WO2021088618A1 - 一种被用于无线通信的方法和装置 - Google Patents

一种被用于无线通信的方法和装置 Download PDF

Info

Publication number
WO2021088618A1
WO2021088618A1 PCT/CN2020/121363 CN2020121363W WO2021088618A1 WO 2021088618 A1 WO2021088618 A1 WO 2021088618A1 CN 2020121363 W CN2020121363 W CN 2020121363W WO 2021088618 A1 WO2021088618 A1 WO 2021088618A1
Authority
WO
WIPO (PCT)
Prior art keywords
index
wireless signal
signaling
time
node
Prior art date
Application number
PCT/CN2020/121363
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2021088618A1 publication Critical patent/WO2021088618A1/zh
Priority to US17/737,039 priority Critical patent/US20220264501A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay

Definitions

  • This application relates to transmission methods and devices in wireless communication systems, and in particular to synchronization and dual-link related transmission methods and devices in wireless communication.
  • both LTE (Long Term Evolution) and 5G NR will involve signal timing and synchronization, especially when there are primary and secondary links, and the timing and synchronization of multiple nodes are established.
  • the normal communication of the base station or user equipment is of great significance to the reasonable scheduling of resources and the effective coordination of system interference. It can be said to be the cornerstone of high throughput and high spectrum utilization, whether it is eMBB (ehanced Mobile BroadBand, Enhanced mobile broadband), URLLC (Ultra Reliable Low Latency Communication) or eMTC (enhanced Machine Type Communication) are all indispensable functions.
  • this application provides a solution.
  • This application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first signaling is used to indicate a first time window, the index of the first time slot in the first time window is the first index, and the second signaling is used to determine the first time window.
  • Time offset when the first wireless signal is sent on the primary link, the first index is used to generate the first wireless signal; when the first wireless signal is sent on the secondary link , A second index is used to generate the first wireless signal, and the second index is related to both the first time offset and the first index.
  • the problems to be solved in this application include: how to ensure synchronization as much as possible when there is a deviation between different synchronization sources, and how to make the secondary link fail when the propagation delay is large or when synchronization compensation is used.
  • the synchronization information can be consistent with the synchronization source of the main link.
  • the above method reasonably determines the synchronization information of the secondary link according to factors such as different transmission delays and local compensation processing, thereby solving this problem.
  • the characteristics of the above method include: the first index includes the system frame number (System Frame Number, SFN) of the main link, and the second index includes the direct frame number (Direct Frame Number, DFN), so
  • the first time offset includes actual timing advance information (Timing Advance, TA) of the main link, and the second index is related to both the first time offset and the first index.
  • the advantages of the above method include: overcoming the timing deviation between the first node and the synchronization source and the timing problem caused by transmission, and more accurately determining the synchronization information of the secondary link.
  • the first transmitter sends a second wireless signal
  • the second wireless signal indicates a second time window
  • the index of the first time slot in the second time window is the second index
  • the characteristics of the above method include: the first time window is used for primary link communication, and the second time window is used for secondary link communication.
  • the first transmitter sends a third wireless signal; wherein the third wireless signal indicates a first time-frequency resource pool from the second time window.
  • the second signaling and the location of the first node are used together to determine the first time offset.
  • the first receiver receives third signaling, the third signaling indicates a first reference time offset value set, and the first reference time offset The value set is used to determine the first time offset.
  • the first receiver receives fourth signaling
  • the fourth signaling indicates a second time offset
  • the second time offset is used To determine the first time offset
  • the first node is a user equipment.
  • the first node is a relay node.
  • This application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the first signaling is used to indicate a first time window, the index of the first time slot in the first time window is the first index, and the second signaling is used to determine the first time window.
  • Time offset when the first wireless signal is sent on the primary link, the first index is used to generate the first wireless signal; when the sender of the first wireless signal is on the secondary link
  • a second index is used to generate the first wireless signal, and the second index is related to both the first time offset and the first index.
  • the second signaling and the location of the first node are used together to determine the first time offset.
  • third signaling is sent, and the third signaling indicates a first reference time offset value set, and the first reference time offset value set is used to determine The first time offset.
  • fourth signaling is sent, and the fourth signaling indicates a second time offset, and the second time offset is used to determine the first time offset. Time offset.
  • This application discloses a method used in a third node for wireless communication, which is characterized in that it includes:
  • the first signaling is used to indicate the first time window, the index of the first time slot in the first time window is the first index, and the second signaling is used to determine the first time offset ;
  • the first index is used to generate the first wireless signal;
  • the first wireless signal is on the secondary link
  • a second index is used to generate the first wireless signal, and the second index is related to both the first time offset and the first index.
  • the first signaling is sent by the receiver of the first wireless signal sent on the main link.
  • the first signaling is sent by the sender of the first wireless signal.
  • the second signaling is sent by the receiver of the first wireless signal sent on the main link.
  • the second signaling is sent by the sender of the first wireless signal.
  • the first signaling is sent by the serving cell of the third node.
  • the second signaling is sent by the serving cell of the third node.
  • the second wireless signal is received
  • the second wireless signal indicates a second time window
  • the index of the first time slot in the second time window is the second index
  • the third wireless signal is received
  • the third wireless signal indicates the first time-frequency resource pool from the second time window.
  • the second signaling and the location of the sender of the first wireless signal are jointly used to determine the first time offset.
  • the third signaling indicates a first reference time offset value set, and the first reference time offset value set is used to determine the first time offset,
  • the third signaling is sent to the sender of the first wireless signal by the reference synchronization source of the sender of the first wireless signal.
  • the fourth signaling indicates a second time offset, and the second time offset is used to determine the first time offset
  • the fourth signaling is sent to the sender of the first wireless signal by the reference synchronization source of the sender of the first wireless signal.
  • whether the sender of the first wireless signal is determined as the reference synchronization source is related to the second time window.
  • the sender of the first wireless signal is determined as the reference synchronization source.
  • the sender of the first wireless signal is determined as a reference synchronization source.
  • the sender of the first wireless signal is determined as the reference synchronization source.
  • the first wireless signal when the second index sent by the sender of the first wireless signal is different from the first index sent by the sender of the first wireless signal, the first wireless signal The sender of the signal is determined as the reference synchronization source.
  • a fourth wireless signal is sent, and the receiving timing of the synchronization signal sent by the reference synchronization source determined by the third node is used to determine the sending timing of the fourth wireless signal.
  • the fourth wireless signal is sent on the time-frequency resource in the first time-frequency resource pool.
  • a fourth wireless signal is sent, and the sending timing of the synchronization signal sent by the reference synchronization source determined by the third node is used to determine the sending timing of the fourth wireless signal.
  • the fourth wireless signal is sent on the time-frequency resource in the first time-frequency resource pool.
  • a fifth wireless signal is sent, and the first wireless signal is used to determine the sending timing of the fifth wireless signal, and the sender of the first wireless signal and the reference synchronization source determined by the third node different.
  • the fifth wireless signal is sent on the time-frequency resource in the first time-frequency resource pool.
  • the first time window information carried by the first wireless signal is used to determine the sending timing of the fifth wireless signal.
  • the start time of the first time window carried by the first wireless signal is used as a timing reference to determine the sending timing of the fifth wireless signal.
  • this application has the following advantages:
  • the synchronization information of the secondary link is determined according to the synchronization information of the primary link. Even if they all have the same synchronization source, the synchronization information sent on different secondary links will be different, that is, different secondary links are not synchronized.
  • This application proposes to determine the synchronization information according to the synchronization source according to the time deviation.
  • the synchronization information of the secondary link includes the frame number, which facilitates synchronization between different secondary links.
  • Figure 1 shows a flow chart of the first signaling, the second signaling and the first wireless signal according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Fig. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of the first node, the second node and the third node according to an embodiment of the present application
  • Figure 5 shows a flow chart of transmission according to an embodiment of the present application
  • Fig. 6 shows a schematic diagram of a first time window, a first time slot, a first index, and a second index according to an embodiment of the present application
  • FIG. 7 shows a schematic diagram of a first time window, a second time window, a first time slot, a first index, and a second index according to an embodiment of the present application
  • FIG. 8 shows a schematic diagram of selecting a reference synchronization source among multiple candidate reference synchronization sources according to an embodiment of the present application
  • Figure 8.1 shows a schematic diagram of selecting a reference synchronization source among multiple candidate reference synchronization sources according to an embodiment of the present application
  • FIG. 9 shows a schematic diagram of a first time-frequency resource pool according to an embodiment of the present application.
  • Fig. 10 shows a schematic diagram of area information according to an embodiment of the present application.
  • FIG. 11 shows a schematic diagram of the first signaling used to indicate the first time window according to an embodiment of the present application
  • FIG. 12 shows a schematic diagram of the second signaling used to determine the first time offset according to an embodiment of the present application
  • FIG. 13 shows a schematic diagram of the first index being used to generate the first wireless signal according to an embodiment of the present application
  • FIG. 14 shows a schematic diagram of the second index being used to generate the first wireless signal according to an embodiment of the present application
  • FIG. 15 shows a schematic diagram of a first reference time offset value set used to determine a first time offset according to an embodiment of the present application
  • FIG. 16 shows a schematic diagram of the second signaling and the position of the first node being used together to determine the first time offset according to an embodiment of the present application
  • FIG. 17 shows a schematic diagram of the second time offset being used to determine the first time offset according to an embodiment of the present application
  • Fig. 18 shows a structural block diagram of a processing apparatus used in a first node device according to an embodiment of the present application
  • Fig. 19 shows a structural block diagram of a processing apparatus used in a second node device according to an embodiment of the present application
  • Fig. 20 shows a structural block diagram of a processing apparatus used in a third node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of the transmission of the first signaling, the second signaling and the first wireless signal according to an embodiment of the present application, as shown in FIG. 1.
  • each box represents a step, and it should be particularly emphasized that the order of each box in the figure does not represent the time sequence relationship between the steps shown.
  • the first node in this application receives the first signaling and the second signaling in step 101; sends the first wireless signal in step 102; wherein, the first signaling is used to indicate In the first time window, the index of the first time slot in the first time window is the first index, and the second signaling is used to determine the first time offset; when the first wireless signal When the first wireless signal is sent on the primary link, the first index is used to generate the first wireless signal; when the first wireless signal is sent on the secondary link, the second index is used to generate the first wireless signal.
  • the second index is related to both the first time offset and the first index.
  • the main link is an uplink
  • the first node is a user equipment
  • the first node is user equipment
  • the main link is a link from the first node to the sender of the first signaling.
  • the first node is a user equipment
  • the primary link is an uplink
  • the secondary link is a link from the first node to another user equipment.
  • the first node is a satellite
  • the third node is a user equipment
  • the primary link is a link from a satellite to a base station
  • the secondary link is a link from the first node to the user. The link of the device.
  • the first node is a user equipment
  • the second node is another user equipment
  • the third node is another user equipment
  • the main link is a link from the first node to the second node
  • the secondary link is a link from the first node to the third node.
  • the first node is a relay device
  • the second node is a base station
  • the third node is a user equipment
  • the main link is a link from the first node to the second node, so
  • the secondary link is a link from the first node to the third node.
  • the sender of the first signaling is the reference synchronization source of the first node.
  • the first node is a candidate reference synchronization source for the receiver of the first wireless signal.
  • the reference synchronization source refers to a node to which a user equipment (UE) synchronization timing refers.
  • UE user equipment
  • the first time offset includes a positive integer number of time slots.
  • the duration of the first time slot does not exceed 10485.76 seconds (second).
  • the duration of the first time slot does not exceed 10.24 seconds (second).
  • the duration of the first time slot does not exceed 10 milliseconds (millisecond).
  • the duration of the first time slot does not exceed 5 milliseconds (millisecond).
  • the duration of the first time slot does not exceed 1 millisecond (millisecond).
  • the duration of the first time slot does not exceed 0.5 milliseconds (millisecond).
  • the first time slot includes 1 multi-carrier symbol.
  • the first time slot includes 7 multi-carrier symbols.
  • the first time slot includes 14 multi-carrier symbols.
  • the first time slot includes 140 multi-carrier symbols.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency-division Multiplexing) symbol.
  • the multi-carrier symbol is a CP-OFDM (Cyclic Prefix-Orthogonal Frequency-division Multipleplexing) symbol.
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency-division Multipleplexing
  • the multi-carrier symbol is a SC-FDMA (Single Carrier-frequency Division Multiple Access) symbol.
  • SC-FDMA Single Carrier-frequency Division Multiple Access
  • the multi-carrier symbol is a FBMC (Filter Bank Multicarrier) symbol.
  • the multi-carrier symbol is a DFT-S-OFDM (Discrete Fourier Transformation-Spread-Orthogonal Frequency Division Multiplexing) symbol.
  • DFT-S-OFDM Discrete Fourier Transformation-Spread-Orthogonal Frequency Division Multiplexing
  • the multi-carrier symbol is a UFMC (Universal Filtered Multi-Carrier) symbol.
  • UFMC Universal Filtered Multi-Carrier
  • the multi-carrier symbol is a GFDM (Generalized frequency division multiplexing) symbol.
  • GFDM Generalized frequency division multiplexing
  • the first signaling explicitly indicates the first index.
  • the first index includes a system frame number (System Frame Number, SFN).
  • SFN System Frame Number
  • the first index is used to generate an initial value of a first scrambling code sequence
  • the first scrambling code sequence is used to scramble a first bit block
  • the first wireless signal carries the The first bit block.
  • the initial value of the first scrambling code sequence is linearly related to the first index.
  • the linear correlation coefficient from the initial value of the first scrambling code sequence to the first index is 512.
  • the first index is used to generate a CRC (Cyclic Redundance Check, cyclic redundancy check) of a first bit block, and the first wireless signal carries the first bit block.
  • CRC Cyclic Redundance Check, cyclic redundancy check
  • the first index is used to generate the initial value of the CRC (Cyclic Redundance Check, cyclic redundancy check) of the first bit block.
  • CRC Cyclic Redundance Check, cyclic redundancy check
  • the first wireless signal is obtained after the first bit block sequentially undergoes channel coding, scrambling, modulation, layer mapping, precoding, and resource mapping to generate OFDM symbols.
  • the first wireless signal is obtained after the first bit block undergoes scrambling, CRC encoding, channel encoding, re-scrambling, modulation, resource mapping, and OFDM signal generation.
  • the first index is used to generate the initial value of the CRC of the first bit block.
  • the second index includes a direct frame number (SFN).
  • SFN direct frame number
  • the second index is used to generate an initial value of a second scrambling code sequence
  • the second scrambling code sequence is used to scramble a second bit block
  • the first wireless signal carries the The second bit block.
  • the initial value of the second scrambling code sequence is linearly related to the second index.
  • the linear correlation coefficient from the initial value of the second scrambling code sequence to the second index is 512.
  • the second index is used to generate a CRC (Cyclic Redundance Check, cyclic redundancy check) of a second bit block, and the first wireless signal carries the second bit block.
  • CRC Cyclic Redundance Check, cyclic redundancy check
  • the second index is used to generate the initial value of the CRC (Cyclic Redundance Check, cyclic redundancy check) of the second bit block.
  • the second index is used to generate the initial value of the CRC of the second bit block.
  • the first wireless signal is obtained after the second bit block sequentially undergoes channel coding, scrambling, modulation, layer mapping, precoding, and resource mapping to generate OFDM symbols.
  • the first time window is composed of L1 time slots
  • the first index is the index of the first time slot in the L1 time slots
  • the L1 is a positive integer greater than 1.
  • the first time window is composed of L1 time slots
  • the second index is the index of the first time slot in the L1 time slots
  • the L1 is a positive integer greater than 1.
  • the L1 is 1024, and the L1 time slots are continuous.
  • the L1 is 10240, and the L1 time slots are continuous.
  • the L1 is less than 1024, there is at least one time slot interval, and one time slot before and after the time slot interval respectively belongs to the first time window.
  • the L1 is less than 10240, there is at least one time slot interval, and one time slot before the time slot interval and after the time slot interval respectively belongs to the first time window.
  • that the second index of the sentence is related to the first time offset and the first index includes:
  • the difference between the second index and the first index is equal to the first time offset.
  • that the second index of the sentence is related to the first time offset and the first index includes:
  • the difference between the second index and the first index is linearly related to the first time offset.
  • that the second index of the sentence is related to the first time offset and the first index includes:
  • the difference between the second index and the first index is equal to X; when the first time offset is less than the threshold B, the second index and The difference of the first index is equal to Y; when the threshold A is different from the threshold B, X is not equal to Y.
  • the first signaling is sent through a broadcast channel (Broadcast Channel, BCCH); the second signaling is sent through a broadcast channel (Broadcast Channel, BCCH).
  • BCCH Broadcast Channel
  • the first signaling is sent through a broadcast channel (Broadcast Channel, BCCH); the second signaling is sent through a downlink physical shared channel (Physical Downlink Shared Channel, PDSCH).
  • BCCH Broadcast Channel
  • PDSCH Physical Downlink Shared Channel
  • the first wireless signal is sent through an uplink physical shared channel (Physical Uplink Shared Channel, PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • the first wireless signal is sent through an uplink physical control channel (Physical Uplink Control Channel, PUSCH).
  • PUSCH Physical Uplink Control Channel
  • the first wireless signal is sent through an uplink physical control channel (Physical Uplink Control Channel, PUSCH).
  • PUSCH Physical Uplink Control Channel
  • the first wireless signal is sent through a Physical Side Link Broadcast Channel (PSBCH).
  • PSBCH Physical Side Link Broadcast Channel
  • the first wireless signal is sent through a Physical Side Link Feedback Channel (PSFCH).
  • PSFCH Physical Side Link Feedback Channel
  • the first time slot satisfies the following conditions:
  • D represents the second index
  • S represents the subframe number
  • N is a natural number
  • the first time slot is a subframe
  • the number is Slot.
  • the first wireless signal includes a system information block (System Information Block, SIB).
  • SIB System Information Block
  • the first signaling includes SIB (System Information Block, system information block).
  • SIB System Information Block, system information block
  • the first signaling includes MIB (Master Information Block, a master information block).
  • the second signaling includes TA (Timing advance) signaling.
  • the second signaling includes TA signaling and a fixed time offset T, where T is a real number.
  • the second signaling includes satellite orbit information.
  • the second wireless signal is broadcast.
  • the second wireless signal includes MIB.
  • the second wireless signal includes SIB.
  • the second wireless signal is sent on the PSBCH.
  • the second signaling indicates the location of the transmitter of the second signaling, and the location of the transmitter of the second signaling is different from the location of the first node.
  • the first time offset value and the transmitter of the second signaling and the first node The distance between nodes is related.
  • the first time offset value is linearly related to the distance between the transmitter of the second signaling and the first node.
  • the second signaling includes area information, and the area information is used to determine the location of the first node.
  • the area information includes the area to which the first node belongs, and the location of the area is used for the location of the first node.
  • the position of the area is the position of a point in the area.
  • the position of the area is the position of the center point in the area.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2.
  • FIG. 2 illustrates a diagram of a network architecture 200 of 5G NR, LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) systems.
  • the 5G NR or LTE network architecture 200 may be referred to as 5GS (5G System)/EPS (Evolved Packet System, evolved packet system) 200 some other suitable terminology.
  • 5GS/EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server)/UDM (Unified Data Management) 220 and Internet Service 230.
  • UE User Equipment
  • NG-RAN Next Generation Radio Access Network
  • 5GC 5G Core Network, 5G Core Network
  • EPC Evolved Packet Core, Evolved Packet Core
  • HSS Home Subscriber Server
  • UDM Un
  • 5GS/EPS can be interconnected with other access networks, but for simplicity Show these entities/interfaces. As shown in the figure, 5GS/EPS provides packet switching services, but those skilled in the art will easily understand that various concepts presented throughout this application can be extended to networks that provide circuit switching services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an Xn interface (for example, backhaul).
  • the gNB203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive node), or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , Video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine-type communication devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices Video devices
  • digital audio players for example, MP3 players
  • cameras game consoles
  • drones aircraft
  • narrowband IoT devices machine-type communication devices
  • machine-type communication devices land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE201 can also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway)/UPF (User Plane Function, user plane function) 212, and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • MME/AMF/SMF211 is a control node that processes the signaling between UE201 and 5GC/EPC210. In general, MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. P-GW provides UE IP address allocation and other functions.
  • the P-GW/UPF 213 is connected to the Internet service 230.
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and specifically may include the Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching streaming service.
  • the UE201 corresponds to the first node device in this application.
  • the UE 201 supports transmission on a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • the UE 201 supports transmission in a network with a large delay difference.
  • the UE 241 corresponds to the third node device in this application.
  • the gNB203 corresponds to the second node device in this application.
  • the gNB203 supports transmission on a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • the gNB203 supports transmission in a network with a large delay difference.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • Figure 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane 350 and the control plane 300.
  • Figure 3 shows three layers for the first node device (UE, satellite or aircraft in gNB or NTN) and the second Two-node equipment (gNB, UE or satellite or aircraft in NTN), or the radio protocol architecture of the control plane 300 between two UEs: layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first node device and the second node device and the two UEs through PHY301.
  • L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers terminate at the second node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides cross-zone movement support between the second node device and the first node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among the first node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the communication between the second node device and the first node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture for the first node device and the second node device in the user plane 350 is for the physical layer 351 and the L2 layer 355.
