WO2023041064A1 - 时间参数确定方法、设备和存储介质 - Google Patents

时间参数确定方法、设备和存储介质 Download PDF

Info

Publication number
WO2023041064A1
WO2023041064A1 PCT/CN2022/119417 CN2022119417W WO2023041064A1 WO 2023041064 A1 WO2023041064 A1 WO 2023041064A1 CN 2022119417 W CN2022119417 W CN 2022119417W WO 2023041064 A1 WO2023041064 A1 WO 2023041064A1
Authority
WO
WIPO (PCT)
Prior art keywords
offset
communication node
timing
node
time offset
Prior art date
Application number
PCT/CN2022/119417
Other languages
English (en)
French (fr)
Inventor
毕峰
邢卫民
卢有雄
苗婷
陈杰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020247012937A priority Critical patent/KR20240058188A/ko
Publication of WO2023041064A1 publication Critical patent/WO2023041064A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present application relates to the communication field, and in particular to a method, device and storage medium for determining a time parameter.
  • the network is deployed through Integrated Access and Backhaul (IAB) technology, which greatly reduces the cost of network deployment.
  • IAB Integrated Access and Backhaul
  • the simultaneous uplink and downlink reception mode can be used.
  • how to determine the time offset relative to the time advance is an urgent problem to be solved.
  • An embodiment of the present application provides a method for determining a time parameter, which is applied to a first communication node, including:
  • the first communication node determines that the mobile terminal transmission of the first communication node is based on the mobile terminal reception timing advance T TA of the first communication node timing;
  • the first communication node determines the first The transmission timing of the mobile terminal of the communication node
  • the first communication node determines the mobile terminal transmission timing of the first communication node based on the distributed unit transmission timing of the first communication node; wherein ,
  • T TA represents the amount of time advance
  • N offset represents the time offset
  • An embodiment of the present application provides a method for determining a time parameter, which is applied to a second communication node, including:
  • the time offset index is sent to the first communication node, so that the first communication node determines a time offset according to the time offset index.
  • An embodiment of the present application provides a communication device, including: a communication module, a memory, and one or more processors;
  • the communication module is configured to communicate and interact between the first communication node, the second communication node and the donor node;
  • the memory configured to store one or more programs
  • the one or more processors are made to implement the method described in any of the foregoing embodiments.
  • An embodiment of the present application provides a storage medium, the storage medium stores a computer program, and when the computer program is executed by a processor, the method described in any one of the foregoing embodiments is implemented.
  • FIG. 1 is a schematic display of a first timing mode provided by an embodiment of the present application
  • Fig. 2 is a schematic display diagram of another first timing mode provided by the embodiment of the present application.
  • Fig. 3 is a schematic display diagram of a second timing mode provided by the embodiment of the present application.
  • Fig. 4 is a schematic display diagram of a third timing mode provided by an embodiment of the present application.
  • FIG. 5 is a flow chart of a method for determining a time parameter provided in an embodiment of the present application
  • FIG. 6 is a flow chart of another time parameter determination method provided by the embodiment of the present application.
  • Fig. 7 is a schematic configuration diagram of a MAC CE provided by the embodiment of the present application.
  • Fig. 8 is the configuration diagram of another kind of MAC CE that the embodiment of the present application provides.
  • Fig. 9 is a configuration diagram of another MAC CE provided by the embodiment of the present application.
  • Fig. 10 is a configuration diagram of another MAC CE provided by the embodiment of the present application.
  • Fig. 11 is a configuration diagram of another MAC CE provided by the embodiment of the present application.
  • Fig. 12 is a structural block diagram of a device for determining a time parameter provided in an embodiment of the present application.
  • Fig. 13 is a structural block diagram of another device for determining time parameters provided by the embodiment of the present application.
  • Fig. 14 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the commercial communication in related technologies uses 300M Spectrum resources between Hertz (MHz) and 3 Gigahertz (GHz) show an extremely tight situation, which can no longer meet the needs of future wireless communications.
  • the fourth generation of wireless communication uses higher carrier frequencies for communication, such as 28GHz, 45GHz, 70GHz, etc.
  • This high-frequency channel has a large loss of free propagation, is easily absorbed by oxygen, and is greatly affected by rain attenuation. , seriously affecting the coverage performance of the high-frequency communication system.
  • the carrier frequency corresponding to high-frequency communication has a shorter wavelength, it can ensure that more antenna elements can be accommodated per unit area, and more antenna elements mean that the beamforming method can be used to improve the antenna gain. Thus, the coverage performance of high-frequency communication is guaranteed.
  • Dense cells are more and more important application scenarios, and dense cells will require more network deployment costs.
  • the introduction of wireless backhaul transmission can facilitate network deployment and greatly reduce network deployment costs.
  • the NR system includes high-frequency frequency bands, so the physical characteristics of high-frequency carriers determine that it is a very big challenge to achieve large-scale coverage of high-frequency carriers.
  • Wireless backhaul transmission can also solve this problem.
  • IAB has been described.
  • the link between the IAB node and the parent node is called a backhaul link (Backhaul Link, BL);
  • the link between the IAB node and the child node, or the link between the IAB node and the user equipment is called a backhaul link.
  • TDM Time Division Multiplexing
  • FDM Frequency Division Multiplexing
  • SDM Spatial Division Multiplexing
  • relay Node also known as IAB-node
  • IAB-MT communicates with upstream nodes
  • IAB-DU communicates with downstream nodes
  • downstream Nodes including downstream terminals
  • the upstream node of the upper level of the IAB node (denoted as IAB-node) is also called the parent node of the IAB-node (denoted as parent-node), and the parent-node can be regarded as the node IAB-node the serving cell of the node IAB-node;
  • the next downstream node of the node IAB-node is also called the child-node of the IAB-node or UE, and the node IAB-node can be regarded as the serving cell of the child-node child-node or UE.
  • IAB-node can also be regarded as the child-node of its parent-node; IAB-node can also be regarded as the parent-node of its child-node.
  • each node in the system maintains downlink transmission timing (DL Tx Timing, DTT) alignment (also called IAB-DU transmission timing alignment).
  • DTT downlink transmission timing
  • the timing modes between the various nodes include the following types: (1) The downlink transmission timing of the node is aligned with the downlink transmission timing of the donor node (also called the parent node), which is referred to as the first timing mode for short (It can also be called non-simultaneous mode).
  • FIG. 1 is a schematic display diagram of a first timing mode provided by an embodiment of the present application. As shown in FIG.
  • FIG. 2 is a schematic display diagram of another first timing mode provided by the embodiment of the present application. As shown in FIG. 2, when the uplink receiving timing and downlink transmitting timing of the parent node are not aligned In some cases, the downlink transmission timing of the IAB node is aligned with the downlink transmission timing of the donor node.
  • the uplink receiving timing of the node is aligned to the downlink receiving timing of the node; or, the downlink transmitting timing of the node is aligned to the downlink transmitting timing of the donor node, and the uplink receiving timing of the node is aligned to the downlink receiving timing of the node, for short It is the second timing mode (also called the same receiving mode).
  • FIG. 3 is a schematic display of a second timing mode provided by an embodiment of the present application. As shown in FIG. 3 , the uplink receiving timing of the IAB node is aligned with the downlink receiving timing of the IAB node.
  • FIG. 4 is a schematic display of a third timing mode provided by an embodiment of the present application. As shown in FIG. 4 , the uplink transmission timing of the IAB node is aligned with the downlink transmission timing of the IAB node.
  • the IAB-node can be determined based on half of the timing advance (Timing Advance, TA) (denoted as TA/2) based on the downlink receiving timing (DL Rx Timing, DRT) of the IAB-MT. DTT of IAB-DU to maintain DTT alignment between nodes. However, due to the implementation of the upstream node side, there is an offset between the upstream node's uplink receiving timing (UL Rx Timing, URT) and the upstream node's DTT. IAB-node cannot simply think that the DRT based on IAB-MT is ahead of time. TA/2 is the actual DTT of the IAB-DU.
  • the first communication node can determine the corresponding time offset according to the time offset index pre-configured by the second communication node, so that the uplink transmission timing can be accurately determined. , improving transmission efficiency and reliability.
  • first timing mode, the second timing mode, and the third timing mode all refer to timing modes of the IAB-node.
  • the second communication node refers to the IAB-node
  • the first communication node refers to the child-node or UE.
  • ⁇ f represents the subcarrier spacing
  • FR1 represents the first frequency range Frequency Range1, for example, the range of FR1 is 410MHz–7125MHz;
  • FR2 represents the second frequency range Frequency Range2, for example, the range of FR2 is 24250MHz–52600MHz, 52600MHz–71000MHz;
  • T c represents the transmission time between parent-node and IAB-node
  • T Tdelta represents the timing parameter of IAB-node
  • I Tdelta represents the timing parameter index of IAB-node
  • B Tdelta represents the timing parameter benchmark of IAB-node
  • G Tdelta indicates the timing parameter granularity of IAB-node
  • O Tdelta represents the timing parameter signaling overhead of the IAB-node
  • I Tg represents the deviation index between the URT of the IAB-node and the DTT of the IAB-node
  • B Tg represents the deviation benchmark between URT of IAB-node and DTT of IAB-node
  • G Tg represents the deviation granularity between the URT of the IAB-node and the DTT of the IAB-node;
  • O Tg represents the deviation signaling overhead between the URT of the IAB-node and the DTT of the IAB-node
  • T symbol N symbol T c represents the duration of the Orthogonal Frequency Division Multiplexing (OFDM) symbol;
  • M represents the number of OFDM symbols offset
  • T TA (N TA +N TA,offset ) ⁇ T c indicates that the IAB-node operates in the first timing mode, and the time advance of the child-node's uplink transmission timing (UL Tx Timing, UTT) relative to the child-node's DRT ;
  • the timing advance can be represented by T TA or (N TA +N TA,offset ) ⁇ T c .
  • N TA means timing advance, which means that the UTT of the child-node is ahead of the DRT of the child-node;
  • N TA,offset represents the timing advance offset, for example, including: 0 ⁇ T c , 13792 ⁇ T c , 25600 ⁇ T c , 39936 ⁇ T c ;
  • N offset T c indicates that the IAB-node operates in the second timing mode, and the time offset of the UTT of the child-node relative to T TA ;
  • I offset indicates that the IAB-node operates in the second timing mode, and the UTT of the child-node is relative to the time offset index of T TA ;
  • B offset indicates that the IAB-node operates in the second timing mode, and the UTT of the child-node is relative to the time offset reference of T TA ;
  • G offset indicates that the IAB-node operates in the second timing mode, and the time offset granularity of the UTT of the child-node relative to T TA ;
  • O offset indicates that the IAB-node operates in the second timing mode, and the time offset signaling overhead of the child-node UTT relative to T TA .
  • FIG. 5 is a flowchart of a method for determining a time parameter provided in an embodiment of the present application.
  • This embodiment can be executed by a time parameter determining device.
  • the device for determining the time parameter may be the first communication node.
  • the first communication node refers to a child node of the second communication node, or, the first communication node is a UE.
  • this embodiment includes: S510-S520.
  • the second communication node refers to a parent node of the first communication node, where the parent node may be a donor node.
  • the time offset index can be understood as the time offset index of UTT of the first communication node relative to T TA when the second communication node adopts the second timing mode.
  • the second communication node adopts the second timing mode, and determines a time offset signaling overhead based on a preconfigured time parameter, and determines a corresponding time offset index based on the time offset signaling overhead, The time offset index is transmitted to the first communication node by signaling.
  • the time offset may be understood as the time offset of the UTT of the first communication node relative to T TA when the second communication node adopts the second timing mode.
  • the first communication node determines the time offset according to a time offset index preconfigured by the second communication node.
  • determining the time offset according to the time offset index includes:
  • the time offset is determined based on the time offset index and the time offset granularity.
  • the time offset granularity may be understood as the time offset granularity of UTT of the first communication node relative to T TA when the second communication node adopts the second timing mode.
