WO2020175942A1 - Dci를 기반으로 lte sl 통신을 수행하는 방법 및 장치 - Google Patents

Dci를 기반으로 lte sl 통신을 수행하는 방법 및 장치 Download PDF

Info

Publication number
WO2020175942A1
WO2020175942A1 PCT/KR2020/002849 KR2020002849W WO2020175942A1 WO 2020175942 A1 WO2020175942 A1 WO 2020175942A1 KR 2020002849 W KR2020002849 W KR 2020002849W WO 2020175942 A1 WO2020175942 A1 WO 2020175942A1
Authority
WO
WIPO (PCT)
Prior art keywords
lte
communication
dci
module
timing offset
Prior art date
Application number
PCT/KR2020/002849
Other languages
English (en)
French (fr)
Inventor
이승민
서한별
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN202080016413.2A priority Critical patent/CN113475147B/zh
Priority to KR1020217025706A priority patent/KR102390350B1/ko
Priority to JP2021547375A priority patent/JP7245347B2/ja
Priority to EP20762975.9A priority patent/EP3908068B1/en
Priority to US16/863,912 priority patent/US10849130B2/en
Publication of WO2020175942A1 publication Critical patent/WO2020175942A1/ko
Priority to US17/077,743 priority patent/US11647526B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • This disclosure relates to wireless communication systems.
  • ⁇ Sidelink refers to a communication method that directly sends and receives voice or data between terminals without going through a base station (BS) by establishing a direct link between terminals (User Equipment, UE).
  • BS base station
  • UE User Equipment
  • V2X vehicle-to-everything refers to a communication technology that exchanges information with other vehicles, pedestrians, and objects on which infrastructure is built through wired/wireless communication.
  • V 2V vehicle-to-vehicle
  • V 2I vehicle-to-infrastructure
  • V2N vehicle-to-network
  • V2P vehicle-to-pedestrian
  • V2X communication can be provided through PC5 interface and/or Uu interface.
  • Figure 1 shows V2X communication based on RAT prior to NR and V2X communication based on NR.
  • FIG. 1 It is a drawing for explaining in comparison.
  • the embodiment of FIG. 1 can be combined with various embodiments of the present disclosure.
  • V2X communication safety service is provided based on V2X messages such as BSM (Basic Safety Message), CAM (Cooperative Awareness Message), and DENM (Decentralized Environmental Notification Message) in RAT prior to NR.
  • BSM Basic Safety Message
  • CAM Cooperative Awareness Message
  • DENM Decentralized Environmental Notification Message
  • V2X messages can include location information, dynamic information, property information, etc.
  • CAM of the message (periodic message) type and/or DENM of the event triggered message type can be transmitted to other terminals.
  • CAM provides information on the dynamic status of the vehicle such as direction and speed, and 2020/175942 1»(:1 ⁇ 1 ⁇ 2020/002849
  • the terminal can broadcast CAM, and the CAM's latency can be less than 100ms.
  • the vehicle In the event of an unexpected situation such as a malfunction or accident, the terminal can generate DENM and transmit it to another terminal.
  • the terminal In the event of an unexpected situation such as a malfunction or accident, the terminal can generate DENM and transmit it to another terminal.
  • all vehicles within the transmission range of the terminal can receive CAM and/or DENM. In this case, DENM may have a higher priority than CAM.
  • V2X scenarios could include vehicle platooning, advanced driving, extended sensors, remote driving, and more.
  • vehicles can dynamically form groups and move together.
  • the above Vehicles in a group can receive periodic data from leading vehicles, for example, vehicles in the group can use periodic data to reduce or widen the gap between vehicles.
  • vehicles can be semi-automated or fully automated.
  • each vehicle may be on a local sensor of a nearby vehicle and/or a nearby logical entity. Based on the acquired data, trajectories or maneuvers can be adjusted.
  • each vehicle can mutually share a driving intention with nearby vehicles.
  • raw data or processed data acquired through local sensors, or live video data is a vehicle, a logical entity, a pedestrian They can be interchanged between their terminals and/or the V2X application server, so, for example, a vehicle can perceive an improved environment than it can detect using its own sensors.
  • the remote driver or V2X application can operate or control the remote vehicle.
  • the remote vehicle For example, public transport department If the route can be predicted together, cloud computing-based driving can be used for the operation or control of the remote vehicle. In addition, for example, access to a cloud-based back-end service platform. Can be considered for remote driving.
  • the technical task of this disclosure is between devices (or terminals) based on V2X communication.
  • SL sidelink
  • Another technical task of this disclosure is based on V2X communication in a wireless communication system.
  • LTE Long-Term Evolution
  • Another technical task of this disclosure is to provide a method and apparatus for performing LTE SL communication based on Downlink Control Information (DCI) received from an NR base station.
  • DCI Downlink Control Information
  • a method in which a first device performs Long-Term Evolution (LTE) SL (SideLink) communication through DCI (Downlink Control Information).
  • the above method includes an NR base station. Shortcut to receive DCI (Downlink Control Information) # via PDCCH (Physical Downlink Control Channel) from], based on the DCI, obtaining a first timing offset and based on the first timing offset, Including the step of performing LTE SL communication, wherein the minimum value of the first timing offset is the minimum latency between the NR module for NR (New Radio) communication of the first device and the LTE module for LTE communication. It is characterized by being determined based on ).
  • DCI Downlink Control Information
  • a first device that performs SL (SideLink) communication through, the first device comprising at least one memory for storing instructions, at least one transceiver and at least one of the above. Includes at least one processor that connects one memory and at least one transceiver, but the at least one processor is DCI (Downlink Control Information) from the NR base station through the PDCCH (Physical Downlink Control Channel). )
  • the minimum value of is determined based on a minimum latency between the NR module for NR (New Radio) communication of the first device and the LTE module for LTE communication.
  • an apparatus for controlling a first terminal comprises at least one processor and at least one computer memory, which is executably connected by the at least one processor and stores instructions.
  • the processor of the first terminal By executing the instructions by the processor of, the first terminal: NR 2020/175942 1»(:1 ⁇ 1 ⁇ 2020/002849
  • DCI Downlink Control Information
  • LTE SL communication based on the first timing offset, but the minimum value of the first timing offset is, Minimum delay between the NR module for NR (New Radio) communication of the first device and the LTE module for LTE communication
  • a non-transitory computer-readable storage medium is provided based on the execution of the instructions by at least one processor of the non-transitory computer-readable storage medium: on a first device.
  • PDCCH Physical Downlink Control Channel
  • DCI Downlink Control Information
  • a first timing offset is acquired, LTE SL communication is performed based on the first timing offset by the first device, and the minimum value of the first timing offset is the NR of the first device.
  • New Radio It is characterized by being determined based on the minimum latency between the NR module for communication and the LTE module for LTE communication.
  • a method in which an NR base station controls SL communication of a first device through DCI.
  • the method includes determining a DCI including a first timing offset. And transmitting the DCI to a first device through a physical downlink control channel (PDCCH), wherein the first timing offset is used in a process in which the first device performs LTE SL communication, and the first timing
  • the minimum offset value is characterized by being determined based on a minimum latency between the NR module for NR (New Radio) communication of the first device and the LTE module for LTE communication.
  • an NR base station that controls SL communication of a first device through DCI (Downlink Control Information) is provided.
  • the NR base station stores at least one memory for storing instructions. (at least one memory), at least one transceiver, and at least one processor connecting the at least one memory and the at least one transceiver, wherein at least one The processor determines the DCI including the first timing offset, and controls the at least one transceiver to transmit the DCI to the first device through a physical downlink control channel (PDCCH), wherein the first timing offset is 1 device is used in the process of performing LTE SL communication, and the minimum value of the first timing offset is the minimum delay between the NR module for NR (New Radio) communication of the first device and the LTE module for LTE communication.
  • PDCCH physical downlink control channel
  • the terminal or Communication can be carried out efficiently.
  • ⁇ 2 communication between devices (or terminals) can be performed efficiently.
  • the NR base station provides the terminal through the NR 1111 interface.
  • Operation and/or scheduling can be supported, and the complexity of terminal implementation can be reduced during the support process.
  • Figure 1 shows V2X communication based on RAT prior to NR and V2X communication based on NR.
  • FIG. 2 shows a structure of an NR system according to an embodiment of the present disclosure.
  • Figure 3 illustrates the functional division between NG-RAN and 5GC according to an embodiment of the present disclosure.
  • Figure 4 is a wireless protocol structure according to an embodiment of the present disclosure (radio protocol
  • FIG 5 shows a structure of an NR radio frame according to an embodiment of the present disclosure.
  • FIG. 6 shows a slot structure of an NR frame according to an embodiment of the present disclosure.
  • FIG 7 shows an example of a BWP according to an embodiment of the present disclosure.
  • FIG. 8 shows a radio protocol architecture for SL communication according to an embodiment of the present disclosure.
  • 9 is a terminal for performing V2X or SL communication according to an embodiment of the present disclosure
  • W shows a procedure for a terminal to perform V2X or SL communication according to a transmission mode according to an embodiment of the present disclosure.
  • FIG 11 shows three cast types according to an embodiment of the present disclosure.
  • FIG. 12 shows a process of performing LTE SL communication based on the DCI received from the NR base station by the first device according to an embodiment of the present disclosure.
  • FIG. 13 shows a process of performing LTE SL communication by a first device and a second device according to an embodiment of the present disclosure.
  • Fig. 14 is a flow chart showing the operation of the first device according to an embodiment of the present disclosure.
  • 15 is a diagram illustrating the operation of an NR base station according to an embodiment of the present disclosure.
  • FIG. 16 shows a communication system 1 according to an embodiment of the present disclosure.
  • FIG 17 shows a wireless device according to an embodiment of the present disclosure.
  • FIG. 19 shows a wireless device according to an embodiment of the present disclosure.
  • FIG. 20 shows a portable device according to an embodiment of the present disclosure.
  • a or B may mean “only A”, “only B” or “both Showa B.”
  • a or B ( A or B) can be interpreted as “A and/or B”.
  • A, B or C (A, B or C) in this specification means “only A It can mean ”, “only B”, “only C”, or “any combination of A, B and C”.
  • a forward slash (/) or comma (comma) used in this specification means “and/or (and/or)”.
  • A/B could mean “A and/or B.” So “A/B” could mean “only A”, “only B”, or “both Showa B” For example, “A, B, C” could mean “A, B or C”.
  • control information may mean “for example”. Specifically, when indicated as “control information (PDCCH)”, “PDCCH” as an example of “control information” In other words, “control information” in this specification is not limited to “PDCCH”, and “PDDCH” may be suggested as an example of “control information”. Also, “control information” may be suggested as an example. (Ie, PDCCH)”, “PDCCH” may have been proposed as an example of “control information”.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • TDMA can be implemented with wireless technologies such as global system for mobile communications (GSM)/general packet radio service (GPRS)/enhanced data rates for GSM evolution (EDGE).
  • OFDMA can be implemented with wireless technologies such as IEEE (institute of electrical and electronics engineers) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and E-UTRA (evolved UTRA).
  • IEEE 802.16m is an evolution of IEEE 802.16e, and backward compatibility with IEEE 802.16e-based systems (backward compatibility)
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) uses evolved-UMT S terrestrial radio access (E-UTRA)
  • E-UMTS evolved UMTS
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA subcarrier frequency division multiple access
  • LTE-A evolution of 3GPP LTE.
  • 5G NR is the successor technology of LTE-A, and has features such as high performance, low latency, and high availability.
  • Eggplant is a new clean-slate type mobile communication system.
  • 5G NR ranges from low frequency bands of less than lGHz to mid-frequency bands of miiz-LOGPiz and over 24GHz.
  • 5G NR is mainly described, but the technical idea according to an embodiment of this disclosure is not limited thereto.
  • Fig. 2 shows the structure of an NR system according to an embodiment of the present disclosure.
  • NG-RAN Next Generation-Radio Access Network
  • the base station 20 may include a base station 20 that provides a user plane and a control plane protocol termination to the terminal 10.
  • the base station 20 is a next generation-Node B (gNB) and/or an evolved eNB (evolved).
  • -NodeB for example, terminal 10 can be fixed or mobile, MS (Mobile Station), UT (User Terminal), SS (Subscriber Station), MT (Mobile Terminal), wireless devices It can be called by other terms, such as (Wireless Device), for example, a base station is a fixed device that communicates with terminal 10.
  • BTS Base Transceiver System
  • the embodiment of FIG. 2 illustrates a case where only gNB is included.
  • the base station 20 may be connected to each other by an Xn interface.
  • the base station 20 is a 5G core network (5G Core Network: 5GC) and an NG More specifically, the base station 20 may be connected to an access and mobility management function (AMF) 30 through an NG-C interface, and a user plane function (UPF) through an NG-U interface. (30) can be connected.
  • 5G Core Network: 5GC 5G Core Network: 5GC
  • AMF access and mobility management function
  • UPF user plane function
  • Figure 3 shows the functional division between NG-RAN and 5GC according to an embodiment of the present disclosure.
  • Fig. 3 can be combined with various embodiments of the present disclosure.
  • gNB is a wireless resource management (Inter Cell RRM), wireless 2020/175942 1»(:1/10 ⁇ 020/002849
  • AMF bearer management
  • AMF can provide functions such as NAS (Non Access Stratum) security and idle state mobility processing.
  • UPF can provide functions such as mobility anchoring and PDU (Protocol Data Unit) processing.
  • SMF(Session Management) Session Management
  • Function can provide functions such as terminal IP (Intemet Protocol) address assignment and PDU session control.
  • terminal IP Intemet Protocol
  • the layers of the radio interface protocol between the terminal and the network are L1 (No. 1) based on the lower three inheritances of the Open System Interconnection (OSI) reference model, which is widely known in communication systems. Inheritance), L2 (Layer 2), and L3 (Layer 3), among which, the physical inheritance belonging to the first layer provides an information transfer service using a physical channel.
  • the RRC (Radio Resource Control) layer located in the third line plays the role of controlling wireless resources between the terminal and the network. For this purpose, the RRC layer exchanges RRC messages between the terminal and the base station.
  • FIG. 4 shows a wireless protocol structure for a user plane, and ( b) represents the wireless protocol structure for the control plane, the user plane is the protocol for transmitting user data
  • control plane is a protocol stack for transmitting control signals.
  • the physical layer is connected to the upper layer, Medium Access Control (MAC), through a transport channel.
  • MAC Medium Access Control
  • the transport channel moves data between the MAC layer and the physical layer.
  • the transport channel is classified according to how and with what characteristics the data is transmitted over the wireless interface.
  • Data is transferred through a physical channel between different physical systems, i.e. between the physical systems of the transmitter and the receiver.
  • the physical channel can be modulated by the OFDM (Orthogonal Frequency Division Multiplexing) method, and time and frequency are radio resources Use it as.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the MAC layer provides a service to the upper layer, the RLQ radio link control layer, through a logical channel.
  • the MAC layer provides a mapping function from a plurality of logical channels to a plurality of transport channels, and the MAC layer provides a logical channel multiplexing function by mapping from a plurality of logical channels to a single transmission channel.
  • the MAC layer provides a data transmission service on a logical channel.
  • RLC inheritance is the concatenation of RLC Serving Data Unit (SDU), 2020/175942 1»(:1 ⁇ 1 ⁇ 2020/002849
  • Radio Bearer 9 Perform segmentation and reassembly In order to ensure various QoS (Quality of Service) required by Radio Bearer (RB), RLC layer is in Transparent Mode (TM), non-confirmation It provides three operating modes: Unacknowledged Mode (UM) and Acknowledged Mode (AM). AM RLC provides error correction through automatic repeat request (ARQ).
  • QoS Quality of Service
  • UM Unacknowledged Mode
  • AM Acknowledged Mode
  • ARQ automatic repeat request
  • the Radio Resource Control (RRC) layer is defined only in the control plane.
  • the RRC layer is in charge of controlling the logical channels, transport channels and physical channels in relation to the configuration, re-configuration, and release of radio bearers.
  • RB refers to the logical path provided by the first layer (physical layer or PHY layer) and the second layer (MAC verification, RLC verification, PDCP (Packet Data Convergence Protocol) verification) for data transfer between the terminal and the network.
  • the function of the PDCP layer in the user plane is the transmission of user data and the header
  • the functions of the PDCP layer in the control plane include the transfer of control plane data and encryption/integrity protection.
  • SDAP Service Data Adaptation Protocol
  • the SDAP layer performs mapping between QoS flows and data wireless bearers, and QoS flow identifier (ID) marking in downlink and uplink packets.
  • ID QoS flow identifier
  • the RB setting means the process of defining the characteristics of the wireless protocol layer and channel to provide a specific service, and setting specific parameters and operation methods for each.
  • RB can be further divided into two types, SRB (Signaling Radio Bearer) and DRB (Data Radio Bearer).
  • SRB is used as a path for transmitting RRC messages in the control plane
  • DRB is used as a path for transmitting user data in the user plane.
  • the terminal When an RRC connection is established between the RRC layer of the terminal and the RRC layer of the base station, the terminal is in the RRC_CONNECTED state, otherwise it is in the RRCJDLE state.
  • the RRCJNACTIVE state has been additionally defined, and the terminal in the RRCJNACnVE state can release the connection with the base station while maintaining the connection with the core network.
  • the downlink SCH Shared Channel
  • the uplink transmission channel that transmits data from the terminal to the network is the RACH (Random Access Channel) that transmits the initial control message and other user traffic.
  • RACH Random Access Channel
  • SCH uplink shared channel
  • BCCH Broadcast Control Channel
  • PCCH Paging Control Channel
  • CCCH Common Control Channel
  • MCCH Multicast Control Channel
  • MTCH Multicast Traffic Channel
  • a physical channel is composed of several OFDM symbols in the time domain and several sub-carriers in the frequency domain.
  • a sub-frame is composed of a plurality of OFDM symbols in a time domain.
  • a resource block is a resource allocation unit, and is composed of a plurality of OFDM symbols and a plurality of sub-carriers.
  • each subframe can use specific government carriers of specific OFDM symbols (eg, the first OFDM symbol) of the corresponding subframe for the PDCCH (Physical Downlink Control Channel), that is, the L1/L2 control channel.
  • TTI Transmission Time Interval
  • Fig. 5 shows the structure of an NR radio frame according to an embodiment of the present disclosure.
  • the embodiment of Fig. 5 can be combined with various embodiments of the present disclosure.
  • the wireless frame has a length of Wms, and two 5ms
  • Half-frame can contain 5 1ms subframes (Subframe, SF)
  • Subframe can be divided into one or more slots, and the number of slots in the subframe Is subcarrier
  • Each slot can contain 12 or 14 OFDM(A) symbols according to CP (cyclic prefix).
  • each slot may contain 14 symbols.
  • each slot may include 12 symbols.
  • the symbol is an OFDM symbol (or, CP-OFDM symbol), an SC-FDMA (Single Carrier-FDMA) symbol (or, DFT-s- OFDM (Discrete Fourier Transform-spread-OFDM) symbol).
  • the following table 1 shows the symbols for each slot according to the SCS setting (u) when normal CP is used.
  • Nslotsymb The number (Nslotsymb), the number of slots per frame (Nframe, uslot) and the number of slots per subframe (Nsubframe,uslot) are illustrated.
  • Table 2 shows the number of symbols per slot, number of slots per frame, and number of slots per subframe according to 808 when extension 0 5 is used.
  • Numerology e.g., SCS, CP length, etc.
  • a time resource consisting of the same number of symbols (e.g., subframe, slot or
  • TTI for convenience, the (absolute time) section of (collectively referred to as TU (Time Unit)) may be set differently between the merged cells.
  • a number of numerology or SCS can be supported to support various 5G services. For example, when the SCS is 15 kHz, a wide area in traditional cellular bands is supported. If the SCS is 30kHz/60mz, dense-urban, lower latency and wider carrier bandwidth can be supported. If the SCS is 60kHz or higher, a bandwidth greater than 24.25GPiz can be supported to overcome the phase noise.
  • the NR frequency band is divided into two types of frequency range.
  • the frequency range of the above two types can be FR1 and FR2.
  • the numerical value of the frequency range can be changed, for example, the frequency range of the above two types can be as shown in Table 3 below.
  • FR1 can mean “sub 6GHz range”
  • FR2 can mean “above 6GHz range” and can be called millimeter wave (mmW).
  • mmW millimeter wave
  • FR1 may include a band of 410MHz to 25MHz as shown in Table 4 below.
  • FR1 may include a frequency band of 6 GHz (or 5850, 5900, 5925 MHz, etc.) or higher.
  • a frequency band of 6 GHz (or 5850, 5900, 5925 MHz, etc.) or higher included in FR1 is an unlicensed band ( Unlicensed bands can be used for a variety of purposes, e.g. for communication for vehicles (e.g. autonomous driving).
  • FIG. 6 shows a slot structure of an NR frame according to an embodiment of the present disclosure.
  • the sixth embodiment can be combined with the various embodiments of the present disclosure.
  • a slot includes a plurality of symbols in the time domain. For example, in the case of a normal simulation, one slot includes 14 symbols, but in the case of an extended CP, one slot includes 12 symbols. Or, in the case of a normal CP, one slot contains 7 symbols, but in the case of an extended CP, one slot can contain 6 symbols.
  • a carrier includes a plurality of subcarriers in the frequency domain.
  • BWP Bandwidth Part
  • P Physical Resource Block
  • a carrier can contain up to N (e.g., 5) BWPs.
  • Data communication can be carried out through an active BWP.
  • Each element can be referred to as a resource element (RE) in the resource grid. Yes, and one complex symbol can be mapped.
  • RE resource element
  • the interface may be composed of the L1 layer, the L2 layer, and the L3 layer.
  • the L1 layer may mean a physical layer.
  • the L2 layer is a MAC layer and an RLC layer.
  • PDCP layer, and SDAP layer can mean at least one layer.
  • L3 layer can mean RRC layer.
  • B WP (B andwidth Part) may be a continuous set of PRBs (physical resource blocks) in a given neuronology.
  • PRBs can be selected from a contiguous subset of CRBs (common resource blocks) for a given numerology on a given carrier.
  • the reception bandwidth and transmission bandwidth of the terminal need not be as large as that of the cell, and the reception bandwidth and transmission bandwidth of the terminal can be adjusted.
  • the network/base station has bandwidth.
  • the terminal can be informed of adjustments, e.g., the terminal has information/settings for bandwidth adjustment.
  • the terminal can perform bandwidth adjustment based on the received information/settings.
  • the bandwidth is the bandwidth.
  • Adjustments may include reducing/enlarging the bandwidth, changing the position of the bandwidth, or changing the subcarrier spacing of the bandwidth.
  • the bandwidth can be reduced for a period of less activity to save power.
  • the location of the bandwidth can be moved in the frequency domain.
  • the location of the bandwidth can be adjusted for scheduling flexibility (scheduling). flexibility) can be moved in the frequency domain, e.g. subcarrier of bandwidth
  • Subcarrier spacing can be changed; for example, subcarrier spacing of bandwidth can be changed to allow different services.
  • a subset of the total cell bandwidth of a cell can be referred to as a BWP (Bandwidth Part).
  • BA is
  • a BWP is an active BWP, an initial BWP and/or
  • the downlink radio link quality may not be monitored in DL BWPs other than the active DL BWP on the primary cell (PCell).
  • the terminal may not monitor the PDCCH, PDSCH or CSI-RS (except RRM) may not be received.
  • the terminal may not trigger a CSI (Channel State Information) report for an inactive DL BWP.
  • the terminal may not trigger an active UL BWP outside of the active UL BWP.
  • PUCCH or PUSCH may not be transmitted.
  • the initial BWP can be given as a set of contiguous RBs for the RMSI CORESET (set by the PBCH).
  • the initial BWP can be given to the SIB for a random access procedure.
  • the default mode can be set by a higher layer.
  • the default mode can be set by a higher layer.
  • the default mode can be set by a higher layer.
  • the default mode can be set by a higher layer.
  • the default mode can be set by
  • the initial value of BWP may be the initial DL BWP. For energy saving, if the terminal does not detect DCI for a certain period of time, the terminal can switch the active BWP of the terminal to the default BWP.
  • BWP can be defined for SL.
  • the same SL BWP can be used for transmission and reception.
  • a transmitting terminal can transmit an SL channel or SL signal on a specific BWP
  • a receiving terminal can be SL channel or SL signal can be received on a specific BWP
  • SL BWP can be defined separately from Uu BWP
  • SL BWP can have separate configuration signaling from Uu BWP.
  • the terminal can receive the settings for SL BWP from the base station/network.
  • SL BWP can be set (in advance) for out-of-coverage NR V2X terminal and RRC_IDLE terminal in the carrier.
  • at least one SL BWP can be activated in the carrier.
  • Fig. 7 shows an example of a BWP according to an embodiment of the present disclosure.
  • the BWP is 2020/175942 1»(:1 ⁇ 1 ⁇ 2020/002849
  • CRB common resource block
  • It can be a numbered carrier resource block from end to end, and a PRB can be a numbered resource block within each BWP, point A is the common reference point for the resource block grid. Can be indicated.
  • BWP is point A, offset from point A (NstartBWP) and
  • the bandwidth (NsizeBWP), e.g. point A is the external reference point of the PRB of the carrier in which subcarrier 0s of all neurons (e.g., all neurons supported by the network on that carrier) are aligned.
