WO2021196702A1 - 定时参量确定方法、装置、设备和存储介质 - Google Patents

定时参量确定方法、装置、设备和存储介质 Download PDF

Info

Publication number
WO2021196702A1
WO2021196702A1 PCT/CN2020/134403 CN2020134403W WO2021196702A1 WO 2021196702 A1 WO2021196702 A1 WO 2021196702A1 CN 2020134403 W CN2020134403 W CN 2020134403W WO 2021196702 A1 WO2021196702 A1 WO 2021196702A1
Authority
WO
WIPO (PCT)
Prior art keywords
timing
offset
timing advance
uplink
parameter
Prior art date
Application number
PCT/CN2020/134403
Other languages
English (en)
French (fr)
Inventor
毕峰
苗婷
邢卫民
卢有雄
刘文豪
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/916,701 priority Critical patent/US20230156644A1/en
Priority to JP2022560163A priority patent/JP7448681B2/ja
Priority to EP20928351.4A priority patent/EP4132128A4/en
Priority to AU2020439938A priority patent/AU2020439938A1/en
Priority to KR1020227037790A priority patent/KR20220160664A/ko
Publication of WO2021196702A1 publication Critical patent/WO2021196702A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • This application relates to the field of wireless communication networks, for example, to a method, device, device, and storage medium for determining timing parameters.
  • the fourth generation mobile communication (the 4th Generation Mobile Communication, 4G) system uses a higher carrier frequency for communication, such as 28 GHz, 45 GHz, 70 GHz, and so on.
  • This kind of high-frequency channel has the disadvantages of large free propagation loss, easy to be absorbed by oxygen, and large influence by rain attenuation, which seriously affects the coverage performance of the high-frequency communication system.
  • the carrier frequency corresponding to high-frequency communication has a shorter wavelength, it can ensure that more antenna elements can be accommodated per unit area, and more antenna elements means that the beamforming method can be used to increase the antenna gain, thereby ensuring high Coverage performance of frequency communication.
  • dense cells are more and more important application scenarios, and dense cells will require more network deployment costs.
  • the introduction of wireless backhaul transmission can easily deploy the network and greatly reduce the network deployment cost.
  • the NR system includes high-frequency bands, so the physical characteristics of the high-frequency carrier determine that its coverage is a very big challenge, and wireless backhaul transmission can also solve this problem.
  • the embodiment of the present application provides a method for determining a timing parameter, including:
  • the timing parameter is determined based on at least one of the following parameters: timing parameter related parameters, timing advance related parameters, and physical resource related parameters.
  • the embodiment of the present application also provides a timing parameter determination device, including:
  • the determining module is configured to determine the timing parameter based on at least one of the following parameters: timing parameter related parameters, timing advance related parameters, and physical resource related parameters.
  • An embodiment of the present application also provides a device, including:
  • One or more processors a memory for storing one or more programs; when the one or more programs are executed by the one or more processors, the one or more processors implement the implementation of this application Any one of the timing parameter determination methods in the example.
  • An embodiment of the present application also provides a storage medium that stores a computer program, and when the computer program is executed by a processor, it implements any one of the timing parameter determination methods in the embodiments of the present application.
  • Figure 1a is a schematic diagram of the alignment of uplink reception and downlink transmission of the parent node
  • Figure 1b is a schematic diagram of the misalignment of uplink reception and downlink transmission of the parent node
  • FIG. 1c is a flowchart of a method for determining timing parameters provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a device for determining a timing parameter provided by an embodiment of the present application
  • Fig. 3 is a schematic structural diagram of a device provided by an embodiment of the application.
  • a project has been established for unified access and backhaul (Integrated Access and Backhaul, IAB).
  • IAB Integrated Access and Backhaul
  • several marks (LP ,DL ,LP ,UL ), (LC ,DL ,LC ,UL ), (LA ,DL ,LA ,UL) are defined.
  • (LP , DL , LP , UL ) represents the downlink and uplink between the node and the parent node, and this link can be regarded as a backhaul link (Backhaul link, BL), and the node can Considered as a child node of the parent node.
  • (LC ,DL ,LC ,UL ) represents a downlink and an uplink between a node and a child node
  • the link may be regarded as a BL
  • the node may be regarded as a parent node of the child node.
  • (LA , DL , LA , UL ) represents the downlink and uplink between the node and the user equipment, and the link can be regarded as an access link (Access link, AL).
  • the parent node may also be a donor node (Donor Node, DN, including Donor gNB).
  • TDM Time Division Multiplexing
  • FDM Frequency Division Multiplexing
  • SDM Spatial Division Multiplexing
  • TDM means that different time resources are used between BL and AL
  • SDM means that different beams are used between BL and AL Resources
  • FDM means that different frequency resources are used between BL and AL.
  • each node In order to maintain network synchronization, thereby reducing mutual interference between nodes, each node is required to maintain downlink transmission timing (Downlink Transmit Timing, DL Tx Timing, DTT) alignment.
  • Downlink Transmit Timing DL Tx Timing, DTT
  • FIG. 1c is a flowchart of a method for determining a timing parameter provided by an embodiment of the present application.
  • the method may be executed by a timing parameter determination device, which may be implemented by software and/or hardware.
  • the device can be integrated on the node device.
  • the method provided by this application includes the following steps:
  • S110 Determine the timing parameter based on at least one of the following parameters:
  • Timing parameter related parameters timing advance related parameters and physical resource related parameters.
  • the timing parameter related parameters include at least one of the following:
  • Timing parameter index Timing parameter index offset, timing parameter range, timing parameter granularity and reference offset.
  • the timing advance related parameters include at least one of the following:
  • Timing advance Timing advance, timing advance granularity, and timing advance offset.
  • the physical resource related parameters include frequency range or subcarrier spacing.
  • the method for determining timing parameters includes:
  • the timing parameter is calculated based on the parameter.
  • the method for determining a timing parameter includes: obtaining the timing parameter by looking up a table based on the parameter.
  • the method for determining timing parameters includes:
  • the frequency range determines the timing parameter by determining at least one of the following parameters:
  • the method for determining timing parameters includes:
  • the subcarrier interval determines the timing parameter by determining at least one of the following parameters:
  • the subcarrier spacing is determined by a configuration method or a default method.
  • the subcarrier spacing is determined based on at least one of the following methods:
  • the subcarrier spacing is determined based on at least one of the following methods:
  • Configure the subcarrier interval ; configure the downlink partial bandwidth identifier or the uplink partial bandwidth identifier, the subcarrier interval of the partial bandwidth corresponding to the partial broadband identifier; configure the downlink carrier identifier or the uplink carrier identifier, and the subcarrier interval of the carrier corresponding to the carrier identifier .