  • determining the time offset according to the time offset index includes:
  • the time offset index and the time offset may be based on one or more of the time offset reference, the time offset at the previous moment, and the number of bits occupied by the time offset corresponding signaling.
  • the offset granularity determines the time offset.
  • the time offset can be determined according to the time offset reference, time offset index, and time offset granularity; it can also be determined according to the time offset, time offset index, and time offset
  • the time offset can be determined based on the offset granularity; it can also be determined according to the time offset reference, the time offset at the previous moment, the number of bits occupied by the signaling corresponding to the time offset, the time offset index, and the time offset
  • the offset granularity determines the time offset.
  • the time offset at the previous moment can be understood as the time offset of the uplink transmission timing of the first communication node relative to T TA at a certain moment before, which can be represented by N offset_pre Tc ;
  • time The offset reference can be understood as the second communication node operating the second timing mode, and the time offset reference of the uplink transmission timing of the first communication node relative to T TA can be represented by B offset ;
  • the time offset corresponds to the signaling
  • the number of bits occupied may be understood as the number of bits occupied by signaling corresponding to the I offset , which may be represented by A.
  • the manner for determining the granularity of the time offset includes: determining the granularity of the time offset according to a frequency range.
  • FR may be used to represent a frequency range, where the frequency range includes: a first frequency range FR1 and a second frequency range FR2.
  • the first frequency range may be 410MHz-7125MHz; the second frequency range may be 24250MHz-52600MHz, 52600MHz-71000MHz.
  • different frequency ranges correspond to different time offset granularity, it can be understood that the first frequency range FR1 corresponds to one time offset granularity; the second frequency range FR2 corresponds to another time offset granularity Granularity.
  • different frequency ranges correspond to the same granularity of the time offset. It can be understood that the first frequency range FR1 and the second frequency range FR2 correspond to the same granularity of the time offset.
  • the manner of determining the granularity of the time offset includes: determining the granularity of the time offset according to the subcarrier interval.
  • ⁇ f may be used to represent the subcarrier spacing.
  • different subcarrier spacings correspond to different time offset granularities.
  • different subcarrier spacings correspond to the same time offset granularity.
  • the time offset granularity corresponding to different subcarrier intervals is 16 ⁇ 64/2 ⁇ .
  • the method for determining the time offset reference includes: determining the time offset reference according to the frequency range. In one embodiment, different frequency ranges correspond to different time offset references. In one embodiment, different frequency ranges correspond to the same time offset reference.
  • the method for determining the time offset reference includes: determining the time offset reference according to the subcarrier spacing. In one embodiment, different subcarrier spacings correspond to different time offset references. In one embodiment, different subcarrier spacings correspond to the same time offset reference.
  • the bearing mode of the signaling corresponding to the time offset index includes one of the following: downlink control information (Downlink Control Information, DCI); physical downlink control channel (Physical Downlink Control Channel, PDCCH); media interface Incoming layer control unit (MAC Control Element, MAC CE); Radio Resource Control (Radio Resource Control, RRC) signaling; Operations, Administration and Maintenance (OAM) signaling.
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • MAC Control Element, MAC CE media interface Incoming layer control unit
  • Radio Resource Control Radio Resource Control
  • RRC Operations, Administration and Maintenance
  • the signaling includes at least one of the following: a time offset index field; a timing advance group identifier field; and a value type field.
  • the time offset index field can be recorded as the I offset field;
  • the timing advance group identification field can be recorded as the TAG ID field;
  • the value type field can be recorded as the value type field, indicating that the I offset is N offset T c absolute The index corresponding to the value or relative value.
  • the second communication node operates in the first timing mode; the first communication node adopts the first type of uplink transmission timing, and determines the uplink transmission timing of the first communication node according to the timing advance and downlink receiving timing.
  • the timing advance can be represented by T TA
  • the downlink receiving timing and the uplink transmitting timing are represented by DRT and UTT respectively
  • the first timing mode includes: aligning the downlink transmission timing of the second communication node to the downlink transmission timing of the donor node.
  • the second communication node operates in the second timing mode; the first communication node adopts the second type of uplink transmission timing, and determines the uplink transmission timing of the first communication node according to the timing advance and downlink receiving timing.
  • the second communication node runs the second timing mode; the first communication node adopts the second type of uplink transmission timing, according to the time offset, OFDM symbol duration and offset At least one of the number of OFDM symbols, the timing advance and the downlink reception timing determine the uplink transmission timing of the first communication node.
  • the uplink transmission timing of the first communication node can be determined according to the time offset, time advance and downlink receiving timing; it can also be determined according to the time offset, OFDM symbol duration, offset The number of OFDM symbols, the timing advance and the downlink reception timing determine the uplink transmission timing of the first communication node.
  • T symbol and M are respectively used to represent the OFDM symbol duration and the number of OFDM symbols offset.
  • the minus sign indicates that the uplink transmission timing of the first communication node is earlier than the downlink receiving timing of the first communication node by T TA , or by T TA +N offset ⁇ T c , or by T TA +N offset ⁇ T c +M ⁇ T symbol , or, T TA +N offset ⁇ T c -M ⁇ T symbol .
  • the uplink transmission timing of a communication node is advanced by T TA relative to the downlink reception timing of the first communication node, or advanced by (N TA +N TA,offset +N offset ) ⁇ T c , or advanced by (N TA +N TA, offset +N offset ) ⁇ T c +M ⁇ T symbol , or, (N TA +N TA,offset +N offset ) ⁇ T c -M ⁇ T symbol .
  • the second communication node adopts the second timing mode; wherein, the second timing mode includes: the uplink receiving timing of the second communication node is aligned to the downlink receiving timing of the second communication node; or, the second communication node The downlink transmission timing of the node is aligned with the downlink transmission timing of the donor node, and the uplink reception timing of the second communication node is aligned with the downlink reception timing of the second communication node.
  • both the first type of uplink transmission timing and the second type of uplink transmission timing are determined according to one of the following signalings: time offset index invalidation signaling; timing mode switching signaling; uplink transmission timing switching signaling .
  • the first communication node receives the time offset index in the nth time slot or subframe, and the uplink transmission timing of the first communication node is applied to the n+kth time slot or subframe; or , applied to the n+k+1th time slot or subframe; where n and k are both positive integers greater than or equal to 0.
  • FIG. 6 is a flowchart of another method for determining a time parameter provided in an embodiment of the present application. This embodiment can be executed by a time parameter determining device. Wherein, the device for determining the time parameter may be the second communication node. As shown in FIG. 6, this embodiment includes: S610-S620.
  • the second communication node runs the second timing mode and determines the range of time offsets based on TTP0 , T Tdelta , T Tg , T symbol and M , and based on the upper bound in the range of time offsets and the lower bound, and the time offset granularity determine the time offset signaling overhead, and determine the corresponding time offset index according to the time offset signaling overhead; then transmit the time offset index to the first A communication node, so that the first communication node determines the time offset according to the time offset index, thereby accurately calculating the uplink transmission timing of the first communication node, and improving transmission efficiency and stability.
  • the bearing mode of the signaling corresponding to the time offset index includes one of the following: DCI; PDCCH; MAC CE; RRC signaling; OAM signaling.
  • the signaling includes at least one of the following: a time offset index field; a timing advance group identifier field; and a value type field.
  • time offset index and the time offset refer to the description in the method for determining the time parameter applied to the first communication node in the above embodiment, and details are not repeated here.
  • N offset ⁇ T c is determined based on T TPO , T Tdelta , T Tg , T symbol and M.
  • N offset Tc -(T TP0 -2 T Tdelta ), or,
  • N offset T c -(T TP0 -2 T T delta -M T symbol ), or,
  • N offset T c -(T TP0 +T Tg -M T symbol ), or,
  • N offset T c -(T TP0 -2 T T delta +M T symbol ), or,
  • N offset ⁇ T c -(T TP0 +T Tg +M ⁇ T symbol ).
  • N offset ⁇ T c -(T TP0 -2 ⁇ T Tdelta -M ⁇ T symbol )
  • N offset T c -(T TP0 -2 T Tdelta +M T symbol ), N offset T c
  • the process of determining the range of N offset ⁇ T c is described.
  • the range of N offset ⁇ T c is determined based on T TPO , T Tdelta , and T Tg .
  • Table 1 is a schematic table of a value range of T delta provided by the embodiment of the present application. As shown in Table 1, the value range of T delta is related to the timing advance offset N TA, offset and sub-carrier space (Sub-carrier Space , SCS) values are related.
  • N TA timing advance offset
  • SCS sub-carrier Space
  • Table 1 A value range table of T Tdelta
  • Table 2 A value range table of T Tg
  • Table 3 is a schematic table of a value range of N offset ⁇ T c provided in the embodiment of the present application.
  • N offset ⁇ T c -(T TP0 -2 ⁇ T Tdelta )
  • the value range of N offset ⁇ T c is related to the value of SCS, T Tdelta and T TP0 .
  • Table 3 A schematic diagram of the value range of N offset T c
  • the process of determining the range of N offset ⁇ T c is described.
  • the range of N offset ⁇ T c is determined based on T TPO , T Tdelta , T Tg , T symbol and M.
  • the value range of T Tdelta and the value range of T Tg refer to Table 1 and Table 2 respectively.
  • the configuration process of I offset is described by taking the first communication node as the child node CHILD-NODE, the second communication node as the IAB-NODE, and the second communication node adopting the second timing mode as an example.
  • O offset calculation L offset represents the lower bound of N offset ⁇ T c
  • U offset represents the upper bound of N offset ⁇ T c
  • the signaling overhead O offset
  • the bearing mode of the signaling corresponding to I offset includes: physical layer (PHY layer) signaling (such as DCI, PDCCH), medium access control layer (MAC layer) signaling (such as MAC-CE), RRC Layer (RRC layer) signaling (for example, broadcast signaling or dedicated signaling), OAM signaling.
  • PHY layer physical layer
  • MAC layer medium access control layer
  • RRC layer RRC Layer
  • MAC-CE is used as an example to illustrate the configuration mode of MAC-CE, which is similar to the configuration mode of MAC-CE, the configuration mode of DCI, or the configuration mode of PDCCH, or the configuration mode of RRC layer signaling, Or the configuration mode of the OAM signaling.
  • the signaling includes at least one of the following: any combination of the I offset field, the TAG ID field, the value type field, and the R field, which will not be listed here.
  • the MAC-CE is determined according to one of the following methods:
  • FIG. 7 is a schematic configuration diagram of a MAC CE provided by the embodiment of the present application.
  • A 12.
  • the range of I offset can be an integer from 0 to 4095, or the range of I offset can be an integer from -2047 to 2048, or the range of I offset can be from -2048 integers up to 2047.
  • FIG. 8 is a schematic diagram of another MAC CE configuration provided by the embodiment of the present application.
  • TAG means that the uplink transmission configuration of the cells in the serving cell group configured by RRC uses the same reference cell timing and the same timing advance amount; the R field indicates the remaining 2 bits and is reserved as a bit.
  • the range of I offset can be an integer from 0 to 4095, or the range of I offset can be an integer from -2047 to 2048, or the range of I offset can be from -2048 to 2047 an integer of .
  • FIG. 9 is a schematic diagram of another MAC CE configuration provided by the embodiment of the present application
  • FIG. 10 is a schematic configuration diagram of another MAC CE provided by the embodiment of the present application.
  • the value type field occupies any C bits.
  • FIG. 11 is a schematic diagram of another MAC CE configuration provided by the embodiment of the present application.
  • TAG means that the uplink transmission configuration of the cells in the serving cell group configured by RRC uses the same reference cell timing and the same timing advance;
  • A 12.
  • the range of I offset can be an integer from 0 to 4095, or the range of I offset can be an integer from -2047 to 2048, or the range of I offset can be from -2048 integers up to 2047.