  • the offset could be the PRB spacing between the lowest subcarrier and point A at a given neuronology.
  • the bandwidth could be a given
  • FIG. 8 shows a radio protocol architecture for SL communication according to an embodiment of the present disclosure.
  • the embodiment of FIG. 8 can be combined with various embodiments of the present disclosure.
  • FIG. 8(a) shows the user plane protocol stack
  • (ratio) in FIG. 8 shows the control plane protocol stack.
  • SL synchronization signal (Sidelink Synchronization Signal, SLSS) and synchronization information words! Explain about it.
  • SLSS is an SL-specific sequence, and may include PSSS (Primary Sidelink Synchronization Signal) and SSSS (Secondary Sidelink Synchronization Signal).
  • the PSSS may be referred to as S-PSS (Sidelink Primary Synchronization Signal).
  • the SSSS may be referred to as S-SSS (Sidelink Secondary Synchronization Signal).
  • S-PSS Sidelink Primary Synchronization Signal
  • S-SSS Sidelink Secondary Synchronization Signal
  • length-127 M-sequences laeng- 127 M-sequences
  • length -127 gold-sequences length-127 Gold sequences
  • the terminal can use S-PSS to detect the initial signal and acquire synchronization
  • the terminal can acquire detailed synchronization by using S-PSS and S-SSS, and can detect the synchronization signal ID.
  • PSBCH Physical Sidelink Broadcast Channel
  • the basic information is information related to SLSS, Duplex Mode (DM), TDD UL/DL ( Time Division Duplex Uplink/Downlink) configuration, resource pool related information, type of application related to SLSS, subframe offset, broadcast information, etc.
  • DM Duplex Mode
  • TDD UL/DL Time Division Duplex Uplink/Downlink
  • resource pool related information resource pool related information
  • type of application related to SLSS subframe offset
  • broadcast information etc.
  • payload of PSBCH The size can be 56 bits including a 24-bit CRC.
  • S-PSS, S-SSS, and PSBCH are block formats that support periodic transmission (eg, SL 2020/175942 1»(:1 ⁇ 1 ⁇ 2020/002849
  • S-SSB Synchronization Signal Block
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • the transmission bandwidth can be within the (pre) set SL BWP (Sidelink BWP).
  • the bandwidth of S-SSB can be 11 RB (Resource Block).
  • the PSBCH could span 11 RBs.
  • the frequency position of the S-SSB can be set (in advance). Therefore, the terminal does not need to perform hypothesis detection at the frequency to discover the S-SSB in the carrier.
  • FIG. 9 shows a terminal for performing V2X or SL communication according to an embodiment of the present disclosure.
  • the embodiment of FIG. 9 can be combined with various embodiments of the present disclosure.
  • terminal in V2X or SL communication, can mainly mean a user's terminal.
  • a network device such as a base station transmits and receives signals according to the communication method between the terminals
  • the base station also It may be considered a kind of terminal, for example, terminal 1 may be the first device 100, and terminal 2 may be the second device 200.
  • terminal 1 can select a resource unit corresponding to a specific resource within a resource pool, which means a set of resources.
  • Terminal 1 can transmit an SL signal using the resource unit.
  • Terminal 2 which is a receiving terminal, can receive a resource pool in which terminal 1 can transmit signals, and detect the signal of terminal 1 in the resource pool. can do.
  • terminal 1 can inform terminal 1 of the resource pool.
  • terminal 1 can use the resource set in advance.
  • a resource pool can be composed of a plurality of resource units, and each terminal can select one or more resource units and use it for its SL signal transmission.
  • Fig. W shows a procedure for a terminal to perform V2X or SL communication according to a transmission mode according to an embodiment of the present disclosure.
  • the embodiment of Fig. W can be combined with various embodiments of the present disclosure.
  • the transmission mode may be referred to as a mode or a resource allocation mode.
  • the transmission mode in LTE may be referred to as an LTE transmission mode
  • the transmission mode in NR is referred to as an NR resource allocation mode. Can be called.
  • (a) of FIG. 10 shows a terminal operation related to LTE transmission mode 1 or LTE transmission mode 3.
  • (a) of FIG. 10 is related to NR resource allocation mode 1 It shows terminal operation.
  • LTE transmission mode 1 can be applied to general SL communication
  • LTE transmission mode 3 can be applied to V2X communication. 2020/175942 1»(:1 ⁇ 1 ⁇ 2020/002849
  • (b) of FIG. 10 shows a terminal operation related to LTE transmission mode 2 or LTE transmission mode 4.
  • (ratio is a terminal related to NR resource allocation mode 2) of FIG. Indicate motion.
  • the base station can schedule SL resources to be used by the terminal for SL transmission.
  • the base station can perform resource scheduling to terminal 1 through PDCCH (more specifically, DCI (Downlink Control Information)), and terminal 1 can perform V2X or SL communication with terminal 2 according to the above resource scheduling.
  • Terminal 1 transmits sidelink control information to terminal 2 through PSCCH (Physical Sidelink Control Channel), and then transmits data based on the sidelink control information to terminal 2 through PSSCH (Physical Sidelink Shared Channel). Can be sent to
  • the terminal uses SL resources set by the base station/network or SL transmission resources within a preset SL resource.
  • the set SL resource or the preset SL resource may be a resource pool.
  • the terminal can autonomously select or schedule a resource for SL transmission.
  • the terminal is set up.
  • SL communication can be performed by selecting a resource from the resource pool by itself.
  • the terminal can select a resource by itself in the selection window by performing sensing and resource (re) selection procedures.
  • the sensing can be performed on a sub-channel basis.
  • terminal 1 transmits sidelink control information to terminal 2 through PSCCH, and then transmits the data based on the sidelink control information. It can be transmitted to terminal 2 through PSSCH.
  • FIG. 11 shows three cast types according to an embodiment of the present disclosure.
  • the embodiment of FIG. 11 can be combined with various embodiments of the present disclosure.
  • (a) of FIG. 11 is a broadcast type.
  • (B) of FIG. 11 shows a unicast type of SL communication, and (of FIG. 11) shows a groupcast type of SL communication.
  • the terminal can perform one-to-one communication with other terminals.
  • the terminal can perform SL communication with one or more terminals in the group to which it belongs.
  • SL groupcast communication can be replaced by SL multicast communication and SL one-to-many communication.
  • the terminal reserves resources for sidelink transmission.
  • Sidelink communication may include V2X communication.
  • At least one proposed method proposed according to various embodiments of the present disclosure is not only a sidelink communication or V2X communication based on a PC5 interface or an SL interface (eg, PSCCH, PSSCH, PSBCH, PSSS/SSSS, etc.) In addition, it can also be applied to sidelink communication or V2X communication based on Uu interface (eg, PUSCH, PDSCH, PDCCH, PUCCH, etc.).
  • the reception operation of the terminal is a decoding operation and/or reception of a sidelink channel and/or a sidelink signal (eg, PSCCH, PSSCH, PSFCH, PSBCH, PSSS/SSSS, etc.).
  • the receiving operation of the terminal may include the decoding operation and/or receiving operation of the WAN DL channel and/or WAN DL signal (for example, PDCCH, PDSCH, PSS/SSS, etc.).
  • the operation may include a sensing operation and/or a CBR measurement operation.
  • the sensing operation of the terminal is a PSSCH-RSRP measurement operation based on a PSSCH DM-RS sequence, and the terminal is
  • the transmission operation of the terminal may include a transmission operation of a sidelink channel and/or a sidelink signal (eg, PSCCH, PSSCH, PSFCH, PSBCH, PSSS/SSSS, etc.).
  • the transmission operation of the terminal may include a transmission operation of a WAN UL channel and/or a WAN UL signal (for example, PUSCH, PUCCH, SRS, etc.).
  • the synchronization signal is SLSS and/or May include PSBCH.
  • the configuration may include signaling, signaling from the network, configuration from the network, and/or preconfiguration from the network.
  • the definition may include signaling, signaling from the network, configuration from the network, and/or preconfiguration from the network.
  • the designation may include signaling, signaling from the network, configuration from the network, and/or preconfiguration from the network.
  • ProSe Per Packet Priority can be replaced by ProSe Per Packet Reliability (PPPR), and PPPR can be replaced by PPPP.
  • PPPP ProSe Per Packet Priority
  • PPPR ProSe Per Packet Reliability
  • the smaller the PPPP value the higher the priority.
  • a higher PPPP value can mean a lower priority, for example, a smaller PPPR value can mean higher reliability, and a larger PPPR value can mean lower reliability.
  • higher PPPR values mean lower priority.
  • the PPPP value associated with a service, packet, or message associated with a priority may be less than the PPPP value associated with a service, packet or message associated with a lower priority, for example, the PPPR value associated with a service, packet or message associated with a high reliability. May be less than the PPPR value associated with a service, packet or message associated with low reliability.
  • a session is a unicast session (eg, a unicast session for sidelink), a groupcast/multicast session (eg, a groupcast for sidelink). /Multicast session), and/or a broadcast session (for example, a broadcast session for a sidelink).
  • a carrier may be interpreted to be mutually extended to at least one of a BWP and/or a resource pool.
  • a carrier may include at least one of a BWP and/or a resource pool.
  • a carrier can contain more than one BWP; for example, a BWP can contain more than one resource pool.
  • DCI Downlink Control Information
  • FIG. 12 shows a process of performing LTE SL communication based on the DCI received from the NR base station by the first device according to an embodiment of the present disclosure.
  • the NR base station (for example, gNB) according to this embodiment can transmit DCI to the terminal to support LTE MODE 3 SL operation/scheduling through the NR UU interface. At this time, from the terminal point of view, it is smooth. For LTE SL communication, it is necessary to exchange information between the NR modem/module of the terminal and the LTE modem/module at a high speed.
  • NR modem/module Information exchange between NR modem/module and LTE modem/module, for example, when NR modem/module transmits DCI information received from NR base station to LTE modem/module, LTE modem/module is based on the DCI information.
  • information exchange between the NR modem/module and the LTE modem/module can include the process of performing the LTE MODE 3 SL scheduling/operation.
  • information related to the LTE SL traffic generated by the LTE modem/module is transferred to the NR modem/module.
  • the NR modem/module transmitting auxiliary information about LTE MODE 3 SL scheduling/operation (e.g., LTE traffic generation cycle/size, (related) service priority, etc.) to the NR base station.
  • auxiliary information about LTE MODE 3 SL scheduling/operation e.g., LTE traffic generation cycle/size, (related) service priority, etc.
  • information exchange between the NR modem/module and the LTE modem/module can increase the implementation complexity of the terminal.
  • a method of efficiently transmitting information 1234 (or LTE MODE 3 SL operation/scheduling related information) related to LTE SL communication through the (NR) DCI 1230 will be described.
  • the NR base station 1210 transmits the LTE SL communication information (1234) to the terminal through signaling based on an NR UU interface (eg, signaling through an RRC message or DCI).
  • information about LTE SL communication (1234) may be related to SL SPS operation/scheduling in LTE MODE 3, but the example is not limited to this.
  • information about LTE SL communication ( 1234) may be related to the SL dynamic (DYNAMIC) operation/scheduling of LTE MODE 3.
  • 19 information (1234) is information on resource scheduling of LTE SPS (Semi-Persistent Scheduling), SPS process activation (activation) or release (or
  • the DCI 1230 is a cross-rat including information on LTE SL communication (1234).
  • (Cross-RAT) may be DCI.
  • It may include content (or, DCI 5A field of LTE-V).
  • the first device 1220 may receive the DCI 1230 from the NR base station 1210.
  • the DCI 1230 may receive the NR through PDCCH.
  • the DCI 1230 may be passed to the NR module 1222 in the first device 1220.
  • the first device 1220 according to an embodiment, based on the DCI 1230, the first timing
  • the offset (information) 1232 can be obtained.
  • the first timing offset is the NR module 1222 and the first device 1220 for NR (New Radio) communication of the first device 1220. It may be greater than or equal to the minimum latency (1223) between the LTE module 1224 for LTE (Long Term Evolution) communication.
  • the minimum delay time 1223 is,
  • the NR module 1222 is the NR
  • the LTE From the time when the DCI 1230 is received from the base station 1210, the LTE
  • the module 1224 may represent the minimum value of the time interval between the time point when the DCI 1230 is converted and the generated LTE DCI is received from the NR module 1222. That is, in this example
  • the minimum delay time 1223 is the sum of the processing time at which the DCI 1230 is converted to LTE DCI and the delivery time between the intermodems (NR module 1222 and LTE module 1224).
  • the minimum delay time 1223 is, From the time when the NR module 1222 transmits the LTE DCI to the LTE module 1224, the LTE module 1224 is the LTE DCI It can also indicate the minimum value of the time interval between the points received. That is, in the present example, the minimum delay time 1223 may represent a delivery time between the intermodems (NR module 1222 and LTE module 1224).
  • the first timing offset may be variously designated as X ms, DCI_TINF, RRC_TINF, and the like.
  • the first timing offset is transmitted from the NR base station 1210 to the first device 1220 NR frame or NR
  • the DCI format of the LTE DCI may be LTE DCI format 5A.
  • the first timing offset and the second timing offset elapse from the time when the DCI 1230 is received by the NR module 1222. Based on a point in time, LTE SL communication (for example, LTE SL operation, LTE SL resource allocation, etc.) can be performed.
  • LTE SL communication for example, LTE SL operation, LTE SL resource allocation, etc.
  • the second timing offset is the above of the DCI 1230 2020/175942 1»(:1 ⁇ 1 ⁇ 2020/002849
  • the second timing offset may be variously designated as Z ms, SPS_TINF, etc. in the present disclosure.
  • the second timing offset is equal to or greater than the NR base station 1210. It is an LTE reference offset based on LTE that is delivered to the first device 1220.
  • SPS Semi-Persistent Scheduling
  • index information for activated and/or released LTE SL SPS process
  • resource scheduling information for LTE SL SPS process
  • It may include at least one of PSCCH/PSSCH (or initial transmission/retransmission) related time/frequency resource information, LTE SL SPS ACTIVATION related timing offset (OFFJNF or m), etc.
  • PSCCH/PSSCH or initial transmission/retransmission
  • LTE SL SPS ACTIVATION related timing offset OFFJNF or m
  • the first device 1220 receives the DCI (1230)
  • the LTE module 1224 has received the LTE DCI from the time point at which the first timing offset has elapsed. Accordingly, the first device 1220 sets the second timing offset (or, Z ms) to the NR module ( 1224) can be added from the time when the DCI 1230 is received and at the time when the first timing offset has elapsed. In the case where the second timing offset is with respect to the time point for determining whether to activate the LTE SPS, the first device From the time when the NR module 1224 receives the DCI 1230, the time point for determining whether to activate the LTE SPS may be determined based on the time point when the first timing offset and the second timing offset have elapsed. If SPS is activated, first
  • the device 1220 may perform LTE SL SPS operation.
  • the time point at which the LTE module 1224 receives the LTE DCI may be referred to as a time point based on RRC_TINF, a T DL, or the like.
  • the determination of whether or not to activate the LTE SPS is according to the LTE specification.
  • the decision can be made at the same or similar point as the rule.
  • the decision on whether to activate the LTE SPS is “'The point at which the LTE module 1224 is assumed to have received the LTE DCI'-N TA /2*T S + (4 + OFF_INF)*10 3 It can be determined to be performed at ".
  • the decision on whether to activate the LTE SPS is, "'The first timing from the time when the NR module 1222 receives the DCI 1230. When the offset has elapsed, it can be determined to be performed at'-N TA /2*T S + (4 + OFF_INF)*10 3 ".
  • the decision on whether to activate the LTE SPS is referred to as, "The time point based on RRC_TINF. '-N TA /2*T S + (4 + OFF_INF) *10 3 It can be determined to be performed on “. Or, the decision on whether to activate LTE SPS is, "'Time based on X ms"-N TA /2*T S + (4 + OFF_INF)*10 3 Can be determined to be performed on “. Or, the decision on whether to activate LTE SPS is, "T DL '-N TA /2*T S + (4 + OFF_INF)*10 3 It can be determined by performing “.
  • N TA and T s are timing between UL (Uplink)/DL (Downlink) radio frames (RADIO FRAME) (from the terminal point of view)
  • RRC-based activation/deactivation is not supported, while DCI-based activation/deactivation may be supported.
  • Support of LTE PC5 scheduling by NR UU may be based on UE capability.
  • the NR DCI can provide DCI 5A fields in LTE-V related to SPS scheduling.
  • the size of the DCI for activation/deactivation is the same as one of the DCI size(s) to be defined for the NR UU scheduling NR V2V. It could be similar.
  • various embodiments may exist.
  • Activation/deactivation may be the same as the timing offset of the current LTE V2X specification, which can be applied to the first LTE subframe after Zms + Xms elapses after receiving DCI. Is greater than 0, the value of can be various, and can be one or multiple values.
  • the receiver in order to activate and/or deactivate LTE SL configured grant type-2 (LTE SL configured grant type-2) resources by NR DCI, the following operations may be performed.
  • the receiver may have both an NR (SL) module and an LTE (SL) module.
  • the NR module can receive the NR DCI transmitted from the gNB.
  • the NR module receives the NR DCI.
  • LTE SL configuration grant type- can be switched to LTE DCI format 5A (or LTE DCI) scheduling 2 resources.
  • the NR module can transfer the converted LTE DCI format 5A to the LTE module.
  • the LTE module can be considered that the LTE DCI format 5A was delivered from the eNB.
  • (pre-)configured After the timing offset has elapsed, the LTE module can perform LTE SL operation by applying activation/release of related resources.
  • the NR module converts the NR DCI into LTE DCI format 5A, and converts the NR DCI into LTE DCI format 5A at a time when X ms elapses from the time the NR DCI is received from the gNB. 2020/175942 1»(:1 ⁇ 1 ⁇ 2020/002849
  • the LTE module is the first (complete) LTE detected at the time Z ms has elapsed from the time it receives the LTE DCI format 5A from the NR module.
  • activation/release (such as LTE SPS) can be applied.
  • the Z ms is briefly expressed as a timing offset applied to the LTE module
  • the X ms is a timing offset taking into account the time to switch the DCI format and the communication delay time between the NR module and the LTE module. It can be expressed briefly.
  • the gNB may select/configure an X value greater than the above minimum value, and accordingly, other signaling/reporting required to check/confirm specific UE capabilities may be unnecessary.
  • the X value can be selected/configured by the gNB from among a plurality of possible values.
  • the base station to the terminal is defined in advance (physical layer and/or
  • information about the (candidate) X value (for example, information about the number of (candidate) X values) can be transmitted.
  • the terminal's capabilities may support one (or some) of a plurality of (candidate) X values (supported by the spec), and the base station may have a predefined (physical layer and/or Through higher layer) signaling, the terminal's capability information can be reported from the terminal.
  • the base station that received the terminal's capability information from the terminal (fixed X values defined in the specification (and/or Among the fixed number of X values defined in the specification), only the X values (and/or the number of X values) that the terminal can support can be signaled.
  • FIG 13 shows a process of performing LTE SL communication by the first device and the second device according to an embodiment of the present disclosure.
  • the LTE base station 1310 (eg, eNB) according to an embodiment is the LTE SL communication 1340 of the second device 1320 through an LTE (dedicated) DCI 1330 Can be controlled. More specifically, the LTE base station 1310 can deliver the LTE (dedicated) DCI 1330 to the LTE module 1322 of the second device 1320, and the LTE module 1322 can perform LTE SL communication 1340. have.
  • the LTE (dedicated) DCI 1330 is based on the crossrat DCI
  • LTE dedicated DCI LTE dedicated DCI, 1330
  • LTE dedicated DCI LTE dedicated DCI
  • the second timing offset 1242 determined by the LTE module 1224 of the first device 1220 based on the information on the LTE SL communication 1234 of the DCI 1230 is based on the DCI 1330 dedicated for LTE.
  • the LTE module 1224 of the first device 1220 is capable of receiving not only the LTE SL DCI switched based on the DCI 1230 from the NR base station 1210, but also the LTE base station ( 1310) can also receive LTE (dedicated) DCI (1330).
  • the offset 1242 (or, Z ms) may be the same as the second timing offset 1342 (or, Z ms) derived by the LTE module 1224 based on the LTE (dedicated) DCI 1330 have.
  • LTE SL communication 1244 can be performed.
  • the LTE module 1224 based on the determination that the LTE SPS has been activated,
  • LTE SPS can be applied. Or, the LTE module 1224, the LTE SPS
  • LTE SL communication 1344 can be performed.
  • the LTE module 1322 may apply the LTE SPS based on the determination that the LTE SPS is activated. Or, the LTE module 1322, the LTE SPS
  • the communication 1344 and the resource configuration (resource configuration), resource location (resource location), resource allocation length (resource allocation length) may be the same or similar in that sense.
  • FIG. 14 is a flow chart showing the operation of the first device according to an embodiment of the present disclosure.
  • the operations disclosed in the flow diagram of FIG. 14 may be performed in combination with various embodiments of the present disclosure. In one example, the operations disclosed in the flow diagram of FIG. 14 are at least among the devices shown in FIGS. 16 to 21. In another example, the operations disclosed in the flow diagram of FIG. 14 may be performed in various ways combined with the individual operations of the embodiments disclosed in FIGS. 12 to 13.
  • the first device and/or the second device of FIG. 14 may correspond to the first wireless device (W0) of FIG. 17 to be described later.
  • the first device and/or the second device of FIG. 14 The device may correspond to the second wireless device 200 of Fig. 17 to be described later.
  • the first device of Fig. 14 is the first device (or the first device) described above in Figs. 2020/175942 1»(:1 ⁇ 1 ⁇ 2020/002849
  • the second device in FIG. 14 may correspond to the second device (or second terminal) 1320 described above in FIGS. 12 and 13.
  • the base station of FIG. 14 or the NR base station may correspond to the NR base station 1210 described above in FIGS. 12 and 13.
  • the LTE base station of FIG. 14 is shown in FIGS. 12 and 13. It can cope with the LTE base station 1310 described above.
  • step S14W the first device according to one embodiment, from the NR base station
  • DCI Downlink Control
  • PDCCH Physical Downlink Control Channel
  • step S1420 the first device according to an embodiment, based on the DCI,
  • the timing offset can be obtained.
  • step S1430 the first device according to an embodiment, the first timing offset
  • LTE SL communication can be performed.
  • the minimum value of the first timing offset is based on a minimum latency between the NR module for NR (New Radio) communication of the first device and the LTE module for LTE communication. Can be determined by
  • the minimum delay time is, when the DCI is received by the NR module
  • the DCI is converted to LTE SL DCI by the first device, and the LTE SL DCI is transmitted by the first device to the LTE module.
  • the minimum delay time may be based on the device capability of the first device.
  • the first device according to an embodiment, the NR information on the minimum delay time
  • the first timing offset may be greater than or equal to the minimum delay time.
  • the LTE SL communication may be performed based on information on the LTE SL communication included in the DCI.
  • the information on the LTE SL communication may include a second timing offset related to the LTE SL communication.
  • the second timing offset is, from a time when the NR module receives the DCI. The point in time when the first timing offset has elapsed
  • the second timing offset is LTE SPS (Semi-Persistent
  • Scheduling may be a timing offset for activation.
  • the first device based on the time point when the first timing offset and the second timing offset elapsed from the time when the DCI is received by the NR module, whether or not the LTE SPS is activated A time point for determining may be determined. Further, the first device may determine whether or not the LTE SPS is activated at the time point for determining whether to activate the LTE SPS.
  • the first device makes a determination that the LTE SPS is activated 2020/175942 1»(:1 ⁇ 1 ⁇ 2020/002849
  • the first device may determine an LTE SL resource to which the LTE SPS is not applied, based on a determination that the LTE SPS is deactivated.
  • DCI Downlink Control Information
  • a first device that performs SL (SideLink) communication may be provided.
  • the first device includes at least one memory for storing instructions, at least one transceiver and at least one of the above. Includes at least one processor that connects one memory and at least one transceiver, but the at least one processor is DCI (Downlink Control Information) from the NR base station through the PDCCH (Physical Downlink Control Channel). )
  • DCI Downlink Control Information
  • the minimum value of may be determined based on a minimum latency between the NR module for NR (New Radio) communication of the first device and the LTE module for LTE communication.
  • a device for controlling a first terminal.
  • the device includes at least one processor and at least one processor. It is executably connected by one processor and includes at least one computer memory for storing instructions, wherein the at least one processor executes the instructions, and the first terminal is: NR base station From the PDCCH (Physical Downlink Control Channel)
  • PDCCH Physical Downlink Control Channel
  • DCI Downlink Control Information
  • LTE SL communication based on the first timing offset, but the minimum value of the first timing offset is, Minimum delay between the NR module for NR (New Radio) communication of the first device and the LTE module for LTE communication
  • the first terminal of the above embodiment may represent the first device described in the first half of this disclosure.
  • At least one memory, etc. may be implemented as a separate sub chip, or at least two or more components may be implemented through a single sub chip.
  • a non-transitory computer-readable storage medium for storing instructions (or instructions) may be provided.
  • DCI Downlink Control Information
  • a first timing offset is obtained, by the first device, LTE SL communication based on the first timing offset It is performed, wherein the minimum value of the first timing offset is determined based on a minimum latency between the NR module for NR (New Radio) communication of the first device and the LTE module for LTE communication. You can do it.
  • NR New Radio
  • 15 is a diagram illustrating the operation of an NR base station according to an embodiment of the present disclosure.
  • the operations disclosed in the flow diagram of FIG. 15 may be performed based on at least one of the devices shown in FIGS. 16 to 21.
