备的发送定时”包括以下含义:所述第一信号(包括GP)的发送结束时刻和所述第二信号的接收结束时刻的时间间隔长度等于所述第二时间长度,所述第二时间长度是否等于所述目标时间长度与所述第二信号在时域所占用的时间长度的和被用于确定所述第一定时提前量是否能被用于确定所述第一通信节点设备的发送定时。
实施例10
实施例10示例了根据本申请的一个实施例的X个备选测量区间的示意图,如附图10所 示。在附图10中,每个地理位置区间代表X个备选测量区间中的一个备选测量区间。
在实施例10中,本申请中的所述目标测量值属于目标测量区间,所述目标测量区间是X个备选测量区间中的一个备选测量区间,所述X个备选测量区间中的任意两个备选测量区间不相同,所述X是大于1的正整数。
作为一个实施例,所述X个备选测量区间中的任意一个备选测量区间是一个数值范围。
作为一个实施例,所述X个备选测量区间中的任意一个备选测量区间是所述目标测量量的一个可能的数值范围。
作为一个实施例,所述目标测量值是一个对本申请中的所述第一通信节点设备和所述第二通信节点设备之间的距离的测量值。
作为一个实施例,所述目标测量值是一个本申请中的所述第一通信节点设备对自身的地理位置的测量值。
作为一个实施例,所述目标测量值是一个本申请中的所述第一通信节点设备对自身的坐标位置的测量值。
作为一个实施例,所述目标测量值是一个对本申请中的所述第一通信节点设备和所述第二通信节点设备之间的传输延时的测量值。
作为一个实施例,所述目标测量值包括RSRP(Reference Signal Received Power,参考信号接收功率)。
作为一个实施例,所述目标测量值包括RSRQ(Reference Signal Received Quality,参考信号接收质量)。
作为一个实施例,所述目标测量值包括RS-SINR(reference signal-signal to noise and interference ratio,参考信号信干燥比)。
作为一个实施例,所述目标测量值包括RSSI(Received Signal Strength indicator,接收信号强度指示)。
作为一个实施例,所述第一接收机接收第五信息,所述第五信息被用于确定所述X个备选测量区间。
作为一个实施例,所述X个备选测量区间是预定义。
作为一个实施例,对于给定的本申请中的所述第二通信节点设备的类型,所述X个备选测量区间是预定义的。
作为一个实施例,对于给定的本申请中的所述第二通信节点设备的高度,所述X个备选测量区间是预定义的。
作为一个实施例,所述X个备选测量区间中的任意两个备选测量区间不重合(Non-overlapped)。
作为一个实施例,所述X个备选测量区间中的任意两个备选测量区间不存在重合(overlapped)的部分。
作为一个实施例,所述X个备选测量区间中的存在两个备选测量区间存在重合(overlapped)的部分。
实施例11
实施例11示例了根据本申请的一个实施例的X个备选时频资源池的示意图,如附图11所示。在附图11中,横轴代表时域,纵轴代表频域,每个矩形代表X个备选时频资源池中的一个备选时频资源池中的一个时频资源块,具有相同的填充的矩形所代表的时频资源块属于X个备选时频资源池中的同一个备选时频资源池。
在实施例11中,本申请的所述第四信息被用于确定X个备选时频资源池,所述X个备选时频资源池和本申请中的所述X个备选测量区间一一对应,本申请中的所述目标时频资源块属于目标时频资源池,所述目标时频资源池是所述X个备选时频资源池中的和所述目标测量区间所对应的备选时频资源池。
作为一个实施例,所述第四信息还被用于确定X个备选序列集合,所述X个备选序列集合和所述X个备选测量区间一一对应,所述W个备选序列属于所述X个备选序列集合中的一个备选序列集合,所述W个备选序列所属的备选序列集合是所述X个备选序列集合中的和所述目标测量区间所对应的备选序列集合。
作为一个实施例,所述X个备选时频资源池中的每个时频资源池包括大于1的正整数个时频资源块,所述X个备选时频资源池中所包括的每个时频资源块是一个物理随机接入信道机会(PRACH Occasion)所占用的时频资源块。
作为一个实施例,所述X个备选时频资源池中的每个时频资源池包括在时域周期性出现的大于1的正整数个时频资源块,所述X个备选时频资源池中所包括的每个时频资源块是一个物理随机接入信道机会(PRACH Occasion)所占用的时频资源块。
作为一个实施例,所述目标时频资源块是物理随机接入信道机会(PRACH Occasion)所占用的时频资源块
作为一个实施例,所述X个备选时频资源池中存在两个备选时频资源池非正交(Non-orthogonal)。