  • the method for determining the time offset granularity G offset includes one of the following:
  • the time offset granularity corresponding to the first frequency range FR1 is G offset_FR1 , for example, 64 ⁇ T c ;
  • the time offset granularity corresponding to the second frequency range FR2 is G offset_FR2 , for example, 32 ⁇ T c .
  • the time offset granularity corresponding to the first frequency range FR1 is G offset , for example, 64 ⁇ T c ;
  • the time offset granularity corresponding to the second frequency range FR2 is G offset , for example, 64 ⁇ T c .
  • the time offset granularity corresponding to the subcarrier interval of 15k Hz is G offset_ ⁇ 0 ;
  • the time offset granularity corresponding to the subcarrier interval of 30k Hz is G offset_ ⁇ 1 ;
  • the time offset granularity corresponding to the subcarrier interval of 60k Hz is G offset_ ⁇ 2 ;
  • the time offset granularity corresponding to the subcarrier interval of 120k Hz is G offset_ ⁇ 3 ;
  • the time offset granularity corresponding to the subcarrier spacing of 240k Hz is G offset_ ⁇ 4 ;
  • the time offset granularity corresponding to the subcarrier interval of 480k Hz is G offset_ ⁇ 5 .
  • the time offset granularity corresponding to the subcarrier interval of 15k Hz is G offset ;
  • the time offset granularity corresponding to the subcarrier interval of 30k Hz is G offset ;
  • the time offset granularity corresponding to the subcarrier interval of 60k Hz is G offset ;
  • the time offset granularity corresponding to the subcarrier interval of 120k Hz is G offset ;
  • the time offset granularity corresponding to the subcarrier interval of 240k Hz is G offset ;
  • the time offset granularity corresponding to the subcarrier interval of 480k Hz is G offset .
  • the manner of determining the time offset reference B offset includes one of the following:
  • the time offset reference corresponding to the first frequency range FR1 is B offset_FR1 ;
  • the time offset reference corresponding to the second frequency range FR2 is B offset_FR2 .
  • the time offset reference corresponding to the first frequency range FR1 is B offset ;
  • the time offset reference corresponding to the second frequency range FR2 is B offset .
  • the time offset reference corresponding to the subcarrier interval of 15k Hz is B offset_ ⁇ 0 ;
  • the time offset reference corresponding to the subcarrier interval of 30k Hz is B offset_ ⁇ 1 ;
  • the time offset reference corresponding to the subcarrier interval of 60k Hz is B offset_ ⁇ 2 ;
  • the time offset reference corresponding to the subcarrier interval of 120k Hz is B offset_ ⁇ 3 ;
  • the time offset reference corresponding to the subcarrier interval of 240k Hz is B offset_ ⁇ 4 ;
  • the time offset reference corresponding to the subcarrier interval of 480k Hz is B offset_ ⁇ 5 .
  • the time offset reference corresponding to the subcarrier interval of 15k Hz is B offset ;
  • the time offset reference corresponding to the subcarrier interval of 30k Hz is B offset ;
  • the time offset reference corresponding to the subcarrier interval of 60k Hz is B offset ;
  • the time offset reference corresponding to the subcarrier interval of 120k Hz is B offset ;
  • the time offset reference corresponding to the subcarrier interval of 240k Hz is B offset ;
  • the time offset reference corresponding to the subcarrier interval of 480k Hz is B offset .
  • the calculation process of the time offset T offset includes the following:
  • the IAB node configures I offset to the child node (child-node);
  • the process of determining the uplink transmission timing UTT is described. .
  • the manner of obtaining the UTT includes one of the following:
  • the minus sign indicates that the child-node UTT is ahead of the child-node DRT by T TA , or by T TA +N offset T c , or by T TA +N offset T c +M T symbol , or by T TA +N offset T c -M T symbol .
  • UTT determination signaling is described.
  • the IAB-node can switch between the first timing mode and the second timing mode, and then send an instruction of the UTT that the IAB-node is using at this time to the child-node.
  • DCI, PDCCH, MAC-CE, RRC signaling or OAM signaling includes: I offset invalidation signaling, timing mode switching signaling, or UTT switching signaling.
  • the effective time of UTT assuming that the child-node receives I offset in the nth time slot or subframe, the corresponding child-node UTT is applied to the n+kth time slot or subframe, or, applied to the nth time slot or subframe n+k+1 time slots or subframes, where n and k are integers greater than or equal to 0.
  • FIG. 12 is a structural block diagram of an apparatus for determining a time parameter provided in an embodiment of the present application. This embodiment is applied to the first communication node. As shown in FIG. 9 , the apparatus for determining a time parameter in this embodiment includes: a receiver 1210 and a first determining module 1220 .
  • the receiver 1210 is configured to receive the time offset index configured by the second communication node
  • the first determining module 1220 is configured to determine a time offset according to the time offset index.
  • the first determination module 1220 includes:
  • the time offset is determined based on the time offset index and the time offset granularity.
  • the first determination module 1220 includes:
  • the manner for determining the granularity of the time offset includes: determining the granularity of the time offset according to a frequency range.
  • the manner of determining the granularity of the time offset includes: determining the granularity of the time offset according to the subcarrier interval.
  • the method for determining the time offset reference includes: determining the time offset reference according to the frequency range.
  • the method for determining the time offset reference includes: determining the time offset reference according to the subcarrier spacing.
  • the bearing mode of the signaling corresponding to the time offset index includes one of the following: downlink control information DCI; physical downlink control channel PDCCH; media access layer control unit MAC CE; radio resource control RRC signaling ; OAM signaling for operation, management and maintenance.
  • the signaling includes at least one of the following: a time offset index field; a timing advance group identifier field; and a value type field.
  • the second communication node operates in the first timing mode; the first communication node adopts the first type of uplink transmission timing, and determines the uplink transmission timing of the first communication node according to the timing advance and downlink receiving timing.
  • the first timing mode includes: aligning the downlink transmission timing of the second communication node to the downlink transmission timing of the donor node.
  • the second communication node operates in the second timing mode; the first communication node adopts the second type of uplink transmission timing, and determines the uplink transmission timing of the first communication node according to the timing advance and downlink receiving timing.
  • the second communication node runs the second timing mode; the first communication node adopts the second type of uplink transmission timing, according to the time offset, OFDM symbol duration and offset At least one of the number of OFDM symbols, the timing advance and the downlink reception timing determine the uplink transmission timing of the first communication node.
  • the second communication node adopts the second timing mode; wherein, the second timing mode includes: the uplink receiving timing of the second communication node is aligned to the downlink receiving timing of the second communication node; or, the second communication node The downlink transmission timing of the node is aligned with the downlink transmission timing of the donor node, and the uplink reception timing of the second communication node is aligned with the downlink reception timing of the second communication node.
  • both the first type of uplink transmission timing and the second type of uplink transmission timing are determined according to one of the following signalings: time offset index invalidation signaling; timing mode switching signaling; uplink transmission timing switching signaling .
  • the first communication node receives the time offset index in the nth time slot or subframe, and the uplink transmission timing of the first communication node is applied to the n+kth time slot or subframe; or , applied to the n+k+1th time slot or subframe; where n and k are both positive integers greater than or equal to 0.
  • the time parameter determination device provided in this embodiment is set to implement the time parameter determination method applied to the first communication node in the embodiment shown in FIG. Let me repeat.
  • FIG. 13 is a structural block diagram of another device for determining a time parameter provided in an embodiment of the present application. This embodiment is applied to the second communication node. As shown in FIG. 13 , the device for determining a time parameter in this embodiment includes: a configuration module 1310 and a transmitter 1320 .
  • the configuration module 1310 is configured to configure a time offset index.
  • the sender 1320 is configured to send the time offset index to the first communication node, so that the first communication node determines the time offset according to the time offset index.
  • the time parameter determination device provided in this embodiment is set to implement the time parameter determination method applied to the second communication node in the embodiment shown in FIG. Let me repeat.
  • Fig. 14 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device provided by this application includes: a processor 1410 , a memory 1420 and a communication module 1430 .
  • the number of processors 1410 in the device may be one or more, and one processor 1410 is taken as an example in FIG. 14 .
  • the number of storage 1420 in the device may be one or more, and one storage 1420 is taken as an example in FIG. 14 .
  • the processor 1410, the memory 1420, and the communication module 1430 of the device may be connected through a bus or in other ways. In FIG. 14, connection through a bus is taken as an example.
  • the device may be the first communication node.
  • the memory 1420 can be configured to store software programs, computer-executable programs and modules, such as program instructions/modules corresponding to the equipment in any embodiment of the present application (for example, the receiver in the time parameter determining device 1210 and the first determination module 1220).
  • the memory 1420 may include a program storage area and a data storage area, wherein the program storage area may store an operating system, an application program required by at least one function; the data storage area may store data created according to the use of the device, and the like.
  • the memory 1420 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage devices.
  • the memory 1420 may further include memory located remotely from the processor 1410, and these remote memories may be connected to the device through a network.
  • networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the communication module 1430 is configured to perform communication interaction among the first communication node, the second communication node and the donor node.
  • the device for determining the time parameter is the first communication node
  • the device provided above may be configured to execute the method for determining the time parameter applied to the first communication node provided in any of the above embodiments, and have corresponding functions and effects.
  • the device for determining the time parameter is the second communication node
  • the device provided above may be configured to execute the method for determining the time parameter applied to the second communication node provided in any of the above embodiments, and have corresponding functions and effects.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions When executed by a computer processor, the computer-executable instructions are used to execute a method for determining a time parameter applied to a first communication node.
  • the method includes: receiving A time offset index configured by the second communication node; determine a time offset according to the time offset index.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions When executed by a computer processor, the computer-executable instructions are used to execute a method for determining a time parameter applied to a second communication node.
  • the method includes: configuring Time offset index: sending the time offset index to the first communication node, so that the first communication node determines the time offset according to the time offset index.
  • user equipment covers any suitable type of wireless user equipment, such as mobile phones, portable data processing devices, portable web browsers or vehicle-mounted mobile stations.
  • the various embodiments of the present application can be implemented in hardware or special purpose circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software, which may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source or object code.
  • ISA Instruction Set Architecture
  • Any logic flow block diagrams in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology, such as but not limited to Read-Only Memory (ROM), Random Access Memory (RAM), Optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
  • Computer readable media may include non-transitory storage media.
  • Data processors can be of any type suitable for the local technical environment, such as but not limited to general purpose computers, special purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC ), programmable logic devices (Field-Programmable Gate Array, FGPA), and processors based on multi-core processor architectures.
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FGPA programmable logic devices
  • processors based on multi-core processor architectures such as but not limited to general purpose computers, special purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC ), programmable logic devices (Field-Programmable Gate Array, FGPA), and processors based on multi-core processor architectures.
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FGPA programmable logic devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出一种时间参数确定方法、设备和存储介质。该方法包括:接收第二通信节点配置的时间偏移量索引;根据所述时间偏移量索引确定时间偏移量。