  • the operations disclosed in the flow diagram of FIG. The individual operations of the embodiments disclosed in 12 to 13 can be combined and performed in various ways.
  • the (NR) base station or LTE base station of FIG. 15 is the BS of FIG. 9 and
  • the first device in FIG. 15 may correspond to the first device (or first terminal) 1220 described above in FIGS. 12 and 13.
  • the second device may correspond to the second device (or second terminal) 1320 described above in FIGS. 12 and 13.
  • the base station or NR base station of FIG. 15 is described above in FIGS. 12 and 13.
  • the LTE base station of FIG. 15 may correspond to the LTE base station 1310 described above in FIGS. 12 and 13.
  • step S15W the NR base station according to an embodiment sets a first timing offset.
  • the DCI to include can be determined.
  • the NR base station may transmit the DCI to the first device through a physical downlink control channel (PDCCH).
  • PDCH physical downlink control channel
  • the first timing offset, the first device is LTE SL communication
  • the minimum value of the first timing offset is based on a minimum latency between the NR module for NR (New Radio) communication and the LTE module for LTE communication of the first device. Can be determined by
  • the minimum delay time is, the DCI is received by the NR module
  • the DCI is converted to LTE SL DCI by the first device, and the LTE SL DCI is transmitted by the first device to the LTE module.
  • the minimum delay time may be based on the device capability of the first device.
  • a first device the NR information on the minimum delay time
  • the first timing offset may be greater than or equal to the minimum delay time.
  • the LTE SL communication regarding the LTE SL communication included in the DCI 2020/175942 1»(:1 ⁇ 1 ⁇ 2020/002849
  • the information on the LTE SL communication may include a second timing offset related to the LTE SL communication.
  • the second timing offset is from a time when the NR module receives the DCI. The point in time when the first timing offset has elapsed
  • the second timing offset is LTE SPS (Semi-Persistent
  • Scheduling may be a timing offset for activation.
  • a first device based on a time point when the first timing offset and the second timing offset elapse from the time when the DCI is received by the NR module, whether or not the LTE SPS is activated A time point for determining may be determined. Further, the first device may determine whether or not the LTE SPS is activated at the time point for determining whether to activate the LTE SPS.
  • the first device determines that the LTE SPS is activated
  • the first device may determine an LTE SL resource to which the LTE SPS is not applied, based on a determination that the LTE SPS is deactivated.
  • an NR base station that controls SL communication of a first device through DCI (Downlink Control Information) may be provided.
  • the NR base station includes at least one memory for storing instructions (at least one memory, including at least one transceiver and at least one processor connecting the at least one memory to the at least one transceiver, but at least one processor.
  • the first timing offset, 1 device is used in the process of performing LTE SL communication, and the minimum value of the first timing offset is the minimum delay time between the NR module for NR (New Radio) communication of the first device and the LTE module for LTE communication. It can be characterized by being determined based on (minimum latency).
  • Various embodiments of the present disclosure may be implemented independently. Alternatively, various embodiments of the present disclosure may be implemented in combination or merged with each other. For example, various embodiments of the present disclosure may be implemented for convenience of explanation. Although described based on the 3GPP system, various embodiments of the present disclosure may be extended to systems other than the 3GPP system. For example, various embodiments of the present disclosure are not limited to direct communication between terminals, but may also be used in an uplink or downlink, and at this time, a base station or a relay node, etc. may use the proposed method according to various embodiments of the present disclosure.
  • information on whether the method according to various embodiments of the present disclosure is applied may be obtained from a base station to a terminal or a transmitting terminal to a receiving terminal, or to a predefined signal (e.g. 2020/175942 1»(:1 ⁇ 1 ⁇ 2020/002849
  • a physical layer signal or a higher layer signal may be defined to inform.
  • information on rules according to various embodiments of the present disclosure may be obtained from a base station to a terminal or a transmitting terminal to a receiving terminal. It can be defined to notify via a signal defined in (for example, a physical layer signal or a higher layer signal).
  • some of the embodiments may be limitedly applied only to the resource allocation mode 1.
  • some of the various embodiments may be statically applied to the resource allocation mode 2. have.
  • Fig. 16 shows a communication system 1 according to an embodiment of the present disclosure.
  • the communication system 1 to which various embodiments of the present disclosure are applied includes a wireless device, a base station, and a network.
  • the wireless device is a wireless access technology (eg, 5G NR (New RAT)).
  • 5G NR New RAT
  • LTE Long Term Evolution
  • wireless devices include robots (100a), vehicles (lOOb-1).
  • a vehicle may include a vehicle equipped with a wireless communication function, a self-driving vehicle, a vehicle capable of communicating between vehicles, etc.
  • the vehicle is an Unmanned Aerial Vehicle (UAV) (e.g. Drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include AR (Augmented Reality)/VR (Virtual Reality)/MR (Mixed Reality) devices, HMD (Head-Mounted Device),
  • HUD Head-Up Display
  • Portable devices are smart phones, smart pads, wearable devices. This can include (e.g. smart watch, smart glasses), computer (e.g. laptop, etc.), etc.
  • Home appliances can include TVs, refrigerators, washing machines, etc.
  • IoT devices may include sensors, smart meters, etc.
  • a base station, network can be implemented as a wireless device, and a specific wireless device 200a can act as a base station/network node to other wireless devices.
  • Wireless devices can be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (e.g., LTE) network, or a 5G (e.g., NR) network.
  • IoT devices e.g., sensors
  • IoT devices can communicate directly with other IoT devices (e.g., sensors) or other wireless devices (W0a ⁇ 100f).
  • wireless communication/connection includes uplink/downlink communication 150a and sidelink communication 150b (or, D2D communication), base station communication 150c ( It can be achieved through various wireless access technologies (e.g. 5G NR) such as relay, IAB (Integrated Access Backhaul), and wireless devices and base stations/wireless devices and base stations through wireless communication/connection (150a, 150b, 150c).
  • the base stations transmit wireless signals to each other.
  • wireless communication/connection can transmit/receive signals through various physical channels.
  • wireless signals At least a part of the process of setting various configuration information for transmission/reception of data, various signal processing processes (e.g., channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.), resource allocation process, etc. can be performed.
  • FIG 17 shows a wireless device according to an embodiment of the present disclosure.
  • the first wireless device 100 and the second wireless device 200 can transmit and receive wireless signals through various wireless access technologies (e.g., LTE, NR).
  • the wireless device 100 and the second wireless device 200 can cope with the "wireless device (lOOx), base station (200)" and/or “wireless device (lOOx), wireless device (lOOx)” in Fig. 20.
  • the first wireless device (100) includes one or more processors (102) and one or more
  • Processor 102 controls the memory 104 and/or transceivers 106, and It may be configured to implement the descriptions, functions, procedures, proposals, methods and/or operational flow charts disclosed in the document.
  • the processor 102 may process the information in the memory W4 to generate the first information/signal, and then transmit a wireless signal including the first information/signal through the transceiver 106. Further, the processor 102 may store the information obtained from the signal processing of the second information/signal in the memory 104 after receiving the wireless signal including the second information/signal through the transmitter/receiver 106. 104 can be connected with the processor 102,
  • the memory 104 may perform some or all of the processes controlled by the processor 102, or the descriptions, functions, and processes disclosed in this document. It is possible to store software code containing instructions for performing procedures, proposals, methods, and/or operational flowcharts, where processor 102 and memory 104 are used to implement wireless communication technologies (e.g., LTE, NR). It may be part of a designed communication modem/circuit/chip.
  • the transceiver 106 is 2020/175942 1»(:1 ⁇ 1 ⁇ 2020/002849
  • Transmitter and receiver 106 may include a transmitter and/or receiver. Transmitter and receiver 106 It can be used interchangeably with RF (Radio Frequency) unit.
  • a wireless device can also mean a communication modem/circuit/chip.
  • the second wireless device 200 includes one or more processors 202, one or more memories 204, and may additionally include one or more transceivers 206 and/or one or more antennas 208.
  • Processor The 202 controls the memory 204 and/or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, proposals, methods, and/or operational flow diagrams disclosed in this document.
  • the processor 202 may process the information in the memory 204 to generate the third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206. Further, the processor 202 may store the information obtained from the signal processing of the fourth information/signal in the memory 204 after receiving the wireless signal including the fourth information/signal through the transmitter/receiver 206. 204 can be connected with the processor 202,
  • the memory 204 may perform some or all of the processes controlled by the processor 202, or the descriptions, functions, and processes disclosed in this document. It is possible to store software code including instructions for performing procedures, proposals, methods and/or operational flow charts, where processor 202 and memory 204 are used to implement wireless communication technologies (e.g., LTE, NR). It may be part of a designed communication modem/circuit/chip.
  • Transceiver 206 may be connected to processor 202, and may transmit and/or receive wireless signals through one or more antennas 208. Transceiver 206 is capable of transmitting and receiving radio signals. Transmitter and/or receiver may be included. Transmitter/receiver 206 may be used interchangeably with RF units.
  • wireless equipment may also mean a communication modem/circuit/chip.
  • more than one protocol layer may be implemented by more than one processor (W2, 202); for example, more than one layer of protocol.
  • Processors 102, 202 are one or more layers (e.g., PHY, MAC, RLC, PDCP, RRC,
  • One or more processors (102, 202) may implement one or more Protocol Data Units (PDUs) and one or more protocol data units (PDUs) and/or operational flow charts according to the descriptions, functions, procedures, proposals, methods and/or operational flow charts disclosed in the text. / Or one or more SDUs (Service Data Units) can be created.
  • One or more processors (102, 202) can be used for messages, control information, and data according to the descriptions, functions, procedures, proposals, methods and/or operational flow charts disclosed in this document.
  • one or more processors (102, 202) may have a signal (e.g., base) containing PDUs, SDUs, messages, control information, data or information in accordance with the functions, procedures, proposals and/or methods disclosed in this document. Band signal), which can be provided to one or more transceivers (W6, 206), one or more processors (102,
  • 31 can be received, and can acquire PDU, SDU, message, control information, data or information according to the description, function, procedure, proposal, method and/or operation flow chart disclosed in this document.
  • One or more processors can be used as a controller, microcontroller, or microcontroller
  • processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • the software may be contained in one or more processors 102, 202, or stored in one or more memories 104, 204 and run by one or more processors 102, 202. Descriptions, functions, procedures, and suggestions disclosed herein.
  • the method and/or operational flow charts may be implemented using firmware or software in the form of a set of codes, instructions and/or instructions.
  • One or more memories may be connected to one or more processors (102, 202) and may store various types of data, signals, messages, information, programs, codes, instructions and/or instructions.
  • One or more memories 104, 204 may consist of ROM, RAM, EPROM, flash memory, hard drive, register, cache memory, computer readable storage medium, and/or combinations thereof.
  • One or more memories 104, 204 It may be located inside and/or outside of one or more processors 102, 202.
  • one or more memories 104, 204 can be connected to one or more processors 102, 202 through various technologies such as wired or wireless connection. Can be
  • One or more transmitters and receivers may be connected to one or more other devices.
  • One or more transmitters and receivers have the descriptions, functions, procedures, and procedures disclosed in this document from one or more other devices. It can receive user data, control information, radio signals/channels, etc. mentioned in the proposal, method and/or operation flow chart, etc.
  • one or more transceivers 106, 206 may have one or more
  • processors 102, 202 can be connected with the processors 102, 202, and can transmit and receive wireless signals, e.g., one or more processors 102, 202 have one or more transceivers 106, 206 to transmit user data, control information to one or more other devices. Or it can be controlled to transmit wireless signals.
  • processors 102, 202
  • Transceiver (W6, 206) transmits user data, control information from one or more other devices 2020/175942 1»(:1 ⁇ 1 ⁇ 2020/002849
  • one or more transceivers can be connected with one or more antennas (108, 208), and one or more
  • Transceiver (106, 206) through one or more antennas (108, 208), the user data, control information, radio signal / channel, etc. mentioned in the description, function, procedure, proposal, method and/or operation flow chart disclosed in this document.
  • one or more antennas may be multiple physical antennas or multiple logical antennas (e.g., antenna ports).
  • One or more transceivers 106, 206 may be configured to transmit and receive user data, control information,
  • One or more processors (102,
  • transceivers 106, 206 can be used to convert received wireless signals/channels, etc. from RF band signals to baseband signals.
  • One or more transceivers 106, 206 can use one or more processors (W2, 202).
  • User data, control information, radio signals/channels, etc. processed by using can be converted from baseband signals to RF band signals.
  • one or more transceivers 106, 206 are (analog) oscillators and/or filters. May include.
  • the signal processing circuit 1000 includes a scrambler 1010, a modulator 1020, a layer mapper 1030, a precoder 1040, a resource mapper 1050, and a signal generator 1060.
  • the operations/functions of FIG. 18 may be performed in the processors 102, 202 and/or the transceivers 106, 206 of FIG. 17.
  • the hardware elements of FIG. 18 are the processors of FIG. 17. (102, 202) and/or the transceiver 106, 206.
  • block 1010 1060 may be implemented in the processor 102, 202 of FIG. 17.
  • block 1010 1050 may be implemented in the processor of FIG. 17 ( 102, 202), and block 1060 may be implemented in the transceiver 106, 206 of FIG.
  • the code word may be converted into a wireless signal through the signal processing circuit 1000 of FIG. 18.
  • the codeword is a coded bit sequence of the information block.
  • the information block may include a transport block (e.g., a UL-SCH transport block, a DL-SCH transport block).
  • a radio signal is a variety of physical channels (e.g., PUSCH, etc.) PDSCH) can be transmitted.
  • the codeword can be converted into a scrambled bit sequence by the scrambler 1010.
  • the scramble sequence used for scramble is generated based on the initialization value, and the initialization value includes ID information of the wireless device, etc.
  • the scrambled bit sequence can be modulated into a modulation symbol sequence by the modulator 1020. Modulation methods are pi/2-BPSK (pi/2-Binary Phase Shift Keying), m-PSK (m-Phase Shift Keying). ), m-QAM (m-Quadrature Amplitude Modulation), etc.
  • the complex modulated symbol sequence can be mapped to one or more transmission layers by the layer mapper 1030.
  • the modulation symbols of each transmission layer are precoder 1040.
  • the output z of the precoder 1040 can be obtained by multiplying the output y of the layer mapper 1030 with the precoding matrix W of N*M. , 2020/175942 1»(:1 ⁇ 1 ⁇ 2020/002849
  • N is the number of antenna ports
  • M is the number of transmission layers
  • the precoder 1040 may perform precoding after performing transform precoding (e.g., DFT conversion) for complex modulation symbols. In addition, the precoder 1040 may perform transform precoding. Precoding can be performed without performing it.
  • transform precoding e.g., DFT conversion
  • the resource mapper 1050 can map the modulation symbols of each antenna port to a time-frequency resource.
  • the time-frequency resource is a plurality of symbols (eg, CP-OFDMA symbol, DFT-s-OFDMA symbol) in the time domain. ), and may include a plurality of subcarriers in the frequency domain.
  • the signal generator 1060 generates a radio signal from the mapped modulated symbols, and the generated radio signal can be transmitted to another device through each antenna.
  • the signal generator 1060 may include an IFFT (Inverse Fast Fourier Transform) module and a CP (Cyclic Prefix) inserter, a Digital-to-Analog Converter (DAC), a frequency uplink converter, and the like. .
  • IFFT Inverse Fast Fourier Transform
  • CP Cyclic Prefix
  • DAC Digital-to-Analog Converter
  • a wireless device e.g., 100, 200 in Fig. 17
  • receive a wireless signal from the outside through an antenna port/transmitter/receiver.
  • the received wireless signal can be converted into a baseband signal through a signal restorer.
  • the signal restorer may include a frequency downlink converter, an analog-to-digital converter (ADC), a CP remover, and a Fast Fourier Transform (FFT) module.
  • ADC analog-to-digital converter
  • FFT Fast Fourier Transform
  • the baseband signal is a resource de-mapper.
  • Postcoding, demodulation, and de-scramble can be performed to restore a codeword.
  • the codeword can be decoded and restored to an original information block. Therefore, a signal processing circuit for a received signal. (Not shown) may include a signal restorer, a resource demapper, a post coder, a demodulator, a descrambler, and a decoder.
  • FIG. 19 shows a wireless device according to an embodiment of the present disclosure.
  • the wireless devices 100 and 200 refer to the wireless devices 100 and 200 of FIG.
  • the wireless devices 100 and 200 may include the communication unit 110, A control unit 120, a memory unit 130, and an additional element 140 may be included.
  • the communication unit may include a communication circuit 112 and a transceiver(s) 114.
  • the communication circuit 112. May include one or more processors 102, 202 and/or one or more memories 104, 204 of FIG. 17.
  • the transceiver(s) 114 may comprise one or more processors of FIG.
  • Transceivers 106,206 and/or one or more antennas 108,208 may be included.
  • the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140 and controls all operations of the wireless device.
  • the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140 and controls all operations of the wireless device.
  • the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140 and controls all operations of the wireless device.
  • the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140 and controls all operations of the wireless device.
  • the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140 and controls all operations of the wireless device.
  • the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140 and controls all operations of the wireless device.
  • the electrical/mechanical operation of the wireless device can be controlled based on the program/code/command/information stored in the memory unit 130.
  • the control unit 120 transmits information stored in the memory unit 130 to the communication unit (1W).
  • Wireless/wired to the outside eg, other communication devices
  • the additional element 140 may be configured in various ways depending on the type of wireless device.
  • the additional element 140 may include at least a power unit/battery, an I/O unit, a driving unit, and a computing unit.
  • the wireless device may include, but is not limited to, a robot (Fig. 16, 100a), a vehicle (Fig. 16, 100b-1, 100b-2), an XR device (Fig. 16, 100c), a portable device (Fig. 16, 100d), home appliances (Figs. 16, 100e), IoT devices (Figs. 16, 100f), digital broadcasting terminals, hologram devices, public safety devices, MTC devices, medical devices, fintech devices (or financial devices), security devices , climate/environmental devices, AI servers/devices (Figs. 16, 400), base stations (Figs. 16, 200), network nodes, etc.
  • Wireless devices can be moved or fixed depending on use-example/service. Can be used in places.
  • the various elements, components, units/parts, and/or modules in the wireless devices 100 and 200 are all interconnected through a wired interface, or at least some parts are connected wirelessly through a communication unit (no ) .
  • a communication unit no
  • the various elements, components, units/parts, and/or modules in the wireless devices 100 and 200 are all interconnected through a wired interface, or at least some parts are connected wirelessly through a communication unit (no ) .
  • a wireless device 100, 200
  • control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (e.g., 130, 140) may be connected wirelessly through the communication unit 110.
  • the wireless devices 100 and 200 Each element, component, unit/part, and/or module in) may further include one or more elements.
  • the control unit 120 may be composed of one or more sets of processors.
  • the control unit ( 120) is a communication control processor, application
  • the memory unit 130 is a RAM (Random Access Memory), DRAM (Dynamic RAM) , ROM (Read Only Memory), flash memory, volatile memory, non-volatile memory, and/or combinations thereof.
  • FIG. 19 will be described in more detail with reference to other drawings.
  • Fig. 20 shows a portable device according to an embodiment of the present disclosure.
  • Smartphones smart pads, wearable devices (e.g., smart watches, smart glasses), portable computers (e.g., laptops, etc.) can be included.
  • Mobile devices include MS (Mobile Station), UT (user terminal), MSS (Mobile Subscriber). Station), SS (Subscriber Station), AMS (Advanced Mobile Station), or WT (Wireless terminal).
  • the portable device 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a memory unit 130, a power supply unit 140a, an interface unit 140b, and input/output It may include a unit 140c.
  • the antenna unit 108 may be configured as a part of the communication unit H0.
  • Blocks 110 to 130/140a to 140c correspond to blocks 110 and 130/140 of FIG. 17, respectively.
  • This communication unit 110 can transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations.
  • the control unit 120 controls the components of the portable device 100 to be 2020/175942 1»(:1 ⁇ 1 ⁇ 2020/002849
  • the control unit 120 may include an application processor (AP).
  • the memory unit 130 is required for driving the mobile device 100.
  • the power supply unit 140a supplies power to the portable device 100. And may include wired/wireless charging circuits, batteries, etc.
  • the interface unit 140b may support connection between the portable device 100 and other external devices.
  • the interface unit 140b provides various ports (e.g., audio input/output ports, video input/output ports) for connection with external devices.
  • the input/output unit 140c may receive or output image information/signal, audio information/signal, data, and/or information input from the user.
  • the input/output unit 140c may include a camera, a microphone, and a user. It may include an input unit, a display unit (140d), a speaker and/or a haptic module.
  • the input/output unit 140c is
  • the communication unit H0 transfers the information/signals stored in the memory to a wireless signal.
  • the communication unit (H0) can transmit the converted wireless signal to other wireless devices directly or to the base station.
  • the received wireless signal After receiving the wireless signal from the base station, the received wireless signal can be restored to the original information/signal.
  • the restored information/signal is stored in the memory unit 130 and then
  • various forms eg, text, voice, image, video, and heptic
  • various forms eg, text, voice, image, video, and heptic
  • Vehicles or autonomous vehicles can be implemented as mobile robots, vehicles, trains, aerial vehicles (AVs), and ships.
  • AVs aerial vehicles
  • the vehicle or the autonomous vehicle 100 includes an antenna unit 108,
  • a communication unit 110, a control unit 120, a driving unit 140a, a power supply unit 140b, a sensor unit 140c, and an autonomous driving unit 140d may be included.
  • the antenna unit 108 is a part of the communication unit H0.
  • Blocks 110/130/140a-140d correspond to blocks 110/130/140 in FIG. 19, respectively.
  • the communication unit 110 can transmit and receive signals (eg, data, control signals, etc.) with external devices such as other vehicles, base stations (e.g. base stations, roadside units, etc.), and servers.
  • the control unit 120 may control elements of the vehicle or the autonomous vehicle 100 to perform various operations.
  • the control unit 120 may include an ECU (Electronic Control Unit).
  • the driving unit 140a is a vehicle or autonomously driving vehicle 100. The vehicle 100 can be driven on the ground.
  • the driving unit 140a may include an engine, a motor, a powertrain, a wheel, a brake, a steering device, and the like.
  • the power supply unit 140b is provided to the vehicle or autonomous vehicle 100. It supplies power, and may include wired/wireless heavy electrical circuits, batteries, etc.
  • the sensor unit 140c can obtain vehicle status, surrounding environment information, user information, etc.
  • the sensor unit 140c is
  • IMU intial measurement unit
  • vehicle forward/reverse sensor is a technology that maintains a running lane, a technology that automatically adjusts the speed, such as amapped cruise control, a technology that automatically runs along a specified route, and a technology that automatically sets a route when a destination is set. Can be implemented.
  • the communication unit 110 can receive map data and traffic information data from an external server.
  • the autonomous driving unit 140 (1) can create autonomous driving routes and driving plans based on the acquired data.
  • the control unit (120) allows the vehicle or self-driving vehicle (100) to move along the path of interest rate according to the driving plan.
  • Driving part (140 ⁇ can be controlled (eg speed/direction control). During autonomous driving
  • the communication unit (0) obtains the latest traffic information data non/periodically from the external server, and can obtain the surrounding traffic information data from the surrounding vehicles.
  • the sensor unit (14) during autonomous driving the vehicle status and surrounding light information information are obtained. Can be obtained.
  • the autonomous driving unit (140 (1) can update the autonomous driving route and driving plan based on the newly acquired data/information.
  • the communication department (0) sends information on the vehicle location, autonomous driving route, and driving plan to an external server. Based on the information collected from vehicles or autonomous vehicles, the external server can predict traffic information data in advance using city technology, etc., and provides the predicted traffic information data to vehicles or autonomous vehicles. can do.