  • the subcarrier spacing is determined based on at least one of the following methods:
  • the subcarrier interval corresponding to the granularity of the timing advance; the timing parameter index corresponds to the subcarrier interval of the part of the bandwidth where the signaling is located; the smallest or largest subcarrier interval of the subcarrier interval of the part of the bandwidth; the subcarrier interval of the reference part of the bandwidth.
  • the subcarrier spacing may be determined based on at least one of the following methods:
  • the subcarrier interval corresponding to the timing advance granularity; the timing advance command corresponds to the subcarrier interval corresponding to the timing advance granularity; the timing parameter index corresponds to the subcarrier interval of the downlink part of the bandwidth where the signaling is located; the timing parameter index corresponds to the signaling location
  • the sub-carrier interval of the downlink carrier; among them, the timing parameter index corresponding signaling is the signaling carrying the timing parameter index; the smallest or the largest sub-carrier interval among the sub-carrier intervals of one or more configured downlink partial bandwidths; one or more The smallest or largest subcarrier spacing among the subcarrier spacings of the activated downlink part of the bandwidth; the smallest or largest subcarrier spacing among the subcarrier spacings of one or more configured downlink carriers; the subcarrier spacing of one or more activated downlink carriers The minimum or maximum subcarrier interval in the interval; the subcarrier interval of the downlink partial bandwidth corresponding to the minimum or maximum identifier in one or more configured downlink partial bandwidth
  • the frequency range is determined based on at least one of the following ways:
  • the default refers to the frequency range where the downlink part of the bandwidth is located; the default refers to the frequency range where the downlink carrier is located; the default refers to the frequency range where the uplink part of the bandwidth is located; the default refers to the frequency range where the uplink carrier is located.
  • the frequency range is the first frequency range or the second frequency range.
  • the subcarrier interval corresponding to the granularity of the timing advance is the largest subcarrier interval among the subcarrier intervals of one or more activated uplink partial bandwidths.
  • the subcarrier interval corresponding to the granularity of the timing advance is a predefined or configured subcarrier interval.
  • the non-supplementary uplink is maintained.
  • the granularity of the timing advance corresponding to the subcarrier interval of the supplementary uplink or the uplink partial bandwidth corresponding to the supplementary uplink remains unchanged.
  • the non-supplementary uplink or the supplementary uplink is not
  • the timing advance granularity corresponding to the sub-carrier interval of the uplink part bandwidth corresponding to the link is an integer multiple operation.
  • the timing advance granule corresponding to the subcarrier interval of the uplink partial bandwidth is maintained. The degree does not change.
  • the timing advance corresponding to the subcarrier interval of the uplink partial bandwidth is Measure the granularity and perform integer multiple operations.
  • the timing advance granularity corresponding to the sub-carrier interval is calculated by integer multiples.
  • the subcarrier interval of the uplink partial bandwidth is smaller than the subcarrier interval corresponding to the granularity of the timing advance, it is determined whether the subcarrier interval of the uplink partial bandwidth corresponds to the The timing advance granularity performs integer multiple operation.
  • the timing parameter is determined by at least one of the following methods:
  • each symbol is defined, and the definition of each symbol can be referred to as follows:
  • N TA represents the timing advance, which means that the uplink transmission on the node side is relative to the node side The timing advance of the downlink reception;
  • N TA,offset represents the timing advance offset, including 0 ⁇ T c , 13792 ⁇ T c , 25600 ⁇ T c , 39936 ⁇ T c ;
  • T delta represents the timing parameter;
  • T D represents the timing parameter index ;
  • T D,offset represents the offset of the timing parameter index;
  • L represents the lower bound of the range of the timing parameter index, L is an integer;
  • U represents the upper bound of the range of the timing parameter index, U is an integer;
  • m represents the lower bound of the range of the timing parameter index, m is an integer;
  • the calculation timing parameter T delta is determined based on the following formula and parameters:
  • frequency ranges are distinguished, and different FRs correspond to different reference offsets.
  • the total range of T D can be ⁇ 0,1,2,...,1199 ⁇ .
  • is 0, that is, ⁇ f is 15kHz, N B,offset is -70528, T D,offset is 0, N G is 64T c , and the range of T D can be ⁇ 0,1,2,...,1199+ n ⁇ , where n can be 0.
  • is 1, that is, ⁇ f is 30kHz, N B,offset is -70528, T D,offset is 550, N G is 64T c , and the range of T D can be ⁇ 0,1,2,...,647+n ⁇ , n can be 0.
  • is 2, that is, ⁇ f is 60kHz, N B,offset is -70528, T D,offset is 826, N G is 64T c , and the range of T D can be ⁇ 0,1,2,...,370+ n ⁇ , n can be 0.
  • the total range of T D can be ⁇ 0,1,2,...,1199 ⁇ .
  • is 2, that is, ⁇ f is 60kHz, N B,offset is -17664, T D,offset is 0, N G is 32T c , and the range of T D can be ⁇ 0,1,2,...,740+ n ⁇ , where n can be 0.
  • N B,offset -17664
  • T D,offset 277
  • N G 32T c
  • the range of T D can be ⁇ 0,1,2,...,463+ n ⁇ , n can be 0.
  • the lower or upper bound of the T D range is used to calculate T delta , or it is considered an incorrect configuration, and this configuration is ignored.
  • FRs can be distinguished, and different FRs correspond to the same reference offset.
  • the total range of T D can be ⁇ 0,1,2,...,1199 ⁇ .
  • is 0, that is, ⁇ f is 15kHz, N B,offset is -70528, T D,offset is 0, N G is 64T c , and the range of T D can be ⁇ 0,1,2,...,1199+ n ⁇ , n can be 0.
  • is 1, that is, ⁇ f is 30kHz, N B,offset is -70528, T D,offset is 550, N G is 64T c , and the range of T D can be ⁇ 0,1,2,...,647+n ⁇ , n can be 0.
  • is 2, that is, ⁇ f is 60kHz, N B,offset is -70528, T D,offset is 826, N G is 64T c , and the range of T D is ⁇ 0,1,2,...,370+n ⁇ , n can be 0.
  • the total range of T D can be ⁇ 0,1,2,...,1199 ⁇ .