Description

时间参数确定方法、设备和存储介质 技术领域
本申请涉及通信领域,具体涉及一种时间参数确定方法、设备和存储介质。
背景技术
在新空口(New Radio,NR)系统中,通过集成接入回程(Integrated Access and Backhaul,IAB)技术对网络进行部署,大幅度降低了网络部署成本。在实际通信过程中,为了保持网络同步,减少节点间相互干扰,可以采用上下行同时接收模式。但在采用上下行同时接收模式的情况下,如何确定相对于时间提前量的时间偏移量,是一个亟待解决的问题。
发明内容
本申请实施例提供一种时间参数确定方法,应用于第一通信节点,包括:
如果所述第一通信节点的移动终端发射定时对应第一定时模式,所述第一通信节点基于所述第一通信节点的移动终端接收定时提前T TA确定所述第一通信节点的移动终端发射定时;
如果所述第一通信节点的移动终端发射定时对应第二定时模式,所述第一通信节点基于所述第一通信节点的移动终端接收定时提前T TA+N offset·T c确定所述第一通信节点的移动终端发射定时;
如果所述第一通信节点的移动终端发射定时对应第三定时模式,所述第一通信节点基于所述第一通信节点的分布单元发射定时确定所述第一通信节点的移动终端发射定时;其中,
T TA表示时间提前量,
N offset表示时间偏移,
T c表示时间单元,T c=1/(Δf max·N f),Δf max=480·10 3Hz,N f=4096。
本申请实施例提供一种时间参数确定方法,应用于第二通信节点,包括:
配置时间偏移索引;
将所述时间偏移索引发送至第一通信节点,以使第一通信节点根据所述时间偏移索引确定时间偏移。
本申请实施例提供一种通信设备,包括:通信模块,存储器,以及一个或多个处理器;
所述通信模块,配置为在第一通信节点、第二通信节点和施主节点之间进行通信交互;
所述存储器,配置为存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述任一实施例所述的方法。
本申请实施例提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述任一实施例所述的方法。
附图说明
图1是本申请实施例提供的一种第一定时模式的显示示意图;
图2是本申请实施例提供的另一种第一定时模式的显示示意图;
图3是本申请实施例提供的一种第二定时模式的显示示意图;
图4是本申请实施例提供的一种第三定时模式的显示示意图;
图5是本申请实施例提供的一种时间参数确定方法的流程图;
图6是本申请实施例提供的另一种时间参数确定方法的流程图;
图7是本申请实施例提供的一种MAC CE的配置示意图;
图8是本申请实施例提供的另一种MAC CE的配置示意图;
图9是本申请实施例提供的又一种MAC CE的配置示意图;
图10是本申请实施例提供的再一种MAC CE的配置示意图;
图11是本申请实施例提供的再一种MAC CE的配置示意图;
图12是本申请实施例提供的一种时间参数确定装置的结构框图;
图13是本申请实施例提供的另一种时间参数确定装置的结构框图;
图14是本申请实施例提供的一种通信设备的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。以下结合实施例附图对本申请进行描述,所举实例仅用于解释本申请,并非用于限定本申请的范围。
随着无线电技术的不断进步,各种各样的无线电业务大量涌现,而无线电业务所依托的频谱资源是有限的,面对人们对带宽需求的不断增加,相关技术中的商业通信使用的300兆赫兹(MHz)~3吉赫兹(GHz)之间频谱资源表现出极为紧张的局面,已经无法满足未来无线通信的需求。在新一代无线通信系统中(例如,在NR系统(或称为5G系统)中,同时也包括5G之后的新一代无线通信系统中),采用比第四代无线通信(the 4th Generation Mobile Communication,4G)系统所采用的载波频率更高的载波频率进行通信,例如采用28GHz、45GHz、70GHz等等,这种高频信道具有自由传播损耗较大,容易被氧气吸收,受雨衰影响大等缺点,严重影响了高频通信系统的覆盖性能。但是,由于高频通信对应的载波频率具有更短的波长,所以可以保证单位面积上能容纳更多的天线元素,而更多的天线元素意味着可以采用波束赋形的方法来提高天线增益,从而保证高频通信的覆盖性能。
密集小区是越来越主要的应用场景,而密集小区将需要更多的网络部署成本,引入无线回程传输可以很容易地进行网络部署,并且大幅降低网络部署成本。此外NR系统包括高频频段,所以高频载波物理特性决定,实现高频载波的大范围覆盖是非常大的挑战,无线回程传输也可以解决这个问题。基于上述需求,在NR系统中,已经针对IAB进行了说明。为了便于描述,IAB节点和父节点之间的链路称为回程链路(Backhaul Link,BL);IAB节点和子节点之间的链路,或者IAB节点和用户设备之间的链路称为接入链路(Access Link,AL),其中,父节点可以为DN(Donor Node,施主节点,包括Donor gNB)。同时为了克服半双工中继节点在in-band场景下带来的收发自干扰问题,提出BL和AL之间采用如下复用方式:时分复用(Time Division Multiplexing,TDM)、频分复用(Frequency Division Multiplexing,FDM)、空分复用(Spatial Division Multiplexing,SDM)。其中,TDM表示BL和AL之间采用不同的时间资源;SDM表示BL和AL之间采用不同的波束资源;FDM表示BL和AL之间采用不同的频率资源。针对中继节点(Relay Node,RN,也称为IAB-node)定义了两种功能,即IAB-MT和IAB-DU,其中IAB-MT与上游节点互相通信,IAB-DU与下游节点(下游节点包括下游终端)互相通信。
在本申请实施例中,IAB节点(记为IAB-node)的上一级上游节点也称为IAB-node的父节点(记为parent-node),parent-node可看做是节点IAB-node的服务小区;节点IAB-node的下一级下游节点也称为IAB-node的子节点child-node或UE,节点IAB-node可看做是子节点child-node或UE的服务小区。也就是说,从节点之间的相对关系来看,IAB-node也可以看做其parent-node的child-node;IAB-node也可以看做其child-node的parent-node。
为了保持网络同步,从而减少节点间相互干扰,系统中各个节点间保持下行发射定时(DL Tx Timing,DTT)对齐(也称为IAB-DU发射定时对齐)。在本申请实施例中,各个节点间的定时模式包括如下几种:(1)节点的下行发射定时对齐到施主节点(也可以称为父节点)的下行发射定时,简记为第一定时模式(也可以称为非同时模式)。示例性地,图1是本申请实施例提供的一种第一定时模式的显示示意图,如图1所示,在父节点的上行接收定时和下行发射定时对齐的情况下,IAB节点的下行发射定时对齐到施主节点的下行发射定时;图2是本申请实施例提供的另一种第一定时模式的显示示意图,如图2所示,在父节点的上行接收定时和下行发射定时不对齐的情况下,IAB节点的下行发射定时对齐到施主节点 的下行发射定时。(2)节点的上行接收定时对齐到该节点的下行接收定时;或者,节点的下行发射定时对齐到施主节点的下行发射定时,且节点的上行接收定时对齐到该节点的下行接收定时,简记为第二定时模式(也可以称为同收模式)。示例性地,图3是本申请实施例提供的一种第二定时模式的显示示意图,如图3所示,IAB节点的上行接收定时对齐到IAB节点的下行接收定时。(3)节点的上行发射定时对齐到该节点的下行发射定时;或者,节点的下行发射定时对齐到施主节点的下行发射定时,且节点的上行发射定时对齐到该节点的下行发射定时,简记为第三定时模式(也可以称为同时发射模式)。示例性地,图4是本申请实施例提供的一种第三定时模式的显示示意图,如图4所示,IAB节点的上行发射定时对齐到IAB节点的下行发射定时。
在理论上,IAB-node可以基于IAB-MT的下行接收定时(DL Rx Timing,DRT)向前提前定时提前量(Timing Advance,TA)的二分之一(记为TA/2)即可确定IAB-DU的DTT,以保持节点间的DTT对齐。但由于上游节点侧实现等原因,导致上游节点的上行接收定时(UL Rx Timing,URT)和上游节点的DTT之间存在偏移,IAB-node不能简单地认为基于IAB-MT的DRT向前提前TA/2就是实际的IAB-DU的DTT。为了解决该问题,系统中针对第一定时模式规定了IAB-node如何确定IAB-DU或上游节点DU或任意节点DU的DTT与IAB-MT的DRT之间的时间差TD(即TD=TA/2+T_delta,该简化公式表示TD由定时提前量TA、定时参量T_delta确定)、规定了IAB-node如何确定IAB-DU的DTT(即DTT=DRT-TD,该简化公式表示基于DRT向前提前TD确定DTT)。但在第二定时模式,如何确定子节点的上行发射定时相对于定时提前量的时间偏移量,是一个亟待的问题。
在本申请实施例中,提出一种时间参数确定方法,第一通信节点可以根据第二通信节点预先配置的时间偏移量索引,确定对应的时间偏移量,从而可以准确地确定上行发射定时,提高了传输效率和可靠性。
在此,对本申请实施例中的各个参数进行说明。
假设第一定时模式、第二定时模式、第三定时模式均是指IAB-node的定时模式。
假设第二通信节点指IAB-node、第一通信节点指child-node或UE。
T c表示时间单元,示例性地,T c=1/(Δf max·N f),Δf max=480·10 3Hz N f=4096;
Δf表示子载波间隔;μ表示子载波间隔索引,比如,Δf=2 μ·15kHz;
FR1表示第一频率范围Frequency Range1,比如,FR1范围为410MHz–7125MHz;
FR2表示第二频率范围Frequency Range2,比如,FR2范围为24250MHz–52600MHz,52600MHz–71000MHz;
T TP0=L TP0/C=N TP0·T c表示parent-node与IAB-node之间的传输时间;
T TP1=L TP1/C=N TP1·T c表示IAB-node与child-node之间的传输时间;
T Tdelta表示IAB-node的定时参量;
I Tdelta表示IAB-node的定时参量索引;
B Tdelta表示IAB-node的定时参量基准;
G Tdelta表示IAB-node的定时参量颗粒度;
O Tdelta表示IAB-node的定时参量信令开销;
T Tg=-2·T Tdelta表示IAB-node的URT与IAB-node的DTT之间的偏差;
I Tg表示IAB-node的URT与IAB-node的DTT之间的偏差索引;
B Tg表示IAB-node的URT与IAB-node的DTT之间的偏差基准;
G Tg表示IAB-node的URT与IAB-node的DTT之间的偏差颗粒度;
O Tg表示IAB-node的URT与IAB-node的DTT之间的偏差信令开销;
T symbol=N symbol·T c表示正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号时长;
M表示偏移的OFDM符号数目;
T TA=(N TA+N TA,offset)·T c表示IAB-node运作第一定时模式,child-node的上行发射定时(UL Tx Timing,UTT)相对于child-node的DRT的时间提前量;
时间提前量可以用T TA表示,也可以用(N TA+N TA,offset)·T c表示。
N TA表示定时提前,是指child-node的UTT相对于child-node的DRT的时间提前;
N TA,offset表示定时提前偏移,比如,包括:0·T c、13792·T c、25600·T c、39936·T c
N offset·T c表示IAB-node运作第二定时模式,child-node的UTT相对于T TA的时间偏移量;
I offset表示IAB-node运作第二定时模式,child-node的UTT相对于T TA的时间偏移量索引;
B offset表示IAB-node运作第二定时模式,child-node的UTT相对于T TA的时间偏移量基准;
G offset表示IAB-node运作第二定时模式,child-node的UTT相对于T TA的时间偏移量颗粒度;
O offset表示IAB-node运作第二定时模式,child-node UTT相对于T TA的时间偏移量信令开销。
在一实施例中,图5是本申请实施例提供的一种时间参数确定方法的流程图。本实施例可以由时间参数确定设备执行。其中,时间参数确定设备可以为第一通信节点。示例性地,第一通信节点指的是第二通信节点的子节点,或者,第一通信节点为UE。如图5所示,本实施例包括:S510-S520。
S510、接收第二通信节点配置的时间偏移量索引。
在实施例中,第二通信节点指的是第一通信节点的父节点,其中,父节点可以为施主节点。在实施例中,时间偏移量索引可以理解为在第二通信节点采用第二定时模式的情况下,第一通信节点的UTT相对于T TA的时间偏移量索引。在实际通信过程中,第二通信节点采用第二定时模式,并基于预先配置的时间参数确定时间偏移量信令开销,并基于时间偏移量信令开销确定对应的时间偏移量索引,通过信令将时间偏移量索引传输至第一通信节点。