Abstract

본 개시의 일 실시예는 제1 장치가 DCI(Downlink Control Information)를 통해서 LTE(Long-Term Evolution) SL(SideLink) 통신을 수행하는 방법을 제공한다. 상기 방법은, NR 기지국으로부터 PDCCH(Physical Downlink Control Channel)를 통해 DCI(Downlink Control Information)를 수신하는 단계 상기 DCI를 기반으로, 제1 타이밍 오프셋(timing offset)을 획득하는 단계 및 상기 제1 타이밍 오프셋을 기반으로, LTE SL 통신을 수행하는 단계를 포함하는 것을 특징으로 한다.

Description

2020/175942 1»(:1^1{2020/002849 명세서
발명의명칭: 1X1를기반으로
Figure imgf000003_0001
통신을수행하는방법및 장치
기술분야
[1] 본개시는무선통신시스템에관한것이다.
배경기술
四 사이드링크 (sidelink, SL)란단말 (User Equipment, UE)들간에직접적인링크를 설정하여 ,기지국 (Base Station, BS)을거치지않고,단말간에음성또는데이터 등을직접주고받는통신방식을말한다. SL는급속도로증가하는데이터 트래픽에따른기지국의부담을해결할수있는하나의방안으로서고려되고 있다.
[3] V2X(vehicle-to-everything)는유/무선통신을통해다른차량,보행자,인프라가 구축된사물등과정보를교환하는통신기술을의미한다. V2X는
V 2V (vehicle-to- vehicle) , V 2I(vehicle-to-infrastructure) , V2N(vehicle-to- network)및 V2P(vehicle-to-pedestrian)와같은 4가지유형으로구분될수있다. V2X통신은 PC5인터페이스및/또는 Uu인터페이스를통해제공될수있다.
[4] 한편,더욱많은통신기기들이더욱큰통신용량을요구하게됨에따라,
기존의무선액세스기술 (Radio Access Technology, RAT)에비해향상된모바일 광대역 (mobile broadband)통신에대한필요성이대두되고있다.이에따라, 신뢰도 (reliability)및지연 (latency)에민감한서비스또는단말을고려한통신 시스템이논의되고있는데,개선된이동광대역통신,매시브 MTC(Machine Type Communication), URLLC(Ultra-Reliable and Low Latency Communication)등을 고려한차세대무선접속기술을새로운 RAT(new radio access technology)또는 NR(new radio)이라칭할수있다. NR에서도 V2X(vehicle-to-e very thing)통신이 지원될수있다.
[5] 도 1은 NR이전의 RAT에기반한 V2X통신과 NR에기반한 V2X통신을
비교하여설명하기위한도면이다.도 1의실시예는본개시의다양한실시 예와 결합될수있다.
[6] V2X통신과관련하여 , NR이전의 RAT에서는 BSM(Basic Safety Message), CAM(Cooperative Awareness Message), DENM(Decentralized Environmental Notification Message)과같은 V2X메시지를기반으로,안전서비스 (safety service)를제공하는방안이주로논의되었다. V2X메시지는,위치정보,동적 정보,속성정보등을포함할수있다.예를들어,단말은주기적인
메시지 (periodic message)타입의 CAM,및/또는이벤트트리거메시지 (event triggered message)타입의 DENM을다른단말에게전송할수있다.
[7] 예를들어 , CAM은방향및속도와같은차량의동적상태정보,치수와같은 2020/175942 1»(:1^1{2020/002849
2 차량정적데이터,외부조명상태,경로내역등기본차량정보를포함할수 있다.예를들어,단말은 CAM을방송할수있으며, CAM의지연 (latency)은 100ms보다작을수있다.예를들어,차량의고장,사고등의돌발적인상황이 발행하는경우,단말은 DENM을생성하여다른단말에게전송할수있다.예를 들어,단말의전송범위내에있는모든차량은 CAM및/또는 DENM을수신할수 있다.이경우, DENM은 CAM보다높은우선순위를가질수있다.
[8] 이후, V2X통신과관련하여,다양한 V2X시나리오들이 NR에서제시되고
있다.예를들어 ,다양한 V2X시나리오들은,차량플라투닝 (vehicle platooning), 향상된드라이빙 (advanced driving),확장된센서들 (extended sensors),리모트 드라이빙 (remote driving)등을포함할수있다.
[9] 예를들어,차량플라투닝을기반으로,차량들은동적으로그룹을형성하여 함께이동할수있다.예를들어,차량플라투닝에기반한플라툰동작들 (platoon operations)을수행하기위해,상기그룹에속하는차량들은선두차량으로부터 주기적인데이터를수신할수있다.예를들어,상기그룹에속하는차량들은 주기적인데이터를이용하여 ,차량들사이의간격을줄이거나넓힐수있다.
[1이 예를들어,향상된드라이빙을기반으로,차량은반자동화또는완전자동화될 수있다.예를들어 ,각차량은근접차량및/또는근접로지컬엔티티 (logical entity)의로컬센서 (local sensor)에서획득된데이터를기반으로,궤도 (trajectories) 또는기동 (maneuvers)을조정할수있다.또한,예를들어 ,각차량은근접한 차량들과드라이빙인텐션 (driving intention)을상호공유할수있다.
[11] 예를들어,확장센서들을기반으로,로컬센서들을통해획득된로데이터 (raw data)또는처리된데이터 (processed data),또는라이브비디오데이터 (live video data)는차량,로지컬엔티티,보행자들의단말및/또는 V2X응용서버간에상호 교환될수있다.따라서,예를들어,차량은자체센서를이용하여감지할수있는 환경보다향상된환경을인식할수있다.
[12] 예를들어,리모트드라이빙을기반으로,운전을하지못하는사람또는위험한 환경에위치한리모트차량을위해,리모트드라이버또는 V2X애플리케이션은 상기리모트차량을동작또는제어할수있다.예를들어,대중교통과같이 경로를예측할수있는경우,클라우드컴퓨팅기반의드라이빙이상기리모트 차량의동작또는제어에이용될수있다.또한,예를들어,클라우드기반의 백엔드서비스늘랫픔 (cloud-based back-end service platform)에대한액세스가 리모트드라이빙을위해고려될수있다.
[13] 한편,차량플라투닝 ,향상된드라이빙 ,확장된센서들,리모트드라이빙등
다양한 V2X시나리오들에대한서비스요구사항 (service requirements)들을 구체화하는방안이 NR에기반한 V2X통신에서논의되고있다.
발명의상세한설명
기술적과제 2020/175942 1»(:1^1{2020/002849
3
[14] 본개시의기술적과제는 V2X통신에기반한장치들 (또는단말들)간의
사이드링크 (sidelink, SL)통신방법및이를수행하는장치 (또는단말)를 제공함에있다.
[15] 본개시의다른기술적과제는무선통신시스템에서 V2X통신에기반한
장치들간 LTE(Long-Term Evolution) SL통신을수행하는방법및장치를 제공함에있다.
[16] 본개시의또다른기술적과제는, NR기지국으로부터수신한 DCI(Downlink Control Information)를기반으로 LTE SL통신을수행하는방법및장치를 제공함에있다.
과제해결수단
[17] 본개시의일실시예에따르면,제 1장치가 DCI(Downlink Control Information)를 통해서 LTE(Long-Term Evolution) SL(SideLink)통신을수행하는방법이 제공된다.상기방법은, NR기지국으로부터 PDCCH(Physical Downlink Control Channel)를통해 DCI(Downlink Control Information)#수신하는단겨] ,상기 DCI를 기반으로,제 1타이밍오프셋 (timing offset)을획득하는단계및상기제 1타이밍 오프셋을기반으로, LTE SL통신을수행하는단계를포함하되 ,상기제 1타이밍 오프셋의최솟값은,상기제 1장치의 NR(New Radio)통신에관한 NR모듈과 LTE통신에관한 LTE모듈사이의최소지연시간 (minimum latency)을기반으로 결정되는것을특징으로한다.
[18] 본개시의다른일실시예에따르면, DCI(Downlink Control Information)를
통해서 SL(SideLink)통신을수행하는제 1장치가제공된다.상기제 1장치는, 명령어들을저장하는적어도하나의메모리 (at least one memory),적어도하나의 송수신기 (at least one transceiver)및상기적어도하나의메모리와상기적어도 하나의송수신기를연결하는적어도하나의프로세서 (at least one processor)를 포함하되 ,상기적어도하나의프로세서는, NR기지국으로부터 PDCCH(Physical Downlink Control Channel)를통해 DCI(Downlink Control Information)를
수신하도록상기적어도하나의송수신기를제어하고,상기 DCI를기반으로, 제 1타이밍오프셋 (timing offset)을획득하고,상기제 1타이밍오프셋을 기반으로, LTE SL통신을수행하되,상기제 1타이밍오프셋의최솟값은,상기 제 1장치의 NR(New Radio)통신에관한 NR모듈과 LTE통신에관한 LTE모듈 사이의최소지연시간 (minimum latency)을기반으로결정되는것을특징으로 한다.
[19] 본개시의또다른일실시예에따르면,제 1단말을제어하는장치가제공된다. 상기장치는,적어도하나의프로세서 (at least one processor)및상기적어도 하나의프로세서에의해실행가능하게연결되고,명령어들을저장하는적어도 하나의메모리 (at least one computer memory)를포함하되 ,상기적어도하나의 프로세서가상기명령어들을실행함으로써 ,상기제 1단말은: NR 2020/175942 1»(:1^1{2020/002849
4 기지국으로부터 PDCCH(Physical Downlink Control Channel)를통해
DCI(Downlink Control Information)를수신하고,상기 DCI를기반으로,제 1타이밍 오프셋을획득하고,상기제 1타이밍오프셋을기반으로, LTE SL통신을 수행하되,상기제 1타이밍오프셋의최솟값은,상기제 1장치의 NR(New Radio) 통신에관한 NR모듈과 LTE통신에관한 LTE모듈사이의최소지연
시간 (minimum latency)을기반으로결정되는것을특징으로한다.
[20] 본개시의또다른일실시예에따르면,명령어들 (instructions)을저장하는
비 -일시적 (non-transitory)컴퓨터판독가능저장매체 (storage medium)가 제공된다.상기비-일시적컴퓨터판독가능저장매체의적어도하나의 프로세서에의해상기명령어들이실행되는것을기반으로:제 1장치에의해, NR 기지국으로부터 PDCCH(Physical Downlink Control Channel)를통해
DCI(Downlink Control Information)가수신되고,상기제 1장치에의해 ,상기
DCI를기반으로,제 1타이밍오프셋이획득되고,상기제 1장치에의해,상기제 1 타이밍오프셋을기반으로 LTE SL통신이수행되며,상기제 1타이밍오프셋의 최솟값은,상기제 1장치의 NR(New Radio)통신에관한 NR모듈과 LTE통신에 관한 LTE모듈사이의최소지연시간 (minimum latency)을기반으로결정되는 것을특징으로한다.
[21] 본개시의또다른일실시예에따르면, NR기지국이 DCI를통해서제 1장치의 SL통신을제어하는방법이제공된다.상기방법은,제 1타이밍오프셋을 포함하는 DCI를결정하는단계및 PDCCH(Physical Downlink Control Channel)를 통해상기 DCI를제 1장치로전송하는단계를포함하되,상기제 1타이밍 오프셋은,상기제 1장치가 LTE SL통신을수행하는과정에서이용되고,상기 제 1타이밍오프셋의최솟값은,상기제 1장치의 NR(New Radio)통신에관한 NR 모듈과 LTE통신에관한 LTE모듈사이의최소지연시간 (minimum latency)을 기반으로결정되는것을특징으로한다.
[22] 본개시의또다른일실시예에따르면, DCI(Downlink Control Information)를 통해서제 1장치의 SL통신을제어하는 NR기지국이제공된다.상기 NR 기지국은,명령어들을저장하는적어도하나의메모리 (at least one memory), 적어도하나의송수신기 (at least one transceiver)및상기적어도하나의메모리와 상기적어도하나의송수신기를연결하는적어도하나의프로세서 (at least one processor)를포함하되,상기적어도하나의프로세서는,제 1타이밍오프셋을 포함하는 DCI를결정하고, PDCCH(Physical Downlink Control Channel)를통해 상기 DCI를제 1장치로전송하도록상기적어도하나의송수신기를제어하되, 상기제 1타이밍오프셋은,상기제 1장치가 LTE SL통신을수행하는과정에서 이용되고,상기제 1타이밍오프셋의최솟값은,상기제 1장치의 NR(New Radio) 통신에관한 NR모듈과 LTE통신에관한 LTE모듈사이의최소지연
시간 (minimum latency)을기반으로결정되는것을특징으로한다. 2020/175942 1»(:1^1{2020/002849
5 발명의효과
[23] 본개시에 따르면,단말 (또는
Figure imgf000007_0001
통신을효율적으로수행할수있다.
[24] 본개시에 따르면,장치들 (또는단말들)간의 ¥2 통신이효율적으로수행될수 있다.
[25] 본개시에 따르면, NR기지국으로부터수신한 0(:1를기반으로
Figure imgf000007_0002
통신을 효율적으로수행할수있다.
[26] 본개시에 따르면, NR기지국은 NR 1111인터페이스를통해단말에게
Figure imgf000007_0003
동작및/또는스케쥴링을지원할수있으며,지원과정에서단말구현 복잡도를감소시킬수있다.
도면의간단한설명
[27] 도 1은 NR이전의 RAT에 기반한 V2X통신과 NR에 기반한 V2X통신을
비교하여 설명하기위한도면이다.
[28] 도 2는본개시의 일실시예에 따른, NR시스템의구조를나타낸다.
[29] 도 3은본개시의 일실시예에 따른, NG-RAN과 5GC간의 기능적분할을
나타낸다.
[3이 도 4는본개시의 일실시예에 따른,무선프로토콜구조 (radio protocol
architecture)를나타낸다.
[31] 도 5는본개시의 일실시예에 따른, NR의무선프레임의구조를나타낸다.
[32] 도 6은본개시의 일실시예에 따른, NR프레임의슬롯구조를나타낸다.
[33] 도 7은본개시의 일실시예에 따른, BWP의 일예를나타낸다.
[34] 도 8은본개시의 일실시예에 따른, SL통신을위한무선프로토콜구조 (radio protocol architecture)를나타낸다.
[35] 도 9는본개시의 일실시예에 따른, V2X또는 SL통신을수행하는단말을
나타낸다.
[36] 도 W은본개시의 일실시예에 따라,단말이 전송모드에따라 V2X또는 SL 통신을수행하는절차를나타낸다.
[37] 도 11은본개시의 일실시예에 따른,세가지 캐스트타입을나타낸다.
[38] 도 12는본개시의 일실시예에 따른제 1장치가 NR기지국으로부터수신한 DCI를기반으로 LTE SL통신을수행하는과정을나타낸다.
[39] 도 13은본개시의 일실시예에 따른제 1장치 및제 2장치가 LTE SL통신을 수행하는과정을나타낸다.
[4이 도 14는본개시의 일실시예에 따른제 1장치의동작을도시하는흐름도이다.
[41] 도 15는본개시의 일실시예에 따른 NR기지국의동작을도시하는
흐름도이다.
[42] 도 16은본개시의 일실시예에 따른,통신시스템 (1)을나타낸다.
[43] 도 17은본개시의 일실시예에 따른,무선기기를나타낸다.
[44] 도 18은본개시의 일실시예에 따른,전송신호를위한신호처리회로를 2020/175942 1»(:1^1{2020/002849
6 나타낸다.
[45] 도 19는본개시의일실시예에따른,무선기기를나타낸다.
[46] 도 20은본개시의일실시예에따른,휴대기기를나타낸다.
[47] 도 21은본개시의일실시예에따른,차량또는자율주행차량을나타낸다. 발명의실시를위한형태
[48] 본명세서에서“A또는 B(A or B)”는“오직 A”,“오직 B”또는“쇼와 B모두”를 의미할수있다.달리표현하면,본명세서에서“A또는 B(A or B)”는“A및/또는 B(A and/or B)”으로해석될수있다.예를들어 ,본명세서에서“A, B또는 C(A, B or C)”는“오직 A”,“오직 B”,“오직 C”,또는“A, B및 C의임의의모든조합 (any combination of A, B and C)”를의미할수있다.
[49] 본명세서에서사용되는슬래쉬 (/)나쉼표 (comma)는“및/또는 (and/or)”을
의미할수있다.예를들어,“ A/B”는“A및/또는 B”를의미할수있다.이에따라 “A/B”는“오직 A”,“오직 B”,또는“쇼와 B모두”를의미할수있다.예를들어 ,“A, B, C”는“A, B또는 C”를의미할수있다.
[5이 본명세서에서“적어도하나의 A및 B(at least one of A and B)”는,‘‘오직 A”,
“오직 B”또는“A와 B모두”를의미할수있다.또한,본명세서에서“적어도 하나의 A또는 B(at least one of A or B)”나“적어도하나의 A및/또는 B(at least one of A and/or B)”라는표현은“적어도하나의 A및 B(at least one of A and B)”와 동일하게해석될수있다.
[51] 또한,본명세서에서“적어도하나의 A, B및 C(at least one of A, B and C)”는,
“오직 A”,“오직 B”,“오직 C”,또는“A, B및 C의임의의모든조합 (any
combination of A, B and C)”를의미할수있다.또한,“적어도하나의 A, B또는 C(at least one of A, B or C)”나“적어도하나의 A, B및/또는 C(at least one of A, B and/or C)”는“적어도하나의 A, B및 C(at least one of A, B and C)”를의미할수 있다.
[52] 또한,본명세서에서사용되는괄호는“예를들어 (for example)”를의미할수 있다.구체적으로,“제어정보 (PDCCH)”로표시된경우,“제어정보”의일례로 “PDCCH”가제안된것일수있다.달리표현하면본명세서의“제어정보”는 “PDCCH”로제한 (limit)되지않고,“ PDDCH”가“제어정보”의일례로제안된 것일수있다.또한,“제어정보 (즉, PDCCH)”로표시된경우에도,“제어정보”의 일례로“PDCCH”가제안된것일수있다.
[53] 본명세서에서하나의도면내에서개별적으로설명되는기술적특징은,
개별적으로구현될수도있고,동시에구현될수도있다.
[54] 이하의기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access)등과같은다양한무선통신시스템에사용될수있다. CDMA는 2020/175942 1»(:1^1{2020/002849
7
UTRA(universal terrestrial radio access)나 CDMA2000과같은무선기술로구현될 수있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와같은무선 기술로구현될수있다. OFDMA는 IEEE(institute of electrical and electronics engineers) 802.11 (Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(evolved UTRA)등과같은무선기술로구현될수있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에기반한시스템과의하위호환성 (backward
compatibility)를제공한다. UTRA는 UMTS(universal mobile telecommunications system)의일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA(evolved-UMT S terrestrial radio access)를사용하는
E-UMTS(evolved UMTS)의일부로써,하향링크에서 OFDMA를채용하고 상향링크에서 SC-FDMA를채용한다. LTE-A(advanced)는 3GPP LTE의진화이다.
[55] 5G NR은 LTE-A의후속기술로서 ,고성능,저지연,고가용성등의특성을
가지는새로운 Clean-slate형태의이동통신시스템이다. 5G NR은 lGHz미만의 저주파대역에서부터 miiz- LOGPiz의중간주파대역 , 24GHz이상의
고주파 (밀리미터파)대역등사용가능한모든스펙트럼자원을활용할수있다.
[56] 설명을명확하게하기위해 , 5G NR을위주로기술하지만본개시의일실시 예에따른기술적사상이이에제한되는것은아니다.
[57] 도 2는본개시의일실시예에따른, NR시스템의구조를나타낸다.도 2의
실시예는본개시의다양한실시예와결합될수있다.
[58] 도 2를참조하면, NG-RAN(Next Generation - Radio Access Network)은
단말 (10)에게사용자평면및제어평면프로토콜종단 (termination)을제공하는 기지국 (20)을포함할수있다.예를들어 ,기지국 (20)은 gNB(next generation-Node B)및/또는 eNB(evolved-NodeB)를포함할수있다.예를들어 ,단말 (10)은 고정되거나이동성을가질수있으며 , MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), MT(Mobile Terminal),무선기기 (Wireless Device)등다른 용어로불릴수있다.예를들어,기지국은단말 (10)과통신하는고정된
지점 (fixed station)일수있고, BTS(Base Transceiver System),액세스
포인트 (Access Point)등다른용어로불릴수있다.
[59] 도 2의실시예는 gNB만을포함하는경우를예시한다.기지국 (20)은상호간에 Xn인터페이스로연결될수있다.기지국 (20)은 5세대코어네트워크 (5G Core Network: 5GC)와 NG인터페이스를통해연결될수있다.보다구체적으로, 기지국 (20)은 NG-C인터페이스를통해 AMF(access and mobility management function)(30)와연결될수있고, NG-U인터페이스를통해 UPF(user plane function)(30)와연결될수있다.
[6이 도 3은본개시의일실시예에따른, NG-RAN과 5GC간의기능적분할을
나타낸다.도 3의실시예는본개시의다양한실시예와결합될수있다.
[61] 도 3을참조하면, gNB는인터셀간의무선자원관리 (Inter Cell RRM),무선 2020/175942 1»(:1/10公020/002849
8 베어러관리 (RB control),연결이동성제어 (Connection Mobility Control),무선 허용제어 (Radio Admission Con仕 ol),즉정설정및제공 (Measurement configuration & Provision),동적자원할당 (dynamic resource allocation)등의기능을제공할수 있다. AMF는 NAS(Non Access Stratum)보안,아이들상태이동성처리등의 기능을제공할수있다. UPF는이동성앵커링 (Mobility Anchoring), PDU(Protocol Data Unit)처리등의기능을제공할수있다. SMF(Session Management
Function)는단말 IP(Intemet Protocol)주소할당, PDU세션제어등의기능을 제공할수있다.
[62] 단말과네트워크사이의무선인터페이스프로토콜 (Radio Interface Protocol)의 계층들은통신시스템에서널리알려진개방형시스템간상호접속 (Open System Interconnection, OSI)기준모델의하위 3개계증을바탕으로 L1 (제 1계증), L2 (제 2계층), L3(제 3계층)로구분될수있다.이중에서제 1계층에속하는물리 계증은물리채널 (Physical Channel)을이용한정보전송서비스 (Information Transfer Service)를제공하며 ,제 3계증에위치하는 RRC(Radio Resource Control) 계층은단말과네트워크간에무선자원을제어하는역할을수행한다.이를위해 RRC계층은단말과기지국간 RRC메시지를교환한다.
[63] 도 4는본개시의일실시 예에따른,무선프로토콜구조 (radio protocol
architecture)를나타낸다.도 4의실시 예는본개시의다양한실시예와결합될수 있다.구체적으로,도 4의 (a)는사용자평면 (user plane)에대한무선프로토콜 구조를나타내고,도 4의 (b)는제어평면 (control plane)에대한무선프로토콜 구조를나타낸다.사용자평면은사용자데이터전송을위한프로토콜
스택 (protocol stack)이고,제어평면은제어신호전송을위한프로토콜스택이다.
[64] 도 4를참조하면,물리계층 (physical layer)은물리채널을이용하여상위
계층에게정보전송서비스를제공한다.물리계층은상위계층인 MAC(Medium Access Control)계증과는전송채널 (transport channel)을통해연결되어 있다. 전송채널을통해 MAC계층과물리계층사이로데이터가이동한다.전송 채널은무선인터페이스를통해데이터가어떻게어떤특징으로전송되는가에 따라분류된다.
[65] 서로다른물리계증사이,즉송신기와수신기의물리계증사이는물리채널을 통해데이터가이동한다.상기물리채널은 OFDM(Orthogonal Frequency Division Multiplexing)방식으로변조될수있고,시간과주파수를무선자원으로 활용한다.
[66] MAC계층은논리채널 (logical channel)을통해상위계층인 RLQradio link control)계층에게서비스를제공한다. MAC계층은복수의논리채널에서복수의 전송채널로의맵핑기능을제공한다.또한, MAC계층은복수의논리채널에서 단수의전송채널로의맵핑에의한논리채널다중화기능을제공한다. MAC부 계층은논리채널상의데이터전송서비스를제공한다.
[67] RLC계증은 RLC SDU(Serving Data Unit)의연결 (concatenation), 2020/175942 1»(:1^1{2020/002849
9 분할 (segmentation)및재결합 (reassembly)을수행한다.무선베어러 (Radio Bearer, RB)가요구하는다양한 QoS(Quality of Service)를보장하기위해, RLC계층은 투명모드 (Transparent Mode, TM),비확인모드 (Unacknowledged Mode, UM)및 확인모드 (Acknowledged Mode, AM)의세가지의동작모드를제공한다. AM RLC는 ARQ(automatic repeat request)를통해오류정정을제공한다.
[68] RRC(Radio Resource Control)계층은제어평면에서만정의된다. RRC계층은 무선베어러들의설정 (configuration),재설정 (re-configuration)및해제 (release)와 관련되어논리채널,전송채널및물리채널들의제어를담당한다 . RB는단말과 네트워크간의데이터전달을위해제 1계층 (physical계층또는 PHY계층)및제 2계증 (MAC계증, RLC계증, PDCP(Packet Data Convergence Protocol)계증)에 의해제공되는논리적경로를의미한다.
[69] 사용자평면에서의 PDCP계층의기능은사용자데이터의전달,헤더
압죽 (header compression)및암호화 (ciphering)를포함한다.제어평면에서의 PDCP계층의기능은제어평면데이터의전달및암호화/무결성보호 (integrity protection)를포함한다.
[70] SDAP(Service Data Adaptation Protocol)계증은사용자평면에서만정의된다.
SDAP계층은 QoS플로우 (flow)와데이터무선베어러간의매핑,하향링크및 상향링크패킷내 QoS플로우식별자 (ID)마킹등을수행한다.
1] RB가설정된다는것은특정서비스를제공하기위해무선프로토콜계층및 채널의특성을규정하고,각각의구체적인파라미터및동작방법을설정하는 과정을의미한다. RB는다시 SRB(Signaling Radio Bearer)와 DRB(Data Radio Bearer)두가지로나누어질수있다. SRB는제어평면에서 RRC메시지를 전송하는통로로사용되며, DRB는사용자평면에서사용자데이터를전송하는 통로로사용된다.
[72] 단말의 RRC계층과기지국의 RRC계층사이에 RRC연결 (RRC connection)이 확립되면,단말은 RRC_CONNECTED상태에있게되고,그렇지못할경우 RRCJDLE상태에있게된다. NR의경우, RRCJNACTIVE상태가추가로 정의되었으며, RRCJNACnVE상태의단말은코어네트워크와의연결을 유지하는반면기지국과의연결을해지 (release)할수있다.
