WO2020253530A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2020253530A1
WO2020253530A1 PCT/CN2020/094137 CN2020094137W WO2020253530A1 WO 2020253530 A1 WO2020253530 A1 WO 2020253530A1 CN 2020094137 W CN2020094137 W CN 2020094137W WO 2020253530 A1 WO2020253530 A1 WO 2020253530A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier symbol
signaling
symbol set
carrier
node
Prior art date
Application number
PCT/CN2020/094137
Other languages
English (en)
French (fr)
Inventor
蒋琦
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2020253530A1 publication Critical patent/WO2020253530A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, and in particular to a method and device for resource selection and resource allocation in a system with relatively large transmission delay.
  • V2X Vehicle-to-Everything
  • 3GPP has also started standard formulation and research work under the NR framework.
  • 3GPP has completed the formulation of requirements for 5G V2X services and has written it into the standard TS22.886.
  • 3GPP defines 4 Use Case Groups for 5G V2X services, including: Automated Queued Driving (Vehicles Platnooning), Support for Extended Sensors (Extended Sensors), Semi/Fully Automatic Driving (Advanced Driving) and Remote Driving ( Remote Driving).
  • Automated Queued Driving Vehicle-to-Everything
  • Advanced Driving Advanced Driving
  • Remote Driving Remote Driving
  • the V2X sender determines the time-frequency resources for V2X transmission through sensing measurement (Sensing Measurement).
  • NTN Non-Terrestrial Networks
  • R15 the research project of Non-Terrestrial Networks (NTN, Non-Terrestrial Networks) under NR was passed at the 3GPP RAN#75 plenary meeting.
  • the R15 version started.
  • NTN network has the advantage of wide coverage.
  • NTN network can configure time-frequency resources for V2X transmission for geographic locations that are not covered by ground base stations, and then V2X terminals determine the actual situation based on the existing sensing method. Time-frequency resources for transmission.
  • the NTN network has a path delay far greater than that of the ground base station, and the uplink transmission power value for the satellite will also be larger. Therefore, it is necessary to reconsider the interference of the cellular link to the V2X link transmission and Corresponding interference coordination method.
  • this application discloses a solution. It should be noted that, in the case of no conflict, the embodiments of the first node and the third node of this application and the features in the embodiments can be It is applied to the base station, and the embodiment of the second node in this application and the features in the embodiment can be applied to the terminal. At the same time, in the case of no conflict, the embodiments of the present application and the features in the embodiments can be combined with each other at will.
  • This application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the second multi-carrier symbol set belongs to the first time unit set, give up wireless transmission in the first multi-carrier symbol set; when the second multi-carrier symbol set does not belong to the first time unit set, Sending a first signal in the first set of multi-carrier symbols;
  • the first scheduling information is applied to the first signal; the multi-carrier symbols in the second multi-carrier symbol set have a one-to-one correspondence with the multi-carrier symbols in the first multi-carrier symbol set; the The time interval between any multi-carrier symbol in the second multi-carrier symbol set and the corresponding multi-carrier symbol in the first multi-carrier symbol set is the first time interval.
  • the principle of the above method is: in the current V2X system, the transmission delay often does not exceed the duration of one multi-carrier symbol, and as long as the terminal aligns the transmission time with the base station, refer to the V2X in different time slots of the base station sequence. There will be no interference between transmission and Uu port uplink transmission; in NTN system, due to the large transmission delay, it reaches the level of multiple or even tens of milliseconds; and when an NTN terminal transmits uplink, even from the base station side V2X and NTN are configured in different time slots, and NTN transmission will also be shifted to V2X subframes, which will cause Uu link to interfere with V2X.
  • the advantage of the above method is that the first time interval corresponds to the delay between the first node and the NTN base station, and the second multi-carrier symbol set corresponds to the Uu port caused by the delay in the first multi-carrier.
  • the first time interval is sent to the NTN base station through the second signaling.
  • the first node sends the uplink to the NTN base station, it will potentially affect the configured first time interval.
  • the NTN base station avoids scheduling the first node in the second multi-carrier symbol set.
  • This application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first monitoring is performed to determine whether to perform wireless transmission in the first set of multi-carrier symbols; Send the first signal in the set; if the judgment is no, give up wireless transmission in the first multi-carrier symbol set; when the second multi-carrier symbol set does not belong to the first time unit set, in the first multi-carrier symbol set Sending the first signal in the symbol set;
  • the first scheduling information is applied to the first signal, and the multi-carrier symbols in the second multi-carrier symbol set have a one-to-one correspondence with the multi-carrier symbols in the first multi-carrier symbol set;
  • the time interval between any multi-carrier symbol in the second multi-carrier symbol set and the corresponding multi-carrier symbol in the first multi-carrier symbol set is the first time interval.
  • the advantage of the above method is that when the second multi-carrier symbol set belongs to the first time unit set, it means that the transmission of the first node will cause interference to the V2X transmission, and the first node will pass all the The first monitoring further determines whether there is V2X transmission in the surrounding area, thereby avoiding unnecessary waste of resources due to the absence of V2X transmission in the surrounding area, and improving the overall spectrum efficiency.
  • the above method is characterized in that it includes:
  • the fourth signaling is received; the fourth signaling is used to determine a second time interval, and the first time interval is related to the second time interval.
  • the advantage of the above method is that the NTN base station transmits information of the NTN base station such as the base station type, downtilt angle, or the height of the base station through the fourth signaling to help the first node determine the first time interval.
  • the above method is characterized in that it includes:
  • the first type of signal set is detected; the first type of signal set is used to determine the existence of transmission on a wireless link other than the cellular link, and the first type of signal set is used to trigger the transmission of the second signaling .
  • the above method has the advantage that the sending of the second signaling is triggered by sensing, and only when V2X transmission is detected in the surroundings, the base station will be instructed to avoid interference to V2X transmission through scheduling.
  • This application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the second set of multi-carrier symbols belongs to the first set of time units, give up wireless reception for the first node in the first set of multi-carrier symbols, and the first node is responsible for the second signaling Sender; when the second multi-carrier symbol set does not belong to the first time unit set, receive the first signal in the first multi-carrier symbol set;
  • the first scheduling information is applied to the first signal; the multi-carrier symbols in the second multi-carrier symbol set have a one-to-one correspondence with the multi-carrier symbols in the first multi-carrier symbol set; the The time interval between any multi-carrier symbol in the second multi-carrier symbol set and the corresponding multi-carrier symbol in the first multi-carrier symbol set is the first time interval.
  • This application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the first node when the second multi-carrier symbol set belongs to the first time unit set, the first node performs first monitoring to determine whether to perform wireless transmission in the first multi-carrier symbol set; if the determination is yes, the first node A node sends the first signal in the first multi-carrier symbol set; if the judgment is no, the first node abandons wireless transmission in the second multi-carrier symbol set; when the second multi-carrier symbol set does not belong to all
  • the first time unit when the first time unit is set, the first node sends the first signal in the first multi-carrier symbol set; the first node is the sender of the second signaling; the first scheduling information Is applied to the first signal, the multi-carrier symbols in the second multi-carrier symbol set correspond one-to-one with the multi-carrier symbols in the first multi-carrier symbol set;
  • the time interval between any multi-carrier symbol and the corresponding multi-carrier symbol in the first multi-carrier symbol set is the first time interval.
  • the above method is characterized in that it includes:
  • the fourth signaling is sent; the fourth signaling is used to determine a second time interval, and the first time interval is related to the second time interval.
  • This application discloses a method used in a third node of wireless communication, which is characterized in that it includes:
  • the first type of signal set is used to determine that there is a transmission of a wireless link other than the cellular link, and the first type of signal set is used to trigger the transmission of the second signaling;
  • the second signaling Is used to indicate the first time interval, and the time interval between any multi-carrier symbol in the second multi-carrier symbol set and the corresponding multi-carrier symbol in the first multi-carrier symbol set is the first time interval;
  • the scheduling information is applied to the first signal; the multi-carrier symbols in the second multi-carrier symbol set have a one-to-one correspondence with the multi-carrier symbols in the first multi-carrier symbol set;
  • the third signaling indicates the first multi-carrier symbol.
  • the first signaling is used to indicate the first time unit set; when the second multi-carrier symbol set belongs to the first time unit set, the first node gives up Wireless transmission is performed in the first multi-carrier symbol set; when the second multi-carrier symbol set does not belong to the first time unit set, the first node sends the first multi-carrier symbol set in the first multi-carrier symbol set.
  • the first node performs first monitoring to determine whether to perform wireless transmission in the first multi-carrier symbol set; if the determination is yes , The first node sends the first signal in the first multi-carrier symbol set; if the judgment is no, the first node abandons wireless transmission in the first multi-carrier symbol set; when the second multi-carrier symbol When the set does not belong to the first time unit set, the first node sends the first signal in the first multi-carrier symbol set; the sender of the second signaling is the first node; the The receiver of the first type of signal includes the first node.
  • the above method is characterized in that the first type of signal set is used to determine a third time interval, and the third time interval and the second time interval are jointly used to determine the first time interval. A time interval.
  • This application discloses a first node used for wireless communication, which is characterized by including:
  • the first receiver receives first signaling, where the first signaling is used to indicate a first set of time units;
  • the first transmitter sends second signaling, where the second signaling is used to indicate the first time interval;
  • the second receiver receives third signaling, where the third signaling indicates the first multi-carrier symbol set and the first scheduling information;
  • the second transceiver when the second multi-carrier symbol set belongs to the first time unit set, give up wireless transmission in the first multi-carrier symbol set; when the second multi-carrier symbol set does not belong to the first When the time unit is set, send the first signal in the first multi-carrier symbol set;
  • the first scheduling information is applied to the first signal; the multi-carrier symbols in the second multi-carrier symbol set have a one-to-one correspondence with the multi-carrier symbols in the first multi-carrier symbol set; the The time interval between any multi-carrier symbol in the second multi-carrier symbol set and the corresponding multi-carrier symbol in the first multi-carrier symbol set is the first time interval.
  • This application discloses a first node used for wireless communication, which is characterized by including:
  • the first receiver receives first signaling, where the first signaling is used to indicate a first set of time units;
  • the first transmitter sends second signaling, where the second signaling is used to indicate the first time interval;
  • the second receiver receives third signaling, where the third signaling indicates the first multi-carrier symbol set and the first scheduling information;
  • the second transceiver when the second multi-carrier symbol set belongs to the first time unit set, performs first monitoring to determine whether to perform wireless transmission in the first multi-carrier symbol set; if the determination is yes, in the The first signal is sent in the first multi-carrier symbol set; if the judgment is no, the wireless transmission is abandoned in the first multi-carrier symbol set; when the second multi-carrier symbol set does not belong to the first time unit set, the Sending the first signal in the first multi-carrier symbol set;
  • the first scheduling information is applied to the first signal, and the multi-carrier symbols in the second multi-carrier symbol set have a one-to-one correspondence with the multi-carrier symbols in the first multi-carrier symbol set;
  • the time interval between any multi-carrier symbol in the second multi-carrier symbol set and the corresponding multi-carrier symbol in the first multi-carrier symbol set is the first time interval.
  • This application discloses a second node used for wireless communication, which is characterized by including:
  • the third transmitter sends first signaling, where the first signaling is used to indicate the first time unit set;
  • the third receiver receives second signaling, where the second signaling is used to indicate the first time interval;
  • a fourth transmitter sending third signaling, where the third signaling indicates the first multi-carrier symbol set and the first scheduling information
  • the fourth receiver when the second multi-carrier symbol set belongs to the first time unit set, abandons wireless reception for the first node in the first multi-carrier symbol set, and the first node is the The sender of the second signaling; when the second multi-carrier symbol set does not belong to the first time unit set, receive the first signal in the first multi-carrier symbol set;
  • the first scheduling information is applied to the first signal; the multi-carrier symbols in the second multi-carrier symbol set have a one-to-one correspondence with the multi-carrier symbols in the first multi-carrier symbol set; the The time interval between any multi-carrier symbol in the second multi-carrier symbol set and the corresponding multi-carrier symbol in the first multi-carrier symbol set is the first time interval.
  • This application discloses a second node used for wireless communication, which is characterized by including:
  • the third transmitter sends first signaling, where the first signaling is used to indicate the first time unit set;
  • the third receiver receives second signaling, where the second signaling is used to indicate the first time interval;
  • a fourth transmitter sending third signaling, where the third signaling indicates the first multi-carrier symbol set and the first scheduling information
  • a fourth receiver detecting the first signal in the first multi-carrier symbol set
  • the first node when the second multi-carrier symbol set belongs to the first time unit set, the first node performs first monitoring to determine whether to perform wireless transmission in the first multi-carrier symbol set; if the determination is yes, the first node A node sends the first signal in the first multi-carrier symbol set; if the judgment is no, the first node abandons wireless transmission in the first multi-carrier symbol set; when the second multi-carrier symbol set does not belong to all
  • the first time unit when the first time unit is set, the first node sends the first signal in the first multi-carrier symbol set; the first node is the sender of the second signaling; the first scheduling information Is applied to the first signal, the multi-carrier symbols in the second multi-carrier symbol set correspond one-to-one with the multi-carrier symbols in the first multi-carrier symbol set;
  • the time interval between any multi-carrier symbol and the corresponding multi-carrier symbol in the first multi-carrier symbol set is the first time interval.
  • This application discloses a third node used for wireless communication, which is characterized by including:
  • the fifth transmitter transmits the first type of signal set
  • the first type of signal set is used to determine that there is a transmission of a wireless link other than the cellular link, and the first type of signal set is used to trigger the transmission of the second signaling;
  • the second signaling Is used to indicate the first time interval, and the time interval between any multi-carrier symbol in the second multi-carrier symbol set and the corresponding multi-carrier symbol in the first multi-carrier symbol set is the first time interval;
  • the scheduling information is applied to the first signal; the multi-carrier symbols in the second multi-carrier symbol set have a one-to-one correspondence with the multi-carrier symbols in the first multi-carrier symbol set;
  • the third signaling indicates the first multi-carrier symbol.
  • the first signaling is used to indicate the first time unit set; when the second multi-carrier symbol set belongs to the first time unit set, the first node gives up Wireless transmission is performed in the first multi-carrier symbol set; when the second multi-carrier symbol set does not belong to the first time unit set, the first node sends the first multi-carrier symbol set in the first multi-carrier symbol set.
  • the first node performs first monitoring to determine whether to perform wireless transmission in the first multi-carrier symbol set; if the determination is yes , The first node sends the first signal in the first multi-carrier symbol set; if the judgment is no, the first node abandons wireless transmission in the first multi-carrier symbol set; when the second multi-carrier symbol When the set does not belong to the first time unit set, the first node sends the first signal in the first multi-carrier symbol set; the sender of the second signaling is the first node; the The receiver of the first type of signal includes the first node.
  • this application has the following advantages:
  • the first time interval corresponds to the delay between the first node and the NTN base station
  • the second multi-carrier symbol set corresponds to the wireless signal transmitted in the first multi-carrier symbol set on the Uu port caused by the delay
  • the NTN base station avoids scheduling the first node in the second multi-carrier symbol set.
  • the second multi-carrier symbol set belongs to the first time unit set, it means that the transmission of the first node will cause interference to the transmission of V2X, and the first node further determines whether there is surrounding area through the first monitoring V2X transmission avoids unnecessary waste of resources because there is no V2X transmission nearby, and improves the overall spectrum efficiency.
  • Fig. 1 shows a processing flowchart of a first node according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Fig. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Fig. 5 shows a processing flowchart of a first node according to another embodiment of the present application
  • Fig. 6 shows a flowchart of the first signaling according to an embodiment of the present application
  • Fig. 7 shows a flow chart of the first signal according to an embodiment of the present application.
  • FIG. 8 shows a flowchart of the first signal according to another embodiment of the present application.
  • Fig. 9 shows a schematic diagram of a first time unit set and a second multi-carrier symbol set according to an embodiment of the present application
  • Fig. 10 shows a schematic diagram of a first time unit set and a second multi-carrier symbol set according to another embodiment of the present application
  • Fig. 11 shows a schematic diagram of a first time unit set and a second multi-carrier symbol set according to another embodiment of the present application
  • Figure 12 shows a schematic diagram according to the present application
  • Fig. 13 shows a schematic diagram of an application scenario according to an embodiment of the present application
  • Fig. 14 shows a structural block diagram used in the first node according to an embodiment of the present application.