S520、根据所述时间偏移量索引确定时间偏移量。
在实施例中,时间偏移量可以理解为在第二通信节点采用第二定时模式的情况下,第一通信节点的UTT相对于T TA的时间偏移量。在实施例中,第一通信节点根据第二通信节点预先配置的时间偏移量索引确定时间偏移量。
在一实施例中,根据所述时间偏移量索引确定时间偏移量,包括:
根据时间偏移量索引和时间偏移量颗粒度确定时间偏移量。在实施例中,时间偏移量颗粒度可以理解为第二通信节点采用第二定时模式的情况下,第一通信节点的UTT相对于T TA的时间偏移量颗粒度。在实施例中,可以采用I offset、G offset、N offset分别表示时间偏移量索引、时间偏移量颗粒度和时间偏移,可以将时间偏移量索引和时间偏移量颗粒度的乘积值作为时间偏移,即N offset=I offset·G offset
在一实施例中,根据所述时间偏移量索引确定时间偏移量,包括:
根据时间偏移量基准、前一时刻的时间偏移量和时间偏移量对应信令所占用的比特位数量中的至少之一、时间偏移量索引和时间偏移量颗粒度确定时间偏移量。在实施例中,可以根据时间偏移量基准、前一时刻的时间偏移量和时间偏移量对应信令所占用的比特位数量中的一个或多个,时间偏移量索引和时间偏移量颗粒度确定时间偏移量。示例性地,可以根据时间偏移量基准、时间偏移量索引和时间偏移量颗粒度确定时间偏移量;也可以根据前一时 刻的时间偏移量、时间偏移量索引和时间偏移量颗粒度确定时间偏移量;也可以根据时间偏移量基准、前一时刻的时间偏移量、时间偏移量对应信令所占用的比特位数量、时间偏移量索引和时间偏移量颗粒度确定时间偏移量。在实施例中,前一时刻的时间偏移量,可以理解为之前某一时刻,第一通信节点的上行发射定时相对于T TA的时间偏移量,可以采用N offset_pre·T c表示;时间偏移量基准,可以理解为第二通信节点运作第二定时模式,第一通信节点的上行发射定时相对于T TA的时间偏移量基准,可以采用B offset表示;时间偏移量对应信令所占用的比特位数量,可以理解为I offset对应信令所占用的比特位数量,可以采用A表示。在一实施例中,时间偏移量N offset·T c的确定方式包括下述之一:N offset·T c=(B offset+I offset·G offset)·T c,或者,N offset·T c=(N offset_pre+I offset·G offset)·T c,或者,N offset·T c=(N offset_pre+(I offset-2 A-1)·G offset)·T c,或者,N offset·T c=(N offset_pre+(I offset-(2 A-1-1))·G offset)·T c
在一实施例中,时间偏移量颗粒度的确定方式,包括:根据频率范围确定时间偏移量颗粒度。在实施例中,可以采用FR表示频率范围,其中,频率范围包括:第一频率范围FR1和第二频率范围FR2。示例性地,第一频率范围可以为410MHz–7125MHz;第二频率范围可以为24250MHz–52600MHz,52600MHz–71000MHz。在一实施例中,不同的频率范围对应不同的时间偏移量颗粒度,可以理解为,第一频率范围FR1对应一个时间偏移量颗粒度;第二频率范围FR2对应另一个时间偏移量颗粒粒度。在一实施例中,不同的频率范围对应相同的时间偏移量颗粒度,可以理解为,第一频率范围FR1和第二频率范围FR2对应相同的时间偏移量颗粒度。
在一实施例中,时间偏移量颗粒度的确定方式,包括:根据子载波间隔确定时间偏移量颗粒度。在实施例中,可以采用Δf表示子载波间隔。在一实施例中,不同子载波间隔对应不同的时间偏移量颗粒度。在一实施例中,不同子载波间隔对应相同的时间偏移量颗粒度。在一实施例中,不同子载波间隔对应的时间偏移量颗粒度为16·64/2 μ
在一实施例中,时间偏移量基准的确定方式,包括:根据频率范围确定时间偏移量基准。在一实施例中,不同的频率范围对应不同的时间偏移量基准。在一实施例中,不同的频率范围对应相同的时间偏移量基准。
在一实施例中,时间偏移量基准的确定方式,包括:根据子载波间隔确定时间偏移量基准。在一实施例中,不同的子载波间隔对应不同的时间偏移量基准。在一实施例中,不同的子载波间隔对应相同的时间偏移量基准。
在一实施例中,时间偏移量索引所对应信令的承载方式包括下述之一:下行控制信息(Downlink Control Information,DCI);物理下行控制信道(Physical Downlink Control Channel,PDCCH);媒体接入层控制单元(MAC Control Element,MAC CE);无线资源控制(Radio Resource Control,RRC)信令;运行管理维护(Operations,Administration and Maintenance,OAM)信令。
在一实施例中,信令至少包括下述之一:时间偏移量索引域;定时提前组标识域;值类型域。在实施例中,时间偏移量索引域可以记为I offset域;定时提前组标识域可以记为TAG ID域;值类型域可以记为value type域,表示I offset是N offset·T c绝对值或相对值对应的索引。
在一实施例中,第二通信节点运行第一定时模式;所述第一通信节点采用第一类上行发射定时,根据时间提前量和下行接收定时确定所述第一通信节点的上行发射定时。在实施例中,时间提前量可以采用T TA表示,下行接收定时和上行发射定时分别采用DRT和UTT表示,可以将下行接收定时和时间提前量之间的差值作为第一通信节点的上行发射定时,即UTT=DRT-T TA
在一实施例中,第一定时模式包括:第二通信节点的下行发射定时对齐至施主节点的下行发射定时。
在一实施例中,第二通信节点运行第二定时模式;所述第一通信节点采用第二类上行发射定时,根据时间提前量和下行接收定时确定所述第一通信节点的上行发射定时。在实施例中,在第二通信节点运行第二定时模式时,可以将下行接收定时和时间提前量之间的差值作为第一通信节点的上行发射定时,即UTT=DRT-T TA
在一实施例中,第二通信节点运行第二定时模式;所述第一通信节点采用第二类上行发射定时,根据所述时间偏移量、正交频分复用OFDM符号时长和偏移的OFDM符号数目中的至少之一、时间提前量和下行接收定时确定所述第一通信节点的上行发射定时。在一实施例中,可以根据时间偏移量、时间提前量和下行接收定时确定第一通信节点的上行发射定时;也可以根据时间偏移量、正交频分复用OFDM符号时长、偏移的OFDM符号数目、时间提前量和下行接收定时确定第一通信节点的上行发射定时。在实施例中,分别采用T symbol和M表示OFDM符号时长和偏移的OFDM符号数目。示例性地,UTT=DRT-(T TA+N offset·T c),或者,UTT=DRT-(T TA+N offset·T c+M·T symbol),或者,UTT=DRT-(T TA+N offset·T c-M·T symbol)。其中,减号表示第一通信节点的上行发射定时相对于第一通信节点的下行接收定时提前T TA,或者,提前T TA+N offset·T c,或者,提前T TA+N offset·T c+M·T symbol,或者,T TA+N offset·T c-M·T symbol
示例性的,第一通信节点的上行发射定时也可以表示为,UTT=DRT-(N TA+N TA,offset+N offset)·T c,或者,UTT=DRT-((N TA+N TA,offset+N offset)·T c+M·T symbol),或者,UTT=DRT-((N TA+N TA,offset+N offset)·T c-M·T symbol)其中,减号表示第一通信节点的上行发射定时相对于第一通信节点的下行接收定时提前T TA,或者,提前(N TA+N TA,offset+N offset)·T c,或者,提前(N TA+N TA,offset+N offset)·T c+M·T symbol,或者,(N TA+N TA,offset+N offset)·T c-M·T symbol
在一实施例中,第二通信节点采用第二定时模式;其中,所述第二定时模式包括:第二通信节点的上行接收定时对齐至第二通信节点的下行接收定时;或者,第二通信节点的下行发射定时对齐至施主节点的下行发射定时,且第二通信节点的上行接收定时对齐至第二通信节点的下行接收定时。
在一实施例中,第一类上行发射定时和第二类上行发射定时均根据下述之一信令确定:时间偏移量索引无效信令;定时模式切换信令;上行发射定时切换信令。
在一实施例中,第一通信节点在第n个时隙或子帧接收到时间偏移量索引,所述第一通信节点的上行发射定时应用于第n+k时隙或子帧;或者,应用于第n+k+1时隙或子帧;其中,n和k均为大于或等于0的正整数。
在一实施例中,图6是本申请实施例提供的另一种时间参数确定方法的流程图。本实施例可以由时间参数确定设备执行。其中,时间参数确定设备可以为第二通信节点。如图6所示,本实施例包括:S610-S620。
S610、配置时间偏移量索引。
S620、将所述时间偏移量索引发送至第一通信节点,以使第一通信节点根据所述时间偏移量索引确定时间偏移量。
在实施例中,第二通信节点运行第二定时模式,并根据T TP0、T Tdelta、T Tg、T symbol和M 确定时间偏移量的范围,并根据时间偏移量的范围中的上界和下界,以及时间偏移量颗粒度确定时间偏移量信令开销,并根据时间偏移量信令开销确定对应的时间偏移量索引;然后通过信令将时间偏移量索引传输至第一通信节点,以使第一通信节点根据时间偏移量索引确定时间偏移量,从而准确地计算得到第一通信节点的上行发射定时,提高了传输效率和稳定性。
在一实施例中,时间偏移量索引所对应信令的承载方式包括下述之一:DCI;PDCCH;MAC CE;RRC信令;OAM信令。
在一实施例中,信令至少包括下述之一:时间偏移量索引域;定时提前组标识域;值类型域。
在一实施例中,对时间偏移量索引、时间偏移量的解释见上述实施例中应用于第一通信节点的时间参数确定方法中的描述,在此不再赘述。
在一实施例中,以第二通信节点为IAB-NODE,以及第二通信节点采用第二定时模式为例,对N offset·T c的确定过程进行说明。本实施例中,基于T TP0、T Tdelta、T Tg、T symbol和M确定N offset·T c
基于如下参数至少之一确定时间偏移量:节点间传输时延、定时参量、节点上行接收定时与节点下行发射定时之间的偏差、OFDM符号偏移,具体地,根据如下方式之一确定N offset·T c
N offset·T c=-(T TP0-2·T Tdelta),或,
N offset·T c=-(T TP0+T Tg),或,
N offset·T c=-(T TP0-2·T Tdelta-M·T symbol),或,
N offset·T c=-(T TP0+T Tg-M·T symbol),或,
N offset·T c=-(T TP0-2·T Tdelta+M·T symbol),或,
N offset·T c=-(T TP0+T Tg+M·T symbol)。
其中,N offset·T c=-(T TP0-2·T Tdelta-M·T symbol)、N offset·T c=-(T TP0+T Tg-M·T symbol)中的+M·T symbol表示节点的上行发射定时向前(或如附图2向左)提前M个OFDM符号;N offset·T c=-(T TP0-2·T Tdelta+M·T symbol)、N offset·T c=-(T TP0+T Tg+M·T symbol)中的-M·T symbol表示节点的上行发射定时向后(或如附图2向右)延后M个OFDM符号。
在一实施例中,以第二通信节点为IAB-NODE,以及第二通信节点采用第二定时模式为例,对N offset·T c的范围的确定过程进行说明。本实施例中,基于T TP0、T Tdelta、T Tg确定N offset·T c的范围。
在一实施例中,T TP0的范围:假设节点间距离L TP0=500米,C=3·10 8米/秒表示光速或电磁波传播速度;T c=1/(Δf max·N f),Δf max=480·10 3Hz,N f=4096;则根据公式T TP0=L TP0/C=N TP0·T c可以计算出N TP0=L TP0/(C·T c),则得N TP0=3276.8,并对3276.8向上取整运算,则得N TP0=3277。
表1是本申请实施例提供的一种T Tdelta的取值范围示意表,如表1所示,T Tdelta的取值范围与定时提前偏移N TA,offset以及子载波间隔(Sub-carrier Space,SCS)取值有关。
表1一种T Tdelta的取值范围表
SCS[kHz] Min T Tdelta[Tc] Max T Tdelta[Tc]
15 -N TA offset/2-70528 -N TA offset/2+6256
30 -N TA offset/2-35328 -N TA offset/2+6128
60 -N TA offset/2-17664 -N TA offset/2+6032
120 -N TA offset/2-8816 -N TA offset/2+6032
表2是本申请实施例提供的一种T Tg的取值范围示意表。如表2所示,根据公式T Tg=-2·T Tdelta,T Tg的取值范围与定时提前偏移N TA,offset、SCS取值和T Tdelta取值有关。
表2一种T Tg的取值范围表