3] 네트워크에서단말로데이터를전송하는하향링크전송채널로는시스템
정보를전송하는 BCH(Broadcast Channel)과그이외에사용자트래픽이나제어 메시지를전송하는하향링크 SCH(Shared Channel)이있다.하향링크멀티캐스트 또는브로드캐스트서비스의트래픽또는제어메시지의경우하향링크 SCH를 통해전송될수도있고,또는별도의하향링크 MCH(Multicast Channel)을통해 전송될수도있다.한편,단말에서네트워크로데이터를전송하는상향링크전송 채널로는초기제어메시지를전송하는 RACH(Random Access Channel)와그 이외에사용자트래픽이나제어메시지를전송하는상향링크 SCH(Shared Channel)가있다. 2020/175942 1»(:1/10公020/002849
10
[74] 전송채널상위에있으며,전송채널에맵핑되는논리채널 (Logical
Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel),
MTCH(Multicast Traffic Channel)등이있다.
[75] 물리채널 (Physical Channel)은시간영역에서여러개의 OFDM심벌과주파수 영역에서여러개의부반송파 (sub-carrier)로구성된다.하나의
서브프레임 (sub-frame)은시간영역에서복수의 OFDM심벌 (symbol)들로 구성된다.자원블록은자원할당단위로,복수의 OFDM심벌들과복수의 부반송파 (sub-carrier)들로구성된다.또한각서브프레임은 PDCCH(Physical Downlink Control Channel)즉, L1/L2제어채널을위해해당서브프레임의특정 OFDM심벌들 (예,첫번째 OFDM심볼)의특정부반송파들을이용할수있다. TTI(Transmission Time Interval)는서브프레임전송의단위시간이다.
6] 도 5는본개시의일실시 예에따른, NR의무선프레임의구조를나타낸다.도 5의실시예는본개시의다양한실시 예와결합될수있다.
7] 도 5를참조하면, NR에서상향링크및하향링크전송에서무선프레임을
사용할수있다.무선프레임은 Wms의길이를가지며, 2개의 5ms
하프-프레임 (Half-Frame, HF)으로정의될수있다.하프-프레임은 5개의 1ms 서브프레임 (Subframe, SF)을포함할수있다.서브프레임은하나이상의 슬롯으로분할될수있으며,서브프레임내슬롯개수는부반송파
간격 (Subcarrier Spacing, SCS)에따라결정될수있다.각슬롯은 CP(cyclic prefix)에따라 12개또는 14개의 OFDM(A)심볼을포함할수있다.
[78] 노멀 CP(normal CP)가사용되는경우,각슬롯은 14개의심볼을포함할수있다. 확장 CP가사용되는경우,각슬롯은 12개의심볼을포함할수있다.여기서 , 심볼은 OFDM심볼 (또는, CP-OFDM심볼), SC-FDMA(Single Carrier - FDMA) 심볼 (또는, DFT-s-OFDM(Discrete Fourier Transform-spread-OFDM)심볼)을 포함할수있다.
9] 다음표 1은노멀 CP가사용되는경우, SCS설정 (u)에따라슬롯별심볼의
개수 (Nslotsymb),프레임별슬롯의개수 (Nframe,uslot)와서브프레임별슬롯의 개수 (Nsubframe,uslot)를예시한다.
[8이 [표 1]
Figure imgf000012_0001
2020/175942 1»(:1^1{2020/002849
11
[81] 표 2는확장 05가사용되는경우, 808에따라슬롯별심볼의개수,프레임별 슬롯의개수와서브프레임별슬롯의개수를예시한다.
[82] [표 2]
Figure imgf000013_0001
[83] NR시스템에서는하나의단말에게병합되는복수의셀들간에 OFDM(A)
뉴머놀로지 (numerology) (예, SCS, CP길이등)가상이하게설정될수있다.이에 따라,동일한개수의심볼로구성된시간자원 (예 ,서브프레임 ,슬롯또는
TTI) (편의상, TU(Time Unit)로통칭 )의 (절대시간)구간이병합된셀들간에 상이하게설정될수있다.
[84] NR에서 ,다양한 5G서비스들을지원하기위한다수의뉴머놀로지 (numerology) 또는 SCS가지원될수있다.예를들어, SCS가 15kHz인경우,전통적인셀룰러 밴드들에서의넓은영역 (wide area)이지원될수있고, SCS가 30kHz/60mz인 경우,밀집한-도시 (dense-urban),더낮은지연 (lower latency)및더넓은캐리어 대역폭 (wider carrier bandwidth)이지원될수있다. SCS가 60kHz또는그보다높은 경우,위상잡음 (phase noise)을극복하기위해 24.25GPiz보다큰대역폭이지원될 수있다.
[85] NR주파수밴드 (frequency band)는두가지타입의주파수범위 (frequency
range)로정의될수있다.상기두가지타입의주파수범위는 FR1및 FR2일수 있다.주파수범위의수치는변경될수있으며,예를들어,상기두가지타입의 주파수범위는하기표 3과같을수있다. NR시스템에서사용되는주파수범위 중 FR1은“sub 6GHz range”를의미할수있고, FR2는“above 6GHz range”를 의미할수있고밀리미터웨이브 (millimeter wave, mmW)로불릴수있다.
[86] [표 3]
Figure imgf000013_0002
[87] 상술한바와같이, NR시스템의주파수범위의수치는변경될수있다.예를 들어, FR1은하기표 4와같이 410MHz내지기 25MHz의대역을포함할수있다. 즉, FR1은 6GHz (또는 5850, 5900, 5925 MHz등)이상의주파수대역을포함할수 있다.예를들어 , FR1내에서포함되는 6GHz (또는 5850, 5900, 5925 MHz등) 이상의주파수대역은비면허대역 (unlicensed band)을포함할수있다.비면허 대역은다양한용도로사용될수있고,예를들어차량을위한통신 (예를들어, 자율주행)을위해사용될수있다. 2020/175942 1»(:1^1{2020/002849
12
[88] [표 4]
Figure imgf000014_0001
[89] 도 6은본개시의 일실시 예에따른, NR프레임의슬롯구조를나타낸다.도
6의실시 예는본개시의다양한실시 예와결합될수있다.
[9이 도 6을참조하면,슬롯은시간영역에서복수의심볼들을포함한다.예를들어, 노멀 모의경우하나의슬롯이 14개의심볼을포함하나,확장 CP의경우하나의 슬롯이 12개의심볼을포함할수있다.또는노멀 CP의경우하나의슬롯이 7개의심볼을포함하나,확장 CP의경우하나의슬롯이 6개의심볼을포함할수 있다.
[91] 반송파는주파수영역에서복수의부반송파들을포함한다. RB(Resource
Block)는주파수영역에서복수 (예를들어, 12)의 연속한부반송파로정의될수 있다. BWP(Bandwidth Part)는주파수영역에서복수의 연속한 (P)RB((Physical) Resource Block)로정의될수있으며,하나의뉴머놀로지 (numerology) (예, SCS, CP길이등)에 대응될수있다.반송파는최대 N개 (예를들어, 5개)의 BWP를 포함할수있다.데이터통신은활성화된 BWP를통해서수행될수있다.각각의 요소는자원그리드에서자원요소 (Resource Element, RE)로지칭될수있고, 하나의복소심볼이 맵핑될수있다.
[92] 한편,단말과단말간무선인터페이스또는단말과네트워크간무선
인터페이스는 L1계층, L2계층및 L3계층으로구성될수있다.본개시의 다양한실시 예에서 , L1계층은물리 (physical)계층을의미할수있다.또한,예를 들어, L2계층은 MAC계층, RLC계층, PDCP계층및 SDAP계층중적어도 하나를의미할수있다.또한,예를들어, L3계층은 RRC계층을의미할수있다.
[93] 이하, BWP(Bandwidth Part)및캐리어에 대하여설명한다.
[94] B WP(B andwidth Part)는주어진뉴머놀로지에서 PRB(physical resource block)의 연속적인집합일수있다. PRB는주어진캐리어상에서주어진뉴머놀로지에 대한 CRB(common resource block)의 연속적인부분집합으로부터선택될수 있다.
[95] BA(Bandwidth Adaptation)을사용하면,단말의수신대역폭및전송대역폭은 셀의 대역폭만큼클필요가없으며,단말의수신대역폭및전송대역폭은 조정될수있다.예를들어 ,네트워크/기지국은대역폭조정을단말에게 알릴수 있다.예를들어,단말은대역폭조정을위한정보/설정을
네트워크/기지국으로부터수신할수있다.이경우,단말은상기수신된 정보/설정을기반으로대역폭조정을수행할수있다.예를들어,상기 대역폭 2020/175942 1»(:1^1{2020/002849
13 조정은대역폭의축소/확대,대역폭의위치변경또는대역폭의서브캐리어 스페이싱의변경을포함할수있다.
[96] 예를들어,대역폭은파워를세이브하기위해활동이적은기간동안축소될수 있다.예를들어,대역폭의위치는주파수도메인에서이동할수있다.예를들어, 대역폭의위치는스케줄링유연성 (scheduling flexibility)을증가시키기위해 주파수도메인에서이동할수있다.예를들어,대역폭의서브캐리어
스페이싱 (subcarrier spacing)은변경될수있다.예를들어 ,대역폭의서브캐리어 스페이싱은상이한서비스를허용하기위해변경될수있다.셀의총셀 대역폭의서브셋은 BWP(Bandwidth Part)라고칭할수있다. BA는
기지국/네트워크가단말에게 BWP를설정하고,기지국/네트워크가설정된 BWP 중에서현재활성상태인 BWP를단말에게알림으로써수행될수있다.
[97] 예를들어 , BWP는활성 (active) BWP,이니셜 (initial) BWP및/또는
디폴트 (default) BWP중적어도어느하나일수있다.예를들어 ,단말은
PCell(primary cell)상의활성 (active) DL BWP이외의 DL BWP에서다운링크 무선링크품질 (downlink radio link quality)을모니터링하지않을수있다.예를 들어 ,단말은활성 DL BWP의외부에서 PDCCH, PDSCH또는 CSI-RS (단, RRM 제외)를수신하지않을수있다.예를들어,단말은비활성 DL BWP에대한 CSI(Channel State Information)보고를트리거하지않을수있다.예를들어 , 단말은활성 UL BWP외부에서 PUCCH또는 PUSCH를전송하지않을수있다. 예를들어 ,하향링크의경우,이니셜 BWP는 (PBCH에의해설정된) RMSI CORESET에대한연속적인 RB세트로주어질수있다.예를들어,상향링크의 경우,이니셜 BWP는랜덤액세스절차를위해 SIB에의해주어질수있다.예를 들어 ,디폴트모 모는상위계층에의해설정될수있다.예를들어 ,디폴트
BWP의초기값은이니셜 DL BWP일수있다.에너지세이빙을위해,단말이 일정기간동안 DCI를검출하지못하면,단말은상기단말의활성 BWP를디폴트 BWP로스위칭할수있다.
[98] 한편, BWP는 SL에대하여정의될수있다.동일한 SL BWP는전송및수신에 사용될수있다.예를들어 ,전송단말은특정 BWP상에서 SL채널또는 SL 신호를전송할수있고,수신단말은상기특정 BWP상에서 SL채널또는 SL 신호를수신할수있다.면허캐리어 (licensed carrier)에서 , SL BWP는 Uu BWP와 별도로정의될수있으며, SL BWP는 Uu BWP와별도의설정시그널링 (separate configuration signalling)을가질수있다.예를들어 ,단말은 SL BWP를위한 설정을기지국/네트워크로부터수신할수있다. SL BWP는캐리어내에서 out-of-coverage NR V2X단말및 RRC_IDLE단말에대하여 (미리)설정될수 있다. RRC_CONNECTED모드의단말에대하여,적어도하나의 SL BWP가 캐리어내에서활성화될수있다.
[99] 도 7은본개시의일실시예에따른, BWP의일예를나타낸다.도 7의실시
예는본개시의다양한실시예와결합될수있다.도 7의실시예에서, BWP는세 2020/175942 1»(:1^1{2020/002849
14 개라고가정한다.
[100] 도 7을참조하면, CRB (common resource block)는캐리어밴드의한쪽
끝에서부터다른쪽끝까지번호가매겨진캐리어자원블록일수있다.그리고, PRB는각 BWP내에서번호가매겨진자원블록일수있다.포인트 A는자원 블록그리드 (resource block grid)에대한공통참조포인트 (common reference point)를지시할수있다.
[101] BWP는포인트 A,포인트 A로부터의오프셋 (NstartBWP)및
대역폭 (NsizeBWP)에의해설정될수있다.예를들어,포인트 A는모든 뉴머놀로지 (예를들어,해당캐리어에서네트워크에의해지원되는모든 뉴머놀로지)의서브캐리어 0이정렬되는캐리어의 PRB의외부참조포인트일 수있다.예를들어,오프셋은주어진뉴머놀로지에서가장낮은서브캐리어와 포인트 A사이의 PRB간격일수있다.예를들어,대역폭은주어진
뉴머놀로지에서 PRB의개수일수있다.
[102] 이하, V2X또는 SL통신에대하여설명한다.
[103] 도 8은본개시의일실시 예에따른, SL통신을위한무선프로토콜구조 (radio protocol architecture)를나타낸다.도 8의실시예는본개시의다양한실시 예와 결합될수있다.구체적으로,도 8의 (a)는사용자평면프로토콜스택을 나타내고,도 8의 (비는제어평면프로토콜스택을나타낸다.
[104] 이하, SL동기신호 (Sidelink Synchronization Signal, SLSS)및동기화정보어! 대해설명한다.
[105] SLSS는 SL특정적인시퀀스 (sequence)로, PSSS (Primary Sidelink Synchronization Signal)와 SSSS(Secondary Sidelink Synchronization Signal)를포함할수있다.상기 PSSS는 S-PSS(Sidelink Primary Synchronization Signal)라고칭할수있고,상기 SSSS는 S-SSS(Sidelink Secondary Synchronization Signal)라고칭할수있다.여]를 들어,길이- 127 M-시퀀스 (leng比!- 127 M-sequences)가 S-PSS에대하여사용될수 있고,길이- 127골드-시퀀스 (length- 127 Gold sequences)가 S-SSS에대하여사용될 수있다.예를들어,단말은 S-PSS를이용하여최초신호를검출 (signal detection)할수있고,동기를획득할수있다.예를들어 ,단말은 S-PSS및 S-SSS를 이용하여세부동기를획득할수있고,동기신호 ID를검출할수있다.
[106] PSBCH(Physical Sidelink Broadcast Channel)는 SL신호송수신전에단말이
가장먼저알아야하는기본이되는 (시스템)정보가전송되는 (방송)채널일수 있다.예를들어,상기기본이되는정보는 SLSS에관련된정보,듀플렉스 모드 (Duplex Mode, DM), TDD UL/DL(Time Division Duplex Uplink/Downlink) 구성,리소스풀관련정보, SLSS에관련된애플리케이션의종류,서브프레임 오프셋,방송정보등일수있다.예를들어, PSBCH성능의평가를위해, NR V2X에서, PSBCH의페이로드크기는 24비트의 CRC를포함하여 56비트일수 있다.
[107] S-PSS, S-SSS및 PSBCH는주기적전송을지원하는블록포맷 (예를들어, SL 2020/175942 1»(:1^1{2020/002849
15
SS(Synchronization Signal)/PSBCH블록,이하 S-SSB(Sidelink-Synchronization Signal Block))에포함될수있다.상기 S-SSB는캐리어내의 PSCCH(Physical Sidelink Control Channel)/PSSCH(Physical Sidelink Shared Channel)와동일한 뉴머놀로지 (즉, SCS및 CP길이)를가질수있고,전송대역폭은 (미리)설정된 SL BWP(Sidelink BWP)내에 있을수있다.예를들어 , S-SSB의대역폭은 11 RB(Resource Block)일수있다.예를들어, PSBCH는 11 RB에걸쳐있을수있다. 그리고, S-SSB의주파수위치는 (미리)설정될수있다.따라서,단말은 캐리어에서 S-SSB를발견하기위해주파수에서가설검출 (hypothesis detection)을수행할필요가없다.
[108] 도 9는본개시의일실시 예에따른, V2X또는 SL통신을수행하는단말을 나타낸다.도 9의실시 예는본개시의다양한실시예와결합될수있다.
[109] 도 9를참조하면, V2X또는 SL통신에서단말이라는용어는주로사용자의 단말을의미할수있다.하지만,기지국과같은네트워크장비가단말사이의 통신방식에따라신호를송수신하는경우,기지국또한일종의단말로간주될 수도있다.예를들어 ,단말 1은제 1장치 (100)일수있고,단말 2는제 2 장치 (200)일수있다.
[11이 예를들어 ,단말 1은일련의자원의집합을의미하는자원풀 (resource pool) 내에서특정한자원에해당하는자원단위 (resource unit)를선택할수있다. 그리고,단말 1은상기자원단위를사용하여 SL신호를전송할수있다.예를 들어,수신단말인단말 2는단말 1이신호를전송할수있는자원풀을설정받을 수있고,상기자원풀내에서단말 1의신호를검출할수있다.
[111] 여기서,단말 1이기지국의연결범위내에 있는경우,기지국이자원풀을단말 1에게알려줄수있다.반면,단말 1이기지국의연결범위밖에 있는경우,다른 단말이단말 1에게자원풀을알려주거나,또는단말 1은사전에설정된자원 물을사용할수있다.
[112] 일반적으로자원풀은복수의자원단위로구성될수있고,각단말은하나또는 복수의자원단위를선택하여자신의 SL신호전송에사용할수있다.
[113] 이하, SL에서자원할당 (resource allocation)에대하여설명한다.
[114] 도 W은본개시의일실시 예에따라,단말이전송모드에따라 V2X또는 SL 통신을수행하는절차를나타낸다.도 W의실시예는본개시의다양한실시 예와결합될수있다.본개시의다양한실시 예에서,전송모드는모드또는자원 할당모드라고칭할수있다.이하,설명의편의를위해, LTE에서전송모드는 LTE전송모드라고칭할수있고, NR에서전송모드는 NR자원할당모드라고 칭할수있다.
[115] 예를들어,도 10의 (a)는 LTE전송모드 1또는 LTE전송모드 3과관련된단말 동작을나타낸다.또는,예를들어,도 10의 (a)는 NR자원할당모드 1과관련된 단말동작을나타낸다.예를들어, LTE전송모드 1은일반적인 SL통신에 적용될수있고, LTE전송모드 3은 V2X통신에적용될수있다. 2020/175942 1»(:1^1{2020/002849
16
[116] 예를들어,도 10의 (b)는 LTE전송모드 2또는 LTE전송모드 4와관련된단말 동작을나타낸다.또는,예를들어,도 10의 (비는 NR자원할당모드 2와관련된 단말동작을나타낸다.
[117] 도 10의 (a)를참조하면, LTE전송모드 1, LTE전송모드 3또는 NR자원할당 모드 1에서,기지국은 SL전송을위해단말에의해사용될 SL자원을스케줄링할 수있다.예를들어 ,기지국은단말 1에게 PDCCH (보다구체적으로 DCI(Downlink Control Information))를통해자원스케줄링을수행할수있고,단말 1은상기 자원스케줄링에따라단말 2와 V2X또는 SL통신을수행할수있다.예를들어 , 단말 1은 PSCCH(Physical Sidelink Control Channel)를통해사이드링크제어 정보 (Sidelink Control Information)를단말 2에게전송한후,상기사이드링크제어 정보에기반한데이터를 PSSCH(Physical Sidelink Shared Channel)를통해단말 2에게전송할수있다.
[118] 도 10의 (비를참조하면, LTE전송모드 2, LTE전송모드 4또는 NR자원할당 모드 2에서 ,단말은기지국/네트워크에의해설정된 SL자원또는미리설정된 SL자원내에서 SL전송자원을결정할수있다.예를들어,상기설정된 SL자원 또는미리설정된 SL자원은자원풀일수있다.예를들어,단말은자율적으로 SL전송을위한자원을선택또는스케줄링할수있다.예를들어,단말은설정된 자원풀내에서자원을스스로선택하여, SL통신을수행할수있다.예를들어, 단말은센싱 (sensing)및자원 (재)선택절차를수행하여,선택윈도우내에서 스스로자원을선택할수있다.예를들어,상기센싱은서브채널단위로수행될 수있다.그리고,자원풀내에서자원을스스로선택한단말 1은 PSCCH를통해 사이드링크제어정보를단말 2에게전송한후,상기사이드링크제어정보에 기반한데이터를 PSSCH를통해단말 2에게전송할수있다.
[119] 도 11은본개시의일실시 예에따른,세가지캐스트타입을나타낸다.도 11의 실시 예는본개시의다양한실시예와결합될수있다.구체적으로,도 11의 (a)는 브로드캐스트타입의 SL통신을나타내고,도 11의 (b)는유니캐스트타입의 SL 통신을나타내며,도 11의 ( 는그룹캐스트타입의 SL통신을나타낸다.
유니캐스트타입의 SL통신의경우,단말은다른단말과일대일통신을수행할 수있다.그룹캐스트타입의 SL통신의경우,단말은자신이속하는그룹내의 하나이상의단말과 SL통신을수행할수있다.본개시의다양한실시예에서,
SL그룹캐스트통신은 SL멀티캐스트 (multicast)통신, SL일대다 (one-to-many) 통신등으로대체될수있다.
[120] 한편,사이드링크통신에서,단말은사이드링크전송을위한자원을
효율적으로선택할필요가있다.이하,본개시의다양한실시 예에따라,단말이 사이드링크전송을위한자원을효율적으로선택하는방법및이를지원하는 장치에대하여설명한다.본개시의다양한실시예에서 ,사이드링크통신은 V2X 통신을포함할수있다.
[121] 본개시의다양한실시 예에따라제안된적어도하나의제안방식은, 2020/175942 1»(:1^1{2020/002849
17 유니캐스트통신,그룹캐스트통신및/또는브로드캐스트통신중적어도어느 하나에,적용될수있다.
[122] 본개시의다양한실시 예에따라제안된적어도하나의제안방식은, PC5 인터페이스또는 SL인터페이스(예를들어, PSCCH, PSSCH, PSBCH, PSSS/SSSS 등)기반의사이드링크통신또는 V2X통신뿐만아니라, Uu인터페이스(예를 들어 , PUSCH, PDSCH, PDCCH, PUCCH등)기반의사이드링크통신또는 V2X 통신에도,적용될수있다.
[123] 본개시의다양한실시 예에서,단말의수신동작은사이드링크채널및/또는 사이드링크신호(예를들어, PSCCH, PSSCH, PSFCH, PSBCH, PSSS/SSSS등)의 디코딩동작및/또는수신동작을포함할수있다.단말의수신동작은 WAN DL 채널및/또는 WAN DL신호(예를들어, PDCCH, PDSCH, PSS/SSS등)의디코딩 동작및/또는수신동작을포함할수있다.단말의수신동작은센싱동작및/또는 CBR측정동작을포함할수있다.본개시의다양한실시 예에서,단말의센싱 동작은 PSSCH DM-RS시퀀스기반의 PSSCH-RSRP측정동작,단말이
성공적으로디코딩한 PSCCH에의해스케줄링되는 PSSCH DM-RS시퀀스 기반의 PSSCH-RSRP측정동작, S-RSSI(sidelink RSSI)측정동작,및/또는 V2X 자원풀관련서브채널기반의 S-RSSI측정동작을포함할수있다.본개시의 다양한실시예에서,단말의전송동작은사이드링크채널및/또는사이드링크 신호(예를들어, PSCCH, PSSCH, PSFCH, PSBCH, PSSS/SSSS등)의전송동작을 포함할수있다.단말의전송동작은 WAN UL채널및/또는 WAN UL신호(예를 들어, PUSCH, PUCCH, SRS등)의전송동작을포함할수있다.본개시의다양한 실시 예에서,동기신호는 SLSS및/또는 PSBCH를포함할수있다.
[124] 본개시의다양한실시 예에서,설정은시그널링,네트워크로부터의시그널링, 네트워크로부터의설정,및/또는네트워크로부터미리설정을포함할수있다. 본개시의다양한실시예에서,정의는시그널링,네트워크로부터의시그널링, 네트워크로부터의설정,및/또는네트워크로부터미리설정을포함할수있다. 본개시의다양한실시예에서,지정은시그널링,네트워크로부터의시그널링, 네트워크로부터의설정,및/또는네트워크로부터미리설정을포함할수있다.
[125] 본개시의다양한실시 예에서 , PPPP(ProSe Per Packet Priority)는 PPPR(ProSe Per Packet Reliability)로대체될수있으며 , PPPR은 PPPP로대체될수있다.예를 들어 , PPPP값이작을수록높은우선순위를의미할수있고, PPPP값이클수록 낮은우선순위를의미할수있다.예를들어, PPPR값이작을수록높은신뢰성을 의미할수있고, PPPR값이클수록낮은신뢰성을의미할수있다.예를들어, 높은우선순위와관련된서비스,패킷또는메시지와관련된 PPPP값은낮은 우선순위와관련된서비스,패킷또는메시지와관련된 PPPP값보다작을수 있다.예를들어,높은신뢰성과관련된서비스,패킷또는메시지와관련된 PPPR 값은낮은신뢰성과관련된서비스,패킷또는메시지와관련된 PPPR값보다 작을수있다. 2020/175942 1»(:1^1{2020/002849
18
[126] 본개시의다양한실시예에서 ,세션 (session)은유니캐스트세션 (예를들어 , 사이드링크를위한유니캐스트세션),그룹캐스트/멀티캐스트세션 (예를들어 , 사이드링크를위한그룹캐스트/멀티캐스트세션),및/또는브로드캐스트 세션 (예를들어 ,사이드링크를위한브로드캐스트세션)중적어도어느하나를 포함할수있다.
[127] 본개시의다양한실시예에서,캐리어는 BWP및/또는자원풀중적어도어느 하나로상호확장해석될수있다.예를들어 ,캐리어는 BWP및/또는자원풀중 적어도어느하나를포함할수있다.예를들어 ,캐리어는하나이상의 BWP를 포함할수있다.예를들어, BWP는하나이상의자원풀을포함할수있다.
[128] 이하도 12및도 13에서는,장치 (또는단말)가 (NR)기지국으로부터수신한 (NR) DCI(Downlink Control Information)를기반으로 LTE SL통신을수행하는 방법에관한다양한실시예들을검토하기로한다.
[129] 도 12는본개시의일실시예에따른제 1장치가 NR기지국으로부터수신한 DCI를기반으로 LTE SL통신을수행하는과정을나타낸다.
[13이 일실시예에따른 NR기지국 (예를들어, gNB)은, NR UU인터페이스를통해 단말에게 LTE MODE 3 SL동작/스케줄링을지원하기위해 DCI를전송할수 있다.이때,단말관점에서,원활한 LTE SL통신을위해,단말의 NR모뎀/모듈과 LTE모뎀/모듈간에빠른속도로정보를교환할필요가있다.
[131] NR모뎀/모듈과 LTE모뎀/모듈간정보교환은,예를들어 NR모뎀/모듈이 NR 기지국으로부터수신한 DCI정보를 LTE모뎀/모듈에게전달하면, LTE 모뎀/모듈이상기 DCI정보를기반으로 LTE MODE 3 SL스케쥴링/동작을 수행하는과정을포함할수있다.또한, NR모뎀/모듈과 LTE모뎀/모듈간정보 교환은, LTE모뎀/모듈이생성된 LTE SL트래픽관련정보를 NR모뎀/모듈에게 전달하고, NR모뎀/모듈이 NR기지국에게 LTE MODE 3 SL스케줄링/동작에 관한보조정보 (예를들어, LTE트래픽생성주기/크기, (관련)서비스우선순위 등)를전송하는과정을포함할수있다.이때,상기 NR모뎀/모듈과 LTE 모뎀/모듈간정보교환은단말의구현복잡도를증가시킬수있다.
[132] 상기단말의구현복잡도에관한문제를해결하고자,이하본개시에따른
실시예들에서는 (NR) DCI(1230)를통해, LTE SL통신에관한정보 (1234)(또는, LTE MODE 3 SL동작/스케줄링관련정보)를효율적으로전달하는방법에대해 설명하기로한다.
[133] 일실시예에따른 NR기지국 (1210)은, NR UU인터페이스기반의시그널링을 통해 (예를들어, RRC메시지또는 DCI를통한시그널링),단말에게 LTE SL 통신에관한정보 (1234)를전달할수있다.일예시에서, LTE SL통신에관한 정보 (1234)는 LTE MODE 3의 SL SPS동작/스케줄링에관한것일수있지만, 예시는이에한정되지않는다.예를들어 , LTE SL통신에관한정보 (1234)는 LTE MODE 3의 SL다이나믹 (DYNAMIC)동작/스케줄링에관한것일수도있다.
[134] 일실시예에서, DCI(1230)를통해시그널링되는, LTE SL통신에관한 2020/175942 1»(:1^1{2020/002849
19 정보 (1234)는, LTE SPS(Semi-Persistent Scheduling)의자원스케줄링에관한정보, SPS프로세스활성화 (activation)또는릴리즈 (release) (또는
비활성화 (deactivation))에관한정보및/또는다이나믹전송에관한스케쥴링 정보중적어도하나를포함할수있다.일예시에서 ,상기 DCI(1230)는, LTE SL 통신에관한정보 (1234)를포함하는크로스랫 (Cross-RAT) DCI일수있다.일 예시에서,상기 LTE SL통신에관한정보 (1234)는, LTE DCI포맷 5A의
컨텐츠 (또는, LTE-V의 DCI 5A필드)를포함할수있다.
[135] 일실시예에따른제 1장치 (1220)는, NR기지국 (1210)으로부터 DCI(1230)를 수신할수있다.일예시에서, DCI(1230)는 PDCCH를통해상기 NR