  • the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are basically the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides The header of the upper layer data packet is compressed to reduce the radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol) sublayer 356.
  • SDAP Service Data Adaptation Protocol
  • the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer). To support business diversity.
  • the first node device may have several upper layers above the L2 layer 355, including a network layer (for example, an IP layer) terminating at the P-GW on the network side and terminating at the other end of the connection (For example, remote UE, server, etc.) at the application layer.
  • the wireless protocol architecture in FIG. 3 is applicable to the first node device in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node device in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the third node device in this application.
  • the first wireless signal in this application is generated in the RRC306.
  • the first wireless signal in this application is generated in the MAC302 or MAC352.
  • the first wireless signal in this application is generated in the PHY301 or PHY351.
  • the second wireless signal in this application is generated in the PHY301 or PHY351.
  • the third wireless signal in this application is generated in the RRC306.
  • the third wireless signal in this application is generated in the MAC302 or MAC352.
  • the third wireless signal in this application is generated in the PHY301 or PHY351.
  • the fourth wireless signal in this application is generated in the RRC306.
  • the fourth wireless signal in this application is generated in the MAC302 or MAC352.
  • the fourth wireless signal in this application is generated in the PHY301 or PHY351.
  • the first signaling in this application is generated in the RRC306.
  • the first signaling in this application is generated in the MAC302 or MAC352.
  • the first signaling in this application is generated in the PHY301 or PHY351.
  • the second signaling in this application is generated in the RRC306.
  • the second signaling in this application is generated in the MAC302 or MAC352.
  • the second signaling in this application is generated in the PHY301 or PHY351.
  • the third signaling in this application is generated in the RRC306.
  • the third signaling in this application is generated in the MAC302 or MAC352.
  • the third signaling in this application is generated in the PHY301 or PHY351.
  • Embodiment 4 shows a schematic diagram of the first communication device and the second communication device according to the present application, as shown in FIG. 4.
  • FIG. 4 is a block diagram of a first communication device 450 and a second communication device 410 that communicate with each other in an access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmitting processor 468, a receiving processor 456, a multi-antenna transmitting processor 457, a multi-antenna receiving processor 458, and a transmitter/receiver 454 And antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter/receiver 418, and an antenna 420.
  • the upper layer data packet from the core network is provided to the controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels. Multiplexing, and allocation of radio resources to the first communication device 450 based on various priority measures.
  • the controller/processor 475 is also responsible for retransmission of lost packets and signaling to the first communication device 450.
  • the transmission processor 416 and the multi-antenna transmission processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 410, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for keying (QPSK), M-phase shift keying (M-PSK), and M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmission processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes it with a reference signal (e.g., pilot) in the time domain and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate The physical channel that carries the multi-carrier symbol stream in the time domain.
  • IFFT inverse fast Fourier transform
  • the multi-antenna transmission processor 471 performs a transmission simulation precoding/beamforming operation on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmission processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated on the radio frequency carrier, and converts the radio frequency stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receiving processor 458 performs reception analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a Fast Fourier Transform (FFT) to convert the baseband multi-carrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the physical layer data signal and reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after the multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial flow of the destination. The symbols on each spatial stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decision to recover the upper layer data and control signals transmitted by the second communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , Control signal processing to recover upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals can also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements the header based on the radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels, implement L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets and signaling to the second communication device 410.
  • the transmission processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmission processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is subjected to an analog precoding/beamforming operation in the multi-antenna transmission processor 457 and then provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then supplies it to the antenna 452.
  • the function at the second communication device 410 is similar to that in the transmission from the second communication device 410 to the first communication device 450.
  • Each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to the multi-antenna receiving processor 472 and the receiving processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • the memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 In the transmission from the first communication device 450 to the second communication device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, and header decompression. , Control signal processing to recover upper layer data packets from UE450.
  • the upper layer data packet from the controller/processor 475 may be provided to the core network.
  • the first communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to The at least one processor is used together, and the first communication device 450 means at least: receiving the first signaling and the second signaling; transmitting the first wireless signal in the first time slot; wherein the first signaling is Used to indicate the first time window, the index of the first time slot in the first time window is the first index, and the second signaling is used to determine the first time offset; When a wireless signal is sent on the primary link, the first index is used to generate the first wireless signal; when the first wireless signal is sent on the secondary link, the second index is used to generate the For the first wireless signal, the second index is related to both the first time offset and the first index.
  • the first communication device 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: receiving the first First signaling and second signaling; send the first wireless signal in the first time slot; wherein, the first signaling is used to indicate a first time window, and the first time slot is at the first time The index in the window is the first index, and the second signaling is used to determine the first time offset; when the first wireless signal is sent on the main link, the first index is used to generate the The first wireless signal; when the first wireless signal is sent on the secondary link, a second index is used to generate the first wireless signal, and the second index is offset from the first time It is related to the first index.
  • the second communication device 410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to Use at least one processor together.
  • the second communication device 410 means at least: transmitting first signaling and second signaling; receiving a first wireless signal in a first time slot; wherein, the first signaling is used to indicate a first time window, The index of the first time slot in the first time window is the first index, the second signaling is used to determine the first time offset, the first time offset and the first time offset An index is used to determine the second index.
  • the second communication device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: transmitting The first signaling and the second signaling; the first wireless signal is received in the first time slot; wherein, the first signaling is used to indicate a first time window, and the first time slot is in the first time slot.
  • the index in the time window is a first index
  • the second signaling is used to determine a first time offset
  • the first time offset and the first index are used to determine a second index.
  • the second communication device 410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to Use at least one processor together.
  • the second communication device 410 device at least: receives the first wireless signal in the first time slot; wherein the index of the first time slot in the second time window is the second index, and the second index is used To generate the first wireless signal.
  • the second communication device 410 device includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: The first wireless signal is received in the first time slot; wherein the index of the first time slot in the second time window is the second index, and the second index is used to generate the first wireless signal.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the second communication device 410 corresponds to the third node in this application.
  • the first communication device 450 is a UE.
  • the first communication device 450 is a vehicle-mounted device.
  • the second communication device 410 is a base station.
  • the second communication device 410 is a UE.
  • the second communication device 410 is a satellite.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used in this application to receive the first signaling and the second signaling.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used in this application to receive the third signaling.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used in this application to receive the fourth signaling.
  • the transmitter 456 (including the antenna 460), the transmission processor 455 and the controller/processor 490 are used to transmit the first wireless signal in this application.
  • the transmitter 456 (including the antenna 460), the transmission processor 455 and the controller/processor 490 are used to transmit the second wireless signal in this application.
  • the transmitter 456 (including the antenna 460), the transmission processor 455 and the controller/processor 490 are used to transmit the third wireless signal in this application.
  • the receiving processor 452 determines the second index according to the first index and the first time offset.
  • Embodiment 5 illustrates a wireless signal transmission flowchart according to an embodiment of the present application, as shown in FIG. 5.
  • the second node N02 is the serving cell base station of the first node U01
  • U03 is the third node. It is particularly noted that the sequence in this example does not limit the signal transmission sequence and implementation sequence in this application.
  • the step of transmitting a third signaling S5202 the transmission step S5303 in the fourth signaling.
  • step S5101 receives the first signaling and the second signaling, receiving the third signaling in step S5102, step S5103 to receive a fourth signaling, the first radio signal transmitted in step S5104 ,
  • the second wireless signal is sent in step S5105, the third wireless signal is sent in step S5106, and the fifth wireless signal is received in step S5107.
  • step S5301 the received first radio signal, a second radio receiver in step S5302, the radio receiving the third signal in step S5303, the fourth radio signal transmitted in step S5304, step S5305 transmits The fifth wireless signal.
  • the first signaling in this application is used to indicate a first time window, the index of the first time slot in the first time window is the first index, and the second Signaling is used to determine the first time offset; when the first wireless signal is sent on the main link, the first index is used to generate the first wireless signal; when the first wireless signal When being sent on the secondary link, a second index is used to generate the first wireless signal, and the second index is related to both the first time offset and the first index.
  • the uplink for communication between the first node U01 and the second node N02 is the main link.
  • the link through which the first node U01 communicates with the third node U03 is the secondary link.
  • the interface through which the first node U01 communicates with the second node N02 is a Uu interface.
  • the interface through which the first node U01 communicates with the third node U03 is a PC5 interface.
  • the first wireless signal when the first wireless signal is sent on the secondary link, the first wireless signal is broadcast, and when the first wireless signal is sent on the primary link, the first wireless signal is The signal is unicast.
  • the first wireless signal when the first wireless signal is sent on the secondary link, the first wireless signal includes MIB.
  • the first wireless signal when the first wireless signal is sent on the secondary link, the first wireless signal is sent on the PBSCH.
  • the second wireless signal includes MIB.
  • the second wireless signal is sent on the PSBCH.
  • the first signaling includes MIB.
  • the first signaling includes SIB.
  • the second signaling includes SIB.
  • the second signaling is sent on the PDSCH.
  • the second signaling indicates the position of the second node N02, and the position of the second node N02 and the position of the first node are used to calculate the second node N02 and the first node.
  • the distance between the nodes U01, and the first time offset value is related to the distance between the second node N02 and the first node U01.
  • the first time offset value is linearly related to the distance between the second node N02 and the first node U01.
  • the difference between the value of the second index and the value of the first index is equal to the first time offset.
  • the difference between the value of the second index and the value of the first index is equal to the quantized value of the first time offset.
  • the first time offset implicitly indicates the relationship between the second index and the first index, and when the first time offset is a positive number, the second index The difference with the first index is equal to the first time offset; when the first time offset is negative, the difference between the second index and the first index is equal to a predefined value minus After removing the first time offset, the predefined value is a real number.
  • the difference between the second index and the first index is equal to the first time offset; when the first time offset When the amount is negative, the difference between the second index and the first index is equal to a predefined value minus the first time offset, and the predefined value is a real number.
  • the third node U03 sends a fourth wireless signal
  • the receiving timing of the synchronization signal sent by the reference synchronization source of the third node is used to determine the sending timing of the fourth wireless signal.
  • the fourth wireless signal is sent on time-frequency resources in the first time-frequency resource pool.
  • the third node U03 uses the first node U01 as a reference synchronization source.
  • the third node U03 uses the second node N02 as a reference synchronization source.
  • the third node U03 regards a node that may be a reference synchronization source as a candidate reference synchronization source, and selects a candidate reference synchronization source whose second time window is synchronized with the first time window as the reference synchronization source.
  • the sentence may be used as a reference synchronization source including obtaining the candidate reference synchronization source identifier through correct decoding.
  • the sentence may be used as the reference synchronization source including the correct reception of the synchronization signal sent by the candidate reference synchronization source.
  • the second wireless signal sent by a candidate reference synchronization source indicates that time compensation is applied to the second time window indicated by the second wireless signal
  • the second wireless signal indicates The second time window of is considered to be synchronized with the first time window indicated by the first signaling sent by the reference synchronization source of the candidate reference synchronization source.
  • the third node U03 sends a fifth wireless signal
  • the first wireless signal is used to determine the sending timing of the fifth wireless signal, and the sender of the first wireless signal and the determined
  • the reference synchronization source is different.
  • the reference synchronization source selected by the third node U03 is not synchronized with the first node U01, but when the third node U03 sends the fifth wireless signal to the first node U01, The transmission is still performed according to the timing determined by the second time window indicated by the second wireless signal sent by the first node U01.
  • the fifth wireless signal is sent on time-frequency resources in the first time-frequency resource pool.
  • the fifth wireless signal is sent on the PSFCH channel.
  • Embodiment 6 illustrates a schematic diagram of the first time window according to an embodiment of the present application, as shown in FIG. 6.
  • Each square in FIG. 6 represents a time slot, and the first time window is composed of L1 time slots.
  • one time slot represents one time unit
  • the first time window is composed of multiple time units with the same time length.
  • the L1 is 1024, and the L1 time slots are continuous.
  • the L1 is 10240, and the L1 time slots are continuous.
  • the L1 is less than 1024, there is at least one time slot interval, and one time slot before the practice interval and after the time slot interval respectively belongs to the first time window.
  • the L1 is less than 10240, there is at least one time slot interval, and one time slot before the practice interval and after the time slot interval respectively belongs to the first time window.
  • the first index is used to generate the first wireless signal; when the first wireless signal is sent on the secondary link , A second index is used to generate the first wireless signal, and the second index is related to both the first time offset and the first index.
  • the first index is equal to k
  • the second index is equal to k+m
  • the first time offset is equal to m, where k and m are positive integers.
  • the first index is 1, the second index is 3, and the first time offset is 2.
  • the first time offset includes a positive integer number of time slots.
  • the duration of the first time slot does not exceed 10485.76 seconds (second).
  • the duration of the first time slot does not exceed 10.24 seconds (second).
  • the duration of the first time slot does not exceed 10 milliseconds (millisecond).
  • the duration of the first time slot does not exceed 5 milliseconds (millisecond).
  • the duration of the first time slot does not exceed 1 millisecond (millisecond).
  • the duration of the first time slot does not exceed 0.5 milliseconds (millisecond).
  • the first time slot includes 1 multi-carrier symbol.
  • the first time slot includes 7 multi-carrier symbols.
  • the first time slot includes 14 multi-carrier symbols.
  • the first time slot includes 140 multi-carrier symbols.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency-division Multiplexing) symbol.
  • the multi-carrier symbol is a CP-OFDM (Cyclic Prefix-Orthogonal Frequency-division Multipleplexing) symbol.
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency-division Multipleplexing
  • the multi-carrier symbol is a SC-FDMA (Single Carrier-frequency Division Multiple Access) symbol.
  • SC-FDMA Single Carrier-frequency Division Multiple Access
  • the multi-carrier symbol is a FBMC (Filter Bank Multicarrier) symbol.
  • the multi-carrier symbol is a DFT-S-OFDM (Discrete Fourier Transformation-Spread-Orthogonal Frequency Division Multiplexing) symbol.
  • DFT-S-OFDM Discrete Fourier Transformation-Spread-Orthogonal Frequency Division Multiplexing
  • the multi-carrier symbol is a UFMC (Universal Filtered Multi-Carrier) symbol.
  • UFMC Universal Filtered Multi-Carrier
  • the multi-carrier symbol is a GFDM (Generalized frequency division multiplexing) symbol.
  • GFDM Generalized frequency division multiplexing
  • the first signaling explicitly indicates the first index.
  • the first wireless signal explicitly indicates the second index.
  • the first signaling includes SFN (System Frame Number) and TAC (Timing Advance Command, timing advance command).
  • the first signaling includes SFN (System Frame Number, system frame number).
  • Embodiment 7 illustrates a schematic diagram of the first time window, the second time window, the first index, and the second index according to an embodiment of the present application, as shown in FIG. 7.
  • Each square in Figure 7 represents a time slot, and the numbers k, k+1, k+j-1, k+j, k+j+1, k+L1-1 are the index values of the first time window , There are a total of L1 indexes; the numbers m, m+1, m+i-1, m+i, m+i+i, m+L2-1 are the indexes of the second time window, and there are a total of L2 indexes.
  • the first time window is composed of L1 time slots, the first index is the index of the first time slot in the L1 time slots, and the L1 is a positive integer greater than 1;
  • the second The time window is composed of L2 time slots, the second index is the index of the first time slot in the L2 time slots, and the L2 is a positive integer greater than 1;
  • the duration of the second time window is the same as the duration of the first time window.
  • the L1 is equal to the L2.
  • the L1 is not equal to the L2.
  • the L1 is an integer multiple of L2.
  • the L2 is an integer multiple of L1.
  • the one time slot represents one time unit
  • the first time window is composed of multiple time units with the same time length.
  • the one time slot represents one time unit
  • the second time window is composed of multiple time units with the same time length.
  • a time slot represents a time unit
  • the first time window is composed of multiple time units with the same time length
  • the second time window is composed of multiple time units with the same time length. The lengths of the time units included in the first time window and the second time window are different.
  • the length of the first time slot when the first wireless signal is transmitted in the first time slot in the first time window is the same as when the first wireless signal is in the first time slot.
  • the length of the first time slot during transmission of the first time slot in the two time windows is different.
  • the first time window is advanced by the first time offset to obtain the second time window.
  • the second wireless signal indicates the offset between the first time window and the first time, and the index of the first time slot in the first time window is the second index.
  • the L1 is 1024, and the L1 time slots are continuous.
  • the L1 is 10240, and the L1 time slots are continuous.
  • the L1 is less than 1024, at least one time slot interval exists, and one time slot before the practice interval and after the time slot interval respectively belongs to the first time window.
  • the L1 is less than 10240, there is at least one time slot interval, and one time slot before the practice interval and after the time slot interval respectively belongs to the first time window.
  • the L2 is 1024, and the L2 time slots are continuous.
  • the L2 is 10240, and the L2 time slots are continuous.
  • the L2 is less than 1024, there is at least one time slot interval, and one time slot before the practice interval and after the time slot interval respectively belongs to the first time window.
  • the L2 is less than 10240, there is at least one time slot interval, and one time slot before the practice interval and after the time slot interval respectively belongs to the first time window.
  • the first index is used to generate the first wireless signal; when the first wireless signal is sent on the secondary link , A second index is used to generate the first wireless signal, and the second index is related to both the first time offset and the first index.
  • the first index is equal to k+j-1
  • the second index is equal to m+i+1, where k, m, i, and j are all positive integers.
  • the second index is the time unit in the second time window corresponding to the time obtained by advancing the first time offset from the time corresponding to the first index or the second time unit From the first time slot in the time window.
  • the first time offset includes a positive integer number of time slots.
  • the duration of the first time slot does not exceed 10485.76 seconds (second).
  • the duration of the first time slot does not exceed 10.24 seconds (second).
  • the duration of the first time slot does not exceed 10 milliseconds (millisecond).
  • the duration of the first time slot does not exceed 5 milliseconds (millisecond).
  • the duration of the first time slot does not exceed 1 millisecond (millisecond).
  • the duration of the first time slot does not exceed 0.5 milliseconds (millisecond).
  • the first time slot includes 1 multi-carrier symbol.
  • the first time slot includes 7 multi-carrier symbols.
  • the first time slot includes 14 multi-carrier symbols.
  • the first time slot includes 140 multi-carrier symbols.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency-division Multiplexing) symbol.
  • the multi-carrier symbol is a CP-OFDM (Cyclic Prefix-Orthogonal Frequency-division Multipleplexing) symbol.
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency-division Multipleplexing
  • the multi-carrier symbol is a SC-FDMA (Single Carrier-frequency Division Multiple Access) symbol.
  • SC-FDMA Single Carrier-frequency Division Multiple Access
  • the multi-carrier symbol is a FBMC (Filter Bank Multicarrier) symbol.
  • the multi-carrier symbol is a DFT-S-OFDM (Discrete Fourier Transformation-Spread-Orthogonal Frequency Division Multiplexing) symbol.
  • DFT-S-OFDM Discrete Fourier Transformation-Spread-Orthogonal Frequency Division Multiplexing
  • the multi-carrier symbol is a UFMC (Universal Filtered Multi-Carrier) symbol.
  • UFMC Universal Filtered Multi-Carrier
  • the multi-carrier symbol is a GFDM (Generalized frequency division multiplexing) symbol.
  • GFDM Generalized frequency division multiplexing
  • the first signaling explicitly indicates the first index.
  • the first wireless signal explicitly indicates the second index.
  • the first signaling includes SFN (System Frame Number) and TAC (Timing Advance Command, timing advance command).
  • the first signaling includes SFN (System Frame Number, system frame number).
  • the sender of the first wireless signal is determined as the reference synchronization source.
  • the sender of the first wireless signal is determined as a reference synchronization source.
  • the sender of the first wireless signal is determined as the reference synchronization source.
  • the first wireless signal when the second index sent by the sender of the first wireless signal is different from the first index sent by the sender of the first wireless signal, the first wireless signal The sender of the signal is determined as the reference synchronization source.
  • Embodiment 8 illustrates a schematic diagram of selecting a reference synchronization source among a plurality of candidate reference synchronization sources according to an embodiment of the present application, as shown in FIG. 8.
  • the candidate reference synchronization sources of UE0 include UE1 and UE2, wherein the reference synchronization source of UE1 is NTN base station-1, and the reference synchronization source of UE2 is also NTN base station-1.
  • UE0 corresponds to the third node of this application
  • UE1 corresponds to the first node of this application