  • FIG. 15 shows a structural block diagram used in the first node according to another embodiment of the present application.
  • Fig. 16 shows a structural block diagram used in a second node according to an embodiment of the present application
  • Fig. 17 shows a structural block diagram used in a second node according to another embodiment of the present application.
  • Fig. 18 shows a structural block diagram used in a third node according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flowchart of the first node, as shown in FIG. 1.
  • each box represents a step.
  • the first node in this application receives the first signaling in step 101, and the first signaling is used to indicate the first time unit set; in step 102, the second signaling is sent, so The second signaling is used to indicate the first time interval; in step 103, the third signaling is received, and the third signaling indicates the first multi-carrier symbol set and the first scheduling information; in step 104, it is used as the second
  • the multi-carrier symbol set belongs to the first time unit set, give up wireless transmission in the first multi-carrier symbol set; when the second multi-carrier symbol set does not belong to the first time unit set, in the The first signal is sent in the first set of multi-carrier symbols.
  • the first scheduling information is applied to the first signal; the multi-carrier symbols in the second multi-carrier symbol set correspond to the multi-carrier symbols in the first multi-carrier symbol set one-to-one ;
  • the time interval between any multi-carrier symbol in the second multi-carrier symbol set and the corresponding multi-carrier symbol in the first multi-carrier symbol set is the first time interval.
  • the sender of the first signaling is the second node.
  • the second node is a base station in NTN.
  • the second node is a non-terrestrial base station.
  • the second node is GEO (Geostationary Earth Orbiting, synchronous earth orbit) satellite, MEO (Medium Earth Orbiting, medium earth orbit) satellite, LEO (Low Earth Orbit, low earth orbit) satellite, HEO (Highly Earth) One of Elliptical Orbiting satellites or Airborne Platform.
  • GEO Globalstar Earth Orbiting, synchronous earth orbit
  • MEO Medium Earth Orbiting, medium earth orbit
  • LEO Low Earth Orbit, low earth orbit
  • HEO Highly Earth
  • the first time unit set is composed of K1 time units, and the K1 is a positive integer.
  • the K1 time units are respectively K1 time slots (Slot).
  • any time unit in the K1 time units includes a positive integer number of time slots.
  • all time slots in any time unit of the K1 time units are continuous.
  • the K1 is greater than one.
  • the K1 is equal to 1.
  • the time unit shown in this application is a time slot, or the time unit in this application is a subframe (Subframe), or the time unit in this application is a mini-slot (Mini-Slot ).
  • the first time unit set is reserved for non-cellular link transmission.
  • the non-cellular link includes a secondary link.
  • the non-cellular link is used for V2X service transmission.
  • the first scheduling information includes MCS (Modulation and Coding Status, modulation and coding mode).
  • MCS Modulation and Coding Status, modulation and coding mode
  • the first scheduling information includes HARQ (Hybrid Automatic Repeat request, hybrid automatic repeat request) process number, RV (Redundancy Version, redundancy version), and NDI (New Data Indicator, new data indication).
  • HARQ Hybrid Automatic Repeat request, hybrid automatic repeat request
  • RV Redundancy Version, redundancy version
  • NDI New Data Indicator, new data indication
  • the first multi-carrier symbol set includes multiple consecutive multi-carrier symbols.
  • the first multi-carrier symbol set includes only one multi-carrier symbol.
  • the multi-carrier symbol in this application is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol in this application is SC-FDMA (Single-Carrier Frequency Division Multiple Access, Single-Carrier Frequency Division Multiple Access) symbol.
  • the multi-carrier symbol in this application is a FBMC (Filter Bank Multi Carrier, filter bank multi-carrier) symbol.
  • FBMC Filter Bank Multi Carrier, filter bank multi-carrier
  • the multi-carrier symbol in this application is an OFDM symbol including a CP (Cyclic Prefix).
  • the multi-carrier symbol in this application is a DFT-s-OFDM (Discrete Fourier Transform Spreading Orthogonal Frequency Division Multiplexing) symbol including CP.
  • DFT-s-OFDM Discrete Fourier Transform Spreading Orthogonal Frequency Division Multiplexing
  • the first time interval is equal to the transmission delay (Transmission Delay) from the first node to the second node.
  • the first time interval is a quantized value of the transmission delay from the first node to the second node.
  • the unit of the first time interval is a time slot (Slot).
  • the unit of the first time interval is milliseconds.
  • the unit of the first time interval is a subframe (Subframe).
  • the unit of the first time interval is the length of time occupied by one multi-carrier symbol.
  • the unit of the first time interval is microseconds.
  • the unit of the first time interval is 1/30720 milliseconds.
  • the unit of the first time interval is 1/X milliseconds, and the X is a positive integer multiple of 30720.
  • the first time interval increases as the distance between the first node and the second node increases.
  • the first time interval is related to the height of the second node.
  • the first time interval is related to the inclination angle between the second node and the first node.
  • the third signaling is DCI (Downlink Control Information, downlink control information).
  • the third signaling is an uplink grant (UL Grant).
  • UL Grant uplink grant
  • the meaning of the third signaling in the above sentence indicating the first multi-carrier symbol set includes: the third signaling is used to indicate the multi-carrier occupied by the first multi-carrier symbol set in the time domain The position of the symbol.
  • the meaning of the above sentence giving up wireless transmission in the first multi-carrier symbol set includes: the first node does not send the first signal in the first multi-carrier symbol set.
  • the meaning of the above sentence giving up wireless transmission in the first multi-carrier symbol set includes: the first node postpones sending the first signal.
  • the meaning of the above sentence giving up wireless transmission in the first multi-carrier symbol set includes: the first node buffers the first signal, and the time after the first multi-carrier symbol set The first signal is sent in the window.
  • the first signal is a wireless signal.
  • the first signal is a baseband signal.
  • the physical layer channels included in the first signal include PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • the wireless signal included in the first signal includes SRS (Sounding Reference Signal, sounding reference signal).
  • SRS Sounding Reference Signal, sounding reference signal
  • the meaning that the second set of multi-carrier symbols in the above sentence belongs to the first set of time units includes: the second set of multi-carrier symbols includes K2 multi-carrier symbols, where K2 is a positive integer, and Any multi-carrier symbol in the K2 multi-carrier symbols is one multi-carrier symbol included in the first time unit set.
  • the meaning that the second set of multi-carrier symbols in the above sentence does not belong to the first set of time units includes: the second set of multi-carrier symbols includes K2 multi-carrier symbols, where K2 is a positive integer, so Any multi-carrier symbol in the K2 multi-carrier symbols is not one multi-carrier symbol included in the first time unit set.
  • the third signaling indicates a first multi-carrier symbol group
  • the first multi-carrier symbol group includes the first multi-carrier symbol set, and the multi-carrier symbols in the first multi-carrier symbol group One-to-one correspondence with the multi-carrier symbols in the second multi-carrier symbol group, and the difference between any multi-carrier symbol in the second multi-carrier symbol group and the corresponding multi-carrier symbol in the first multi-carrier symbol group
  • the time interval is the first time interval; in the second multi-carrier symbol group, only the second multi-carrier symbol set belongs to the first time unit; the first node gives up being in the first multi-carrier symbol set Wireless transmission is performed, and transmission on a multi-carrier symbol that is reserved in the first multi-carrier symbol group and outside the first multi-carrier symbol set.
  • the third signaling indicates a first multi-carrier symbol group
  • the first multi-carrier symbol group includes the first multi-carrier symbol set, and the multi-carrier symbols in the first multi-carrier symbol group One-to-one correspondence with the multi-carrier symbols in the second multi-carrier symbol group, and the difference between any multi-carrier symbol in the second multi-carrier symbol group and the corresponding multi-carrier symbol in the first multi-carrier symbol group
  • the time interval is the first time interval; in the second multi-carrier symbol group, only the second multi-carrier symbol set belongs to the first time unit; the first node gives up being in the first multi-carrier symbol group Send wirelessly.
  • the third signaling indicates a first multi-carrier symbol group
  • the first multi-carrier symbol group includes the first multi-carrier symbol set, and the multi-carrier symbols in the first multi-carrier symbol group One-to-one correspondence with the multi-carrier symbols in the second multi-carrier symbol group, and the difference between any multi-carrier symbol in the second multi-carrier symbol group and the corresponding multi-carrier symbol in the first multi-carrier symbol group
  • the time interval is the first time interval; in the second multi-carrier symbol group, only the second multi-carrier symbol set belongs to the first time unit; the first node gives up being in the first multi-carrier symbol set Perform wireless transmission, and perform channel sensing measurement (Sensing Measurement) to determine whether to retain transmission on multi-carrier symbols in the first multi-carrier symbol group and outside the first multi-carrier symbol group.
  • the channel sensing determines that there is no secondary link transmission around, and the first node is reserved in the first multi-carrier symbol group and is outside the first multi-carrier symbol set. Transmission on multi-carrier symbols.
  • the channel sensing determines that there is secondary link transmission around, and the first node abandons the data in the first multi-carrier symbol group and out of the first multi-carrier symbol group. Transmission on multi-carrier symbols.
  • the second signaling is sent in a broadcast (Broadcast) manner.
  • the second signaling is sent in a multicast (Groupcast) manner.
  • the recipient of the second signaling includes a node other than the second node.
  • the recipient of the second signaling includes a terminal performing V2X communication.
  • the second signaling includes a second time unit set, the second time unit set includes a positive integer number of time units, and the second time unit set is reserved for the first node Uplink transmission of cellular link.
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG. 2.
  • FIG. 2 illustrates a diagram of the network architecture 200 of 5G NR, LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) systems.
  • the 5G NR or LTE network architecture 200 may be referred to as EPS (Evolved Packet System, evolved packet system) 200 with some other suitable terminology.
  • EPS Evolved Packet System, evolved packet system
  • EPS 200 may include one or more UEs (User Equipment) 201, a UE241 that communicates with UE201 on a secondary link, and a UE242 that communicates with UE201 on a secondary link, NG-RAN (Next Generation Wireless access network) 202, EPC (Evolved Packet Core)/5G-CN (5G-Core Network, 5G core network) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in the figure, EPS provides packet switching services, but those skilled in the art will easily understand that various concepts presented throughout this application can be extended to networks that provide circuit switching services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an Xn interface (for example, backhaul).
  • the gNB203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive node) or some other suitable terminology.
  • gNB203 provides UE201 with an access point to EPC/5G-CN 210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , Video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine-type communication devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices Video devices
  • digital audio players for example, MP3 players
  • cameras game consoles
  • drones aircraft
  • narrowband IoT devices machine-type communication devices
  • machine-type communication devices land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE201 can also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to EPC/5G-CN 210 through the S1/NG interface.
  • EPC/5G-CN 210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/UPF (User Plane Function, user plane function) 211, other MME/AMF/UPF214, S-GW (Service Gateway, Serving Gateway) 212 and P-GW (Packet Date Network Gateway, Packet Data Network Gateway) 213.
  • MME/AMF/UPF211 is a control node that processes the signaling between UE201 and EPC/5G-CN 210.
  • MME/AMF/UPF211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW212, and S-GW212 itself is connected to P-GW213.
  • the P-GW213 provides UE IP address allocation and other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes the corresponding Internet protocol service of the operator, which may specifically include the Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching streaming service.
  • the UE201 corresponds to the first node in this application.
  • the gNB203 corresponds to the second node in this application.
  • the UE 241 corresponds to the third node in this application.
  • the air interface between the UE201 and the gNB203 is a Uu interface.
  • the air interface between the UE201 and the UE241 is a PC-5 interface.
  • the wireless link between the UE201 and the gNB203 is a cellular link.
  • the radio link between the UE201 and the UE241 is a secondary link.
  • the uplink transmission of the UE 201 interferes with the V2X transmission of the UE 241.
  • the first node in this application is a terminal covered by the gNB203.
  • the third node in this application is a terminal outside the coverage of the gNB203.
  • the third node in this application is a terminal covered by the gNB203.
  • the first node and the third node belong to a V2X pair (Pair).
  • the uplink transmission of the first node interferes with V2X transmission between the third node and nodes other than the third node.
  • the first node is a car.
  • the first node is a vehicle.
  • the second node is a base station.
  • the third node is a vehicle.
  • the third node is a car.
  • the third node is an RSU (Road Side Unit).
  • the third node is a group header (Group Header) of a terminal group.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • Figure 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane 350 and the control plane 300.
  • Figure 3 shows three layers for the first communication node device (UE, gNB or RSU in V2X) and the second Communication node equipment (gNB, UE or RSU in V2X), or the radio protocol architecture of the control plane 300 between two UEs: layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first communication node device and the second communication node device and the two UEs through PHY301.
  • L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers terminate at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, as well as providing support for handover between the second communication node devices and the first communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, Radio Resource Control) sublayer 306 in layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the difference between the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is for the physical layer 351, L2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are basically the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also Provides header compression for upper layer data packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the Data Radio Bearer (DRB). To support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (for example, an IP layer) terminating at the P-GW on the network side and another terminating at the connection.
  • Application layer at one end for example, remote UE, server, etc.).
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the third node in this application.
  • the first signaling is generated in the MAC352 or the MAC302.
  • the first signaling is generated in the RRC306.
  • the second signaling is generated in the PHY301 or the PHY351.
  • the second signaling is generated in the MAC352 or the MAC302.
  • the second signaling is generated in the RRC306.
  • the third signaling is generated in the PHY301 or the PHY351.
  • the first signal is generated in the PHY301 or the PHY351.
  • the first signal is generated in the MAC352 or the MAC302.
  • the fourth signaling is generated in the MAC352 or the MAC302.
  • the fourth signaling is generated in the RRC306.
  • the first-type signal set is generated in the PHY301 or the PHY351.
  • Embodiment 4 shows a schematic diagram of the first communication device and the second communication device according to the present application, as shown in FIG. 4.
  • 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in an access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmitting processor 468, a receiving processor 456, a multi-antenna transmitting processor 457, a multi-antenna receiving processor 458, and a transmitter/receiver 454 And antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter/receiver 418, and an antenna 420.
  • the upper layer data packet from the core network is provided to the controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logic and transport channels Multiplexing, and allocation of radio resources to the first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets and signaling to the first communication device 450.
  • the transmission processor 416 and the multi-antenna transmission processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 410, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)) signal cluster mapping.
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmission processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes it with a reference signal (e.g., pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate The physical channel that carries the multi-carrier symbol stream in the time domain.
  • IFFT inverse fast Fourier transform
  • the multi-antenna transmission processor 471 performs transmission simulation precoding/beamforming operations on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmission processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated on the radio frequency carrier, and converts the radio frequency stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receiving processor 458 performs reception analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a Fast Fourier Transform (FFT) to convert the baseband multi-carrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the reference signal will be used for channel estimation.
  • the data signal is recovered after the multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial flow of the destination. The symbols on each spatial stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decision to recover the upper layer data and control signals transmitted by the second communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , Control signal processing to recover upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals can also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements the header based on the radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels, implement L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets and signaling to the second communication device 410.
  • the transmission processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmission processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is subjected to an analog precoding/beamforming operation in the multi-antenna transmission processor 457 and then provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the function at the second communication device 410 is similar to that in the transmission from the second communication device 410 to the first communication device 450.
  • Each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to the multi-antenna receiving processor 472 and the receiving processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • the memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , Control signal processing to recover upper layer data packets from UE450.
  • the upper layer data packet from the controller/processor 475 may be provided to the core network.