기지국 (1210)에서상기제 1장치 (1220)로전달될수있다. DCI(1230)는제 1 장치 (1220)내 NR모듈 (1222)로전달될수있다.
[136] 일실시예에따른제 1장치 (1220)는, DCI(1230)를기반으로,제 1타이밍
오프셋 (에대한정보) (1232)을획득할수있다.일예시에서제 1타이밍오프셋은, 상기제 1장치 (1220)의 NR(New Radio)통신에관한 NR모듈 (1222)과상기제 1 장치 (1220)의 LTE(Long Term Evolution)통신에관한 LTE모듈 (1224)사이의 최소지연시간 (minimum latency, 1223)보다크거나같을수있다.
[137] 일예시에서 ,상기최소지연시간 (1223)은,상기 NR모듈 (1222)이상기 NR
기지국 (1210)으로부터상기 DCI(1230)를수신한시점부터,상기 LTE
모듈 (1224)이상기 NR모듈 (1222)로부터상기 DCI( 1230)가전환 (convert)되어 생성된 LTE DCI를수신한시점사이의시간간격 (time interval)의최솟값을 나타낼수있다.즉,본예시에서상기최소지연시간 (1223)은, DCI(1230)가 LTE DCI로전환되는프로세싱시간 (processing time)과,인터모뎀 (NR모듈 (1222)및 LTE모듈 (1224))간전달시간 (delivering time)의합을나타낼수있다.
[138] 다른일예시에서 ,상기최소지연시간 (1223)은,상기 NR모듈 (1222)이상기 LTE DCI를상기 LTE모듈 (1224)로전송한시점부터,상기 LTE모듈 (1224)이 상기 LTE DCI를수신한시점사이의시간간격의최솟값을나타낼수도있다. 즉,본예시에서상기최소지연시간 (1223)은,인터모뎀 (NR모듈 (1222)및 LTE 모듈 (1224))간전달시간 (delivering time)을나타낼수있다.
[139] 본개시에서상기제 1타이밍오프셋은, X ms, DCI_TINF, RRC_TINF등으로 다양하게지칭될수있다.상기제 1타이밍오프셋은,상기 NR기지국 (1210)이 상기제 1장치 (1220)에게전달하는, NR프레임또는 NR
뉴머롤로지 (numerology)에기반한 NR기준오프셋이다.
[140] 일실시예에서 ,상기 LTE DCI의 DCI포맷은, LTE DCI포맷 5A(LTE DCI format 5 A)일수있다.
[141] 일실시예에따른제 1장치 (1220)의 LTE모듈 (1224)은,상기 DCI(1230)가 NR 모듈 (1222)에수신된시점부터상기제 1타이밍오프셋및제 2타이밍오프셋이 경과한시점을기반으로, LTE SL통신 (예를들어 , LTE SL동작, LTE SL자원 할당등)을수행할수있다.상기제 2타이밍오프셋은,상기 DCI(1230)의상기 2020/175942 1»(:1^1{2020/002849
20
LTE SL통신에관한정보 (1234)에포함될수있다.상기제 2타이밍오프셋은,본 개시에서 Z ms, SPS_TINF등으로다양하게지칭될수있다.상기제 2타이밍 오프셋은,상기 NR기지국 (1210)이상기제 1장치 (1220)에게전달하는, LTE에 기반한 LTE기준오프셋이다.
[142] 일실시예에서,상기 LTE SL통신에관한정보 (1234)는, LTE SL
SPS(Semi-Persistent Scheduling) (프로세스)의활성화및/또는릴리즈에대한 정보,활성화및/또는릴리즈되는 LTE SL SPS (프로세스)에대한인덱스정보 또는 LTE SL SPS (프로세스)에관한자원스케쥴링정보 (예를들어 ,
PSCCH/PSSCH (또는초기전송/재전송)관련시간/주파수자원에대한정보, LTE SL SPS ACTIVATION관련타이밍오프셋 (OFFJNF또는 m)등)중적어도 하나를포함할수있다.
[143] 일실시예에따른제 1장치 (1220)는, NR모듈 (1224)이 DCI(1230)를수신한
시점부터상기제 1타이밍오프셋이경과한시점에 , LTE모듈 (1224)이 LTE DCI를수신한것으로가정할수있다.이에따라,제 1장치 (1220)는제 2타이밍 오프셋 (또는, Z ms)을 NR모듈 (1224)이 DCI(1230)를수신한시점부터상기제 1 타이밍오프셋이경과한시점에가산할수있다.상기제 2타이밍오프셋이 LTE SPS의활성화여부를결정하기위한시점에관한경우,제 1장치는 NR 모듈 (1224)이 DCI(1230)를수신한시점부터상기제 1타이밍오프셋및상기제 2 타이밍오프셋이경과한시점을기반으로,상기 LTE SPS의활성화여부를 결정하기위한시점을결정할수있다. SPS가활성화되는경우,제 1
장치 (1220)는 LTE SL SPS동작을수행할수있다. LTE모듈 (1224)이 LTE DCI를 수신한시점은, RRC_TINF에기반한시점, TDL등으로지칭될수도있다.
[144] 일실시예에서 , LTE SPS의활성화여부에대한결정은, LTE스펙에따른
규칙과동일또는유사한시점에수행될수있다.예를들어, LTE SPS의활성화 여부에대한결정은,“’ LTE모듈 (1224)이 LTE DCI를수신한것으로가정되는 시점’ - NTA/2*TS + (4 + OFF_INF)*103“에수행되는것으로결정될수있다.또는, LTE SPS의활성화여부에대한결정은,“’NR모듈 (1222)이 DCI(1230)를수신한 시점부터제 1타이밍오프셋이경과한시점’ - NTA/2*TS + (4 + OFF_INF)*103“에 수행되는것으로결정될수있다.또는, LTE SPS의활성화여부에대한결정은,“ ’RRC_TINF에기반한시점’ - NTA/2*TS + (4 + OFF_INF)*103“에수행되는것으로 결정될수있다.또는, LTE SPS의활성화여부에대한결정은,“’ X ms에기반한 시점’ - NTA/2*TS + (4 + OFF_INF)*103“에수행되는것으로결정될수있다.또는, LTE SPS의활성화여부에대한결정은,“ TDL' - NTA/2*TS + (4 + OFF_INF)*103 “에수행되는것으로결정될수있다.여기서 , NTA및 Ts는, (단말관점에서 ) UL(Uplink)/DL(Downlink)라디오프레임 (RADIO FRAME)간의타이밍
오프셋 (TIMING OFFSET)및베이직타임유닛 (BASIC TIME UNIT =
Wms/307200)을각각의미할수있다.
[145] 일실시예에서, LTE SL통신은아래의표 5의내용에기반할수있다. 2020/175942 1»(:1/10公020/002849
21
[146] [표 5]
Figure imgf000023_0001
[147] 표 5에따른일실시예에의하면, RRC에기반한활성화/비활성화는지원되지 않는반면, DCI에기반한활성화/비활성화는지원될수있다. NR UU (모드 3와 유사)에의한 LTE PC5스케쥴링의지원은, UE능력 (UE capability)에기반할수 있다. NR DCI는 SPS스케쥴링과관련된, LTE-V내 DCI 5A필드들을제공할수 있다.활성화/비활성화에관한 DCI의사이즈는, NR V2V를스케쥴링하는 NR UU를위해정의될 DCI사이즈 (들)중하나와동일/유사할수있다. NR V2V를 스케쥴링하는 NR UU를위해정의될 DCI포맷들중하나와 DCI포맷이 동일할지여부에관해서는,다양한실시예들이존재할수있다.
활성화/비활성화는, DCI를수신한후 Zms + Xms가경과한후의첫번째 LTE 서브프레임에적용될수있다 는현재 LTE V2X스펙의타이밍오프셋과 동일할수있다. 는 0보다크고, 의값은다양할수있으며, 는하나의값일 수도있고,복수의값일수도있다.
[148] 일실시예에서 , NR DCI에의한 LTE SL구성그랜트타입 -2(LTE SL configured grant type-2)자원들을활성화및/또는비활성화하기위해,다음의동작들이 수행될수있다.일예시에서,수신기 (또는수신단말)은 NR (SL)모듈및 LTE (SL)모듈을모두구비하고있을수있다.우선, NR모듈은 gNB에서전송된 NR DCI를수신할수있다.다음으로, NR모듈은 NR DCI를, LTE SL구성그랜트 타입 - 2자원들을스케쥴링하는 LTE DCI포맷 5A (또는, LTE DCI)로전환할수 있다.다음으로, NR모듈은전환된 LTE DCI포맷 5A를 LTE모듈로전달할수 있다. LTE모듈로 LTE DCI포맷 5A가전달된이후,비록 LTE DCI포맷 5A가 NR 모듈로부터전달된것이라해도, LTE모듈은 LTE DCI포맷 5A가 eNB로부터 전달된것이라고고려할수있다.다음으로, (미리)구성된타이밍오프셋이 경과한이후, LTE모듈은관련자원들의활성화/릴리즈를적용하여 LTE SL 동작을수행할수있다.
[149] 일실시예에서, NR모듈은 NR DCI를 LTE DCI포맷 5A로전환하고, NR DCI를 gNB로부터수신한시점부터 X ms가경과한시점에 LTE DCI포맷 5A를 LTE 2020/175942 1»(:1^1{2020/002849
22 모듈로전달할수있다. LTE모듈은 NR모듈로부터 LTE DCI포맷 5A를수신한 시점부터 Z ms가경과한시점에검출되는첫번째 (완전한) LTE
서브프레임에서 , (LTE SPS등의 )활성화/릴리즈를적용할수있다.
[15이 일실시예에서,상기 Z ms는 LTE모듈에적용되는타이밍오프셋으로간략히 표현되고,상기 X ms는 DCI포맷을전환하는시간및 NR모듈과 LTE모듈 사이의통신지연시간을고려한타이밍오프셋으로간략히표현될수있다.
[151] 일예시에서 ,모든 UE구현 (implementation)을만족하는최솟값 가존재할수 있다. gNB는상기최솟값 보다큰 X값을선택/구성할수있고,이에따라특정 UE능력을체크/컨펌하기위해요구되는다른시그널링/리포팅이불필요할수 있다. X값은복수의가능한값들중에서 gNB에의해선택/구성될수있다.
[152] 일실시예에서,단말에게기지국은사전에정의된 (물리계층및/또는상위
계층)시그널링을통해서 (후보) X값에대한정보 (예를들어, (후보) X값의 개수에대한정보)를전송할수있다.일예시에서,상기 (후보) X값의
개수 (X_NUM)에따라서, NR DCI상의관련필드크기 (예를들어, CEILING (LOG2(X_NUM))비트,여기서 CEILING (A)는 A보다크거나같은최소정수 값을도출하는함수)가 (암묵적으로)결정될수있다.다른일예시에서,단말의 능력은 (스펙상에서지원하는)복수개의 (후보) X값들중하나 (또는일부)를 지원할수도있으며,기지국은사전에정의된 (물리계층및/또는상위계층) 시그널링을통해서,단말로부터단말의능력정보를보고받을수있다.이때, 예를들어,단말로부터단말의능력정보를보고받은기지국은, (스펙상에 정의된고정된 X값들 (및/또는스펙상에정의된고정된 X값개수)중에) 단말이지원할수있는 X값 (및/또는 X값의개수)만을시그널링할수도있다.
[153] 도 13은본개시의일실시예에따른제 1장치및제 2장치가 LTE SL통신을 수행하는과정을나타낸다.
[154] NR기지국 (1210)이 DCI(1230)를통해제 1장치 (1220)의 LTE SL통신을위한 자원을구성 (1240)하는방법에관해서는도 12에서구체적으로검토한바 있으므로,도 13에서는중복되는설명을생략하기로한다.
[155] 도 13을참조하면,일실시예에따른 LTE기지국 (1310) (예를들어, eNB)은 LTE (전용) DCI(1330)를통해제 2장치 (1320)의 LTE SL통신 (1340)을제어할수있다. 보다구체적으로, LTE기지국 (1310)은 LTE (전용) DCI(1330)를제 2장치 (1320)의 LTE모듈 (1322)로전달할수있고, LTE모듈 (1322)은 LTE SL통신 (1340)을 수행할수있다.
[156] 일실시예에서,상기 LTE (전용) DCI(1330)는크로스랫 DCI에기반한것이
아니므로,크로스랫 DCI(DCI(1230))를기반으로도출된 LTE SL DCI와구별하기 위해, LTE전용 DCI(LTE dedicated DCI, 1330)로지칭될수도있다. DCI(1230)의 LTE SL통신에관한정보 (1234)를기반으로제 1장치 (1220)의 LTE모듈 (1224)에 의해결정된제 2타이밍오프셋 (1242)은, LTE전용 DCI(1330)를기반으로제 2 장치 (1320)의 LTE모듈 (1322)에의해결정된제 2타이밍오프셋 (1342)과동일 2020/175942 1»(:1^1{2020/002849
23 또는유사할수있다.
[157] 일실시예에서,제 1장치 (1220)의 LTE모듈 (1224)은, NR기지국 (1210)으로부터 DCI(1230)를기반으로전환된 LTE SL DCI를수신할수있을뿐만아니라, LTE 기지국 (1310)으로부터 LTE (전용) DCI(1330)를수신할수도있다.이때,
DCI(1230)를기반으로상기 LTE모듈 (1224)에 의해도출된제 2타이밍
오프셋 (1242)(또는, Z ms)은,상기 LTE (전용) DCI(1330)를기반으로상기 LTE 모듈 (1224)에의해도출된제 2타이밍오프셋 (1342)(또는, Z ms)과동일할수 있다.
[158] 일실시예에 따른제 1장치 (1220)의 LTE모듈 (1224)은,상기제 2타이밍
오프셋 (1242)이 적용된시점에서, LTE SL통신 (1244)을수행할수있다.
[159] 일예시에서 ,제 1장치 (1220)의 LTE모듈 (1224)은,상기제 2타이밍
오프셋 (1242)이 적용된시점에서, SPS의활성화여부를판단 (또는결정)할수 있다. LTE모듈 (1224)은,상기 LTE SPS가활성화되었다는결정을기반으로,
LTE SPS를적용할수있다.또는, LTE모듈 (1224)은,상기 LTE SPS가
비활성화 (deactivate)되었다는결정을기반으로,상기 LTE SPS이외의
스케쥴링을적용할수있다.
[16이 일실시예에 따른제 2장치 (1320)의 LTE모듈 (1322)은,상기제 2타이밍
오프셋 (1342)이 적용된시점에서, LTE SL통신 (1344)을수행할수있다.
[161] 일예시에서 ,제 2장치 (1320)의 LTE모듈 (1322)은,상기제 2타이밍
오프셋 (1342)이 적용된시점에서, LTE SPS의활성화여부를판단 (또는결정)할 수있다. LTE모듈 (1322)은,상기 LTE SPS가활성화되었다는결정을기반으로, LTE SPS를적용할수있다.또는, LTE모듈 (1322)은,상기 LTE SPS가
비활성화 (deactivate)되었다는결정을기반으로,상기 LTE SPS이외의
스케쥴링을적용할수있다.
[162] 일실시예에서,상기 제 1장치 (1220)의 LTE모듈 (1224)에 의한 LTE SL
통신 (1244)은,상기제 2장치 (1320)의 LTE모듈 (1322)에의한 LTE SL
통신 (1344)과,자원구성 (resource configuration),자원위치 (resource location),자원 할당길이 (resource allocation length)등의즉면에서동일또는유사할수있다.
[163] 도 14는본개시의 일실시예에 따른제 1장치의동작을도시하는흐름도이다.
[164] 도 14의흐름도에 개시된동작들은,본개시의다양한실시예들과결합하여 수행될수있다.일 예시에서,도 14의흐름도에 개시된동작들은,도 16내지도 21에도시된장치중적어도하나에기반하여수행될수있다.다른일 예시에서, 도 14의흐름도에 개시된동작들은,도 12내지도 13에 개시된실시예들의 개별 동작들과다양한방식으로결합되어수행될수있다.
[165] 일예시에서 ,도 14의제 1장치 및/또는제 2장치는후술되는도 17의제 1무선 기기 (W0)와대응될수있다.다른일예시에서,도 14의제 1장치 및/또는제 2 장치는후술되는도 17의제 2무선기기 (200)와대응될수있다.또다른일 예시에서 ,도 14의제 1장치는도 12및도 13에 전술된제 1장치 (또는제 1 2020/175942 1»(:1^1{2020/002849
24 단말) (1220)과대응될수있다.또다른일예시에서,도 14의제 2장치는도 12및 도 13에전술된제 2장치 (또는제 2단말) (1320)과대응될수있다.또다른일 예시에서,도 14의기지국또는 NR기지국은,도 12및도 13에전술된 NR 기지국 (1210)과대응될수있다.또다른일예시에서,도 14의 LTE기지국은,도 12및도 13에전술된 LTE기지국 (1310)과대응될수있다.
[166] 단계 S14W에서,일실시예에따른제 1장치는, NR기지국으로부터
PDCCH(Physical Downlink Control Channel)를통해 DCI(Downlink Control
Information)를수신할수있다.
[167] 단계 S1420에서,일실시예에따른제 1장치는,상기 DCI를기반으로,제 1
타이밍오프셋 (timing offset)을획득할수있다.
[168] 단계 S1430에서,일실시예에따른제 1장치는,상기제 1타이밍오프셋을
기반으로, LTE SL통신을수행할수있다.
[169] 일실시예에서,상기제 1타이밍오프셋의최솟값은,상기제 1장치의 NR(New Radio)통신에관한 NR모듈과 LTE통신에관한 LTE모듈사이의최소지연 시간 (minimum latency)을기반으로결정될수있다.
[17이 일실시예에서 ,상기최소지연시간은,상기 NR모듈에상기 DCI가수신된
시점부터,상기제 1장치에의해상기 DCI가 LTE SL DCI로전환 (convert)되고, 상기 LTE SL DCI가상기제 1장치에의해전송되어상기 LTE모듈에
수신되기까지소요되는시간의최솟값을나타낼수있다.
[171] 일실시예에서 ,상기최소지연시간은,상기제 1장치의장치능력 (capability)에 기반할수있다.
[172] 일실시예에따른제 1장치는,상기최소지연시간에대한정보를상기 NR
기지국으로전송할수있다.
[173] 일실시예에서 ,상기제 1타이밍오프셋은,상기최소지연시간이상일수있다.
[174] 일실시예에서,상기 LTE SL통신은,상기 DCI에포함된 LTE SL통신에관한 정보를기반으로수행될수있다.
[175] 일실시예에서,상기 LTE SL통신에관한정보는,상기 LTE SL통신과관련된 제 2타이밍오프셋을포함할수있다.상기제 2타이밍오프셋은,상기 NR모듈이 상기 DCI를수신한시점부터상기제 1타이밍오프셋이경과한시점을
시작점 (starting point)으로하여가산되는 (added)것을특징으로할수있다.
[176] 일실시예에서 ,상기제 2타이밍오프셋은, LTE SPS(Semi-Persistent
Scheduling)의활성화 (activation)에관한타이밍오프셋일수있다.
[177] 일실시예에따른제 1장치는,상기 NR모듈에상기 DCI가수신된시점부터 상기제 1타이밍오프셋및상기제 2타이밍오프셋이경과한시점을기반으로, 상기 LTE SPS의활성화여부를결정하기위한시점을결정할수있다.또한,제 1 장치는상기 LTE SPS의활성화여부를결정하기위한상기시점에 ,상기 LTE SPS의상기활성화여부를결정할수있다.
[178] 일실시예에따른제 1장치는,상기 LTE SPS가활성화되었다는결정을 2020/175942 1»(:1^1{2020/002849
25 기반으로,상기 LTE SPS와관련된 LTE SL자원을결정할수있다.
[179] 일실시예에따른제 1장치는,상기 LTE SPS가비활성화 (deactivate)되었다는 결정을기반으로,상기 LTE SPS가적용되지않은 LTE SL자원을결정할수 있다.
[18이 본개시의일실시예에따라, DCI(Downlink Control Information)를통해서
SL(SideLink)통신을수행하는제 1장치가제공될수있다.상기제 1장치는, 명령어들을저장하는적어도하나의메모리 (at least one memory),적어도하나의 송수신기 (at least one transceiver)및상기적어도하나의메모리와상기적어도 하나의송수신기를연결하는적어도하나의프로세서 (at least one processor)를 포함하되 ,상기적어도하나의프로세서는, NR기지국으로부터 PDCCH(Physical Downlink Control Channel)를통해 DCI(Downlink Control Information)를
수신하도록상기적어도하나의송수신기를제어하고,상기 DCI를기반으로, 제 1타이밍오프셋 (timing offset)을획득하고,상기제 1타이밍오프셋을 기반으로, LTE SL통신을수행하되,상기제 1타이밍오프셋의최솟값은,상기 제 1장치의 NR(New Radio)통신에관한 NR모듈과 LTE통신에관한 LTE모듈 사이의최소지연시간 (minimum latency)을기반으로결정되는것을특징으로할 수있다.
[181] 본개시의일실시예에따르면,제 1단말을제어하는장치 (또는칩 (셋))가/이 제공될수있다.상기장치는,적어도하나의프로세서 (at least one processor)및 상기적어도하나의프로세서에의해실행가능하게연결되고,명령어들을 저장하는적어도하나의메모리 (at least one computer memory)를포함하되 ,상기 적어도하나의프로세서가상기명령어들을실행함으로써 ,상기제 1단말은: NR 기지국으로부터 PDCCH(Physical Downlink Control Channel)를통해
DCI(Downlink Control Information)를수신하고,상기 DCI를기반으로,제 1타이밍 오프셋을획득하고,상기제 1타이밍오프셋을기반으로, LTE SL통신을 수행하되,상기제 1타이밍오프셋의최솟값은,상기제 1장치의 NR(New Radio) 통신에관한 NR모듈과 LTE통신에관한 LTE모듈사이의최소지연
시간 (minimum latency)을기반으로결정되는것을특징으로할수있다.
[182] 일예시에서 ,상기실시예의상기제 1단말은본개시의전반에기재된제 1 장치를나타낼수있다.일예시에서,상기제 1단말을제어하는상기장치내 상기적어도하나의프로세서,상기적어도하나의메모리등은각각별도의 서브칩 (sub chip)으로구현될수도있고,또는적어도둘이상의구성요소가 하나의서브칩을통해구현될수도있다.
[183] 본개시의일실시예에따르면,명령어들 (instructions) (또는지시들)을저장하는 비 -일시적 (non-transitory)컴퓨터판독가능저장매체 (storage medium)가제공될 수있다.상기비-일시적컴퓨터판독가능저장매체의적어도하나의
프로세서에의해상기명령어들이실행되는것을기반으로:제 1장치에의해, NR 기지국으로부터 PDCCH(Physical Downlink Control Channel)를통해 2020/175942 1»(:1^1{2020/002849
26
DCI(Downlink Control Information)가수신되고,상기제 1장치에의해 ,상기 DCI를기반으로,제 1타이밍오프셋이 획득되고,상기 제 1장치에 의해,상기제 1 타이밍오프셋을기반으로 LTE SL통신이수행되며,상기 제 1타이밍오프셋의 최솟값은,상기 제 1장치의 NR(New Radio)통신에 관한 NR모듈과 LTE통신에 관한 LTE모듈사이의 최소지연시간 (minimum latency)을기반으로결정되는 것을특징으로할수있다.
[184] 도 15는본개시의 일실시예에 따른 NR기지국의동작을도시하는
흐름도이다.
[185] 도 15의흐름도에 개시된동작들은,본개시의다양한실시예들과결합하여
수행될수있다.일 예시에서,도 15의흐름도에 개시된동작들은,도 16내지도 21에도시된장치중적어도하나에기반하여수행될수있다.다른일 예시에서, 도 15의흐름도에 개시된동작들은,도 12내지도 13에 개시된실시예들의 개별 동작들과다양한방식으로결합되어수행될수있다.
[186] 일예시에서,도 15의 (NR)기지국또는 LTE기지국은전술된도 9의 BS와
대응될수있다.다른일예시에서,도 15의제 1장치는도 12및도 13에 전술된 제 1장치 (또는제 1단말) (1220)과대응될수있다.또다른일예시에서,도 15의 제 2장치는도 12및도 13에 전술된제 2장치 (또는제 2단말) (1320)과대응될수 있다.또다른일 예시에서 ,도 15의 기지국또는 NR기지국은,도 12및도 13에 전술된 NR기지국 (1210)과대응될수있다.또다른일 예시에서,도 15의 LTE 기지국은,도 12및도 13에 전술된 LTE기지국 (1310)과대응될수있다.
[187] 단계 S15W에서,일실시예에따른 NR기지국은,제 1타이밍오프셋을
포함하는 DCI를결정할수있다.
[188] 단계 S1520에서 ,일실시예에따른 NR기지국은, PDCCH(Physical Downlink Control Channel)를통해상기 DCI를제 1장치로전송할수있다.
[ 189] 일실시예에서 ,상기 제 1타이밍오프셋은,상기제 1장치가 LTE SL통신을
수행하는과정에서 이용될수있다.상기 제 1타이밍오프셋의최솟값은,상기 제 1장치의 NR(New Radio)통신에관한 NR모듈과 LTE통신에관한 LTE모듈 사이의 최소지연시간 (minimum latency)을기반으로결정될수있다.
[ 19이 일실시예에서 ,상기 최소지연시간은,상기 NR모듈에상기 DCI가수신된
시점부터,상기 제 1장치에 의해상기 DCI가 LTE SL DCI로전환 (convert)되고, 상기 LTE SL DCI가상기 제 1장치에 의해전송되어상기 LTE모듈에
수신되기까지소요되는시간의 최솟값을나타낼수있다.
[191] 일실시예에서 ,상기 최소지연시간은,상기제 1장치의장치 능력 (capability)에 기반할수있다.
[192] 일실시예에 따른제 1장치는,상기최소지연시간에 대한정보를상기 NR
기지국으로전송할수있다.
[193] 일실시예에서 ,상기 제 1타이밍오프셋은,상기최소지연시간이상일수있다.
[194] 일실시예에서,상기 LTE SL통신은,상기 DCI에포함된 LTE SL통신에관한 2020/175942 1»(:1^1{2020/002849
27 정보를기반으로수행될수있다.
[195] 일실시예에서,상기 LTE SL통신에관한정보는,상기 LTE SL통신과관련된 제 2타이밍오프셋을포함할수있다.상기제 2타이밍오프셋은,상기 NR모듈이 상기 DCI를수신한시점부터상기제 1타이밍오프셋이경과한시점을
시작점 (starting point)으로하여가산되는 (added)것을특징으로할수있다.
[196] 일실시예에서 ,상기제 2타이밍오프셋은, LTE SPS(Semi-Persistent
Scheduling)의활성화 (activation)에관한타이밍오프셋일수있다.
[197] 일실시예에따른제 1장치는,상기 NR모듈에상기 DCI가수신된시점부터 상기제 1타이밍오프셋및상기제 2타이밍오프셋이경과한시점을기반으로, 상기 LTE SPS의활성화여부를결정하기위한시점을결정할수있다.또한,제 1 장치는상기 LTE SPS의활성화여부를결정하기위한상기시점에 ,상기 LTE SPS의상기활성화여부를결정할수있다.
[198] 일실시예에따른제 1장치는,상기 LTE SPS가활성화되었다는결정을
기반으로,상기 LTE SPS와관련된 LTE SL자원을결정할수있다.
[199] 일실시예에따른제 1장치는,상기 LTE SPS가비활성화 (deactivate)되었다는 결정을기반으로,상기 LTE SPS가적용되지않은 LTE SL자원을결정할수 있다.
[200] 본개시의일실시예에따르면, DCI(Downlink Control Information)를통해서제 1 장치의 SL통신을제어하는 NR기지국이제공될수있다.상기 NR기지국은, 명령어들을저장하는적어도하나의메모리 (at least one memory),적어도하나의 송수신기 (at least one transceiver)및상기적어도하나의메모리와상기적어도 하나의송수신기를연결하는적어도하나의프로세서 (at least one processor)를 포함하되,상기적어도하나의프로세서는,제 1타이밍오프셋을포함하는 DCI를결정하고, PDCCH(Physical Downlink Control Channel)를통해상기 DCI를 제 1장치로전송하도록상기적어도하나의송수신기를제어하되 ,상기제 1 타이밍오프셋은,상기제 1장치가 LTE SL통신을수행하는과정에서이용되고, 상기제 1타이밍오프셋의최솟값은,상기제 1장치의 NR(New Radio)통신에 관한 NR모듈과 LTE통신에관한 LTE모듈사이의최소지연시간 (minimum latency)을기반으로결정되는것을특징으로할수있다.
[201] 본개시의다양한실시예는독립적으로구현될수있다.또는,본개시의다양한 실시예는상호조합또는병합되어구현될수있다.예를들어,본개시의다양한 실시예는설명의편의를위해 3GPP시스템을기반으로설명되었지만,본개시의 다양한실시예는 3GPP시스템외에다른시스템으로도확장가능할수있다. 예를들어,본개시의다양한실시예는단말간직접통신에만제한되는것은 아니고,상향링크또는하향링크에서도사용될수있으며,이때기지국이나중계 노드등이본개시의다양한실시예에따른제안한방법을사용할수있다.예를 들어,본개시의다양한실시예에따른방법이적용되는지여부에대한정보는, 기지국이단말에게또는전송단말이수신단말에게,사전에정의된시그널 (예를 2020/175942 1»(:1^1{2020/002849
28 들어,물리 계층시그널또는상위 계층시그널)을통해서 알려주도록정의될수 있다.예를들어,본개시의다양한실시예에 따른규칙에 대한정보는,기지국이 단말에게또는전송단말이수신단말에게,사전에정의된시그널 (예를들어, 물리 계층시그널또는상위 계층시그널)을통해서 알려주도록정의될수있다. 예를들어,본개시의다양한실시예중에서 일부실시예는자원할당모드 1에만 한정적으로적용될수있다.예를들어,본개시의다양한실시예중에서 일부 실시예는자원할당모드 2에만한정적으로적용될수있다.