作为一个实施例,存在一个RE(Resource Element,资源元素)同时属于所述X个备选时频资源池中的两个备选时频资源池。
作为一个实施例,不存在一个RE(Resource Element,资源元素)同时属于所述X个备选时频资源池中的两个备选时频资源池。
作为一个实施例,所述X个备选时频资源池中任意两个备选时频资源池正交(orthogonal)。
作为一个实施例,所述X个备选时频资源池中任意两个备选时频资源池不相同。
作为一个实施例,所述X个备选时频资源池中存在两个备选时频资源池相同。
作为一个实施例,所述第一通信节点设备在所述目标时频资源池中自行选择所述目标时频资源块。
作为一个实施例,所述第一通信节点设备在所述目标时频资源池中随机选择所述目标时频资源块。
作为一个实施例,所述第一通信节点设备在所述目标时频资源池中的在已选的SSB(Synchronization Signal Block,同步信号块)所对应的物理随机接入信道机会中的等概率地随机选择一个物理随机接入信道机会所占用的时频资源块作为所述目标时频资源块。
作为一个实施例,所述第一通信节点设备在所述目标时频资源池中的在已选的同步广播块(SS/PBCH Block)所对应的物理随机接入信道机会中的等概率地随机选择一个物理随机接入信道机会所占用的时频资源块作为所述目标时频资源块。
实施例12
实施例12示例了根据本申请的一个实施例的第一测量区间和目标测量区间之间的关系的示意图,如附图12所示。在附图12中,每个矩形代表一次操作,每个菱形代表一次判断。在附图12中,从1201开始,在1202中判断目标序列索引是否对应第一序列在W个备选序列中的索引,在1203中判断第一测量区间和目标测量区间是否相同,在1204中第一定时提前量不被用于确定第一通信节点设备的发送定时,在1205中第一定时提前量被用于确定第一通信节点设备的发送定时。
在实施例12中,本申请中的所述第一信息被用于确定第一测量区间,所述第一测量区间是本申请的所述X个备选测量区间中的一个备选测量区间;所述第一测量区间是否和本申请中的所述目标测量区间相同被用于确定本申请中的所述第一定时提前量是否能被用于确定本申请中的所述第一通信节点设备的发送定时。
作为一个实施例,上述句子“所述第一信息被用于确定第一测量区间”包括以下含义:所述第一信息被本申请中的所述第一通信节点设备用于确定所述第一测量区间。
作为一个实施例,上述句子“所述第一信息被用于确定第一测量区间”包括以下含义: 所述第一信息被用于直接指示所述第一测量区间。
作为一个实施例,上述句子“所述第一信息被用于确定第一测量区间”包括以下含义:所述第一信息被用于间接指示所述第一测量区间。
作为一个实施例,上述句子“所述第一信息被用于确定第一测量区间”包括以下含义:所述第一信息被用于显式地指示所述第一测量区间。
作为一个实施例,上述句子“所述第一信息被用于确定第一测量区间”包括以下含义:所述第一信息被用于隐式地指示所述第一测量区间。
作为一个实施例,上述句子“所述第一信息被用于确定第一测量区间”包括以下含义:所述第一信息被用于指示所述第一测量区间在所述X个备选测量区间中的索引。
作为一个实施例,上述句子“所述第一信息被用于确定第一测量区间”包括以下含义:所述第一信息被用于指示所述第一测量区间在所述X个备选测量区间中的顺序。
作为一个实施例,上述句子“所述第一信息被用于确定第一测量区间”包括以下含义:所述第一信息被用于指示所述第一测量区间在所述X个备选测量区间中的标识。
作为一个实施例,上述句子“所述第一测量区间是否和所述目标测量区间相同被用于确定所述第一定时提前量是否能被用于确定所述第一通信节点设备的发送定时”包括以下含义:所述第一测量区间是否和所述目标测量区间相同被本申请中的所述第一通信节点设备用于确定所述第一定时提前量是否能被用于确定所述第一通信节点设备的发送定时。
作为一个实施例,上述句子“所述第一测量区间是否和所述目标测量区间相同被用于确定所述第一定时提前量是否能被用于确定所述第一通信节点设备的发送定时”包括以下含义:当所述第一测量区间和所述目标测量区间相同时,所述第一定时提前量被用于确定所述第一通信节点设备的发送定时;当所述第一测量区间和所述目标测量区间不相同时,所述第一定时提前量不被用于确定所述第一通信节点设备的发送定时。
作为一个实施例,所述第一测量区间和所述目标测量区间相同。
作为一个实施例,所述第一测量区间和所述目标测量区间不相同。
实施例13
实施例13示例了根据本申请的一个实施例的目标测量值的示意图,如附图13所示。在附图13中,每个矩形代表一次操作,每个菱形代表一次判断。在附图13中,从1301开始,在1302中判断第一通信节点设备是否能够获得定位信息,在1303中目标测量值包括第一通信节点设备和第二通信节点设备之间的距离,在1304中目标测量值包括第一通信节点设备和第二通信节点设备之间的倾角信息。