  • the first communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to The at least one processor is used together, and the first communication device 450 means at least: firstly receive first signaling, which is used to indicate a first time unit set; secondly, transmits second signaling, said The second signaling is used to indicate the first time interval; then the third signaling is received, which indicates the first multi-carrier symbol set and the first scheduling information; when the second multi-carrier symbol set belongs to the first When a time unit is set, give up wireless transmission in the first multi-carrier symbol set; when the second multi-carrier symbol set does not belong to the first time unit set, send in the first multi-carrier symbol set The first signal; the first scheduling information is applied to the first signal; the multi-carrier symbols in the second multi-carrier symbol set have a one-to-one correspondence with the multi-carrier symbols in the first multi-carrier symbol set; The time interval between
  • the first communication device 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: first receiving First signaling, the first signaling is used to indicate the first time unit set; secondly, the second signaling is sent, and the second signaling is used to indicate the first time interval; then the third signaling is received, The third signaling indicates the first multi-carrier symbol set and the first scheduling information; when the second multi-carrier symbol set belongs to the first time unit set, give up wireless transmission in the first multi-carrier symbol set When the second multi-carrier symbol set does not belong to the first time unit set, the first signal is sent in the first multi-carrier symbol set; the first scheduling information is applied to the first signal; The multi-carrier symbols in the second multi-carrier symbol set correspond to the multi-carrier symbols in the first multi-carrier symbol set one-to-one; any multi-carrier symbol in the second multi-carrier symbol set corresponds to the first multi-carrier
  • the first communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to The at least one processor is used together, and the first communication device 450 means at least: firstly receive first signaling, which is used to indicate a first time unit set; secondly, transmits second signaling, said The second signaling is used to indicate the first time interval; then the third signaling is received, which indicates the first multi-carrier symbol set and the first scheduling information; when the second multi-carrier symbol set belongs to the first When a time unit is set, perform the first monitoring to determine whether to perform wireless transmission in the first multi-carrier symbol set; if the determination is yes, send the first signal in the first multi-carrier symbol set; if the determination is no, Give up wireless transmission in the first multi-carrier symbol set; when the second multi-carrier symbol set does not belong to the first time unit set, send the first signal in the first multi-carrier symbol set; A scheduling information is applied to the
  • the first communication device 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: first receiving First signaling, the first signaling is used to indicate the first time unit set; secondly, the second signaling is sent, and the second signaling is used to indicate the first time interval; then the third signaling is received, The third signaling indicates the first multi-carrier symbol set and the first scheduling information; when the second multi-carrier symbol set belongs to the first time unit set, the first monitoring is performed to determine whether it is in the first multi-carrier If the judgment is yes, send the first signal in the first multi-carrier symbol set; if the judgment is no, give up wireless transmission in the first multi-carrier symbol set; when the second multi-carrier symbol When the set does not belong to the first time unit set, the first signal is sent in the first multi-carrier symbol set; the first scheduling information is applied to the first signal, and the second multi-carrier symbol set
  • the multi-carrier symbols indicates
  • the second communication device 410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to Use at least one processor together.
  • the second communication device 410 means at least: firstly send first signaling, which is used to indicate a first time unit set; secondly, receive second signaling, which is used to indicate The first time interval; then third signaling is sent, the third signaling indicates the first multi-carrier symbol set and the first scheduling information; when the second multi-carrier symbol set belongs to the first time unit set, give up In the first multi-carrier symbol set, wireless reception is performed for the first node, and the first node is the sender of the second signaling; when the second multi-carrier symbol set does not belong to the first time unit set When the first signal is received in the first set of multi-carrier symbols; the first scheduling information is applied to the first signal; the multi-carrier symbols in the second set of multi-carrier symbols and the first The multi-carrier symbols in the multi-
  • the second communication device 410 device includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: first Send the first signaling, the first signaling is used to indicate the first time unit set; secondly receive the second signaling, the second signaling is used to indicate the first time interval; then send the third signaling ,
  • the third signaling indicates the first multi-carrier symbol set and the first scheduling information; when the second multi-carrier symbol set belongs to the first time unit set, abandoning the targeting in the first multi-carrier symbol set For wireless reception of the first node, the first node is the sender of the second signaling; when the second multi-carrier symbol set does not belong to the first time unit set, the first multi-carrier symbol set
  • the first signal is received in the first signal; the first scheduling information is applied to the first signal; the multi-carrier symbols in the second multi-carrier symbol set are one-to-one with the multi-carrier symbols in the first multi-carrier symbol
  • the second communication device 410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to Use at least one processor together.
  • the second communication device 410 means at least: firstly send first signaling, which is used to indicate the first time unit set; then receive second signaling, which is used to indicate The first time interval; secondly, the third signaling is sent, the third signaling indicates the first multi-carrier symbol set and the first scheduling information; finally the first signal is detected in the first multi-carrier symbol set; when the second When the multi-carrier symbol set belongs to the first time unit set, the first node performs first monitoring to determine whether to perform wireless transmission in the first multi-carrier symbol set; if the determination is yes, the first node is in the The first signal is sent in the first multi-carrier symbol set; if the judgment is no, the first node abandons wireless transmission in the first multi-carrier symbol set; when the second multi-carrier symbol set does not belong to the first
  • the second communication device 410 device includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: first Send the first signaling, the first signaling is used to indicate the first time unit set; then receive the second signaling, the second signaling is used to indicate the first time interval; then send the third signaling , The third signaling indicates the first multi-carrier symbol set and the first scheduling information; finally, the first signal is detected in the first multi-carrier symbol set; when the second multi-carrier symbol set belongs to the first time unit
  • the first node performs first monitoring to determine whether to perform wireless transmission in the first multi-carrier symbol set; if the determination is yes, the first node sends the first signal in the first multi-carrier symbol set If the judgment is no, the first node abandons wireless transmission in the first multi-carrier symbol set; when the second multi-carrier symbol set does not belong to the first time unit set, the first node is in the The first signal is
  • the second communication device 410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to Use at least one processor together.
  • the second communication device 410 means at least: sending a first-type signal set; the first-type signal set is used to determine the existence of transmission on a wireless link other than a cellular link, and the first-type signal set is used To trigger the sending of the second signaling; the second signaling is used to indicate the first time interval, any multi-carrier symbol in the second multi-carrier symbol set and the corresponding multi-carrier symbol in the first multi-carrier symbol set The time interval between is the first time interval; the first scheduling information is applied to the first signal; the multi-carrier symbols in the second multi-carrier symbol set and the multi-carrier symbols in the first multi-carrier symbol set Symbols have a one-to-one correspondence; the third signaling indicates the first multi-carrier symbol set and the first scheduling information, and the first signaling is used
  • the second communication device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending The first type of signal set; the first type of signal set is used to determine the existence of transmission on a wireless link other than the cellular link, and the first type of signal set is used to trigger the transmission of the second signaling; the The second signaling is used to indicate the first time interval, and the time interval between any multi-carrier symbol in the second multi-carrier symbol set and the corresponding multi-carrier symbol in the first multi-carrier symbol set is the first time Interval; the first scheduling information is applied to the first signal; the multi-carrier symbols in the second multi-carrier symbol set correspond to the multi-carrier symbols in the first multi-carrier symbol set; the third signaling indicates that For the first set of multi-carrier symbols and the first scheduling information, the first signaling is used to indicate the first set of time units; when the second set of multi-carrier symbols belongs to the first
  • the first node When the multi-carrier symbol set does not belong to the first time unit set, the first node sends the first signal in the first multi-carrier symbol set; the sender of the second signaling is the first Node; the recipient of the first type of signal includes the first node.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the second communication device 410 corresponds to the third node in this application.
  • the first communication device 450 is a UE.
  • the second communication device 410 is a base station.
  • the second communication device 410 is a UE.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 is used to receive the first A signaling, the first signaling is used to indicate the first time unit set; the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the control At least one of the processor/processor 475 is used to send first signaling, and the first signaling is used to indicate a first set of time units.
  • At least one of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 is used to transmit the second Signaling, the second signaling is used to indicate the first time interval; the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/ At least one of the processors 475 is used to receive second signaling, which is used to indicate the first time interval.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 is used to receive the first Three signaling, the third signaling indicates the first multi-carrier symbol set and the first scheduling information; the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, At least one of the controller/processor 475 is used to send third signaling, the third signaling indicating the first multi-carrier symbol set and the first scheduling information.
  • the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, the At least one of the controller/processor 459 is used to give up wireless transmission in the first multi-carrier symbol set; or when the second multi-carrier symbol set does not belong to the first time unit set, the At least one of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 is used for the first multi-carrier symbol set Send the first signal in.
  • the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the At least one of the controller/processor 475 performs first monitoring to determine whether to perform wireless transmission in the first multi-carrier symbol set.
  • the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 At least one of is used to transmit the first signal in the first set of multi-carrier symbols.
  • the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 At least one of is used to abandon wireless transmission in the first set of multi-carrier symbols.
  • the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, At least one of the controller/processor 459 is used to transmit a first signal in the first set of multi-carrier symbols.
  • the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the At least one of the controller/processor 475 is used to give up wireless reception for the first node in the first set of multi-carrier symbols.
  • the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the At least one of the controller/processor 475 is used to receive the first signal in the first set of multi-carrier symbols.
  • At least one of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 is used in the The first signal is detected in the first set of multi-carrier symbols.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 is used to receive the first Four signaling; the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and at least one of the controller/processor 475 is used to transmit the fourth Signaling.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 is used to detect A type of signal set; at least one of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 is used to transmit A collection of signals.
  • Embodiment 5 illustrates another processing flowchart of the first node, as shown in FIG. 5.
  • each box represents a step.
  • the first node in this application receives the first signaling in step 501, and the first signaling is used to indicate the first time unit set; in step 502, the second signaling is sent, so The second signaling is used to indicate the first time interval; in step 503, the third signaling is received, and the third signaling indicates the first multi-carrier symbol set and the first scheduling information; in step 504, it is used as the second
  • the multi-carrier symbol set belongs to the first time unit set
  • perform first monitoring to determine whether to perform wireless transmission in the first multi-carrier symbol set; if the determination is yes, send in the first multi-carrier symbol set The first signal; if the judgment is no, give up wireless transmission in the first multi-carrier symbol set; when the second multi-carrier symbol set does not belong to the first time unit set, in the first multi-carrier symbol set Send the first signal.
  • the first scheduling information is applied to the first signal, and the multi-carrier symbols in the second multi-carrier symbol set correspond to the multi-carrier symbols in the first multi-carrier symbol set one-to-one ;
  • the time interval between any multi-carrier symbol in the second multi-carrier symbol set and the corresponding multi-carrier symbol in the first multi-carrier symbol set is the first time interval.
  • Embodiment 1 As an embodiment, the embodiment and sub-embodiments in Embodiment 1 can be used in Embodiment 5 without conflict.
  • Embodiment 6 illustrates a flow chart of the first signaling, as shown in FIG. 6.
  • the first node U1 and the second node N2 communicate through the Uu link, and the first node U1 and the third node U3 communicate through the secondary link; the boxes F0 and F1 in the figure are marked
  • the steps are optional.
  • step S10 receiving a fourth signaling; receiving a first signaling step S11; detecting a first type of signal set at step S12; second signaling transmitted in step S13; step S14 In receiving the third signaling.
  • step S20 For the second node U2, fourth transmitting signaling in step S20; first signaling transmitted in step S21; step S22 in the second signaling receiver; third signaling transmitted in step S23.
  • the first signaling is used to indicate a first time unit set
  • the second signaling is used to indicate a first time interval
  • the third signaling indicates a first set of multi-carrier symbols and First scheduling information
  • the fourth signaling is used to determine a second time interval, and the first time interval is related to the second time interval
  • the first type of signal set is used to determine the presence of a cellular link
  • the first type of signal set is used to trigger the transmission of the second signaling.
  • the first node U1 when the second multi-carrier symbol set belongs to the first time unit set, the first node U1 abandons wireless transmission in the first multi-carrier symbol set; when the second multi-carrier symbol set When not belonging to the first time unit set, the first node U1 sends a first signal in the first multi-carrier symbol set; wherein, the first scheduling information is applied to the first signal;
  • the multi-carrier symbols in the second multi-carrier symbol set correspond to the multi-carrier symbols in the first multi-carrier symbol set one-to-one; any multi-carrier symbol in the second multi-carrier symbol set corresponds to the first multi-carrier symbol
  • the time interval between corresponding multi-carrier symbols in the multi-carrier symbol set is the first time interval.
  • the first node U1 when the second multi-carrier symbol set belongs to the first time unit set, the first node U1 performs first monitoring to determine whether to perform wireless transmission in the first multi-carrier symbol set; if The judgment is yes, the first node U1 sends the first signal in the first multi-carrier symbol set; if the judgment is no, the first node U1 abandons wireless transmission in the first multi-carrier symbol set; When the second multi-carrier symbol set does not belong to the first time unit set, the first node U1 sends a first signal in the first multi-carrier symbol set; wherein, the first scheduling information is applied to the For the first signal, the multi-carrier symbols in the second multi-carrier symbol set correspond one-to-one with the multi-carrier symbols in the first multi-carrier symbol set; any multi-carrier symbol in the second multi-carrier symbol set The time interval between the corresponding multi-carrier symbols in the first multi-carrier symbol set is the first time interval.
  • the meaning related to the first time interval and the second time interval in the above sentence includes: the first time interval is equal to the second time interval.
  • the fourth signaling includes the height of the second node N2, and the height of the second node N2 is used to determine the second time interval.
  • the fourth signaling includes a downtilt angle between the second node N2 and the first node U1, and the downtilt angle between the second node N2 and the first node U1 is used for Determine the second time interval.
  • the fourth signaling includes the type of the second node N2, and the type of the second node N2 is used to determine the second time interval.
  • the second time interval is equal to the transmission delay from the first node U1 to the second node N2.
  • the second time interval is a quantized value of the transmission delay from the first node U1 to the second node N2.
  • the unit of the second time interval is a time slot.
  • the unit of the second time interval is milliseconds.
  • the unit of the second time interval is a subframe.
  • the unit of the second time interval is the length of time occupied by one multi-carrier symbol.
  • the unit of the second time interval is microseconds.
  • the unit of the second time interval is 1/30720 milliseconds.
  • the unit of the second time interval is 1/X milliseconds, and the X is a positive integer multiple of 30720.
  • the second time interval increases as the distance between the first node U1 and the second node N2 increases.
  • the second time interval is related to the height of the second node N2.
  • the second time interval is related to the inclination angle between the second node N2 and the first node U1.
  • the first node U1 detects the first type signal, and the first node U1 sends the second signaling.
  • the first-type signal set includes a positive integer number of first-type signals.
  • the first type signal set includes only one first type signal.
  • the sender of the first-type signal set is a node other than the second node N2.
  • the signals included in the first-type signal set are all transmitted on the secondary link.
  • the first type of signal set includes PSCCH (Physical Sidelink Control Channel, physical secondary link control channel), PSSCH (Physical Sidelink Shared Channel, physical secondary link shared channel) or PSFCH (Physical Sidelink Feedback Channel), At least one of the physical secondary link feedback channel).
  • PSCCH Physical Sidelink Control Channel, physical secondary link control channel
  • PSSCH Physical Sidelink Shared Channel, physical secondary link shared channel
  • PSFCH Physical Sidelink Feedback Channel
  • the average power value of the signals in the first-type signal set detected by the first node U1 is greater than a first threshold, and the first node U1 sends the second signaling.
  • the average power value of the signals in the first type signal set detected by the first node U1 is not greater than a first threshold, and the first node U1 abandons sending the second signaling.
  • the first-type signals included in the first-type signal set are all baseband signals.
  • the first-type signals included in the first-type signal set are all wireless signals.
  • the first type of signal set is used to determine a third time interval, and the third time interval and the second time interval are jointly used to determine the first time interval.
  • the first time interval is equal to the sum of the second time interval and the third time interval.
  • the first time interval is equal to the difference between the second time interval and the third time interval.
  • the third time interval is equal to the transmission delay from the third node U3 to the first node U1.
  • the third time interval is a quantized value of the transmission delay from the third node U3 to the first node U1.
  • the unit of the third time interval is a time slot.
  • the unit of the third time interval is milliseconds.
  • the unit of the third time interval is a sub-frame.
  • the unit of the third time interval is the length of time occupied by one multi-carrier symbol.
  • the unit of the third time interval is microseconds.
  • the unit of the third time interval is 1/30720 milliseconds.
  • the unit of the third time interval is 1/X milliseconds, and the X is a positive integer multiple of 30720.
  • the third time interval increases as the distance between the third node U3 and the first node U1 increases.
  • the third time interval is related to the height of the third node U3.
  • the third time interval is related to the inclination angle between the third node U3 and the first node U1.
  • Embodiment 7 illustrates a flow chart of the first signal, as shown in FIG. 7.
  • the first node U4 and the second node N5 communicate through a cellular link.
  • step S40 it is determined whether the second multi-carrier symbol set belongs to the first time unit set, if "Yes” go to step S41; if "No” go to step S42;
  • step S42 the first signal is sent in the first multi-carrier symbol set.