  • NTN base station-1 corresponds to the second node of this application.
  • the second time window sent by the UE1 indicates that there is a non-zero value between the start time of the second time window and the start time of the first time window sent by the UE1.
  • the start time of the synchronization time window sent by the UE2 is equal to the start time of the synchronization time window sent by the NTN base station-1, then the UE0 selects UE1 as the reference synchronization source.
  • the UE0 selects UE1 as the reference synchronization source.
  • the pre-compensation is a timing advance that exceeds the TAC (timing advance command) applied by the sending node when sending a signal.
  • the start time of the second time window sent by the UE1 is different from the start time of the synchronization time window sent by the NTN base station-1, and the start time of the synchronization time window sent by the UE2
  • the UE0 selects UE1 as the reference synchronization source.
  • the second index sent by the UE1 is different from the first index sent by the UE1, and the index of the time window sent by the UE2 used for the primary link uplink communication The same as the index of the time window used for secondary link communication, the UE0 selects UE1 as the reference synchronization source.
  • Embodiment 8.1 illustrates a schematic diagram of selecting a reference synchronization source among a plurality of candidate reference synchronization sources according to an embodiment of the present application, as shown in Figure 8.1.
  • the candidate reference synchronization sources of UE5 include UE3 and UE4, wherein the reference synchronization source of UE3 is NTN base station-2, and the reference synchronization source of UE4 is TN base station-1.
  • UE5 corresponds to the third node of this application
  • UE3 corresponds to the first node of this application
  • NTN base station-2 corresponds to the second node of this application.
  • the second time window sent by the UE3 indicates that there is a non-zero value between the start time of the second time window and the start time of the first time window sent by the UE3.
  • the start time of the synchronization time window sent by the UE4 is equal to the start time of the synchronization time window sent by the TN base station-1, then the UE5 selects UE3 as the reference synchronization source.
  • the UE3 when the second time window sent by the UE3 includes a pre-compensation use indication, the UE3 is determined as the reference synchronization source.
  • the pre-compensation is a timing advance that exceeds the TAC (timing advance command) applied by the sending node when sending a signal.
  • the start time of the second time window sent by the UE3 is different from the start time of the synchronization time window sent by the NTN base station-2, and the start time of the synchronization time window sent by the UE4
  • the start time is equal to the start time of the synchronization time window sent by the TN base station-1, and the UE5 selects UE3 as the reference synchronization source.
  • the second index sent by the UE3 is different from the first index sent by the UE3, and the index of the time window sent by the UE4 used for the primary link uplink communication The same as the index of the time window used for secondary link communication, the UE5 selects UE3 as the reference synchronization source.
  • Embodiment 9 illustrates a schematic diagram of the first time-frequency resource pool according to an embodiment of the present application, as shown in FIG. 9.
  • the first time-frequency resource pool includes N resource blocks, where N is a natural number, and each resource block occupies certain time and frequency resources.
  • any two temporally adjacent resource blocks in the N resource blocks occupy different frequencies.
  • any two frequency-adjacent resource blocks in the N resource blocks occupy different time.
  • the N resource blocks are continuous in time.
  • the N resource blocks are not continuous in time.
  • the N resource blocks are not continuous in time, and any two adjacent resource blocks have the same time interval.
  • the duration of each resource block is one OFDM symbol.
  • the duration of each resource block is two OFDM symbols.
  • the duration of each resource block is three OFDM symbols.
  • the duration of each resource block is 7 OFDM symbols.
  • the duration of each resource block is 14 OFDM symbols.
  • the duration of each resource block is 0.5 milliseconds.
  • the duration of each resource block is 1 millisecond.
  • the duration of each resource block is 10 milliseconds.
  • the first time-frequency resource pool includes multiple time slots.
  • the first time-frequency resource pool includes multiple subframes.
  • the first time-frequency resource pool includes multiple frames.
  • the third wireless signal indicates a first time-frequency resource pool, and the first time-frequency resource pool occupies the first time-frequency resource pool in the time domain.
  • the first time-frequency resource pool is reserved for D2D transmission.
  • the first time-frequency resource pool is reserved for V2X transmission.
  • the first time-frequency resource pool is reserved for NTN transmission.
  • the first time-frequency resource pool is a D2D resource pool (Resource Pool).
  • the fourth wireless signal is sent on time-frequency resources in the first time-frequency resource pool.
  • the fifth wireless signal is sent on time-frequency resources in the first time-frequency resource pool.
  • Embodiment 10 illustrates a schematic diagram of area information according to an embodiment of the present application, as shown in FIG. 10.
  • the second signaling includes area information, and the area information is used to determine the location of the first node.
  • the area information includes the area to which the first node belongs, and the location of the area is used for the location of the first node.
  • the position of the area is the position of a point in the area.
  • the position of the area is the position of the center point in the area.
  • the location of the area is determined by a set of geographic coordinates.
  • the second signaling indicates the location of the transmitter of the second signaling, and the location of the transmitter of the second signaling is different from the location of the first node.
  • the first time offset value and the transmitter of the second signaling and the first node The distance between nodes is related.
  • the first time offset value is linearly related to the distance between the transmitter of the second signaling and the first node.
  • Embodiment 11 illustrates a schematic diagram of the first signaling being used to indicate the first time window according to an embodiment of the present application, as shown in FIG. 11.
  • the first time window is displayed by the first signaling.
  • the first signaling is sent through the PBCH channel.
  • the first signaling is sent through the PSBCH channel.
  • the first signaling is sent through the PDSCH channel.
  • the first signaling indicates an offset relative to a system frame number (SFN), and the first time window is the difference between the system frame number and the offset.
  • SFN system frame number
  • the first signaling indicates the duration of the first time slot and the number of the first time slot included in the first time window.
  • Embodiment 12 illustrates a schematic diagram of using the second signaling according to an embodiment of the present application to determine the first time offset, as shown in FIG. 12.
  • the second signaling indicates the first time offset.
  • the second signaling is sent through the PBCH channel.
  • the second signaling is sent through the PSBCH channel.
  • the second signaling is sent through the PDSCH channel.
  • the second signaling indicates the location of the transmitter of the second signaling, and the location of the transmitter of the second signaling is different from the location of the first node.
  • the first time offset value and the transmitter of the second signaling and the first node The distance between nodes is related.
  • the first time offset value is linearly related to the distance between the transmitter of the second signaling and the first node.
  • the second signaling includes a local time compensation value performed by the transmitter of the second signaling and a TA (timing advance) command, and the first time offset is equal to the local time compensation The sum of the value and the timing advance command value.
  • TA timing advance
  • the second signaling includes a TA (timing advance) instruction
  • the first time offset is equal to the sum of the time compensation made locally by the first node and the timing advance instruction value.
  • the second signaling includes area information, and the area information is used to determine the location of the first node.
  • the area information includes the area to which the first node belongs, and the location of the area is used for the location of the first node.
  • the position of the area is the position of a point in the area.
  • the position of the area is the position of the center point in the area.
  • the location of the area is determined by a set of geographic coordinates.
  • the second signaling includes orbit information of the transmitter of the second signaling
  • the first node determines the location of the transmitter of the second signaling according to the orbit information
  • the first node The position of the second transmitter is used to calculate the distance between the transmitter of the second signaling and the first node, and the first time offset value is compared with the distance of the second signaling.
  • the distance between the transmitter and the first node is related.
  • Embodiment 13 illustrates that the first index according to an embodiment of the present application is used to generate the first wireless signal schematic diagram, as shown in FIG. 13.
  • the first wireless signal carries the first index.
  • the first index includes a system frame number (System Frame Number, SFN).
  • SFN System Frame Number
  • the first index includes a Hyper Frame Number (Hyper Frame Number, HFN).
  • HFN Hyper Frame Number
  • the first index includes a direct frame number (Direct Frame Number, DFN).
  • DFN Direct Frame Number
  • the first index is used to generate an initial value of a first scrambling code sequence
  • the first scrambling code sequence is used to scramble a first bit block
  • the first wireless signal carries the The first bit block.
  • the initial value of the first scrambling code sequence is linearly related to the first index.
  • the linear correlation coefficient from the initial value of the first scrambling code sequence to the first index is 512.
  • the first index is used to generate a CRC (Cyclic Redundance Check, cyclic redundancy check) of a first bit block, and the first wireless signal carries the first bit block.
  • CRC Cyclic Redundance Check, cyclic redundancy check
  • the first index is used to generate the initial value of the CRC (Cyclic Redundance Check, cyclic redundancy check) of the first bit block.
  • CRC Cyclic Redundance Check, cyclic redundancy check
  • the first index is used as an input value of the integrity protection algorithm of the first wireless signal.
  • the first index is used as an input value of an encryption algorithm of the first wireless signal.
  • the first index is used to determine a search space (Search Space) for receiving the first wireless signal.
  • the first index is used to determine the resource block where the first wireless signal is located.
  • Embodiment 14 illustrates that the second index according to an embodiment of the present application is used to generate the first wireless signal schematic diagram, as shown in FIG. 14.
  • the first wireless signal carries the second index.
  • the second index includes a system frame number (System Frame Number, SFN).
  • SFN System Frame Number
  • the second index includes a Hyper Frame Number (Hyper Frame Number, HFN).
  • HFN Hyper Frame Number
  • the second index includes a direct frame number (SFN).
  • SFN direct frame number
  • the second index is used to generate an initial value of a second scrambling code sequence
  • the second scrambling code sequence is used to scramble a second bit block
  • the first wireless signal carries the The second bit block.
  • the initial value of the second scrambling code sequence is linearly related to the second index.
  • the linear correlation coefficient from the initial value of the second scrambling code sequence to the second index is 512.
  • the second index is used to generate a CRC (Cyclic Redundance Check, cyclic redundancy check) of a second bit block, and the first wireless signal carries the second bit block.
  • CRC Cyclic Redundance Check, cyclic redundancy check
  • the second index is used to generate the initial value of the CRC (Cyclic Redundance Check, cyclic redundancy check) of the second bit block.
  • the second index is used to generate the initial value of the CRC of the second bit block.
  • the first wireless signal is obtained after the second bit block sequentially undergoes channel coding, scrambling, modulation, layer mapping, precoding, and resource mapping to generate OFDM symbols.
  • the first index is used as an input value of the integrity protection algorithm of the first wireless signal.
  • the first index is used as an input value of an encryption algorithm of the first wireless signal.
  • the first index is used to determine a search space (Search Space) for receiving the first wireless signal.
  • the first index is used to determine the resource block where the first wireless signal is located.
  • Embodiment 15 illustrates a schematic diagram of the first reference time offset value set used to determine the first time offset according to an embodiment of the present application, as shown in FIG. 15.
  • the first reference time offset value set includes reference time offset values of multiple beams of the sender of the third signaling.
  • the reference time offset values of the multiple beams, where each beam corresponds to one reference time value are provided.
  • the reference time offset value is related to the distance from the sender of the third signaling to the center point of the beam associated with the reference time value on the ground.
  • the index of the beam is used to determine the reference time value in the first reference time offset value set.
  • the reference time value is used to determine the first time offset.
  • the first time offset is linearly related to the reference time value.
  • the second signaling includes TA (timing advance) signaling
  • the first time offset is equal to the sum of the reference time value and the timing advance value represented by the TA signaling.
  • Embodiment 16 illustrates that the second signaling and the position of the first node are used together to determine the first time offset according to an embodiment of the present application, as shown in FIG. 16.
  • the second signaling indicates the location of the transmitter of the second signaling, and the location of the transmitter of the second signaling is different from the location of the first node.
  • the first time offset value and the transmitter of the second signaling and the first node The distance between nodes is related.
  • the second signaling includes orbit information of the transmitter of the second signaling
  • the first node determines the location of the transmitter of the second signaling according to the orbit information
  • the first node The position of the second transmitter is used to calculate the distance between the transmitter of the second signaling and the first node, and the first time offset value is compared with the distance of the second signaling.
  • the distance between the transmitter and the first node is related.
  • the second signaling includes the distance information of the transmitter of the second signaling to a reference point
  • the first node is based on the distance information of the reference point and the first node.
  • the distance information from the node to the reference point determines the distance from the first node to the transmitter of the second signaling, the first time offset value and the transmitter and the transmitter of the second signaling
  • the distance between the first nodes is related.
  • the second signaling includes geographic location information of the reference point
  • the first node obtains the geographic location information of the reference point and the geographic location information of the first node. The distance from the first node to the reference point.
  • the first time offset value is linearly related to the distance between the transmitter of the second signaling and the first node.
  • Embodiment 17 illustrates a schematic diagram of the second time offset being used to determine the first time offset according to an embodiment of the present application, as shown in FIG. 17.
  • the fourth signaling includes the second time offset value.
  • the second time offset value includes the propagation delay of the feeder link from the sender of the fourth signaling to the relay node.
  • the sender of the fourth signaling is the sender of the second signaling.
  • the second signaling indicates the location of the transmitter of the second signaling, and the location of the transmitter of the second signaling is different from the location of the first node.
  • the first time offset value and the transmitter of the second signaling and the first node The distance between nodes is related to the second time offset.
  • the propagation delay caused by the first time offset value and the distance between the transmitter of the second signaling and the first node and the second time The offset is linearly related.
  • the second signaling indicates the location of the transmitter of the second signaling, and the location of the transmitter of the second signaling is different from the location of the first node.
  • Used to calculate the distance between the transmitter of the second signaling and the first node, and the distance between the sender of the fourth signaling and the relay node is the same as that of the second signaling
  • the sum of the distances between the transmitter and the first node is related to the first time offset.
  • Embodiment 18 illustrates a structural block diagram of a processing device used in the first node according to an embodiment of the present application; as shown in FIG. 18.
  • the processing device 1800 in the first node includes a first receiver 1801 and a first transmitter 1802.
  • the first receiver 1801 receives the first signaling, the second signaling, the first third signaling, and the fourth signaling; the first transmitter 1802 transmits the first wireless signal, the second wireless signal, and the fourth signaling.
  • Three wireless signals are possible.
  • the first signaling is used to indicate a first time window, the index of the first time slot in the first time window is the first index, and the second signaling is used To determine the first time offset; when the first wireless signal is sent on the primary link, the first index is used to generate the first wireless signal; when the first wireless signal is on the secondary link When being sent on the above, a second index is used to generate the first wireless signal, and the second index is related to both the first time offset and the first index.
  • the first transmitter 1802 sends a second wireless signal; wherein, the second wireless signal indicates a second time window, and the index of the first time slot in the second time window is all The second index.
  • the first transmitter 1802 sends a third wireless signal; wherein, the third wireless signal indicates a first time-frequency resource pool from the second time window.
  • the second signaling and the location of the first node are used together to determine the first time offset.
  • the first receiver 1801 receives third signaling, the third signaling indicating a first reference time offset value set, and the first reference time offset value set is used to determine the The first time offset.
  • the first receiver 1801 receives fourth signaling, the fourth signaling indicates a second time offset, and the second time offset is used to determine the first time offset Shift.
  • the first node device 1800 is a user equipment (UE).
  • UE user equipment
  • the first node device 1800 is a user equipment that supports a large delay difference.
  • the first node device 1800 is a user equipment supporting NTN.
  • the first node device 1800 is an aircraft device.
  • the first node device 1800 is a vehicle-mounted device.
  • the first node device 1800 is a relay device.
  • the first node device 1800 is a ship device.
  • the first node device 1800 is an industrial Internet of Things device.
  • the first node device 1800 is a device that supports low-latency and high-reliability transmission.
  • the first receiver 1801 includes ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, data source in the fourth embodiment At least one of 467 ⁇ .
  • the first transmitter 1802 includes ⁇ antenna 452, transmitter 454, transmission processor 468, multi-antenna transmission processor 457, controller/processor 459, memory 460, data source in the fourth embodiment At least one of 467 ⁇ .
  • Embodiment 19 illustrates a structural block diagram of a processing apparatus used in a second node device according to an embodiment of the present application; as shown in FIG. 19.
  • the processing device 1900 in the second node device includes a second transmitter 1901 and a second receiver 1902.
  • the second transmitter 1901 transmits the first signaling, the second signaling, the third signaling, and the fourth signaling; the second receiver 1902 receives the first wireless signal.
  • the first signaling is used to indicate a first time window
  • the index of the first time slot in the first time window is the first index
  • the second signaling is used To determine the first time offset
  • the first time offset and the first index are used to determine the second index.
  • the second signaling and the location of the first node are used together to determine the first time offset.
  • the second transmitter 1901 sends third signaling, the third signaling indicates a first reference time offset value set, and the first reference time offset value set is used to determine the The first time offset.
  • the second transmitter 1901 sends fourth signaling, the fourth signaling indicates a second time offset, and the second time offset is used to determine the first time offset Shift.
  • the second node device 1900 is a base station.
  • the second node device 1900 is a satellite.
  • the second node device 1900 is user equipment.
  • the second node device 1900 is a gateway.
  • the second node device 1900 is a base station device that supports a large delay difference.
  • the second transmitter 1901 includes ⁇ antenna 420, transmitter 418, transmission processor 416, multi-antenna transmission processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4 At least one.
  • the second receiver 1802 includes ⁇ antenna 420, receiver 418, receiving processor 470, multi-antenna receiving processor 472, controller/processor 475, memory 476 ⁇ in Embodiment 4 At least one.
  • Embodiment 20 illustrates a structural block diagram of a processing apparatus used in a third node device according to an embodiment of the present application; as shown in FIG. 20.
  • the processing device 2000 in the third node device includes a third receiver 2001.
  • the third receiver 2001 receives the first wireless signal, the second wireless signal, and the third wireless signal.
  • the first signaling is used to indicate the first time window
  • the index of the first time slot in the first time window is the first index
  • the second signaling is used to determine the first time window.
  • Time offset when the transmitter of the first wireless signal sends the first wireless signal on the main link, the first index is used to generate the first wireless signal; when the first wireless signal When being sent on the secondary link, a second index is used to generate the first wireless signal, and the second index is related to both the first time offset and the first index.
  • the first signaling is sent by the receiver of the first wireless signal sent on the main link.
  • the first signaling is sent by the sender of the first wireless signal.
  • the second signaling is sent by the receiver of the first wireless signal sent on the main link.
  • the second signaling is sent by the sender of the first wireless signal.
  • the first signaling is sent by the serving cell of the third node.
  • the second signaling is sent by the serving cell of the third node.
  • the third receiver 2001 receives the second wireless signal
  • the second wireless signal indicates a second time window
  • the index of the first time slot in the second time window is the second index
  • the third receiver 2001 receives a third wireless signal
  • the third wireless signal indicates the first time-frequency resource pool from the second time window.
  • the second signaling and the location of the sender of the first wireless signal are jointly used to determine the first time offset.
  • the third signaling indicates a first reference time offset value set, and the first reference time offset value set is used to determine the first time offset,
  • the third signaling is sent to the sender of the first wireless signal by the reference synchronization source of the sender of the first wireless signal.
  • the fourth signaling indicates a second time offset
  • the second time offset is used to determine the first time offset
  • the fourth signaling is sent to the sender of the first wireless signal by the reference synchronization source of the sender of the first wireless signal.
  • the reference synchronization source is determined at 2000 points in the third node
  • whether the sender of the first wireless signal is determined as the reference synchronization source is related to the second time window.
  • the third transmitter 2002 sends a fourth wireless signal, and the receiving timing of the synchronization signal sent by the reference synchronization source determined by the third node is used to determine the sending timing of the fourth wireless signal .
  • the third transmitter 2002 sends a fifth wireless signal, and the sending timing of the synchronization signal sent by the reference synchronization source determined by the third node is used to determine the sending timing of the fourth wireless signal .
  • the third transmitter 2002 sends a fourth wireless signal on the time-frequency resource in the first time-frequency resource pool.
  • the third transmitter 2002 transmits a fifth wireless signal
  • the first wireless signal is used to determine the transmission timing of the fifth wireless signal
  • the sender of the first wireless signal and the The reference synchronization source determined by the third node is different.
  • the third transmitter 2002 sends the fifth wireless signal on the time-frequency resource in the first time-frequency resource pool.
  • the third node device 2000 is user equipment.
  • the third node device 2000 is a relay device.
  • the third receiver 2001 includes ⁇ antenna 420, receiver 418, receiving processor 470, multi-antenna receiving processor 472, controller/processor 475, memory 476 ⁇ in Embodiment 4 At least one.
  • User equipment, terminals and UE in this application include, but are not limited to, drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication devices, wireless sensors, network cards, IoT terminals, RFID terminals, NB-IoT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, internet cards, in-vehicle communication equipment, low-cost mobile phones, low-cost Cost tablet computer, satellite communication equipment, ship communication equipment, NTN user equipment and other wireless communication equipment.
  • drones communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication devices, wireless sensors, network cards, IoT terminals, RFID terminals, NB-IoT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, internet cards, in-vehicle communication equipment, low-cost mobile phones
  • the base station or system equipment in this application includes, but is not limited to, macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B), NR Node B, TRP (Transmitter Receiver Point), NTN base station , Satellite equipment, flight platform equipment and other wireless communication equipment.
  • gNB NR Node B
  • NR Node B NR Node B
  • TRP Transmitter Receiver Point
  • NTN base station Satellite equipment
  • Satellite equipment flight platform equipment and other wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的方法和装置。第一节点接收第一信令和第二信令;在第一时隙中发送第一无线信号;其中,所述第一信令被用于指示第一时间窗,所述第一时隙在所述第一时间窗中的索引是第一索引,所述第二信令被用于确定第一时间偏移量;当所述第一无线信号在主链路上被发送时,第一索引被用于生成所述第一无线信号;当所述第一无线信号在副链路上被发送时,第二索引被用于生成所述第一无线信号,所述第二索引与所述第一时间偏移量和所述第一索引均有关。本申请通过不同的索引调整和优化了不同节点之间的定时关系,避免了干扰,提高了效率。