在实施例13中,当本申请的所述第一通信节点设备能够获得所述第一通信节点设备的定位信息时,本申请中的所述目标测量值包括所述第一通信节点设备和本申请中的所述第二通信节点设备之间的距离;反之,所述目标测量值包括所述第一通信节点设备和本申请中的所述第二通信节点设备之间的倾角信息。
作为一个实施例,所述第一通信节点设备的所述定位信息包括所述第一通信节点设备的定位能力信息。
作为一个实施例,所述第一通信节点设备的所述定位信息包括所述第一通信节点设备是否能够通过自身的地理位置计算得到所述第一通信节点设备和本申请中的所述第二通信节点设备之间的距离。
作为一个实施例,所述第一通信节点设备的所述定位信息包括所述第一通信节点设备是否能够通过自身的地理位置计算得到所述第一通信节点设备和本申请中的所述第二通信节点设备之间的距离以及获得的距离的精度。
作为一个实施例,所述第一通信节点设备的所述定位信息包括所述第一通信节点设备是否能够通过自身的地理位置计算得到所述第一通信节点设备和本申请中的所述第二通信节点设备之间的传输延时(Propagation Delay)。
作为一个实施例,所述第一通信节点设备的所述定位信息包括所述第一通信节点设备是否能够通过自身的地理位置计算得到所述第一通信节点设备和本申请中的所述第二通信节点设备之间的传输延时以及获得的传输延时的精度。
作为一个实施例,所述第一通信节点设备的所述定位信息包括所述第一通信节点设备的定位方法。
作为一个实施例,所述第一通信节点设备的所述定位信息包括所述第一通信节点设备是否支持GNSS(Global Navigation Satellite System,全球导航卫星系统)。
作为一个实施例,所述第一通信节点设备的所述定位信息包括所述第一通信节点设备是否支持GNSS(Global Navigation Satellite System,全球导航卫星系统)以及当支持GNSS的时候的定位精度。
作为一个实施例,所述第一通信节点设备的所述定位信息包括所述第一通信节点设备的定位的精度。
作为一个实施例,所述第一通信节点设备的所述定位信息包括所述第一通信节点设备是否支持GNSS(Global Navigation Satellite System,全球导航卫星系统)以及当支持GNSS的时候的GNSS的类型。
作为一个实施例,所述第一通信节点设备和本申请中的第二通信节点设备之间的所述倾角信息包括:所述第一通信节点设备向本申请中的第二通信节点设备发送信号时的离去角(AoD,Angle of Departure)信息。
作为一个实施例,所述第一通信节点设备和本申请中的第二通信节点设备之间的所述倾角信息包括:所述第一通信节点设备接收本申请中的第二通信节点设备发送的信号时的到达角(AoA,Angle of Arrival)信息。
实施例14
实施例14示例了一个第一通信节点设备中的处理装置的结构框图,如附图14所示。附图14中,第一通信节点设备处理装置1400包括第一发射机1401,第一接收机1402和第二接收机1403。第一发射机1401包括本申请附图4中的发射器/接收器456(包括天线460),发射处理器455和控制器/处理器490;第一接收机1402包括本申请附图4中的发射器/接收器456(包括天线460),接收处理器452和控制器/处理器490;第二接收机1403包括本申请附图4中的发射器/接收器456(包括天线460),接收处理器452和控制器/处理器490。
在实施例14中,第一发射机1401发送第一信号,所述第一信号在时频域占用目标时频资源块;第一接收机1402接收第一信令;第二接收机1403接收第二信号,所述第一信令被用于确定所述第二信号所占用的时频资源;所述第一信令携带目标特征标志,所述目标时频资源块在时频域的位置被用于确定所述目标特征标识;第一序列被用于生成所述第一信号,所述第一序列是W个备选序列中的一个备选序列,所述W是大于1的正整数;所述第二信号携带目标序列索引、第一信息和第一定时提前量;当所述目标序列索引对应所述第一序列在所述W个备选序列中的索引时,所述第一信息被用于确定所述第一定时提前量是否被用于确定所述第一通信节点设备的发送定时。
作为一个实施例,第一接收机1402接收第二信息和第三信息,其中,所述第二信息被用于确定所述W个备选序列,所述第一通信节点设备在所述W个备选序列中随机选择所述第一序列;所述第三信息被用于确定所述第二信号携带所述第一信息。
作为一个实施例,所述第一信息被用于确定第一时间长度,所述第一信号的发送时刻和所述第二信号的接收时刻的时间间隔长度等于第二时间长度;所述第一时间长度和2倍的所述第一定时提前量的和等于目标时间长度,所述第二时间长度和所述目标时间长度之间的关系被用于确定所述第一定时提前量是否被用于确定所述第一通信节点设备的发送定时。