  • is 2, that is, ⁇ f is 60kHz, N B,offset is -70528, T D,offset is 1652, N G is 32T c , and the range of T D can be ⁇ 0,1,2,...,740+ n ⁇ , n can be 0.
  • 3 ⁇ that is, ⁇ f is 120kHz, N B,offset is -70528, T D,offset is 1929, N G is 32T c , and the range of T D is ⁇ 0,1,2,...,463+n ⁇ , n can be 0.
  • FR can be distinguished, and different subcarrier intervals correspond to different reference offsets.
  • the total range of T D can be ⁇ 0,1,2,...,1199 ⁇ .
  • is 0, that is, ⁇ f is 15kHz, N B,offset is -70528, T D,offset is 0, N G is 64T c , and the range of T D can be ⁇ 0,1,2,...,1199+ n ⁇ , n can be 0.
  • is 1, that is, ⁇ f is 30kHz, N B,offset is -35328, T D,offset is 0, N G is 64T c , and the range of T D is ⁇ 0,1,2,...,647+n ⁇ , n can be 0.
  • N B,offset is -17664
  • T D,offset is 0
  • N G is 64T c
  • the range of T D is ⁇ 0,1,2,...,370+n ⁇ , N can be 0.
  • the total range of T D can be ⁇ 0,1,2,...,1199 ⁇ .
  • is 2, that is, ⁇ f is 60kHz, N B,offset is -17664, T D,offset is 0, N G is 32T c , and the range of T D can be ⁇ 0,1,2,...,740+ n ⁇ , n can be 0.
  • N B,offset -8816
  • T D,offset 0
  • N G 32T c
  • the range of T D can be ⁇ 0,1,2,...,464+n ⁇ , n can be 0.
  • T D corresponding to the actual timing of the configuration parameter index value exceeds the lower bound of the range bound T D or, using T D range or the lower bound upper bound calculated T delta, or configuration that is wrong, ignore this configuration.
  • FR can be distinguished, and the timing parameter is mapped from the upper bound to the lower bound.
  • the timing parameters are mapped from the upper bound to the lower bound and the timing parameters are mapped from the lower bound to the upper bound (in the above-mentioned embodiment), the same is true, which will not be repeated here.
  • the total range of T D can be ⁇ 0,1,2,...,1199 ⁇ .
  • is 0, that is, ⁇ f is 15kHz, N B,offset is 6256, T D,offset is 0, N G is 64T c , and the range of T D can be ⁇ 0,1,2,...,1199+n ⁇ , n can be 0.
  • is 1, that is, ⁇ f is 30kHz, N B,offset is 6128, T D,offset is 0, N G is 64T c , and the range of T D can be ⁇ 0,1,2,...,647+n ⁇ , N can be 0.
  • N B,offset 6032
  • T D,offset 0
  • N G 64T c
  • the range of T D is ⁇ 0,1,2,...,370+n ⁇ , N can be 0.
  • the total range of T D can be ⁇ 0,1,2,...,1199 ⁇ .
  • is 2, that is, ⁇ f is 60kHz, N B,offset is 6032, T D,offset is 0, N G is 32T c , and the range of T D can be ⁇ 0,1,2,...,740+n ⁇ , n can be 0.
  • N B,offset 6032
  • T D,offset 0
  • N G 32T c
  • the range of T D can be ⁇ 0,1,2,...,464+n ⁇ , n can be 0.
  • the lower or upper bound of the T D range is used to calculate T delta , or it is considered an incorrect configuration, and this configuration is ignored.
  • FR may not be distinguished, and different subcarrier intervals correspond to different reference offsets.
  • the total range of T D can be ⁇ 0,1,2,...,1199 ⁇ .
  • is 0, that is, ⁇ f is 15kHz, N B,offset is -70528, T D,offset is 0, N G is 64T c , and the range of T D can be ⁇ 0,1,2,...,1199+ n ⁇ , n can be 0.
  • is 1, that is, ⁇ f is 30kHz, N B,offset is -70528, T D,offset is 550, N G is 64T c , and the range of T D can be ⁇ 0,1,2,...,647+ n ⁇ , n can be 0.
  • is 2, that is, ⁇ f is 60kHz, N B,offset is -17664, T D,offset is 0, N G is 32T c , and the range of T D can be ⁇ 0,1,2,...,740+ n ⁇ , n can be 0.
  • N B,offset -17664
  • T D,offset 277
  • N G 32T c
  • the range of T D can be ⁇ 0,1,2,...,463+ n ⁇ , n can be 0.
  • the lower or upper bound of the T D range is used to calculate T delta , or it is considered an incorrect configuration, and this configuration is ignored.
  • FR may not be distinguished, and different subcarrier intervals correspond to the same reference offset.
  • the total range of T D can be ⁇ 0,1,2,...,1199 ⁇ .
  • is 0, that is, ⁇ f is 15kHz, N B,offset is -70528, T D,offset is 0, N G is 64T c , and the range of T D can be ⁇ 0,1,2,...,1199+ n ⁇ , n can be 0.
  • is 1, that is, ⁇ f is 30kHz, N B,offset is -70528, T D,offset is 550, N G is 64T c , and the range of T D can be ⁇ 0,1,2,...,647+ n ⁇ , n can be 0.
  • is 2, that is, ⁇ f is 60kHz, N B,offset is -70528, T D,offset is 1652, N G is 32T c , and the range of T D can be ⁇ 0,1,2,...,740+ n ⁇ , n can be 0.
  • 3 ⁇ that is, ⁇ f is 120kHz, N B,offset is -70528, T D,offset is 1929, N G is 32T c , and the range of T D can be ⁇ 0,1,2,...,463+ n ⁇ , n can be 0.
  • T D corresponding to the actual timing of the configuration parameter index value exceeds the lower bound of the range bound T D or, using T D range or the lower bound upper bound calculated T delta, or configuration that is wrong, ignore this configuration.
  • FR may not be distinguished, and different subcarrier intervals correspond to different reference offsets.
  • the total range of T D can be ⁇ 0,1,2,...,1199 ⁇ .
  • is 0, that is, ⁇ f is 15kHz, N B,offset is -70528, T D,offset is 0, N G is 64T c , and the range of T D can be ⁇ 0,1,2,...,1199+ n ⁇ , n can be 0.
  • is 1, that is, ⁇ f is 30kHz, N B,offset is -35328, T D,offset is 0, N G is 64T c , and the range of T D can be ⁇ 0,1,2,...,647+ n ⁇ , n can be 0.