[202] 이하본개시의다양한실시예가적용될수있는장치에 대하여 설명한다.
[203] 이로제한되는것은아니지만,본문서에 개시된다양한설명 ,기능,절차,제안, 방법 및/또는동작순서도들은기기들간에무선통신/연결 (예, 5G)을필요로하는 다양한분야에 적용될수있다.
[204] 이하,도면을참조하여보다구체적으로예시한다.이하의도면/설명에서
동일한도면부호는다르게기술하지 않는한,동일하거나대응되는하드웨어 블록,소프트웨어블록또는기능블록을예시할수있다.
[205] 도 16은본개시의 일실시예에 따른,통신시스템 (1)을나타낸다.
[206] 도 16을참조하면,본개시의다양한실시예가적용되는통신시스템 (1)은무선 기기 ,기지국및네트워크를포함한다.여기서 ,무선기기는무선접속기술 (예 , 5G NR(New RAT), LTE(Long Term Evolution))을이용하여통신을수행하는 기기를의미하며 ,통신/무선 /5G기기로지칭될수있다.이로제한되는것은 아니지만,무선기기는로봇 (100a),차량 (lOOb- 1, 100b-2), XR(eXtended Reality) 기기 (100c),휴대기기 (Hand-held device)(100d),가전 (100e), IoT(Intemet of Thing) 기기 (100f), AI기기/서버 (400)를포함할수있다.예를들어,차량은무선통신 기능이구비된차량,자율주행차량,차량간통신을수행할수있는차량등을 포함할수있다.여기서,차량은 UAV(Unmanned Aerial Vehicle) (예,드론)를 포함할수있다. XR기기는 AR(Augmented Reality)/VR(Virtual Reality )/MR(Mixed Reality)기기를포함하며 , HMD(Head-Mounted Device),차량에구비된
HUD(Head-Up Display),텔레비전,스마트폰,컴퓨터,웨어러블디바이스,가전 기기,디지털사이니지 (signage),차량,로봇등의 형태로구현될수있다.휴대 기기는스마트폰,스마트패드,웨어러블기기 (예,스마트워치,스마트글래스), 컴퓨터 (예,노트북등)등을포함할수있다.가전은 TV,냉장고,세탁기등을 포함할수있다. IoT기기는센서,스마트미터등을포함할수있다.예를들어, 기지국,네트워크는무선기기로도구현될수있으며,특정무선기기 (200a)는 다른무선기기에게기지국/네트워크노드로동작할수도있다.
[207] 무선기기 (100a~100f)는기지국 (200)을통해네트워크 (300)와연결될수있다. 무선기기 (100a~100f)에는 AI(Artificial Intelligence)기술이 적용될수있으며, 무선기기 (100a~100f)는네트워크 (300)를통해 AI서버 (400)와연결될수있다. 네트워크 (300)는 3G네트워크, 4G (예, LTE)네트워크또는 5G (예, NR)네트워크 등을이용하여구성될수있다.무선기기 (100a~100f)는 2020/175942 1»(:1^1{2020/002849
29 기지국 (200)/네트워크 (300)를통해서로통신할수도있지만,기지국/네트워크를 통하지않고직접통신 (e.g.사이드링크통신 (sidelink communication))할수도 있다.예를들어,차량들 (100b- 1, 100b-2)은직접통신 (e.g. V2V(Vehicle to
Vehicle)/V2X( Vehicle to everything) communication)을할수있다.또한, IoT 기기 (예,센서)는다른 IoT기기 (예,센서)또는다른무선기기 (W0a~100f)와직접 통신을할수있다.
[208] 무선기기 (100a~100f)/기지국 (200),기지국 (200)/기지국 (200)간에는무선
통신/연결 (150a, 150b, 150c)이이뤄질수있다.여기서,무선통신/연결은 상향/하향링크통신 (150a)과사이드링크통신 (150b) (또는, D2D통신),기지국간 통신 (150c)(e.g. relay, IAB (Integrated Access Backhaul)과같은다양한무선접속 기술 (예, 5G NR)을통해이뤄질수있다.무선통신/연결 (150a, 150b, 150c)을통해 무선기기와기지국/무선기기 ,기지국과기지국은서로무선신호를
송신/수신할수있다.예를들어,무선통신/연결 (150a, 150b, 150c)은다양한물리 채널을통해신호를송신/수신할수있다.이를위해,본개시의다양한제안들에 기반하여,무선신호의송신/수신을위한다양한구성정보설정과정,다양한 신호처리과정 (예,채널인코딩/디코딩,변조/복조,자원맵핑/디맵핑등),자원 할당과정등중적어도일부가수행될수있다.
[209] 도 17은본개시의일실시예에따른,무선기기를나타낸다.
[210] 도 17을참조하면,제 1무선기기 (100)와제 2무선기기 (200)는다양한무선 접속기술 (예,: LTE, NR)을통해무선신호를송수신할수있다.여기서,{제 1 무선기기 (100),제 2무선기기 (200)}은도 20의{무선기기 (lOOx),기지국 (200)} 및/또는{무선기기 (lOOx),무선기기 (lOOx)}에대응할수있다.
[211] 제 1무선기기 (100)는하나이상의프로세서 (102)및하나이상의
메모리 (104)를포함하며,추가적으로하나이상의송수신기 (W6)및/또는하나 이상의안테나 (108)을더포함할수있다.프로세서 (102)는메모리 (104)및/또는 송수신기 (106)를제어하며 ,본문서에개시된설명,기능,절차,제안,방법 및/또는동작순서도들을구현하도록구성될수있다.예를들어 ,
프로세서 (102)는메모리 (W4)내의정보를처리하여제 1정보/신호를생성한뒤, 송수신기 (106)을통해제 1정보/신호를포함하는무선신호를전송할수있다. 또한,프로세서 (102)는송수신기 (106)를통해제 2정보/신호를포함하는무선 신호를수신한뒤,제 2정보/신호의신호처리로부터얻은정보를메모리 (104)에 저장할수있다.메모리 (104)는프로세서 (102)와연결될수있고,
프로세서 (102)의동작과관련한다양한정보를저장할수있다.예를들어 , 메모리 (104)는프로세서 (102)에의해제어되는프로세스들중일부또는전부를 수행하거나,본문서에개시된설명 ,기능,절차,제안,방법및/또는동작 순서도들을수행하기위한명령들을포함하는소프트웨어코드를저장할수 있다.여기서,프로세서 (102)와메모리 (104)는무선통신기술 (예, LTE, NR)을 구현하도록설계된통신모뎀/회로/칩의일부일수있다.송수신기 (106)는 2020/175942 1»(:1^1{2020/002849
30 프로세서 (102)와연결될수있고,하나이상의 안테나 (W8)를통해무선신호를 송신및/또는수신할수있다.송수신기 (106)는송신기 및/또는수신기를포함할 수있다.송수신기 (106)는 RF(Radio Frequency)유닛과혼용될수있다.본 개시에서무선기기는통신모뎀/회로/칩을의미할수도있다.
[212] 제 2무선기기 (200)는하나이상의프로세서 (202),하나이상의 메모리 (204)를 포함하며,추가적으로하나이상의송수신기 (206)및/또는하나이상의 안테나 (208)를더포함할수있다.프로세서 (202)는메모리 (204)및/또는 송수신기 (206)를제어하며 ,본문서에 개시된설명 ,기능,절차,제안,방법 및/또는동작순서도들을구현하도록구성될수있다.예를들어 ,
프로세서 (202)는메모리 (204)내의정보를처리하여제 3정보/신호를생성한뒤, 송수신기 (206)를통해제 3정보/신호를포함하는무선신호를전송할수있다. 또한,프로세서 (202)는송수신기 (206)를통해제 4정보/신호를포함하는무선 신호를수신한뒤,제 4정보/신호의신호처리로부터 얻은정보를메모리 (204)에 저장할수있다.메모리 (204)는프로세서 (202)와연결될수있고,
프로세서 (202)의동작과관련한다양한정보를저장할수있다.예를들어 , 메모리 (204)는프로세서 (202)에 의해제어되는프로세스들중일부또는전부를 수행하거나,본문서에 개시된설명 ,기능,절차,제안,방법 및/또는동작 순서도들을수행하기위한명령들을포함하는소프트웨어코드를저장할수 있다.여기서,프로세서 (202)와메모리 (204)는무선통신기술 (예, LTE, NR)을 구현하도록설계된통신모뎀/회로/칩의 일부일수있다.송수신기 (206)는 프로세서 (202)와연결될수있고,하나이상의 안테나 (208)를통해무선신호를 송신및/또는수신할수있다.송수신기 (206)는송신기 및/또는수신기를포함할 수있다송수신기 (206)는 RF유닛과혼용될수있다.본개시에서무선기기는 통신모뎀/회로/칩을의미할수도있다.
[213] 이하,무선기기 (100, 200)의하드웨어요소에 대해보다구체적으로설명한다. 이로제한되는것은아니지만,하나이상의프로토콜계층이하나이상의 프로세서 (W2, 202)에의해구현될수있다.예를들어,하나이상의
프로세서 (102, 202)는하나이상의 계층 (예, PHY, MAC, RLC, PDCP, RRC,
SDAP와같은기능적 계층)을구현할수있다.하나이상의프로세서 (102, 202)는 본문서에 개시된설명 ,기능,절차,제안,방법 및/또는동작순서도들에 따라 하나이상의 PDU(Protocol Data Unit)및/또는하나이상의 SDU(Service Data Unit)를생성할수있다.하나이상의프로세서 (102, 202)는본문서에 개시된 설명,기능,절차,제안,방법 및/또는동작순서도들에따라메시지,제어정보, 데이터또는정보를생성할수있다.하나이상의프로세서 (102, 202)는본문서에 개시된기능,절차,제안및/또는방법에따라 PDU, SDU,메시지,제어정보, 데이터또는정보를포함하는신호 (예,베이스밴드신호)를생성하여,하나 이상의송수신기 (W6, 206)에게제공할수있다.하나이상의프로세서 (102,
202)는하나이상의송수신기 (106, 206)로부터신호 (예,베이스밴드신호)를 2020/175942 1»(:1^1{2020/002849
31 수신할수있고,본문서에 개시된설명 ,기능,절차,제안,방법 및/또는동작 순서도들에 따라 PDU, SDU,메시지 ,제어정보,데이터또는정보를획득할수 있다.
[214] 하나이상의프로세서 (102, 202)는컨트롤러,마이크로컨트롤러,마이크로
프로세서또는마이크로컴퓨터로지칭될수있다.하나이상의프로세서 (102, 202)는하드웨어,펌웨어,소프트웨어,또는이들의조합에의해구현될수있다. 일 예로,하나이상의 ASIC(Application Specific Integrated Circuit),하나이상의 DSP(Digital Signal Processor),하나이상의 DSPD(Digital Signal Processing Device), 하나이상의 PLD(Programmable Logic Device)또는하나이상의 FPGA(Field Programmable Gate Arrays)가하나이상의프로세서 (102, 202)에포함될수있다. 본문서에 개시된설명 ,기능,절차,제안,방법 및/또는동작순서도들은펌웨어 또는소프트웨어를사용하여구현될수있고,펌웨어또는소프트웨어는모듈, 절차,기능등을포함하도록구현될수있다.본문서에 개시된설명,기능,절차, 제안,방법 및/또는동작순서도들은수행하도록설정된펌웨어또는
소프트웨어는하나이상의프로세서 (102, 202)에포함되거나,하나이상의 메모리 (104, 204)에 저장되어하나이상의프로세서 (102, 202)에의해구동될수 있다.본문서에 개시된설명 ,기능,절차,제안,방법 및/또는동작순서도들은 코드,명령어 및/또는명령어의 집합형태로펌웨어또는소프트웨어를사용하여 구현될수있다.
[215] 하나이상의 메모리 (104, 204)는하나이상의프로세서 (102, 202)와연결될수 있고,다양한형태의 데이터,신호,메시지,정보,프로그램,코드,지시 및/또는 명령을저장할수있다.하나이상의 메모리 (104, 204)는 ROM, RAM, EPROM, 플래시 메모리,하드드라이브,레지스터,캐쉬 메모리,컴퓨터판독저장매체 및/또는이들의조합으로구성될수있다.하나이상의 메모리 (104, 204)는하나 이상의프로세서 (102, 202)의 내부및/또는외부에 위치할수있다.또한,하나 이상의 메모리 (104, 204)는유선또는무선연결과같은다양한기술을통해하나 이상의프로세서 (102, 202)와연결될수있다.
[216] 하나이상의송수신기 (106, 206)는하나이상의다른장치에게본문서의
방법들및/또는동작순서도등에서 언급되는사용자데이터 ,제어정보,무선 신호/채널등을전송할수있다.하나이상의송수신기 (W6, 206)는하나이상의 다른장치로부터본문서에 개시된설명 ,기능,절차,제안,방법 및/또는동작 순서도등에서 언급되는사용자데이터 ,제어 정보,무선신호/채널등을수신할 수있다.예를들어,하나이상의송수신기 (106, 206)는하나이상의
프로세서 (102, 202)와연결될수있고,무선신호를송수신할수있다.예를들어, 하나이상의프로세서 (102, 202)는하나이상의송수신기 (106, 206)가하나 이상의다른장치에게사용자데이터 ,제어 정보또는무선신호를전송하도록 제어할수있다.또한,하나이상의프로세서 (102, 202)는하나이상의
송수신기 (W6, 206)가하나이상의다른장치로부터사용자데이터,제어정보 2020/175942 1»(:1^1{2020/002849
32 또는무선신호를수신하도록제어할수있다.또한,하나이상의송수신기 (106, 206)는하나이상의 안테나 (108, 208)와연결될수있고,하나이상의
송수신기 (106, 206)는하나이상의 안테나 (108, 208)를통해본문서에 개시된 설명 ,기능,절차,제안,방법 및/또는동작순서도등에서 언급되는사용자 데이터,제어 정보,무선신호/채널등을송수신하도록설정될수있다.본 문서에서,하나이상의 안테나는복수의물리 안테나이거나,복수의논리 안테나 (예,안테나포트)일수있다.하나이상의송수신기 (106, 206)는수신된 사용자데이터,제어정보,무선신호/채널등을하나이상의프로세서 (102,
202)를이용하여처리하기 위해,수신된무선신호/채널등을 RF밴드신호에서 베이스밴드신호로변환 (Convert)할수있다.하나이상의송수신기 (106, 206)는 하나이상의프로세서 ( W2, 202)를이용하여 처리된사용자데이터 ,제어정보, 무선신호/채널등을베이스밴드신호에서 RF밴드신호로변환할수있다.이를 위하여,하나이상의송수신기 (106, 206)는 (아날로그)오실례이터 및/또는 필터를포함할수있다.
[217] 도 18은본개시의 일실시예에 따른,전송신호를위한신호처리회로를
나타낸다.
[218] 도 18을참조하면,신호처리 회로 (1000)는스크램블러 (1010),변조기 (1020), 레이어 매퍼 (1030),프리코더 (1040),자원매퍼 (1050),신호생성기 (1060)를 포함할수있다.이로제한되는것은아니지만,도 18의동작/기능은도 17의 프로세서 (102, 202)및/또는송수신기 (106, 206)에서수행될수있다.도 18의 하드웨어요소는도 17의프로세서 (102, 202)및/또는송수신기 (106, 206)에서 구현될수있다.예를들어,블록 1010 1060은도 17의프로세서 (102, 202)에서 구현될수있다.또한,블록 1010 1050은도 17의프로세서 (102, 202)에서 구현되고,블록 1060은도 17의송수신기 (106, 206)에서구현될수있다.
[219] 코드워드는도 18의신호처리회로 (1000)를거쳐무선신호로변환될수있다. 여기서,코드워드는정보블록의부호화된비트시퀀스이다.정보블록은 전송블록 (예, UL-SCH전송블록, DL-SCH전송블록)을포함할수있다.무선 신호는다양한물리 채널 (예, PUSCH, PDSCH)을통해 전송될수있다.
[22이 구체적으로,코드워드는스크램블러 (1010)에의해스크램블된비트시퀀스로 변환될수있다.스크램블에사용되는스크램블시퀀스는초기화값에기반하여 생성되며,초기화값은무선기기의 ID정보등이포함될수있다.스크램블된 비트시퀀스는변조기 (1020)에의해 변조심볼시퀀스로변조될수있다.변조 방식은 pi/2-BPSK(pi/2-Binary Phase Shift Keying), m-PSK(m- Phase Shift Keying), m-QAM(m-Quadrature Amplitude Modulation)등을포함할수있다.복소변조 심볼시퀀스는레이어 매퍼 (1030)에 의해하나이상의 전송레이어로맵핑될수 있다.각전송레이어의 변조심볼들은프리코더 (1040)에 의해해당안테나 포트 (들)로맵핑될수있다 (프리코딩).프리코더 (1040)의출력 z는레이어 매퍼 (1030)의출력 y를 N*M의프리코딩 행렬 W와곱해 얻을수있다.여기서, 2020/175942 1»(:1^1{2020/002849
33
N은안테나포트의 개수, M은전송레이어의 개수이다.여기서 ,
프리코더 (1040)는복소변조심볼들에 대한트랜스픔 (transform)프리코딩 (예, DFT변환)을수행한이후에프리코딩을수행할수있다.또한,프리코더 (1040)는 트랜스폼프리코딩을수행하지 않고프리코딩을수행할수있다.
[221] 자원매퍼 (1050)는각안테나포트의 변조심볼들을시간-주파수자원에 맵핑할 수있다.시간-주파수자원은시간도메인에서복수의심볼 (예 , CP-OFDMA심볼, DFT-s-OFDMA심볼)을포함하고,주파수도메인에서복수의부반송파를포함할 수있다.신호생성기 (1060)는맵핑된변조심볼들로부터무선신호를생성하며, 생성된무선신호는각안테나를통해다른기기로전송될수있다.이를위해, 신호생성기 (1060)는 IFFT(Inverse Fast Fourier Transform)모듈및 CP(Cyclic Prefix)삽입기 , DAC(Digital-to-Analog Converter),주파수상향변환기 (frequency uplink converter)등을포함할수있다.
[222] 무선기기에서수신신호를위한신호처리과정은도 18의신호처리
과정 (1W0~1060)의 역으로구성될수있다.예를들어,무선기기 (예,도 17의 100, 200)는안테나포트/송수신기를통해외부로부터무선신호를수신할수있다. 수신된무선신호는신호복원기를통해베이스밴드신호로변환될수있다. 이를위해,신호복원기는주파수하향변환기 (frequency downlink converter), ADC(analog-to-digital converter), CP제거기 , FFT(Fast Fourier Transform)모듈을 포함할수있다.이후,베이스밴드신호는자원디-매퍼과정,
포스트코딩 (postcoding)과정,복조과정 및디-스크램블과정을거쳐코드워드로 복원될수있다.코드워드는복호 (decoding)를거쳐원래의 정보블록으로복원될 수있다.따라서,수신신호를위한신호처리회로 (미도시)는신호복원기,자원 디-매퍼,포스트코더,복조기,디-스크램블러 및복호기를포함할수있다.
[223] 도 19는본개시의 일실시예에 따른,무선기기를나타낸다.무선기기는
사용-예/서비스에따라다양한형태로구현될수있다 (도 20참조).
[224] 도 19를참조하면,무선기기 (100, 200)는도 17의무선기기 (100, 200)에
대응하며,다양한요소 (element),성분 (component),유닛 /부 (unit),및/또는 모듈 (module)로구성될수있다.예를들어,무선기기 (100, 200)는통신부 (110), 제어부 (120),메모리부 (130)및추가요소 (140)를포함할수있다.통신부는통신 회로 (112)및송수신기 (들) (114)을포함할수있다.예를들어,통신회로 (112)는 도 17의하나이상의프로세서 (102,202)및/또는하나이상의 메모리 (104, 204)를 포함할수있다.예를들어,송수신기 (들) (114)는도 17의하나이상의
송수신기 (106,206)및/또는하나이상의 안테나 (108, 208)을포함할수있다.
제어부 (120)는통신부 (110),메모리부 (130)및추가요소 (140)와전기적으로 연결되며무선기기의 제반동작을제어한다.예를들어,제어부 (120)는
메모리부 (130)에 저장된프로그램/코드/명령/정보에 기반하여무선기기의 전기적/기계적동작을제어할수있다.또한,제어부 (120)는메모리부 (130)에 저장된정보를통신부 (1 W)을통해외부 (예 ,다른통신기기 )로무선/유선 2020/175942 1»(:1^1{2020/002849
34 인터페이스를통해전송하거나,통신부 (110)를통해외부 (예,다른통신 기기)로부터무선/유선인터페이스를통해수신된정보를메모리부 (130)에 저장할수있다.
[225] 추가요소 (140)는무선기기의종류에 따라다양하게구성될수있다.예를 들어,추가요소 (140)는파워유닛 /배터리,입출력부 (I/O unit),구동부및 컴퓨팅부중적어도하나를포함할수있다.이로제한되는것은아니지만,무선 기기는로봇 (도 16, 100a),차량 (도 16, 100b- 1, 100b-2), XR기기 (도 16, 100c),휴대 기기 (도 16, 100d),가전 (도 16, 100e), IoT기기 (도 16, 100f),디지털방송용단말, 홀로그램장치,공공안전장치, MTC장치,의료장치,핀테크장치 (또는금융 장치 ),보안장치 ,기후/환경장치 , AI서버 /기기 (도 16, 400),기지국 (도 16, 200), 네트워크노드등의 형태로구현될수있다.무선기기는사용-예/서비스에따라 이동가능하거나고정된장소에서사용될수있다.
[226] 도 19에서무선기기 (100, 200)내의다양한요소,성분,유닛 /부,및/또는모듈은 전체가유선인터페이스를통해상호연결되거나,적어도일부가통신부 (no)를 통해무선으로연결될수있다.예를들어,무선기기 (100, 200)내에서
제어부 (120)와통신부 (110)는유선으로연결되며,제어부 (120)와제 1유닛 (예, 130, 140)은통신부 (110)를통해무선으로연결될수있다.또한,무선기기 (100, 200)내의각요소,성분,유닛 /부,및/또는모듈은하나이상의요소를더포함할 수있다.예를들어,제어부 (120)는하나이상의프로세서 집합으로구성될수 있다.예를들어,제어부 (120)는통신제어프로세서,어플리케이션
프로세서 (Application processor), ECU(Electronic Control Unit),그래픽처리 프로세서,메모리 제어프로세서등의 집합으로구성될수있다.다른예로, 메모리부 (130)는 RAM (Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory),늘래시 메모리 (flash memory),휘발성 메모리 (volatile memory),비 -휘발성 메모리 (non-volatile memory)및/또는이들의조합으로 구성될수있다.
[227] 이하,도 19의구현예에 대해다른도면을참조하여보다자세히 설명한다.
[228] 도 20은본개시의 일실시예에 따른,휴대기기를나타낸다.휴대기기는
스마트폰,스마트패드,웨어러블기기 (예,스마트워치,스마트글래스),휴대용 컴퓨터 (예,노트북등)을포함할수있다.휴대기기는 MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station)또는 WT (Wireless terminal)로지칭될수있다.
[229] 도 20을참조하면,휴대기기 (100)는안테나부 (108),통신부 (110),제어부 (120), 메모리부 (130),전원공급부 (140a),인터페이스부 (140b)및입출력부 (140c)를 포함할수있다.안테나부 (108)는통신부 (H0)의 일부로구성될수있다.블록 110~130/140a~140c는각각도 17의블록 110 130/140에 대응한다.
[23이 통신부 (110)는다른무선기기,기지국들과신호 (예,데이터,제어신호등)를 송수신할수있다.제어부 (120)는휴대기기 (100)의구성요소들을제어하여 2020/175942 1»(:1^1{2020/002849
35 다양한동작을수행할수있다.제어부 (120)는 AP(Application Processor)를포함할 수있다.메모리부 (130)는휴대기기 (100)의구동에필요한
데이터/파라미터/프로그램/코드/명령을저장할수있다.또한,메모리부 (130)는 입/출력되는데이터/정보등을저장할수있다.전원공급부 (140a)는휴대 기기 (100)에게전원을공급하며,유/무선충전회로,배터리등을포함할수있다. 인터페이스부 (140b)는휴대기기 (100)와다른외부기기의연결을지원할수 있다.인터페이스부 (140b)는외부기기와의연결을위한다양한포트 (예,오디오 입/출력포트,비디오입/출력포트)를포함할수있다.입출력부 (140c)는영상 정보/신호,오디오정보/신호,데이터 ,및/또는사용자로부터입력되는정보를 입력받거나출력할수있다.입출력부 (140c)는카메라,마이크로폰,사용자 입력부,디스플레이부 (140d),스피커및/또는햅틱모듈등을포함할수있다.
[231] 일예로,데이터통신의경우,입출력부 (140c)는사용자로부터입력된
정보/신호 (예,터치 ,문자,음성 ,이미지 ,비디오)를획득하며,획득된정보/신호는 메모리부 (130)에저장될수있다.통신부 (H0)는메모리에저장된정보/신호를 무선신호로변환하고,변환된무선신호를다른무선기기에게직접전송하거나 기지국에게전송할수있다.또한,통신부 (H0)는다른무선기기또는
기지국으로부터무선신호를수신한뒤,수신된무선신호를원래의정보/신호로 복원할수있다.복원된정보/신호는메모리부 (130)에저장된뒤,
입출력부 (140c)를통해다양한형태 (예,문자,음성,이미지,비디오,헵틱)로 줄력될수있다.
[232] 도 21은본개시의일실시예에따른,차량또는자율주행차량을나타낸다. 차량또는자율주행차량은이동형로봇,차량,기차,유/무인비행체 (Aerial Vehicle, AV),선박등으로구현될수있다.
[233] 도 21을참조하면,차량또는자율주행차량 (100)은안테나부 (108),
통신부 (110),제어부 (120),구동부 (140a),전원공급부 (140b),센서부 (140c)및자율 주행부 (140d)를포함할수있다.안테나부 (108)는통신부 (H0)의일부로구성될 수있다.블록 110/130/140a~140d는각각도 19의블록 110/130/140에대응한다.
[234] 통신부 (110)는다른차량,기지국 (e.g.기지국,노변기지국 (Road Side unit)등), 서버등의외부기기들과신호 (예,데이터,제어신호등)를송수신할수있다. 제어부 (120)는차량또는자율주행차량 (100)의요소들을제어하여다양한 동작을수행할수있다.제어부 (120)는 ECU(Electronic Control Unit)를포함할수 있다.구동부 (140a)는차량또는자율주행차량 (100)을지상에서주행하게할수 있다.구동부 (140a)는엔진,모터,파워트레인,바퀴,브레이크,조향장치등을 포함할수있다.전원공급부 (140b)는차량또는자율주행차량 (100)에게전원을 공급하며 ,유/무선중전회로,배터리등을포함할수있다.센서부 (140c)는차량 상태,주변환경정보,사용자정보등을얻을수있다.센서부 (140c)는
IMU(inertial measurement unit)센서 ,중돌센서 ,휠센서 (wheel sensor),속도센서 , 경사센서 ,중량감지센서 ,헤딩센서 (heading sensor),포지션모듈 (position 2020/175942 1»(:1^1{2020/002849
36
1110 11此),차량전진/후진센서,배터리 센서 ,연료센서 ,타이어 센서,스티어링 센서,온도센서,습도센서,초음파센서,조도센서,페달포지션센서등을 포함할수있다.자율주행부(140(1)는주행중인차선을유지하는기술,어맵티브 크루즈컨트롤과같이속도를자동으로조절하는기술,정해진경로를따라 자동으로주행하는기술,목적지가설정되면자동으로경로를설정하여 주행하는기술등을구현할수있다.
[235] 일예로,통신부(110)는외부서버로부터지도데이터 ,교통정보데이터등을 수신할수있다.자율주행부(140(1)는획득된데이터를기반으로자율주행 경로와드라이빙플랜을생성할수있다.제어부(120)는드라이빙플랜에 따라 차량또는자율주행차량(100)이자율주행경로를따라이동하도록
구동부(140幻를제어할수있다(예,속도/방향조절).자율주행도중에
통신부( 0)는외부서버로부터최신교통정보데이터를비/주기적으로 획득하며,주변차량으로부터주변교통정보데이터를획득할수있다.또한, 자율주행도중에 센서부(14(切는차량상태,주변환경정보를획득할수있다. 자율주행부(140(1)는새로획득된데이터/정보에 기반하여자율주행경로와 드라이빙플랜을갱신할수있다.통신부( 0)는차량위치,자율주행경로, 드라이빙플랜등에 관한정보를외부서버로전달할수있다.외부서버는차량 또는자율주행차량들로부터수집된정보에기반하여,시기술등을이용하여 교통정보데이터를미리 예측할수있고,예측된교통정보데이터를차량또는 자율주행차량들에게제공할수있다.
[236] 개시의권리범위는후술하는특허청구범위에 의하여나타내어 질수있으며, 특허청구범위의 의미 및범위그리고그균등개념으로부터도출되는모든변경 또는변형된형태가본개시의 범위에포함될수있는것으로해석되어야한다.
[237] 본명세서에 기재된청구항들은다양한방식으로조합될수있다.예를들어 ,본 명세서의 방법 청구항의 기술적특징이조합되어장치로구현될수있고,본 명세서의장치 청구항의 기술적특징이조합되어방법으로구현될수있다. 또한,본명세서의방법 청구항의기술적특징과장치 청구항의기술적특징이 조합되어장치로구현될수있고,본명세서의방법 청구항의기술적특징과 장치 청구항의기술적특징이조합되어 방법으로구현될수있다.

