WO2020233406A1 - 一种用于无线通信的通信节点中的方法和装置 - Google Patents

一种用于无线通信的通信节点中的方法和装置 Download PDF

Info

Publication number
WO2020233406A1
WO2020233406A1 PCT/CN2020/088866 CN2020088866W WO2020233406A1 WO 2020233406 A1 WO2020233406 A1 WO 2020233406A1 CN 2020088866 W CN2020088866 W CN 2020088866W WO 2020233406 A1 WO2020233406 A1 WO 2020233406A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
resource pool
information
communication node
Prior art date
Application number
PCT/CN2020/088866
Other languages
English (en)
French (fr)
Inventor
刘铮
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2020233406A1 publication Critical patent/WO2020233406A1/zh
Priority to US17/372,503 priority Critical patent/US12120641B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • This application relates to a transmission method and device in a wireless communication system, in particular to a transmission scheme and device with a large delay difference.
  • NTN Non-Terrestrial Networks
  • R15 3GPP RAN#75 plenary meeting
  • 3GPP RAN#79 plenary meeting it was decided to start studying solutions in the NTN network, and then to start WI in the R16 or R17 version to standardize related technologies.
  • the NTN network user equipment (UE, User Equipment) and satellites or aircraft communicate through the 5G network. Since the distance from the satellite or aircraft to the user equipment is much greater than the distance from the ground base station to the user equipment, the satellite or aircraft is Propagation Delay during communication and transmission between user equipment. In addition, when the satellite is used as the relay device of the ground station, the delay of the feeder link between the satellite and the ground station will further increase the transmission delay between the user equipment and the base station. On the other hand, because the coverage of satellites and aircraft is much larger than that of terrestrial networks (Terrestrial Networks), and the inclination angles of ground equipment to satellites or aircraft are different, the difference between the delays in NTN is very large. .
  • Terrestrial Networks Terrestrial Networks
  • the maximum delay difference is only a few microseconds or tens of microseconds, but the maximum delay difference in NTN can reach several milliseconds or even tens of milliseconds. Since the existing random access in LTE or NR is designed for traditional terrestrial communications and cannot be directly applied to NTN networks, new designs are needed to support large delay networks, especially NTN communications.
  • This application provides a solution for the problem of large delay difference networks, especially random access design in NTN communication. It should be noted that, in the case of no conflict, the embodiments in the base station equipment of this application and the features in the embodiments can be applied to the user equipment, and vice versa. Further, in the case of no conflict, the embodiments of the application and the features in the embodiments can be combined with each other arbitrarily.
  • This application discloses a method used in a first communication node in wireless communication, which is characterized in that it includes:
  • the first time-frequency resource pool includes a positive integer number of first-type time-frequency resource blocks
  • the second time-frequency resource pool includes a positive integer number of second-type time-frequency resource blocks
  • the first time-frequency resource pool The amount of resources occupied in the time domain by any one of the first-type time-frequency resource blocks in the resource pool and the amount of resources occupied in the time domain by any one of the second-type time-frequency resource blocks in the second time-frequency resource pool The number is not equal
  • the target time-frequency resource block is a first-type time-frequency resource block included in the first time-frequency resource pool, or the target time-frequency resource block is the second time-frequency resource pool
  • the positioning information of the first communication node device is used to determine the target time from the first time-frequency resource pool and the second time-frequency resource pool The time-frequency resource pool to which the frequency resource block belongs.
  • the first communication node device in this application determines the format of the preamble to send or the resources occupied by the random access channel according to its own positioning capability or possible positioning information, so that it can target different capabilities. Optimize the design of random access in different scenarios to improve the overall performance of the system.
  • a preamble format or a random access channel format that occupies different amounts of time domain resources is designed for different positioning capabilities to ensure random access performance under conditions of different user equipment capabilities.
  • the above method is characterized in that the absolute value of the time difference between the transmission start time of the first signal and the reference time is equal to the first timing adjustment amount, and the reception timing of the first communication node device is used When determining the reference moment; when the target time-frequency resource block belongs to the first time-frequency resource pool, the first timing adjustment is greater than 0; when the target time-frequency resource block belongs to the second In the case of a frequency resource pool, the first timing adjustment value is equal to zero.
  • the first timing adjustment is associated with the time-frequency resource pool to which the target time domain resource block belongs to ensure optimization when the user equipment can accurately obtain positioning information and then uplink timing information
  • the preamble sequence design reduces the preamble resource overhead of random access and improves the probability of random access success.
  • the above method is characterized in that it further includes:
  • the target sequence when the target time-frequency resource block belongs to the first time-frequency resource pool, the target sequence is used to generate the first signal after W1 repeated transmissions; when the target time-frequency resource block belongs to all In the second time-frequency resource pool, the target sequence is used to generate the first signal after W2 repeated transmissions; the W1 is a positive integer, and the W2 is a positive integer that is not equal to the W1.
  • random access channels of different time domain lengths are designed according to the time-frequency resource pool to which the target time-frequency resource block belongs, and random access channels of different lengths are repeated through different time domains through the same target sequence. Implementation simplifies system design, reduces implementation complexity, and at the same time ensures good compatibility.
  • the above method is characterized in that it further includes:
  • the third information is used to determine X candidate sequences, where X is a positive integer greater than 1; the target sequence is one candidate sequence among the X candidate sequences, and the first The communication node device randomly selects the target sequence among the X candidate sequences.
  • the above method is characterized in that it further includes:
  • the position of the target time-frequency resource block in the time-frequency domain is used to determine a first characteristic identifier, and the first signaling carries the first characteristic identifier; and the first time window is Y candidate times A candidate time window in the window, where Y is a positive integer greater than 1, and any two candidate time windows in the Y candidate time windows are orthogonal; the time-frequency to which the target time-frequency resource block belongs The resource pool is used to determine the first time window from the Y candidate time windows.
  • the above method is characterized in that it further includes:
  • the second signal carries fourth information
  • the fourth information is used to indicate the positioning capability of the first communication node device.
  • the positioning capability of the first communication node device is reported to the network through MsgA or Msg3, so that the network can configure the subsequent transmission of the user equipment according to the positioning capability of the user equipment, so that the network can implement the specific system as soon as possible. optimization.
  • the above method is characterized in that, when the first communication node device can obtain the positioning information of the first communication node device, the first communication node device obtains the first communication node device from the first communication node device.
  • the time-frequency resource pool to which the target time-frequency resource block belongs is determined in the time-frequency resource pool and the second time-frequency resource pool; when the first communication node device cannot obtain the information of the first communication node device When positioning information, the target time-frequency resource block belongs to the first time-frequency resource pool.
  • This application discloses a method used in a second communication node in wireless communication, which is characterized in that it includes:
  • the first time-frequency resource pool includes a positive integer number of first-type time-frequency resource blocks
  • the second time-frequency resource pool includes a positive integer number of second-type time-frequency resource blocks
  • the first time-frequency resource pool The amount of resources occupied in the time domain by any one of the first-type time-frequency resource blocks in the resource pool and the amount of resources occupied in the time domain by any one of the second-type time-frequency resource blocks in the second time-frequency resource pool The number is not equal
  • the target time-frequency resource block is a first-type time-frequency resource block included in the first time-frequency resource pool, or the target time-frequency resource block is the second time-frequency resource pool
  • the positioning information of the first communication node device is used to determine the target time from the first time-frequency resource pool and the second time-frequency resource pool The time-frequency resource pool to which the frequency resource block belongs.
  • the above method is characterized in that the absolute value of the time difference between the transmission start time of the first signal and the reference time is equal to the first timing adjustment amount, and the reception timing of the first communication node device is used When determining the reference moment; when the target time-frequency resource block belongs to the first time-frequency resource pool, the first timing adjustment is greater than 0; when the target time-frequency resource block belongs to the second In the case of a frequency resource pool, the first timing adjustment value is equal to zero.
  • the above method is characterized in that it further includes:
  • the target sequence when the target time-frequency resource block belongs to the first time-frequency resource pool, the target sequence is used to generate the first signal after W1 repeated transmissions; when the target time-frequency resource block belongs to all In the second time-frequency resource pool, the target sequence is used to generate the first signal after W2 repeated transmissions; the W1 is a positive integer, and the W2 is a positive integer that is not equal to the W1.
  • the above method is characterized in that it further includes:
  • the third information is used to determine X candidate sequences, where X is a positive integer greater than 1; the target sequence is one candidate sequence among the X candidate sequences, and the first The communication node device randomly selects the target sequence among the X candidate sequences.
  • the above method is characterized in that it further includes:
  • the position of the target time-frequency resource block in the time-frequency domain is used to determine a first characteristic identifier, and the first signaling carries the first characteristic identifier; and the first time window is Y candidate times A candidate time window in the window, where Y is a positive integer greater than 1, and any two candidate time windows in the Y candidate time windows are orthogonal; the time-frequency to which the target time-frequency resource block belongs The resource pool is used to determine the first time window from the Y candidate time windows.
  • the above method is characterized in that it further includes:
  • the second signal carries fourth information
  • the fourth information is used to indicate the positioning capability of the first communication node device.
  • the above method is characterized in that, when the first communication node device can obtain the positioning information of the first communication node device, the first communication node device obtains the first communication node device from the first communication node device.
  • the time-frequency resource pool to which the target time-frequency resource block belongs is determined in the time-frequency resource pool and the second time-frequency resource pool; when the first communication node device cannot obtain the information of the first communication node device When positioning information, the target time-frequency resource block belongs to the first time-frequency resource pool.
  • This application discloses a first communication node device used in wireless communication, which is characterized in that it includes:
  • a first receiver receiving first information and receiving second information, where the first information and the second information are respectively used to determine a first time-frequency resource pool and a second time-frequency resource pool;
  • the first transmitter transmits a first signal, and the first signal occupies a target time-frequency resource block;
  • the first time-frequency resource pool includes a positive integer number of first-type time-frequency resource blocks
  • the second time-frequency resource pool includes a positive integer number of second-type time-frequency resource blocks
  • the first time-frequency resource pool The amount of resources occupied in the time domain by any one of the first-type time-frequency resource blocks in the resource pool and the amount of resources occupied in the time domain by any one of the second-type time-frequency resource blocks in the second time-frequency resource pool The number is not equal
  • the target time-frequency resource block is a first-type time-frequency resource block included in the first time-frequency resource pool, or the target time-frequency resource block is the second time-frequency resource pool
  • the positioning information of the first communication node device is used to determine the target time from the first time-frequency resource pool and the second time-frequency resource pool The time-frequency resource pool to which the frequency resource block belongs.
  • This application discloses a second communication node device used in wireless communication, which is characterized in that it includes:
  • a second transmitter sending first information and sending second information, where the first information and the second information are respectively used to determine a first time-frequency resource pool and a second time-frequency resource pool;
  • a second receiver receiving a first signal, where the first signal occupies a target time-frequency resource block
  • the first time-frequency resource pool includes a positive integer number of first-type time-frequency resource blocks
  • the second time-frequency resource pool includes a positive integer number of second-type time-frequency resource blocks
  • the first time-frequency resource pool The amount of resources occupied in the time domain by any one of the first-type time-frequency resource blocks in the resource pool and the amount of resources occupied in the time domain by any one of the second-type time-frequency resource blocks in the second time-frequency resource pool The number is not equal
  • the target time-frequency resource block is a first-type time-frequency resource block included in the first time-frequency resource pool, or the target time-frequency resource block is the second time-frequency resource pool
  • the positioning information of the first communication node device is used to determine the target time from the first time-frequency resource pool and the second time-frequency resource pool The time-frequency resource pool to which the frequency resource block belongs.
  • this application compared with the random access method in the existing terrestrial network, this application has the following main technical advantages:
  • the user equipment can determine the format of the preamble to be sent or the resources occupied by the random access channel according to its own positioning capability or possible positioning information, so that it can target different capabilities and different scenarios Optimize the design of random access to improve the overall performance of the system.
  • the method in this application designs a preamble format or a random access channel format that occupies different amounts of time domain resources for different positioning capabilities, ensuring random access performance under different user equipment capabilities.
  • the method in this application guarantees an optimized preamble sequence design when the user equipment can accurately obtain positioning information and then uplink timing information, reduces the preamble resource overhead of random access, and improves the probability of random access success.
  • the method in this application designs random access channels of different time domain lengths, and the random access channels of different lengths are implemented through the same characteristic sequence through different time domain repetitions, which simplifies system design and reduces implementation complexity Degree, while ensuring good compatibility.
  • Figure 1 shows a flow chart of the first information, the second information and the first signal according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication node and a second communication node according to an embodiment of the present application
  • Figure 5 shows a flow chart of signal transmission according to an embodiment of the present application
  • FIG. 6 shows a schematic diagram of the relationship between the first time-frequency resource pool and the second time-frequency resource pool according to an embodiment of the present application
  • Fig. 7 shows a schematic diagram of a first timing adjustment amount according to an embodiment of the present application
  • Fig. 8 shows a schematic diagram of the relationship between the target sequence and the first signal according to an embodiment of the present application
  • Fig. 9 shows a schematic diagram of X candidate sequences according to an embodiment of the present application.
  • Fig. 10 shows a schematic diagram of Y candidate time windows according to an embodiment of the present application
  • FIG. 11 shows a schematic diagram of the relationship between a target time-frequency resource block and a first time-frequency resource pool and a second time-frequency resource pool according to an embodiment of the present application
  • Fig. 12 shows a structural block diagram of a processing device in a first communication node device according to an embodiment of the present application
  • Fig. 13 shows a structural block diagram of a processing device in a second communication node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of the transmission of the first information, the second information and the first signal according to an embodiment of the present application, as shown in FIG. 1.
  • each box represents a step, and it should be particularly emphasized that the order of each box in the figure does not represent the time sequence of the steps shown.
  • the first communication node in this application receives first information and receives second information in step 101; sends the first signal in step 102; the first information and the second information are respectively Used to determine a first time-frequency resource pool and a second time-frequency resource pool; the first signal occupies a target time-frequency resource block; the first time-frequency resource pool includes a positive integer number of first-type time-frequency resource blocks, The second time-frequency resource pool includes a positive integer number of second-type time-frequency resource blocks; the number of resources occupied in the time domain by any one of the first-type time-frequency resource blocks in the first time-frequency resource pool and The number of resources occupied by any second type time-frequency resource block in the second time-frequency resource pool in the time domain is not equal; the target time-frequency resource block is included in the first time-frequency resource pool A first-type time-frequency resource block of the first type, or the target time-frequency resource block is a second-type time-frequency resource block included in the second time-frequency resource pool; positioning information of the first
  • the first information and the second information are two independent information.
  • the first information and the second information are joint coding (Joint Coding).
  • the first information and the second information are two sub-information in one information.
  • the first information and the second information are carried through the same signaling.
  • the first information and the second information are carried through two different signalings.
  • the first information is the second information
  • the first information and the second information are two different fields in the same signaling.
  • the first information and the second information are two different IEs (Information Elements) in the same signaling.
  • the first information and the second information are carried through a PDSCH (Physical Downlink Shared Channel, physical downlink shared channel).
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • the first information and the second information are carried through two different PDSCHs (Physical Downlink Shared Channel, physical downlink shared channel).
  • PDSCHs Physical Downlink Shared Channel, physical downlink shared channel.
  • the first information is transmitted through higher layer signaling.
  • the first information is transmitted through physical layer signaling.
  • the first information includes all or part of a high-layer signaling.
  • the first information includes all or part of a physical layer signaling.
  • the first information includes all or part of an IE (Information Element, information element) in an RRC (Radio Resource Control, radio resource control) signaling.
  • IE Information Element, information element
  • RRC Radio Resource Control, radio resource control
  • the first information includes all or part of a field (Field) in an IE (Information Element, information element) in an RRC (Radio Resource Control, radio resource control) signaling.
  • Field Information Element, information element
  • RRC Radio Resource Control, radio resource control
  • the first information includes all or part of fields in a MAC (Medium Access Control) layer signaling.
  • MAC Medium Access Control
  • the first information includes all or part of a system information block (SIB, System Information Block).
  • SIB system information block
  • the first information includes all or part of a MAC (Medium Access Control) CE (Control Element, control element).
  • MAC Medium Access Control
  • CE Control Element, control element
  • the first information includes all or part of a MAC (Medium Access Control) header (Header).
  • MAC Medium Access Control
  • the first information is transmitted through a DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the first information is transmitted through a PDSCH (Physical Downlink Shared Channel, physical downlink shared channel).
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • the first information is related to the coverage area of the second communication node in this application.
  • the first information is related to the height of the second communication node in this application.
  • the first information is related to the type of the second communication node in this application.
  • the first information is related to the inclination angle of the second communication node in this application relative to the first communication node in this application.
  • the first information is related to the size of the coverage area of the second communication node in this application.
  • the first information is broadcast.
  • the first information is cell specific (Cell Specific).
  • the first information is user equipment specific (UE-specific).
  • the first information is user equipment group-specific (UE group-specific).
  • the first information is geographic area specific.
  • the first information includes all or part of a field of a DCI (Down ink Control Information) signaling.
  • DCI Down ink Control Information
  • the second information is transmitted through higher layer signaling.
  • the second information is transmitted through physical layer signaling.
  • the second information includes all or part of a high-layer signaling.
  • the second information includes all or part of a physical layer signaling.
  • the second information includes all or part of an IE (Information Element, information element) in an RRC (Radio Resource Control, radio resource control) signaling.
  • IE Information Element, information element
  • RRC Radio Resource Control, radio resource control
  • the second information includes all or part of a field (Field) in an IE (Information Element, information element) in an RRC (Radio Resource Control, radio resource control) signaling.
  • Field Information Element, information element
  • RRC Radio Resource Control, radio resource control
  • the second information includes all or part of the fields in a MAC (Medium Access Control) layer signaling.
  • MAC Medium Access Control
  • the second information includes all or part of a system information block (SIB, System Information Block).
  • SIB system information block
  • the second information includes all or part of a MAC (Medium Access Control) CE (Control Element, control element).
  • MAC Medium Access Control
  • CE Control Element, control element
  • the second information includes all or part of a MAC (Medium Access Control) header (Header).
  • MAC Medium Access Control
  • the second information is transmitted through a DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the second information is transmitted through a PDSCH (Physical Downlink Shared Channel, physical downlink shared channel).
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • the second information is related to the coverage area of the second communication node in this application.
  • the second information is related to the height of the second communication node in this application.
  • the second information is related to the type of the second communication node in this application.
  • the second information is related to the inclination angle of the second communication node in this application relative to the first communication node in this application.
  • the second information is related to the size of the coverage area of the second communication node in this application.
  • the second information is broadcast.
  • the second information is cell specific (Cell Specific).
  • the second information is user equipment specific (UE-specific).
  • the second information is user equipment group-specific (UE group-specific).
  • the second information is geographic area specific.
  • the second information includes all or part of a field of DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the above sentence “the first information and the second information are used to determine the first time-frequency resource pool and the second time-frequency resource pool, respectively” includes the following meanings: the first information and the The second information is respectively used by the first communication node device in this application to determine the first time-frequency resource pool and the second time-frequency resource pool.
  • the above sentence “the first information and the second information are used to determine the first time-frequency resource pool and the second time-frequency resource pool, respectively” includes the following meanings: the first information and the The second information is respectively used to directly indicate the first time-frequency resource pool and the second time-frequency resource pool.
  • the above sentence “the first information and the second information are used to determine the first time-frequency resource pool and the second time-frequency resource pool, respectively” includes the following meanings: the first information and the The second information is respectively used to indirectly indicate the first time-frequency resource pool and the second time-frequency resource pool.
  • the above sentence “the first information and the second information are used to determine the first time-frequency resource pool and the second time-frequency resource pool, respectively” includes the following meanings: the first information and the The second information is respectively used to explicitly indicate the first time-frequency resource pool and the second time-frequency resource pool.
  • the above sentence “the first information and the second information are used to determine the first time-frequency resource pool and the second time-frequency resource pool, respectively” includes the following meanings: the first information and the The second information is respectively used to implicitly indicate the first time-frequency resource pool and the second time-frequency resource pool.
  • the above sentence “the first information and the second information are used to determine the first time-frequency resource pool and the second time-frequency resource pool, respectively” includes the following meanings: the first information and the The second information is used to explicitly indicate and implicitly indicate the first time-frequency resource pool and the second time-frequency resource pool, respectively.
  • the above sentence “the first information and the second information are used to determine the first time-frequency resource pool and the second time-frequency resource pool, respectively” includes the following meanings: the first information and the The second information is used to implicitly indicate and explicitly indicate the first time-frequency resource pool and the second time-frequency resource pool, respectively.
  • both the first information and the second information are transmitted through an air interface.
  • both the first information and the second information are transmitted through a wireless interface.
  • the first time-frequency resource pool includes continuous time-domain resources in the time domain.
  • the first time-frequency resource pool includes discrete time-domain resources in the time domain.
  • the first time-frequency resource pool includes continuous frequency-domain resources in the frequency domain.
  • the first time-frequency resource pool includes discrete frequency-domain resources in the frequency domain.
  • the second time-frequency resource pool includes continuous time-domain resources in the time domain.
  • the second time-frequency resource pool includes discrete time-domain resources in the time domain.
  • the second time-frequency resource pool includes continuous frequency-domain resources in the frequency domain.
  • the second time-frequency resource pool includes discrete frequency-domain resources in the frequency domain.
  • the first time-frequency resource pool and the second time-frequency resource pool are orthogonal.
  • the first time-frequency resource pool and the second time-frequency resource pool are non-orthogonal.
  • RE Resource Element
  • any RE (Resource Element) in the first time-frequency resource pool and any RE (Resource Element) in the second time-frequency resource pool occupy in the time domain Different time domain resources.
  • the first time-frequency resource pool and the second time-frequency resource pool are frequency division multiplexing (FDM, Frequency Division Multiplexing).
  • the first time-frequency resource pool and the second time-frequency resource pool are time division multiplexing (TDM, Time Division Multiplexing).
  • the first signal is a baseband signal.
  • the first signal is a radio frequency signal.
  • the first information is transmitted through an air interface.
  • the first signal is transmitted through a wireless interface.
  • the first signal is used for random access.
  • the first signal is transmitted through a physical random access channel (PRACH, Physical Random Access Channel).
  • PRACH Physical Random Access Channel
  • the first signal carries Msg1 (message 1) in 4-step random access.
  • the first signal carries MsgA (message A) in 2-step random access.
  • the first signal carries a preamble.
  • a pseudo-random sequence is used to generate the first signal.
  • a Zadoff-Chu (ZC) sequence is used to generate the first signal.
  • a Zadoff-Chu (ZC) sequence with a length of 839 is used to generate the first signal.
  • a Zadoff-Chu (ZC) sequence with a length of 139 is used to generate the first signal.
  • the first signal includes CP (Cyclic Prefix), Preamble (Preamble) and GP (Guard Period, guard time).
  • CP Cyclic Prefix
  • Preamble Preamble
  • GP Guard Period, guard time
  • the target time-frequency resource block is a time-frequency resource occupied by a physical random access signal opportunity (PRACH Occasion).
  • PRACH Occasion a physical random access signal opportunity
  • the target time-frequency resource block includes continuous time-domain resources.
  • the target time-frequency resource block includes continuous frequency domain resources.
  • the target time-frequency resource block in the time domain includes time domain resources occupied by CP (Cyclic Prefix), time domain resources occupied by Preamble (preamble) and GP (Guard Period, guard time) Time domain resources occupied.
  • CP Cyclic Prefix
  • Preamble Preamble
  • GP Guard Period, guard time
  • the target time-frequency resource block includes idle time-domain resources in the time domain.
  • the target time-frequency resource block includes a positive integer number of REs.
  • the target time-frequency resource block can only belong to one of the first time-frequency resource pool or the second time-frequency resource pool.
  • the target time-frequency resource block belongs to a time-frequency resource pool other than the first time-frequency resource pool or the second time-frequency resource pool.
  • each first-type time-frequency resource block included in the first time-frequency resource pool includes continuous time domain resources in the time domain and continuous frequency domain resources in the frequency domain.
  • each second-type time-frequency resource block included in the second time-frequency resource pool includes continuous time domain resources in the time domain and continuous frequency domain resources in the frequency domain.
  • the first-type time-frequency resource blocks in the first time-frequency resource pool are periodically distributed in the time domain.
  • the second type of time-frequency resource blocks in the second time-frequency resource pool are periodically distributed in the time domain.
  • the above sentence “the number of resources occupied by any one of the first-type time-frequency resource blocks in the first time-frequency resource pool in the time domain and any one of the first time-frequency resource blocks in the second time-frequency resource pool "The number of resources occupied by the second-type time-frequency resource blocks in the time domain is not equal" includes the following meaning: the OFDM (Orthogonal) occupied by any one of the first-type time-frequency resource blocks in the first time-frequency resource pool The number of Frequency Division Multiplexing (Orthogonal Frequency Division Multiplexing) symbols is not equal to the number of OFDM symbols occupied by any second type time-frequency resource block in the second time-frequency resource pool in the time domain.
  • the above sentence "the number of resources occupied by any one of the first-type time-frequency resource blocks in the first time-frequency resource pool in the time domain and any one of the first time-frequency resource blocks in the second time-frequency resource pool "The number of resources occupied by the second type of time-frequency resource blocks in the time domain is not equal" includes the following meaning: the length of the time interval occupied by any one of the first type of time-frequency resource blocks in the first time-frequency resource pool in the time domain The length of the time interval occupied in the time domain by any second type time-frequency resource block in the second time-frequency resource pool is not equal.
  • the above sentence “the number of resources occupied by any one of the first-type time-frequency resource blocks in the first time-frequency resource pool in the time domain and any one of the first time-frequency resource blocks in the second time-frequency resource pool "The number of resources occupied by the second-type time-frequency resource blocks in the time domain is not equal" includes the following meaning: the physical random access channel preamble corresponding to any one of the first-type time-frequency resource blocks in the first time-frequency resource pool
  • the format (PRACH Preamble Format) is different from the physical random access channel preamble format (PRACH Preamble Format) corresponding to any second type time-frequency resource block in the second time-frequency resource pool.
  • the positioning information of the first communication node device includes positioning capability information of the first communication node device.
  • the positioning information of the first communication node device includes whether the first communication node device can calculate the first communication node device and the second communication node device according to its own geographic location. The distance between communication node devices.
  • the positioning information of the first communication node device includes whether the first communication node device can calculate the first communication node device and the second communication node device according to its own geographic location. The distance between communication node devices and the accuracy of the distance obtained.
  • the positioning information of the first communication node device includes whether the first communication node device can calculate the first communication node device and the second communication node device according to its own geographic location. Propagation Delay between communication node devices.
  • the positioning information of the first communication node device includes whether the first communication node device can calculate the first communication node device and the second communication node device according to its own geographic location.
  • the transmission delay between communication node devices and the accuracy of the obtained transmission delay includes
  • the positioning information of the first communication node device includes a positioning method of the first communication node device.