  • is 2, that is, ⁇ f is 60kHz, N B,offset is -17664, T D,offset is 0, N G is 32T c , and the range of T D can be ⁇ 0,1,2,...,740+ n ⁇ , n can be 0.
  • N B,offset -8816
  • T D,offset 0
  • N G 32T c
  • the range of T D can be ⁇ 0,1,2,...,464+ n ⁇ , n can be 0.
  • the lower or upper bound of the T D range is used to calculate T delta , or it is considered an incorrect configuration, and this configuration is ignored.
  • the FR may not be distinguished, and the timing parameter is mapped from the upper bound to the lower bound.
  • the timing parameters are mapped from the upper bound to the lower bound and the timing parameters are mapped from the lower bound to the upper bound (in the above-mentioned embodiment), the same is true, which will not be repeated here.
  • the total range of T D can be ⁇ 0,1,2,...,1199 ⁇ .
  • is 0, that is, ⁇ f is 15kHz, N B,offset is 6256, T D,offset is 0, N G is 64T c , and the range of T D can be ⁇ 0,1,2,...,1199+n ⁇ , n can be 0.
  • is 1, that is, ⁇ f is 30kHz, N B,offset is 6128, T D,offset is 0, N G is 64T c , and the range of T D can be ⁇ 0,1,2,...,647+n ⁇ , n can be 0.
  • is 2, that is, ⁇ f is 60kHz, N B,offset is 6032, T D,offset is 0, N G is 32T c , and the range of T D can be ⁇ 0,1,2,...,740+n ⁇ , n can be 0.
  • N B,offset 6032
  • T D,offset 0
  • N G 32T c
  • the range of T D can be ⁇ 0,1,2,...,464+n ⁇ , n can be 0.
  • T D corresponding to the actual timing of the configuration parameter index value exceeds the lower bound of the range bound T D or, using T D range or the lower bound upper bound calculated T delta, or configuration that is wrong, ignore this configuration.
  • the FR can be distinguished, the molecular carrier interval is not distinguished, and the timing parameter is mapped from the lower bound to the upper bound.
  • the total range of T D can be ⁇ 0,1,2,...,1199 ⁇ .
  • N B,offset is -70528
  • T D,offset is 0
  • N G is 64T c
  • the range of T D can be ⁇ 0,1,2,...,1199+n ⁇
  • n can be 0.
  • T delta (-N TA,offset /2-70528+T D ⁇ 64) ⁇ T c
  • T delta
  • the total range of T D can be ⁇ 0,1,2,...,1199 ⁇ .
  • N B,offset is -17664
  • T D,offset is 0
  • N G is 32T c
  • the range of T D can be ⁇ 0,1,2,...,740+n ⁇
  • n can be 0.
  • T delta (-N TA,offset /2-17664+T D ⁇ 32) ⁇ T c
  • T delta
  • T D corresponding to the actual timing of the configuration parameter index value exceeds the lower bound of the range bound T D or, using T D range or the lower bound upper bound calculated T delta, or configuration that is wrong, ignore this configuration.
  • the FR can be distinguished, the molecular carrier interval is not distinguished, and the timing parameter is mapped from the upper bound to the lower bound.
  • the total range of T D is ⁇ 0,1,2,...,1199 ⁇ .
  • N B,offset is 6256
  • T D,offset is 0
  • N G is 64T c
  • the range of T D can be ⁇ 0,1,2,...,1199+n ⁇
  • n can be 0.
  • T delta (-N TA,offset /2+6256-T D ⁇ 64) ⁇ T c
  • T delta
  • the total range of T D is ⁇ 0,1,2,...,1199 ⁇ .
  • N B,offset is 6032
  • T D,offset is 0,
  • N G is 32T c
  • the range of T D can be ⁇ 0,1,2,...,740+n ⁇ , and n can be 0.
  • T delta (-N TA,offset /2+6032-T D ⁇ 32) ⁇ T c
  • T delta
  • T D corresponding to the actual timing of the configuration parameter index value exceeds the lower bound of the range bound T D or, using T D range or the lower bound upper bound calculated T delta, or configuration that is wrong, ignore this configuration.
  • the FR may not be distinguished, and the molecular carrier interval may not be distinguished, and the timing parameter may be mapped from the lower bound to the upper bound.
  • the total range of T D can be ⁇ 0,1,2,...,2399 ⁇ .
  • N B,offset is -70528
  • T D,offset is 0
  • N G is 32T c
  • the range of T D is ⁇ 0,1,2,...,2399+n ⁇
  • n is 0.
  • T delta (-N TA,offset /2-70528+T D ⁇ 32) ⁇ T c
  • T delta
  • T D corresponding to the actual timing of the configuration parameter index value exceeds the lower bound of the range bound T D or, using T D range or the lower bound upper bound calculated T delta, or configuration that is wrong, ignore this configuration.
  • the FR and the molecular carrier interval may not be distinguished, and the timing parameter may be mapped from the upper bound to the lower bound.
  • the total range of T D can be ⁇ 0,1,2,...,2399 ⁇ .
  • N B,offset is 6256
  • T D,offset is 0
  • N G is 32T c
  • the range of T D can be ⁇ 0,1,2,...,2399+n ⁇
  • n can be 0.
  • T delta (-N TA,offset /2+6256-T D ⁇ 32) ⁇ T c
  • T delta
  • T D corresponding to the actual timing of the configuration parameter index value exceeds the lower bound of the range bound T D or, using T D range or the lower bound upper bound calculated T delta, or configuration that is wrong, ignore this configuration.
  • FR can be distinguished, and the two timing parameter ranges are overlapped, and the molecular carrier interval is not distinguished.
  • the timing parameter is mapped from the lower bound to the upper bound.
  • the total range of T D can be ⁇ 0,1,2,...,1573 ⁇ .
  • N B,offset is -70528
  • T D,offset is 0
  • N G is 64T c
  • the range of T D can be ⁇ 0,1,2,...,825+n ⁇
  • n can be 0.
  • T delta (-N TA,offset /2-70528+T D ⁇ 64) ⁇ T c
  • T delta
  • the total range of T D can be ⁇ 0,1,2,...,1573 ⁇ .
  • N B,offset is -44096
  • T D,offset is 0
  • N G is 32T c
  • the range of T D can be ⁇ 826,827,828,...,1573+n ⁇
  • n can be 0.
  • T delta (-N TA,offset /2-44096+T D ⁇ 32) ⁇ T c
  • T delta
  • T D corresponding to the actual timing of the configuration parameter index value exceeds the lower bound of the range bound T D or, using T D range or the lower bound upper bound calculated T delta, or configuration that is wrong, ignore this configuration.