Figure PCTCN2022119417-appb-000001
表3是本本申请实施例提供的一种N offset·T c的取值范围示意表。如表3所示,根据公式N offset·T c=-(T TP0-2·T Tdelta),N offset·T c的取值范围与SCS取值、T Tdelta取值和T TP0取值有关。其中,T TP0=L TP0/C=N TP0·T c,表示辅节点与IAB节点之间的传输时间。
表3一种N offset·T c的取值范围示意表
SCS[kHz] Min N offset·T c[Tc] Max N offset·T c[Tc]
15 -N TA offset-2*70528-3277 -N TA offset+2*6256-3277
30 -N TA offset-2*35328-3277 -N TA offset+2*6128-3277
60 -N TA offset-2*17664-3277 -N TA offset+2*6032-3277
120 -N TA offset-2*8816-3277 -N TA offset+2*6032-3277
在一实施例中,以第二通信节点为IAB-NODE,以及第二通信节点采用第二定时模式为例,对N offset·T c的范围的确定过程进行说明。本实施例中,基于T TP0、T Tdelta、T Tg、T symbol和M确定N offset·T c的范围。
在一实施例中,T TP0的范围:假设节点间距离L TP0=500米,C=3·10 8米/秒表示光速或电磁波传播速度;T c=1/(Δf max·N f),Δf max=480·10 3Hz,N f=4096;则根据公式T TP0=L TP0/C=N TP0·T c可以计算出N TP0=L TP0/(C·T c),则得N TP0=3276.8,并对3276.8向上取整运算,则得N TP0=3277。
在实施例中,T Tdelta的取值范围和T Tg的取值范围分别参见表1和表2。
在实施例中,T symbol的取值范围:假设偏移一个OFDM符号,即M=1,子载波间隔SCS为Δf=15·10 3Hz,循环前缀N CP=144×64;则根据公式T symbol=N symbol·T c可以计算出N symbol=(1/(Δf·T c))+N CP,则得N symbol=2048×64+144×64=140288。
在实施例中,N offset·T c的取值范围:根据公式N offset·T c=-(T TP0-2·T Tdelta-M·T symbol),则N offset·T c的取值范围如表4所示。
表4另一种N offset·T c的取值范围示意表
SCS[kHz] Min N offset·T c[Tc] Max N offset·T c[Tc]
15 -N TA offset-2*70528-3277+140288 -N TA offset+2*6256-3277+140288
30 -N TA offset-2*35328-3277+140288 -N TA offset+2*6128-3277+140288
60 -N TA offset-2*17664-3277+140288 -N TA offset+2*6032-3277+140288
120 -N TA offset-2*8816-3277+140288 -N TA offset+2*6032-3277+140288
在一实施例中,以第一通信节点为子节点CHILD-NODE,第二通信节点为IAB-NODE,以及第二通信节点采用第二定时模式为例,对I offset的配置过程进行说明。
在实施例中,O offset计算:L offset表示N offset·T c下界,U offset表示N offset·T c上界,则信令开销O offset=|log 2((U offset-L offset)/G offset)|,其中,
Figure PCTCN2022119417-appb-000002
表示向上取整运算。具体地,如表2中的第2行所示,假设G offset为64·T c
Figure PCTCN2022119417-appb-000003
比特,该12比特表示I offset
在实施例中,I offset所对应信令的承载方式包括:物理层(PHY layer)信令(比如,DCI,PDCCH)、介质访问控制层(MAC layer)信令(如MAC-CE)、RRC层(RRC layer)信令(比如,广播信令或是专用信令)、OAM信令。
本申请实施例中,以MAC-CE为例子说明MAC-CE的配置方式,与MAC-CE的配置方式同理,DCI的配置方式、或PDCCH的配置方式、或RRC layer信令的配置方式、或OAM信令的配置方式。信令至少包括下述之一:I offset域、TAG ID域、value type域、R域任意组合,这里不再一一列举。
在实施例中,根据如下方式之一确定MAC-CE:
方式一:图7是本申请实施例提供的一种MAC CE的配置示意图。如图7所示,假设MAC-CE占用X个字节,如X=2个字节;I offset域占用2个字节中的任意A个比特位,如A=12比特位;R域表示剩余4比特位,并作为保留比特位。其中,A=12,示例性地,I offset的范围可以是从0到4095的整数,或者,I offset的范围可以是从-2047到2048的整数,或者,I offset的范围可以是从-2048到2047的整数。
方式二:图8是本申请实施例提供的另一种MAC CE的配置示意图。如图8所示,假设MAC-CE占用X个字节,如X=2个字节;I offset域占用2个字节中的任意A个比特位,如A=12比特位;TAG ID域占用任意B个比特位,比如,B=2比特位,其中,B个比特位的4种二进制状态(“00”、“01”、“10”、“11”)分别可表示最多4个TAG,即不同TAG可以对应不同的I offset,即在同一TAG内对应相同的I offset,TAG是指在RRC配置的服务小区组内的小区的上行发射配置使用相同的参考小区定时和相同的定时提前量;R域表示剩余2比特位,并作为保留比特位。其中,A=12,示例性地,I offset的范围可以是从0到4095的整数,或I offset的范围可以是从-2047到2048的整数,或I offset的范围可以是从-2048到2047的整数。
方式三:图9是本申请实施例提供的又一种MAC CE的配置示意图,图10是本申请实施例提供的再一种MAC CE的配置示意图。如图9和10所示,假设MAC-CE占用X个字节,如X=2个字节;I offset域占用2个字节中的任意A个比特位,如A=12比特位,或A=6比特位;value type域占用任意C个比特位,如C=1比特位的2种二进制状态(“0”、“1”)分别可表示I offset是N offset·T c绝对值对应的索引、I offset是N offset·T c相对值对应的索引;如图9,当I offset是N offset·T c绝对值对应的索引,A=12比特位,R域表示剩余3比特位,并作为保留比特位;如附图10,当I offset是N offset·T c相对值对应的索引,A=6比特位,R域表示剩余9比特位,并作为保留比特位。其中,A=12,示例性地,I offset的范围可以是从0到4095的整数,或者,I offset的范围可以是从-2047到2048的整数,或者,I offset的范围可以是从-2048到2047的整数;A=6,示例性地,I offset的范围可以是从0到63的整数,或者,I offset的范围可以是从-31到32的整数,或者,I offset的范围可以是从-32到31的整数。
方式四:图11是本申请实施例提供的再一种MAC CE的配置示意图。如图11所示,假 设MAC-CE占用X个字节,如X=2个字节;I offset域占用2个字节中的任意A个比特位,如A=12比特位;TAG ID域占用任意B个比特位,如B=2比特位的4种二进制状态(“00”、“01”、“10”、“11”)分别可表示最多4个TAG,即不同TAG可以对应不同的I offset,即在同一TAG内对应相同的I offset,TAG是指在RRC配置的服务小区组内的小区的上行发射配置使用相同的参考小区定时和相同的定时提前量;value type域占用任意C个比特位,如C=1比特位的2种二进制状态(“0”、“1”)分别可表示I offset是N offset·T c绝对值对应的索引、I offset是N offset·T c相对值对应的索引;R域表示剩余1比特位,并作为保留比特位。其中,A=12,示例性地,I offset的范围可以是从0到4095的整数,或者,I offset的范围可以是从-2047到2048的整数,或者,I offset的范围可以是从-2048到2047的整数。
在实施例中,时间偏移量颗粒度G offset确定方式包括下述之一:
不同频率范围FR对应不同的时间偏移量颗粒度:
第一频率范围FR1对应的时间偏移量颗粒度为G offset_FR1,比如,64·T c
第二频率范围FR2对应的时间偏移量颗粒度为G offset_FR2,比如,32·T c
不同频率范围FR对应相同的时间偏移量颗粒度:
第一频率范围FR1对应的时间偏移量颗粒度为G offset,比如,64·T c
第二频率范围FR2对应的时间偏移量颗粒度为G offset,比如,64·T c
不同子载波间隔Δf对应不同的时间偏移量颗粒度:
子载波间隔15k Hz对应的时间偏移量颗粒度为G offset_μ0
子载波间隔30k Hz对应的时间偏移量颗粒度为G offset_μ1
子载波间隔60k Hz对应的时间偏移量颗粒度为G offset_μ2
子载波间隔120k Hz对应的时间偏移量颗粒度为G offset_μ3
子载波间隔240k Hz对应的时间偏移量颗粒度为G offset_μ4
子载波间隔480k Hz对应的时间偏移量颗粒度为G offset_μ5
不同子载波间隔Δf对应相同的时间偏移量颗粒度:
子载波间隔15k Hz对应的时间偏移量颗粒度为G offset
子载波间隔30k Hz对应的时间偏移量颗粒度为G offset
子载波间隔60k Hz对应的时间偏移量颗粒度为G offset
子载波间隔120k Hz对应的时间偏移量颗粒度为G offset
子载波间隔240k Hz对应的时间偏移量颗粒度为G offset
子载波间隔480k Hz对应的时间偏移量颗粒度为G offset
在实施例中,时间偏移量基准B offset的确定方式包括下述之一:
不同频率范围FR对应不同的时间偏移量基准:
第一频率范围FR1对应的时间偏移量基准为B offset_FR1
第二频率范围FR2对应的时间偏移量基准为B offset_FR2
不同频率范围FR对应相同的时间偏移量基准:
第一频率范围FR1对应的时间偏移量基准为B offset
第二频率范围FR2对应的时间偏移量基准为B offset
不同子载波间隔Δf对应不同的时间偏移量基准:
子载波间隔15k Hz对应的时间偏移量基准为B offset_μ0
子载波间隔30k Hz对应的时间偏移量基准为B offset_μ1
子载波间隔60k Hz对应的时间偏移量基准为B offset_μ2
子载波间隔120k Hz对应的时间偏移量基准为B offset_μ3
子载波间隔240k Hz对应的时间偏移量基准为B offset_μ4
子载波间隔480k Hz对应的时间偏移量基准为B offset_μ5
不同子载波间隔Δf对应相同的时间偏移量基准:
子载波间隔15k Hz对应的时间偏移量基准为B offset
子载波间隔30k Hz对应的时间偏移量基准为B offset
子载波间隔60k Hz对应的时间偏移量基准为B offset
子载波间隔120k Hz对应的时间偏移量基准为B offset
子载波间隔240k Hz对应的时间偏移量基准为B offset
子载波间隔480k Hz对应的时间偏移量基准为B offset
在实施例中,时间偏移量T offset的计算过程包括如下:
IAB节点向子节点(child-node)配置I offset
对于I offset信令中无value type域:child-node基于公式N offset·T c=(B offset+I offset·G offset)·T c或N offset·T c=I offset·G offset·T c计算N offset·T c
对于I offset信令中有value type域,且当I offset是N offset·T c绝对值对应的索引:child-node基于公式N offset·T c=(B offset+I offset·G offset)·T c或N offset·T c=I offset·G offset·T c计算N offset·T c
对于I offset信令中有value type域,且当I offset是N offset·T c相对值对应的索引:child-node基于公式N offset·T c=(N offset_pre+I offset·G offset)·T c或,N offset·T c=(N offset_pre+(I offset-2 A-1)·G offset)·T c或,N offset·T c=(N offset_pre+(I offset-(2 A-1-1))·G offset)·T c计算N offset·T c,其中,N offset_pre·T c表示之前某一时刻,child-node UTT相对于T TA的时间偏移量,加号表示N offset·T c是在N offset_pre·T c的基础上进行相对调整。