  • the positioning information of the first communication node device includes whether the first communication node device supports GNSS (Global Navigation Satellite System, Global Navigation Satellite System).
  • GNSS Global Navigation Satellite System, Global Navigation Satellite System
  • the positioning information of the first communication node device includes whether the first communication node device supports GNSS (Global Navigation Satellite System, Global Navigation Satellite System) and the positioning accuracy when it supports GNSS.
  • GNSS Global Navigation Satellite System, Global Navigation Satellite System
  • the positioning information of the first communication node device includes the accuracy of the positioning of the first communication node device.
  • the positioning information of the first communication node device includes whether the first communication node device supports GNSS (Global Navigation Satellite System, Global Navigation Satellite System) and the type of GNSS when it supports GNSS.
  • GNSS Global Navigation Satellite System, Global Navigation Satellite System
  • Time-frequency resource pool includes the following meaning: whether the first communication node device can obtain the positioning information of the first communication node device to be used from the first time-frequency resource pool and the second time-frequency resource pool Determine the time-frequency resource pool to which the target time-frequency resource block belongs.
  • Time-frequency resource pool includes the following meaning: the positioning information of the first communication node device is used by the first communication node device to determine the location information from the first time-frequency resource pool and the second time-frequency resource pool. The time-frequency resource pool to which the target time-frequency resource block belongs.
  • Time-frequency resource pool includes the following meaning: the positioning information of the first communication node device is used to determine the target time-frequency resource pool from the first time-frequency resource pool and the second time-frequency resource pool based on mapping conditions. The time-frequency resource pool to which the resource block belongs.
  • Time-frequency resource pool includes the following meaning: whether the first communication node device has the positioning capability is used to determine the target time-frequency resource from the first time-frequency resource pool and the second time-frequency resource pool The time-frequency resource pool to which the block belongs.
  • the above sentence “The positioning information of the first communication node device is used to determine from the first time-frequency resource pool and the second time-frequency resource pool to which the target time-frequency resource block belongs "Time-frequency resource pool” includes the following meaning: whether the first communication node device can obtain the positioning information of the first communication node device is used to determine whether the target time-frequency resource block belongs to the first time-frequency resource pool Still the second time-frequency resource pool.
  • the above sentence “The positioning information of the first communication node device is used to determine from the first time-frequency resource pool and the second time-frequency resource pool to which the target time-frequency resource block belongs "Time-frequency resource pool” includes the following meaning: the positioning information of the first communication node device is used to determine whether the target time-frequency resource block belongs to the first time-frequency resource pool or the second time-frequency resource pool.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2.
  • FIG. 2 is a diagram illustrating a system network architecture 200 of NR 5G, LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced).
  • the NR 5G or LTE network architecture 200 may be called EPS (Evolved Packet System) 200.
  • EPS Evolved Packet System
  • EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server, home subscriber server) 220 and Internet service 230.
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in the figure, EPS provides packet switching services. However, those skilled in the art will easily understand that various concepts presented throughout this application can be extended to networks that provide circuit switching services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an Xn interface (for example, backhaul).
  • gNB203 can also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive point) or some other suitable terminology.
  • BSS basic service set
  • ESS extended service set
  • TRP transmit and receive point
  • gNB203 can be a satellite or a ground base station relayed by satellite.
  • gNB203 provides UE201 with an access point to EPC/5G-CN210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircrafts, narrowband physical network equipment, machine type communication equipment, land vehicles, automobiles, wearable devices, or any other similar functional devices.
  • UE201 can also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to EPC/5G-CN210 through the S1/NG interface.
  • EPC/5G-CN210 includes MME/AMF/UPF 211, other MME/AMF/UPF 214, S-GW (Service Gateway) 212, and P-GW (Packet Date Network Gateway) 213.
  • MME/AMF/UPF211 is a control node that processes the signaling between UE201 and EPC/5G-CN210.
  • MME/AMF/UPF211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW212, and S-GW212 itself is connected to P-GW213.
  • the P-GW213 provides UE IP address allocation and other functions.
  • the P-GW213 is connected to the Internet service 230.
  • the Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, an intranet, and IMS (IP Multimedia Subsystem, IP Multimedia Subsystem).
  • the UE201 corresponds to the first communication node device in this application.
  • the UE 201 supports transmission on a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • the UE 201 supports transmission in a large delay difference network.
  • the gNB203 corresponds to the second communication node device in this application.
  • the gNB203 supports transmission on a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • the gNB203 supports transmission in a large delay difference network.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • FIG. 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane 350 and the control plane 300.
  • FIG. 3 shows three layers for the first communication node device (UE, satellite or aircraft in gNB or NTN) and The second communication node device (gNB, UE or satellite or aircraft in NTN), or the radio protocol architecture of the control plane 300 between two UEs: layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first communication node device and the second communication node device and the two UEs through PHY301.
  • L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers terminate at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, as well as providing support for handover between the second communication node devices and the first communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, Radio Resource Control) sublayer 306 in layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the difference between the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is for the physical layer 351, L2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are basically the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also Provides header compression for upper layer data packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the Data Radio Bearer (DRB). To support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (for example, an IP layer) terminating at the P-GW on the network side and another terminating at the connection.
  • Application layer at one end for example, remote UE, server, etc.).
  • the wireless protocol architecture in FIG. 3 is applicable to the first communication node device in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second communication node device in this application.
  • the first information in this application is generated in the RRC306.
  • the first information in this application is generated in the MAC302 or MAC352.
  • the first information in this application is generated in the PHY301 or PHY351.
  • the second information in this application is generated in the RRC306.
  • the second information in this application is generated in the MAC302 or MAC352.
  • the second information in this application is generated in the PHY301 or PHY351.
  • the first signal in this application is generated in the MAC302 or MAC352.
  • the first signal in this application is generated in the PHY301 or PHY351.
  • the target sequence in this application is generated in the PHY301 or PHY351.
  • the third information in this application is generated in the RRC306.
  • the third information in this application is generated in the MAC302 or MAC352.
  • the third information in this application is generated in the PHY301 or PHY351.
  • the first signaling in this application is generated in the RRC306.
  • the first signaling in this application is generated in the MAC302 or MAC352.
  • the first signaling in this application is generated in the PHY301 or PHY351.
  • the second signal in this application is generated in the RRC306.
  • the second signal in this application is generated in the MAC302 or MAC352.
  • the second signal in this application is generated in the PHY301 or PHY351.
  • the fourth information in this application is generated in the RRC306.
  • the fourth information in this application is generated in the MAC302 or MAC352.
  • the fourth information in this application is generated in the PHY301 or PHY351.
  • Embodiment 4 shows a schematic diagram of a first communication node device and a second communication node device according to the present application, as shown in FIG. 4.
  • the first communication node device (450) includes a controller/processor 490, a data source/buffer 480, a receiving processor 452, a transmitter/receiver 456, and a transmitting processor 455.
  • the transmitter/receiver 456 includes an antenna 460.
  • the data source/buffer 480 provides upper layer packets to the controller/processor 490, and the controller/processor 490 provides header compression and decompression, encryption and decryption, packet segment connection and reordering, and multiplexing between logic and transmission channels. Demultiplexing is used to implement the L2 layer and above protocols for the user plane and the control plane, and the upper layer packets may include data or control information, such as DL-SCH or UL-SCH or SL-SCH.
  • the transmission processor 455 implements various signal transmission processing functions for the L1 layer (ie, physical layer) including coding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer control signaling generation, etc.
  • the reception processor 452 implements various signal reception processing functions for the L1 layer (ie, physical layer) including decoding, deinterleaving, descrambling, demodulation, deprecoding, physical layer control signaling extraction, and the like.
  • the transmitter 456 is used for converting the baseband signal provided by the transmitting processor 455 into a radio frequency signal and transmitting it via the antenna 460, and the receiver 456 is used for converting the radio frequency signal received by the antenna 460 into a baseband signal and providing it to the receiving processor 452.
  • the second communication node device (410) may include a controller/processor 440, a data source/buffer 430, a receiving processor 412, a transmitter/receiver 416, and a transmitting processor 415.
  • the transmitter/receiver 416 includes Antenna 420.
  • the data source/buffer 430 provides upper layer packets to the controller/processor 440, and the controller/processor 440 provides header compression and decompression, encryption and decryption, packet segmentation connection and reordering, and multiplexing between logic and transmission channels. Use demultiplexing to implement the L2 layer protocol for the user plane and the control plane.
  • the upper layer packet may include data or control information, such as DL-SCH or UL-SCH or SL-SCH.
  • the transmission processor 415 implements various signal transmission processing functions for the L1 layer (ie, physical layer) including coding, interleaving, scrambling, modulation, power control/distribution, precoding, and physical layer signaling (including synchronization signals and reference Signal etc.) generation etc.
  • the reception processor 412 implements various signal reception processing functions for the L1 layer (ie, physical layer) including decoding, deinterleaving, descrambling, demodulation, deprecoding, physical layer signaling extraction, and the like.
  • the transmitter 416 is used for converting the baseband signal provided by the transmitting processor 415 into a radio frequency signal and transmitting it via the antenna 420, and the receiver 416 is used for converting the radio frequency signal received by the antenna 420 into a baseband signal and providing it to the receiving processor 412.
  • DL Downlink
  • upper layer packets such as the first information, second information, third information in this application, and higher layer information included in the first signaling are provided to the controller/processor 440.
  • the controller/processor 440 implements the functions of the L2 layer and above.
  • the controller/processor 440 provides packet header compression, encryption, packet segmentation and reordering, multiplexing between logic and transport channels, and multiplexing of the first communication node device 450 based on various priority metrics. Radio resource allocation.
  • the controller/processor 440 is also responsible for HARQ operation, retransmission of lost packets, and signaling to the first communication node device 450, such as the first information, second information, third information and first signaling in this application
  • the high-level information (if included) included in is all generated in the controller/processor 440.
  • the transmit processor 415 implements various signal processing functions for the L1 layer (ie, physical layer), including coding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer control signaling generation, etc. This application
  • the first information, the second information, the third information and the physical layer signal of the first signaling are generated in the transmit processor 415.
  • each receiver 456 receives the radio frequency signal through its corresponding antenna 460, and each receiver 456 recovers the baseband information modulated onto the radio frequency carrier, and provides the baseband information to the receiving processor 452.
  • the reception processor 452 implements various signal reception processing functions of the L1 layer.
  • the signal reception processing function includes the reception of the first information, the second information, the third information and the physical layer signal of the first signaling in this application, etc., based on various modulation schemes through the multi-carrier symbols in the multi-carrier symbol stream ( For example, the demodulation of binary phase shift keying (BPSK), quadrature phase shift keying (QPSK)), followed by descrambling, decoding and deinterleaving to recover the data transmitted by the second communication node device 410 on the physical channel or Control, and then provide data and control signals to the controller/processor 490.
  • the controller/processor 490 is responsible for the L2 layer and above.
  • the controller/processor 490 is responsible for the first information, second information, third information and high-level information included in the first signaling in this application (if it includes high-level information). Interpretation.
  • the controller/processor may be associated with a memory 480 that stores program codes and data.
  • the memory 480 may be referred to as a computer-readable medium.
  • the data source/buffer 480 is used to provide high-level data to the controller/processor 490.
  • the data source/buffer 480 represents the L2 layer and all protocol layers above the L2 layer.
  • the controller/processor 490 is implemented for the user plane and by providing header compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels based on the radio resource allocation of the second communication node 410. L2 layer protocol of the control plane.
  • the controller/processor 490 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the second communication node 410.
  • the first signal in this application is generated by the controller/processor 490, and the second signal is generated by the data source/buffer 480.
  • the transmission processor 455 implements various signal transmission processing functions for the L1 layer (ie, physical layer).
  • the physical layer signal of the first signal and the physical layer signal of the second signal in the present application are generated by the transmission processor 455.
  • Signal transmission processing functions include coding and interleaving to facilitate forward error correction (FEC) at the UE450 and pair based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK))
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • the baseband signal is modulated, the modulation symbols are divided into parallel streams and each stream is mapped to the corresponding multi-carrier sub-carrier and/or multi-carrier symbol, and then mapped to the antenna 460 by the transmit processor 455 via the transmitter 456 to transmit as a radio frequency signal Get out.
  • the receivers 416 receive radio frequency signals through their corresponding antennas 420, and each receiver 416 recovers the baseband information modulated onto the radio frequency carrier and provides the baseband information to the receiving processor 412.
  • the receiving processor 412 implements various signal receiving and processing functions for the L1 layer (ie, the physical layer), including receiving and processing the physical layer signals of the first signal and the second signal in this application, and the signal receiving processing function includes acquiring multiple carriers Symbol stream, then demodulate the multi-carrier symbols in the multi-carrier symbol stream based on various modulation schemes (for example, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK)), and then decode and decode Interleaving to recover the data and/or control signal originally transmitted by the first communication node device 450 on the physical channel.
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • the data and/or control signals are then provided to the controller/processor 440.
  • the controller/processor 440 implements the functions of the L2 layer, including the interpretation of the information carried by the first signal and the second signal in this application (including the fourth information in this application).
  • the controller/processor may be associated with a buffer 430 that stores program codes and data.
  • the buffer 430 may be a computer-readable medium.
  • the first communication node device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to The at least one processor is used together, and the first communication node device 450 means at least: receiving first information and receiving second information, and the first information and the second information are respectively used to determine the first time and frequency A resource pool and a second time-frequency resource pool; sending a first signal, and the first signal occupies a target time-frequency resource block; wherein, the first time-frequency resource pool includes a positive integer number of first-type time-frequency resource blocks, The second time-frequency resource pool includes a positive integer number of second-type time-frequency resource blocks; the number of resources occupied in the time domain by any one of the first-type time-frequency resource blocks in the first time-frequency resource pool and The number of resources occupied by any second type time-frequency resource block in the second time-frequency resource pool in the time domain is not equal; the target time-frequency resource block is included in the first time-
  • the first communication node device 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: Receiving first information and receiving second information, where the first information and the second information are respectively used to determine a first time-frequency resource pool and a second time-frequency resource pool; sending a first signal, the first signal Occupy a target time-frequency resource block; wherein the first time-frequency resource pool includes a positive integer number of first-type time-frequency resource blocks, and the second time-frequency resource pool includes a positive integer number of second-type time-frequency resource blocks ; The number of resources occupied by any one first-type time-frequency resource block in the first time-frequency resource pool in the time domain and any second-type time-frequency resource block in the second time-frequency resource pool The number of resources occupied by the time domain is not equal; the target time-frequency resource block is a first-type time-frequency resource block included in the first time-frequency resource pool, or the target time-
  • the second communication node device 410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to The at least one processor is used together.
  • the second communication node device 410 means at least: sending first information and sending second information, the first information and the second information are respectively used to determine the first time-frequency resource pool and the second time-frequency resource pool Receiving a first signal, the first signal occupies a target time-frequency resource block; wherein, the first time-frequency resource pool includes a positive integer number of first-type time-frequency resource blocks, the second time-frequency resource pool Includes a positive integer number of second-type time-frequency resource blocks; the number of resources occupied by any one of the first-type time-frequency resource blocks in the time domain in the first time-frequency resource pool and the number of resources in the second time-frequency resource pool The number of resources occupied by any one of the second-type time-frequency resource blocks in the time domain is not equal; the target time-frequency resource block is a
  • the second communication node device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: sending The first information and the second information are sent.
  • the first information and the second information are respectively used to determine the first time-frequency resource pool and the second time-frequency resource pool; when the first signal is received, the first signal occupies Target time-frequency resource block; wherein the first time-frequency resource pool includes a positive integer number of first-type time-frequency resource blocks, and the second time-frequency resource pool includes a positive integer number of second-type time-frequency resource blocks;
  • the number of resources occupied by any one of the first-type time-frequency resource blocks in the time domain in the first time-frequency resource pool and the number of any second-type time-frequency resource blocks in the second time-frequency resource pool in the time domain The number of resources occupied by the domain is not equal; the target time-frequency resource block is a first-type time-frequency resource block included in the first time-frequency resource pool, or
  • the first communication node device 450 is a user equipment (UE).
  • UE user equipment
  • the first communication node device 450 is a user equipment that supports a large delay difference.
  • the first communication node device 450 is a user equipment supporting NTN.
  • the first communication node device 450 is an aircraft device.
  • the second communication node device 410 is a base station device (gNB/eNB).
  • the second communication node device 410 is a base station device supporting a large delay difference.
  • the second communication node device 410 is a base station device supporting NTN.
  • the second communication node device 410 is a satellite device.
  • the second communication node device 410 is a flight platform device.
  • the receiver 456 (including the antenna 460), the receiving processor 452, and the controller/processor 490 are used in this application to receive the first information.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used in this application to receive the second information.
  • the transmitter 456 (including the antenna 460), the transmission processor 455 and the controller/processor 490 are used to transmit the first signal in this application.
  • the receiver 456 (including the antenna 460), the receiving processor 452, and the controller/processor 490 are used in this application to receive the first signaling.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used to receive the third information in this application.
  • the transmitter 456 (including the antenna 460), the transmission processor 455 and the controller/processor 490 are used to transmit the second signal in this application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415, and the controller/processor 440 are used to transmit the first information in this application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415 and the controller/processor 440 are used to transmit the second information in this application.
  • the receiver 416 (including the antenna 420), the receiving processor 412 and the controller/processor 440 are used to receive the first signal in this application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415, and the controller/processor 440 are used to send the first signaling in this application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415, and the controller/processor 440 are used to transmit the third information in this application.
  • the receiver 416 (including the antenna 420), the receiving processor 412 and the controller/processor 440 are used to receive the second signal in this application.
  • Embodiment 5 illustrates a wireless signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 5.
  • the second communication node N1 is a maintenance base station of the serving cell of the first communication node U2. It is particularly noted that the sequence in this example does not limit the signal transmission sequence and implementation sequence in this application.
  • step S21 For the first communication node U2, received in step S21 the first information and the second information received, the information received in the third step S22, the target sequence is determined in step S23, a first signal is transmitted in step S24, in step S25, The first signaling is received in the first time window, and the second signal is sent in step S26.
  • the first information and the second information in this application are respectively used to determine the first time-frequency resource pool and the second time-frequency resource pool; the first signal in this application occupies Target time-frequency resource block; the first time-frequency resource pool includes a positive integer number of first-type time-frequency resource blocks, and the second time-frequency resource pool includes a positive integer number of second-type time-frequency resource blocks; The number of resources occupied by any one of the first-type time-frequency resource blocks in the first time-frequency resource pool in the time domain and any one of the second-type time-frequency resource blocks in the second time-frequency resource pool in the time domain The number of occupied resources is not equal; the target time-frequency resource block is a first-type time-frequency resource block included in the first time-frequency resource pool, or the target time-frequency resource block is the second A second-type time-frequency resource block included in the time-frequency resource pool; the positioning information of the first communication node device is used to determine from the first time-frequency resource pool and the second time-frequency resource pool The time-
  • the target sequence is used to generate the first signal after W2 repeated transmissions;
  • the W1 is a positive integer, and the W2 is A positive integer that is not equal to the W1;
  • the third information is used to determine X candidate sequences, and the X is a positive integer greater than 1;
  • the target sequence is one of the X candidate sequences Alternative sequence, the first communication node device randomly selects the target sequence among the X alternative sequences;
  • the position of the target time-frequency resource block in the time-frequency domain is used to determine the first feature identifier, so
  • the first signaling carries the first feature identifier;
  • the first time window is one candidate time window among Y candidate time windows, the Y is a positive integer greater than 1, and the Y candidates Any two candidate time windows in the time window are orthogonal;
  • the time-frequency resource pool to which the target time-frequency resource block belongs is used to determine the first time window from the Y candidate time windows;
  • the second signal carries fourth information, and the fourth information
  • the second signal includes Msg3 (message 3).
  • the second signal includes MsgA (message A).
  • the second signal is transmitted through the data channel in the first step of the 2-step random access process.
  • the second signal is PUSCH (Physical Uplink Shared Channel, Physical Uplink Shared Channel) in MsgA.
  • the second signal carries a retransmission of Msg3.
  • the second signal carries an initial transmission of Msg3.
  • the second signal carries a retransmission of MsgB.
  • the second signal carries an initial transmission of MsgB.
  • the second signal is transmitted through UL-SCH (Uplink Shared Channel, uplink shared channel).
  • UL-SCH Uplink Shared Channel, uplink shared channel
  • the second signal is transmitted through PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • the output bits of a transport block (TB, Transport Block) that have undergone LDPC (Low Density Parity Check Code, Low Density Parity Check Code) channel coding are used to generate the first signal.
  • LDPC Low Density Parity Check Code, Low Density Parity Check Code
  • the time-frequency resource occupied by the second signal and the position of the time-domain resource included in the target time-frequency resource block in the time domain, and the frequency domain included in the target time-frequency resource block The location of the resource in the frequency domain, or at least one of the first sequences is related.
  • the second signal is a baseband signal.
  • the second signal is a radio frequency signal.
  • the second signal is transmitted through a wireless interface.
  • the second signal is transmitted through an air interface.
  • the fourth information includes Msg3.
  • the fourth information includes MsgB.
  • the fourth information is transmitted through higher layer signaling.
  • the fourth information is transmitted through physical layer signaling.
  • the fourth information includes all or part of a high-level signaling.
  • the fourth information includes all or part of an RRC (Radio Resource Control, radio resource control) signaling.
  • RRC Radio Resource Control, radio resource control
  • the fourth information includes all or part of a MAC (Medium Access Control, Medium Access Control) signaling.
  • MAC Medium Access Control
  • the fourth information includes all or part of a MAC (Medium Access Control) CE (Control Element).
  • the fourth information includes all or part of a MAC (Medium Access Control) header (Header).
  • MAC Medium Access Control
  • the fourth information is used to indicate the positioning capability of the first communication node device
  • the fourth information is used to directly indicate the location of the first communication node device Positioning ability.
  • the sentence "the fourth information is used to indicate the positioning capability of the first communication node device” includes the following meaning: the fourth information is used to indirectly indicate the location of the first communication node device Positioning ability.
  • the fourth information is used to indicate the positioning capability of the first communication node device
  • the fourth information is used to explicitly indicate the first communication node The positioning capability of the device.
  • the fourth information is used to indicate the positioning capability of the first communication node device
  • the fourth information is used to implicitly indicate the first communication node The positioning capability of the device.
  • the positioning capability of the first communication node device refers to whether the first communication node device supports GNSS (Global Navigation Satellite System, Global Navigation Satellite System).
  • GNSS Global Navigation Satellite System, Global Navigation Satellite System
  • the positioning capability of the first communication node device refers to the positioning accuracy of the first communication node device.
  • the positioning capability of the first communication node device refers to whether the first communication node device supports GNSS (Global Navigation Satellite System, Global Navigation Satellite System) and the type of GNSS when it supports GNSS .
  • GNSS Global Navigation Satellite System, Global Navigation Satellite System
  • Embodiment 6 illustrates a schematic diagram of the relationship between the first time-frequency resource pool and the second time-frequency resource pool according to an embodiment of the present application, as shown in FIG. 6.
  • the horizontal axis represents time and the vertical axis represents frequency.
  • Each rectangle filled with diagonal lines represents a first-type time-frequency resource block in the first time-frequency resource pool, and each rectangle filled with cross lines represents the second A second-type time-frequency resource block in the time-frequency resource pool;
  • the first time-frequency resource pool and the second time-frequency resource pool are frequency division (FDM) but the occupied time domain resources are not orthogonal ;
  • the first time-frequency resource pool and the second time-frequency resource pool are time-frequency division (TDM&FDM), the first time-frequency resource pool and the second time-frequency resource pool are both positive in the time and frequency domains Handed;
  • TDM&FDM time-frequency division
  • the first time-frequency resource pool and the second time-frequency resource pool are both positive in the time and frequency domains Handed;
  • the first time-frequency resource pool and the second time-frequency resource pool are time division (TDM) but the occupied frequency domain resources are not orthogonal.
  • the first time-frequency resource pool and the second time-frequency resource pool in this application are orthogonal, and the first time-frequency resource pool includes a positive integer number of first-type time-frequency resources. Resource blocks, the second time-frequency resource pool includes a positive integer number of second-type time-frequency resource blocks; the resources occupied by any one of the first-type time-frequency resource blocks in the first time-frequency resource pool in the time domain The number of is not equal to the number of resources occupied in the time domain by any second-type time-frequency resource block in the second time-frequency resource pool.
  • Embodiment 7 illustrates a schematic diagram of the first timing adjustment amount according to an embodiment of the present application, as shown in FIG. 7.
  • the horizontal axis represents time
  • the rectangle filled with diagonal lines represents the target time-frequency resource block in the first time-frequency resource pool
  • the rectangle filled with cross lines represents the target time-frequency resource block in the second time-frequency resource pool. Resource block.
  • the absolute value of the time difference between the sending start time of the first signal and the reference time in this application is equal to the first timing adjustment amount, and the receiving timing of the first communication node device in this application is Used to determine the reference time; when the target time-frequency resource block in this application belongs to the first time-frequency resource pool in this application, the first timing adjustment is greater than 0; when the target When the frequency resource block belongs to the second time-frequency resource pool in this application, the first timing adjustment is equal to zero.
  • the first timing adjustment amount is used to determine the sending timing of the first signal.
  • the first timing adjustment amount is a non-negative real number.
  • the unit of the first timing adjustment is all microseconds.
  • the unit of the first timing adjustment is all seconds.
  • the first timing adjustment amount is equal to a timing advance (TA, Timing Advance) value for sending the first signal.
  • TA Timing Advance
  • the first timing adjustment is equal to the time advance of the start time of the first signal transmission with respect to a downlink time slot (Slot) boundary.
  • the first timing adjustment when the first timing adjustment is greater than 0, the first timing adjustment is related to the type of the second communication node in this application.
  • the first timing adjustment amount is related to the height of the second communication node in the present application.
  • the first timing adjustment amount is related to the type of satellite to which the second communication node belongs in this application.
  • the reference time is a time at the boundary of a downlink time slot (Slot).
  • the reference time is a time at the boundary of a downlink OFDM symbol (Symbol).
  • the reference time is a time at the boundary of a downlink subframe (Subframe).
  • the sending start time of the first signal is not later than the reference time.
  • the first information in this application and the receiving timing of the first communication node device are used together to determine the reference time.
  • the first information in this application indicates a virtual time-frequency resource pool, and the absolute value of the time difference in the time domain between the time-frequency resources in the virtual time-frequency resource pool and the first time-frequency resource pool Equal to the first timing adjustment amount.
  • the first information in this application indicates a virtual time-frequency resource pool
  • the first time-frequency resource pool is an advance of the virtual time-frequency resource pool in the time domain by the first timing adjustment amount Obtained after time.
  • the first information in this application indicates the expected receiving time-frequency resource pool corresponding to the transmission in the first time-frequency resource pool, the expected receiving time-frequency resource pool and the The absolute value of the time difference of the time-frequency resources in the time domain in the first time-frequency resource pool is equal to the first timing adjustment amount.
  • the first information in this application and the reception timing of the first communication node device are used to determine the start time of receiving the first signal, and the reference time is equal to the first signal The start time of reception.