  • FR can be distinguished, and the two timing parameter ranges are overlapped, and the molecular carrier interval is not distinguished.
  • the timing parameter is mapped from the upper bound to the lower bound.
  • the total range of T D can be ⁇ 0,1,2,...,1574 ⁇ .
  • N B,offset is 6256, T D,offset is 0, N G is 32T c , the range of T D can be ⁇ 0,1,2,...,747+n ⁇ , n is 0.
  • T delta (-N TA,offset /2+6256-T D ⁇ 32) ⁇ T c
  • T delta
  • the total range of T D can be ⁇ 0,1,2,...,1574 ⁇ .
  • N B,offset is 30208
  • T D,offset is 0
  • N G is 64T c
  • the range of T D can be ⁇ 748,749,750,...,1574+n ⁇
  • n can be 0.
  • T delta (-N TA,offset /2+30208-T D ⁇ 64) ⁇ T c
  • T delta
  • T D corresponding to the actual timing of the configuration parameter index value exceeds the lower bound of the range bound T D or, using T D range or the lower bound upper bound calculated T delta, or configuration that is wrong, ignore this configuration.
  • FR can be distinguished, three timing parameter ranges are overlapped, and the molecular carrier interval is not distinguished, and the timing parameters are mapped from the lower bound to the upper bound.
  • the total range of T D can be ⁇ 0,1,2,...,1570 ⁇ .
  • N B,offset is -70528
  • T D,offset is 0
  • N G is 64T c
  • the range of T D can be ⁇ 0,1,2,...,825+n ⁇
  • n can be 0.
  • T delta (-N TA,offset /2-70528+T D ⁇ 64) ⁇ T c
  • T delta
  • the total range of T D can be ⁇ 0,1,2,...,1570 ⁇ .
  • N B,offset is -44096
  • T D,offset is 0
  • N G is 32T c
  • the range of T D can be ⁇ 826,827,828,...,1566+n ⁇
  • n can be 0.
  • T delta (-N TA,offset /2-44096+T D ⁇ 32) ⁇ T c
  • T delta
  • the total range of T D can be ⁇ 0,1,2,...,1570 ⁇ .
  • N B,offset is -94256, T D,offset is 0, N G is 64T c , the range of T D can be ⁇ 1567,1568,1569,1570+n ⁇ , n is 0.
  • T delta (-N TA,offset /2-94256+T D ⁇ 64) ⁇ T c
  • T delta
  • T D corresponding to the actual timing of the configuration parameter index value exceeds the lower bound of the range bound T D or, using T D range or the lower bound upper bound calculated T delta, or configuration that is wrong, ignore this configuration.
  • FR can be distinguished, and three timing parameter ranges are overlapped, and the molecular carrier interval is not distinguished.
  • the timing parameters are mapped from the upper bound to the lower bound.
  • the total range of T D can be ⁇ 0,1,2,...,1571 ⁇ .
  • N B,offset is 6256
  • T D,offset is 0
  • N G is 64T c
  • the range of T D can be ⁇ 0,1,2,3+n ⁇
  • n can be 0.
  • T delta (-N TA,offset /2+6256-T D ⁇ 64) ⁇ T c
  • T delta
  • T D corresponding to the actual timing of the configuration parameter index value exceeds the lower bound of the range bound T D or, using T D range or the lower bound upper bound calculated T delta, or configuration that is wrong, ignore this configuration.
  • the total range of T D can be ⁇ 0,1,2,...,1571 ⁇ .
  • N B,offset is 6160
  • T D,offset is 0
  • N G is 32T c
  • the range of T D can be ⁇ 4,5,6,...,744+n ⁇
  • n can be 0.
  • T delta (-N TA,offset /2+6160-T D ⁇ 32) ⁇ T c
  • T delta
  • the total range of T D can be ⁇ 0,1,2,...,1571 ⁇ .
  • N B,offset is 30016
  • T D,offset is 0
  • N G is 64T c
  • the range of T D can be ⁇ 745,746,747,...,1571+n ⁇ , n is 0.
  • T delta (-N TA,offset /2+30016-T D ⁇ 64) ⁇ T c
  • T delta
  • the timing parameter T delta may be obtained based on a parameter look-up table.
  • the timing parameter may be mapped from the lower bound to the upper bound, and the grid position may be indexed to obtain the timing parameter T delta .
  • the timing parameter is mapped from the upper bound to the lower bound, and the grid position is indexed to obtain the timing parameter T delta .
  • the timing parameter is mapped from the lower bound to the upper bound, and the grid position is found by index, so as to obtain the timing parameter T delta .
  • Table 3 is a partial content table of timing parameters. As shown in Table 3, for ⁇ is 0, that is, ⁇ f is 15kHz, N B,offset is -70528, N G is 64T c , and the range of T D can be ⁇ 0,1, 2,...,1199+n ⁇ , n can be 0.
  • T delta -N TA,offset /2-69760.
  • the timing parameter is mapped from the upper bound to the lower bound, and the grid position of the look-up table is indexed.
  • Table 4 is a partial content table of the timing parameters. As shown in Table 4, for ⁇ is 3, that is, ⁇ f is 120kHz, N B,offset is 6032, N G is 32T c , and the range of T D can be ⁇ 0,1, 2,...,464+n ⁇ , n can be 0.
  • T delta -N TA,offset /2+5552.
  • the subcarrier spacing may be determined by configuration.
  • the sub-carrier interval and configure the sub-carrier interval are directly configure the sub-carrier interval, or, for example, configure the sub-carrier interval indirectly, and configure the uplink bandwidth Part Identifier (UL BWPID) as "01"
  • the UL BWP subcarrier interval corresponding to "01" is taken as the determined subcarrier interval, or, for example, the subcarrier interval is configured indirectly, and the downlink (DL) carrier ID is configured as "00001”
  • the sub-carrier interval of the DL carrier corresponding to "00001" is used as the determined sub-carrier interval.
  • the subcarrier spacing may be determined in a default manner.
  • the signaling corresponding to the timing parameter index is carried on the DL BWP whose ID is "01”, and the subcarrier interval of the DL BWP corresponding to "01" is used as the determined subcarrier interval, or, for example, the signaling corresponding to the timing parameter index It is carried on the DL carrier whose DL carrier ID is "00001", and the subcarrier interval of the DL carrier corresponding to "00001” is used as the determined subcarrier interval, or, for example, there are two activated UL BWP IDs of "01" and UL The BWP ID is "10".