作为一个实施例,第二接收机1403确定目标测量值;其中,所述目标测量值属于目标测量区间,所述目标测量区间是X个备选测量区间中的一个备选测量区间,所述X个备选测 量区间中的任意两个备选测量区间不相同,所述X是大于1的正整数。
作为一个实施例,第二接收机1403确定目标测量值;所述目标测量值属于目标测量区间,所述目标测量区间是X个备选测量区间中的一个备选测量区间,所述X个备选测量区间中的任意两个备选测量区间不相同,所述X是大于1的正整数;第一接收机1402接收第四信息;所述第四信息被用于确定X个备选时频资源池,所述X个备选时频资源池和所述X个备选测量区间一一对应,所述目标时频资源块属于目标时频资源池,所述目标时频资源池是所述X个备选时频资源池中的和所述目标测量区间所对应的备选时频资源池。
作为一个实施例,第二接收机1403确定目标测量值;其中,所述目标测量值属于目标测量区间,所述目标测量区间是X个备选测量区间中的一个备选测量区间,所述X个备选测量区间中的任意两个备选测量区间不相同,所述X是大于1的正整数;所述第一信息被用于确定第一测量区间,所述第一测量区间是所述X个备选测量区间中的一个备选测量区间;所述第一测量区间是否和所述目标测量区间相同被用于确定所述第一定时提前量是否能被用于确定所述第一通信节点设备的发送定时。
作为一个实施例,第二接收机1403确定目标测量值;其中,所述目标测量值属于目标测量区间,所述目标测量区间是X个备选测量区间中的一个备选测量区间,所述X个备选测量区间中的任意两个备选测量区间不相同,所述X是大于1的正整数;当所述第一通信节点设备能够获得所述第一通信节点设备的定位信息时,所述目标测量值包括所述第一通信节点设备和本申请中的所述第二通信节点设备之间的距离;反之,所述目标测量值包括所述第一通信节点设备和本申请中的所述第二通信节点设备之间的倾角信息。
实施例15
实施例15示例了一个第二通信节点设备中的处理装置的结构框图,如附图15所示。在附图15中,第二通信节点设备处理装置1500包括第三接收机1501,第二发射机1502和第三发射机1503。第三接收机1501包括本申请附图4中的发射器/接收器416(包括天线420),接收处理器412和控制器/处理器440;第二发射机1502包括本申请附图4中的发射器/接收器416(包括天线420),发射处理器415和控制器/处理器440;第三发射机1503包括本申请附图4中的发射器/接收器416(包括天线420),发射处理器415和控制器/处理器440。
在实施例15中,第三接收机1501接收第一信号,所述第一信号在时频域占用目标时频资源块;第二发射机1502发送第一信令;第三发射机1503发送第二信号,所述第一信令被用于确定所述第二信号所占用的时频资源;所述第一信令携带目标特征标志,所述目标时频资源块在时频域的位置被用于确定所述目标特征标识;第一序列被用于生成所述第一信号,所述第一序列是W个备选序列中的一个备选序列,所述W是大于1的正整数;所述第二信号携带目标序列索引、第一信息和第一定时提前量;当所述目标序列索引对应所述第一序列在所述W个备选序列中的索引时,所述第一信息被用于指示所述第一定时提前量是否被用于确定所述第一信号的发送者的发送定时。
作为一个实施例,第二发射机1502发送第二信息和第三信息;所述第二信息被用于确定所述W个备选序列,所述第一通信节点设备在所述W个备选序列中随机选择所述第一序列;所述第三信息被用于确定所述第二信号携带所述第一信息。
作为一个实施例,所述第一信息被用于确定第一时间长度,所述第一信号的发送时刻和所述第二信号的接收时刻的时间间隔长度等于第二时间长度;所述第一时间长度和2倍的所述第一定时提前量的和等于目标时间长度,所述第二时间长度和所述目标时间长度之间的关系被用于确定所述第一定时提前量是否被用于确定所述第一信号的发送者的发送定时。
作为一个实施例,第二发射机1502发送第四信息;其中,所述第四信息被用于确定X个备选时频资源池,所述X个备选时频资源池和X个备选测量区间一一对应,所述X个备选测量区间中的任意两个备选测量区间不相同,所述X是大于1的正整数;所述目 标时频资源块属于目标时频资源池。
作为一个实施例,第二发射机1502发送第四信息;所述第四信息被用于确定X个备选时频资源池,所述X个备选时频资源池和X个备选测量区间一一对应,所述X个备选测量区间中的任意两个备选测量区间不相同,所述X是大于1的正整数;所述目标时频资源块属于目标时频资源池;所述第一信息被用于确定第一测量区间,所述第一测量区间是所述X个备选测量区间中的一个备选测量区间。