Description

一种被用于无线通信的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中同步以及双链路相关的传输方法和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或Fifth Generation,5G)进行研究,在3GPP RAN#75次全会上通过了NR的WI(Work Item,工作项目),开始对NR进行标准化工作。
在通信中,无论是LTE(Long Term Evolution,长期演进)还是5G NR都会涉及到信号定时和同步,尤其是存在主副链路的时候,以及在多个节点之间确立定时和同步,这对基站或用户设备的通信的正常进行,对资源的合理调度,对系统干扰的有效协调都有重要的意义,可以说是高吞吐率,高频谱利用率的基石,无论是eMBB(ehanced Mobile BroadBand,增强的移动宽带),URLLC(Ultra Reliable Low Latency Communication,超高可靠低时延通信)还是eMTC(enhanced Machine Type Communication,增强的机器类型通信)都不可或缺的一项功能。同时在IIoT(Industrial Internet of Things,工业领域的物联网中,在V2X(Vehicular to X,车载通信)中,在设备与设备之间通信(Device to Device),在非授权频谱的通信中,在用户通信质量监测,在网络规划优化,在NTN(Non Territerial Network,非地面网络通信)中,在以上各种通信模式的混合中,在无线资源管理以及多天线的码本选择中都存在广泛的应用。
随着节点和链路数目的增多,对定时以及同步还有全网协调有序的都提出了更高的要求,同时在系统设计的时候还需要考虑不同系统不同版本之间的兼容性。
发明内容
在不同的通信场景中,信号由于发送或接收方的问题,或由于通信传播时延,或由于非理想的器件因素导致信号发送的时刻出现偏差,在处理或转发或协调的时候会出现困难。尤其是涉及到多个节点的时候,不同节点之间的同步时一个很重要的问题,并且不同节点在拥有不同的参考同步源的时候,比如有些同步使用GPS或者GNSS这样的卫星作为参考同步源,有些使用本地或其它节点作为参考同步源,就有可能出现同步的不一致,这会导致出现干扰,出现资源效率的下降,出现节点间无法建立连接进行有效的通信,以及造成各种混乱。另外一方面,不同的系统的涉及准则,精度,地理位置可能都不一样,近场通信和远距离通信可能也不一样,各种通信的场景可能会混合在一起,这些都为系统的设计带来了问题。
针对上述问题,本申请提供了一种解决方案。
需要说明的是,在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于包括:
接收第一信令和第二信令;
在第一时隙中发送第一无线信号;
其中,所述第一信令被用于指示第一时间窗,所述第一时隙在所述第一时间窗中的索引是第一索引,所述第二信令被用于确定第一时间偏移量;当所述第一无线信号在主链路上被发送时,第一索引被用于生成所述第一无线信号;当所述第一无线信号在副链路上被发送时,第二索引被用于生成所述第一无线信号,所述第二索引与所述第一时间偏移量和所述第一索 引均有关。
作为一个实施例,本申请要解决的问题包括:如何在不同的同步源之间出现偏差的时候尽可能的保证同步,如何在传播时延较大或使用同步补偿的情况下使得副链路的同步信息能够和主链路的同步源保持一致。上述方法根据不同的传输时延以及本地补偿处理等因素合理的确定副链路的同步信息,从而解决了这一问题。
作为一个实施例,上述方法的特质包括:所述第一索引包括主链路的系统帧号(System Frame Number,SFN),所述第二索引包括直接帧号(Direct Frame Number,DFN),所述第一时间偏移量包括主链路实际的定时提前信息(Timing Advance,TA),所述第二索引与所述第一时间偏移量和所述第一索引均有关。
作为一个实施例,上述方法的好处包括:克服了第一节点到同步源之间的定时偏差和传输所带来的定时问题,更准确的确定的副链路的同步信息。
具体的,根据本申请的一个方面,其特征在于,所述第一发射机发送第二无线信号;
其中,所述第二无线信号指示第二时间窗,所述第一时隙在所述第二时间窗中的索引是所述第二索引。
作为一个实施例,上述方法的特质包括:所述第一时间窗被用于主链路通信,所述第二时间窗被用于副链路通信。
具体的,根据本申请的一个方面,其特征在于,所述第一发射机发送第三无线信号;其中,所述第三无线信号从所述第二时间窗中指示第一时频资源池。
具体的,根据本申请的一个方面,其特征在于,所述第二信令与所述第一节点的位置共同被用于确定所述第一时间偏移量。
具体的,根据本申请的一个方面,其特征在于,所述第一接收机接收第三信令,所述第三信令指示第一参考时间偏移值集合,所述第一参考时间偏移值集合被用于确定所述第一时间偏移量。
具体的,根据本申请的一个方面,其特征在于,所述第一接收机接收第四信令,所述第四信令指示第二时间偏移量,所述第二时间偏移量被用于确定所述第一时间偏移量。
具体的,根据本申请的一个方面,其特征在于,其特征在于:
在所述第一时频资源池中的时频资源上接收第五无线信号。
具体的,根据本申请的一个方面,其特征在于,所述第一节点是用户设备。
具体的,根据本申请的一个方面,其特征在于,所述第一节点是中继节点。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于包括:
发射第一信令和第二信令;
在第一时隙中接收第一无线信号;
其中,所述第一信令被用于指示第一时间窗,所述第一时隙在所述第一时间窗中的索引是第一索引,所述第二信令被用于确定第一时间偏移量;当所述第一无线信号在主链路上被发送时,第一索引被用于生成所述第一无线信号;当所述第一无线信号的发送者在副链路上发送所述第一无线信号时,第二索引被用于生成所述第一无线信号,所述第二索引与所述第一时间偏移量和所述第一索引均有关。
具体的,根据本申请的一个方面,其特征在于,所述第二信令与所述第一节点的位置共同被用于确定所述第一时间偏移量。
具体的,根据本申请的一个方面,其特征在于,发送第三信令,所述第三信令指示第一参考时间偏移值集合,所述第一参考时间偏移值集合被用于确定所述第一时间偏移量。
具体的,根据本申请的一个方面,其特征在于,发送第四信令,所述第四信令指示第二时间偏移量,所述第二时间偏移量被用于确定所述第一时间偏移量。
本申请公开了一种被用于无线通信的第三节点中的方法,其特征在于包括:
在第一时隙中接收第一无线信号;
其中,第一信令被用于指示第一时间窗,所述第一时隙在所述第一时间窗中的索引是第一索引,第二信令被用于确定第一时间偏移量;当所述第一无线信号的发射者在主链路上发送所述第一无线信号时,第一索引被用于生成所述第一无线信号;当所述第一无线信号在副链路上被发送时,第二索引被用于生成所述第一无线信号,所述第二索引与所述第一时间偏移量和所述第一索引均有关。
作为一个实施例,第一信令由所述在主链路上发送的第一无线信号的接收者所发送。
作为一个实施例,第一信令由所述第一无线信号的发送者所发送。
作为一个实施例,第二信令由所述在主链路上发送的第一无线信号的接收者所发送。
作为一个实施例,第二信令由所述第一无线信号的发送者所发送。
作为一个实施例,第一信令由所述第三节点的服务小区发送。
作为一个实施例,第二信令由所述第三节点的服务小区发送。
具体的,根据本申请的一个方面,其特征在于,接收第二无线信号;
其中,所述第二无线信号指示第二时间窗,所述第一时隙在所述第二时间窗中的索引是所述第二索引。
具体的,根据本申请的一个方面,其特征在于,接收第三无线信号;
其中,所述第三无线信号从所述第二时间窗中指示第一时频资源池。
具体的,根据本申请的一个方面,其特征在于,所述第二信令与所述第一无线信号的发送者的位置共同被用于确定所述第一时间偏移量。
具体的,根据本申请的一个方面,其特征在于:
第三信令指示第一参考时间偏移值集合,所述第一参考时间偏移值集合被用于确定所述第一时间偏移量,
其中,所述第三信令由所述第一无线信号的发送者的参考同步源发送给所述第一无线信号的发送者。
具体的,根据本申请的一个方面,其特征在于:
第四信令指示第二时间偏移量,所述第二时间偏移量被用于确定所述第一时间偏移量,
其中,所述第四信令由所述第一无线信号的发送者的参考同步源发送给所述第一无线信号的发送者。
具体的,根据本申请的一个方面,其特征在于:
确定参考同步源,
其中,所述第一无线信号的发送者是否被确定为参考同步源,与所述第二时间窗有关。
作为一个实施例,当所述第一无线信号的发送者所发送的第二时间窗指示了所述第二时间窗的起始时刻与所述第一无线信号的发送者所发送的所述第一时间窗的起始时刻存在一个非零的偏移量的时候,所述第一无线信号的发送者被确定为参考同步源。
作为一个实施例,当所述第一无线信号的发送者所发送的所述第二时间窗包含使用预补偿指示的时候,所述第一无线信号的发送者被确定为参考同步源。
作为一个实施例,当所述所述第一无线信号的发送者所发送的第二时间窗的起始时刻与所述第一无线信号的发送者的参考同源所发送的同步时间窗的起始时刻不同的时候,所述第一无线信号的发送者被确定为参考同步源。
作为一个实施例,当所述第一无线信号的发送者所发送的所述第二索引与所述第一无线信号的发送者所发送的所述第一索引不同的时候,所述第一无线信号的发送者被确定为参考同步源。
具体的,根据本申请的一个方面,其特征在于:
发送第四无线信号,所述第三节点所确定的参考同步源所发送的同步信号的接收定时被用于确定所述第四无线信号的发送定时。
具体的,根据本申请的一个方面,其特征在于:
所述第四无线信号在所述第一时频资源池中的时频资源上发送。
发送第四无线信号,所述第三节点所确定的参考同步源所发送的同步信号的发送定时被用于确定所述第四无线信号的发送定时。
具体的,根据本申请的一个方面,其特征在于:
所述第四无线信号在所述第一时频资源池中的时频资源上发送。
具体的,根据本申请的一个方面,其特征在于:
发送第五无线信号,所述第一无线信号被用于确定所述第五无线信号的发送定时,且所述第一无线信号的发送者与所述第三节点所确定的所述参考同步源不同。
具体的,根据本申请的一个方面,其特征在于:
所述第五无线信号在所述第一时频资源池中的时频资源上发送。
作为一个实施例,所述第一无线信号所携带的所述第一时间窗信息被用于确定所述第五无线信号的发送定时。
作为一个实施例,所述第一无线信号所携带的所述第一时间窗的起始时刻作为定时参考被用于确定所述第五无线信号的发送定时。
作为一个实施例,和传统方案相比,本申请具备如下优势:
当用户设备和同步源之间的通信距离较远,传输时延较大,尤其是涉及到卫星通信时,如果按照传统方案,副链路的同步信息按照主链路上行的同步信息来确定,即使他们都拥有相同的同步源也会导致不同的副链路上所发送的同步信息不同,也就是不同的副链路是不同步的,本申请提出了根据时间偏差按照同步源的同步信息确定副链路的同步信息包括帧号,从而有利于不同的副链路之间实现同步。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令,第二信令和第一无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一节点,第二节点和第三节点的示意图;
图5示出了根据本申请的一个实施例的传输的流程图;
图6示出了根据本申请的一个实施例的第一时间窗,第一时隙,第一索引和第二索引的示意图;
图7示出了根据本申请的一个实施例的第一时间窗,第二时间窗,第一时隙,第一索引和第二索引的示意图;
图8示出了根据本申请的一个实施例的在多个候选参考同步源中选择参考同步源的示意图;
图8.1示出了根据本申请的一个实施例的在多个候选参考同步源中选择参考同步源的示意图;
图9示出了根据本申请的一个实施例的第一时频资源池的示意图;
图10示出了根据本申请的一个实施例的区域信息的示意图;
图11示出了根据本申请的一个实施例的第一信令被用于指示第一时间窗示意图;
图12示出了根据本申请的一个实施例的第二信令被用于确定第一时间偏移量示意图;
图13示出了根据本申请的一个实施例的第一索引被用于生成第一无线信号示意图;
图14示出了根据本申请的一个实施例的第二索引被用于生成第一无线信号示意图;
图15示出了根据本申请的一个实施例的第一参考时间偏移值集合被用于确定第一时间偏移量示意图;
图16示出了根据本申请的一个实施例的第二信令与第一节点的位置共同被用于确定第一时间偏移量示意图;
图17示出了根据本申请的一个实施例的第二时间偏移量被用于确定第一时间偏移量示意图;
图18示出了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;
图19示出了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图;
图20示出了根据本申请的一个实施例的用于第三节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信令,第二信令和第一无线信号的传输的流程图,如附图1所示。附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序并不代表所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的第一节点在步骤101中接收第一信令和第二信令;在步骤102中发送第一无线信号;其中,所述第一信令被用于指示第一时间窗,所述第一时隙在所述第一时间窗中的索引是第一索引,所述第二信令被用于确定第一时间偏移量;当所述第一无线信号在主链路上被发送时,第一索引被用于生成所述第一无线信号;当所述第一无线信号在副链路上被发送时,第二索引被用于生成所述第一无线信号,所述第二索引与所述第一时间偏移量和所述第一索引均有关。
作为一个实施例,所述主链路是上行链路,所述第一节点是用户设备。
作为一个实施例,所述第一节点是用户设备,所述主链路是从所述第一节点到所述第一信令的发送者之间的链路。
作为一个实施例,所述第一节点是用户设备,所述主链路是上行链路,所述副链路是所述第一节点到另一用户设备的链路。
作为一个实施例,所述第一节点是卫星,所述第三节点是用户设备,所述主链路是卫星到基站的链路,所述副链路是所述第一节点到所述户设备的链路。
作为一个实施例,所述第一节点是用户设备,所述第二节点是另一用户设备,所述第三节点是其它用户设备,所述主链路是第一节点到第二节点的链路,所述副链路是所述第一节点到所述第三节点的链路。
作为一个实施例,所述第一节点是中继设备,所述第二节点是基站,所述第三节点是用户设备,所述主链路是第一节点到第二节点的链路,所述副链路是所述第一节点到所述第三节点的链路。
作为一个实施例,所述第一信令的发送者是所述第一节点的参考同步源。
作为一个实施例,所述第一节点是所述第一无线信号的接收者的候选参考同步源。
作为一个实施例,所述参考同步源是指用户设备(UE)同步定时所参考的节点。
作为一个实施例,所述第一时间偏移量包括正整数个时隙。
作为一个实施例,所述第一时隙的持续时间不超过10485.76秒(second)。
作为一个实施例,所述第一时隙的持续时间不超过10.24秒(second)。
作为一个实施例,所述第一时隙的持续时间不超过10毫秒(millisecond)。
作为一个实施例,所述第一时隙的持续时间不超过5毫秒(millisecond)。
作为一个实施例,所述第一时隙的持续时间不超过1毫秒(millisecond)。
作为一个实施例,所述第一时隙的持续时间不超过0.5毫秒(millisecond)。
作为一个实施例,所述第一时隙包括1个多载波符号。
作为一个实施例,所述第一时隙包括7个多载波符号。
作为一个实施例,所述第一时隙包括14个多载波符号。
作为一个实施例,所述第一时隙包括140个多载波符号。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency-division Multiplexing)符号。
作为一个实施例,所述多载波符号是CP-OFDM(Cyclic Prefix-Orthogonal Frequency-division Multiplexing)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single Carrier-frequency division multiple access)符号。
作为一个实施例,所述多载波符号是FBMC(Filter Bank Multicarrier)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transformation-Spread-Orthogonal Frequency Division Multiplexing)符号。
作为一个实施例,所述多载波符号是UFMC(Universal Filtered Multi-Carrier)符号。
作为一个实施例,所述多载波符号是GFDM(Generalized frequency division multiplexing)符号。
作为一个实施例,所述第一信令显式的指示所述第一索引。
作为一个实施例,所述第一索引包括系统帧号(System Frame Number,SFN)。
作为一个实施例,所述第一索引被用于生成第一扰码序列的初始值,所述第一扰码序列被用于对第一比特块加扰,所述第一无线信号携带所述第一比特块。
作为一个实施例,所述第一扰码序列的所述初始值与所述第一索引线性相关。
作为一个实施例,所述第一扰码序列的所述初始值到所述第一索引的线性相关系数是512。
作为一个实施例,所述第一索引被用于生成第一比特块的CRC(Cyclic Redundance Check,循环冗余校验),所述第一无线信号携带所述第一比特块。
作为一个实施例,所述第一索引被用于生成第一比特块的所述CRC(Cyclic Redundance Check,循环冗余校验)的初始值。
作为一个实施例,所述第一无线信号是所述第一比特块依次经过信道编码,加扰,调制,层映射,预编码,资源映射,生成OFDM符号之后得到的。
作为一个实施例,所述第一无线信号是所述第一比特块经过加扰,CRC编码,信道编码,再次加扰,调制,资源映射,OFDM信号生成之后得到的。
作为一个实施例,所述第一索引被用于生成第一比特块的的所述CRC的初始值。
作为一个实施例,所述第二索引包括直接帧号(Direct Frame Number,SFN)。
作为一个实施例,所述第二索引被用于生成第二扰码序列的初始值,所述第二扰码序列被用于对第二比特块加扰,所述第一无线信号携带所述第二比特块。
作为一个实施例,所述第二扰码序列的所述初始值与所述第二索引线性相关。
作为一个实施例,所述第二扰码序列的所述初始值到所述第二索引的线性相关系数是512。
作为一个实施例,所述第二索引被用于生成第二比特块的CRC(Cyclic Redundance Check,循环冗余校验),所述第一无线信号携带所述第二比特块。