  • the two UL BWPs can belong to the same UL carrier or different UL carriers.
  • the UL BWP subcarrier interval corresponding to "01" and the UL BWP subcarrier interval corresponding to “10" are the smallest The value is used as the determined sub-carrier interval, or, for example, there are two activated UL carriers with ID "00001” and UL carrier ID "00010", and the sub-carrier interval of UL carrier corresponding to "00001" corresponds to "00010"
  • the minimum value of the UL carrier's sub-carrier spacing is used as the determined sub-carrier spacing.
  • the frequency range may be determined in a default manner.
  • the frequency range is determined to be frequency range 1 or frequency range 2.
  • the frequency range is determined to be frequency range 1 or frequency range 2.
  • the multiple activated UL BWPs may belong to the same cell, such as a serving cell that transmits signaling corresponding to the timing parameter index, or may belong to different cells, such as multiple cells in one TAG.
  • [L ⁇ f ,U ⁇ f ] represents a range of timing parameters other than the -N TA,offset /2 component.
  • L represents the lower bound of the timing parameter range
  • U represents the upper bound of the timing parameter range
  • L ⁇ f [Delta] f represents the lower bound of the parameters corresponding to the range other than the timing -N TA, offset / 2 component
  • U ⁇ f corresponding to [Delta] f represents the upper bound other than -N TA, offset / 2 component of the timing parameter range.
  • Table 5 is the timing parameter range table. As shown in Table 5, L 15 and U 15 respectively represent the lower and upper bounds of the timing parameter when ⁇ f is 15 kHz, except for the -N TA, offset /2 components, and L 30 and U 30 , respectively Represents the lower and upper bounds of the timing parameters except -N TA,offset /2 when ⁇ f is 30kHz; L 60 and U 60 respectively indicate the lower bounds of timing parameters except -N TA,offset /2 when ⁇ f is 60kHz And the upper bound; L 120 and U 120 respectively represent the lower and upper bounds of the timing parameter excluding -N TA,offset /2 when ⁇ f is 120kHz.
  • the values of L 15 , L 30 , L 60 , and L 120 can be positive, 0, or negative; the values of L 15 , L 30 , L 60 , and L 120 can be equal; U 15 , U 30 , U 60 , U 120 Its value can be positive, 0, or negative; U 15 , U 30 , U 60 , U 120 can be equal in value; L 15 , U 15 can be equal in absolute value; L 30 , U 30 can be equal in absolute value; L 60
  • the absolute value of U 60 can be equal; the absolute value of L 120 and U 120 can be equal; the value of N B,offset is greater than or equal to L ⁇ f ; the value of N B,offset is less than or equal to U ⁇ f .
  • Table 6 is the timing parameter range table, as shown in Table 6, with Respectively represent the lower and upper bounds of the timing parameter when ⁇ f is 15kHz, with Respectively represent the lower and upper bounds of the timing parameter when ⁇ f is 30kHz; with Respectively represent the lower and upper bounds of the timing parameter when ⁇ f is 60kHz; with Respectively represent the lower and upper bounds of the timing parameter when ⁇ f is 120kHz.
  • Its value can be positive, 0, or negative; Its value can be equal; Its value can be positive, 0, or negative; Its value can be equal;
  • the absolute value can be equal; The absolute value can be equal; The absolute value can be equal; The absolute value can be equal; The absolute value can be equal; the value of N B,offset is greater than or equal to N B, the value of offset is less than or equal to Its value is equal to -N TA,offset /2+L ⁇ f; Its value is equal to -N TA,offset /2+U ⁇ f .
  • different subcarrier intervals correspond to different timing parameter index signaling overheads.
  • different subcarrier intervals correspond to the same timing parameter index signaling overhead.
  • it may be a unified timing parameter index signaling overhead.
  • the granularity of the timing advance determined by the subcarrier spacing is 16 ⁇ 64T c /2 ⁇ .
  • the available timing advance at 15kHz is an integer multiple of the timing advance granularity 16 ⁇ 64T c .
  • the set of timing advance values set_0 is 0 ⁇ 64T c , ⁇ 16 ⁇ 64T c , ⁇ 32 ⁇ 64T c , ⁇ 48 ⁇ 64T c , ⁇ 64 ⁇ 64T c ;
  • 30kHz available a timing advance of the timing advance is graininess integer multiple of 8 ⁇ 64T c, as set set_1 timing advance value is 0 ⁇ 64T c, ⁇ 8 ⁇ 64T c , ⁇ 16 ⁇ 64T c , ⁇ 24 ⁇ 64T c , ⁇ 32 ⁇ 64T c ......;
  • the available timing advance at 60kHz is an integer multiple of the timing advance granularity of 4.64T c , such as a collection of timing advance values set_2 is 0 ⁇ 64T c , ⁇ 4 ⁇ 64T c , ⁇ 8 ⁇ 64T c , ⁇ 12 ⁇
  • the default maximum subcarrier interval may be passed.
  • the subcarrier intervals of the two activated uplink bandwidths are 15kHz and 60kHz respectively. These two subcarrier intervals can also be the subcarrier spacing corresponding to the supplementary uplink bandwidth and the subcarrier spacing corresponding to the non-supplemental uplink bandwidth. Carrier spacing.
  • the uniform timing advance granularity at this time is 4.64T c
  • the available timing advance is an integer multiple of the timing advance granularity 4.64T c , such as 0 ⁇ 64T c , ⁇ 4 ⁇ 64T c , ⁇ 8 ⁇ 64T c , ⁇ 12 ⁇ 64T c , ⁇ 16 ⁇ 64T c .
  • the subcarrier spacing may be predefined or configured.
  • the uniform timing advance granularity at this time is 2.64T c
  • the available timing advance is the timing advance Measure the granularity of an integer multiple of 2 ⁇ 64T c , such as 0 ⁇ 64T c , ⁇ 2 ⁇ 64T c , ⁇ 4 ⁇ 64T c , ⁇ 6 ⁇ 64T c , ⁇ 8 ⁇ 64T c .
  • the parent node configures the child node, and the child node is configured by the parent node to 120kHz as the subcarrier interval corresponding to the unified timing advance granularity, that is, the unified timing advance granularity at this time is 2 ⁇ 64T c , the available timing advance It is an integer multiple of the timing advance granularity of 2 ⁇ 64T c , such as 0 ⁇ 64T c , ⁇ 2 ⁇ 64T c , ⁇ 4 ⁇ 64T c , ⁇ 6 ⁇ 64T c , ⁇ 8 ⁇ 64T c .