作为一个实施例,第二发射机1502发送第四信息;所述第四信息被用于确定X个备选时频资源池,所述X个备选时频资源池和X个备选测量区间一一对应,所述X个备选测量区间中的任意两个备选测量区间不相同,所述X是大于1的正整数;所述目标时频资源块属于目标时频资源池;当所述第一信号的发送者能够获得所述第一信号的发送者的定位信息时,所述X个备选测量区间中的一个备选测量区间包括包括所述第一信号的发送者和所述第一信号的接收者之间的距离;反之,所述X个备选测量区间中的一个备选测量区间包括所述第一信号的发送者和所述第一信号的接收者之间的倾角信息。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一类通信节点设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二类通信节点设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种用于无线通信中的第一通信节点设备,其特征在于,包括:
    第一发射机,发送第一信号,所述第一信号在时频域占用目标时频资源块;
    第一接收机,接收第一信令;
    第二接收机,接收第二信号,所述第一信令被用于确定所述第二信号所占用的时频资源;
    其中,所述第一信令携带目标特征标志,所述目标时频资源块在时频域的位置被用于确定所述目标特征标识;第一序列被用于生成所述第一信号,所述第一序列是W个备选序列中的一个备选序列,所述W是大于1的正整数;所述第二信号携带目标序列索引、第一信息和第一定时提前量;当所述目标序列索引对应所述第一序列在所述W个备选序列中的索引时,所述第一信息被用于确定所述第一定时提前量是否被用于确定所述第一通信节点设备的发送定时。
  2. 根据权利要求1所述的第一通信节点设备,其特征在于,所述第一接收机接收第二信息和第三信息,其中,所述第二信息被用于确定所述W个备选序列,所述第一通信节点设备在所述W个备选序列中随机选择所述第一序列;所述第三信息被用于确定所述第二信号携带所述第一信息。
  3. 根据权利要求1或2中任一权利要求所述的第一通信节点设备,其特征在于,所述第一信息被用于确定第一时间长度,所述第一信号的发送时刻和所述第二信号的接收时刻的时间间隔长度等于第二时间长度;所述第一时间长度和2倍的所述第一定时提前量的和等于目标时间长度,所述第二时间长度和所述目标时间长度之间的关系被用于确定所述第一定时提前量是否被用于确定所述第一通信节点设备的发送定时。
  4. 根据权利要求1至3中任一权利要求所述的第一通信节点设备,其特征在于,所述第二接收机确定目标测量值;其中,所述目标测量值属于目标测量区间,所述目标测量区间是X个备选测量区间中的一个备选测量区间,所述X个备选测量区间中的任意两个备选测量区间不相同,所述X是大于1的正整数。
  5. 根据权利要求4所述的第一通信节点设备,其特征在于,所述第一接收机接收第四信息;其中,所述第四信息被用于确定X个备选时频资源池,所述X个备选时频资源池和所述X个备选测量区间一一对应,所述目标时频资源块属于目标时频资源池,所述目标时频资源池是所述X个备选时频资源池中的和所述目标测量区间所对应的备选时频资源池。
  6. 根据权利要求4或5中任一权利要求所述的第一通信节点设备,其特征在于,所述第一信息被用于确定第一测量区间,所述第一测量区间是所述X个备选测量区间中的一个备选测量区间;所述第一测量区间是否和所述目标测量区间相同被用于确定所述第一定时提前量是否能被用于确定所述第一通信节点设备的发送定时。
  7. 根据权利要求4至6中任一权利要求所述的第一通信节点设备,其特征在于,当所述第一通信节点设备能够获得所述第一通信节点设备的定位信息时,所述目标测量值包括所述第一通信节点设备和本申请中的所述第二通信节点设备之间的距离;反之,所述目标测量值包括所述第一通信节点设备和本申请中的所述第二通信节点设备之间的倾角信息。
  8. 一种用于无线通信中的第二通信节点设备,其特征在于,包括:
    第三接收机,接收第一信号,所述第一信号在时频域占用目标时频资源块;
    第二发射机,发送第一信令;
    第三发射机,发送第二信号,所述第一信令被用于确定所述第二信号所占用的时频资源;
    其中,所述第一信令携带目标特征标志,所述目标时频资源块在时频域的位置被用于确定所述目标特征标识;第一序列被用于生成所述第一信号,所述第一序列是W个备选序列中的一个备选序列,所述W是大于1的正整数;所述第二信号携带目标序列索引、 第一信息和第一定时提前量;当所述目标序列索引对应所述第一序列在所述W个备选序列中的索引时,所述第一信息被用于指示所述第一定时提前量是否被用于确定所述第一信号的发送者的发送定时。