作为一个实施例,所述第二索引被用于生成第二比特块的所述CRC(Cyclic Redundance Check,循环冗余校验)的初始值。
作为一个实施例,所述第二索引被用于生成第二比特块的的所述CRC的初始值。
作为一个实施例,所述第一无线信号是所述第二比特块依次经过信道编码,加扰,调制,层映射,预编码,资源映射,生成OFDM符号之后得到的。
作为一个实施例,所述第一时间窗由L1个时隙组成,所述第一索引是所述第一时隙在所述L1个时隙中的索引,所述L1是大于1的正整数。
作为一个实施例,所述第一时间窗由L1个时隙组成,所述第二索引是所述第一时隙在所述L1个时隙中的索引,所述L1是大于1的正整数。
作为一个实施例,所述L1为1024,所述L1个时隙是连续的。
作为一个实施例,所述L1为10240,所述L1个时隙是连续的。
作为一个实施例,所述L1小于1024,至少存在一个时隙间隔,所述时隙间隔之前和所述时隙间隔之后分别存在一个时隙属于所述第一时间窗。
作为一个实施例,所述L1小于10240,至少存在一个时隙间隔,所述时隙间隔之前和所述时隙间隔之后分别存在一个时隙属于所述第一时间窗。
作为一个实施例,所述句子所述第二索引与所述第一时间偏移量和所述第一索引均有关包括:
所述第二索引与所述第一索引的差等于所述第一时间偏移量。
作为一个实施例,所述句子所述第二索引与所述第一时间偏移量和所述第一索引均有关包括:
所述第二索引与所述第一索引的差与所述第一时间偏移量线性相关。
作为一个实施例,所述句子所述第二索引与所述第一时间偏移量和所述第一索引均有关包括:
当所述第一时间偏移量小于门限A时,所述第二索引与所述第一索引的差等于X;当所述第一时间偏移量小于门限B时,所述第二索引与所述第一索引的差等于Y;当门限A与门限B不同时,X不等于Y。
作为一个实施例,所述第一信令通过广播信道(Broadcast Channel,BCCH)发送;所述第二信令通过广播信道(Broadcast Channel,BCCH)发送。
作为一个实施例,所述第一信令通过广播信道(Broadcast Channel,BCCH)发送;所述第二信令通过下行物理共享信道(Physical Downlink Shared Channel,PDSCH)发送。
作为一个实施例,所述第一无线信号通过上行物理共享信道(Physical Uplink Shared Channel,PUSCH)发送。
作为一个实施例,所述第一无线信号通过上行物理控制信道(Physical Uplink Control Channel,PUSCH)发送。
作为一个实施例,所述第一无线信号通过上行物理控制信道(Physical Uplink Control Channel,PUSCH)发送。
作为一个实施例,所述第一无线信号通过物理副链路广播信道(Physical Side Link Broadcast Channel,PSBCH)发送。
作为一个实施例,所述第一无线信号通过物理副链路反馈信道(Physical Side Link Feedback Channel,PSFCH)发送。
作为一个实施例,所述第一时隙满足以下条件:
(10*D+S)mod N=Slot
其中D代表所述第二索引;S代表子帧编号;N是一个自然数;所述第一时隙是一个子帧,编号为Slot。
作为一个实施例,所述第一无线信号包括系统消息块(System Information Block,SIB)。
作为一个实施例,所述第一信令包括SIB(System Information Block,系统信息块)。
作为一个实施例,所述第一信令包括MIB(Master Information Block,系主信息块)。
作为一个实施例,所述第二信令包括TA(Timing advance,定时提前)信令。
作为一个实施例,所述第二信令包括TA信令和一个固定的时间偏移量T,其中T为实数。
作为一个实施例,所述第二信令包括卫星的轨道信息。
作为一个实施例,所述第二无线信号是广播的。
作为一个实施例,所述第二无线信号包括MIB。
作为一个实施例,所述第二无线信号包括SIB。
作为一个实施例,所述第二无线信号在PSBCH上被发送。
作为一个实施例,所述第二信令指示所述第二信令的发射者的位置,所述第二信令的所述发射者的所述位置与所述第一节点的所述位置被用于计算所述第二信令的所述发射者与所述第一节点之间的距离,所述第一时间偏移值与所述第二信令的所述发射者与所述第一节点之间的所述距离有关。
作为一个实施例,所述第一时间偏移值与所述第二信令的所述发射者与所述第一节点之间的所述距离线性相关。
作为一个实施例,所述第二信令包含区域信息,所述区域信息被用于确定所述第一节点的位置。
作为一个实施例,所述区域信息包含所述第一节点所属的区域,所述区域的位置被用于所述第一节点的位置。
作为一个实施例,所述区域的所述位置为所述区域内一点的位置。
作为一个实施例,所述区域的所述位置为所述区域内中心点的位置。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。
附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括 MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点设备。
作为一个实施例,所述UE201支持在非地面网络(NTN)的传输。
作为一个实施例,所述UE201支持大时延差网络中的传输。
作为一个实施例,所述UE241对应本申请中的所述第三节点设备。
作为一个实施例,所述gNB203对应本申请中的所述第二节点设备。
作为一个实施例,所述gNB203支持在非地面网络(NTN)的传输。
作为一个实施例,所述gNB203支持在大时延差网络中的传输。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一节点设备(UE,gNB或NTN中的卫星或飞行器)和第二节点设备(gNB,UE或NTN中的卫星或飞行器),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一节点设备与第二节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二节点设备之间的对第一节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点设备与第一节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点设备和第二节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第三节点设备。
作为一个实施例,本申请中的所述第一无线信号生成于所述RRC306。
作为一个实施例,本申请中的所述第一无线信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二无线信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第三无线信号生成于所述RRC306。
作为一个实施例,本申请中的所述第三无线信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第三无线信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第四无线信号生成于所述RRC306。
作为一个实施例,本申请中的所述第四无线信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第四无线信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一信令生成于所述RRC306。
作为一个实施例,本申请中的所述第一信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二信令生成于所述RRC306。
作为一个实施例,本申请中的所述第二信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第二信令生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第三信令生成于所述RRC306。
作为一个实施例,本申请中的所述第三信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第三信令生成于所述PHY301或者PHY351。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每 一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:接收第一信令和第二信令;在第一时隙中发送第一无线信号;其中,所述第一信令被用于指示第一时间窗,所述第一时隙在所述第一时间窗中的索引是第一索引,所述第二信令被用于确定第一时间偏移量;当所述第一无线信号在主链路上被发送时,第一索引被用于生成所述第一无线信号;当所述第一无线信号在副链路上被发送时,第二索引被用于生成所述第一无线信号,所述第 二索引与所述第一时间偏移量和所述第一索引均有关。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令和第二信令;在第一时隙中发送第一无线信号;其中,所述第一信令被用于指示第一时间窗,所述第一时隙在所述第一时间窗中的索引是第一索引,所述第二信令被用于确定第一时间偏移量;当所述第一无线信号在主链路上被发送时,第一索引被用于生成所述第一无线信号;当所述第一无线信号在副链路上被发送时,第二索引被用于生成所述第一无线信号,所述第二索引与所述第一时间偏移量和所述第一索引均有关。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:发射第一信令和第二信令;在第一时隙中接收第一无线信号;其中,所述第一信令被用于指示第一时间窗,所述第一时隙在所述第一时间窗中的索引是第一索引,所述第二信令被用于确定第一时间偏移量,所述第一时间偏移量和所述第一索引被用于确定第二索引。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发射第一信令和第二信令;在第一时隙中接收第一无线信号;其中,所述第一信令被用于指示第一时间窗,所述第一时隙在所述第一时间窗中的索引是第一索引,所述第二信令被用于确定第一时间偏移量,所述第一时间偏移量和所述第一索引被用于确定第二索引。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:在第一时隙中接收第一无线信号;其中,所述第一时隙在第二时间窗中的索引是第二索引,所述第二索引被用于生成所述第一无线信号。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一时隙中接收第一无线信号;其中,所述第一时隙在第二时间窗中的索引是第二索引,所述第二索引被用于生成所述第一无线信号。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第二通信设备410对应本申请中的第三节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第一通信设备450是一个车载设备。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,所述第二通信设备410是一个UE。
作为一个实施例,所述第二通信设备410是一个卫星。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一信令和第二信令。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第三信令。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第四信令。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送第一无线信号。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送第二无线信号。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送第三无线信号。
作为一个实施例,接收处理器452,根据第一索引和第一时间偏移量确定第二索引。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。附图5中,第二节点N02是第一节点U01的服务小区基站,U03是第三节点,特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于 第二节点N02,在步骤S5201中发送第一信令和第二信令,在步骤S5202中发送第三信令,在步骤S5303中发送第四信令。
对于 第一节点U01,在步骤S5101中接收第一信令和第二信令,在步骤S5102中接收第三信令,在步骤S5103中接收第四信令,在步骤S5104中发送第一无线信号,在步骤S5105中发送第二无线信号,在步骤S5106中发送第三无线信号,在步骤S5107中接收第五无线信号。
对于 第三节点U03,在步骤S5301中接收第一无线信号,在步骤S5302中接收第二无线,在步骤S5303中接收第三无线信号,在步骤S5304中发送第四无线信号,在步骤S5305中发送第五无线信号。
在实施例5中,本申请中的所述第一信令被用于指示第一时间窗,所述第一时隙在所述第一时间窗中的索引是第一索引,所述第二信令被用于确定第一时间偏移量;当所述第一无线信号在主链路上被发送时,第一索引被用于生成所述第一无线信号;当所述第一无线信号在副链路上被发送时,第二索引被用于生成所述第一无线信号,所述第二索引与所述第一时间偏移量和所述第一索引均有关。
作为一个实施例,所述第一节点U01与所述第二节点N02通信的上行链路是所述主链路。
作为一个实施例,所述第一节点U01与所述第三节点U03通信的链路是所述副链路。
作为一个实施例,所述第一节点U01与所述第二节点N02通信的接口是Uu接口。
作为一个实施例,所述第一节点U01与所述第三节点U03通信的接口是PC5接口。
作为一个实施例,当所述第一无线信号在副链路上发送时,所述第一无线信号是广播的,当所述第一无线信号在主链路上发送时,所述第一无线信号是单播的。
作为一个实施例,当所述第一无线信号在副链路上发送时,所述第一无线信号包括MIB。
作为一个实施例,当所述第一无线信号在副链路上发送时,所述第一无线信号在PBSCH上发送。
作为一个实施例,所述第二无线信号包括MIB。
作为一个实施例,所述第二无线信号在PSBCH上被发送。
作为一个实施例,所述第一信令包括MIB。
作为一个实施例,所述第一信令包括SIB。
作为一个实施例,所述第二信令包括SIB。
作为一个实施例,所述第二信令在PDSCH上发送。
作为一个实施例,所述第二信令指示第二节点N02的位置,所述第二节点N02的位置与所述第一节点的位置被用于计算所述第二节点N02与所述第一节点U01之间的距离,所述第一时间偏移值与所述第二节点N02与所述第一节点U01之间的所述距离有关。
作为一个实施例,所述第一时间偏移值与所述第二节点N02与所述第一节点U01之间的所述距离线性相关。
作为一个实施例,所述第二索引的值与所述第一索引的值的差等于所述第一时间偏移量。
作为一个实施例,所述第二索引的值与所述第一索引的值的差等于所述第一时间偏移量经过量化后的数值。
作为一个实施例,所述第一时间偏移量隐式的指示所述第二索引与所述第一索引的关系, 当所述第一时间偏移量为正数时,所述第二索引与所述第一索引的差等于所述第一时间偏移量;当所述第一时间偏移量为负时,所述第二索引与所述第一索引的差等于预定义的数值减去所述第一时间偏移量,所述预定义的数值为实数。
作为一个实施例,当所述第一时间偏移量为正数时,所述第二索引与所述第一索引的差等于所述第一时间偏移量;当所述第一时间偏移量为负时,所述第二索引与所述第一索引的差等于预定义的数值减去所述第一时间偏移量,所述预定义的数值为实数。
作为一个实施例,所述第三节点U03发送第四无线信号,所述第三节点的参考同步源所发送的同步信号的接收定时被用于确定所述第四无线信号的发送定时。
作为一个实施例,所述第四无线信号在所述第一时频资源池中的时频资源上发送。
作为一个实施例,所述第三节点U03将所述第一节点U01作为参考同步源。
作为一个实施例,所述第三节点U03将所述第二节点N02作为参考同步源。
作为一个实施例,所述第三节点U03将可能作为参考同步源的节点视为候选参考同步源,并选取其中第二时间窗口与第一时间窗口同步的候选参考同步源作为参考同步源。
作为一个实施例,所述句子所述可能作为包括通过正确解码而获取所述候选参考同步源标识的参考同步源。
作为一个实施例,所述句子所述可能作为包括正确接收所述候选参考同步源所发送的同步信号的参考同步源。
作为一个实施例,当一个候选参考同步源所发送的所述第二无线信号指示所述第二无线信号所指示的所述第二时间窗应用了时间补偿时,所述第二无线信号所指示的所述第二时间窗被认为与所述候选参考同步源的参考同步源所发送的所述第一信令所指示的所述第一时间窗同步。
作为一个实施例,所述第三节点U03发送第五无线信号,所述第一无线信号被用于确定所述第五无线信号的发送定时,且所述第一无线信号的发送者与所确定的所述参考同步源不同。
作为一个实施例,所述第三节点U03选择的参考同步源与所述第一节点U01不同步,但是所述第三节点U03在向所述第一节点U01发送所述第五无线信号时,仍然按照所述第一节点U01所发送的所述第二无线信号所指示的所述第二时间窗口所确定的定时进行发射。
作为一个实施例,所述第五无线信号在所述第一时频资源池中的时频资源上发送。
作为一个实施例,所述第五无线信号在PSFCH信道上发送。
实施例6
实施例6示例了根据本申请的一个实施例的第一时间窗示意图,如附图6所示。
附图6中每个方块代表一个时隙,所述第一时间窗由L1个时隙组成。
作为一个实施例,一个时隙代表一个时间单位,所述第一时间窗由多个具有相同时间长度的时间单位组成。
作为一个实施例,所述L1为1024,所述L1个时隙是连续的。
作为一个实施例,所述L1为10240,所述L1个时隙是连续的。
作为一个实施例,所述L1小于1024,至少存在一个时隙间隔,所述实习间隔之前和所述时隙间隔之后分别存在一个时隙属于所述第一时间窗。
作为一个实施例,所述L1小于10240,至少存在一个时隙间隔,所述实习间隔之前和所述时隙间隔之后分别存在一个时隙属于所述第一时间窗。
作为一个实施例,当所述第一无线信号在主链路上被发送时,第一索引被用于生成所述第一无线信号;当所述第一无线信号在副链路上被发送时,第二索引被用于生成所述第一无线信号,所述第二索引与所述第一时间偏移量和所述第一索引均有关。
作为一个实施例,所述第一索引等于k,所述第二索引等于k+m,所述第一时间偏移量等于m,其中k和m为正整数。