Claims

2020/175942 1»(:1/10公020/002849
37
청구범위
[청구항 1] 제 1장치가 DCI(Downlink Control Information)를통해서 LTE(Long-T erm
Evolution) SL(SideLink)통신을수행하는방법에 있어서 ,
NR기지국으로부터 PDCCH(Physical Downlink Control Channel)를통해 DCI(Downlink Control Information)를수신하는단겨] ;
상기 DCI를기반으로,제 1타이밍오프셋 (timing offset)을획득하는단계 ; 및
상기제 1타이밍오프셋을기반으로, LTE SL통신을수행하는단계를 포함하되,
상기제 1타이밍오프셋의최솟값은,상기제 1장치의 NR(New Radio) 통신에관한 NR모듈과 LTE통신에관한 LTE모듈사이의최소지연 시간 (minimum latency)을기반으로결정되는것을특징으로하는,방법 . [청구항 2] 제 1항에 있어서,
상기최소지연시간은,
상기 NR모듈에상기 DCI가수신된시점부터,상기제 1장치에의해상기 DCI가 LTE SL DCI로전환 (convert)되고,상기 LTE SL DCI가상기제 1 장치에의해전송되어상기 LTE모듈에수신되기까지소요되는시간의 최솟값을나타내는것을특징으로하는,방법 .
[청구항 3] 제 2항에 있어서,
상기최소지연시간은,상기제 1장치의장치능력 (capability)에기반하는 것을특징으로하는,방법 .
[청구항 4] 제 3항에 있어서,
상기최소지연시간에대한정보를상기 NR기지국으로전송하는단계를 더포함하는것을특징으로하는,방법 .
[청구항 5] 제 1항에 있어서,
상기제 1타이밍오프셋은,상기최소지연시간이상인것을특징으로 하는,방법 .
[청구항 6] 제 1항에 있어서,
상기 LTE SL통신은,상기 DCI에포함된 LTE SL통신에관한정보를 기반으로수행되는것을특징으로하는,방법 .
[청구항 7] 제 6항에 있어서,
상기 LTE SL통신에관한정보는,상기 LTE SL통신과관련된제 2타이밍 오프셋을포함하되,
상기제 2타이밍오프셋은,상기 NR모듈이상기 DCI를수신한시점부터 상기제 1타이밍오프셋이경과한시점을시작점 (starting point)으로하여 가산되는 (added)것을특징으로하는,방법 .
[청구항 8] 제 7항에 있어서, 2020/175942 1»(:1^1{2020/002849
38 상기 제 2타이밍오프셋은, LTE SPS(Semi-Persistent Scheduling)의 활성화 (activation)에 관한타이밍오프셋인것을특징으로하는,방법.
[청구항 9] 제 8항에 있어서,
상기 LTE SL통신을수행하는단계는,
상기 NR모듈에상기 DCI가수신된시점부터상기 제 1타이밍오프셋및 상기 제 2타이밍오프셋이경과한시점을기반으로,상기 LTE SPS의 활성화여부를결정하기 위한시점을결정하는단계 ;및
상기 LTE SPS의 활성화여부를결정하기위한상기시점에 ,상기 LTE SPS의상기 활성화여부를결정하는단계를더포함하는것을특징으로 하는,방법 .
[청구항 ] 제 9항에 있어서,
상기 LTE SL통신을수행하는단계는,
상기 LTE SPS가활성화되었다는결정을기반으로,상기 LTE SPS와 관련된 LTE SL자원을결정하는단계를더포함하는것을특징으로하는, 방법.
[청구항 11] 제 9항에 있어서,
상기 LTE SL통신을수행하는단계는,
상기 LTE SPS가비활성화 (deactivate)되었다는결정을기반으로,상기 LTE SPS가적용되지 않은 LTE SL자원을결정하는단계를포함하는 것을특징으로하는,방법 .
[청구항 12] DCI(Downlink Control Information)를통해서 SL(SideLink)통신을
수행하는제 1장치에 있어서 ,
명령어들을저장하는적어도하나의 메모리 (at least one memory);
적어도하나의송수신기 (at least one transceiver);및
상기 적어도하나의 메모리와상기 적어도하나의송수신기를연결하는 적어도하나의프로세서 (at least one processor)를포함하되 , 상기 적어도하나의프로세서는,
NR기지국으로부터 PDCCH(Physical Downlink Control Channel)를통해 DCI(Downlink Control Information)를수신하도록상기 적어도하나의 송수신기를제어하고,
상기 DCI를기반으로,제 1타이밍오프셋 (timing offset)을획득하고, 상기 제 1타이밍오프셋을기반으로, LTE SL통신을수행하되 , 상기 제 1타이밍오프셋의최솟값은,상기 제 1장치의 NR(New Radio) 통신에 관한 NR모듈과 LTE통신에관한 LTE모듈사이의 최소지연 시간 (minimum latency)을기반으로결정되는것을특징으로하는,제 1 장치.
[청구항 제 12항에 있어서,
상기 적어도하나의프로세서는, 2020/175942 1»(:1^1{2020/002849
39 상기 제 1장치의 NR통신에관한 NR모듈;및
상기 제 1장치의 LTE통신에관한 LTE모듈을포함하고, 상기 최소지연시간은,
상기 NR모듈에상기 DCI가수신된시점부터,상기제 1장치에의해상기 DCI가 LTE SL DCI로전환 (convert)되고,상기 LTE SL DCI가상기제 1 장치에 의해전송되어상기 LTE모듈에수신되기까지소요되는시간의 최솟값을나타내는것을특징으로하는,제 1장치 .
[청구항 14] 제 13항에 있어서,
상기 최소지연시간은,상기제 1장치의장치 능력 (capability)에기반하는 것을특징으로하는,제 1장치 .
[청구항 15] 제 1단말을제어하는장치에 있어서 ,상기장치는,
적어도하나의프로세서 (at least one processor);및
상기 적어도하나의프로세서에의해실행가능하게 연결되고, 명령어들 (instructions)을저장하는적어도하나의 메모리 (at least one computer memory)를포함하되 ,
상기 적어도하나의프로세서가상기 명령어들을실행함으로써 ,상기 제 1 단말은:
NR기지국으로부터 PDCCH(Physical Downlink Control Channel)를통해 DCI(Downlink Control Information)를수신하고,
상기 DCI를기반으로,제 1타이밍오프셋을획득하고,
상기 제 1타이밍오프셋을기반으로, LTE SL통신을수행하되 , 상기 제 1타이밍오프셋의최솟값은,상기 제 1장치의 NR(New Radio) 통신에 관한 NR모듈과 LTE통신에관한 LTE모듈사이의 최소지연 시간 (minimum latency)을기반으로결정되는것을특징으로하는,장치 . [청구항 16] 명령어들 (instructions)을저장하는비-일시적 (non-transitory)컴퓨터판독 가능저장매체 (storage medium)로서,적어도하나의프로세서에의해 상기 명령어들이실행되는것을기반으로:
제 1장치에의해 , NR기지국으로부터 PDCCH(Physical Downlink Control Channel)를통해 DCI(Downlink Control Information)가수신되고, 상기 제 1장치에 의해 ,상기 DCI를기반으로,제 1타이밍오프셋이 획득되고,
상기 제 1장치에 의해 ,상기제 1타이밍오프셋을기반으로 LTE SL 통신이수행되며,
상기 제 1타이밍오프셋의최솟값은,상기 제 1장치의 NR(New Radio) 통신에 관한 NR모듈과 LTE통신에관한 LTE모듈사이의 최소지연 시간 (minimum latency)을기반으로결정되는것을특징으로하는, 비 -일시적 컴퓨터판독가능저장매체 .
[청구항 17] NR기지국이 DCI를통해서 제 1장치의 SL통신을제어하는방법에 2020/175942 1»(:1^1{2020/002849
40 있어서,
제 1타이밍오프셋을포함하는 DCI를결정하는단계 ;및
PDCCH(Physical Downlink Control Channel)를통해상기 DCI를제 1 장치로전송하는단계를포함하되,
상기제 1타이밍오프셋은,상기제 1장치가 LTE SL통신을수행하는 과정에서이용되고,
상기제 1타이밍오프셋의최솟값은,상기제 1장치의 NR(New Radio) 통신에관한 NR모듈과 LTE통신에관한 LTE모듈사이의최소지연 시간 (minimum latency)을기반으로결정되는것을특징으로하는,방법 . [청구항 18] 제 H항에있어서 ,
상기최소지연시간은,
상기 NR모듈에상기 DCI가수신된시점부터,상기제 1장치에의해상기 DCI가 LTE SL DCI로전환 (convert)되고,상기 LTE SL DCI가상기제 1 장치에의해전송되어상기 LTE모듈에수신되기까지소요되는시간의 최솟값을나타내고,
상기최소지연시간은,상기제 1장치의장치능력 (capability)에기반하는 것을특징으로하는것을특징으로하는,방법 .
[청구항 19] DCI(Downlink Control Information)를통해서제 1장치의 SL통신을
제어하는 NR기지국에있어서 ,
명령어들을저장하는적어도하나의메모리 (at least one memory);
적어도하나의송수신기 (at least one transceiver);및
상기적어도하나의메모리와상기적어도하나의송수신기를연결하는 적어도하나의프로세서 (at least one processor)를포함하되 , 상기적어도하나의프로세서는,
제 1타이밍오프셋을포함하는 DCI를결정하고,
PDCCH(Physical Downlink Control Channel)를통해상기 DCI를제 1 장치로전송하도록상기적어도하나의송수신기를제어하되 , 상기제 1타이밍오프셋은,상기제 1장치가 LTE SL통신을수행하는 과정에서이용되고,
상기제 1타이밍오프셋의최솟값은,상기제 1장치의 NR(New Radio) 통신에관한 NR모듈과 LTE통신에관한 LTE모듈사이의최소지연 시간 (minimum latency)을기반으로결정되는것을특징으로하는, NR 기지국.
[청구항 2이 제 19항에있어서,
상기최소지연시간은,
상기 NR모듈에상기 DCI가수신된시점부터,상기제 1장치에의해상기 DCI가 LTE SL DCI로전환 (convert)되고,상기 LTE SL DCI가상기제 1 장치에의해전송되어상기 LTE모듈에수신되기까지소요되는시간의 2020/175942 1»(:1/10公020/002849
41 최솟값을나타내고,
상기최소지연시간은,상기제 1장치의장치능력 (capability)에기반하는 것을특징으로하는것을특징으로하는, NR기지국.
PCT/KR2020/002849 2019-02-27 2020-02-27 Dci를 기반으로 lte sl 통신을 수행하는 방법 및 장치 WO2020175942A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202080016413.2A CN113475147B (zh) 2019-02-27 2020-02-27 基于dci执行lte sl通信的方法和装置
KR1020217025706A KR102390350B1 (ko) 2019-02-27 2020-02-27 Dci를 기반으로 lte sl 통신을 수행하는 방법 및 장치
JP2021547375A JP7245347B2 (ja) 2019-02-27 2020-02-27 Dciをベースにlte sl通信を行う方法や装置
EP20762975.9A EP3908068B1 (en) 2019-02-27 2020-02-27 Method and device for performing lte sl communication on basis of dci
US16/863,912 US10849130B2 (en) 2019-02-27 2020-04-30 Method and apparatus for performing LTE SL communication based on DCI
US17/077,743 US11647526B2 (en) 2019-02-27 2020-10-22 Method and apparatus for performing LTE SL communication based on DCI

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201962811474P 2019-02-27 2019-02-27
US62/811,474 2019-02-27
US201962828467P 2019-04-02 2019-04-02
US62/828,467 2019-04-02
US201962888355P 2019-08-16 2019-08-16
US62/888,355 2019-08-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/863,912 Continuation US10849130B2 (en) 2019-02-27 2020-04-30 Method and apparatus for performing LTE SL communication based on DCI

Publications (1)

Publication Number Publication Date
WO2020175942A1 true WO2020175942A1 (ko) 2020-09-03

Family

ID=72240074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/002849 WO2020175942A1 (ko) 2019-02-27 2020-02-27 Dci를 기반으로 lte sl 통신을 수행하는 방법 및 장치

Country Status (6)

Country Link
US (2) US10849130B2 (ko)
EP (1) EP3908068B1 (ko)
JP (1) JP7245347B2 (ko)
KR (1) KR102390350B1 (ko)
CN (1) CN113475147B (ko)
WO (1) WO2020175942A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11419126B2 (en) * 2019-02-27 2022-08-16 Lg Electronics Inc. DCI for controlling LTE sidelink communication
WO2020201824A1 (en) * 2019-04-01 2020-10-08 Lenovo (Singapore) Pte. Ltd. Multiple radio access technology communications
US20220191896A1 (en) * 2019-04-02 2022-06-16 Apple Inc. Systems and methods of providing timing of sl transmission when scheduled by nr gnb
CN113891469A (zh) * 2019-05-23 2022-01-04 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
EP3984304A4 (en) * 2019-07-09 2022-06-22 Samsung Electronics Co., Ltd. DEVICE AND METHOD FOR ALLOCATION OF RESOURCES IN A WIRELESS COMMUNICATION SYSTEM
WO2021066436A1 (ko) * 2019-10-02 2021-04-08 엘지전자 주식회사 Nr v2x에서 타이밍 오프셋을 기반으로 lte 사이드링크 전송을 수행하는 방법 및 장치
US20230028956A1 (en) * 2021-07-21 2023-01-26 Qualcomm Incorporated Beam failure indication techniques based on user equipment autonomy capability

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180332595A1 (en) * 2014-09-15 2018-11-15 Texas Instruments Incorporated Assigning frequency sub-bands for lte transmissions to provide improved performance and reduced interference

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3544354B1 (en) * 2013-08-06 2022-10-05 Sun Patent Trust Wireless communication method for device to device communication and user equipment
TWI823214B (zh) * 2015-08-25 2023-11-21 美商內數位專利控股公司 無線傳輸/接收單元及由其執行的方法
JP6763229B2 (ja) * 2016-08-08 2020-09-30 ソニー株式会社 通信装置、通信方法、及びプログラム
KR20180017893A (ko) * 2016-08-11 2018-02-21 남정길 V2x를 위한 준영구적 스케줄링 방법 및 장치
US10405332B2 (en) * 2016-09-06 2019-09-03 Samsung Electronics Co., Ltd. Coexistence of different radio access technologies or services on a same carrier
CN110612692B (zh) * 2017-05-04 2022-07-26 夏普株式会社 用于支持5G NR UE和gNB的UL/DL授权中的多个分配的系统和方法
CN108810906A (zh) * 2017-05-04 2018-11-13 株式会社Ntt都科摩 资源配置和调度方法、基站以及用户设备
WO2018206992A1 (en) * 2017-05-10 2018-11-15 Blackberry Limited Resource configurations and scheduling of direct transmissions in multi-network environments
US10681743B2 (en) * 2017-06-09 2020-06-09 Samsung Electronics Co., Ltd. Method and apparatus for facilitating coexistence of 4th and 5th generation communication systems
US10887897B2 (en) * 2018-02-27 2021-01-05 Qualcomm Incorporated Mechanisms for sidelink resource scheduling
US11382083B2 (en) * 2018-07-23 2022-07-05 Samsung Electronics Co., Ltd. Method and apparatus for high reliability transmission in vehicle to everything (V2X) communication
WO2020029087A1 (en) * 2018-08-07 2020-02-13 Guangdong Oppo Mobile Telecommunications Corp.,Ltd. Method and apparatus for performing resource scheduling and delivering control information in vehicle-to-everything communication system
US20200053835A1 (en) * 2018-08-08 2020-02-13 Idac Holdings, Inc. Uu interface enhancement for nr v2x
EP3858024A1 (en) * 2018-09-27 2021-08-04 Convida Wireless, Llc Uu based sidelink control for nr v2x
US11172508B2 (en) * 2018-11-01 2021-11-09 Qualcomm Incorporated Methods to avoid transmission collisions for NR V2X and LTE V2X within the same device
CN111436152A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 一种数据传输方法及对应的终端

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180332595A1 (en) * 2014-09-15 2018-11-15 Texas Instruments Incorporated Assigning frequency sub-bands for lte transmissions to provide improved performance and reduced interference

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Coexistence mechanisms between NR-V2X and LTE-V2X", R1-1901815. 3GPP TSG RAN WG1 MEETING #96, 16 February 2019 (2019-02-16), Athens, Greece, XP051599509 *
CMCC .: "Discussion on Uu-based sidelink resource allocation/configuration", R1-1902331. 3GPP TSG RAN WG1 MEETING #96, 16 February 2019 (2019-02-16), Athens, Greece, XP051600025 *
HUAWEI ET AL.: "Discussion on NR Uu to control LTE sidelink", R1-1903067. 3GPP TSG RAN WG1 MEETING #96, 15 February 2019 (2019-02-15), Athens, Greece, XP051600763 *
ZTE ET AL.: "Discussion on Uu based resource allocation/configuration for NR V2X", R1-1901879. 3GPP TSG RAN WG1 MEETING #96, 15 February 2019 (2019-02-15), Athens, Greece, XP051599573 *

Also Published As

Publication number Publication date
KR102390350B1 (ko) 2022-04-25
CN113475147A (zh) 2021-10-01
KR20210109036A (ko) 2021-09-03
US20200275450A1 (en) 2020-08-27
JP2022520433A (ja) 2022-03-30
CN113475147B (zh) 2023-10-03
US11647526B2 (en) 2023-05-09
EP3908068A1 (en) 2021-11-10
EP3908068B1 (en) 2024-04-03
US10849130B2 (en) 2020-11-24
EP3908068A4 (en) 2022-03-23
US20210045126A1 (en) 2021-02-11
JP7245347B2 (ja) 2023-03-23

Similar Documents

Publication Publication Date Title
JP7432619B2 (ja) Nr v2xにおける複数のリソースをスケジューリングする方法及び装置
KR102390350B1 (ko) Dci를 기반으로 lte sl 통신을 수행하는 방법 및 장치
KR102464965B1 (ko) 무선 통신 시스템에서 기준 포인트를 결정하는 방법 및 장치
KR102561813B1 (ko) Nr v2x에서 tdd 슬롯 설정과 관련된 정보를 시그널링하는 방법 및 장치
WO2020175888A1 (ko) Nr v2x에서 사이드링크 전송 전력을 결정하는 방법 및 장치
KR102529773B1 (ko) Nr v2x에서 사이드링크 동기에 대한 기준을 선택하는 방법 및 장치
KR20230169483A (ko) Nr v2x에서 자원 풀을 설정하는 방법 및 장치
JP7229379B2 (ja) Lteサイドリンク通信を制御するdci
KR102165873B1 (ko) Nr v2x에서 bwp 기반의 통신을 수행하는 방법 및 장치
JP7370448B2 (ja) Nr v2xにおけるslスロットと関連した情報を送信する方法及び装置
KR20230091098A (ko) Nr v2x에서 sl lch 별 sl drx 설정을 구성하는 방법 및 장치
KR102401124B1 (ko) 사이드링크 통신을 수행하는 장치의 장치 능력 보고
KR20220154159A (ko) Nr v2x에서 nr 모듈과 lte 모듈이 공존하는 단말의 사이드링크 통신 방법
JP7394145B2 (ja) 無線通信システムにおけるサイドリンク通信のための制御情報を送受信する方法及び装置
WO2020175891A1 (ko) 무선 통신 시스템에서 사이드링크 동기화를 수행하는 방법 및 장치
KR102536260B1 (ko) Nr v2x에서 슬롯 패턴과 관련된 정보를 전송하는 방법 및 장치
KR102510753B1 (ko) Nr v2x에서 s-ssb를 전송하는 방법 및 장치
KR102603239B1 (ko) Nr v2x에서 제어 정보를 관리하는 방법 및 장치
KR20220164713A (ko) Nr v2x에서 사이드링크 자원을 결정하는 방법 및 장치
WO2020175943A1 (ko) 사이드링크 통신을 수행하는 장치의 장치 능력 보고
KR102660885B1 (ko) Sl csi 보고
KR20230006546A (ko) Nr v2x에서 다수의 시간 동기를 선택하는 방법 및 장치
KR20230019446A (ko) Nr v2x에서 자원 풀을 관리하는 방법 및 장치
KR20220090522A (ko) Nr v2x에서 s-ssb와 관련된 슬롯 정보를 획득하는 방법 및 장치
KR20230006589A (ko) Sl csi 보고

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762975

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217025706

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021547375

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020762975

Country of ref document: EP

Effective date: 20210806

NENP Non-entry into the national phase

Ref country code: DE