  • the first information in the present application indicates the receiving start time of the first signal calculated according to the receiving timing of the first communication node device, and the reference time is equal to according to the first communication The receiving start time of the first signal calculated by the receiving timing of the node device.
  • the above sentence “the reception timing of the first communication node device is used to determine the reference time” includes the following meaning: the reception timing of the first communication node device is used by the first communication node device To determine the reference moment.
  • the receiving timing of the first communication node device includes the position of the boundary of the downlink slot (Slot) in the time domain and the index of the downlink slot.
  • the receiving timing of the first communication node device includes the position of the boundary of the downlink subframe (Subframe) in the time domain and the index of the downlink subframe.
  • the receiving timing of the first communication node device includes the position of the boundary of the downlink system frame (System Frame) in the time domain and the index of the downlink system frame.
  • the receiving timing of the first communication node device includes the position of the boundary of the downlink system frame (System Frame) in the time domain, the position of the boundary of the downlink subframe (Subframe) in the time domain, and the first communication
  • the receiving timing of the node equipment includes the position of the boundary of the downlink slot (Slot) in the time domain, the index of the downlink system frame, the index of the downlink subframe, and the index of the downlink slot.
  • the first communication node device obtains the receiving timing of the first communication node device through a cell search (Cell Search).
  • Cell Search a cell search
  • the first communication node device obtains the receiving timing of the first communication node device through downlink synchronization (Synchronization).
  • the first communication node device obtains the receiving timing of the first communication node device by receiving a downlink synchronization signal (Synchronization Signals).
  • a downlink synchronization signal Synchronization Signals
  • Embodiment 8 illustrates a schematic diagram of the relationship between the target sequence and the first signal according to an embodiment of the present application, as shown in FIG. 8.
  • the horizontal axis represents time
  • each rectangle filled with diagonal lines represents a transmission of the target sequence
  • the rectangle filled with cross lines represents the cyclic prefix (CP, Cyclic Prefix)
  • the rectangle without filling represents the guard time (GP, Guard Period).
  • the target sequence in this application is used for production after W1 repeated transmissions.
  • the first signal in the cost application when the target time-frequency resource block in this application belongs to the second time-frequency resource pool in this application, the target sequence in this application is repeatedly transmitted W2 times Is used to generate the first signal in this application; the W1 is a positive integer, and the W2 is a positive integer that is not equal to the W1.
  • the target sequence is a preamble.
  • the target sequence is a random access preamble (Random Access Preamble).
  • the target sequence is a preamble sequence among 64 preamble sequences (Preamble).
  • the target sequence is a ZC (Zadoff-Chu) sequence.
  • the target sequence is generated by transforming a ZC (Zadoff-Chu) sequence.
  • the target sequence is a ZC (Zadoff-Chu) sequence equal to 839 in length.
  • the target sequence is a ZC (Zadoff-Chu) sequence equal to 139 in length.
  • the above sentence "the target sequence is used to generate the first signal after W1 repeated transmissions” includes the following meaning: the target sequence is used to generate the first signal after W1 repeated transmissions in the time domain. One signal.
  • the sentence "the target sequence is used to generate the first signal after W1 repeated transmissions” includes the following meaning: the target sequence is used to generate a target sub-signal, and the target sub-signal is in time The domain is used to generate the first signal after W1 repeated transmissions.
  • the sentence "the target sequence is used to generate the first signal after W1 repeated transmissions” includes the following meaning: the target sequence is used to generate a target sub-signal, and the target sub-signal is in time After the domain is repeatedly transmitted for W1 times, a cyclic prefix (CP, Cyclic Prefix) is added and used to generate the first signal.
  • CP Cyclic Prefix
  • the above sentence "the target sequence is used to generate the first signal after W1 repeated transmissions” includes the following meaning: the target sequence is sequentially mapped to physical resources (Mapping to Physical Resources) and OFDM baseband Signal generation (OFDM Baseband Signal Generation) to obtain the first signal, the first signal in the OFDM baseband signal generation process is composed of a cyclic prefix and a target sub-signal that are repeated W1 times in the time domain, and the target The sequence is used to generate the target sub-signal.
  • the above sentence "the target sequence is used to generate the first signal after W2 repeated transmissions” includes the following meaning: the target sequence is used to generate the first signal after W2 repeated transmissions in the time domain. One signal.
  • the above sentence "the target sequence is used to generate the first signal after W2 repeated transmissions” includes the following meaning: the target sequence is used to generate a target sub-signal, and the target sub-signal is in time The domain is used to generate the first signal after W2 repeated transmissions.
  • the above sentence "the target sequence is used to generate the first signal after W2 repeated transmissions” includes the following meaning: the target sequence is used to generate a target sub-signal, and the target sub-signal is in time After the domain is repeatedly transmitted for W2 times, a cyclic prefix (CP, Cyclic Prefix) added is used to generate the first signal.
  • CP Cyclic Prefix
  • the above sentence "the target sequence is used to generate the first signal after W2 repeated transmissions” includes the following meaning: the target sequence is sequentially mapped to physical resources (Mapping to Physical Resources) and OFDM baseband Signal generation (OFDM Baseband Signal Generation) obtains the first signal, and the first signal in the OFDM baseband signal generation process is composed of a cyclic prefix and a target sub-signal that are repeated W2 times in the time domain, and the target The sequence is used to generate the target sub-signal.
  • OFDM Baseband Signal Generation OFDM Baseband Signal Generation
  • the W1 is greater than the W2.
  • the W1 is smaller than the W2.
  • the W1 is equal to 1.
  • the W1 is greater than 1.
  • the W2 is equal to 1.
  • the W2 is greater than 1.
  • Embodiment 9 illustrates a schematic diagram of X candidate sequences according to an embodiment of the present application, as shown in FIG. 9.
  • the horizontal axis represents the time domain
  • the horizontal vertical axis represents the frequency domain
  • the vertical axis represents the code domain
  • the filled rectangles represent the target sequence
  • each unfilled rectangle represents the target in the X candidate sequences.
  • Example 9 the third information in this application is used to determine X candidate sequences, where X is a positive integer greater than 1; the target sequence in this application is the X candidate sequences A candidate sequence in the sequence, the first communication node device in this application randomly selects the target sequence from the X candidate sequences.
  • the X is equal to 64.
  • the X is less than 64.
  • the X is greater than 64.
  • any one candidate sequence among the X candidate sequences is a preamble sequence (Preamble).
  • any one of the X candidate sequences is a random access preamble (Random Access Preamble).
  • any one candidate sequence among the X candidate sequences is one preamble sequence among 64 preamble sequences (Preamble).
  • any one of the X candidate sequences is a ZC (Zadoff-Chu) sequence.
  • any one of the X candidate sequences is generated by a ZC (Zadoff-Chu) sequence through transformation.
  • any one of the X candidate sequences is a ZC (Zadoff-Chu) sequence with a length equal to 839.
  • any one of the X candidate sequences is a ZC (Zadoff-Chu) sequence with a length equal to 139.
  • the third information is transmitted through higher layer signaling.
  • the third information is transmitted through physical layer signaling.
  • the third information includes all or part of a high-level signaling.
  • the third information includes all or part of a physical layer signaling.
  • the third information includes all or part of an IE (Information Element, information element) in an RRC (Radio Resource Control, radio resource control) signaling.
  • IE Information Element, information element
  • RRC Radio Resource Control, radio resource control
  • the third information includes all or part of a field (Field) in an IE (Information Element) in an RRC (Radio Resource Control, radio resource control) signaling.
  • Field Information Element
  • RRC Radio Resource Control, radio resource control
  • the third information includes all or part of fields in a MAC (Medium Access Control) layer signaling.
  • MAC Medium Access Control
  • the third information includes all or part of a system information block (SIB, System Information Block).
  • SIB system information block
  • the third information includes all or part of a MAC (Medium Access Control) CE (Control Element, control element).
  • MAC Medium Access Control
  • CE Control Element, control element
  • the third information includes all or part of a MAC (Medium Access Control) header (Header).
  • MAC Medium Access Control
  • the third information is transmitted through a DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the third information is transmitted through a PDSCH (Physical Downlink Shared Channel, physical downlink shared channel).
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • the third information is related to the coverage area of the second communication node in this application.
  • the third information is related to the height of the second communication node in this application.
  • the third information is related to the type of the second communication node in this application.
  • the third information is related to the inclination angle of the second communication node in this application relative to the first communication node in this application.
  • the third information is related to the size of the coverage area of the second communication node in this application.
  • the third information is broadcast.
  • the third information is cell specific (Cell Specific).
  • the third information is user equipment specific (UE-specific).
  • the third information is user equipment group-specific (UE group-specific).
  • the third information is geographic area specific.
  • the third information includes all or part of a field of DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the third information includes high-level information "prach-RootSequenceIndex”.
  • the third information includes high-level information "restrictedSetConfig".
  • the above sentence "the third information is used to determine the X candidate sequences” includes the following meaning: the third information is used by the first communication node device to determine the X candidate sequences .
  • the above sentence "the third information is used to determine X candidate sequences” includes the following meaning: the third information is used to directly indicate the X candidate sequences.
  • the above sentence "the third information is used to determine X candidate sequences” includes the following meaning: the third information is used to indirectly indicate the X candidate sequences.
  • the above sentence "the third information is used to determine X candidate sequences” includes the following meaning: the third information is used to explicitly indicate the X candidate sequences.
  • the above sentence "the third information is used to determine X candidate sequences” includes the following meaning: the third information is used to implicitly indicate the X candidate sequences.
  • Embodiment 10 illustrates a schematic diagram of Y candidate time windows according to an embodiment of the present application, as shown in FIG. 10.
  • the horizontal axis represents time
  • each rectangle filled with diagonal lines represents a first-type time-frequency resource block in the first time-frequency resource pool
  • each rectangle filled with cross lines represents the second time-frequency resource pool
  • each unfilled rectangle represents one of the Y candidate time windows.
  • the position of the target time-frequency resource block in the time-frequency domain in this application is used to determine the first characteristic identifier, and the first signaling in this application carries the first characteristic identifier;
  • the first time window in this application is one candidate time window among Y candidate time windows, and the Y is a positive integer greater than 1, and any two candidates among the Y candidate time windows The time windows are orthogonal; the time-frequency resource pool to which the target time-frequency resource block belongs in this application is used to determine the first time window from the Y candidate time windows.
  • the first time window includes a positive integer number of consecutive time slots (Slots) under a given subcarrier interval.
  • the first time window includes a positive integer number of consecutive multi-carrier symbols (OFDM Symbols) under a given sub-carrier interval.
  • the first time window includes a positive integer number of consecutive subframes (Subframe).
  • the start time and end time of the first time window are aligned with the boundary of the downlink multi-carrier symbol.
  • the start time and end time of the first time window are aligned with the boundary of a downlink time slot (Slot) under a given subcarrier interval.
  • Slot downlink time slot
  • the first time window is a random access response time window (RAR (Random Access Response) window).
  • RAR Random Access Response
  • the first time window is used for monitoring of Msg2 (message 2) in the 4-step random access process.
  • the first time window is used for monitoring of MsgB (message B) in the 2-step random access process.
  • the first signaling is transmitted through an air interface.
  • the first signaling is transmitted through a wireless interface.
  • the first signaling is transmitted through a Uu interface.
  • the first signaling is physical layer signaling.
  • the first signaling is transmitted through PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel, Physical Downlink Control Channel
  • the first signaling includes all or part of fields in DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • the first signaling includes all or part of the DCI in a given DCI (Downlink Control Information) format (Format).
  • DCI Downlink Control Information
  • Form Downlink Control Information
  • the first signaling includes all or part of fields in DCI (Downlink Control Information) of DCI format (Format) 1-0.
  • the first signaling is transmitted in a common search space (CSS, Common Search Space).
  • CSS Common Search Space
  • the first signaling is a DCI for scheduling a physical downlink shared channel (PDSCH, Physical Downlink Shared Channel) carrying a random access response.
  • PDSCH Physical Downlink Shared Channel
  • the first signaling is a PDCCH that schedules a physical downlink shared channel (PDSCH, Physical Downlink Shared Channel) carrying a random access response.
  • PDSCH Physical Downlink Shared Channel
  • the first signaling is a DCI for scheduling a physical downlink shared channel (PDSCH, Physical Downlink Shared Channel) carrying MsgB (message B).
  • PDSCH Physical Downlink Shared Channel
  • MsgB messages B
  • the first signaling is a PDCCH that schedules a physical downlink shared channel (PDSCH, Physical Downlink Shared Channel) carrying MsgB (message B).
  • PDSCH Physical Downlink Shared Channel
  • MsgB messages B
  • the first characteristic identifier is a non-negative integer.
  • the first characteristic identifier is an RNTI (Radio Network Temporary Identity, Radio Network Temporary Identity).
  • RNTI Radio Network Temporary Identity, Radio Network Temporary Identity
  • the first characteristic identifier is an RA-RNTI (Random Access Radio Network Temporary Identity).
  • RA-RNTI Random Access Radio Network Temporary Identity
  • the first feature identifier is equal to an integer from FFF0 to FFFD in hexadecimal notation.
  • the above sentence "the position of the target time-frequency resource block in the time-frequency domain is used to determine the first feature identifier" includes the following meaning: the position of the target time-frequency resource block in the time-frequency domain is determined by this application
  • the first communication node device in is used to determine the first feature identifier.
  • the above sentence "the position of the target time-frequency resource block in the time-frequency domain is used to determine the first feature identifier" includes the following meaning: the earliest OFDM included in the time-frequency domain in the target time-frequency resource block The index of the symbol in the slot to which it belongs is used to determine the first feature identifier.
  • the above sentence "the position of the target time-frequency resource block in the time-frequency domain is used to determine the first feature identifier" includes the following meaning: the earliest OFDM symbol included in the target time-frequency resource block in the time domain The index of the time slot to which it belongs in a system frame (System Frame) is used to determine the first feature identifier.
  • the above sentence "the position of the target time-frequency resource block in the time-frequency domain is used to determine the first feature identifier" includes the following meaning: the earliest OFDM symbol included in the target time-frequency resource block in the time domain
  • the index in the slot to which it belongs is used to determine the first feature identifier
  • the slot to which the earliest OFDM symbol included in the target time-frequency resource block in the time domain belongs is in a system frame (System Frame)
  • System Frame System Frame
  • the above sentence "the position of the target time-frequency resource block in the time-frequency domain is used to determine the first feature identifier" includes the following meaning: a PRB ( The index of Physical Resource Block is used to determine the first feature identifier
  • the above sentence "the position of the target time-frequency resource block in the time-frequency domain is used to determine the first feature identifier" includes the following meaning: the target time-frequency resource block includes the lowest frequency in the frequency domain The index of PRB (Physical Resource Block, physical resource block) is used to determine the first feature identifier.
  • PRB Physical Resource Block, physical resource block
  • the above sentence "the position of the target time-frequency resource block in the time-frequency domain is used to determine the first feature identifier" includes the following meaning: the target time-frequency resource block includes the highest frequency in the frequency domain The index of PRB (Physical Resource Block, physical resource block) is used to determine the first feature identifier.
  • PRB Physical Resource Block, physical resource block
  • the above sentence "the position of the target time-frequency resource block in the time-frequency domain is used to determine the first feature identifier" includes the following meaning: a PRB ( The index of the Physical Resource Block group (Group) is used to determine the first feature identifier.
  • the sentence "the first signaling carries the first feature identifier" includes the following meaning: the CRC included in the first signaling carries the first feature identifier.
  • the above sentence "the first signaling carries the first feature identifier” includes the following meaning: the payload of the first signaling (Payload) carries the first feature identifier.
  • the above sentence "the first signaling carries the first feature identifier” includes the following meaning: the check bit of the first type of signaling carries the first feature identifier.
  • the above sentence "the first signaling carries the first feature identifier” includes the following meaning: the CRC of the first type of signaling is scrambled by the first feature identifier.
  • the time length of any one of the Y candidate time windows is greater than zero.
  • the time lengths of two candidate time windows in the Y candidate time windows are not equal.
  • the time lengths of any two candidate time windows in the Y candidate time windows are equal.
  • the sentence “any two candidate time windows in the Y candidate time windows are orthogonal” includes the following meaning: any two candidate time windows in the Y candidate time windows are not Overlapped (Non-overlapped).
  • any two candidate time windows in the Y candidate time windows are orthogonal includes the following meaning: no time domain resource unit belongs to the Y candidate time windows at the same time Two alternative time windows for
  • any two candidate time windows in the Y candidate time windows are orthogonal includes the following meaning: there is no OFDM symbol belonging to two of the Y candidate time windows at the same time.
  • Alternative time windows include the following meaning: there is no OFDM symbol belonging to two of the Y candidate time windows at the same time.
  • the above sentence "the time-frequency resource pool to which the target time-frequency resource block belongs is used to determine the first time window from the Y candidate time windows" includes the following meaning: the target time Whether the frequency resource block belongs to the first time-frequency resource pool or the second time-frequency resource pool is used to determine the first time window from the Y candidate time windows.
  • the above sentence “the time-frequency resource pool to which the target time-frequency resource block belongs is used to determine the first time window from the Y candidate time windows” includes the following meaning: the Y is equal to 2.
  • the first time-frequency resource pool and the second time-frequency resource pool respectively correspond to the Y candidate time windows; the first time window is the time-frequency resource pool to which the target time-frequency resource block belongs The corresponding candidate time window.
  • the sentence "the time-frequency resource pool to which the target time-frequency resource block belongs is used to determine the first time window from the Y candidate time windows” includes the following meaning:
  • the candidate time windows are divided into two sets of candidate time windows, the two sets of candidate time windows respectively correspond to the first time-frequency resource pool and the second time-frequency resource pool; the first time window belongs to all One set of candidate time windows in the two sets of candidate time windows corresponding to the time-frequency resource pool to which the target time-frequency resource block belongs.
  • the sending end time of the first signal is used to determine the starting time of the first time window.
  • the Y is equal to 2.
  • the Y is greater than 2.
  • Embodiment 11 illustrates a schematic diagram of the relationship between the target time-frequency resource block and the first time-frequency resource pool and the second time-frequency resource pool according to an embodiment of the present application, as shown in FIG. 11.
  • each rectangle represents an operation, and each diamond represents a judgment.
  • the target The time-frequency resource block belongs to the first time-frequency resource pool.
  • the first communication node device in this application when the first communication node device in this application can obtain the positioning information of the first communication node device, the first communication node device automatically obtains the information from the first communication node device in this application.
  • the first time-frequency resource pool and the second time-frequency resource pool in this application determine the time-frequency resource pool to which the target time-frequency resource block in this application belongs; when the first communication node device cannot obtain all In the positioning information of the first communication node device, the target time-frequency resource block belongs to the first time-frequency resource pool.
  • the sentence "the first communication node device can obtain the positioning information of the first communication node device” means that the first communication node device has positioning capability.
  • the sentence "the first communication node device can obtain the positioning information of the first communication node device” means that the first communication node device supports GNSS.
  • the above sentence "the first communication node device can obtain the positioning information of the first communication node device” means that the first communication node device has positioning capability and the positioning accuracy meets a threshold.
  • the sentence "the first communication node device cannot obtain the positioning information of the first communication node device” means that the first communication node device does not have a positioning capability.
  • the sentence "the first communication node device cannot obtain the positioning information of the first communication node device” means that the first communication node device does not support GNSS.
  • the sentence "the first communication node device cannot obtain the positioning information of the first communication node device” refers to: the first communication node device has positioning capability but the first communication node device The positioning accuracy of the node device cannot meet a threshold.
  • the first communication node device determines the time-frequency resource pool to which the target time-frequency resource block belongs from the first time-frequency resource pool and the second time-frequency resource pool by itself. It includes the following meanings: the first communication node device determines by itself from the first time-frequency resource pool and the second time-frequency resource pool that the target time-frequency resource block belongs to the first time The frequency resource pool still belongs to the second time-frequency resource pool.
  • the first communication node device determines the time-frequency resource pool to which the target time-frequency resource block belongs from the first time-frequency resource pool and the second time-frequency resource pool by itself. It includes the following meanings: the first communication node device determines with equal probability that the target time-frequency resource block belongs to the first time-frequency resource from the first time-frequency resource pool and the second time-frequency resource pool The pool still belongs to the second time-frequency resource pool.
  • the first communication node device determines the time-frequency resource pool to which the target time-frequency resource block belongs from the first time-frequency resource pool and the second time-frequency resource pool by itself. It includes the following meaning: the first communication node device self-decide determines from the first time-frequency resource pool and the second time-frequency resource pool whether the target time-frequency resource block belongs to the first The one-time-frequency resource pool still belongs to the second time-frequency resource pool.
  • Embodiment 12 illustrates a structural block diagram of a processing device in a first communication node device, as shown in FIG. 12.
  • the first communication node device processing apparatus 1200 includes a first receiver 1201 and a first transmitter 1202.
  • the first receiver 1201 includes the transmitter/receiver 456 (including the antenna 460) in Figure 4 of this application, the receiving processor 452 and the controller/processor 490;
  • the first transmitter 1202 includes the transmitter/receiver 456 in Figure 4 of this application
  • the transmitter/receiver 456 (including the antenna 460), the transmission processor 455 and the controller/processor 490.
  • the first receiver 1201 receives first information and receives second information.
  • the first information and the second information are used to determine the first time-frequency resource pool and the second time-frequency resource pool, respectively.
  • the first transmitter 1202 sends a first signal, and the first signal occupies a target time-frequency resource block; wherein, the first time-frequency resource pool includes a positive integer number of first-type time-frequency resource blocks, and the second The time-frequency resource pool includes a positive integer number of second-type time-frequency resource blocks; the number of resources occupied by any one of the first-type time-frequency resource blocks in the time domain in the first time-frequency resource pool and the second The number of resources occupied by any one of the second type time-frequency resource blocks in the time-frequency resource pool in the time domain is not equal; the target time-frequency resource block is a first one included in the first time-frequency resource pool Time-frequency resource block, or the target time-frequency resource block is a second-type time-frequency resource block included in the second time-frequency resource pool; the positioning information of
  • the absolute value of the time difference between the sending start time of the first signal and the reference time is equal to the first timing adjustment, and the receiving timing of the first communication node device is used to determine the reference time;
  • the first timing adjustment amount is greater than 0;
  • the first transmitter 1202 determines a target sequence; wherein, when the target time-frequency resource block belongs to the first time-frequency resource pool, the target sequence is used to generate the target sequence after W1 repeated transmissions.
  • the first signal when the target time-frequency resource block belongs to the second time-frequency resource pool, the target sequence is used to generate the first signal after W2 repeated transmissions;
  • the W1 is a positive integer
  • the W2 is a positive integer that is not equal to W1.
  • the first transmitter 1202 determines a target sequence; wherein, when the target time-frequency resource block belongs to the first time-frequency resource pool, the target sequence is used to generate the target sequence after W1 repeated transmissions.
  • the first signal when the target time-frequency resource block belongs to the second time-frequency resource pool, the target sequence is used to generate the first signal after W2 repeated transmissions;
  • the W1 is a positive integer
  • the W2 is a positive integer that is not equal to W1;
  • the first receiver 1201 receives third information; wherein, the third information is used to determine X candidate sequences, and X is a positive integer greater than 1;
  • the target sequence is one candidate sequence among the X candidate sequences, and the first communication node device randomly selects the target sequence from the X candidate sequences.
  • the first receiver 1201 receives the first signaling in the first time window; the position of the target time-frequency resource block in the time-frequency domain is used to determine the first feature identifier, and the first signaling Carry the first feature identifier; the first time window is a candidate time window among Y candidate time windows, the Y is a positive integer greater than 1, and any of the Y candidate time windows The two candidate time windows are orthogonal; the time-frequency resource pool to which the target time-frequency resource block belongs is used to determine the first time window from the Y candidate time windows.
  • the first transmitter 1202 sends a second signal; the second signal carries fourth information, and the fourth information is used to indicate the positioning capability of the first communication node device.
  • the first communication node device when the first communication node device can obtain the positioning information of the first communication node device, the first communication node device automatically obtains information from the first time-frequency resource pool and the first communication node device.
  • the time-frequency resource pool to which the target time-frequency resource block belongs is determined in the second time-frequency resource pool; when the first communication node device cannot obtain the positioning information of the first communication node device, the target time The frequency resource block belongs to the first time-frequency resource pool.
  • Embodiment 13 illustrates a structural block diagram of a processing device in a second communication node device, as shown in FIG. 13.
  • the second communication node equipment processing apparatus 1300 includes a second transmitter 1301 and a second receiver 1302.
  • the second transmitter 1301 includes the transmitter/receiver 416 (including the antenna 420), the transmission processor 415 and the controller/processor 440 in Figure 4 of the present application;
  • the second receiver 1302 includes the transmitter/receiver 416 in Figure 4 of the present application
  • the transmitter/receiver 416 (including the antenna 420), the receiving processor 412 and the controller/processor 440.
  • the second transmitter 1301 sends the first information and sends the second information, and the first information and the second information are respectively used to determine the first time-frequency resource pool and the second time-frequency resource pool
  • the second receiver 1302 receives the first signal, and the first signal occupies a target time-frequency resource block; wherein, the first time-frequency resource pool includes a positive integer number of first-type time-frequency resource blocks, and the second The time-frequency resource pool includes a positive integer number of second-type time-frequency resource blocks; the number of resources occupied by any one of the first-type time-frequency resource blocks in the time domain in the first time-frequency resource pool and the second The number of resources occupied by any one of the second type time-frequency resource blocks in the time-frequency resource pool in the time domain is not equal; the target time-frequency resource block is a first one included in the first time-frequency resource pool Time-frequency resource block, or the target time-frequency resource block is a second-type time-frequency resource block included in the second time-frequency resource pool; the positioning information of
  • the absolute value of the time difference between the sending start time of the first signal and the reference time is equal to the first timing adjustment, and the receiving timing of the first communication node device is used to determine the reference time;
  • the first timing adjustment amount is greater than 0;
  • the second receiver 1302 determines a target sequence; wherein, when the target time-frequency resource block belongs to the first time-frequency resource pool, the target sequence is used to generate the target sequence after W1 repeated transmissions.
  • the first signal when the target time-frequency resource block belongs to the second time-frequency resource pool, the target sequence is used to generate the first signal after W2 repeated transmissions;
  • the W1 is a positive integer
  • the W2 is a positive integer that is not equal to W1.
  • the second receiver 1302 determines a target sequence; wherein, when the target time-frequency resource block belongs to the first time-frequency resource pool, the target sequence is used to generate the target sequence after W1 repeated transmissions.
  • the first signal when the target time-frequency resource block belongs to the second time-frequency resource pool, the target sequence is used to generate the first signal after W2 repeated transmissions;
  • the W1 is a positive integer
  • the W2 is a positive integer that is not equal to W1;
  • the second transmitter 1301 sends third information; wherein, the third information is used to determine X candidate sequences, and X is a positive integer greater than 1;
  • the target sequence is one candidate sequence among the X candidate sequences, and the first communication node device randomly selects the target sequence from the X candidate sequences.
  • the second transmitter 1301 sends the first signaling in the first time window; wherein the position of the target time-frequency resource block in the time-frequency domain is used to determine the first feature identifier, and the first The signaling carries the first feature identifier; the first time window is one candidate time window among Y candidate time windows, and the Y is a positive integer greater than 1, among the Y candidate time windows Any two candidate time windows of are orthogonal; the time-frequency resource pool to which the target time-frequency resource block belongs is used to determine the first time window from the Y candidate time windows.
  • the second receiver 1302 receives a second signal; wherein the second signal carries fourth information, and the fourth information is used to indicate the positioning capability of the first communication node device.
  • the first communication node device when the first communication node device can obtain the positioning information of the first communication node device, the first communication node device automatically obtains information from the first time-frequency resource pool and the first communication node device.
  • the time-frequency resource pool to which the target time-frequency resource block belongs is determined in the second time-frequency resource pool; when the first communication node device cannot obtain the positioning information of the first communication node device, the target time The frequency resource block belongs to the first time-frequency resource pool.
  • each module unit in the above-mentioned embodiment can be realized in the form of hardware or software function module, and this application is not limited to the combination of software and hardware in any specific form.
  • the first type of communication node device or UE or terminal in this application includes but is not limited to mobile phones, tablets, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, aircraft, airplanes, etc.
  • Wireless communication equipment such as man-machine, remote control aircraft.
  • the second type of communication node equipment or base station or network side equipment in this application includes, but is not limited to, macro cell base station, micro cell base station, home base station, relay base station, eNB, gNB, transmission receiving node TRP, relay satellite, satellite base station , Wireless communication equipment such as air base stations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种用于无线通信的通信节点中的方法和装置。通信节点接收第一信息和第二信息;发送第一信号;所述第一信息和所述第二信息分别被用于确定第一时频资源池和第二时频资源池,所述第一信号占用目标时频资源块;所述第一时频资源池中的任意一个第一类时频资源块在时域所占用的资源的数量和所述第二时频资源池中的任意一个第二类时频资源块在时域所占用的资源的数量不相等;所述目标时频资源块属于所述第一时频资源池或者所述第二时频资源池;所述第一通信节点设备的定位信息被用于从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池。本申请提高随机接入性能。