  • step S50 it is judged whether the second multi-carrier symbol set belongs to the first time unit set, if "yes”, go to step S51; if "no”, go to step S52;
  • step S51 abandon wireless reception for the first node U4 in the first multi-carrier symbol set
  • step S51 the first signal is received in the first multi-carrier symbol set.
  • Embodiment 8 illustrates another flow chart of the first signal, as shown in FIG. 8.
  • the first node U6 and the second node N7 communicate through a cellular link.
  • step S60 it is determined whether the second multi-carrier symbol set belongs to the first time unit set, if "Yes” go to step S61; if "No” go to step S62;
  • step S61 the first monitoring is performed to determine whether to perform wireless transmission in the first multi-carrier symbol set, if "yes”, go to step S62, if "no", go to step S63.
  • step S63 wireless transmission is abandoned in the first multi-carrier symbol set.
  • step S70 the first signal is detected in the second set of multi-carrier symbols.
  • the performing the first monitoring to determine whether to perform wireless transmission in the first multi-carrier symbol set includes: the first monitoring monitoring that there is transmission on the secondary link, the first node U6 Give up wireless transmission in the first set of multi-carrier symbols.
  • the performing the first monitoring to determine whether to perform wireless transmission in the first multi-carrier symbol set includes: the first monitoring does not monitor the transmission on the secondary link, and the first node U6 Sending a first signal in the first set of multi-carrier symbols.
  • the first monitoring includes perceptual measurement.
  • Embodiment 9 illustrates a schematic diagram of the first time unit and the second multi-carrier set, as shown in FIG. 9.
  • the second multi-carrier symbol set corresponds to the multi-carrier symbols in the first multi-carrier symbol set one-to-one; any multi-carrier symbol in the second multi-carrier symbol set corresponds to the first multi-carrier symbol.
  • the time interval between corresponding multi-carrier symbols in the carrier symbol set is the first time interval; all symbols in the second multi-carrier symbol set belong to the first time unit.
  • the first node in this application abandons wireless transmission in the first multi-carrier symbol set.
  • the first node in this application performs first monitoring to determine whether to perform wireless transmission in the first multi-carrier symbol set.
  • Embodiment 10 illustrates another schematic diagram of the first time unit and the second multi-carrier set, as shown in FIG. 10.
  • the second multi-carrier symbol set corresponds to the multi-carrier symbols in the first multi-carrier symbol set; any multi-carrier symbol in the second multi-carrier symbol set corresponds to the first multi-carrier symbol.
  • the time interval between corresponding multi-carrier symbols in the carrier symbol set is the first time interval; all symbols in the second multi-carrier symbol set do not belong to the first time unit.
  • the first node in this application performs wireless transmission in the first set of multi-carrier symbols.
  • Embodiment 11 illustrates another schematic diagram of the first time unit and the second multi-carrier set, as shown in FIG. 11.
  • the second multi-carrier symbol set corresponds to the multi-carrier symbols in the first multi-carrier symbol set one-to-one; any multi-carrier symbol in the second multi-carrier symbol set corresponds to the first multi-carrier symbol.
  • the time interval between corresponding multi-carrier symbols in the carrier symbol set is the first time interval; all symbols in the second multi-carrier symbol set belong to the first time unit; the first time unit in this application
  • Three signaling is used to determine a first multi-carrier symbol group, the first multi-carrier symbol group includes the first multi-carrier symbol set; the second multi-carrier symbol group and the first multi-carrier symbol group
  • the carrier symbols have a one-to-one correspondence; the time interval between any multi-carrier symbol in the second multi-carrier symbol group and the corresponding multi-carrier symbol in the first multi-carrier symbol group is the first time interval.
  • the first node in the present application abandons the wireless transmission in the first multi-carrier symbol set, and reserves the first multi-carrier symbol set and outside the first multi-carrier symbol set Transmission of multi-carrier symbols.
  • the first node in this application abandons the wireless transmission in the first multi-carrier symbol set, and determines whether to reserve the first multi-carrier symbol set and the first multi-carrier symbol set by performing channel monitoring measurement. Transmission of multi-carrier symbols outside of a multi-carrier symbol set.
  • the channel monitoring measurement determines that V2X transmission is not sensed, and the first node reserves the multi-carrier symbol group in the first multi-carrier symbol group and the data outside the first multi-carrier symbol group. Transmission of carrier symbols.
  • the channel monitoring measurement determines that V2X transmission is sensed, and the first node discards the multi-carriers in the first multi-carrier symbol set and outside the first multi-carrier symbol set Sending of symbols.
  • Embodiment 12 illustrates a schematic diagram, as shown in FIG. 12.
  • the Uu link uplink transmission is performed between the first node and the second node shown in the figure, and the third node is performing V2X communication, and the time domain resources occupied by the V2X communication are said Configured on the first node.
  • TA (Timing Advance) 1 corresponds to the transmission advance of the first node introduced between the first node and the second node due to transmission delay to ensure the alignment of the uplink transmission with the second node;
  • TA2 corresponds to the third node and the second node In the meantime, the third node introduced due to transmission delay sends in advance to ensure alignment with the uplink transmission of the second node.
  • the uplink transmission of the first node will spread to the time domain resources occupied by the V2X transmission of the third node, that is, in the rectangle marked with a thick frame in the figure.
  • Embodiment 13 illustrates a schematic diagram of an application scenario, as shown in FIG. 13.
  • the Uu link uplink transmission is performed between the first node and the second node shown in the figure, and the third node and the fourth node are performing V2X communication.
  • the first node and the second node in the figure are The uplink transmission on the Uu link between nodes interferes with the V2X transmission on the third node.
  • Embodiment 14 illustrates a structural block diagram in the first node, as shown in FIG. 14.
  • the first node 1400 includes a first receiver 1401, a first transmitter 1402, a second receiver 1403, and a second transceiver 1404.
  • the first receiver 1401 receives first signaling, where the first signaling is used to indicate a first time unit set;
  • the first transmitter 1402 sends second signaling, where the second signaling is used to indicate the first time interval;
  • the second receiver 1403 receives third signaling, where the third signaling indicates the first multi-carrier symbol set and the first scheduling information;
  • the second transceiver 1404 when the second multi-carrier symbol set belongs to the first time unit set, gives up wireless transmission in the first multi-carrier symbol set; when the second multi-carrier symbol set does not belong to the first time unit set; When a time unit is set, sending the first signal in the first multi-carrier symbol set;
  • the first scheduling information is applied to the first signal; the multi-carrier symbols in the second multi-carrier symbol set correspond to the multi-carrier symbols in the first multi-carrier symbol set one-to-one ;
  • the time interval between any multi-carrier symbol in the second multi-carrier symbol set and the corresponding multi-carrier symbol in the first multi-carrier symbol set is the first time interval.
  • the first receiver 1401 receives fourth signaling; the fourth signaling is used to determine a second time interval, and the first time interval is related to the second time interval.
  • the first receiver 1401 detects a first-type signal set; the first-type signal set is used to determine the existence of transmission on a wireless link other than a cellular link, and the first-type signal set Used to trigger the sending of the second signaling.
  • the first type of signal set is used to determine a third time interval, and the third time interval and the second time interval are jointly used to determine the first time interval.
  • the first receiver 1401 includes at least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 in the fourth embodiment.
  • the first transmitter 1402 includes at least the first four of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 in the fourth embodiment.
  • the second receiver 1403 includes at least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 in the fourth embodiment.
  • the second transceiver 1404 includes at least the first four of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 in the fourth embodiment.
  • Embodiment 15 illustrates another structural block diagram in the first node, as shown in FIG. 15.
  • the first node 1500 includes a first receiver 1501, a first transmitter 1502, a second receiver 1503, and a second transceiver 1504.
  • the first receiver 1501 receives first signaling, where the first signaling is used to indicate a first time unit set;
  • the first transmitter 1502 sends second signaling, where the second signaling is used to indicate the first time interval;
  • the second receiver 1503 receives third signaling, where the third signaling indicates the first multi-carrier symbol set and the first scheduling information;
  • the second transceiver 1504 when the second multi-carrier symbol set belongs to the first time unit set, performs the first monitoring to determine whether to perform wireless transmission in the first multi-carrier symbol set; The first signal is sent in the first multi-carrier symbol set; if the judgment is no, the wireless transmission is abandoned in the first multi-carrier symbol set; when the second multi-carrier symbol set does not belong to the first time unit set, Sending a first signal in the first multi-carrier symbol set;
  • the first scheduling information is applied to the first signal, and the multi-carrier symbols in the second multi-carrier symbol set correspond to the multi-carrier symbols in the first multi-carrier symbol set in a one-to-one correspondence. ;
  • the time interval between any multi-carrier symbol in the second multi-carrier symbol set and the corresponding multi-carrier symbol in the first multi-carrier symbol set is the first time interval.
  • the first receiver 1501 receives fourth signaling; the fourth signaling is used to determine a second time interval, and the first time interval is related to the second time interval.
  • the first receiver 1501 detects a first-type signal set; the first-type signal set is used to determine the existence of transmission on a wireless link other than a cellular link, and the first-type signal set Used to trigger the sending of the second signaling.
  • the first type of signal set is used to determine a third time interval, and the third time interval and the second time interval are jointly used to determine the first time interval.
  • the first receiver 1501 includes at least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 in the fourth embodiment.
  • the first transmitter 1502 includes at least the first four of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 in the fourth embodiment.
  • the second receiver 1503 includes at least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 in the fourth embodiment.
  • the second transceiver 1504 includes at least the first four of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 in the fourth embodiment.
  • the second transceiver 1504 includes at least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 in the fourth embodiment.
  • Embodiment 16 illustrates a structural block diagram in the second node, as shown in FIG. 16.
  • the second node 1600 includes a third transmitter 1601, a third receiver 1602, a fourth transmitter 1603, and a fourth receiver 1604.
  • the third transmitter 1601 sends first signaling, where the first signaling is used to indicate the first time unit set;
  • the third receiver 1602 receives second signaling, where the second signaling is used to indicate the first time interval;
  • the fourth transmitter 1603 sends third signaling, where the third signaling indicates the first multi-carrier symbol set and the first scheduling information;
  • the first scheduling information is applied to the first signal; the multi-carrier symbols in the second multi-carrier symbol set have a one-to-one correspondence with the multi-carrier symbols in the first multi-carrier symbol set ; The time interval between any multi-carrier symbol in the second multi-carrier symbol set and the corresponding multi-carrier symbol in the first multi-carrier symbol set is the first time interval.
  • the second transceiver 1601 sends first signaling; the first signaling is used to determine at least one of time domain resources or frequency domain resources occupied by the first signal, so The first signaling includes the first domain, and the first signaling is physical layer signaling.
  • the third transmitter 1601 sends fourth signaling; the fourth signaling is used to determine a second time interval, and the first time interval is related to the second time interval.
  • the third transmitter 1601 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 in the fourth embodiment.
  • the third receiver 1602 includes at least the first four of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 in the fourth embodiment.
  • the fourth transmitter 1603 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 in the fourth embodiment.
  • the fourth receiver 1604 includes at least the first four of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 in the fourth embodiment.
  • Embodiment 17 illustrates a structural block diagram in the second node, as shown in FIG. 17.
  • the second node 1700 includes a third transmitter 1701, a third receiver 1702, a fourth transmitter 1703, and a fourth receiver 1704.
  • the third transmitter 1701 sends first signaling, where the first signaling is used to indicate the first time unit set;
  • the third receiver 1702 receives second signaling, where the second signaling is used to indicate the first time interval;
  • the fourth transmitter 1703 sends third signaling, where the third signaling indicates the first multi-carrier symbol set and the first scheduling information;
  • the fourth receiver 1704 detects the first signal in the first multi-carrier symbol set
  • the first node when the second multi-carrier symbol set belongs to the first time unit set, the first node performs first monitoring to determine whether to perform wireless transmission in the first multi-carrier symbol set; if the determination is yes, The first node sends the first signal in the first multi-carrier symbol set; if the judgment is no, the first node abandons wireless transmission in the first multi-carrier symbol set; when the second multi-carrier symbol set When not belonging to the first time unit set, the first node sends a first signal in the first multi-carrier symbol set; the first node is the sender of the second signaling; the first node A scheduling information is applied to the first signal, and the multi-carrier symbols in the second multi-carrier symbol set correspond to the multi-carrier symbols in the first multi-carrier symbol set in a one-to-one correspondence; the second multi-carrier symbol The time interval between any multi-carrier symbol in the set and the corresponding multi-carrier symbol in the first multi-carrier symbol set is the first time interval.
  • the third transmitter 1701 sends fourth signaling; the fourth signaling is used to determine a second time interval, and the first time interval is related to the second time interval.
  • the third transmitter 1701 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 in the fourth embodiment.
  • the third receiver 1702 includes at least the first four of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 in the fourth embodiment.
  • the fourth transmitter 1703 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 in the fourth embodiment.
  • the fourth receiver 1704 includes at least the first four of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 in the fourth embodiment.
  • Embodiment 18 illustrates a structural block diagram in the third node, as shown in FIG. 18.
  • the third node 1800 includes a fifth transmitter 1801.
  • the fifth transmitter 1801 transmits the first type signal set
  • the first type of signal set is used to determine the existence of transmission on a wireless link other than the cellular link, and the first type of signal set is used to trigger the transmission of the second signaling;
  • the second signaling is used to indicate the first time interval, and the time interval between any multi-carrier symbol in the second multi-carrier symbol set and the corresponding multi-carrier symbol in the first multi-carrier symbol set is the first time interval
  • the first scheduling information is applied to the first signal; the multi-carrier symbols in the second multi-carrier symbol set correspond to the multi-carrier symbols in the first multi-carrier symbol set one-to-one;
  • the third signaling indicates the The first multi-carrier symbol set and the first scheduling information, the first signaling is used to indicate the first time unit set; when the second multi-carrier symbol set belongs to the first time unit set, the first node Give up wireless transmission in the first multi-carrier symbol set; when the second multi-carrier symbol set does not belong to the first time unit set, the first node sends all data in the
  • the fifth transmitter 1801 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 in the fourth embodiment.
  • each module unit in the above-mentioned embodiment can be realized in the form of hardware or software function module, and this application is not limited to the combination of software and hardware in any specific form.
  • the first and second nodes in this application include but are not limited to mobile phones, tablets, notebooks, internet cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, vehicles, vehicles, RSUs, aircraft , Aircraft, drones, remote control aircraft and other wireless communication equipment.