作为一个实施例,所述第一索引为1,所述第二索引为3,所述第一时间偏移量为2。
作为一个实施例,所述第一时间偏移量包括正整数个时隙。
作为一个实施例,所述第一时隙的持续时间不超过10485.76秒(second)。
作为一个实施例,所述第一时隙的持续时间不超过10.24秒(second)。
作为一个实施例,所述第一时隙的持续时间不超过10毫秒(millisecond)。
作为一个实施例,所述第一时隙的持续时间不超过5毫秒(millisecond)。
作为一个实施例,所述第一时隙的持续时间不超过1毫秒(millisecond)。
作为一个实施例,所述第一时隙的持续时间不超过0.5毫秒(millisecond)。
作为一个实施例,所述第一时隙包括1个多载波符号。
作为一个实施例,所述第一时隙包括7个多载波符号。
作为一个实施例,所述第一时隙包括14个多载波符号。
作为一个实施例,所述第一时隙包括140个多载波符号。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency-division Multiplexing)符号。
作为一个实施例,所述多载波符号是CP-OFDM(Cyclic Prefix-Orthogonal Frequency-division Multiplexing)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single Carrier-frequency division multiple access)符号。
作为一个实施例,所述多载波符号是FBMC(Filter Bank Multicarrier)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transformation-Spread-Orthogonal Frequency Division Multiplexing)符号。
作为一个实施例,所述多载波符号是UFMC(Universal Filtered Multi-Carrier)符号。
作为一个实施例,所述多载波符号是GFDM(Generalized frequency division multiplexing)符号。
作为一个实施例,所述第一信令显式的指示所述第一索引。
作为一个实施例,所述第一无线信号显式的的指示所述第二索引。
作为一个实施例,所述第一信令包括SFN(System Frame Number,系统帧号)和TAC(Timing Advance Command,定时提前命令)。
作为一个实施例,所述第一信令包括SFN(System Frame Number,系统帧号)。
实施例7
实施例7示例了根据本申请的一个实施例的第一时间窗,第二时间窗,第一索引和第二索引的示意图,如附图7所示。
附图7中每个方块代表一个时隙,编号k,k+1,k+j-1,k+j,k+j+1,k+L1-1为所述第一时间窗的索引值,共有L1个索引;编号m,m+1,m+i-1,m+i,m+i+i,m+L2-1为所述第二时间窗的索引,共有L2个索引。
所述第一时间窗由L1个时隙组成,所述第一索引是所述第一时隙在所述L1个时隙中的索引,所述L1是大于1的正整数;所述第二时间窗由L2个时隙组成,所述第二索引是所述第一时隙在所述L2个时隙中的索引,所述L2是大于1的正整数;
作为一个实施例,所述第二时间窗的持续时间与所述第一时间窗的持续时间相同。
作为一个实施例,所述L1等于所述L2。
作为一个实施例,所述L1不等于所述L2。
作为一个实施例,所述L1为L2的整数倍。
作为一个实施例,所述L2为L1的整数倍。
作为一个实施例,所述一个时隙代表一个时间单位,所述第一时间窗由多个具有相同时间长度的时间单位组成。
作为一个实施例,所述一个时隙代表一个时间单位,所述第二时间窗由多个具有相同时间长度的时间单位组成。
作为一个实施例,一个时隙代表一个时间单位,所述第一时间窗由多个具有相同时间长度的时间单位组成,所述第二时间窗由多个具有相同时间长度的时间单位组成,所述第一时间窗和所述第二时间窗所包含的所述时间单位的长度不同。
作为一个实施例,当所述第一无线信号在所述第一时间窗中的所述第一时隙传输时的所述第一时隙的长度与当所述第一无线信号在所述第二时间窗中的所述第一时隙传输时的所述第一时隙的长度不同。
作为一个实施例,所述第一时间窗提前所述第一时间偏移量得到第二时间窗。
作为一个实施例,所述第二无线信号指示第一时间窗与所述第一时间偏移量,所述第一时隙在所述第一时间窗中的索引是所述第二索引。
作为一个实施例,所述L1为1024,所述L1个时隙是连续的。
作为一个实施例,所述L1为10240,所述L1个时隙是连续的。
作为一个实施例,所述L1小于1024,至少存在一个时隙间隔,所述实习间隔之前和所述时隙间隔之后分别存在一个时隙属于所述第一时间窗。
作为一个实施例,所述L1小于10240,至少存在一个时隙间隔,所述实习间隔之前和所述时隙间隔之后分别存在一个时隙属于所述第一时间窗。
作为一个实施例,所述L2为1024,所述L2个时隙是连续的。
作为一个实施例,所述L2为10240,所述L2个时隙是连续的。
作为一个实施例,所述L2小于1024,至少存在一个时隙间隔,所述实习间隔之前和所述时隙间隔之后分别存在一个时隙属于所述第一时间窗。
作为一个实施例,所述L2小于10240,至少存在一个时隙间隔,所述实习间隔之前和所述时隙间隔之后分别存在一个时隙属于所述第一时间窗。
作为一个实施例,当所述第一无线信号在主链路上被发送时,第一索引被用于生成所述第一无线信号;当所述第一无线信号在副链路上被发送时,第二索引被用于生成所述第一无线信号,所述第二索引与所述第一时间偏移量和所述第一索引均有关。
作为一个实施例,所述第一索引等于k+j-1,所述第二索引等于m+i+1,其中k,m,i,j均为正整数。
作为一个实施例,所述第二索引由所述第一索引所对应的时刻提前所述第一时间偏移量所得的时刻所对应的所述第二时间窗中的时间单位或所述第二时间窗内的第一时隙所得。
作为一个实施例,所述第一时间偏移量包括正整数个时隙。
作为一个实施例,所述第一时隙的持续时间不超过10485.76秒(second)。
作为一个实施例,所述第一时隙的持续时间不超过10.24秒(second)。
作为一个实施例,所述第一时隙的持续时间不超过10毫秒(millisecond)。
作为一个实施例,所述第一时隙的持续时间不超过5毫秒(millisecond)。
作为一个实施例,所述第一时隙的持续时间不超过1毫秒(millisecond)。
作为一个实施例,所述第一时隙的持续时间不超过0.5毫秒(millisecond)。
作为一个实施例,所述第一时隙包括1个多载波符号。
作为一个实施例,所述第一时隙包括7个多载波符号。
作为一个实施例,所述第一时隙包括14个多载波符号。
作为一个实施例,所述第一时隙包括140个多载波符号。
作为一个实施例,所述多载波符号是OFDM (Orthogonal Frequency-division Multiplexing)符号。
作为一个实施例,所述多载波符号是CP-OFDM(Cyclic Prefix-Orthogonal Frequency-division Multiplexing)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single Carrier-frequency division multiple access)符号。
作为一个实施例,所述多载波符号是FBMC(Filter Bank Multicarrier)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transformation-Spread-Orthogonal Frequency Division Multiplexing)符号。
作为一个实施例,所述多载波符号是UFMC(Universal Filtered Multi-Carrier)符号。
作为一个实施例,所述多载波符号是GFDM(Generalized frequency division multiplexing)符号。
作为一个实施例,所述第一信令显式的指示所述第一索引。
作为一个实施例,所述第一无线信号显式的的指示所述第二索引。
作为一个实施例,所述第一信令包括SFN(System Frame Number,系统帧号)和TAC(Timing Advance Command,定时提前命令)。
作为一个实施例,所述第一信令包括SFN(System Frame Number,系统帧号)。
作为一个实施例,当所述第一无线信号的发送者所发送的第二时间窗指示了所述第二时间窗的起始时刻与所述第一无线信号的发送者所发送的所述第一时间窗的起始时刻存在一个非零的偏移量的时候,所述第一无线信号的发送者被确定为参考同步源。
作为一个实施例,当所述第一无线信号的发送者所发送的所述第二时间窗包含使用预补偿指示的时候,所述第一无线信号的发送者被确定为参考同步源。
作为一个实施例,当所述所述第一无线信号的发送者所发送的第二时间窗的起始时刻与所述第一无线信号的发送者的参考同源所发送的同步时间窗的起始时刻不同的时候,所述第一无线信号的发送者被确定为参考同步源。
作为一个实施例,当所述第一无线信号的发送者所发送的所述第二索引与所述第一无线信号的发送者所发送的所述第一索引不同的时候,所述第一无线信号的发送者被确定为参考同步源。
实施例8
实施例8示例了根据本申请的一个实施例的在多个个候选参考同步源中选择参考同步源的示意图,如附图8所示。
在实施例8中,UE0的候选参考同步源包括UE1和UE2,其中UE1的参考同步源为NTN基站-1,UE2的参考同步源也是NTN基站-1。UE0对应本申请的所述第三节点,UE1对应本申请的所述第一节点,NTN基站-1对应本申请的第二节点。
作为一个实施例,所述UE1所发送的所述第二时间窗指示了所述第二时间窗的起始时刻与所述UE1发送的所述第一时间窗的起始时刻存在一个非零的偏移量,而所述UE2发送的同步时间窗的起始时刻与所述NTN基站-1所发送的同步时间窗的起始时刻相等,则所述UE0选择UE1作为参考同步源。
作为一个实施例,当所述UE1所发送的所述第二时间窗包含使用预补偿指示的时候,则所述UE0选择UE1为参考同步源。
作为一个实施例,所述预补偿为发送节点在发送信号时所应用的超出TAC(定时提前命令)的定时提前。
作为一个实施例,所述UE1所发送的第二时间窗的起始时刻与所述NTN基站-1所发送的同步时间窗的起始时刻不同,而所述UE2发送的同步时间窗的起始时刻与所述NTN基站-1所发送的同步时间窗的起始时刻相等,则所述UE0选择UE1为参考同步源。
作为一个实施例,所述UE1所发送的所述第二索引与所述UE1所发送的所述第一索引不同,而所述UE2所发送的被用于主链路上行通信的时间窗的索引与被用于副链路通信的时间窗的索引相同,则所述UE0选择UE1为参考同步源。
实施例8.1
实施例8.1示例了根据本申请的一个实施例的在多个个候选参考同步源中选择参考同步源的示意图,如附图8.1所示。
在实施例8.1中,UE5的候选参考同步源包括UE3和UE4,其中UE3的参考同步源为NTN基站-2,UE4的参考同步源是TN基站-1。UE5对应本申请的所述第三节点,UE3对应本申请的所述第一节点,NTN基站-2对应本申请的第二节点。
作为一个实施例,所述UE3所发送的所述第二时间窗指示了所述第二时间窗的起始时刻与所述UE3发送的所述第一时间窗的起始时刻存在一个非零的偏移量,而所述UE4发送的同步时间窗的起始时刻与所述TN基站-1所发送的同步时间窗的起始时刻相等,则所述UE5选择UE3作为参考同步源。
作为一个实施例,当所述UE3所发送的所述第二时间窗包含使用预补偿指示的时候,所述UE3被确定为参考同步源。
作为一个实施例,所述预补偿为发送节点在发送信号时所应用的超出TAC(定时提前命令)的定时提前。
作为一个实施例,所述所述UE3所发送的第二时间窗的起始时刻与所述NTN基站-2所发送的同步时间窗的起始时刻不同,而所述UE4发送的同步时间窗的起始时刻与所述TN基站-1所发送的同步时间窗的起始时刻相等,则所述UE5选择UE3为参考同步源。
作为一个实施例,所述UE3所发送的所述第二索引与所述UE3所发送的所述第一索引不同,而所述UE4所发送的被用于主链路上行通信的时间窗的索引与被用于副链路通信的时间窗的索引相同,则所述UE5选择UE3为参考同步源。
实施例9
实施例9示例了根据本申请的一个实施例的第一时频资源池的示意图,如附图9所示。
作为一个实施例,所述第一时频资源池包含N个资源块,其中N为自然数,每个所述资源块占用一定的时间和频率资源。
作为一个实施例,所述N个所述资源块中任意两个时间上相邻的资源块占用不同的频率。
作为一个实施例,所述N个所述资源块中任意两个频率上相邻的资源块占用不同的时间。
作为一个实施例,所述N个所述资源块在时间上连续。
作为一个实施例,所述N个所述资源块在时间上不连续。
作为一个实施例,所述N个所述资源块在时间上不连续,且任意两个相邻的所述资源块在时间上的间隔相等。
作为一个实施例,每个所述资源块的持续时间为一个OFDM符号。
作为一个实施例,每个所述资源块的持续时间为两个OFDM符号。
作为一个实施例,每个所述资源块的持续时间为三个OFDM符号。
作为一个实施例,每个所述资源块的持续时间为7个OFDM符号。
作为一个实施例,每个所述资源块的持续时间为14个OFDM符号。
作为一个实施例,每个所述资源块的持续时间为0.5毫秒。
作为一个实施例,每个所述资源块的持续时间为1毫秒。
作为一个实施例,每个所述资源块的持续时间为10毫秒。
作为一个实施例,所述第一时频资源池包括多个时隙。
作为一个实施例,所述第一时频资源池包括多个子帧。
作为一个实施例,所述第一时频资源池包括多个帧。
作为一个实施例,所述第三无线信号指示第一时频资源池,所述第一时频资源池在时域上占用所述第一时频资源池。
作为一个实施例,所述第一时频资源池被预留给D2D传输。
作为一个实施例,所述第一时频资源池被预留给V2X传输。
作为一个实施例,所述第一时频资源池被预留给NTN传输。
作为一个实施例,所述第一时频资源池是一个D2D资源池(Resource Pool)。
作为一个实施例,所述第四无线信号在所述第一时频资源池中的时频资源上发送。
作为一个实施例,所述第五无线信号在所述第一时频资源池中的时频资源上发送。
实施例10
实施例10示例了根据本申请的一个实施例的区域信息的示意图,如附图10所示。
作为一个实施例,所述第二信令包含区域信息,所述区域信息被用于确定所述第一节点的位置。
作为一个实施例,所述区域信息包含所述第一节点所属的区域,所述区域的位置被用于所述第一节点的位置。
作为一个实施例,所述区域的所述位置为所述区域内一点的位置。
作为一个实施例,所述区域的所述位置为所述区域内中心点的位置。
作为一个实施例,所述区域的所述位置由一组地理坐标所确定。
作为一个实施例,所述第二信令指示所述第二信令的发射者的位置,所述第二信令的所述发射者的所述位置与所述第一节点的所述位置被用于计算所述第二信令的所述发射者与所述第一节点之间的距离,所述第一时间偏移值与所述第二信令的所述发射者与所述第一节点之间的所述距离有关。
作为一个实施例,所述第一时间偏移值与所述第二信令的所述发射者与所述第一节点之间的所述距离线性相关。
实施例11
实施例11示例了根据本申请的一个实施例的第一信令被用于指示第一时间窗示意图,如附图11所示。
作为一个实施例,所述第一信令显示的指示所述第一时间窗。
作为一个实施例,所述第一信令通过PBCH信道发送。
作为一个实施例,所述第一信令通过PSBCH信道发送。
作为一个实施例,所述第一信令通过PDSCH信道发送。
作为一个实施例,所述第一信令指示一个相对系统帧号(SFN)的偏移量,所述第一时间窗为所述系统帧号与所述偏移量的差。
作为一个实施例,所述第一信令指示所述第一时隙的持续时间和所述第一时间窗所包含的所述第一时隙的数目。
实施例12
实施例12示例了根据本申请的一个实施例的第二信令被用于确定第一时间偏移量示意图,如附图12所示。
作为一个实施例,所述第二信令显示的指示所述第一时间偏移量。
作为一个实施例,所述第二信令通过PBCH信道发送。
作为一个实施例,所述第二信令通过PSBCH信道发送。
作为一个实施例,所述第二信令通过PDSCH信道发送。
作为一个实施例,所述第二信令指示所述第二信令的发射者的位置,所述第二信令的所述发射者的所述位置与所述第一节点的所述位置被用于计算所述第二信令的所述发射者与所述第一节点之间的距离,所述第一时间偏移值与所述第二信令的所述发射者与所述第一节点之间的所述距离有关。
作为一个实施例,所述第一时间偏移值与所述第二信令的所述发射者与所述第一节点之间的所述距离线性相关。
作为一个实施例,所述第二信令包括所述第二信令的发射者所进行的本地时间补偿值以及TA(定时提前)指令,所述第一时间偏移量等于所述本地时间补偿值和所述定时提前指令值的和。
作为一个实施例,所述第二信令包括TA(定时提前)指令,所述第一时间偏移量等于所述第一节点本地所做的时间补偿和所述定时提前指令值的和。
作为一个实施例,所述第二信令包含区域信息,所述区域信息被用于确定所述第一节点的位置。
作为一个实施例,所述区域信息包含所述第一节点所属的区域,所述区域的位置被用于所述第一节点的位置。
作为一个实施例,所述区域的所述位置为所述区域内一点的位置。
作为一个实施例,所述区域的所述位置为所述区域内中心点的位置。
作为一个实施例,所述区域的所述位置由一组地理坐标所确定。
作为一个实施例,所述第二信令包括所述第二信令的发射者的轨道信息,所述第一节点根据所述轨道信息确定所述第二信令发射者的位置,所述第二发射者的所述位置被用于计算所述第二信令的所述发射者与所述第一节点之间的距离,所述第一时间偏移值与所述第二信令的所述发射者与所述第一节点之间的所述距离有关。
实施例13
实施例13示例了根据本申请的一个实施例的第一索引被用于生成第一无线信号示意图,如附图13所示。
作为一个实施例,所述第一无线信号携带所述第一索引。
作为一个实施例,所述第一索引包括系统帧号(System Frame Number,SFN)。
作为一个实施例,所述第一索引包括超帧号(Hyper Frame Number,HFN)。
作为一个实施例,所述第一索引包括直接帧号(Direct Frame Number,DFN)。
作为一个实施例,所述第一索引被用于生成第一扰码序列的初始值,所述第一扰码序列被用于对第一比特块加扰,所述第一无线信号携带所述第一比特块。
作为一个实施例,所述第一扰码序列的所述初始值与所述第一索引线性相关。
作为一个实施例,所述第一扰码序列的所述初始值到所述第一索引的线性相关系数是512。
作为一个实施例,所述第一索引被用于生成第一比特块的CRC(Cyclic Redundance Check,循环冗余校验),所述第一无线信号携带所述第一比特块。
作为一个实施例,所述第一索引被用于生成第一比特块的所述CRC(Cyclic Redundance Check,循环冗余校验)的初始值。
作为一个实施例,所述第一索引作为所述第一无线信号的完整性保护算法的输入值。
作为一个实施例,所述第一索引作为所述第一无线信号的加密算法的输入值。