Description

一种用于无线通信的通信节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及大的延时差的传输方案和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或5G)进行研究,在3GPP RAN#75次全会上通过了新空口技术(NR,New Radio)的WI(Work Item,工作项目),开始对NR进行标准化工作。
为了能够适应多样的应用场景和满足不同的需求,在3GPP RAN#75次全会上还通过了NR下的非地面网络(NTN,Non-Terrestrial Networks)的研究项目,该研究项目在R15版本开始。在3GPP RAN#79次全会上决定开始研究NTN网络中的解决方案,然后在R16或R17版本中启动WI对相关技术进行标准化。
发明内容
在NTN网络中,用户设备(UE,User Equipment)和卫星或者飞行器通过5G网络进行通信,由于卫星或飞行器到达用户设备的距离要远远大于地面基站到达用户设备的距离,因而导致卫星或飞行器与用户设备间通信传输时的较长的传输延时(Propagation Delay)。另外,当卫星被用作地面站的中继设备时,卫星与地面站之间的支线链路(Feeder Link)的延时会更加增大用户设备与基站间传输延时。另一方面,由于卫星和飞行器的覆盖范围和地面网络(Terrestrial Networks)相比要大得多,同时由于地面设备到卫星或飞行器的倾角不同,导致在NTN中的延时之间的差别非常大。在现有的LTE(Long Term Evolution,长期演进)或5G NR系统中,最大延时差只有几微秒或者几十微秒,但是在NTN中最大延时差可以达到几毫秒甚至几十毫秒。由于现有的LTE或NR中的随机接入都是为传统地面通信设计的,无法直接应用到NTN网络中,因而需要新的设计来支持大延时差网络,特别是NTN通信。
针对大延时差网络,特别是NTN通信中的随机接入设计中的问题,本申请提供了一种解决方案。需要说明的是,在不冲突的情况下,本申请的基站设备中的实施例和实施例中的特征可以应用到用户设备中,反之亦然。进一步的,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种用于无线通信中的第一通信节点中的方法,其特征在于,包括:
接收第一信息和接收第二信息,所述第一信息和所述第二信息分别被用于确定第一时频资源池和第二时频资源池;
发送第一信号,所述第一信号占用目标时频资源块;
其中,所述第一时频资源池中包括正整数个第一类时频资源块,所述第二时频资源池中包括正整数个第二类时频资源块;所述第一时频资源池中的任意一个第一类时频资源块在时域所占用的资源的数量和所述第二时频资源池中的任意一个第二类时频资源块在时域所占用的资源的数量不相等;所述目标时频资源块是所述第一时频资源池中所包括的一个第一类时频资源块,或者所述目标时频资源块是所述第二时频资源池中所包括的一个第二类时频资源块;所述第一通信节点设备的定位信息被用于从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池。
作为一个实施例,本申请中的所述第一通信节点设备根据自身的定位能力或者可能获得的定位信息来确定发送的前导的格式或者随机接入信道所占用的资源,从而可以针对不同的能力和不同的场景对随机接入的设计进行优化,提高系统的整体性能。
作为一个实施例,针对不同的定位能力设计占用不同时域资源数量的前导格式或随机接入信道格式,保证了在不同的用户设备能力的情况下的随机接入性能。
根据本申请的一个方面,上述方法的特征在于,所述第一信号的发送起始时刻和参考时刻的时间差的绝对值等于第一定时调整量,所述第一通信节点设备的接收定时被用于确定所述参考时刻;当所述目标时频资源块属于所述第一时频资源池时,所述第一定时调整量大于0;当所述目标时频资源块属于所述第二时频资源池时,所述第一定时调整量等于0。
作为一个实施例,将所述第一定时调整量和所述目标时域资源块所属的时频资源池关联起来,保证了当用户设备可以准确获得定位信息进而上行定时信息的情况下的优化的前导序列设计,降低了随机接入的前导资源开销,并且提高随机接入成功概率。
根据本申请的一个方面,上述方法的特征在于,还包括:
确定目标序列;
其中,当所述目标时频资源块属于所述第一时频资源池时,所述目标序列经过W1次重复传输被用于生成所述第一信号;当所述目标时频资源块属于所述第二时频资源池时,所述目标序列经过W2次重复传输被用于生成所述第一信号;所述W1是正整数,所述W2是和所述W1不相等的正整数。
作为一个实施例,根据所述目标时频资源块所属的时频资源池设计不同时域长度的随机接入信道,并且不同长度的随机接入信道通过同一个目标序列经过不同的时域重复来实现,简化了系统设计,降低了实现复杂度,同时保证了良好的兼容性。
根据本申请的一个方面,上述方法的特征在于,还包括:
接收第三信息;
其中,所述第三信息被用于确定X个备选序列,所述X是大于1的正整数;所述目标序列是所述X个备选序列中的一个备选序列,所述第一通信节点设备在所述X个备选序列中随机选择所述目标序列。
根据本申请的一个方面,上述方法的特征在于,还包括:
在第一时间窗中接收第一信令;
其中,所述目标时频资源块在时频域的位置被用于确定第一特征标识,所述第一信令携带所述第一特征标识;所述第一时间窗是Y个备选时间窗中的一个备选时间窗,所述Y是大于1的正整数,所述Y个备选时间窗中的任意两个备选时间窗正交;所述目标时频资源块所属的时频资源池被用于从所述Y个备选时间窗中确定所述第一时间窗。
根据本申请的一个方面,上述方法的特征在于,还包括:
发送第二信号;
其中,所述第二信号携带第四信息,所述第四信息被用于指示所述第一通信节点设备的定位能力。
作为一个实施例,通过MsgA或者Msg3将所述第一通信节点设备的定位能力上报给网络,从而使得网络可以根据用户设备的定位能力配置用户设备后续的传输,使得网络可以尽早实现系统的特定的优化。
根据本申请的一个方面,上述方法的特征在于,当所述第一通信节点设备能够获得所述第一通信节点设备的所述定位信息时,所述第一通信节点设备自行从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池;当所述第一通信节点设备不能够获得所述第一通信节点设备的所述定位信息时,所述目标时频资源块属于所述第一时频资源池。
本申请公开了一种用于无线通信中的第二通信节点中的方法,其特征在于,包括:
发送第一信息和发送第二信息,所述第一信息和所述第二信息分别被用于确定第一时频资源池和第二时频资源池;
接收第一信号,所述第一信号占用目标时频资源块;
其中,所述第一时频资源池中包括正整数个第一类时频资源块,所述第二时频资源池中包括正整数个第二类时频资源块;所述第一时频资源池中的任意一个第一类时频资源块在时域所占用的资源的数量和所述第二时频资源池中的任意一个第二类时频资源块在时域所占用的资源的数量不相等;所述目标时频资源块是所述第一时频资源池中所包括的一个第一类时频资源块,或者所述目标时频资源块是所述第二时频资源池中所包括的一个第二类时频资源块;所述第一通信节点设备的定位信息被用于从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池。
根据本申请的一个方面,上述方法的特征在于,所述第一信号的发送起始时刻和参考时刻的时间差的绝对值等于第一定时调整量,所述第一通信节点设备的接收定时被用于确定所述参考时刻;当所述目标时频资源块属于所述第一时频资源池时,所述第一定时调整量大于0;当所述目标时频资源块属于所述第二时频资源池时,所述第一定时调整量等于0。
根据本申请的一个方面,上述方法的特征在于,还包括:
确定目标序列;
其中,当所述目标时频资源块属于所述第一时频资源池时,所述目标序列经过W1次重复传输被用于生成所述第一信号;当所述目标时频资源块属于所述第二时频资源池时,所述目标序列经过W2次重复传输被用于生成所述第一信号;所述W1是正整数,所述W2是和所述W1不相等的正整数。
根据本申请的一个方面,上述方法的特征在于,还包括:
发送第三信息;
其中,所述第三信息被用于确定X个备选序列,所述X是大于1的正整数;所述目标序列是所述X个备选序列中的一个备选序列,所述第一通信节点设备在所述X个备选序列中随机选择所述目标序列。
根据本申请的一个方面,上述方法的特征在于,还包括:
在第一时间窗中发送第一信令;
其中,所述目标时频资源块在时频域的位置被用于确定第一特征标识,所述第一信令携带所述第一特征标识;所述第一时间窗是Y个备选时间窗中的一个备选时间窗,所述Y是大于1的正整数,所述Y个备选时间窗中的任意两个备选时间窗正交;所述目标时频资源块所属的时频资源池被用于从所述Y个备选时间窗中确定所述第一时间窗。
根据本申请的一个方面,上述方法的特征在于,还包括:
接收第二信号;
其中,所述第二信号携带第四信息,所述第四信息被用于指示所述第一通信节点设备的定位能力。
根据本申请的一个方面,上述方法的特征在于,当所述第一通信节点设备能够获得所述第一通信节点设备的所述定位信息时,所述第一通信节点设备自行从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池;当所述第一通信节点设备不能够获得所述第一通信节点设备的所述定位信息时,所述目标时频资源块属于所述第一时频资源池。
本申请公开了一种用于无线通信中的第一通信节点设备,其特征在于,包括:
第一接收机,接收第一信息和接收第二信息,所述第一信息和所述第二信息分别被用于确定第一时频资源池和第二时频资源池;
第一发射机,发送第一信号,所述第一信号占用目标时频资源块;
其中,所述第一时频资源池中包括正整数个第一类时频资源块,所述第二时频资源池中包括正整数个第二类时频资源块;所述第一时频资源池中的任意一个第一类时频资源块在时域所占用的资源的数量和所述第二时频资源池中的任意一个第二类时频资源块在时域所占用的资源的数量不相等;所述目标时频资源块是所述第一时频资源池中所包括的一个第一类时频资源块,或者所述目标时频资源块是所述第二时频资源池中所包括的一个第二类时频资源块;所述第一通信节点设备的定位信息被用于从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池。
本申请公开了一种用于无线通信中的第二通信节点设备,其特征在于,包括:
第二发射机,发送第一信息和发送第二信息,所述第一信息和所述第二信息分别被用于确定第一时频资源池和第二时频资源池;
第二接收机,接收第一信号,所述第一信号占用目标时频资源块;
其中,所述第一时频资源池中包括正整数个第一类时频资源块,所述第二时频资源池中包括正整数个第二类时频资源块;所述第一时频资源池中的任意一个第一类时频资源块在时域所占用的资源的数量和所述第二时频资源池中的任意一个第二类时频资源块在时域所占用的资源的数量不相等;所述目标时频资源块是所述第一时频资源池中所包括的一个第一类时频资源块,或者所述目标时频资源块是所述第二时频资源池中所包括的一个第二类时频资源块;所述第一通信节点设备的定位信息被用于从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池。
作为一个实施例,本申请和现有地面网络中的随机接入的方法相比,具有如下主要技术优势:
-.采用本申请中的方法,用户设备可以根据自身的定位能力或者可能获得的定位信息来确定发送的前导的格式或者随机接入信道所占用的资源,从而可以针对不同的能力和不同的场景对随机接入的设计进行优化,提高系统的整体性能。
-.本申请中的方法针对不同的定位能力设计占用不同时域资源数量的前导格式或随机接入信道格式,保证了在不同的用户设备能力的情况下的随机接入性能。
-.本申请中的方法保证了当用户设备可以准确获得定位信息进而上行定时信息的情况下的优化的前导序列设计,降低了随机接入的前导资源开销,并且提高随机接入成功概率。
-.本申请中的方法设计了不同时域长度的随机接入信道,并且不同长度的随机接入信道通过同一个特征序列经过不同的时域重复来实现,简化了系统设计,降低了实现复杂度,同时保证了良好的兼容性。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信息,第二信息和第一信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一通信节点和第二通信节点的示意图;
图5示出了根据本申请的一个实施例的信号传输流程图;
图6示出了根据本申请的一个实施例的第一时频资源池和第二时频资源池的关系的示意图;
图7示出了根据本申请的一个实施例的第一定时调整量的示意图;
图8示出了根据本申请的一个实施例的目标序列和第一信号的关系的示意图;
图9示出了根据本申请的一个实施例的X个备选序列的示意图;
图10示出了根据本申请的一个实施例的Y个备选时间窗的示意图;
图11示出了根据本申请的一个实施例的目标时频资源块和第一时频资源池以及第二时频资源池的关系的示意图;
图12示出了根据本申请的一个实施例的第一通信节点设备中的处理装置的结构框图;
图13示出了根据本申请的一个实施例的第二通信节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信息,第二信息和第一信号的传输的流程图,如附图1所示。附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序并不代表所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的第一通信节点在步骤101中接收第一信息和接收第二信息;在步骤102中发送第一信号;所述第一信息和所述第二信息分别被用于确定第一时频资源池和第二时频资源池;所述第一信号占用目标时频资源块;所述第一时频资源池中包括正整数个第一类时频资源块,所述第二时频资源池中包括正整数个第二类时频资源块;所述第一时频资源池中的任意一个第一类时频资源块在时域所占用的资源的数量和所述第二时频资源池中的任意一个第二类时频资源块在时域所占用的资源的数量不相等;所述目标时频资源块是所述第一时频资源池中所包括的一个第一类时频资源块,或者所述目标时频资源块是所述第二时频资源池中所包括的一个第二类时频资源块;所述第一通信节点设备的定位信息被用于从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池。
作为一个实施例,所述第一信息和所述第二信息是两个独立的信息。
作为一个实施例,所述第一信息和所述第二信息是经过联合编码(Joint Coding)的。
作为一个实施例,所述第一信息和所述第二信息是一个信息中的两个子信息。
作为一个实施例,所述第一信息和所述第二信息是通过同一个信令携带的。
作为一个实施例,所述第一信息和所述第二信息是通过两个不同的信令携带的。
作为一个实施例,所述第一信息就是所述第二信息;
作为一个实施例,所述第一信息和所述第二信息是同一个信令中的两个不同的域(Field)。
作为一个实施例,所述第一信息和所述第二信息是同一个信令中的两个不同的IE(Information Element,信息元素)。
作为一个实施例,所述第一信息和所述第二信息是通过一个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)携带的。
作为一个实施例,所述第一信息和所述第二信息是通过两个不同的PDSCH(Physical Downlink Shared Channel,物理下行共享信道)携带的。
作为一个实施例,所述第一信息通过高层信令传输。
作为一个实施例,所述第一信息通过物理层信令传输。
作为一个实施例,所述第一信息包括了一个高层信令中的全部或部分。
作为一个实施例,所述第一信息包括了一个物理层信令中的全部或部分。
作为一个实施例,所述第一信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的全部或部分IE(Information Element,信息单元)。
作为一个实施例,所述第一信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的一个IE(Information Element,信息单元)中的全部或部分域(Field)。
作为一个实施例,所述第一信息包括了一个MAC(Medium Access Control,媒体接入控制)层信令中的全部或部分域(Field)。
作为一个实施例,所述第一信息包括了一个系统信息块(SIB,System Information Block)中的全部或部分。
作为一个实施例,所述第一信息包括了一个MAC(Medium Access Control,媒体接入控制)CE(Control Element,控制单元)中的全部或部分。
作为一个实施例,所述第一信息包括了一个MAC(Medium Access Control,媒体接入控制)头(Header)中的全部或部分。
作为一个实施例,所述第一信息通过一个DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第一信息通过一个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第一信息和本申请中的所述第二通信节点的覆盖区域有关。
作为一个实施例,所述第一信息和本申请中的所述第二通信节点的高度有关。
作为一个实施例,所述第一信息和本申请中的所述第二通信节点的类型有关。
作为一个实施例,所述第一信息和本申请中的所述第二通信节点相对于本申请中的所述第一通信节点的倾角有关。
作为一个实施例,所述第一信息和本申请中的所述第二通信节点的覆盖区域大小有关。
作为一个实施例,所述第一信息是广播的。
作为一个实施例,所述第一信息是小区特定的(Cell Specific)。
作为一个实施例,所述第一信息是用户设备特定的(UE-specific)。
作为一个实施例,所述第一信息是用户设备组特定的(UE group-specific)。
作为一个实施例,所述第一信息是地理区域特定的。
作为一个实施例,所述第一信息包括一个DCI(Down ink Control Information)信令的全部或部分域(Field)。
作为一个实施例,所述第二信息通过高层信令传输。
作为一个实施例,所述第二信息通过物理层信令传输。
作为一个实施例,所述第二信息包括了一个高层信令中的全部或部分。
作为一个实施例,所述第二信息包括了一个物理层信令中的全部或部分。
作为一个实施例,所述第二信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的全部或部分IE(Information Element,信息单元)。
作为一个实施例,所述第二信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的一个IE(Information Element,信息单元)中的全部或部分域(Field)。
作为一个实施例,所述第二信息包括了一个MAC(Medium Access Control,媒体接入控制)层信令中的全部或部分域(Field)。
作为一个实施例,所述第二信息包括了一个系统信息块(SIB,System Information Block)中的全部或部分。
作为一个实施例,所述第二信息包括了一个MAC(Medium Access Control,媒体接入控制)CE(Control Element,控制单元)中的全部或部分。
作为一个实施例,所述第二信息包括了一个MAC(Medium Access Control,媒体接入控制)头(Header)中的全部或部分。
作为一个实施例,所述第二信息通过一个DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第二信息通过一个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第二信息和本申请中的所述第二通信节点的覆盖区域有关。
作为一个实施例,所述第二信息和本申请中的所述第二通信节点的高度有关。
作为一个实施例,所述第二信息和本申请中的所述第二通信节点的类型有关。
作为一个实施例,所述第二信息和本申请中的所述第二通信节点相对于本申请中的所述第一通信节点的倾角有关。
作为一个实施例,所述第二信息和本申请中的所述第二通信节点的覆盖区域大小有关。
作为一个实施例,所述第二信息是广播的。
作为一个实施例,所述第二信息是小区特定的(Cell Specific)。
作为一个实施例,所述第二信息是用户设备特定的(UE-specific)。
作为一个实施例,所述第二信息是用户设备组特定的(UE group-specific)。
作为一个实施例,所述第二信息是地理区域特定的。
作为一个实施例,所述第二信息包括一个DCI(Downlink Control Information)信令的全部或部分域(Field)。
作为一个实施例,上述句子“所述第一信息和所述第二信息分别被用于确定第一时频资源池和第二时频资源池”包括以下含义:所述第一信息和所述第二信息分别被本申请中的所述第一通信节点设备用于确定所述第一时频资源池和所述第二时频资源池。
作为一个实施例,上述句子“所述第一信息和所述第二信息分别被用于确定第一时频资源池和第二时频资源池”包括以下含义:所述第一信息和所述第二信息分别被用于直接指示所述第一时频资源池和所述第二时频资源池。
作为一个实施例,上述句子“所述第一信息和所述第二信息分别被用于确定第一时频资源池和第二时频资源池”包括以下含义:所述第一信息和所述第二信息分别被用于间接指示所述第一时频资源池和所述第二时频资源池。
作为一个实施例,上述句子“所述第一信息和所述第二信息分别被用于确定第一时频资源池和第二时频资源池”包括以下含义:所述第一信息和所述第二信息分别被用于显式地指示所述第一时频资源池和所述第二时频资源池。
作为一个实施例,上述句子“所述第一信息和所述第二信息分别被用于确定第一时频资源池和第二时频资源池”包括以下含义:所述第一信息和所述第二信息分别被用于隐式地指示所述第一时频资源池和所述第二时频资源池。
作为一个实施例,上述句子“所述第一信息和所述第二信息分别被用于确定第一时频资源池和第二时频资源池”包括以下含义:所述第一信息和所述第二信息分别被用于显式地指示和隐式地指示所述第一时频资源池和所述第二时频资源池。
作为一个实施例,上述句子“所述第一信息和所述第二信息分别被用于确定第一时频资源池和第二时频资源池”包括以下含义:所述第一信息和所述第二信息分别被用于隐式地指示和显式地指示所述第一时频资源池和所述第二时频资源池。
作为一个实施例,所述第一信息和所述第二信息都是通过空中接口传输的。
作为一个实施例,所述第一信息和所述第二信息都是通过无线接口传输的。
作为一个实施例,所述第一时频资源池在时域包括连续的时域资源。
作为一个实施例,所述第一时频资源池在时域包括离散的时域资源。
作为一个实施例,所述第一时频资源池在频域包括连续的频域资源。
作为一个实施例,所述第一时频资源池在频域包括离散的频域资源。
作为一个实施例,所述第二时频资源池在时域包括连续的时域资源。
作为一个实施例,所述第二时频资源池在时域包括离散的时域资源。
作为一个实施例,所述第二时频资源池在频域包括连续的频域资源。
作为一个实施例,所述第二时频资源池在频域包括离散的频域资源。
作为一个实施例,所述第一时频资源池和所述第二时频资源池正交。
作为一个实施例,所述第一时频资源池和所述第二时频资源池非正交。
作为一个实施例,存在一个RE(Resource Element,资源单元)同时属于所述第一时频资源池和所述第二时频资源池。
作为一个实施例,不存在一个RE(Resource Element,资源单元)同时属于所述第一时频资源池和所述第二时频资源池。
作为一个实施例,所述第一时频资源池中的任意一个RE(Resource Element,资源单元)和所述第二时频资源池中的任意一个RE(Resource Element,资源单元)在时域占用不同的时域资源。
作为一个实施例,所述第一时频资源池中存在一个RE(Resource Element,资源单元)和所述第二时频资源池中的一个RE(Resource Element,资源单元)在时域占用相同的时域资源。
作为一个实施例,所述第一时频资源池和所述第二时频资源池是频分的(FDM,Frequency Division Multiplexing)。
作为一个实施例,所述第一时频资源池和所述第二时频资源池是时分的(TDM,Time Division Multiplexing)。
作为一个实施例,所述第一信号是基带信号。
作为一个实施例,所述第一信号是射频信号。
作为一个实施例,所述第一信息通过空中接口传输。
作为一个实施例,所述第一信号通过无线接口传输。
作为一个实施例,所述第一信号被用于随机接入。