  • an integer multiple operation is not performed on the granularity of the timing advance.
  • the timing advance at a specific time is the timing advance granularity 4 ⁇ 3 times of 64T c , that is, the timing advance is 12 ⁇ 64T c .
  • the timing advance value in the set of timing advance value set_0 shall be the nearest integer multiple of the timing advance granularity 16 ⁇ 64T c , that is, the node is not adjusted downward or upward to 12 ⁇ 64T c to be close to the timing advance value.
  • the timing advance values in the set set_0 are 0 ⁇ 64T c and 16 ⁇ 64T c , that is, the node still maintains the timing advance of 12 ⁇ 64T c .
  • an integer multiple operation is performed on the granularity of the timing advance.
  • the timing advance at a specific time is the timing advance granularity 4 ⁇ 3 times of 64T c , that is, the timing advance is 12 ⁇ 64T c .
  • the node pair 12 ⁇ 64T c takes the nearest timing advance value in the set_0 of the timing advance value to an integer multiple of the timing advance granularity 16 ⁇ 64T c , that is, the node pair 12 ⁇ 64T c is adjusted downwards or upwards to be close to the timing advance value
  • the timing advance values in the set set_0 are 0 ⁇ 64T c and 16 ⁇ 64T c , that is, the node changes the timing advance from 12 ⁇ 64T c to a downward 0 ⁇ 64T c and an upward 16 ⁇ 64T c .
  • a predefined manner or a configuration manner determines whether to perform an integer multiple operation on the granularity of the timing advance.
  • the timing advance at a specific time is the timing advance granularity 4 ⁇ 3 times of 64T c , that is, the timing advance is 12 ⁇ 64T c .
  • the pre-defined right or wrong is 12 ⁇ 64T c
  • the timing advance value in the set_0 of the timing advance value is the nearest integer multiple of the timing advance granularity 16 ⁇ 64T c , that is, the node is right or wrong.
  • 12 ⁇ 64T c is adjusted downward or upward until the timing advance value in set_0 close to the timing advance value is 0 ⁇ 64T c , 16 ⁇ 64T c , that is, the node still maintains the timing advance of 12 ⁇ 64T c .
  • the timing advance value in set_0 is the nearest integer multiple of the timing advance granularity 16 ⁇ 64T c , that is, the node Adjust the 12 ⁇ 64T c down or up to a set close to the timing advance value.
  • the timing advance values in set_0 are 0 ⁇ 64T c and 16 ⁇ 64T c , that is, the node still maintains the timing advance of 12 ⁇ 64T c .
  • the timing advance at a specific time is the timing advance granularity. 3 times of 4.64T c , that is, the timing advance is 12.64T c .
  • the child node feedback parent node the parent node receiving sub-node feedback timing within the set set_0 right or wrong 12 ⁇ 64T c on the timing advance value of advance value nearest rounding multiple of the particle size 16 ⁇ 64T c timing advance, i.e., the node Correct or not adjust 12 ⁇ 64T c downward or upward to close to the timing advance value set_0.
  • the timing advance values in set_0 are 0 ⁇ 64T c and 16 ⁇ 64T c , that is, the node still maintains the timing advance of 12 ⁇ 64T c .
  • the timing parameter is determined by At least one of the decisions:
  • the parent node configures the child node and the child node is configured by the parent node to receive Rx measurement based on the timing parameter, that is, the configuration timing parameter comes from UL; for example, the parent node configures the child node and the child node is configured by the parent node to configure the timing parameter based on SUL Rx measurement, That is, the configuration timing parameter comes from SUL.
  • the default timing parameter is based on UL Rx measurement, that is, the default timing parameter comes from UL; for example, for a parent node or child node, the default timing parameter is based on SUL Rx measurement, that is, the default timing parameter comes from SUL.
  • the default timing parameter measurement comes from the link at the latest or last moment:
  • the default timing parameter is based on the latest or last uplink reception measurement, that is, the default timing parameter comes from the latest or last uplink reception. Assuming UL is at time t0, SUL is at time t1, and time t1 is later than At t0, the default timing parameter is based on SUL Rx measurement, that is, the default timing parameter comes from SUL.
  • the technical solution provided by this application solves the problem that the timing parameter index determines the actual timing parameter.
  • the technical solution of this application can ensure that the mapping from any timing parameter index to the actual timing parameter is supported on the basis of signaling overhead, ensuring that the radio frequency technical requirements are supported .
  • wireless mobile communication systems whether to expand network coverage or improve spectrum efficiency of dense cells, more base stations need to be deployed to ensure that IAB can not only solve the above scenarios, but also greatly reduce the capital investment and operating costs of operators.
  • Fig. 2 is a timing parameter determination device provided by an embodiment of the present application, and the device includes:
  • the determining module 210 is configured to determine the timing parameter based on at least one of the following parameters:
  • Timing parameter related parameters timing advance related parameters and physical resource related parameters.
  • the timing parameter related parameters include at least one of the following:
  • Timing parameter index Timing parameter index offset, timing parameter range, timing parameter granularity and reference offset.
  • the timing advance related parameters include at least one of the following:
  • Timing advance Timing advance, timing advance granularity, and timing advance offset.
  • the physical resource related parameters include frequency range or subcarrier spacing.
  • the determining module 210 is configured to:
  • the determining module 210 is configured to:
  • the subcarrier spacing is determined by a configuration method or a default method.
  • the subcarrier spacing is determined based on at least one of the following methods:
  • the subcarrier spacing is determined based on at least one of the following methods:
  • the subcarrier interval corresponding to the granularity of the timing advance; the timing parameter index corresponds to the subcarrier interval of the part of the bandwidth where the signaling is located; the smallest or largest subcarrier interval of the subcarrier interval of the part of the bandwidth; the subcarrier interval of the reference part of the bandwidth.
  • the frequency range is determined based on the frequency range in which part of the broadband or carrier is located.
  • the frequency range is the first frequency range or the second frequency range.
  • the subcarrier interval corresponding to the granularity of the timing advance is the largest subcarrier interval among the subcarrier intervals of one or more activated uplink partial bandwidths.
  • the subcarrier interval corresponding to the granularity of the timing advance is a predefined or configured subcarrier interval.
  • the non-supplementary uplink is maintained.
  • the granularity of the timing advance corresponding to the subcarrier interval of the supplementary uplink or the uplink partial bandwidth corresponding to the supplementary uplink remains unchanged.