作为一个实施例,所述第一索引被用于确定接收所述第一无线信号的搜索空间(Search Space)。
作为一个实施例,所述第一索引被用于确定所述第一无线信号所在的资源块。
实施例14
实施例14示例了根据本申请的一个实施例的第二索引被用于生成第一无线信号示意图,如附图14所示。
作为一个实施例,所述第一无线信号携带所述第二索引。
作为一个实施例,所述第二索引包括系统帧号(System Frame Number,SFN)。
作为一个实施例,所述第二索引包括超帧号(Hyper Frame Number,HFN)。
作为一个实施例,所述第二索引包括直接帧号(Direct Frame Number,SFN)。
作为一个实施例,所述第二索引被用于生成第二扰码序列的初始值,所述第二扰码序列被用于对第二比特块加扰,所述第一无线信号携带所述第二比特块。
作为一个实施例,所述第二扰码序列的所述初始值与所述第二索引线性相关。
作为一个实施例,所述第二扰码序列的所述初始值到所述第二索引的线性相关系数是512。
作为一个实施例,所述第二索引被用于生成第二比特块的CRC(Cyclic Redundance Check,循环冗余校验),所述第一无线信号携带所述第二比特块。
作为一个实施例,所述第二索引被用于生成第二比特块的所述CRC(Cyclic Redundance Check,循环冗余校验)的初始值。
作为一个实施例,所述第二索引被用于生成第二比特块的的所述CRC的初始值。
作为一个实施例,所述第一无线信号是所述第二比特块依次经过信道编码,加扰,调制,层映射,预编码,资源映射,生成OFDM符号之后得到的。
作为一个实施例,所述第一索引作为所述第一无线信号的完整性保护算法的输入值。
作为一个实施例,所述第一索引作为所述第一无线信号的加密算法的输入值。
作为一个实施例,所述第一索引被用于确定接收所述第一无线信号的搜索空间(Search Space)。
作为一个实施例,所述第一索引被用于确定所述第一无线信号所在的资源块。
实施例15
实施例15示例了根据本申请的一个实施例的第一参考时间偏移值集合被用于确定第一时间偏移量示意图,如附图15所示。
作为一个实施例,所述第一参考时间偏移值集合包括所述第三信令的发送者的多个波束的参考时间偏移值。
作为一个实施例,所述多个波束的参考时间偏移值,其中每个波束对应一个所述参考时间值。
作为一个实施例,所述参考时间偏移值与所述第三信令的发送者到与所述参考时间值相关联的所述波束在地面投影的中心点的距离有关。
作为一个实施例,所述波束的索引被用于确定所述第一参考时间偏移值集合中的所述参考时间值。
作为一个实施例,所述参考时间值被用于确定所述第一时间偏移量。
作为一个实施例,所述第一时间偏移量与所述参考时间值线性相关。
作为一个实施例,所述第二信令包括TA(定时提前)信令,所述第一时间偏移量等于所述参考时间值与所述TA信令所代表的定时提前值的和。
实施例16
实施例16示例了根据本申请的一个实施例的第二信令与第一节点的位置共同被用于确 定第一时间偏移量示意图,如附图16所示。
作为一个实施例,所述第二信令指示所述第二信令的发射者的位置,所述第二信令的所述发射者的所述位置与所述第一节点的所述位置被用于计算所述第二信令的所述发射者与所述第一节点之间的距离,所述第一时间偏移值与所述第二信令的所述发射者与所述第一节点之间的所述距离有关。
作为一个实施例,所述第二信令包括所述第二信令的发射者的轨道信息,所述第一节点根据所述轨道信息确定所述第二信令发射者的位置,所述第二发射者的所述位置被用于计算所述第二信令的所述发射者与所述第一节点之间的距离,所述第一时间偏移值与所述第二信令的所述发射者与所述第一节点之间的所述距离有关。
作为一个实施例,所述第二信令包括所述第二信令的发射者的到一个参考点的距离信息,所述第一节点根据所述参考点的所述距离信息以及所述第一节点到所述参考点的距离信息,确定所述第一节点到所述第二信令发射者的距离,所述第一时间偏移值与所述第二信令的所述发射者与所述第一节点之间的所述距离有关。
作为一个实施例,所述第二信令包括所述参考点的地理位置信息,所述第一节点根据所述参考点的所述地理位置信息和所述第一节点的地理位置信息得到所述第一节点到所述参考点的所述距离。
作为一个实施例,所述第一时间偏移值与所述第二信令的所述发射者与所述第一节点之间的所述距离线性相关。
实施例17
实施例17示例了根据本申请的一个实施例的第二时间偏移量被用于确定第一时间偏移量示意图,如附图17所示。
作为一个实施例,所述第四信令包括所述第二时间偏移值。
作为一个实施例,所述第二时间偏移值包括所述第四信令的发送者到中继节点的链路(Feeder Link)的传播时延。
作为一个实施例,所述第四信令的发送者是所述第二信令的发送者。
作为一个实施例,所述第二信令指示所述第二信令的发射者的位置,所述第二信令的所述发射者的所述位置与所述第一节点的所述位置被用于计算所述第二信令的所述发射者与所述第一节点之间的距离,所述第一时间偏移值与所述第二信令的所述发射者与所述第一节点之间的所述距离和所述第二时间偏移量有关。
作为一个实施例,所述第一时间偏移值与所述第二信令的所述发射者与所述第一节点之间的所述距离所带来的传播时延与所述第二时间偏移量的和线性相关。
作为一个实施例,所述第二信令指示所述第二信令的发射者的位置,所述第二信令的所述发射者的所述位置与所述第一节点的所述位置被用于计算所述第二信令的所述发射者与所述第一节点之间的距离,所述第四信令的发送者到所述中继节点的距离与所述第二信令的所述发射者与所述第一节点之间的距离的和与所述第一时间偏移量有关。
实施例18
实施例18示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;如附图18所示。在附图18中,第一节点中的处理装置1800包括第一接收机1801,第一发射机1802。
在实施例18中,第一接收机1801接收第一信令,第二信令,第一三信令和第四信令;第一发送机1802发送第一无线信号,第二无线信号和第三无线信号。
在实施例18中,所述第一信令被用于指示第一时间窗,所述第一时隙在所述第一时间窗中的索引是第一索引,所述第二信令被用于确定第一时间偏移量;当所述第一无线信号在主链路上被发送时,第一索引被用于生成所述第一无线信号;当所述第一无线信号在副链路上 被发送时,第二索引被用于生成所述第一无线信号,所述第二索引与所述第一时间偏移量和所述第一索引均有关。
作为一个实施例,所述第一发射机1802发送第二无线信号;其中,所述第二无线信号指示第二时间窗,所述第一时隙在所述第二时间窗中的索引是所述第二索引。
作为一个实施例,所述第一发射机1802发送第三无线信号;其中,所述第三无线信号从所述第二时间窗中指示第一时频资源池。
作为一个实施例,所述第二信令与所述第一节点的位置共同被用于确定所述第一时间偏移量。
作为一个实施例,所述第一接收机1801接收第三信令,所述第三信令指示第一参考时间偏移值集合,所述第一参考时间偏移值集合被用于确定所述第一时间偏移量。
作为一个实施例,所述第一接收机1801接收第四信令,所述第四信令指示第二时间偏移量,所述第二时间偏移量被用于确定所述第一时间偏移量。
作为一个实施例,所述第一节点设备1800是一个用户设备(UE)。
作为一个实施例,所述第一节点设备1800是一个支持大时延差的用户设备。
作为一个实施例,所述第一节点设备1800是一个支持NTN的用户设备。
作为一个实施例,所述第一节点设备1800是一个飞行器设备。
作为一个实施例,所述第一节点设备1800是一个车载设备。
作为一个实施例,所述第一节点设备1800是一个中继设备。
作为一个实施例,所述第一节点设备1800是一个船只设备。
作为一个实施例,所述第一节点设备1800是一个工业物联网设备。
作为一个实施例,所述第一节点设备1800是一个支持低时延高可靠传输的设备。
作为一个实施例,所述第一接收机1801包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一发射机1802包括实施例4中的{天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一。
实施例19
实施例19示例了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图;如附图19所示。在附图19中,第二节点设备中的处理装置1900包括第二发射机1901和第二接收机1902。
在实施例19中,第二发射机1901发送第一信令、第二信令、第三信令和第四信令;第二接收机1902接收第一无线信号。
在实施例19中,所述第一信令被用于指示第一时间窗,所述第一时隙在所述第一时间窗中的索引是第一索引,所述第二信令被用于确定第一时间偏移量,所述第一时间偏移量和所述第一索引被用于确定第二索引。
作为一个实施例,所述第二信令与所述第一节点的位置共同被用于确定所述第一时间偏移量。
作为一个实施例,所述第二发射机1901发送第三信令,所述第三信令指示第一参考时间偏移值集合,所述第一参考时间偏移值集合被用于确定所述第一时间偏移量。
作为一个实施例,所述第二发射机1901发送第四信令,所述第四信令指示第二时间偏移量,所述第二时间偏移量被用于确定所述第一时间偏移量。
作为一个实施例,所述第二节点设备1900是基站。
作为一个实施例,所述第二节点设备1900是卫星。
作为一个实施例,所述第二节点设备1900是用户设备。
作为一个实施例,所述第二节点设备1900是网关。
作为一个实施例,所述第二节点设备1900是一个支持大时延差的基站设备。
作为一个实施例,所述第二发送机1901包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二接收机1802包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
实施例20
实施例20示例了根据本申请的一个实施例的用于第三节点设备中的处理装置的结构框图;如附图20所示。在附图20中,第三节点设备中的处理装置2000包括第三接收机2001。
在实施例20中,第三接收机2001接收第一无线信号,第二无线信号和第三无线信号。
在实施例20中,第一信令被用于指示第一时间窗,所述第一时隙在所述第一时间窗中的索引是第一索引,第二信令被用于确定第一时间偏移量;当所述第一无线信号的发射者在主链路上发送所述第一无线信号时,第一索引被用于生成所述第一无线信号;当所述第一无线信号在副链路上被发送时,第二索引被用于生成所述第一无线信号,所述第二索引与所述第一时间偏移量和所述第一索引均有关。
作为一个实施例,第一信令由所述在主链路上发送的第一无线信号的接收者所发送。
作为一个实施例,第一信令由所述第一无线信号的发送者所发送。
作为一个实施例,第二信令由所述在主链路上发送的第一无线信号的接收者所发送。
作为一个实施例,第二信令由所述第一无线信号的发送者所发送。
作为一个实施例,第一信令由所述第三节点的服务小区发送。
作为一个实施例,第二信令由所述第三节点的服务小区发送。
作为一个实施例,所述第三接收机2001接收第二无线信号;
其中,所述第二无线信号指示第二时间窗,所述第一时隙在所述第二时间窗中的索引是所述第二索引。
作为一个实施例,所述第三接收机2001接收第三无线信号;
其中,所述第三无线信号从所述第二时间窗中指示第一时频资源池。
作为一个实施例,所述第二信令与所述第一无线信号的发送者的位置共同被用于确定所述第一时间偏移量。
作为一个实施例,第三信令指示第一参考时间偏移值集合,所述第一参考时间偏移值集合被用于确定所述第一时间偏移量,
其中所述第三信令由所述第一无线信号的发送者的所述参考同步源发送给所述第一无线信号的发送者。
作为一个实施例,第四信令指示第二时间偏移量,所述第二时间偏移量被用于确定所述第一时间偏移量,
其中,所述第四信令由所述第一无线信号的发送者的所述参考同步源发送给所述第一无线信号的发送者。
作为一个实施例,所述第三节2000点确定参考同步源,
其中,所述第一无线信号的发送者是否被确定为参考同步源,与所述第二时间窗有关。
作为一个实施例,所述第三发射机2002发送第四无线信号,所述第三节点所确定的参考同步源所发送的同步信号的接收定时被用于确定所述第四无线信号的发送定时。
作为一个实施例,所述第三发射机2002发送第五无线信号,所述第三节点所确定的参考同步源所发送的同步信号的发送定时被用于确定所述第四无线信号的发送定时。
作为一个实施例,所述第三发射机2002在所述第一时频资源池中的时频资源上发送第四无线信号。
作为一个实施例,所述第三发射机2002发送第五无线信号,所述第一无线信号被用于确定所述第五无线信号的发送定时,且所述第一无线信号的发送者与所述第三节点所确定的所述参考同步源不同。
作为一个实施例,所述第三发射机2002在所述第一时频资源池中的时频资源上发送所述第五无线信号。
作为一个实施例,所述第三节点设备2000是用户设备。
作为一个实施例,所述第三节点设备2000是中继设备。
作为一个实施例,所述第三接收机2001包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IoT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑,卫星通信设备,船只通信设备,NTN用户设备等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点),NTN基站,卫星设备,飞行平台设备等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种被用于无线通信的第一节点,其特征在于包括:
    第一接收机,接收第一信令和第二信令;
    第一发射机,在第一时隙中发送第一无线信号;
    其中,所述第一信令被用于指示第一时间窗,所述第一时隙在所述第一时间窗中的索引是第一索引,所述第二信令被用于确定第一时间偏移量;当所述第一无线信号在主链路上被发送时,第一索引被用于生成所述第一无线信号;当所述第一无线信号在副链路上被发送时,第二索引被用于生成所述第一无线信号,所述第二索引与所述第一时间偏移量和所述第一索引均有关。
  2. 根据权利要求1所述的第一节点,其特征在于,所述第一发射机发送第二无线信号;
    其中,所述第二无线信号指示第二时间窗,所述第一时隙在所述第二时间窗中的索引是所述第二索引。
  3. 根据权利要求2所述的第一节点,其特征在于,所述第一发射机发送第三无线信号;其中,所述第三无线信号从所述第二时间窗中指示第一时频资源池。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,所述第二信令与所述第一节点的位置共同被用于确定所述第一时间偏移量。
  5. 根据权利要求1至4所述的第一节点,其特征在于:
    所述第一接收机接收第三信令,所述第三信令指示第一参考时间偏移值集合,所述第一参考时间偏移值集合被用于确定所述第一时间偏移量。
  6. 根据权利要求1至5所述的第一节点,其特征在于:
    所述第一接收机接收第四信令,所述第四信令指示第二时间偏移量,所述第二时间偏移量被用于确定所述第一时间偏移量。
  7. 一种被用于无线通信的第二节点,其特征在于包括:
    第二发射机,发射第一信令和第二信令;
    第二接收机,在第一时隙中接收第一无线信号;
    其中,所述第一信令被用于指示第一时间窗,所述第一时隙在所述第一时间窗中的索引是第一索引,所述第二信令被用于确定第一时间偏移量;当所述第一无线信号在主链路上被发送时,第一索引被用于生成所述第一无线信号;当所述第一无线信号的发送者在副链路上发送所述第一无线信号时,第二索引被用于生成所述第一无线信号,所述第二索引与所述第一时间偏移量和所述第一索引均有关。
  8. 一种被用于无线通信的第三节点,其特征在于包括:
    第三接收机,在第一时隙中接收第一无线信号;
    其中,第一信令被用于指示第一时间窗,所述第一时隙在所述第一时间窗中的索引是第一索引,第二信令被用于确定第一时间偏移量;当所述第一无线信号的发射者在主链路上发送所述第一无线信号时,第一索引被用于生成所述第一无线信号;当所述第一无线信号在副链路上被发送时,第二索引被用于生成所述第一无线信号,所述第二索引与所述第一时间偏移量和所述第一索引均有关。
  9. 一种被用于无线通信的第一节点中的方法,其特征在于包括:
    接收第一信令和第二信令;
    在第一时隙中发送第一无线信号;
    其中,所述第一信令被用于指示第一时间窗,所述第一时隙在所述第一时间窗中的索引是第一索引,所述第二信令被用于确定第一时间偏移量;当所述第一无线信号在主链路上被发送时,第一索引被用于生成所述第一无线信号;当所述第一无线信号在副链路上被发送时,第二索引被用于生成所述第一无线信号,所述第二索引与所述第一时间偏移量和所述第一索引均有关。
  10. 一种被用于无线通信的第二节点中的方法,其特征在于包括:
    发射第一信令和第二信令;
    在第一时隙中接收第一无线信号;
    其中,所述第一信令被用于指示第一时间窗,所述第一时隙在所述第一时间窗中的索引是第一索引,所述第二信令被用于确定第一时间偏移量;当所述第一无线信号在主链路上被发送时,第一索引被用于生成所述第一无线信号;当所述第一无线信号的发送者在副链路上发送所述第一无线信号时,第二索引被用于生成所述第一无线信号,所述第二索引与所述第一时间偏移量和所述第一索引均有关。
  11. 一种被用于无线通信的第三节点中的方法,其特征在于包括:
    在第一时隙中接收第一无线信号;
    其中,第一信令被用于指示第一时间窗,所述第一时隙在所述第一时间窗中的索引是第一索引,第二信令被用于确定第一时间偏移量;当所述第一无线信号的发射者在主链路上发送所述第一无线信号时,第一索引被用于生成所述第一无线信号;当所述第一无线信号在副链路上被发送时,第二索引被用于生成所述第一无线信号,所述第二索引与所述第一时间偏移量和所述第一索引均有关。
PCT/CN2020/121363 2019-11-09 2020-10-16 一种被用于无线通信的方法和装置 WO2021088618A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/737,039 US20220264501A1 (en) 2019-11-09 2022-05-05 Method and device used for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911090952.6 2019-11-09
CN201911090952.6A CN112788732B (zh) 2019-11-09 2019-11-09 一种被用于无线通信的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/737,039 Continuation US20220264501A1 (en) 2019-11-09 2022-05-05 Method and device used for wireless communication