作为一个实施例,所述第一信号通过物理随机接入信道(PRACH,Physical Random Access Channel)传输。
作为一个实施例,所述第一信号携带4步随机接入中的Msg1(消息1)。
作为一个实施例,所述第一信号携带2步随机接入中的MsgA(消息A)。
作为一个实施例,所述第一信号携带前导序列(Preamble)。
作为一个实施例,伪随机序列被用于生成所述第一信号。
作为一个实施例,Zadoff-Chu(ZC)序列被用于生成所述第一信号。
作为一个实施例,一个长度为839的Zadoff-Chu(ZC)序列被用于生成所述第一信号。
作为一个实施例,一个长度为139的Zadoff-Chu(ZC)序列被用于生成所述第一信号。
作为一个实施例,所述第一信号包括CP(Cyclic Prefix,循环前缀),Preamble(前导)和GP(Guard Period,保护时间)。
作为一个实施例,所述目标时频资源块是一个物理随机接入信号机会(PRACH Occasion)所占用的时频资源。
作为一个实施例,所述目标时频资源块包括连续的时域资源。
作为一个实施例,所述目标时频资源块包括连续的频域资源。
作为一个实施例,所述目标时频资源块在时域包括CP(Cyclic Prefix,循环前缀)所占用的时域资源,Preamble(前导)所占用的时域资源和GP(Guard Period,保护时间)所占用的时域资源。
作为一个实施例,所述目标时频资源块在时域包括空闲时域资源。
作为一个实施例,所述目标时频资源块包括正整数个RE。
作为一个实施例,所述目标时频资源块只能属于所述第一时频资源池或者所述第二时频资源池中之一。
作为一个实施例,所述目标时频资源块属于所述第一时频资源池或者所述第二时频资源池之外的一个时频资源池。
作为一个实施例,所述第一时频资源池中所包括的每个第一类时频资源块在时域包括连续的时域资源并且在频域包括连续的频域资源。
作为一个实施例,所述第二时频资源池中所包括的每个第二类时频资源块在时域包括连续的时域资源并且在频域包括连续的频域资源。
作为一个实施例,所述第一时频资源池中的第一类时频资源块在时域是周期分布的。
作为一个实施例,所述第二时频资源池中的第二类时频资源块在时域是周期分布的。
作为一个实施例,上述句子“所述第一时频资源池中的任意一个第一类时频资源块在时域所占用的资源的数量和所述第二时频资源池中的任意一个第二类时频资源块在时域所占用的资源的数量不相等”包括以下含义:所述第一时频资源池中的任意一个第一类时频资源块在时域所占用的OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(symbol)的数量和所述第二时频资源池中的任意一个第二类时频资源块在时域所占用的OFDM符号的数量不相等。
作为一个实施例,上述句子“所述第一时频资源池中的任意一个第一类时频资源块在时域所占用的资源的数量和所述第二时频资源池中的任意一个第二类时频资源块在时域所占用的资源的数量不相等”包括以下含义:所述第一时频资源池中的任意一个第一类时频资源块在时域所占用的时间间隔长度和所述第二时频资源池中的任意一个第二类时频资源块在时域所占用的时间间隔长度不相等。
作为一个实施例,上述句子“所述第一时频资源池中的任意一个第一类时频资源块在时域所占用的资源的数量和所述第二时频资源池中的任意一个第二类时频资源块在时域所占用的资源的数量不相等”包括以下含义:所述第一时频资源池中的任意一个第一类时频资源块所对应的物理随机接入信道前导格式(PRACH Preamble Format)和所述第二时频资源池中的任意一个第二类时频资源块所对应的物理随机接入信道前导格式(PRACH Preamble Format)不相同。
作为一个实施例,所述第一通信节点设备的所述定位信息包括所述第一通信节点设备的定位能力信息。
作为一个实施例,所述第一通信节点设备的所述定位信息包括所述第一通信节点设备是否能够通过自身的地理位置计算得到所述第一通信节点设备和本申请中的所述第二通信节点设备之间的距离。
作为一个实施例,所述第一通信节点设备的所述定位信息包括所述第一通信节点设备是否能够通过自身的地理位置计算得到所述第一通信节点设备和本申请中的所述第二通信节点设备之间的距离以及获得的距离的精度。
作为一个实施例,所述第一通信节点设备的所述定位信息包括所述第一通信节点设备是否能够通过自身的地理位置计算得到所述第一通信节点设备和本申请中的所述第二通信节点设备之间的传输延时(Propagation Delay)。
作为一个实施例,所述第一通信节点设备的所述定位信息包括所述第一通信节点设备是否能够通过自身的地理位置计算得到所述第一通信节点设备和本申请中的所述第二通信节点设备之间的传输延时以及获得的传输延时的精度。
作为一个实施例,所述第一通信节点设备的所述定位信息包括所述第一通信节点设备的定位方法。
作为一个实施例,所述第一通信节点设备的所述定位信息包括所述第一通信节点设备是否支持GNSS(Global Navigation Satellite System,全球导航卫星系统)。
作为一个实施例,所述第一通信节点设备的所述定位信息包括所述第一通信节点设备是否支持GNSS(Global Navigation Satellite System,全球导航卫星系统)以及当支持GNSS的时候的定位精度。
作为一个实施例,所述第一通信节点设备的所述定位信息包括所述第一通信节点设备的定位的精度。
作为一个实施例,所述第一通信节点设备的所述定位信息包括所述第一通信节点设备是否支持GNSS(Global Navigation Satellite System,全球导航卫星系统)以及当支持GNSS的时候的GNSS的类型。
作为一个实施例,上述句子“所述第一通信节点设备的定位信息被用于从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池”包括以下含义:所述第一通信节点设备是否能够获得所述第一通信节点设备的定位信息被用于从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池。
作为一个实施例,上述句子“所述第一通信节点设备的定位信息被用于从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池”包括以下含义:所述第一通信节点设备的定位信息被所述第一通信节点设备用于从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池。
作为一个实施例,上述句子“所述第一通信节点设备的定位信息被用于从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池”包括以下含义:所述第一通信节点设备的定位信息基于映射条件被用于从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池。
作为一个实施例,上述句子“所述第一通信节点设备的定位信息被用于从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池”包括以下含义:所述第一通信节点设备是否具有定位的能力被用于从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池。
作为一个实施例,上述句子“所述第一通信节点设备的定位信息被用于从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池”包括以下含义:所述第一通信节点设备是否能够获得所述第一通信节点设备的定位信息被用于确定所述目标时频资源块是属于所述第一时频资源池还是所述第二时频资源池。
作为一个实施例,上述句子“所述第一通信节点设备的定位信息被用于从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池”包括以下含义:所述第一通信节点设备的定位信息被用于确定所述目标时频资源块是属于所述第一时频资源池还是所述第二时频资源池。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2是说明了NR 5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统网络架构200的图。NR 5G或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语,在NTN网络中,gNB203可以是卫星或通过卫星中继的地面基站。gNB203为UE201提供对EPC/5G-CN210的接入 点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN210。EPC/5G-CN210包括MME/AMF/UPF 211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocol,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)。
作为一个实施例,所述UE201对应本申请中的所述第一通信节点设备。
作为一个实施例,所述UE201支持在非地面网络(NTN)的传输。
作为一个实施例,所述UE201支持大延时差网络中的传输。
作为一个实施例,所述gNB203对应本申请中的所述第二通信节点设备。
作为一个实施例,所述gNB203支持在非地面网络(NTN)的传输。
作为一个实施例,所述gNB203支持在大延时差网络中的传输。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或NTN中的卫星或飞行器)和第二通信节点设备(gNB,UE或NTN中的卫星或飞行器),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线 承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一通信节点设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二通信节点设备。
作为一个实施例,本申请中的所述第一信息生成于所述RRC306。
作为一个实施例,本申请中的所述第一信息生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一信息生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二信息生成于所述RRC306。
作为一个实施例,本申请中的所述第二信息生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第二信息生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述目标序列生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第三信息生成于所述RRC306。
作为一个实施例,本申请中的所述第三信息生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第三信息生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一信令生成于所述RRC306。
作为一个实施例,本申请中的所述第一信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二信号生成于所述RRC306。
作为一个实施例,本申请中的所述第二信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第二信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第四信息生成于所述RRC306。
作为一个实施例,本申请中的所述第四信息生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第四信息生成于所述PHY301或者PHY351。
实施例4
实施例4示出了根据本申请的一个第一通信节点设备和第二通信节点设备的示意图,如附图4所示。
在第一通信节点设备(450)中包括控制器/处理器490,数据源/缓存器480,接收处理器452,发射器/接收器456和发射处理器455,发射器/接收器456包括天线460。数据源/缓存器480提供上层包到控制器/处理器490,控制器/处理器490提供包头压缩解压缩、加密解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层及以上层协议,上层包中可以包括数据或者控制信息,例如DL-SCH或UL-SCH或SL-SCH。发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等。接收处理器452实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层控制信令提取等。发射器456用于将发射处理器455提供的基带信号转换成射频信号并经由天线460发射出去,接收器456用于通过天线460接收的射频信号转换成基带信号提供给接收处理器452。
在第二通信节点设备(410)中可以包括控制器/处理器440,数据源/缓存器430,接收处理器412,发射器/接收器416和发射处理器415,发射器/接收器416包括天线420。数据源/缓存器430提供上层包到达控制器/处理器440,控制器/处理器440提供包头压缩解压缩、加密解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议。上层包中可以包括数据或者控制信息,例如DL-SCH或 UL-SCH或SL-SCH。发射处理器415实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层信令(包括同步信号和参考信号等)生成等。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层信令提取等。发射器416用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去,接收器416用于通过天线420接收的射频信号转换成基带信号提供给接收处理器412。
在DL(Downlink,下行)中,上层包,比如本申请中的第一信息,第二信息,第三信息和第一信令中所包括的高层信息提供到控制器/处理器440。控制器/处理器440实施L2层及以上层的功能。在DL中,控制器/处理器440提供包头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对第一通信节点设备450的无线电资源分配。控制器/处理器440还负责HARQ操作、丢失包的重新发射,和到第一通信节点设备450的信令,比如本申请中的第一信息,第二信息,第三信息和第一信令中所包括的高层信息(如果包括的话)均在控制器/处理器440中生成。发射处理器415实施用于L1层(即,物理层)的各种信号处理功能,包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等,本申请中的第一信息,第二信息,第三信息和第一信令的物理层信号的生成在发射处理器415完成,生成的调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号,然后由发射处理器415经由发射器416映射到天线420以射频信号的形式发射出去。在接收端,每一接收器456通过其相应天线460接收射频信号,每一接收器456恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器452。接收处理器452实施L1层的各种信号接收处理功能。信号接收处理功能包括对本申请中的第一信息,第二信息,第三信息和第一信令的物理层信号的接收等,通过多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解扰,解码和解交织以恢复在物理信道上由第二通信节点设备410发射的数据或者控制,随后将数据和控制信号提供到控制器/处理器490。控制器/处理器490负责L2层及以上层,控制器/处理器490对本申请中的第一信息,第二信息,第三信息和第一信令中所包括的高层信息(如果包括高层信息的话)进行解读。控制器/处理器可与存储程序代码和数据的存储器480相关联。存储器480可称为计算机可读媒体。
在上行(UL)传输中,数据源/缓存器480用来提供高层数据到控制器/处理器490。数据源/缓存器480表示L2层和L2层之上的所有协议层。控制器/处理器490通过基于第二通信节点410的无线电资源分配提供标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,来实施用于用户平面和控制平面的L2层协议。控制器/处理器490还负责HARQ操作、丢失包的重新发射,和到第二通信节点410的信令。本申请中的第一信号在控制器/处理器490生成,第二信号在数据源/缓存器480生成。发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能,本申请中的第一信号的物理层信号和第二信号的物理层信号在发射处理器455生成。信号发射处理功能包括编码和交织以促进UE450处的前向错误校正(FEC)以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))对基带信号进行调制,将调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号,然后由发射处理器455经由发射器456映射到天线460以射频信号的形式发射出去。接收器416通过其相应天线420接收射频信号,每一接收器416恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器412。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能,包括接收处理本申请中的第一信号和第二信号的物理层信号,信号接收处理功能包括获取多载波符号流,接着对多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解码和解交织以恢复在物理信道上由第一通信节点设备450原始发射的数据和/或控制信号。随后将数据和/或控制信号提供到控制器/处理器440。在控制器/处理器440实施L2层的功能,包括对本申请中的第一信号和第二信号所携带的信息(包括本申请中的第四信息)的解读。控 制器/处理器可与存储程序代码和数据的缓存器430相关联。缓存器430可以为计算机可读媒体。
作为一个实施例,所述第一通信节点设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信节点设备450装置至少:接收第一信息和接收第二信息,所述第一信息和所述第二信息分别被用于确定第一时频资源池和第二时频资源池;发送第一信号,所述第一信号占用目标时频资源块;其中,所述第一时频资源池中包括正整数个第一类时频资源块,所述第二时频资源池中包括正整数个第二类时频资源块;所述第一时频资源池中的任意一个第一类时频资源块在时域所占用的资源的数量和所述第二时频资源池中的任意一个第二类时频资源块在时域所占用的资源的数量不相等;所述目标时频资源块是所述第一时频资源池中所包括的一个第一类时频资源块,或者所述目标时频资源块是所述第二时频资源池中所包括的一个第二类时频资源块;所述第一通信节点设备的定位信息被用于从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池。
作为一个实施例,所述第一通信节点设备450装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信息和接收第二信息,所述第一信息和所述第二信息分别被用于确定第一时频资源池和第二时频资源池;发送第一信号,所述第一信号占用目标时频资源块;其中,所述第一时频资源池中包括正整数个第一类时频资源块,所述第二时频资源池中包括正整数个第二类时频资源块;所述第一时频资源池中的任意一个第一类时频资源块在时域所占用的资源的数量和所述第二时频资源池中的任意一个第二类时频资源块在时域所占用的资源的数量不相等;所述目标时频资源块是所述第一时频资源池中所包括的一个第一类时频资源块,或者所述目标时频资源块是所述第二时频资源池中所包括的一个第二类时频资源块;所述第一通信节点设备的定位信息被用于从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池。
作为一个实施例,所述第二通信节点设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信节点设备410装置至少:发送第一信息和发送第二信息,所述第一信息和所述第二信息分别被用于确定第一时频资源池和第二时频资源池;接收第一信号,所述第一信号占用目标时频资源块;其中,所述第一时频资源池中包括正整数个第一类时频资源块,所述第二时频资源池中包括正整数个第二类时频资源块;所述第一时频资源池中的任意一个第一类时频资源块在时域所占用的资源的数量和所述第二时频资源池中的任意一个第二类时频资源块在时域所占用的资源的数量不相等;所述目标时频资源块是所述第一时频资源池中所包括的一个第一类时频资源块,或者所述目标时频资源块是所述第二时频资源池中所包括的一个第二类时频资源块;所述第一通信节点设备的定位信息被用于从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池。
作为一个实施例,所述第二通信节点设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信息和发送第二信息,所述第一信息和所述第二信息分别被用于确定第一时频资源池和第二时频资源池;接收第一信号,所述第一信号占用目标时频资源块;其中,所述第一时频资源池中包括正整数个第一类时频资源块,所述第二时频资源池中包括正整数个第二类时频资源块;所述第一时频资源池中的任意一个第一类时频资源块在时域所占用的资源的数量和所述第二时频资源池中的任意一个第二类时频资源块在时域所占用的资源的数量不相等;所述目标时频资源块是所述第一时频资源池中所包括的一个第一类时频资源块,或者所述目标时频资源块是所述第二时频资源池中所包括的一个第二类时频资源块;所述第一通信节点设 备的定位信息被用于从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池。
作为一个实施例,所述第一通信节点设备450是一个用户设备(UE)。
作为一个实施例,所述第一通信节点设备450是一个支持大延时差的用户设备。
作为一个实施例,所述第一通信节点设备450是一个支持NTN的用户设备。
作为一个实施例,所述第一通信节点设备450是一个飞行器设备。
作为一个实施例,所述第二通信节点设备410是一个基站设备(gNB/eNB)。
作为一个实施例,所述第二通信节点设备410是一个支持大延时差的基站设备。
作为一个实施例,所述第二通信节点设备410是一个支持NTN的基站设备。
作为一个实施例,所述第二通信节点设备410是一个卫星设备。
作为一个实施例,所述第二通信节点设备410是一个飞行平台设备。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一信息。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第二信息。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送所述第一信号。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一信令。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第三信息。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送所述第二信号。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第一信息。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第二信息。
作为一个实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于接收本申请中的所述第一信号。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第一信令。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第三信息。