  • the base stations in this application include, but are not limited to, macro cell base stations, micro cell base stations, home base stations, relay base stations, eNB, gNB, transmission and reception nodes TRP, GNSS, relay satellites, satellite base stations, aerial base stations, RSUs and other wireless communication equipment .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点首先接收第一信令,所述第一信令被用于指示第一时间单元集合;其次发送第二信令,所述第二信令被用于指示第一时间间隔;随后接收第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;最后通过第二多载波符号集合与所述第一时间单元集合的关系确定是否发送第一信号;所述第一调度信息被应用于所述第一信号,所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是第一时间间隔。本申请通过将第一信号的发送与所述第一时间间隔建立联系,且通过第二信令避免蜂窝链路对副链路的干扰,提高系统整体性能。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及传输延迟较大的系统中资源选择和资源分配的方法和装置。
背景技术
针对迅猛发展的车联网(Vehicle-to-Everything,V2X)业务,3GPP也开始启动了在NR框架下的标准制定和研究工作。目前3GPP已经完成了面向5G V2X业务的需求制定工作,并写入标准TS22.886中。3GPP为5G V2X业务定义了4大应用场景组(Use Case Groups),包括:自动排队驾驶(Vehicles Platnooning),支持扩展传感(Extended Sensors),半/全自动驾驶(Advanced Driving)和远程驾驶(Remote Driving)。目前的V2X系统中,同时支持基于基站配置时频资源用于V2X传输,以及V2X的发送端通过感知测量(Sensing Measurement)确定时频资源用于V2X传输。
与此同时,为了能够适应多样的应用场景和满足不同的需求,在3GPP RAN#75次全会上还通过了NR下的非地面网络(NTN,Non-Terrestrial Networks)的研究项目,该研究项目在R15版本开始。在3GPP RAN#79次全会上决定开始研究NTN网络中的解决方案,然后在R16或R17版本中启动WI对相关技术进行标准化。
发明内容
NTN网络具有覆盖广的优势,当NTN结合V2X技术时,NTN网络能够为地面基站覆盖不到的地理位置配置用于V2X传输的时频资源,随后V2X终端间基于现有的sensing的方式确定实际传输的时频资源。然而,与现有地面蜂窝网相比,NTN网络存在远大于地面基站的路径延迟,且针对卫星的上行发送功率值也会较大,进而需要重新考虑蜂窝链路对V2X链路传输的干扰以及对应的干扰协调的方法。
基于上述新的应用场景和需求,本申请公开了一种解决方案,需要说明的是,在不冲突的情况下,本申请的第一节点和第三节点的实施例和实施例中的特征可以应用到基站中,且本申请中的第二节点的实施例和实施例中的特征可以应用到终端中。与此同时,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于包括:
接收第一信令,所述第一信令被用于指示第一时间单元集合;
发送第二信令,所述第二信令被用于指示第一时间间隔;
接收第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;
当第二多载波符号集合属于所述第一时间单元集合时,放弃在所述第一多载波符号集合中进行无线发送;当第二多载波符号集合不属于所述第一时间单元集合时,在所述第一多载波符号集合中发送第一信号;
其中,所述第一调度信息被应用于所述第一信号;所述第二多载波符号集合中的多载波符号与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
作为一个实施例,上述方法的原理在于:目前V2X系统中,传输延迟往往不会超过一个多载波符号的持续时间,进而只要终端将发送时间和基站对齐,参考基站时序的不同时隙中的V2X传输和Uu口上行传输之间不会产生干扰;而NTN系统中,由于传输延迟较大,达到多个甚至几十个毫秒的级别;进而当一个NTN的终端发送上行时,即使从基站侧看V2X与NTN配置在不同的时隙中,NTN的发送也会偏移到V2X子帧中,进而导致 Uu链路对V2X的干扰。
作为一个实施例,上述方法的好处在于:所述第一时间间隔对应第一节点到NTN基站之间的延迟,所述第二多载波符号集合对应因为延迟造成的Uu口上在所述第一多载波符号集合中传输的无线信号所能够扩散到的时域资源;进而当所述第二多载波符号集合与所述第一时间单元集合重合时,意味着Uu上的传输会对V2X产生影响,进而需要避免Uu上的传输。
作为一个实施例,上述方法的另一个好处在于:通过第二信令将所述第一时间间隔发送给NTN的基站,当所述第一节点针对NTN基站的上行发送会潜在的对配置的第一时间单元集合中的V2X传输产生干扰时,NTN基站避免在所述第二多载波符号集合中调度所述第一节点。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于包括:
接收第一信令,所述第一信令被用于指示第一时间单元集合;
发送第二信令,所述第二信令被用于指示第一时间间隔;
接收第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;
当第二多载波符号集合属于所述第一时间单元集合时,执行第一监听以判断是否在所述第一多载波符号集合中进行无线发送;若判断是,在所述第一多载波符号集合中发送第一信号;若判断否,在所述第一多载波符号集合中放弃无线发送;当第二多载波符号集合不属于所述第一时间单元集合时,在所述第一多载波符号集合中发送第一信号;
其中,所述第一调度信息被应用于所述第一信号,所述第二多载波符号集合中的多载波符号与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
作为一个实施例,上述方法的好处在于:当第二多载波符号集合属于所述第一时间单元集合时,说明所述第一节点的发送会对V2X的传输造成干扰,进而第一节点通过所述第一监听进一步确定周边有无V2X的传输,进而避免因为周边没有V2X的传输而造成不必要的资源浪费,提高整体的频谱效率。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第四信令;所述第四信令被用于确定第二时间间隔,所述第一时间间隔与所述第二时间间隔有关。
作为一个实施例,上述方法的好处在于:NTN基站通过所述第四信令传输NTN基站的诸如基站种类、下倾角或基站所在高度的信息,帮助第一节点确定所述第一时间间隔。
根据本申请的一个方面,上述方法的特征在于,包括:
检测第一类信号集合;所述第一类信号集合被用于确定存在蜂窝链路之外的无线链路的传输,所述第一类信号集合被用于触发所述第二信令的发送。
作为一个实施例,上述方法的好处在于:通过sensing触发第二信令的发送,进而仅在检测到周边存在V2X传输时,才会指示基站通过调度的方式规避对V2X传输的干扰。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于包括:
发送第一信令,所述第一信令被用于指示第一时间单元集合;
接收第二信令,所述第二信令被用于指示第一时间间隔;
发送第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;
当第二多载波符号集合属于所述第一时间单元集合时,放弃在所述第一多载波符号集合中进行针对第一节点的无线接收,所述第一节点是所述第二信令的发送者;当第二多载波符号集合不属于所述第一时间单元集合时,在所述第一多载波符号集合中接收第一信号;
其中,所述第一调度信息被应用于所述第一信号;所述第二多载波符号集合中的多载波 符号与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于包括:
发送第一信令,所述第一信令被用于指示第一时间单元集合;
接收第二信令,所述第二信令被用于指示第一时间间隔;
发送第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;
在所述第一多载波符号集合中检测第一信号;
其中,当第二多载波符号集合属于所述第一时间单元集合时,第一节点执行第一监听以判断是否在所述第一多载波符号集合中进行无线发送;若判断是,所述第一节点在所述第一多载波符号集合中发送第一信号;若判断否,所述第一节点在所述第二多载波符号集合中放弃无线发送;当第二多载波符号集合不属于所述第一时间单元集合时,所述第一节点在所述第一多载波符号集合中发送第一信号;所述第一节点是所述第二信令的发送者;所述第一调度信息被应用于所述第一信号,所述第二多载波符号集合中的多载波符号与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第四信令;所述第四信令被用于确定第二时间间隔,所述第一时间间隔与所述第二时间间隔有关。
本申请公开了一种被用于无线通信的第三节点中的方法,其特征在于包括:
发送第一类信号集合;
其中,所述第一类信号集合被用于确定存在蜂窝链路之外的无线链路的传输,所述第一类信号集合被用于触发第二信令的发送;所述第二信令被用于指示第一时间间隔,第二多载波符号集合中的任一多载波符号与第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔;第一调度信息被应用于第一信号;所述第二多载波符号集合中的多载波符号与所述第一多载波符号集合中的多载波符号一一对应;第三信令指示所述第一多载波符号集合和所述第一调度信息,第一信令被用于指示第一时间单元集合;当所述第二多载波符号集合属于所述第一时间单元集合时,第一节点放弃在所述第一多载波符号集合中进行无线发送;当所述第二多载波符号集合不属于所述第一时间单元集合时,第一节点在所述第一多载波符号集合中发送所述第一信号;或者,当所述第二多载波符号集合属于所述第一时间单元集合时,第一节点执行第一监听以判断是否在所述第一多载波符号集合中进行无线发送;若判断是,第一节点在所述第一多载波符号集合中发送所述第一信号;若判断否,第一节点在所述第一多载波符号集合中放弃无线发送;当所述第二多载波符号集合不属于所述第一时间单元集合时,第一节点在所述第一多载波符号集合中发送所述第一信号;所述第二信令的发送者是所述第一节点;所述第一类信号的接收者包括所述第一节点。
根据本申请的一个方面,上述方法的特征在于,所述第一类信号集合被用于确定第三时间间隔,所述第三时间间隔与所述第二时间间隔被共同用于确定所述第一时间间隔。
本申请公开了一种被用于无线通信的第一节点,其特征在于包括:
第一接收机,接收第一信令,所述第一信令被用于指示第一时间单元集合;
第一发射机,发送第二信令,所述第二信令被用于指示第一时间间隔;
第二接收机,接收第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;
第二收发机,当第二多载波符号集合属于所述第一时间单元集合时,放弃在所述第一多载波符号集合中进行无线发送;当第二多载波符号集合不属于所述第一时间单元集合时,在所述第一多载波符号集合中发送第一信号;
其中,所述第一调度信息被应用于所述第一信号;所述第二多载波符号集合中的多载波符号与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
本申请公开了一种被用于无线通信的第一节点,其特征在于包括:
第一接收机,接收第一信令,所述第一信令被用于指示第一时间单元集合;
第一发射机,发送第二信令,所述第二信令被用于指示第一时间间隔;
第二接收机,接收第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;
第二收发机,当第二多载波符号集合属于所述第一时间单元集合时,执行第一监听以判断是否在所述第一多载波符号集合中进行无线发送;若判断是,在所述第一多载波符号集合中发送第一信号;若判断否,在所述第一多载波符号集合中放弃无线发送;当第二多载波符号集合不属于所述第一时间单元集合时,在所述第一多载波符号集合中发送第一信号;
其中,所述第一调度信息被应用于所述第一信号,所述第二多载波符号集合中的多载波符号与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
本申请公开了一种被用于无线通信的第二节点,其特征在于包括:
第三发射机,发送第一信令,所述第一信令被用于指示第一时间单元集合;
第三接收机,接收第二信令,所述第二信令被用于指示第一时间间隔;
第四发射机,发送第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;
第四接收机,当第二多载波符号集合属于所述第一时间单元集合时,放弃在所述第一多载波符号集合中进行针对第一节点的无线接收,所述第一节点是所述第二信令的发送者;当第二多载波符号集合不属于所述第一时间单元集合时,在所述第一多载波符号集合中接收第一信号;
其中,所述第一调度信息被应用于所述第一信号;所述第二多载波符号集合中的多载波符号与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
本申请公开了一种被用于无线通信的第二节点,其特征在于包括:
第三发射机,发送第一信令,所述第一信令被用于指示第一时间单元集合;
第三接收机,接收第二信令,所述第二信令被用于指示第一时间间隔;
第四发射机,发送第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;
第四接收机,在所述第一多载波符号集合中检测第一信号;
其中,当第二多载波符号集合属于所述第一时间单元集合时,第一节点执行第一监听以判断是否在所述第一多载波符号集合中进行无线发送;若判断是,所述第一节点在所述第一多载波符号集合中发送第一信号;若判断否,所述第一节点在所述第一多载波符号集合中放弃无线发送;当第二多载波符号集合不属于所述第一时间单元集合时,所述第一节点在所述第一多载波符号集合中发送第一信号;所述第一节点是所述第二信令的发送者;所述第一调度信息被应用于所述第一信号,所述第二多载波符号集合中的多载波符号与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
本申请公开了一种被用于无线通信的第三节点,其特征在于包括:
第五发射机,发送第一类信号集合;
其中,所述第一类信号集合被用于确定存在蜂窝链路之外的无线链路的传输,所述第一类信号集合被用于触发第二信令的发送;所述第二信令被用于指示第一时间间隔,第二多载波符号集合中的任一多载波符号与第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔;第一调度信息被应用于第一信号;所述第二多载波符号集合中的多载波符号与所述第一多载波符号集合中的多载波符号一一对应;第三信令指示所述第一多载波符号集合和所述第一调度信息,第一信令被用于指示第一时间单元集合;当所述第二多载波符号集合属于所述第一时间单元集合时,第一节点放弃在所述第一多载波符号集合中进行无线发送;当所述第二多载波符号集合不属于所述第一时间单元集合时,第一节点在所述第一多载波符号集合中发送所述第一信号;或者,当所述第二多载波符号集合属于所述第一时间单元集合时,第一节点执行第一监听以判断是否在所述第一多载波符号集合中进行无线发送;若判断是,第一节点在所述第一多载波符号集合中发送所述第一信号;若判断否,第一节点在所述第一多载波符号集合中放弃无线发送;当所述第二多载波符号集合不属于所述第一时间单元集合时,第一节点在所述第一多载波符号集合中发送所述第一信号;所述第二信令的发送者是所述第一节点;所述第一类信号的接收者包括所述第一节点。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.所述第一时间间隔对应第一节点到NTN基站之间的延迟,所述第二多载波符号集合对应因为延迟造成的Uu口上在所述第一多载波符号集合中传输的无线信号所能够扩散到的时域资源;进而当所述第二多载波符号集合与所述第一时间单元集合重合时,意味着Uu上的传输会对V2X产生影响,进而需要避免Uu上的传输;
-.通过第二信令将所述第一时间间隔发送给NTN的基站,当所述第一节点针对NTN基站的上行发送会潜在的对配置的第一时间单元集合中的V2X传输产生干扰时,NTN基站避免在所述第二多载波符号集合中调度所述第一节点。
-.当第二多载波符号集合属于所述第一时间单元集合时,说明所述第一节点的发送会对V2X的传输造成干扰,进而第一节点通过所述第一监听进一步确定周边有无V2X的传输,进而避免因为周边没有V2X的传输而造成不必要的资源浪费,提高整体的频谱效率。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的另一个实施例的第一节点的处理流程图;
图6示出了根据本申请的一个实施例的第一信令的流程图;
图7示出了根据本申请的一个实施例的第一信号的流程图;
图8示出了根据本申请的另一个实施例的第一信号的流程图;
图9示出了根据本申请的一个实施例的第一时间单元集合和第二多载波符号集合的示意图;
图10示出了根据本申请的另一个实施例的第一时间单元集合和第二多载波符号集合的示意图;
图11示出了根据本申请的另一个实施例的第一时间单元集合和第二多载波符号集 合的示意图;
图12示出了根据本申请的一个原理图;
图13示出了根据本申请的一个实施例的应用场景的示意图;
图14示出了根据本申请的一个实施例的用于第一节点中的结构框图;
图15示出了根据本申请的另一个实施例的用于第一节点中的结构框图;
图16示出了根据本申请的一个实施例的用于第二节点中的结构框图;
图17示出了根据本申请的另一个实施例的用于第二节点中的结构框图;
图18示出了根据本申请的一个实施例的用于第三节点中的结构框图;
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了一个第一节点的处理流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。在实施例1中,本申请中的第一节点在步骤101中接收第一信令,所述第一信令被用于指示第一时间单元集合;在步骤102中发送第二信令,所述第二信令被用于指示第一时间间隔;在步骤103中接收第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;在步骤104中当第二多载波符号集合属于所述第一时间单元集合时,放弃在所述第一多载波符号集合中进行无线发送;当第二多载波符号集合不属于所述第一时间单元集合时,在所述第一多载波符号集合中发送第一信号。
实施例1中,所述第一调度信息被应用于所述第一信号;所述第二多载波符号集合中的多载波符号与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
作为一个实施例,所述第一信令的发送者是第二节点。
作为一个实施例,所述第二节点是一个NTN中的基站。
作为一个实施例,所述第二节点是一个非地面基站。
作为一个实施例,所述第二节点是GEO(Geostationary Earth Orbiting,同步地球轨道)卫星、MEO(Medium Earth Orbiting,中地球轨道)卫星、LEO(Low Earth Orbit,低地球轨道)卫星、HEO(Highly Elliptical Orbiting,高椭圆轨道)卫星或Airborne Platform(空中平台)中的之一。
作为一个实施例,所述第一时间单元集合由K1个时间单元组成,所述K1是正整数。
作为该实施例的一个子实施例,所述K1个时间单元分别是K1个时隙(Slot)。
作为该实施例的一个子实施例,所述K1个时间单元中任一时间单元包括正整数个时隙。
作为该实施例的一个子实施例,所述K1个时间单元中任一时间单元中的所有时隙是连续的。
作为该实施例的一个子实施例,所述K1大于1。
作为该实施例的一个子实施例,所述K1等于1。
作为一个实施例,本申请中的所示时间单元是时隙,或者本申请中的所述时间单元是子帧(Subframe),或者本申请中的所述时间单元是微时隙(Mini-Slot)。
作为一个实施例,所述第一时间单元集合被预留用于非蜂窝链路的传输。
作为该实施例的一个子实施例,所述非蜂窝链路包括副链路。
作为该实施例的一个子实施例,所述非蜂窝链路被用于V2X业务的传输。
作为一个实施例,所述第一调度信息包括MCS(Modulation and Coding Status,调制编码方式)。
作为一个实施例,所述第一调度信息包括HARQ(Hybrid Automatic Repeat request,混合自动重传请求)进程号,RV(Redundancy Version,冗余版本),NDI(New Data Indicator, 新数据指示)。
作为一个实施例,所述第一多载波符号集合中包括多个连续的多载波符号。