  9. 一种用于无线通信中的第一通信节点中的方法,其特征在于,包括:
    发送第一信号,所述第一信号在时频域占用目标时频资源块;
    接收第一信令;
    接收第二信号,所述第一信令被用于确定所述第二信号所占用的时频资源;
    其中,所述第一信令携带目标特征标志,所述目标时频资源块在时频域的位置被用于确定所述目标特征标识;第一序列被用于生成所述第一信号,所述第一序列是W个备选序列中的一个备选序列,所述W是大于1的正整数;所述第二信号携带目标序列索引、第一信息和第一定时提前量;当所述目标序列索引对应所述第一序列在所述W个备选序列中的索引时,所述第一信息被用于确定所述第一定时提前量是否被用于确定所述第一通信节点设备的发送定时。
  10. 一种用于无线通信中的第二通信节点中的方法,其特征在于,包括:
    接收第一信号,所述第一信号在时频域占用目标时频资源块;
    发送第一信令;
    发送第二信号,所述第一信令被用于确定所述第二信号所占用的时频资源;
    其中,所述第一信令携带目标特征标志,所述目标时频资源块在时频域的位置被用于确定所述目标特征标识;第一序列被用于生成所述第一信号,所述第一序列是W个备选序列中的一个备选序列,所述W是大于1的正整数;所述第二信号携带目标序列索引、第一信息和第一定时提前量;当所述目标序列索引对应所述第一序列在所述W个备选序列中的索引时,所述第一信息被用于指示所述第一定时提前量是否被用于确定所述第一信号的发送者的发送定时。
PCT/CN2020/091147 2019-06-06 2020-05-20 一种用于无线通信的通信节点中的方法和装置 WO2020244385A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/536,128 US20220086918A1 (en) 2019-06-06 2021-11-29 Method and device in communication node used for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910491866.X 2019-06-06
CN201910491866.XA CN112054833B (zh) 2019-06-06 2019-06-06 一种用于无线通信的通信节点中的方法和装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094131 Continuation WO2020253529A1 (zh) 2019-06-06 2020-06-03 一种用于无线通信的通信节点中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/536,128 Continuation US20220086918A1 (en) 2019-06-06 2021-11-29 Method and device in communication node used for wireless communication

Publications (1)

Publication Number Publication Date
WO2020244385A1 true WO2020244385A1 (zh) 2020-12-10

Family

ID=73609014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091147 WO2020244385A1 (zh) 2019-06-06 2020-05-20 一种用于无线通信的通信节点中的方法和装置

Country Status (2)

Country Link
CN (2) CN112054833B (zh)
WO (1) WO2020244385A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117479283A (zh) * 2022-07-18 2024-01-30 上海朗帛通信技术有限公司 一种用于无线通信的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2408253A1 (en) * 2010-07-13 2012-01-18 Alcatel Lucent Method for random access to a wireless or mobile communication network, and corresponding transceiver equipment