作为一个实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于接收本申请中的所述第二信号。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。附图5中,第二通信节点N1是第一通信节点U2的服务小区的维持基站,特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于 第二通信节点N1,在步骤S11中发送第一信息和发送第二信息,在步骤S12中发送第三信息,在步骤S13中接收第一信号,在步骤S14中确定目标序列,在步骤S15中在第一时间窗中发送第一信令,在步骤S16中接收第二信号。
对于 第一通信节点U2,在步骤S21中接收第一信息和接收第二信息,在步骤S22中接收第三信息,在步骤S23中确定目标序列,在步骤S24中发送第一信号,在步骤S25中在第一时间窗中接收第一信令,在步骤S26中发送第二信号。
在实施例5中,本申请中的所述第一信息和所述第二信息分别被用于确定第一时频资源池和第二时频资源池;本申请中的所述第一信号占用目标时频资源块;所述第一时频资源池中包括正整数个第一类时频资源块,所述第二时频资源池中包括正整数个第二类时频资源块;所述第一时频资源池中的任意一个第一类时频资源块在时域所占用的资源的数量和所述第二时频资源池中的任意一个第二类时频资源块在时域所占用的资源的数量不相等;所述目标时频资源块是所述第一时频资源池中所包括的一个第一类时频资源块,或者所述目标时频资源块是所述第二时频资源池中所包括的一个第二类时频资源块;所述第一通信节点设备的定位信息被用于从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池;当所述目标时频资源块属于所述第一时频资源池时,所述目标序列经过W1次重复传输被用于生成所述第一信号;当所述目标时频资源块属于所述第二时频资源池时,所述目标序列经过W2次重复传输被用于生成所述第一信号;所述W1是正整数,所述W2是和所述W1不相等的正整数;所述第三信息被用于确定X个备选序列,所述X是大于1的正整数;所述目标序列是所述X个备选序列中的一个备选序列,所述第一通信节点设备在所述X个备选序列中随机选择所述目标序列;所述目标时频资源块在时频域的位置被用于确定第一特征标识,所述第一信令携带所述第一特征标识;所述第一时间窗是Y个备选时间窗中的一个备选时间窗,所述Y是大于1的正整数,所述Y个备选时间窗中的任意两个备选时间窗正交;所述目标时频资源块所属的时频资源池被用于从所述Y个备选时间窗中确定所述第一时间窗;所述第二信号携带第四信息,所述第四信息被用于指示所述第一通信节点设备的定位能力。
作为一个实施例,所述第二信号包括Msg3(消息3)。
作为一个实施例,所述第二信号包括MsgA(消息A)。
作为一个实施例,所述第二信号通过2步随机接入过程中的第1步中的数据信道传输的。
作为一个实施例,所述第二信号是MsgA中的PUSCH(Physical Uplink Shared Channel,物理上行共享信道)。
作为一个实施例,所述第二信号携带一个Msg3的重传。
作为一个实施例,所述第二信号携带一个Msg3的初传。
作为一个实施例,所述第二信号携带一个MsgB的重传。
作为一个实施例,所述第二信号携带一个MsgB的初传。
作为一个实施例,所述第二信号通过UL-SCH(Uplink Shared Channel,上行共享信道)传输。
作为一个实施例,所述第二信号通过PUSCH(Physical Uplink Shared Channel,物理上行共享信道)传输。
作为一个实施例,一个传输块(TB,Transport Block)经过LDPC(Low Density Parity Check Code,低密度奇偶校验码)信道编码的输出比特被用于生成所述第一信号。
作为一个实施例,所述第二信号所占用的时频资源和所述目标时频资源块中所包括的时域资源在时域的位置,所述目标时频资源块中所包括的频域资源在频域的位置,或者所述第一序列中的至少之一有关。
作为一个实施例,所述第二信号是基带信号。
作为一个实施例,所述第二信号是射频信号。
作为一个实施例,所述第二信号通过无线接口传输。
作为一个实施例,所述第二信号通过空中接口传输。
作为一个实施例,所述第四信息包括Msg3。
作为一个实施例,所述第四信息包括MsgB。
作为一个实施例,所述第四信息通过高层信令传输。
作为一个实施例,所述第四信息通过物理层信令传输。
作为一个实施例,所述第四信息包括了一个高层信令中的全部或部分。
作为一个实施例,所述第四信息包括一个RRC(Radio Resource Control,无线资源控制)信令的全部或部分。
作为一个实施例,所述第四信息包括一个MAC(Medium Access Control,媒体接入控制)信令的全部或部分。
作为一个实施例,所述第四信息包括一个MAC(Medium Access Control,媒体接入控制)CE(Control Element,控制单元)中的全部或部分。
作为一个实施例,所述第四信息包括一个MAC(Medium Access Control,媒体接入控制)头(Header)中的全部或部分。
作为一个实施例,上述句子“所述第四信息被用于指示所述第一通信节点设备的定位能力”包括以下含义:所述第四信息被用于直接指示所述第一通信节点设备的定位能力。
作为一个实施例,上述句子“所述第四信息被用于指示所述第一通信节点设备的定位能力”包括以下含义:所述第四信息被用于间接指示所述第一通信节点设备的定位能力。
作为一个实施例,上述句子“所述第四信息被用于指示所述第一通信节点设备的定位能力”包括以下含义:所述第四信息被用于显式地指示所述第一通信节点设备的定位能力。
作为一个实施例,上述句子“所述第四信息被用于指示所述第一通信节点设备的定位能力”包括以下含义:所述第四信息被用于隐式地指示所述第一通信节点设备的定位能力。
作为一个实施例,所述第一通信节点设备的所述定位能力是指所述第一通信节点设备是否支持GNSS(Global Navigation Satellite System,全球导航卫星系统)。
作为一个实施例,所述第一通信节点设备的所述定位能力是指所述第一通信节点设备的定位的精度。
作为一个实施例,所述第一通信节点设备的所述定位能力是指所述第一通信节点设备是否支持GNSS(Global Navigation Satellite System,全球导航卫星系统)以及当支持GNSS的时候的GNSS的类型。
实施例6
实施例6示例了根据本申请的一个实施例的第一时频资源池和第二时频资源池的关系的示意图,如附图6所示。附图6中,横轴代表时间,纵轴代表频率,每个斜线填充的矩形代表第一时频资源池中的一个第一类时频资源块,每个交叉线填充的矩形代表第二时频资源池中的一个第二类时频资源块;在情况A中,第一时频资源池和第二时频资源池是频分的(FDM)但所占用的时域资源非正交;在情况B中,第一时频资源池和第二时频资源池是时频分的(TDM&FDM),第一时频资源池和第二时频资源池在时域和频域都是正交的;在情况C中,第一时频资源池和第二时频资源池是时分的(TDM)但所占用的频域资源非正交。
在实施例6中,本申请中的所述第一时频资源池和所述第二时频资源池是正交的,所述第一时频资源池中包括正整数个第一类时频资源块,所述第二时频资源池中包括正整数个第二类时频资源块;所述第一时频资源池中的任意一个第一类时频资源块在时域所占用的资源的数量和所述第二时频资源池中的任意一个第二类时频资源块在时域所占用的资源的数量不相等。
实施例7
实施例7示例了根据本申请的一个实施例的第一定时调整量的示意图,如附图7所示。在附图7中,横轴代表时间,斜线填充的矩形代表在第一时频资源池中的目标时频资源块,交叉线填充的矩形代表在第二时频资源池中的目标时频资源块。
在实施例7中,本申请中的所述第一信号的发送起始时刻和参考时刻的时间差的绝对值等于第一定时调整量,本申请中的所述第一通信节点设备的接收定时被用于确定所述参考时刻;当本申请中的所述目标时频资源块属于本申请中的所述第一时频资源池时,所述第一定时调整量大于0;当所述目标时频资源块属于本申请中的所述第二时频资源池时,所述第一定时调整量等于0。
作为一个实施例,所述第一定时调整量被用于确定所述第一信号的发送定时。
作为一个实施例,所述第一定时调整量是非负的实数。
作为一个实施例,所述第一定时调整量的单位都是微秒。
作为一个实施例,所述第一定时调整量的单位都是秒。
作为一个实施例,所述第一定时调整量等于所述第一信号发送的定时提前(TA,Timing Advance)的值。
作为一个实施例,所述第一定时调整量等于所述第一信号发送的起始时刻相对于一个下行时隙(Slot)边界的时间提前量。
作为一个实施例,所述第一定时调整量等于非负整数个T c,其中T c=1/(480·10 3·4096)秒
作为一个实施例,当所述第一定时调整量大于0时,所述第一定时调整量和本申请中的所述第二通信节点的类型有关。
作为一个实施例,当所述第一定时调整量大于0时,所述第一定时调整量和本申请中的所述第二通信节点的高度有关。
作为一个实施例,当所述第一定时调整量大于0时,所述第一定时调整量和本申请中的所述第二通信节点所属的卫星的类型有关。
作为一个实施例,所述参考时刻是一个下行时隙(Slot)的边界的时刻。
作为一个实施例,所述参考时刻是一个下行OFDM符号(Symbol)的边界的时刻。
作为一个实施例,所述参考时刻是一个下行子帧(Subframe)的边界的时刻。
作为一个实施例,所述第一信号的发送起始时刻不晚于所述参考时刻。
作为一个实施例,本申请中的所述第一信息和所述第一通信节点设备的接收定时一起被用于确定所述参考时刻。
作为一个实施例,本申请中的所述第一信息指示虚拟时频资源池,所述虚拟时频资源池和所述第一时频资源池中的时频资源在时域的时间差的绝对值等于所述第一定时调整量。
作为一个实施例,本申请中的所述第一信息指示虚拟时频资源池,所述第一时频资源池是所述虚拟时频资源池在时域的提前所述第一定时调整量的时间后获得的。
作为一个实施例,本申请中的所述第一信息指示在所述第一时频资源池中的发送所对应的预期的接收时频资源池,所述预期的接收时频资源池和所述第一时频资源池中的时频资源在时域的时间差的绝对值等于所述第一定时调整量。
作为一个实施例,本申请中的所述第一信息和所述第一通信节点设备的接收定时被用于确定所述第一信号的接收起始时刻,所述参考时刻等于所述第一信号的接收起始时刻。
作为一个实施例,本申请中的所述第一信息指示按照所述第一通信节点设备的接收定时计算的所述第一信号的接收起始时刻,所述参考时刻等于按照所述第一通信节点设备的所述接收定时计算的所述第一信号的接收起始时刻。
作为一个实施例,上述句子“所述第一通信节点设备的接收定时被用于确定所述参考时刻”包括以下含义:所述第一通信节点设备的接收定时被所述第一通信节点设备用于确定所述参考时刻。
作为一个实施例,所述第一通信节点设备的接收定时包括下行时隙(Slot)的边界 在时域的位置以及下行时隙的索引。
作为一个实施例,所述第一通信节点设备的接收定时包括下行子帧(Subframe)的边界在时域的位置以及下行子帧的索引。
作为一个实施例,所述第一通信节点设备的接收定时包括下行系统帧(System Frame)的边界在时域的位置以及下行系统帧的索引。
作为一个实施例,所述第一通信节点设备的接收定时包括下行系统帧(System Frame)的边界在时域的位置、下行子帧(Subframe)的边界在时域的位置、所述第一通信节点设备的接收定时包括下行时隙(Slot)的边界在时域的位置、下行系统帧的索引、下行子帧的索引和下行时隙的索引。
作为一个实施例,所述第一通信节点设备通过小区搜索(Cell Search)获得所述第一通信节点设备的接收定时。
作为一个实施例,所述第一通信节点设备通过下行同步(Synchronization)获得所述第一通信节点设备的接收定时。
作为一个实施例,所述第一通信节点设备通过接收下行同步信号(Synchronization Signals)获得所述第一通信节点设备的接收定时。
实施例8
实施例8示例了根据本申请的一个实施例的目标序列和第一信号的关系的示意图,如附图8所示。在附图8中,横轴代表时间,每个斜线填充的矩形代表目标序列的一次传输,交叉线填充的矩形代表循环前缀(CP,Cyclic Prefix),无填充的矩形代表保护时间(GP,Guard Period)。
在实施例8中,当本申请中的所述目标时频资源块属于本申请中的所述第一时频资源池时,本申请中的所述目标序列经过W1次重复传输被用于生成本申请中的所述第一信号;当本申请中的所述目标时频资源块属于本申请中的所述第二时频资源池时,本申请中的所述目标序列经过W2次重复传输被用于生成本申请中的所述第一信号;所述W1是正整数,所述W2是和所述W1不相等的正整数。
作为一个实施例,所述目标序列是前导序列(Preamble)。
作为一个实施例,所述目标序列是随机接入前导序列(Random Access Preamble)。
作为一个实施例,所述目标序列是64个前导序列(Preamble)中的一个前导序列。
作为一个实施例,所述目标序列是ZC(Zadoff-Chu)序列。
作为一个实施例,所述目标序列是ZC(Zadoff-Chu)序列经过变换生成的。
作为一个实施例,所述目标序列是长度等于839的ZC(Zadoff-Chu)序列。
作为一个实施例,所述目标序列是长度等于139的ZC(Zadoff-Chu)序列。
作为一个实施例,上述句子“所述目标序列经过W1次重复传输被用于生成所述第一信号”包括以下含义:所述目标序列在时域经过W1次重复传输被用于生成所述第一信号。
作为一个实施例,上述句子“所述目标序列经过W1次重复传输被用于生成所述第一信号”包括以下含义:所述目标序列被用于生成目标子信号,所述目标子信号在时域经过W1次重复传输被用于生成所述第一信号。
作为一个实施例,上述句子“所述目标序列经过W1次重复传输被用于生成所述第一信号”包括以下含义:所述目标序列被用于生成目标子信号,所述目标子信号在时域经过W1次重复传输后添加循环前缀(CP,Cyclic Prefix)被用于生成所述第一信号。
作为一个实施例,上述句子“所述目标序列经过W1次重复传输被用于生成所述第一信号”包括以下含义:所述目标序列依次经过映射到物理资源(Mapping to Physical Resources)和OFDM基带信号生成(OFDM Baseband Signal Generation)得到所述第一信号,在所述OFDM基带信号生成过程中的所述第一信号是由循环前缀和目标子信号在时域经过W1次重复组成,所述目标序列被用于生成所述目标子信号。
作为一个实施例,当所述目标时频资源块属于所述第一时频资源池时,所述W1等于所述第一信号所采用的前导格式(Preamble Format)对应的N u/(2048κ·2 ),其中κ=64,μ∈{0,1,2,3}。
作为一个实施例,当所述目标时频资源块属于所述第一时频资源池时,所述W1等于所述第一信号所采用的前导格式(Preamble Format)对应的N u/(24576κ),其中κ=64。
作为一个实施例,当所述目标时频资源块属于所述第一时频资源池时,所述W1等于所述第一信号所采用的前导格式(Preamble Format)对应的N u/(6144κ),其中κ=64。
作为一个实施例,上述句子“所述目标序列经过W2次重复传输被用于生成所述第一信号”包括以下含义:所述目标序列在时域经过W2次重复传输被用于生成所述第一信号。
作为一个实施例,上述句子“所述目标序列经过W2次重复传输被用于生成所述第一信号”包括以下含义:所述目标序列被用于生成目标子信号,所述目标子信号在时域经过W2次重复传输被用于生成所述第一信号。
作为一个实施例,上述句子“所述目标序列经过W2次重复传输被用于生成所述第一信号”包括以下含义:所述目标序列被用于生成目标子信号,所述目标子信号在时域经过W2次重复传输后添加循环前缀(CP,Cyclic Prefix)被用于生成所述第一信号。
作为一个实施例,上述句子“所述目标序列经过W2次重复传输被用于生成所述第一信号”包括以下含义:所述目标序列依次经过映射到物理资源(Mapping to Physical Resources)和OFDM基带信号生成(OFDM Baseband Signal Generation)得到所述第一信号,在所述OFDM基带信号生成过程中的所述第一信号是由循环前缀和目标子信号在时域经过W2次重复组成,所述目标序列被用于生成所述目标子信号。
作为一个实施例,当所述目标时频资源块属于所述第二时频资源池时,所述W2等于所述第一信号所采用的前导格式(Preamble Format)对应的N u/(2048κ·2 ),其中κ=64,μ∈{0,1,2,3}。
作为一个实施例,当所述目标时频资源块属于所述第二时频资源池时,所述W2等于所述第一信号所采用的前导格式(Preamble Format)对应的N u/(24576κ),其中κ=64。
作为一个实施例,当所述目标时频资源块属于所述第二时频资源池时,所述W2等于所述第一信号所采用的前导格式(Preamble Format)对应的N u/(6144κ),其中κ=64。
作为一个实施例,所述W1大于所述W2。
作为一个实施例,所述W1小于所述W2。
作为一个实施例,所述W1等于1。
作为一个实施例,所述W1大于1。
作为一个实施例,所述W2等于1。
作为一个实施例,所述W2大于1。
实施例9
实施例9示例了根据本申请的一个实施例的X个备选序列的示意图,如附图9所示。在附图9中,水平横轴代表时域,水平纵轴代表频域,垂直竖轴代表码域,有填充的矩形代表目标序列,每个无填充的矩形代表X个备选序列中的目标序列之外的一个备选序列。
在实施例9中,本申请中的所述第三信息被用于确定X个备选序列,所述X是大于1的正整数;本申请中的所述目标序列是所述X个备选序列中的一个备选序列,本申请中的所述第一通信节点设备在所述X个备选序列中随机选择所述目标序列。
作为一个实施例,所述X等于64。
作为一个实施例,所述X小于64。
作为一个实施例,所述X大于64。
作为一个实施例,所述X个备选序列中的任意一个备选序列是前导序列(Preamble)。
作为一个实施例,所述X个备选序列中的任意一个备选序列是随机接入前导序列(Random Access Preamble)。
作为一个实施例,所述X个备选序列中的任意一个备选序列是64个前导序列(Preamble)中的一个前导序列。
作为一个实施例,所述X个备选序列中的任意一个备选序列是ZC(Zadoff-Chu)序列。
作为一个实施例,所述X个备选序列中的任意一个备选序列是ZC(Zadoff-Chu)序列经过变换生成的。
作为一个实施例,所述X个备选序列中的任意一个备选序列是长度等于839的ZC(Zadoff-Chu)序列。
作为一个实施例,所述X个备选序列中的任意一个备选序列是长度等于139的ZC(Zadoff-Chu)序列。
作为一个实施例,所述第三信息通过高层信令传输。
作为一个实施例,所述第三信息通过物理层信令传输。
作为一个实施例,所述第三信息包括了一个高层信令中的全部或部分。
作为一个实施例,所述第三信息包括了一个物理层信令中的全部或部分。
作为一个实施例,所述第三信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的全部或部分IE(Information Element,信息单元)。
作为一个实施例,所述第三信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的一个IE(Information Element,信息单元)中的全部或部分域(Field)。
作为一个实施例,所述第三信息包括了一个MAC(Medium Access Control,媒体接入控制)层信令中的全部或部分域(Field)。
作为一个实施例,所述第三信息包括了一个系统信息块(SIB,System Information Block)中的全部或部分。
作为一个实施例,所述第三信息包括了一个MAC(Medium Access Control,媒体接入控制)CE(Control Element,控制单元)中的全部或部分。
作为一个实施例,所述第三信息包括了一个MAC(Medium Access Control,媒体接入控制)头(Header)中的全部或部分。
作为一个实施例,所述第三信息通过一个DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第三信息通过一个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第三信息和本申请中的所述第二通信节点的覆盖区域有关。
作为一个实施例,所述第三信息和本申请中的所述第二通信节点的高度有关。
作为一个实施例,所述第三信息和本申请中的所述第二通信节点的类型有关。
作为一个实施例,所述第三信息和本申请中的所述第二通信节点相对于本申请中的所述第一通信节点的倾角有关。
作为一个实施例,所述第三信息和本申请中的所述第二通信节点的覆盖区域大小有关。
作为一个实施例,所述第三信息是广播的。
作为一个实施例,所述第三信息是小区特定的(Cell Specific)。
作为一个实施例,所述第三信息是用户设备特定的(UE-specific)。
作为一个实施例,所述第三信息是用户设备组特定的(UE group-specific)。
作为一个实施例,所述第三信息是地理区域特定的。
作为一个实施例,所述第三信息包括一个DCI(Downlink Control Information)信令的全部或部分域(Field)。
作为一个实施例,所述第三信息包括高层信息“prach-RootSequenceIndex”。
作为一个实施例,所述第三信息包括高层信息“restrictedSetConfig”。
作为一个实施例,上述句子“所述第三信息被用于确定X个备选序列”包括以下含义:所述第三信息被所述第一通信节点设备用于确定所述X个备选序列。
作为一个实施例,上述句子“所述第三信息被用于确定X个备选序列”包括以下含义:所述第三信息被用于直接指示所述X个备选序列。
作为一个实施例,上述句子“所述第三信息被用于确定X个备选序列”包括以下含义:所述第三信息被用于间接指示所述X个备选序列。
作为一个实施例,上述句子“所述第三信息被用于确定X个备选序列”包括以下含义:所述第三信息被用于显式地指示所述X个备选序列。
作为一个实施例,上述句子“所述第三信息被用于确定X个备选序列”包括以下含义:所述第三信息被用于隐式地指示所述X个备选序列。
实施例10
实施例10示例了根据本申请的一个实施例的Y个备选时间窗的示意图,如附图10所示。在附图10中,横轴代表时间,每个斜线填充的矩形代表第一时频资源池中的一个第一类时频资源块,每个交叉线填充的矩形代表第二时频资源池中的一个第二类时频资源块,每个无填充的矩形代表Y个备选时间窗中的一个备选时间窗。
在实施例10中,本申请中的所述目标时频资源块在时频域的位置被用于确定第一特征标识,本申请中的所述第一信令携带所述第一特征标识;本申请中的所述第一时间窗是Y个备选时间窗中的一个备选时间窗,所述Y是大于1的正整数,所述Y个备选时间窗中的任意两个备选时间窗正交;本申请中的所述目标时频资源块所属的时频资源池被用于从所述Y个备选时间窗中确定所述第一时间窗。
作为一个实施例,所述第一时间窗包括在给定的一个子载波间隔情况下的正整数个连续的时隙(Slot)。
作为一个实施例,所述第一时间窗包括在给定的一个子载波间隔情况下的正整数个连续的多载波符号(OFDM Symbols)。
作为一个实施例,所述第一时间窗包括正整数个连续的子帧(Subframe)。
作为一个实施例,所述第一时间窗的起始时刻和结束时刻和下行的多载波符号的边界对齐。
作为一个实施例,所述第一时间窗的起始时刻和结束时刻和在给定的一个子载波间隔情况下的下行的时隙(Slot)的边界对齐。
作为一个实施例,所述第一时间窗是随机接入响应时间窗(RAR(Random Access Response)window)。
作为一个实施例,所述第一时间窗被用于4步随机接入过程中的Msg2(消息2)的监测(Monitoring)。
作为一个实施例,所述第一时间窗被用于2步随机接入过程中的MsgB(消息B)的监测(Monitoring)。
作为一个实施例,所述第一信令是通过空中接口传输的。
作为一个实施例,所述第一信令是通过无线接口传输的。
作为一个实施例,所述第一信令是通过Uu接口传输的。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是通过PDCCH(Physical Downlink Control Channel, 物理下行控制信道)传输的。
作为一个实施例,所述第一信令包括DCI(Downlink Control Information,下行控制信息)中的全部或部分域(Field)。