在一实施例中,以第一通信节点为子节点CHILD-NODE,第二通信节点为IAB-NODE,以及第二通信节点采用第二定时模式为例,对上行发射定时UTT的确定过程进行说明。
在实施例中,UTT的获取方式包括下述之一:
在IAB-node采用第一定时模式的情况下,child-node(child-MT)的第一类UTT,根据如下方式获取:UTT=DRT-T TA
在IAB-node采用第二定时模式的情况下,child-node(child-MT)的第二类UTT,根据如下方式之一获取:UTT=DRT-T TA,或者,UTT=DRT-(T TA+N offset·T c),或者,UTT=DRT-(T TA+N offset·T c+M·T symbol),或者,UTT=DRT-(T TA+N offset·T c-M·T symbol)。
其中,减号表示child-node UTT相对于child-node DRT提前T TA,或提前T TA+N offset·T c,或提前T TA+N offset·T c+M·T symbol,或提前T TA+N offset·T c-M·T symbol
在实施例中,对UTT确定信令进行说明。在实际操作过程中,IAB-node可以在第一定时模式和第二定时模式之间进行切换,则向child-node发送IAB-node此时正在使用的UTT的指令。
例如,在DCI、PDCCH、MAC-CE、RRC信令或OAM信令中,包括:I offset无效信令、定时模式切换信令,或UTT切换信令。
例如,通过I offset无效信令确定IAB-node此时正在使用的UTT,假设I offset无效信令为D比特,如D=1比特位的2种二进制状态(“0”、“1”)分别可表示I offset无效和I offset有效,其中,I offset无效时,使用第一类UTT;I offset有效时,使用第二类UTT。
例如,通过定时模式切换信令确定IAB-node此时正在使用的UTT,假设定时模式切换信令为E比特,如E=1比特位的2种二进制状态(“0”、“1”)分别可表示第一定时模式、第二定时模式。其中,第一定时模式时,使用第一类UTT;第二定时模式时,使用第二类UTT。
例如,通过UTT切换信令确定IAB-node此时正在使用的UTT,假设UTT切换信令为F比特,如F=1比特位的2种二进制状态(“0”、“1”)分别可表示第一类UTT和第二类UTT。
在实施例中,UTT的生效时间:假设child-node在第n时隙或子帧收到I offset,相应的child-node UTT应用于第n+k时隙或子帧,或者,应用于第n+k+1时隙或子帧,其中n、k是大于或等于0的整数。
在一实施例中,图12是本申请实施例提供的一种时间参数确定装置的结构框图。本实施例应用于第一通信节点。如图9所示,本实施例中的时间参数确定装置包括:接收器1210和第一确定模块1220。
其中,接收器1210,配置为接收第二通信节点配置的时间偏移量索引;
第一确定模块1220,配置为根据所述时间偏移量索引确定时间偏移量。
在一实施例中,第一确定模块1220,包括:
根据时间偏移量索引和时间偏移量颗粒度确定时间偏移量。
在一实施例中,第一确定模块1220,包括:
根据时间偏移量基准、前一时刻的时间偏移量和时间偏移量对应信令所占用的比特位数量中的至少之一、时间偏移量索引和时间偏移量颗粒度确定时间偏移量。
在一实施例中,时间偏移量颗粒度的确定方式,包括:根据频率范围确定时间偏移量颗粒度。
在一实施例中,时间偏移量颗粒度的确定方式,包括:根据子载波间隔确定时间偏移量颗粒度。
在一实施例中,时间偏移量基准的确定方式,包括:根据频率范围确定时间偏移量基准。
在一实施例中,时间偏移量基准的确定方式,包括:根据子载波间隔确定时间偏移量基准。
在一实施例中,时间偏移量索引所对应信令的承载方式包括下述之一:下行控制信息DCI;物理下行控制信道PDCCH;媒体接入层控制单元MAC CE;无线资源控制RRC信令;运行管理维护OAM信令。
在一实施例中,信令至少包括下述之一:时间偏移量索引域;定时提前组标识域;值类型域。
在一实施例中,第二通信节点运行第一定时模式;所述第一通信节点采用第一类上行发射定时,根据时间提前量和下行接收定时确定所述第一通信节点的上行发射定时。
在一实施例中,第一定时模式包括:第二通信节点的下行发射定时对齐至施主节点的下行发射定时。
在一实施例中,第二通信节点运行第二定时模式;所述第一通信节点采用第二类上行发射定时,根据时间提前量和下行接收定时确定所述第一通信节点的上行发射定时。
在一实施例中,第二通信节点运行第二定时模式;所述第一通信节点采用第二类上行发射定时,根据所述时间偏移量、正交频分复用OFDM符号时长和偏移的OFDM符号数目中的至少之一、时间提前量和下行接收定时确定所述第一通信节点的上行发射定时。
在一实施例中,第二通信节点采用第二定时模式;其中,所述第二定时模式包括:第二通信节点的上行接收定时对齐至第二通信节点的下行接收定时;或者,第二通信节点的下行发射定时对齐至施主节点的下行发射定时,且第二通信节点的上行接收定时对齐至第二通信节点的下行接收定时。
在一实施例中,第一类上行发射定时和第二类上行发射定时均根据下述之一信令确定:时间偏移量索引无效信令;定时模式切换信令;上行发射定时切换信令。
在一实施例中,第一通信节点在第n个时隙或子帧接收到时间偏移量索引,所述第一通信节点的上行发射定时应用于第n+k时隙或子帧;或者,应用于第n+k+1时隙或子帧;其中,n和k均为大于或等于0的正整数。
本实施例提供的时间参数确定装置设置为实现图1所示实施例的应用于第一通信节点的时间参数确定方法,本实施例提供的时间参数确定装置实现原理和技术效果类似,此处不再赘述。
在一实施例中,图13是本申请实施例提供的另一种时间参数确定装置的结构框图。本实施例应用于第二通信节点。如图13所示,本实施例中的时间参数确定装置包括:配置模块1310和发送器1320。
配置模块1310,配置为配置时间偏移量索引。
发送器1320,配置为将所述时间偏移量索引发送至第一通信节点,以使第一通信节点根据所述时间偏移量索引确定时间偏移量。
本实施例提供的时间参数确定装置设置为实现图2所示实施例的应用于第二通信节点的时间参数确定方法,本实施例提供的时间参数确定装置实现原理和技术效果类似,此处不再赘述。
图14是本申请实施例提供的一种通信设备的结构示意图。如图14所示,本申请提供的通信设备,包括:处理器1410、存储器1420和通信模块1430。该设备中处理器1410的数量可以是一个或者多个,图14中以一个处理器1410为例。该设备中存储器1420的数量可以是一个或者多个,图14中以一个存储器1420为例。该设备的处理器1410、存储器1420和通信模块1430可以通过总线或者其他方式连接,图14中以通过总线连接为例。在该实施例中,该设备为可以为第一通信节点。
存储器1420作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请任意实施例的设备对应的程序指令/模块(例如,时间参数确定装置中的接收器1210和第一确定模块1220)。存储器1420可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器1420可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器1420可进一步包括相对于处理器1410远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
通信模块1430,配置为在第一通信节点、第二通信节点和施主节点之间进行通信交互。
在时间参数确定设备为第一通信节点的情况下,上述提供的设备可设置为执行上述任意实施例提供的应用于第一通信节点的时间参数确定方法,具备相应的功能和效果。
在时间参数确定设备为第二通信节点的情况下,上述提供的设备可设置为执行上述任意实施例提供的应用于第二通信节点的时间参数确定方法,具备相应的功能和效果。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行应用于第一通信节点的一种时间参数确定方法,该方法包括:接收第二通信节点配置的时间偏移量索引;根据所述时间偏移量索引确定时间偏移量。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行应用于第二通信节点的一种时间参数确定方法,该方法包括:配置时间偏移量索引;将所述时间偏移量索引发送至第一通信节点,以使第一通信节点根据所述时间偏移量索引确定时间偏移量。
本领域内的技术人员应明白,术语用户设备涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FGPA)以及基于多核处理器架构的处理器。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种时间参数确定方法,应用于第一通信节点,包括:
    如果所述第一通信节点的移动终端发射定时对应第一定时模式,所述第一通信节点基于所述第一通信节点的移动终端接收定时提前T TA确定所述第一通信节点的移动终端发射定时;
    如果所述第一通信节点的移动终端发射定时对应第二定时模式,所述第一通信节点基于所述第一通信节点的移动终端接收定时提前T TA+N offset·T c确定所述第一通信节点的移动终端发射定时;
    如果所述第一通信节点的移动终端发射定时对应第三定时模式,所述第一通信节点基于所述第一通信节点的分布单元发射定时确定所述第一通信节点的移动终端发射定时;其中,
    T TA表示时间提前量,
    N offset表示时间偏移,
    T c表示时间单元,T c=1/(Δf max·N f),Δf max=480·10 3Hz,N f=4096。
  2. 根据权利要求1所述的方法,其中,所述第一定时模式包括:第一通信节点的分布单元发射定时对齐至施主节点的分布单元发射定时。
  3. 根据权利要求1所述的方法,其中,所述第二定时模式包括:
    第二通信节点的分布单元接收定时对齐至所述第二通信节点的移动终端接收定时;或者,
    所述第二通信节点的分布单元发射定时对齐至施主节点的分布单元发射定时,且所述第二通信节点的分布单元接收定时对齐至所述第二通信节点的移动终端接收定时。
  4. 根据权利要求1所述的方法,其中,所述第三定时模式包括:
    所述第一通信节点的移动终端发射定时对齐至所述第一通信节点的分布单元发射定时;或者,
    所述第一通信节点的分布单元发射定时对齐至施主节点的分布单元发射定时,且所述第一通信节点的移动终端发射定时对齐至所述第一通信节点的分布单元发射定时。
  5. 根据权利要求2或3所述的方法,其中,所述第一通信节点的移动终端发射定时根据下述之一信令确定:时间偏移量索引无效信令;定时模式切换信令;上行发射定时切换信令。
  6. 根据权利要求1所述的方法,还包括:
    接收第二通信节点配置的时间偏移索引;
    根据所述时间偏移索引和时间偏移颗粒度确定时间偏移。
  7. 根据权利要求6所述的方法,其中,所述时间偏移的确定方式,包括:N offset=I offset·16·64/2 μ;其中,
    I offset表示时间偏移量索引,
    μ表示子载波间隔索引。
  8. 根据权利要求5所述的方法,其中,所述时间偏移索引所对应信令的承载方式包括下述之一:下行控制信息DCI;物理下行控制信道PDCCH;媒体接入层控制单元MAC CE;无线资源控制RRC信令;以及运行管理维护OAM信令。
  9. 根据权利要求8所述的方法,其中,所述信令至少包括下述之一:时间偏移索引域;定时提前组标识域;值类型域。
  10. 一种时间参数确定方法,应用于第二通信节点,包括:
    配置时间偏移索引;
    将所述时间偏移索引发送至第一通信节点,以使第一通信节点根据所述时间偏移索引确定时间偏移。
  11. 一种通信设备,包括:通信模块,存储器,以及一个或多个处理器;
    所述通信模块,配置为在第一通信节点、第二通信节点和施主节点之间进行通信交互;
    所述存储器,配置为存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如上述权利要求1-9或10中任一项所述的方法。
  12. 一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上述权利要求1-9或10中任一项所述的方法。
PCT/CN2022/119417 2021-09-18 2022-09-16 时间参数确定方法、设备和存储介质 WO2023041064A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247012937A KR20240058188A (ko) 2021-09-18 2022-09-16 타임 파라미터 결정 방법, 설비 및 저장 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111101485.XA CN115843094A (zh) 2021-09-18 2021-09-18 时间参数确定方法、设备和存储介质
CN202111101485.X 2021-09-18