作为一个实施例,所述第一多载波符号集合中仅包括1个多载波符号。
作为一个实施例,本申请中所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,本申请中所述多载波符号是SC-FDMA(Single-Carrier Frequency Division Multiple Access,单载波频分复用接入)符号。
作为一个实施例,本申请中所述多载波符号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个实施例,本申请中所述多载波符号是包含CP(Cyclic Prefix,循环前缀)的OFDM符号。
作为一个实施例,本申请中所述多载波符号是包含CP的DFT-s-OFDM(Discrete Fourier Transform Spreading Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩频的正交频分复用)符号。
作为一个实施例,所述第一时间间隔等于所述第一节点到第二节点的传输延迟(Transmission Delay)。
作为一个实施例,所述第一时间间隔是所述第一节点到第二节点的传输延迟的量化值。
作为一个实施例,所述第一时间间隔的单位是时隙(Slot)。
作为一个实施例,所述第一时间间隔的单位是毫秒。
作为一个实施例,所述第一时间间隔的单位是子帧(Subframe)。
作为一个实施例,所述第一时间间隔的单位是一个多载波符号所占用的时间长度。
作为一个实施例,所述第一时间间隔的单位是微秒。
作为一个实施例,所述第一时间间隔的单位是1/30720毫秒。
作为一个实施例,所述第一时间间隔的单位是1/X毫秒,所述X是30720的正整数倍。
作为一个实施例,所述第一时间间隔随着所述第一节点与第二节点之间距离的增加而增加。
作为一个实施例,所述第一时间间隔与所述第二节点的高度有关。
作为一个实施例,所述第一时间间隔与所述第二节点和所述第一节点之间的倾角有关。
作为一个实施例,所述第三信令是DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第三信令是上行授权(UL Grant)。
作为一个实施例,上述句子所述第三信令指示第一多载波符号集合的意思包括:所述第三信令被用于指示所述第一多载波符号集合在时域所占用的多载波符号的位置。
作为一个实施例,上述句子放弃在所述第一多载波符号集合中进行无线发送的意思包括:所述第一节点在所述第一多载波符号集合中不发送所述第一信号。
作为一个实施例,上述句子放弃在所述第一多载波符号集合中进行无线发送的意思包括:所述第一节点推迟发送所述第一信号。
作为一个实施例,上述句子放弃在所述第一多载波符号集合中进行无线发送的意思包括:所述第一节点缓存所述第一信号,且在所述第一多载波符号集合之后的时间窗中发送所述第一信号。
作为一个实施例,所述第一信号是无线信号。
作为一个实施例,所述第一信号是基带信号。
作为一个实施例,所述第一信号所包括的物理层信道包括PUSCH(Physical Uplink Shared Channel,物理上行共享信道)。
作为一个实施例,所述第一信号所包括的无线信号包括SRS(Sounding Reference Signal,探测参考信号)。
作为一个实施例,上述句子所述第二多载波符号集合属于所述第一时间单元集合的意思 包括:所述第二多载波符号集合包括K2个多载波符号,所述K2是正整数,所述K2个多载波符号中的任意多载波符号均是所述第一时间单元集合所包括的一个多载波符号。
作为一个实施例,上述句子所述第二多载波符号集合不属于所述第一时间单元集合的意思包括:所述第二多载波符号集合包括K2个多载波符号,所述K2是正整数,所述K2个多载波符号中的任意多载波符号均不是所述第一时间单元集合所包括的一个多载波符号。
作为一个实施例,所述第三信令指示第一多载波符号组,所述第一多载波符号组包括所述第一多载波符号集合,所述第一多载波符号组中的多载波符号与第二多载波符号组中的多载波符号一一对应,且所述第二多载波符号组中的任一多载波符号与所述第一多载波符号组中对应的多载波符号之间的时间间隔是第一时间间隔;所述第二多载波符号组中仅所述第二多载波符号集合属于所述第一时间单元;所述第一节点放弃在所述第一多载波符号集合中进行无线发送,且保留在所述第一多载波符号组中且所述第一多载波符号集合之外的多载波符号上的发送。
作为一个实施例,所述第三信令指示第一多载波符号组,所述第一多载波符号组包括所述第一多载波符号集合,所述第一多载波符号组中的多载波符号与第二多载波符号组中的多载波符号一一对应,且所述第二多载波符号组中的任一多载波符号与所述第一多载波符号组中对应的多载波符号之间的时间间隔是第一时间间隔;所述第二多载波符号组中仅所述第二多载波符号集合属于所述第一时间单元;所述第一节点放弃在所述第一多载波符号组中进行无线发送。
作为一个实施例,所述第三信令指示第一多载波符号组,所述第一多载波符号组包括所述第一多载波符号集合,所述第一多载波符号组中的多载波符号与第二多载波符号组中的多载波符号一一对应,且所述第二多载波符号组中的任一多载波符号与所述第一多载波符号组中对应的多载波符号之间的时间间隔是第一时间间隔;所述第二多载波符号组中仅所述第二多载波符号集合属于所述第一时间单元;所述第一节点放弃在所述第一多载波符号集合中进行无线发送,且执行信道感知测量(Sensing Measurement)以确定是否保留在所述第一多载波符号组中且所述第一多载波符号集合之外的多载波符号上的发送。
作为该实施例的一个子实施例,所述信道感知确定周围没有副链路传输,所述第一节点保留在所述第一多载波符号组中且所述第一多载波符号集合之外的多载波符号上的发送。
作为该实施例的一个子实施例,所述信道感知确定周围存在副链路传输,所述第一节点放弃在所述第一多载波符号组中且所述第一多载波符号集合之外的多载波符号上的发送。
作为一个实施例,所述第二信令通过广播(Broadcast)的方式被发送。
作为一个实施例,所述第二信令通过组播(Groupcast)的方式被发送。
作为一个实施例,所述第二信令的接收者包括所述第二节点之外的节点。
作为一个实施例,所述第二信令的接收者包括进行V2X通信的终端。
作为一个实施例,所述第二信令包括第二时间单元集合,所述第二时间单元集合包括正整数个时间单元,所述第二时间单元集合被预留用于所述第一节点的蜂窝链路的上行传输。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,以及包括一个与UE201进行副链路通信的UE241,以及包括一个与UE201进行副链路通信的UE242,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各 种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述UE241对应本申请中的所述第三节点。
作为一个实施例,所述UE201与所述gNB203之间的空中接口是Uu接口。
作为一个实施例,所述UE201与所述UE241之间的空中接口是PC-5接口。
作为一个实施例,所述UE201与所述gNB203之间的无线链路是蜂窝链路。
作为一个实施例,所述UE201与所述UE241之间的无线链路是副链路。
作为一个实施例,所述UE201的上行传输对所述UE241的V2X传输存在干扰。
作为一个实施例,本申请中的所述第一节点是所述gNB203覆盖内的一个终端。
作为一个实施例,本申请中的所述第三节点是所述gNB203覆盖外的一个终端。
作为一个实施例,本申请中的所述第三节点是所述gNB203覆盖内的一个终端。
作为一个实施例,所述第一节点和所述第三节点属于一个V2X对(Pair)。
作为一个实施例,所述第一节点的上行传输对所述第三节点与所述第三节点之外的节点之间的V2X传输产生干扰。
作为一个实施例,所述第一节点是一辆汽车。
作为一个实施例,所述第一节点是一个交通工具。
作为一个实施例,所述第二节点是一个基站。
作为一个实施例,所述第三节点是一个交通工具。
作为一个实施例,所述第三节点是一辆汽车。
作为一个实施例,所述第三节点是一个RSU(Road Side Unit,路边单元)。
作为一个实施例,所述第三节点是一个终端组的组头(Group Header)。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施 例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第三节点。
作为一个实施例,所述第一信令生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第一信令生成于所述RRC306。
作为一个实施例,所述第二信令生成于所述PHY301,或者所述PHY351。
作为一个实施例,所述第二信令生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第二信令生成于所述RRC306。
作为一个实施例,所述第三信令生成于所述PHY301,或者所述PHY351。
作为一个实施例,所述第一信号生成于所述PHY301,或者所述PHY351。
作为一个实施例,所述第一信号生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第四信令生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第四信令生成于所述RRC306。
作为一个实施例,所述第一类信号集合生成于所述PHY301,或者所述PHY351。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接 收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:首先接收第一信令,所述第一信令被用于指示第一时间单元集合;其次发送第二信令,所述第二信令被用于指示第一时间间隔;随后接收第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;当第二多载波符号集合属于所述第一时间单元集合时,放弃在所述第一多载波符号集合中进行无线发送;当第二多载波符号集合不属于所述第一时间单元集合时,在所述第一多载波符号集合中发送第一信号;所述第一调度信息被应用于所述第一信号;所述第二多载波符号集合中的多载波符号与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先接收第一信令,所述第一信令被用于指示第一时间单元集合;其次发送第二信令,所述第二信令被用于指示第一时间间隔;随后接收第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;当第二多载波符号集合属于所述第一时间单元集合时,放弃在所述第一多载波符号集合中进行无线发送;当第二多载波符号集合不属于所述第一时间单元集合时,在所述第一多载波符号集合中发送第一信号;所述第一调度信息被应用于所述第一信号;所述第二多载波符号集合中的多载波符号与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:首先接收第一信令,所述第一信令被用于指示第一时间单元集合;其次发送第二信令,所述第二信令被用于指示第一时间间隔;随后接收第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;当第二多载波符号集合属于所述第一时间单元集合时,执行第一监听以判断是否在所述第一多载波符号集合中进行无线发送;若判断是,在所述第一多载波符号集合中发送第一信号;若判断否,在所述第一多载波符号集合中放弃无线发送;当第二多载波符号集合不属于所述第一时间单元集合时,在所述第一多载波符号集合中发送第一信号;所述第一调度信息被应用于所述第一信号,所述第二多载波符号集合中的多载波符号与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先接收第一信令,所述第一信令被用于指示第一时间单元集合;其次发送第二信令,所述第二信令被用于指示第一时间间隔;随后接收第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;当第二多载波符号集合属于所述第一时间单元集合时,执行第一监听以判断是否在所述第一多载波符号集合中进行无线发送;若判断是,在所述第一多载波符号集合中发送 第一信号;若判断否,在所述第一多载波符号集合中放弃无线发送;当第二多载波符号集合不属于所述第一时间单元集合时,在所述第一多载波符号集合中发送第一信号;所述第一调度信息被应用于所述第一信号,所述第二多载波符号集合中的多载波符号与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:首先发送第一信令,所述第一信令被用于指示第一时间单元集合;其次接收第二信令,所述第二信令被用于指示第一时间间隔;随后发送第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;当第二多载波符号集合属于所述第一时间单元集合时,放弃在所述第一多载波符号集合中进行针对第一节点的无线接收,所述第一节点是所述第二信令的发送者;当第二多载波符号集合不属于所述第一时间单元集合时,在所述第一多载波符号集合中接收第一信号;所述第一调度信息被应用于所述第一信号;所述第二多载波符号集合中的多载波符号与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先发送第一信令,所述第一信令被用于指示第一时间单元集合;其次接收第二信令,所述第二信令被用于指示第一时间间隔;随后发送第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;当第二多载波符号集合属于所述第一时间单元集合时,放弃在所述第一多载波符号集合中进行针对第一节点的无线接收,所述第一节点是所述第二信令的发送者;当第二多载波符号集合不属于所述第一时间单元集合时,在所述第一多载波符号集合中接收第一信号;所述第一调度信息被应用于所述第一信号;所述第二多载波符号集合中的多载波符号与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:首先发送第一信令,所述第一信令被用于指示第一时间单元集合;随后接收第二信令,所述第二信令被用于指示第一时间间隔;其次发送第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;最后在所述第一多载波符号集合中检测第一信号;当第二多载波符号集合属于所述第一时间单元集合时,第一节点执行第一监听以判断是否在所述第一多载波符号集合中进行无线发送;若判断是,所述第一节点在所述第一多载波符号集合中发送第一信号;若判断否,所述第一节点在所述第一多载波符号集合中放弃无线发送;当第二多载波符号集合不属于所述第一时间单元集合时,所述第一节点在所述第一多载波符号集合中发送第一信号;所述第一节点是所述第二信令的发送者;所述第一调度信息被应用于所述第一信号,所述第二多载波符号集合中的多载波符号与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先发送第一信令,所述第一信令被用于指示第一时间单元集合;随后接收第二信令,所述第二信令被用于指示第一时间间隔;其次发送第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;最后在所述第一多载波符号集合中检测第一信号;当第二多载波符号集合 属于所述第一时间单元集合时,第一节点执行第一监听以判断是否在所述第一多载波符号集合中进行无线发送;若判断是,所述第一节点在所述第一多载波符号集合中发送第一信号;若判断否,所述第一节点在所述第一多载波符号集合中放弃无线发送;当第二多载波符号集合不属于所述第一时间单元集合时,所述第一节点在所述第一多载波符号集合中发送第一信号;所述第一节点是所述第二信令的发送者;所述第一调度信息被应用于所述第一信号,所述第二多载波符号集合中的多载波符号与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:发送第一类信号集合;所述第一类信号集合被用于确定存在蜂窝链路之外的无线链路的传输,所述第一类信号集合被用于触发第二信令的发送;所述第二信令被用于指示第一时间间隔,第二多载波符号集合中的任一多载波符号与第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔;第一调度信息被应用于第一信号;所述第二多载波符号集合中的多载波符号与所述第一多载波符号集合中的多载波符号一一对应;第三信令指示所述第一多载波符号集合和所述第一调度信息,第一信令被用于指示第一时间单元集合;当所述第二多载波符号集合属于所述第一时间单元集合时,第一节点放弃在所述第一多载波符号集合中进行无线发送;当所述第二多载波符号集合不属于所述第一时间单元集合时,第一节点在所述第一多载波符号集合中发送所述第一信号;或者,当所述第二多载波符号集合属于所述第一时间单元集合时,第一节点执行第一监听以判断是否在所述第一多载波符号集合中进行无线发送;若判断是,第一节点在所述第一多载波符号集合中发送所述第一信号;若判断否,第一节点在所述第一多载波符号集合中放弃无线发送;当所述第二多载波符号集合不属于所述第一时间单元集合时,第一节点在所述第一多载波符号集合中发送所述第一信号;所述第二信令的发送者是所述第一节点;所述第一类信号的接收者包括所述第一节点。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一类信号集合;所述第一类信号集合被用于确定存在蜂窝链路之外的无线链路的传输,所述第一类信号集合被用于触发第二信令的发送;所述第二信令被用于指示第一时间间隔,第二多载波符号集合中的任一多载波符号与第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔;第一调度信息被应用于第一信号;所述第二多载波符号集合中的多载波符号与所述第一多载波符号集合中的多载波符号一一对应;第三信令指示所述第一多载波符号集合和所述第一调度信息,第一信令被用于指示第一时间单元集合;当所述第二多载波符号集合属于所述第一时间单元集合时,第一节点放弃在所述第一多载波符号集合中进行无线发送;当所述第二多载波符号集合不属于所述第一时间单元集合时,第一节点在所述第一多载波符号集合中发送所述第一信号;或者,当所述第二多载波符号集合属于所述第一时间单元集合时,第一节点执行第一监听以判断是否在所述第一多载波符号集合中进行无线发送;若判断是,第一节点在所述第一多载波符号集合中发送所述第一信号;若判断否,第一节点在所述第一多载波符号集合中放弃无线发送;当所述第二多载波符号集合不属于所述第一时间单元集合时,第一节点在所述第一多载波符号集合中发送所述第一信号;所述第二信令的发送者是所述第一节点;所述第一类信号的接收者包括所述第一节点。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第二通信设备410对应本申请中的第三节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,所述第二通信设备410是一个UE。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收第一信令,所述第一信令被用于指示第一时间单元集合;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第一信令,所述第一信令被用于指示第一时间单元集合。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少之一被用于发送第二信令,所述第二信令被用于指示第一时间间隔;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少之一被用于接收第二信令,所述第二信令被用于指示第一时间间隔。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第三信令,所述第三信令指示第一多载波符号集合和第一调度信息。
作为一个实施,当第二多载波符号集合属于所述第一时间单元集合时,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少之一被用于放弃在所述第一多载波符号集合中进行无线发送;或者当第二多载波符号集合不属于所述第一时间单元集合时,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少之一被用于在所述第一多载波符号集合中发送第一信号。
作为一个实施,当第二多载波符号集合属于所述第一时间单元集合时,所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少之一执行第一监听以判断是否在所述第一多载波符号集合中进行无线发送。
作为该实施例的一个子实施例,若判断是,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少之一被用于在所述第一多载波符号集合中发送第一信号。
作为该实施例的一个子实施例,若判断否,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少之一被用于在所述第一多载波符号集合中放弃无线发送。