作为一个实施例,所述第一信令包括一个给定的DCI(Downlink Control Information,下行控制信息)格式(Format)的DCI中的全部或部分域(Field)。
作为一个实施例,所述第一信令包括DCI格式(Format)1-0的DCI(Downlink Control Information,下行控制信息)中的全部或部分域(Field)。
作为一个实施例,所述第一信令是在公共搜索空间(CSS,Common Search Space)中被传输的。
作为一个实施例,所述第一信令是调度携带随机接入响应的物理下行共享信道(PDSCH,Physical Downlink Shared Channel)的DCI。
作为一个实施例,所述第一信令是调度携带随机接入响应的物理下行共享信道(PDSCH,Physical Downlink Shared Channel)的PDCCH。
作为一个实施例,所述第一信令是调度携带MsgB(消息B)的物理下行共享信道(PDSCH,Physical Downlink Shared Channel)的DCI。
作为一个实施例,所述第一信令是调度携带MsgB(消息B)的物理下行共享信道(PDSCH,Physical Downlink Shared Channel)的PDCCH。
作为一个实施例,所述第一特征标识是一个非负的整数。
作为一个实施例,所述第一特征标识是一个RNTI(Radio Network Temporary Identity,无线网络临时标识)。
作为一个实施例,所述第一特征标识是一个RA-RNTI(Random Access Radio Network Temporary Identity,随机接入无线网络临时标识)。
作为一个实施例,所述第一特征标识等于十六进制的从FFF0到FFFD中的一个整数。
作为一个实施例,上述句子“所述目标时频资源块在时频域的位置被用于确定第一特征标识”包括以下含义:所述目标时频资源块在时频域的位置被本申请中的所述第一通信节点设备用于确定所述第一特征标识。
作为一个实施例,上述句子“所述目标时频资源块在时频域的位置被用于确定第一特征标识”包括以下含义:所述目标时频资源块中在时域包括的最早的OFDM符号在所属的时隙(Slot)中的索引被用于确定所述第一特征标识。
作为一个实施例,上述句子“所述目标时频资源块在时频域的位置被用于确定第一特征标识”包括以下含义:所述目标时频资源块在时域包括的最早的OFDM符号所属的时隙在一个系统帧(System Frame)中的索引被用于确定所述第一特征标识。
作为一个实施例,上述句子“所述目标时频资源块在时频域的位置被用于确定第一特征标识”包括以下含义:所述目标时频资源块在时域包括的最早的OFDM符号在所属的时隙(Slot)中的索引被用于确定所述第一特征标识,所述目标时频资源块在时域包括的最早的OFDM符号所属的时隙在一个系统帧(System Frame)中的索引也被用于确定所述第一特征标识。
作为一个实施例,上述句子“所述目标时频资源块在时频域的位置被用于确定第一特征标识”包括以下含义:所述目标时频资源块在频域所包括的一个PRB(Physical Resource Block,物理资源块)的索引被用于确定第一特征标识
作为一个实施例,上述句子“所述目标时频资源块在时频域的位置被用于确定第一特征标识”包括以下含义:所述目标时频资源块在频域所包括的频率最低的PRB(Physical Resource Block,物理资源块)的索引被用于确定第一特征标识。
作为一个实施例,上述句子“所述目标时频资源块在时频域的位置被用于确定第一特征标识”包括以下含义:所述目标时频资源块在频域所包括的频率最高的PRB(Physical Resource Block,物理资源块)的索引被用于确定第一特征标识。
作为一个实施例,上述句子“所述目标时频资源块在时频域的位置被用于确定第一特征标识”包括以下含义:所述目标时频资源块在频域所包括的一个PRB(Physical Resource Block,物理资源块)组(Group)的索引被用于确定第一特征标识。
作为一个实施例,上述句子“所述第一信令携带所述第一特征标识”包括以下含义:所述第一信令所包括的CRC中携带所述第一特征标识。
作为一个实施例,上述句子“所述第一信令携带所述第一特征标识”包括以下含义:所述第一信令的负载(Payload)中携带所述第一特征标识。
作为一个实施例,上述句子“所述第一信令携带所述第一特征标识”包括以下含义:所述第一类信令的校验比特中携带所述第一特征标识。
作为一个实施例,上述句子“所述第一信令携带所述第一特征标识”包括以下含义:所述第一类信令的CRC经过所述第一特征标识的加扰。
作为一个实施例,所述Y个备选时间窗中的任意一个备选时间窗的时间长度大于0。
作为一个实施例,所述Y个备选时间窗中存在两个备选时间窗的时间长度不相等。
作为一个实施例,所述Y个备选时间窗中任意两个备选时间窗的时间长度相等。
作为一个实施例,上述句子“所述Y个备选时间窗中的任意两个备选时间窗正交”包括以下含义:所述Y个备选时间窗中的任意两个备选时间窗不重合(Non-overlapped)。
作为一个实施例,上述句子“所述Y个备选时间窗中的任意两个备选时间窗正交”包括以下含义:不存在一个时域资源单元同时属于所述Y个备选时间窗中的两个备选时间窗。
作为一个实施例,上述句子“所述Y个备选时间窗中的任意两个备选时间窗正交”包括以下含义:不存在一个OFDM符号同时属于所述Y个备选时间窗中的两个备选时间窗。
作为一个实施例,上述句子“所述目标时频资源块所属的时频资源池被用于从所述Y个备选时间窗中确定所述第一时间窗”包括以下含义:所述目标时频资源块是属于所述第一时频资源池还是属于所述第二时频资源池被用于从所述Y个备选时间窗中确定所述第一时间窗。
作为一个实施例,上述句子“所述目标时频资源块所属的时频资源池被用于从所述Y个备选时间窗中确定所述第一时间窗”包括以下含义:所述Y等于2,所述第一时频资源池和所述第二时频资源池分别对应所述Y个备选时间窗;所述第一时间窗是所述目标时频资源块所属的时频资源池所对应的备选时间窗。
作为一个实施例,上述句子“所述目标时频资源块所属的时频资源池被用于从所述Y个备选时间窗中确定所述第一时间窗”包括以下含义:所述Y个备选时间窗被分为2组备选时间窗,所述2组备选时间窗分别对应所述第一时频资源池和所述第二时频资源池;所述第一时间窗属于所述目标时频资源块所属的时频资源池所对应的2组备选时间窗中的1组备选时间窗。
作为一个实施例,所述第一信号的发送结束时刻被用于确定所述第一时间窗的起始时刻。
作为一个实施例,所述Y等于2。
作为一个实施例,所述Y大于2。
实施例11
实施例11示例了根据本申请的一个实施例的目标时频资源块和第一时频资源池以及第二时频资源池的关系的示意图,如附图11所示。在附图11中,每个矩形代表一次操作,每个菱形代表一次判断。在附图11中,从1101开始,在1102中判断是否能够获得定位信息,在1103中自行确定目标时频资源块是属于第一时频资源池还是第二时频资源池,在1104中目标时频资源块属于第一时频资源池。
在实施例11中,当本申请中的所述第一通信节点设备能够获得所述第一通信节点设备的 所述定位信息时,所述第一通信节点设备自行从本申请中的所述第一时频资源池和本申请中的所述第二时频资源池中确定本申请中的所述目标时频资源块所属的时频资源池;当所述第一通信节点设备不能够获得所述第一通信节点设备的所述定位信息时,所述目标时频资源块属于所述第一时频资源池。
作为一个实施例,上述句子“所述第一通信节点设备能够获得所述第一通信节点设备的所述定位信息”是指:所述第一通信节点设备具有定位能力。
作为一个实施例,上述句子“所述第一通信节点设备能够获得所述第一通信节点设备的所述定位信息”是指:所述第一通信节点设备支持GNSS。
作为一个实施例,上述句子“所述第一通信节点设备能够获得所述第一通信节点设备的所述定位信息”是指:所述第一通信节点设备具有定位能力并且定位精度满足一个阈值。
作为一个实施例,上述句子“所述第一通信节点设备不能够获得所述第一通信节点设备的所述定位信息”是指:所述第一通信节点设备不具有定位能力。
作为一个实施例,上述句子“所述第一通信节点设备不能够获得所述第一通信节点设备的所述定位信息”是指:所述第一通信节点设备不支持GNSS。
作为一个实施例,上述句子“所述第一通信节点设备不能够获得所述第一通信节点设备的所述定位信息”是指:所述第一通信节点设备具有定位能力但是所述第一通信节点设备的定位精度不能满足一个阈值。
作为一个实施例,上述句子“所述第一通信节点设备自行从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池”包括以下含义:所述第一通信节点设备自行(by itself)从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块是属于所述第一时频资源池还是属于所述第二时频资源池。
作为一个实施例,上述句子“所述第一通信节点设备自行从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池”包括以下含义:所述第一通信节点设备等概率地从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块是属于所述第一时频资源池还是属于所述第二时频资源池。
作为一个实施例,上述句子“所述第一通信节点设备自行从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池”包括以下含义:所述第一通信节点设备自己决定(self-decide)从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块是属于所述第一时频资源池还是属于所述第二时频资源池。
实施例12
实施例12示例了一个第一通信节点设备中的处理装置的结构框图,如附图12所示。附图12中,第一通信节点设备处理装置1200包括第一接收机1201和第一发射机1202。第一接收机1201包括本申请附图4中的发射器/接收器456(包括天线460),接收处理器452和控制器/处理器490;第一发射机1202包括本申请附图4中的发射器/接收器456(包括天线460),发射处理器455和控制器/处理器490。
在实施例12中,第一接收机1201接收第一信息和接收第二信息,所述第一信息和所述第二信息分别被用于确定第一时频资源池和第二时频资源池;第一发射机1202发送第一信号,所述第一信号占用目标时频资源块;其中,所述第一时频资源池中包括正整数个第一类时频资源块,所述第二时频资源池中包括正整数个第二类时频资源块;所述第一时频资源池中的任意一个第一类时频资源块在时域所占用的资源的数量和所述第二时频资源池中的任意一个第二类时频资源块在时域所占用的资源的数量不相等;所述目标时频资源块是所述第一时频资源池中所包括的一个第一类时频资源块,或者所述目标时频资源块是所述第二时频资源池中所包括的一个第二类时频资源块;所述第一通信节点设备的定位信息被用于从所述第一时 频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池。
作为一个实施例,所述第一信号的发送起始时刻和参考时刻的时间差的绝对值等于第一定时调整量,所述第一通信节点设备的接收定时被用于确定所述参考时刻;当所述目标时频资源块属于所述第一时频资源池时,所述第一定时调整量大于0;当所述目标时频资源块属于所述第二时频资源池时,所述第一定时调整量等于0。
作为一个实施例,第一发射机1202确定目标序列;其中,当所述目标时频资源块属于所述第一时频资源池时,所述目标序列经过W1次重复传输被用于生成所述第一信号;当所述目标时频资源块属于所述第二时频资源池时,所述目标序列经过W2次重复传输被用于生成所述第一信号;所述W1是正整数,所述W2是和所述W1不相等的正整数。
作为一个实施例,第一发射机1202确定目标序列;其中,当所述目标时频资源块属于所述第一时频资源池时,所述目标序列经过W1次重复传输被用于生成所述第一信号;当所述目标时频资源块属于所述第二时频资源池时,所述目标序列经过W2次重复传输被用于生成所述第一信号;所述W1是正整数,所述W2是和所述W1不相等的正整数;第一接收机1201接收第三信息;其中,所述第三信息被用于确定X个备选序列,所述X是大于1的正整数;所述目标序列是所述X个备选序列中的一个备选序列,所述第一通信节点设备在所述X个备选序列中随机选择所述目标序列。
作为一个实施例,第一接收机1201在第一时间窗中接收第一信令;所述目标时频资源块在时频域的位置被用于确定第一特征标识,所述第一信令携带所述第一特征标识;所述第一时间窗是Y个备选时间窗中的一个备选时间窗,所述Y是大于1的正整数,所述Y个备选时间窗中的任意两个备选时间窗正交;所述目标时频资源块所属的时频资源池被用于从所述Y个备选时间窗中确定所述第一时间窗。
作为一个实施例,第一发射机1202发送第二信号;所述第二信号携带第四信息,所述第四信息被用于指示所述第一通信节点设备的定位能力。
作为一个实施例,当所述第一通信节点设备能够获得所述第一通信节点设备的所述定位信息时,所述第一通信节点设备自行从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池;当所述第一通信节点设备不能够获得所述第一通信节点设备的所述定位信息时,所述目标时频资源块属于所述第一时频资源池。
实施例13
实施例13示例了一个第二通信节点设备中的处理装置的结构框图,如附图13所示。在附图13中,第二通信节点设备处理装置1300包括第二发射机1301和第二接收1302。第二发射机1301包括本申请附图4中的发射器/接收器416(包括天线420),发射处理器415和控制器/处理器440;第二接收机1302包括本申请附图4中的发射器/接收器416(包括天线420),接收处理器412和控制器/处理器440。
在实施例13中,第二发射机1301发送第一信息和发送第二信息,所述第一信息和所述第二信息分别被用于确定第一时频资源池和第二时频资源池;第二接收机1302接收第一信号,所述第一信号占用目标时频资源块;其中,所述第一时频资源池中包括正整数个第一类时频资源块,所述第二时频资源池中包括正整数个第二类时频资源块;所述第一时频资源池中的任意一个第一类时频资源块在时域所占用的资源的数量和所述第二时频资源池中的任意一个第二类时频资源块在时域所占用的资源的数量不相等;所述目标时频资源块是所述第一时频资源池中所包括的一个第一类时频资源块,或者所述目标时频资源块是所述第二时频资源池中所包括的一个第二类时频资源块;所述第一通信节点设备的定位信息被用于从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池。
作为一个实施例,所述第一信号的发送起始时刻和参考时刻的时间差的绝对值等于第一定时调整量,所述第一通信节点设备的接收定时被用于确定所述参考时刻;当所述目标时频资源块属于所述第一时频资源池时,所述第一定时调整量大于0;当所述目标 时频资源块属于所述第二时频资源池时,所述第一定时调整量等于0。
作为一个实施例,第二接收机1302确定目标序列;其中,当所述目标时频资源块属于所述第一时频资源池时,所述目标序列经过W1次重复传输被用于生成所述第一信号;当所述目标时频资源块属于所述第二时频资源池时,所述目标序列经过W2次重复传输被用于生成所述第一信号;所述W1是正整数,所述W2是和所述W1不相等的正整数。
作为一个实施例,第二接收机1302确定目标序列;其中,当所述目标时频资源块属于所述第一时频资源池时,所述目标序列经过W1次重复传输被用于生成所述第一信号;当所述目标时频资源块属于所述第二时频资源池时,所述目标序列经过W2次重复传输被用于生成所述第一信号;所述W1是正整数,所述W2是和所述W1不相等的正整数;第二发射机1301发送第三信息;其中,所述第三信息被用于确定X个备选序列,所述X是大于1的正整数;所述目标序列是所述X个备选序列中的一个备选序列,所述第一通信节点设备在所述X个备选序列中随机选择所述目标序列。
作为一个实施例,第二发射机1301在第一时间窗中发送第一信令;其中,所述目标时频资源块在时频域的位置被用于确定第一特征标识,所述第一信令携带所述第一特征标识;所述第一时间窗是Y个备选时间窗中的一个备选时间窗,所述Y是大于1的正整数,所述Y个备选时间窗中的任意两个备选时间窗正交;所述目标时频资源块所属的时频资源池被用于从所述Y个备选时间窗中确定所述第一时间窗。
作为一个实施例,第二接收机1302接收第二信号;其中,所述第二信号携带第四信息,所述第四信息被用于指示所述第一通信节点设备的定位能力。
作为一个实施例,当所述第一通信节点设备能够获得所述第一通信节点设备的所述定位信息时,所述第一通信节点设备自行从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池;当所述第一通信节点设备不能够获得所述第一通信节点设备的所述定位信息时,所述目标时频资源块属于所述第一时频资源池。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一类通信节点设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二类通信节点设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种用于无线通信中的第一通信节点设备,其特征在于,包括:
    第一接收机,接收第一信息和接收第二信息,所述第一信息和所述第二信息分别被用于确定第一时频资源池和第二时频资源池;
    第一发射机,发送第一信号,所述第一信号占用目标时频资源块;
    其中,所述第一时频资源池中包括正整数个第一类时频资源块,所述第二时频资源池中包括正整数个第二类时频资源块;所述第一时频资源池中的任意一个第一类时频资源块在时域所占用的资源的数量和所述第二时频资源池中的任意一个第二类时频资源块在时域所占用的资源的数量不相等;所述目标时频资源块是所述第一时频资源池中所包括的一个第一类时频资源块,或者所述目标时频资源块是所述第二时频资源池中所包括的一个第二类时频资源块;所述第一通信节点设备的定位信息被用于从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池。
  2. 根据权利要求1所述的第一通信节点设备,其特征在于,所述第一信号的发送起始时刻和参考时刻的时间差的绝对值等于第一定时调整量,所述第一通信节点设备的接收定时被用于确定所述参考时刻;当所述目标时频资源块属于所述第一时频资源池时,所述第一定时调整量大于0;当所述目标时频资源块属于所述第二时频资源池时,所述第一定时调整量等于0。
  3. 根据权利要求1或2中任一权利要求所述的第一通信节点设备,其特征在于,所述第一发射机确定目标序列;其中,当所述目标时频资源块属于所述第一时频资源池时,所述目标序列经过W1次重复传输被用于生成所述第一信号;当所述目标时频资源块属于所述第二时频资源池时,所述目标序列经过W2次重复传输被用于生成所述第一信号;所述W1是正整数,所述W2是和所述W1不相等的正整数。
  4. 根据权利要求3所述的第一通信节点设备,其特征在于,所述第一接收机接收第三信息;其中,所述第三信息被用于确定X个备选序列,所述X是大于1的正整数;所述目标序列是所述X个备选序列中的一个备选序列,所述第一通信节点设备在所述X个备选序列中随机选择所述目标序列。
  5. 根据权利要求1至4中任一权利要求所述的第一通信节点设备,其特征在于,所述第一接收机在第一时间窗中接收第一信令;其中所述目标时频资源块在时频域的位置被用于确定第一特征标识,所述第一信令携带所述第一特征标识;所述第一时间窗是Y个备选时间窗中的一个备选时间窗,所述Y是大于1的正整数,所述Y个备选时间窗中的任意两个备选时间窗正交;所述目标时频资源块所属的时频资源池被用于从所述Y个备选时间窗中确定所述第一时间窗。
  6. 根据权利要求1至5中任一权利要求所述的第一通信节点设备,其特征在于,所述第一发射机发送第二信号;其中,所述第二信号携带第四信息,所述第四信息被用于指示所述第一通信节点设备的定位能力。
  7. 根据权利要求1至6中任一权利要求所述的第一通信节点设备,其特征在于,当所述第一通信节点设备能够获得所述第一通信节点设备的所述定位信息时,所述第一通信节点设备自行从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池;当所述第一通信节点设备不能够获得所述第一通信节点设备的所述定位信息时,所述目标时频资源块属于所述第一时频资源池。
  8. 一种用于无线通信中的第二通信节点设备,其特征在于,包括:
    第二发射机,发送第一信息和发送第二信息,所述第一信息和所述第二信息分别被用于确定第一时频资源池和第二时频资源池;
    第二接收机,接收第一信号,所述第一信号占用目标时频资源块;
    其中,所述第一时频资源池中包括正整数个第一类时频资源块,所述第二时频资源池中包括正整数个第二类时频资源块;所述第一时频资源池中的任意一个第一类时频资源块在时域所占用的资源的数量和所述第二时频资源池中的任意一个第二类时频资源块 在时域所占用的资源的数量不相等;所述目标时频资源块是所述第一时频资源池中所包括的一个第一类时频资源块,或者所述目标时频资源块是所述第二时频资源池中所包括的一个第二类时频资源块;所述第一通信节点设备的定位信息被用于从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池。
  9. 一种用于无线通信中的第一通信节点中的方法,其特征在于,包括:
    接收第一信息和接收第二信息,所述第一信息和所述第二信息分别被用于确定第一时频资源池和第二时频资源池;
    发送第一信号,所述第一信号占用目标时频资源块;
    其中,所述第一时频资源池中包括正整数个第一类时频资源块,所述第二时频资源池中包括正整数个第二类时频资源块;所述第一时频资源池中的任意一个第一类时频资源块在时域所占用的资源的数量和所述第二时频资源池中的任意一个第二类时频资源块在时域所占用的资源的数量不相等;所述目标时频资源块是所述第一时频资源池中所包括的一个第一类时频资源块,或者所述目标时频资源块是所述第二时频资源池中所包括的一个第二类时频资源块;所述第一通信节点设备的定位信息被用于从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池。
  10. 一种用于无线通信中的第二通信节点中的方法,其特征在于,包括:
    发送第一信息和发送第二信息,所述第一信息和所述第二信息分别被用于确定第一时频资源池和第二时频资源池;
    接收第一信号,所述第一信号占用目标时频资源块;
    其中,所述第一时频资源池中包括正整数个第一类时频资源块,所述第二时频资源池中包括正整数个第二类时频资源块;所述第一时频资源池中的任意一个第一类时频资源块在时域所占用的资源的数量和所述第二时频资源池中的任意一个第二类时频资源块在时域所占用的资源的数量不相等;所述目标时频资源块是所述第一时频资源池中所包括的一个第一类时频资源块,或者所述目标时频资源块是所述第二时频资源池中所包括的一个第二类时频资源块;所述第一通信节点设备的定位信息被用于从所述第一时频资源池和所述第二时频资源池中确定所述目标时频资源块所属的时频资源池。
PCT/CN2020/088866 2019-05-23 2020-05-07 一种用于无线通信的通信节点中的方法和装置 WO2020233406A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/372,503 US12120641B2 (en) 2019-05-23 2021-07-11 Method and device for use in communication node for random access wireless communications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910432002.0 2019-05-23
CN201910432002.0A CN111988850B (zh) 2019-05-23 2019-05-23 一种用于无线通信的通信节点中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/372,503 Continuation US12120641B2 (en) 2019-05-23 2021-07-11 Method and device for use in communication node for random access wireless communications