Publications (1)

Publication Number Publication Date
WO2023041064A1 true WO2023041064A1 (zh) 2023-03-23

Family

ID=85574267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119417 WO2023041064A1 (zh) 2021-09-18 2022-09-16 时间参数确定方法、设备和存储介质

Country Status (3)

Country Link
KR (1) KR20240058188A (zh)
CN (1) CN115843094A (zh)
WO (1) WO2023041064A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536406A (zh) * 2018-09-27 2019-12-03 中兴通讯股份有限公司 传输定时方法及装置、基站、计算机可读存储介质
WO2021031581A1 (zh) * 2019-08-16 2021-02-25 华为技术有限公司 一种定时同步方法及装置
WO2021088618A1 (zh) * 2019-11-09 2021-05-14 上海朗帛通信技术有限公司 一种被用于无线通信的方法和装置
WO2021093207A1 (en) * 2020-02-14 2021-05-20 Zte Corporation A method for determining transmission timing among nodes of a network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536406A (zh) * 2018-09-27 2019-12-03 中兴通讯股份有限公司 传输定时方法及装置、基站、计算机可读存储介质
WO2021031581A1 (zh) * 2019-08-16 2021-02-25 华为技术有限公司 一种定时同步方法及装置
WO2021088618A1 (zh) * 2019-11-09 2021-05-14 上海朗帛通信技术有限公司 一种被用于无线通信的方法和装置
WO2021093207A1 (en) * 2020-02-14 2021-05-20 Zte Corporation A method for determining transmission timing among nodes of a network

Also Published As

Publication number Publication date
CN115843094A (zh) 2023-03-24
KR20240058188A (ko) 2024-05-03

Similar Documents

Publication Publication Date Title
US11006427B2 (en) Communication system, base station, and communication terminal for controlling interference from neighboring cells
US12022337B2 (en) Switching of transmission between cell groups
US9392609B2 (en) Method and apparatus for removing inter-heterogeneous cell interference
CN102257871B (zh) 用于WiMAX测距的负荷自适应退避的方法和移动设备
US20160157217A1 (en) Information sending and receiving methods and devices
US9369194B2 (en) Processing uplink signal and downlink signal in radio unit
CN113039743A (zh) 远程干扰管理(rim)参考信号(rs)标识符(id)的编码
CN110535677B (zh) 一种定时信息配置方法、装置和系统
EP3909336B1 (en) Remote interference mitigation resource configuration
KR20110122154A (ko) 릴레이 링크 제어 채널 전송 방법 및 시스템
US9001799B2 (en) Method of transmitting and receiving signal in a distributed antenna system
US20210409975A1 (en) Enhancement to expedite secondary cell (scell) or primary scell (pscell) addition or activation
US20240064675A1 (en) Timing determination method and device, communication node and storage medium
US20210144731A1 (en) Data transmission method, network device, communications device, and storage medium
WO2018082575A1 (zh) 一种下行控制信号的传输方法及装置
WO2018171666A1 (zh) 信息收发方法和设备
WO2021196702A1 (zh) 定时参量确定方法、装置、设备和存储介质
CN112584518A (zh) 一种资源确定方法及装置
WO2023041064A1 (zh) 时间参数确定方法、设备和存储介质
US11653402B2 (en) User equipment (UE) assisted termination selection for non-standalone or dual connectivity
US8478189B2 (en) Relay communication system and a method for transmitting data in the same system
KR20230038699A (ko) 사이드링크 통신들을 위한 동기화 신호 블록 파형 설계를 위한 기법들
CN114402695A (zh) 用于配置连接模式不连续接收(cdrx)的方法和装置
US20230345444A1 (en) Method and apparatus for transceiving beam control information of repeater in mobile communication system
US20230319859A1 (en) Method and apparatus for paging early indication monitoring based on ue type in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869430

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247012937

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022869430

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022869430

Country of ref document: EP

Effective date: 20240418