作为一个实施,当第二多载波符号集合不属于所述第一时间单元集合时,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少之一被用于在所述第一多载波符号集合中发送第一信号。
作为一个实施,当第二多载波符号集合属于所述第一时间单元集合时,所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少之一被用于放弃在所述第一多载波符号集合中进行针对第一节点的无线接收。
作为一个实施,当第二多载波符号集合不属于所述第一时间单元集合时,所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少之一被用于在所述第一多载波符号集合中接收第一信号。
作为一个实施,所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少之一被用于在所述第一多载波符号集合中检测第一信号。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收第四信令;所述天线420, 所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第四信令。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少之一被用于检测第一类信号集合;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第一类信号集合。
实施例5
实施例5示例了另一个第一节点的处理流程图,如附图5所示。在附图5所示的500中,每个方框代表一个步骤。在实施例5中,本申请中的第一节点在步骤501中接收第一信令,所述第一信令被用于指示第一时间单元集合;在步骤502中发送第二信令,所述第二信令被用于指示第一时间间隔;在步骤503中接收第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;在步骤504中当第二多载波符号集合属于所述第一时间单元集合时,执行第一监听以判断是否在所述第一多载波符号集合中进行无线发送;若判断是,在所述第一多载波符号集合中发送第一信号;若判断否,在所述第一多载波符号集合中放弃无线发送;当第二多载波符号集合不属于所述第一时间单元集合时,在所述第一多载波符号集合中发送第一信号。
实施例5中,所述第一调度信息被应用于所述第一信号,所述第二多载波符号集合中的多载波符号与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
作为一个实施例,在不冲突的情况下,实施例1中的实施例和子实施例能够被用于实施例5中。
实施例6
实施例6示例了一个第一信令的流程图,如附图6所示。在附图6中,第一节点U1与第二节点N2之间通过Uu链路进行通信,第一节点U1与第三节点U3之间通过副链路进行通信;图中方框F0和F1中标注的步骤是可选的。
对于 第一节点U1,在步骤S10中接收第四信令;在步骤S11中接收第一信令;在步骤S12中检测第一类信号集合;在步骤S13中发送第二信令;在步骤S14中在接收第三信令。
对于 第二节点U2,在步骤S20中发送第四信令;在步骤S21中发送第一信令;在步骤S22中在接收第二信令;在步骤S23中发送第三信令。
对于 第三节点U3,在步骤S30中发送第一类信号集合。
实施例5中,所述第一信令被用于指示第一时间单元集合,所述第二信令被用于指示第一时间间隔,所述第三信令指示第一多载波符号集合和第一调度信息;所述第四信令被用于确定第二时间间隔,所述第一时间间隔与所述第二时间间隔有关;所述第一类信号集合被用于确定存在蜂窝链路之外的无线链路的传输,所述第一类信号集合被用于触发所述第二信令的发送。
作为一个实施例,当第二多载波符号集合属于所述第一时间单元集合时,所述第一节点U1放弃在所述第一多载波符号集合中进行无线发送;当第二多载波符号集合不属于所述第一时间单元集合时,所述第一节点U1在所述第一多载波符号集合中发送第一信号;其中,所述第一调度信息被应用于所述第一信号;所述第二多载波符号集合中的多载波符号与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
作为一个实施例,当第二多载波符号集合属于所述第一时间单元集合时,所述第一节点U1执行第一监听以判断是否在所述第一多载波符号集合中进行无线发送;若判断是,所述第一节点U1在所述第一多载波符号集合中发送第一信号;若判断否,所述第一节点U1在所述第一多载波符号集合中放弃无线发送;当第二多载波符号集合不属于所述第一时间单元集合 时,所述第一节点U1在所述第一多载波符号集合中发送第一信号;其中,所述第一调度信息被应用于所述第一信号,所述第二多载波符号集合中的多载波符号与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
作为一个实施例,上述句子所述第一时间间隔与所述第二时间间隔有关的意思包括:所述第一时间间隔等于所述第二时间间隔。
作为一个实施例,所述第四信令包括所述第二节点N2的高度,所述第二节点N2的高度被用于确定所述第二时间间隔。
作为一个实施例,所述第四信令包括所述第二节点N2与所述第一节点U1的下倾角,所述第二节点N2与所述第一节点U1的所述下倾角被用于确定所述第二时间间隔。
作为一个实施例,所述第四信令包括所述第二节点N2的种类,所述第二节点N2的种类被用于确定所述第二时间间隔。
作为一个实施例,所述第二时间间隔等于所述第一节点U1到第二节点N2的传输延迟。
作为一个实施例,所述第二时间间隔是所述第一节点U1到第二节点N2的传输延迟的量化值。
作为一个实施例,所述第二时间间隔的单位是时隙。
作为一个实施例,所述第二时间间隔的单位是毫秒。
作为一个实施例,所述第二时间间隔的单位是子帧。
作为一个实施例,所述第二时间间隔的单位是一个多载波符号所占用的时间长度。
作为一个实施例,所述第二时间间隔的单位是微秒。
作为一个实施例,所述第二时间间隔的单位是1/30720毫秒。
作为一个实施例,所述第二时间间隔的单位是1/X毫秒,所述X是30720的正整数倍。
作为一个实施例,所述第二时间间隔随着所述第一节点U1距离第二节点N2之间距离的增加而增加。
作为一个实施例,所述第二时间间隔与所述第二节点N2的高度有关。
作为一个实施例,所述第二时间间隔与所述第二节点N2和所述第一节点U1之间的倾角有关。
作为一个实施例,所述第一节点U1检测到所述第一类信号,所述第一节点U1发送所述第二信令。
作为一个实施例,所述第一类信号集合包括正整数个第一类信号。
作为一个实施例,所述第一类信号集合仅包括一个第一类信号。
作为一个实施例,所述第一类信号集合的发送者是所述第二节点N2之外的节点。
作为一个实施例,所述第一类信号集合所包括的信号均在副链路上传输。
作为一个实施例,所述第一类信号集合包括PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)、PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)或PSFCH(Physical Sidelink Feedback Channel,物理副链路反馈信道)中的至少之一。
作为一个实施例,所述第一节点U1检测到的所述第一类信号集合中的信号的平均功率值大于第一阈值,所述第一节点U1发送所述第二信令。
作为一个实施例,所述第一节点U1检测到的所述第一类信号集合中的信号的平均功率值不大于第一阈值,所述第一节点U1放弃发送所述第二信令。
作为一个实施例,所述第一类信号集合所包括的第一类信号均是基带信号。
作为一个实施例,所述第一类信号集合所包括的第一类信号均是无线信号。
作为一个实施例,所述第一类信号集合被用于确定第三时间间隔,所述第三时间间隔与所述第二时间间隔被共同用于确定所述第一时间间隔。
作为该实施例的一个子实施例,所述第一时间间隔等于所述第二时间间隔与所述第三时间间隔的和。
作为该实施例的一个子实施例,所述第一时间间隔等于所述第二时间间隔与所述第三时间间隔的差。
作为该实施例的一个子实施例,所述第三时间间隔等于所述第三节点U3到所述第一节点U1的传输延迟。
作为该实施例的一个子实施例,所述第三时间间隔是所述第三节点U3到所述第一节点U1的传输延迟的量化值。
作为该实施例的一个子实施例,所述第三时间间隔的单位是时隙。
作为该实施例的一个子实施例,所述第三时间间隔的单位是毫秒。
作为该实施例的一个子实施例,所述第三时间间隔的单位是子帧。
作为该实施例的一个子实施例,所述第三时间间隔的单位是一个多载波符号所占用的时间长度。
作为该实施例的一个子实施例,所述第三时间间隔的单位是微秒。
作为该实施例的一个子实施例,所述第三时间间隔的单位是1/30720毫秒。
作为该实施例的一个子实施例,所述第三时间间隔的单位是1/X毫秒,所述X是30720的正整数倍。
作为该实施例的一个子实施例,所述第三时间间隔随着所述第三节点U3到所述第一节点U1之间的距离的增加而增加。
作为该实施例的一个子实施例,所述第三时间间隔与所述第三节点U3的高度有关。
作为该实施例的一个子实施例,所述第三时间间隔与所述第三节点U3和所述第一节点U1之间的倾角有关。
实施例7
实施例7示例了一个第一信号的流程图,如附图7所示。在附图7中,第一节点U4与第二节点N5之间通过蜂窝链路进行通信。
对于 第一节点U4,执行以下步骤:
在步骤S40中判断第二多载波符号集合是否属于第一时间单元集合,如果“是”进入步骤S41;如果“否”进入步骤S42;
在步骤S41中放弃在第一多载波符号集合中进行无线发送;
在步骤S42中在第一多载波符号集合中发送第一信号。
对于 第二节点N5,执行以下步骤:
在步骤S50中判断第二多载波符号集合是否属于第一时间单元集合,如果“是”进入步骤S51;如果“否”进入步骤S52;
在步骤S51中放弃在第一多载波符号集合中进行针对第一节点U4的无线接收;
在步骤S51中在第一多载波符号集合中接收第一信号。
实施例8
实施例8示例了另一个第一信号的流程图,如附图8所示。在附图8中,第一节点U6与第二节点N7之间通过蜂窝链路进行通信。
对于 第一节点U6,执行以下步骤:
在步骤S60中判断第二多载波符号集合是否属于第一时间单元集合,如果“是”进入步骤S61;如果“否”进入步骤S62;
在步骤S61中执行第一监听以判断是否在所述第一多载波符号集合中进行无线发送,如果“是”进入步骤S62,如果“否”,进入步骤S63。
在步骤S62中在所述第一多载波符号集合中发送第一信号;
在步骤S63中在所述第一多载波符号集合中放弃无线发送。
对于 第二节点N7,执行以下步骤:
在步骤S70中在所述第二多载波符号集合中检测第一信号。
作为一个实施例,所述执行第一监听以判断是否在所述第一多载波符号集合中进行 无线发送包括:所述第一监听监听到存在副链路上存在传输,所述第一节点U6在所述第一多载波符号集合中放弃无线发送。
作为一个实施例,所述执行第一监听以判断是否在所述第一多载波符号集合中进行无线发送包括:所述第一监听没有监听到副链路上的传输,所述第一节点U6在所述第一多载波符号集合中发送第一信号。
作为一个实施例,所述第一监听包括感知测量。
实施例9
实施例9示例了一个第一时间单元和第二多载波集合的示意图,如附图9所示。附图9中,所述第二多载波符号集合与第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔;所述第二多载波符号集合中的所有符号均属于所述第一时间单元。
作为一个实施例,本申请中的所述第一节点放弃在所述第一多载波符号集合中进行无线发送。
作为一个实施例,本申请中的所述第一节点通过执行第一监听以判断是否在所述第一多载波符号集合中进行无线发送。
实施例10
实施例10示例了另一个第一时间单元和第二多载波集合的示意图,如附图10所示。附图10中,所述第二多载波符号集合与第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔;所述第二多载波符号集合中的所有符号均不属于所述第一时间单元。
作为一个实施例,本申请中的所述第一节点在所述第一多载波符号集合中进行无线发送。
实施例11
实施例11示例了另一个第一时间单元和第二多载波集合的示意图,如附图11所示。附图11中,所述第二多载波符号集合与第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔;所述第二多载波符号集合中的所有符号均属于所述第一时间单元;本申请中的所述第三信令被用于确定第一多载波符号组,所述第一多载波符号组包括所述第一多载波符号集合;第二多载波符号组与所述第一多载波符号组中的多载波符号一一对应;所述第二多载波符号组中的任一多载波符号与所述第一多载波符号组中对应的多载波符号之间的时间间隔是第一时间间隔。
作为一个实施例,本申请中的所述第一节点放弃所述第一多载波符号集合中的无线发送,且保留所述第一多载波符号组中且所述第一多载波符号集合之外的多载波符号的发送。
作为一个实施例,本申请中的所述第一节点放弃所述第一多载波符号集合中的无线发送,且通过执行信道监听测量确定是否保留所述第一多载波符号组中且所述第一多载波符号集合之外的多载波符号的发送。
作为该实施例的一个子实施例,所述信道监听测量确定没有感知到V2X传输,所述第一节点保留所述第一多载波符号组中且所述第一多载波符号集合之外的多载波符号的发送。
作为该实施例的一个子实施例,所述信道监听测量确定感知到V2X传输,所述第一节点放弃所述第一多载波符号组中且所述第一多载波符号集合之外的多载波符号的发送。
实施例12
实施例12示例了一个原理图,如附图12所示。在附图12中,图中所示的第一节点和第二节点之间进行Uu链路的上行传输,而第三节点正进行V2X的通信,且V2X通信所占用的时域资源是所述第一节点配置的。TA(Timing Advance,定时提前)1对应第一节点和第二 节点之间因为传输延迟而引入的第一节点发送提前以保证与第二节点的上行传输对齐;TA2对应第三节点和第二节点之间因为传输延迟而引入的第三节点发送提前以保证与第二节点的上行传输对齐。如图所示,当TA1和TA2不相同时,第一节点的上行发送会扩散到第三节点的V2X传输所占用的时域资源中,即图中标粗线框的矩形中。
实施例13
实施例13示例了一个应用场景的示意图,如附图13所示。在附图13中,图中所示的第一节点和第二节点之间进行Uu链路的上行传输,而第三节点与第四节点正进行V2X的通信,图中第一节点与第二节点之间的Uu链路上的上行传输对第三节点上进行的V2X的传输产生干扰。
实施例14
实施例14示例了一个第一节点中的结构框图,如附图14所示。附图14中,第一节点1400包括第一接收机1401、第一发射机1402、第二接收机1403和第二收发机1404。
第一接收机1401,接收第一信令,所述第一信令被用于指示第一时间单元集合;
第一发射机1402,发送第二信令,所述第二信令被用于指示第一时间间隔;
第二接收机1403,接收第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;
第二收发机1404,当第二多载波符号集合属于所述第一时间单元集合时,放弃在所述第一多载波符号集合中进行无线发送;当第二多载波符号集合不属于所述第一时间单元集合时,在所述第一多载波符号集合中发送第一信号;
实施例14中,所述第一调度信息被应用于所述第一信号;所述第二多载波符号集合中的多载波符号与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
作为一个实施例,所述第一接收机1401接收第四信令;所述第四信令被用于确定第二时间间隔,所述第一时间间隔与所述第二时间间隔有关。
作为一个实施例,所述第一接收机1401检测第一类信号集合;所述第一类信号集合被用于确定存在蜂窝链路之外的无线链路的传输,所述第一类信号集合被用于触发所述第二信令的发送。
作为一个实施例,所述第一类信号集合被用于确定第三时间间隔,所述第三时间间隔与所述第二时间间隔被共同用于确定所述第一时间间隔。
作为一个实施例,所述第一接收机1401包括实施例4中的天线452、接收器454、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前4者。
作为一个实施例,所述第一发射机1402包括实施例4中的天线452、发射器454、多天线发射处理器457、发射处理器468、控制器/处理器459中的至少前4者。
作为一个实施例,所述第二接收机1403包括实施例4中的天线452、接收器454、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前4者。
作为一个实施例,所述第二收发机1404包括实施例4中的天线452、发射器454、多天线发射处理器457、发射处理器468、控制器/处理器459中的至少前4者。
实施例15
实施例15示例了另一个第一节点中的结构框图,如附图15所示。附图15中,第一节点1500包括第一接收机1501、第一发射机1502、第二接收机1503和第二收发机1504。
第一接收机1501,接收第一信令,所述第一信令被用于指示第一时间单元集合;
第一发射机1502,发送第二信令,所述第二信令被用于指示第一时间间隔;
第二接收机1503,接收第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;
第二收发机1504,当第二多载波符号集合属于所述第一时间单元集合时,执行第一 监听以判断是否在所述第一多载波符号集合中进行无线发送;若判断是,在所述第一多载波符号集合中发送第一信号;若判断否,在所述第一多载波符号集合中放弃无线发送;当第二多载波符号集合不属于所述第一时间单元集合时,在所述第一多载波符号集合中发送第一信号;
实施例15中,所述第一调度信息被应用于所述第一信号,所述第二多载波符号集合中的多载波符号与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
作为一个实施例,所述第一接收机1501接收第四信令;所述第四信令被用于确定第二时间间隔,所述第一时间间隔与所述第二时间间隔有关。
作为一个实施例,所述第一接收机1501检测第一类信号集合;所述第一类信号集合被用于确定存在蜂窝链路之外的无线链路的传输,所述第一类信号集合被用于触发所述第二信令的发送。
作为一个实施例,所述第一类信号集合被用于确定第三时间间隔,所述第三时间间隔与所述第二时间间隔被共同用于确定所述第一时间间隔。
作为一个实施例,所述第一接收机1501包括实施例4中的天线452、接收器454、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前4者。
作为一个实施例,所述第一发射机1502包括实施例4中的天线452、发射器454、多天线发射处理器457、发射处理器468、控制器/处理器459中的至少前4者。
作为一个实施例,所述第二接收机1503包括实施例4中的天线452、接收器454、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前4者。
作为一个实施例,所述第二收发机1504包括实施例4中的天线452、发射器454、多天线发射处理器457、发射处理器468、控制器/处理器459中的至少前4者。
作为一个实施例,所述第二收发机1504包括实施例4中的天线452、接收器454、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前4者。
实施例16
实施例16示例了一个第二节点中的结构框图,如附图16所示。附图16中,第二节点1600包括第三发射机1601、第三接收机1602、第四发射机1603和第四接收机1604。
第三发射机1601,发送第一信令,所述第一信令被用于指示第一时间单元集合;
第三接收机1602,接收第二信令,所述第二信令被用于指示第一时间间隔;
第四发射机1603,发送第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;
第四接收机1604,当第二多载波符号集合属于所述第一时间单元集合时,放弃在所述第一多载波符号集合中进行针对第一节点的无线接收,所述第一节点是所述第二信令的发送者;当第二多载波符号集合不属于所述第一时间单元集合时,在所述第一多载波符号集合中接收第一信号;
实施例16中,所述第一调度信息被应用于所述第一信号;所述第二多载波符号集合中的多载波符号与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。作为一个实施例,所述第二收发机1601发送第一信令;所述第一信令被用于确定所述第一信号所占用的时域资源或频域资源中的至少之一,所述第一信令包括所述第一域,所述第一信令是物理层信令。
作为一个实施例,所述第三发射机1601发送第四信令;所述第四信令被用于确定第二时间间隔,所述第一时间间隔与所述第二时间间隔有关。
作为一个实施例,所述第三发射机1601包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器416、控制器/处理器475中的至少前4者。
作为一个实施例,所述第三接收机1602包括实施例4中的天线420、接收器418、多天线接收处理器472、接收处理器470、控制器/处理器475中的至少前4者。
作为一个实施例,所述第四发射机1603包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器416、控制器/处理器475中的至少前4者。