CN107623649A (zh) * 2016-07-15 2018-01-23 上海朗帛通信技术有限公司 一种无线传输中的方法和装置
US20180220468A1 (en) * 2017-02-02 2018-08-02 Huawei Technologies Co., Ltd. Random access channel contention resolution
CN109429354A (zh) * 2017-08-31 2019-03-05 华为技术有限公司 一种随机接入方法及终端
CN110098892A (zh) * 2018-01-30 2019-08-06 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101448325B (zh) * 2007-11-27 2012-11-21 电信科学技术研究院 一种随机接入过程中的处理方法和基站
US9191966B2 (en) * 2010-03-30 2015-11-17 Intel Mobile Communications GmbH Communication device and method for communicating in a communication mode using a frequency range according to a frame structure
CN101931456B (zh) * 2010-08-09 2016-05-25 中兴通讯股份有限公司 一种移动通信系统中测量参考信号的发送方法
EP2827660A1 (en) * 2013-07-16 2015-01-21 Alcatel Lucent Mobile terminal and base station
CN107204837A (zh) * 2016-03-17 2017-09-26 上海朗帛通信技术有限公司 一种基于蜂窝网的低延迟通信的方法和装置
CN107404369B (zh) * 2016-05-21 2020-04-24 上海朗帛通信技术有限公司 一种无线通信中的ue和基站中的方法和装置
CN107801247B (zh) * 2016-09-07 2020-04-07 上海朗帛通信技术有限公司 一种支持可变的子载波间距的ue、基站中的方法和设备
JP6901107B2 (ja) * 2017-08-10 2021-07-14 オフィノ, エルエルシー 無線リソース構成同期
CN108112030B (zh) * 2017-08-11 2022-06-07 中兴通讯股份有限公司 信息上报的触发方法和装置、信号的选择方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2408253A1 (en) * 2010-07-13 2012-01-18 Alcatel Lucent Method for random access to a wireless or mobile communication network, and corresponding transceiver equipment
CN107623649A (zh) * 2016-07-15 2018-01-23 上海朗帛通信技术有限公司 一种无线传输中的方法和装置
US20180220468A1 (en) * 2017-02-02 2018-08-02 Huawei Technologies Co., Ltd. Random access channel contention resolution
CN109429354A (zh) * 2017-08-31 2019-03-05 华为技术有限公司 一种随机接入方法及终端
CN110098892A (zh) * 2018-01-30 2019-08-06 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Doppler Compensation, Uplink Timing Advance and Random Access in NTN", 3GPP DRAFT; R1-1906087, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051727544 *