Publications (1)

Publication Number Publication Date
WO2020233406A1 true WO2020233406A1 (zh) 2020-11-26

Family

ID=73436091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088866 WO2020233406A1 (zh) 2019-05-23 2020-05-07 一种用于无线通信的通信节点中的方法和装置

Country Status (3)

Country Link
US (1) US12120641B2 (zh)
CN (2) CN111988850B (zh)
WO (1) WO2020233406A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023030349A1 (zh) * 2021-09-02 2023-03-09 上海推络通信科技合伙企业(有限合伙) 一种被用于无线通信的节点中的方法和装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111988850B (zh) * 2019-05-23 2021-11-02 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
CN115190637A (zh) * 2019-11-25 2022-10-14 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114666019B (zh) * 2020-12-22 2024-09-13 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114867126B (zh) * 2021-01-20 2024-07-12 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置
CN115038191A (zh) * 2021-03-06 2022-09-09 上海朗帛通信技术有限公司 一种被用于无线通信中的方法和装置
CN115150039B (zh) * 2021-03-31 2024-04-23 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090196229A1 (en) * 2008-01-29 2009-08-06 Zukang Shen ACKNAK and CQI Channel Mapping Schemes in Wireless Networks
CN107786473A (zh) * 2016-08-31 2018-03-09 华为技术有限公司 信道估计方法、参考信号发送方法、装置及系统
CN108282298A (zh) * 2017-01-06 2018-07-13 中兴通讯股份有限公司 一种参考信号传输方法及装置
CN108631987A (zh) * 2017-03-24 2018-10-09 中兴通讯股份有限公司 参考信号的处理方法及装置
CN109391346A (zh) * 2017-08-07 2019-02-26 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8300757B2 (en) * 2008-08-08 2012-10-30 Motorola Mobility Llc Methods for detection of failure and recovery in a radio link
KR101673963B1 (ko) * 2014-06-27 2016-11-08 후아웨이 테크놀러지 컴퍼니 리미티드 데이터 신호를 송신하는 방법 및 사용자 장비
US10742562B2 (en) * 2015-07-16 2020-08-11 Samsung Electronics Co., Ltd. Method and apparatus for adaptive control of contention window in LAA
CN115002910A (zh) * 2016-09-30 2022-09-02 北京三星通信技术研究有限公司 一种v2x通信中的发送资源确定方法和设备
CN110234170B (zh) * 2018-03-06 2020-09-01 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110475378B (zh) * 2018-05-10 2023-01-10 北京三星通信技术研究有限公司 免调度上行传输的方法、用户设备及基站设备
WO2020014985A1 (zh) * 2018-07-17 2020-01-23 Oppo广东移动通信有限公司 侧行链路中数据传输的方法和终端设备
CN110808817B (zh) * 2018-08-06 2021-01-26 维沃移动通信有限公司 资源配置方法和装置
CN110830952B (zh) * 2018-08-10 2023-03-28 中兴通讯股份有限公司 车联网中直通链路的资源配置方法及装置
CN110536430B (zh) * 2018-09-05 2023-04-07 中兴通讯股份有限公司 通信及资源配置方法、装置、基站、终端及存储介质
CN111148223B (zh) * 2018-11-02 2022-11-18 华为技术有限公司 通信方法和通信装置
WO2020175942A1 (ko) * 2019-02-27 2020-09-03 엘지전자 주식회사 Dci를 기반으로 lte sl 통신을 수행하는 방법 및 장치
KR102402251B1 (ko) * 2019-03-22 2022-05-26 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 사이드링크 송신에서의 리소스 선택을 위한 방법 및 장치
CN111988850B (zh) * 2019-05-23 2021-11-02 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
CN113141597B (zh) * 2020-01-20 2022-03-29 上海朗帛通信技术有限公司 一种用于不连续接收的无线通信的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090196229A1 (en) * 2008-01-29 2009-08-06 Zukang Shen ACKNAK and CQI Channel Mapping Schemes in Wireless Networks
CN107786473A (zh) * 2016-08-31 2018-03-09 华为技术有限公司 信道估计方法、参考信号发送方法、装置及系统
CN108282298A (zh) * 2017-01-06 2018-07-13 中兴通讯股份有限公司 一种参考信号传输方法及装置
CN108631987A (zh) * 2017-03-24 2018-10-09 中兴通讯股份有限公司 参考信号的处理方法及装置
CN109391346A (zh) * 2017-08-07 2019-02-26 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ETRI: "Considerations on NR impacts for Non-Terrestrial Networks", 3GPP TSG RAN WG1 MEETING #92BIS R1-1804495, 20 April 2018 (2018-04-20), XP051426765, DOI: 20200727153032A *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023030349A1 (zh) * 2021-09-02 2023-03-09 上海推络通信科技合伙企业(有限合伙) 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
US12120641B2 (en) 2024-10-15
CN111988850A (zh) 2020-11-24
CN111988850B (zh) 2021-11-02
CN113891469A (zh) 2022-01-04
US20210337518A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
WO2020233406A1 (zh) 一种用于无线通信的通信节点中的方法和装置
US11877263B2 (en) Method and device in communication nodes for wireless communication
WO2019119411A1 (zh) 一种用于无线通信的通信节点中的方法和装置
US11838882B2 (en) Method and device with efficient timing in unicast transmissions
US20200314787A1 (en) Method and device in communication node used for wireless communication
US12052695B2 (en) Method and device in communication node used for non-terrestrial networks (NTN) wireless communications
US11909520B2 (en) Method and device in communication nodes used for random access in wireless communications
WO2020253529A1 (zh) 一种用于无线通信的通信节点中的方法和装置
US11962453B2 (en) Method and device in communication node used for wireless communication
WO2021129250A1 (zh) 一种被用于无线通信的节点中的方法和装置
US11638250B2 (en) Method and device in communication node used for NR NTN communications
WO2020244385A1 (zh) 一种用于无线通信的通信节点中的方法和装置
US20220279510A1 (en) Method and device in nodes used for wireless communication
WO2021139551A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020156247A1 (zh) 一种用于无线通信的通信节点中的方法和装置
CN113114435B (zh) 一种被用于无线通信的节点中的方法和装置
CN116133132A (zh) 一种被用于无线通信的节点中的方法和装置
CN115102677A (zh) 一种被用于无线通信的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809995

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20809995

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/07/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20809995

Country of ref document: EP

Kind code of ref document: A1