Publications (1)

Publication Number Publication Date
WO2021088618A1 true WO2021088618A1 (zh) 2021-05-14

Family

ID=75749369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121363 WO2021088618A1 (zh) 2019-11-09 2020-10-16 一种被用于无线通信的方法和装置

Country Status (3)

Country Link
US (1) US20220264501A1 (zh)
CN (2) CN112788732B (zh)
WO (1) WO2021088618A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023041064A1 (zh) * 2021-09-18 2023-03-23 中兴通讯股份有限公司 时间参数确定方法、设备和存储介质
WO2023216896A1 (zh) * 2022-05-11 2023-11-16 上海朗帛通信技术有限公司 用于定位的方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11601906B2 (en) * 2020-07-01 2023-03-07 Qualcomm Incorporated Downlink synchronization for non-terrestrial wireless communications

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170127251A1 (en) * 2015-11-04 2017-05-04 Lg Electronics Inc. Method for transmitting a sidelink buffer status reporting in a d2d communication system and device therefor
WO2018031061A1 (en) * 2016-08-10 2018-02-15 Intel Corporation Design of sidelink demodulation reference signals
CN109804678A (zh) * 2016-09-27 2019-05-24 Lg电子株式会社 在无线通信系统中发送和接收装置对装置通信终端的同步信号的方法和装置
CN110140408A (zh) * 2016-11-02 2019-08-16 Lg电子株式会社 用于在无线通信系统中执行副链路发送的方法及其装置
CN110234170A (zh) * 2018-03-06 2019-09-13 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110419186A (zh) * 2017-03-23 2019-11-05 夏普株式会社 用于上行链路超高可靠和低延迟通信的下行链路控制通道

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015065085A1 (ko) * 2013-10-31 2015-05-07 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 d2d 동작 방법 및 상기 방법을 이용하는 단말
EP3136631B1 (en) * 2014-04-24 2020-01-15 LG Electronics Inc. Method for transmitting synchronization signal for d2d communication in wireless communication system and apparatus therefor
CN110855416A (zh) * 2014-04-30 2020-02-28 Oppo广东移动通信有限公司 设备到设备通信的方法、用户设备、网络节点及存储介质
CN110266465B (zh) * 2014-07-07 2021-11-26 Lg电子株式会社 无线通信系统中的d2d通信的信号发送方法及其终端
KR20170048416A (ko) * 2014-08-20 2017-05-08 엘지전자 주식회사 무선 통신 시스템에서 신호 전송 방법 및 장치
CN107005799B (zh) * 2014-12-08 2020-06-30 Lg 电子株式会社 无线通信系统中执行设备对设备通信的方法和执行该方法的设备
CN106162597A (zh) * 2015-04-10 2016-11-23 中兴通讯股份有限公司 设备到设备d2d传输方法及装置
CN107046461B (zh) * 2016-02-05 2022-06-07 北京三星通信技术研究有限公司 V2x终端时频同步的发送和接收处理方法及装置
CN109891959B (zh) * 2016-11-01 2021-09-07 Lg电子株式会社 通过应用偏移来发送d2d信号的方法和设备
US10652911B2 (en) * 2016-11-02 2020-05-12 Lg Electronics Inc. Method for dropping communication based on priority by wireless device supporting WAN communication and V2X communication and, the wireless device performing the method
CN108616840A (zh) * 2017-01-20 2018-10-02 北京三星通信技术研究有限公司 一种车对外界v2x通信的方法及装置
CN109005585A (zh) * 2017-06-06 2018-12-14 华为技术有限公司 发送上行信息的方法和装置
US10470143B2 (en) * 2018-03-13 2019-11-05 Qualcomm Incorporated Systems and methods for timing synchronization and synchronization source selection for vehicle-to-vehicle communications

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170127251A1 (en) * 2015-11-04 2017-05-04 Lg Electronics Inc. Method for transmitting a sidelink buffer status reporting in a d2d communication system and device therefor
WO2018031061A1 (en) * 2016-08-10 2018-02-15 Intel Corporation Design of sidelink demodulation reference signals
CN109804678A (zh) * 2016-09-27 2019-05-24 Lg电子株式会社 在无线通信系统中发送和接收装置对装置通信终端的同步信号的方法和装置
CN110140408A (zh) * 2016-11-02 2019-08-16 Lg电子株式会社 用于在无线通信系统中执行副链路发送的方法及其装置
CN110419186A (zh) * 2017-03-23 2019-11-05 夏普株式会社 用于上行链路超高可靠和低延迟通信的下行链路控制通道
CN110234170A (zh) * 2018-03-06 2019-09-13 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC: "DL Signals and Channels for NR-U Operation", 3GPP DRAFT; R1-1908383_DL SIGNALS AND CHANNELS FOR NR-U OPERATION_FINAL, vol. RAN WG1, 17 August 2019 (2019-08-17), Prague, Czech Republic, pages 1 - 9, XP051764992 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023041064A1 (zh) * 2021-09-18 2023-03-23 中兴通讯股份有限公司 时间参数确定方法、设备和存储介质
WO2023216896A1 (zh) * 2022-05-11 2023-11-16 上海朗帛通信技术有限公司 用于定位的方法和装置

Also Published As

Publication number Publication date
US20220264501A1 (en) 2022-08-18
CN115190579A (zh) 2022-10-14
CN112788732B (zh) 2022-08-19
CN112788732A (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
WO2020011092A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020199977A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2018103444A1 (zh) 一种用于功率调整的用户设备、基站中的方法和装置
WO2021088618A1 (zh) 一种被用于无线通信的方法和装置
US11032833B2 (en) Method and device for dynamic scheduling in UE and base station
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021103926A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20230283433A1 (en) Method and device in nodes used for wireless communication
WO2019014882A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2020233406A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2019228145A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021088609A1 (zh) 一种被用于无线通信的方法和设备
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023072136A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022166702A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN114666026A (zh) 一种被用于无线通信的节点中的方法和装置
WO2022188749A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021031901A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020259238A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN112291741B (zh) 一种被用于无线通信的节点中的方法和装置
CN115021790A (zh) 一种被用于无线通信的节点中的方法和装置
WO2021098468A1 (zh) 一种被用于无线通信的方法和设备
WO2020253530A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023179471A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023040922A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886143

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20886143

Country of ref document: EP

Kind code of ref document: A1