THALES: "On Timing Advance in NTN", 3GPP DRAFT; R1-1905180 - ON TIMING ADVANCE IN NTN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an/China; 20190407 - 20190413, 29 March 2019 (2019-03-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051692064 *

Also Published As

Publication number Publication date
CN112054833A (zh) 2020-12-08
CN113891490A (zh) 2022-01-04
CN112054833B (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
WO2019119411A1 (zh) 一种用于无线通信的通信节点中的方法和装置
US20240129874A1 (en) Method and device in communication node used for wireless communication
US20230247598A1 (en) Method and device in communication node used for wireless communication
CN111918379B (zh) 一种用于无线通信的通信节点中的方法和装置
WO2020253529A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2020233406A1 (zh) 一种用于无线通信的通信节点中的方法和装置
US11962453B2 (en) Method and device in communication node used for wireless communication
WO2021088618A1 (zh) 一种被用于无线通信的方法和装置
US20200413400A1 (en) Method and device in communication node used for wireless communication
US20220286256A1 (en) Method and device for wireless communication
US20220086918A1 (en) Method and device in communication node used for wireless communication
WO2021129250A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020244385A1 (zh) 一种用于无线通信的通信节点中的方法和装置
US20220279510A1 (en) Method and device in nodes used for wireless communication
CN111133807B (zh) 一种用于无线通信的通信节点中的方法和装置
WO2020156247A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2021139551A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN112994857B (zh) 一种被用于无线通信的方法和设备
WO2021008358A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113141240B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021018072A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021098468A1 (zh) 一种被用于无线通信的方法和设备
CN116133132A (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20818836

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20818836

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/07/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20818836

Country of ref document: EP

Kind code of ref document: A1