作为一个实施例,所述第四接收机1604包括实施例4中的天线420、接收器418、多天线接收处理器472、接收处理器470、控制器/处理器475中的至少前4者。
实施例17
实施例17示例了一个第二节点中的结构框图,如附图17所示。附图17中,第二节点1700包括第三发射机1701、第三接收机1702、第四发射机1703和第四接收机1704。
第三发射机1701,发送第一信令,所述第一信令被用于指示第一时间单元集合;
第三接收机1702,接收第二信令,所述第二信令被用于指示第一时间间隔;
第四发射机1703,发送第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;
第四接收机1704,在所述第一多载波符号集合中检测第一信号;
实施例17中,当第二多载波符号集合属于所述第一时间单元集合时,第一节点执行第一监听以判断是否在所述第一多载波符号集合中进行无线发送;若判断是,所述第一节点在所述第一多载波符号集合中发送第一信号;若判断否,所述第一节点在所述第一多载波符号集合中放弃无线发送;当第二多载波符号集合不属于所述第一时间单元集合时,所述第一节点在所述第一多载波符号集合中发送第一信号;所述第一节点是所述第二信令的发送者;所述第一调度信息被应用于所述第一信号,所述第二多载波符号集合中的多载波符号与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
作为一个实施例,所述第三发射机1701发送第四信令;所述第四信令被用于确定第二时间间隔,所述第一时间间隔与所述第二时间间隔有关。
作为一个实施例,所述第三发射机1701包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器416、控制器/处理器475中的至少前4者。
作为一个实施例,所述第三接收机1702包括实施例4中的天线420、接收器418、多天线接收处理器472、接收处理器470、控制器/处理器475中的至少前4者。
作为一个实施例,所述第四发射机1703包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器416、控制器/处理器475中的至少前4者。
作为一个实施例,所述第四接收机1704包括实施例4中的天线420、接收器418、多天线接收处理器472、接收处理器470、控制器/处理器475中的至少前4者。
实施例18
实施例18示例了一个第三节点中的结构框图,如附图18所示。附图18中,第三节点1800包括第五发射机1801。
第五发射机1801,发送第一类信号集合;
实施例18中,所述第一类信号集合被用于确定存在蜂窝链路之外的无线链路的传输,所述第一类信号集合被用于触发第二信令的发送;所述第二信令被用于指示第一时间间隔,第二多载波符号集合中的任一多载波符号与第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔;第一调度信息被应用于第一信号;所述第二多载波符号集合中的多载波符号与所述第一多载波符号集合中的多载波符号一一对应;第三信令指示所述第一多载波符号集合和所述第一调度信息,第一信令被用于指示第一时间单元集合;当所述第二多载波符号集合属于所述第一时间单元集合时,第一节点放弃在所述第一多载波符号集合中进行无线发送;当所述第二多载波符号集合不属于所述第一时间单元集合时,第一节点在所述第一多载波符号集合中发送所述第一信号;或者,当所述第二多载波符号集合属于所述 第一时间单元集合时,第一节点执行第一监听以判断是否在所述第一多载波符号集合中进行无线发送;若判断是,第一节点在所述第一多载波符号集合中发送所述第一信号;若判断否,第一节点在所述第一多载波符号集合中放弃无线发送;当所述第二多载波符号集合不属于所述第一时间单元集合时,第一节点在所述第一多载波符号集合中发送所述第一信号;所述第二信令的发送者是所述第一节点;所述第一类信号的接收者包括所述第一节点。
作为一个实施例,所述第五发射机1801包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器416、控制器/处理器475中的至少前4者。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点和第二节点包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,交通工具,车辆,RSU,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站,RSU等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种被用于无线通信的第一节点,其特征在于包括:
    第一接收机,接收第一信令,所述第一信令被用于指示第一时间单元集合;
    第一发射机,发送第二信令,所述第二信令被用于指示第一时间间隔;
    第二接收机,接收第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;
    第二收发机,当第二多载波符号集合属于所述第一时间单元集合时,放弃在所述第一多载波符号集合中进行无线发送;当第二多载波符号集合不属于所述第一时间单元集合时,在所述第一多载波符号集合中发送第一信号;
    其中,所述第一调度信息被应用于所述第一信号;所述第二多载波符号集合与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
  2. 一种被用于无线通信的第一节点,其特征在于包括:
    第一接收机,接收第一信令,所述第一信令被用于指示第一时间单元集合;
    第一发射机,发送第二信令,所述第二信令被用于指示第一时间间隔;
    第二接收机,接收第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;
    第二收发机,当第二多载波符号集合属于所述第一时间单元集合时,执行第一监听以判断是否在所述第一多载波符号集合中进行无线发送;若判断是,在所述第一多载波符号集合中发送第一信号;若判断否,在所述第一多载波符号集合中放弃无线发送;当第二多载波符号集合不属于所述第一时间单元集合时,在所述第一多载波符号集合中发送第一信号;
    其中,所述第一调度信息被应用于所述第一信号,所述第二多载波符号集合与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
  3. 根据权利要求1或2所述的第一节点,其特征在于,所述第一接收机接收第四信令;所述第四信令被用于确定第二时间间隔,所述第一时间间隔与所述第二时间间隔有关。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,所述第一接收机检测第一类信号集合;所述第一类信号集合被用于确定存在蜂窝链路之外的无线链路的传输,所述第一类信号集合被用于触发所述第二信令的发送。
  5. 根据权利要求4所述的第一节点,其特征在于,所述第一类信号集合被用于确定第三时间间隔,所述第三时间间隔与所述第二时间间隔被共同用于确定所述第一时间间隔。
  6. 一种被用于无线通信的第二节点,其特征在于包括:
    第三发射机,发送第一信令,所述第一信令被用于指示第一时间单元集合;
    第三接收机,接收第二信令,所述第二信令被用于指示第一时间间隔;
    第四发射机,发送第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;
    第四接收机,当第二多载波符号集合属于所述第一时间单元集合时,放弃在所述第一多载波符号集合中进行针对第一节点的无线接收,所述第一节点是所述第二信令的发送者;当第二多载波符号集合不属于所述第一时间单元集合时,在所述第一多载波符号集合中接收第一信号;
    其中,所述第一调度信息被应用于所述第一信号;所述第二多载波符号集合与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
  7. 一种被用于无线通信的第二节点,其特征在于包括:
    第三发射机,发送第一信令,所述第一信令被用于指示第一时间单元集合;
    第三接收机,接收第二信令,所述第二信令被用于指示第一时间间隔;
    第四发射机,发送第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;
    第四接收机,在所述第一多载波符号集合中检测第一信号;
    其中,当第二多载波符号集合属于所述第一时间单元集合时,第一节点执行第一监听以判断是否在所述第一多载波符号集合中进行无线发送;若判断是,所述第一节点在所述第一 多载波符号集合中发送第一信号;若判断否,所述第一节点在所述第一多载波符号集合中放弃无线发送;当第二多载波符号集合不属于所述第一时间单元集合时,所述第一节点在所述第一多载波符号集合中发送第一信号;所述第一节点是所述第二信令的发送者;所述第一调度信息被应用于所述第一信号,所述第二多载波符号集合与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
  8. 根据权利要求6或7所述的第二节点,其特征在于,所述第三发射机发送第四信令;所述第四信令被用于确定第二时间间隔,所述第一时间间隔与所述第二时间间隔有关。
  9. 一种被用于无线通信的第一节点中的方法,其特征在于包括:
    接收第一信令,所述第一信令被用于指示第一时间单元集合;
    发送第二信令,所述第二信令被用于指示第一时间间隔;
    接收第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;
    当第二多载波符号集合属于所述第一时间单元集合时,放弃在所述第一多载波符号集合中进行无线发送;当第二多载波符号集合不属于所述第一时间单元集合时,在所述第一多载波符号集合中发送第一信号;
    其中,所述第一调度信息被应用于所述第一信号;所述第二多载波符号集合与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
  10. 一种被用于无线通信的第一节点中的方法,其特征在于包括:
    接收第一信令,所述第一信令被用于指示第一时间单元集合;
    发送第二信令,所述第二信令被用于指示第一时间间隔;
    接收第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;
    当第二多载波符号集合属于所述第一时间单元集合时,执行第一监听以判断是否在所述第一多载波符号集合中进行无线发送;若判断是,在所述第二多载波符号集合中发送第一信号;若判断否,在所述第一多载波符号集合中放弃无线发送;当第二多载波符号集合不属于所述第一时间单元集合时,在所述第一多载波符号集合中发送第一信号;
    其中,所述第一调度信息被应用于所述第一信号,所述第二多载波符号集合与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
  11. 一种被用于无线通信的第二节点中的方法,其特征在于包括:
    发送第一信令,所述第一信令被用于指示第一时间单元集合;
    接收第二信令,所述第二信令被用于指示第一时间间隔;
    发送第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;
    当第二多载波符号集合属于所述第一时间单元集合时,放弃在所述第一多载波符号集合中进行针对第一节点的无线接收,所述第一节点是所述第二信令的发送者;当第二多载波符号集合不属于所述第一时间单元集合时,在所述第一多载波符号集合中接收第一信号;
    其中,所述第一调度信息被应用于所述第一信号;所述第二多载波符号集合与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
  12. 一种被用于无线通信的第二节点中的方法,其特征在于包括:
    发送第一信令,所述第一信令被用于指示第一时间单元集合;
    接收第二信令,所述第二信令被用于指示第一时间间隔;
    发送第三信令,所述第三信令指示第一多载波符号集合和第一调度信息;
    在所述第一多载波符号集合中检测第一信号;
    其中,当第二多载波符号集合属于所述第一时间单元集合时,第一节点执行第一监听以判断是否在所述第一多载波符号集合中进行无线发送;若判断是,所述第一节点在所述第一 多载波符号集合中发送第一信号;若判断否,所述第一节点在所述第一多载波符号集合中放弃无线发送;当第二多载波符号集合不属于所述第一时间单元集合时,所述第一节点在所述第一多载波符号集合中发送第一信号;所述第一节点是所述第二信令的发送者;所述第一调度信息被应用于所述第一信号,所述第二多载波符号集合与所述第一多载波符号集合中的多载波符号一一对应;所述第二多载波符号集合中的任一多载波符号与所述第一多载波符号集合中对应的多载波符号之间的时间间隔是所述第一时间间隔。
PCT/CN2020/094137 2019-06-20 2020-06-03 一种被用于无线通信的节点中的方法和装置 WO2020253530A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910539072.6A CN112118631B (zh) 2019-06-20 2019-06-20 一种被用于无线通信的节点中的方法和装置
CN201910539072.6 2019-06-20

Publications (1)

Publication Number Publication Date
WO2020253530A1 true WO2020253530A1 (zh) 2020-12-24

Family

ID=73796214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094137 WO2020253530A1 (zh) 2019-06-20 2020-06-03 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (2) CN112118631B (zh)
WO (1) WO2020253530A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106165481A (zh) * 2014-04-02 2016-11-23 Lg电子株式会社 在无线通信系统中收发信号的方法及其设备
CN107734557A (zh) * 2016-08-11 2018-02-23 北京三星通信技术研究有限公司 一种v2x通信中避免对蜂窝通信干扰的方法和设备
US20180092065A1 (en) * 2016-09-29 2018-03-29 Sharp Laboratories Of America, Inc. Method and apparatus for selecting radio resources for vehicle (v2x) communications from an overlapping resource pool
CN108028730A (zh) * 2015-09-15 2018-05-11 Lg电子株式会社 在无线通信系统中终端的v2x操作的资源选择方法以及使用该方法的终端

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2883401B1 (en) * 2012-08-10 2018-06-27 Telecom Italia S.p.A. Uplink interference mitigation in heterogeneous mobile networks
CN107371258B (zh) * 2016-05-13 2023-09-05 北京三星通信技术研究有限公司 传输数据的方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106165481A (zh) * 2014-04-02 2016-11-23 Lg电子株式会社 在无线通信系统中收发信号的方法及其设备
CN108028730A (zh) * 2015-09-15 2018-05-11 Lg电子株式会社 在无线通信系统中终端的v2x操作的资源选择方法以及使用该方法的终端
CN107734557A (zh) * 2016-08-11 2018-02-23 北京三星通信技术研究有限公司 一种v2x通信中避免对蜂窝通信干扰的方法和设备
US20180092065A1 (en) * 2016-09-29 2018-03-29 Sharp Laboratories Of America, Inc. Method and apparatus for selecting radio resources for vehicle (v2x) communications from an overlapping resource pool

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Overview of Rel-17 work areas for NR and LTE", 3GPP TSG RAN MEETING #84, RP-191486, 6 June 2019 (2019-06-06), XP051748411 *

Also Published As

Publication number Publication date
CN116782397A (zh) 2023-09-19
CN112118631A (zh) 2020-12-22
CN112118631B (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020244384A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020244375A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021103926A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021088618A1 (zh) 一种被用于无线通信的方法和装置
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN115623594A (zh) 一种被用于无线通信的节点中的方法和装置
CN112636885B (zh) 一种被用于无线通信的节点中的方法和装置
CN113541889A (zh) 一种被用于无线通信的节点中的方法和装置
WO2022188749A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021031901A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020259238A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN114449538B (zh) 一种被用于中继无线通信中的方法和装置
WO2020228556A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN112074009B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020253530A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN114205774A (zh) 一种用于中继传输的方法和装置
WO2021008358A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021027538A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024022094A1 (zh) 用于无线通信的的方法和装置
WO2021093511A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021036789A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021088617A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023179470A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023227047A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20827032

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20827032

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/07/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20827032

Country of ref document: EP

Kind code of ref document: A1