  • the timing advance granule corresponding to the subcarrier interval of the uplink partial bandwidth is maintained. The degree does not change.
  • the timing advance granularity corresponding to the subcarrier interval of the uplink partial bandwidth is Degree performs integer multiple operation.
  • the timing advance granularity corresponding to the sub-carrier interval of the bandwidth is calculated by integer multiples.
  • the subcarrier interval of the uplink partial bandwidth is smaller than the subcarrier interval corresponding to the granularity of the timing advance, it is determined whether the subcarrier interval of the uplink partial bandwidth corresponds to the The timing advance granularity performs integer multiple operation.
  • the timing parameters are determined as follows:
  • the timing parameter is based on the latest or last time uplink reception measurement, where the latest or last time uplink reception is determined based on the latest or last time uplink reception in the non-supplementary uplink and the supplementary uplink.
  • the foregoing device executes the method provided in the embodiment of the present application, and has functional modules and technical effects corresponding to the execution method.
  • FIG. 3 is a schematic structural diagram of a device provided by an embodiment of the application.
  • the device provided by the application includes one or more processors 121 and a memory 122.
  • the processor 121 in the device may be one or more.
  • one processor 121 is taken as an example; the memory 122 is used to store one or more programs; the one or more programs are used by the one or more Is executed by two processors 121, so that the one or more processors 121 implement the method described in the embodiment of the present application.
  • the equipment also includes: a communication device 123, an input device 124, and an output device 125.
  • the processor 121, the memory 122, the communication device 123, the input device 124, and the output device 125 in the device may be connected through a bus or other methods.
  • the connection through a bus is taken as an example.
  • the input device 124 can be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the device.
  • the output device 125 may include a display device such as a display screen.
  • the communication device 123 may include a receiver and a transmitter.
  • the communication device 123 is configured to perform information transceiving and communication under the control of the processor 121.
  • the memory 122 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the timing parameter determination method described in the embodiment of the present application (for example, in the timing parameter determination device The determination module).
  • the memory 122 may include a program storage area and a data storage area, where the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the device, and the like.
  • the memory 122 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 122 may include a memory remotely provided with respect to the processor 121, and these remote memories may be connected to the device through a network.
  • Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • An embodiment of the present application also provides a storage medium, where the storage medium stores a computer program, and the computer program implements the method described in any of the embodiments of the present application when the computer program is executed by a processor.
  • the method includes:
  • the timing parameter is determined based on at least one of the following parameters:
  • Timing parameter related parameters timing advance related parameters and physical resource related parameters.
  • the term user terminal encompasses any suitable type of wireless user equipment, such as mobile phones, portable data processing devices, portable web browsers, or vehicular mobile stations.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the present application is not limited thereto.
  • Computer program instructions can be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
  • ISA Instruction Set Architecture
  • the block diagram of any logical decision in the drawings of this application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field-Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASICs application specific integrated circuits
  • FPGA Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array

Abstract

本文公开一种定时参量确定方法、装置、设备及存储介质。该定时参量确定方法,包括:基于如下参数中的至少之一确定定时参量:定时参量相关参数、定时提前相关参数和物理资源的相关参数。

Description

定时参量确定方法、装置、设备和存储介质
本申请要求在2020年04月02日提交中国专利局、申请号为202010256349.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信网络领域,例如涉及一种定时参量确定方法、装置、设备和存储介质。
背景技术
随着无线电技术的不断进步,各种各样的无线电业务大量涌现,而无线电业务所依托的频谱资源是有限的,面对人们对带宽需求的不断增加,传统的商业通信主要使用的300兆赫兹(MHz)-3吉赫兹(GHz)之间频谱资源表现出极为紧张的局面,已经无法满足未来无线通信的需求。
在新一代无线通信系统中,例如在新空口(New Radio,NR)系统或第五代移动通信(the 5th Generation Mobile Communication,5G)系统,5G之后的新一代无线通信系统中,将会采用比第四代移动通信(the 4th Generation Mobile Communication,4G)系统所采用的载波频率更高的载波频率进行通信,例如采用28GHz、45GHz、70GHz等等。这种高频信道具有自由传播损耗较大,容易被氧气吸收,受雨衰影响大等缺点,严重影响了高频通信系统的覆盖性能。
由于高频通信对应的载波频率具有更短的波长,可以保证单位面积上能容纳更多的天线元素,而更多的天线元素意味着可以采用波束赋形的方法来提高天线增益,从而保证高频通信的覆盖性能。其中,密集小区是越来越主要的应用场景,而密集小区将需要更多的网络部署成本,引入无线回程传输可以很容易地进行部署网络,并且大幅降低网络部署成本。此外NR系统包括高频频段,所以高频载波物理特性决定,其覆盖范围是非常大的挑战,无线回程传输也可以解决这个问题。
发明内容
本申请实施例提供了一种定时参量确定方法,包括:
基于如下参数中的至少之一确定定时参量:定时参量相关参数、定时提前相关参数和物理资源的相关参数。
本申请实施例还提供了一种定时参量确定装置,包括:
确定模块,被设置为基于如下参数中的至少之一确定定时参量:定时参量相关参数、定时提前相关参数和物理资源的相关参数。
本申请实施例还提供了一种设备,包括:
一个或多个处理器;存储器,用于存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现本申请实施例中的任意一种定时参量确定方法。
本申请实施例还提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中的任意一种定时参量确定方法。
附图说明
图1a是父节点上行接收和下行发射对齐示意图;
图1b是父节点上行接收和下行发射不对齐示意图;
图1c是本申请实施例提供的一种定时参量确定方法流程图;
图2是本申请实施例提供的一种定时参量确定装置结构示意图;
图3为本申请实施例提供的一种设备的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在一些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
在NR系统中,已经针对统一的接入和回程(Integrated Access and Backhaul,IAB)进行了立项。为了便于描述,定义了几种标记(L P,DL,L P,UL),(L C,DL,L C,UL),(L A,DL,L A,UL)。其中,(L P,DL,L P,UL)表示节点和父节点之间的下行链路和上行链路,该链路可看作是回程链路(Backhaul link,BL),所述节点可看作是所述父节点的子节点。(L C,DL,L C,UL)表示节点和子节点之间的下行链路和上行链路,该链路可看作是BL,所述节点可看作是所述子节点的父节点。(L A,DL,L A,UL)表示节点和用户设备之间的下行链路和上行链路,该链路可看作是接入链路(Access link,AL)。其中,父节点也可为施主节点(Donor Node,DN,包括Donor gNB)。同时为了克服半双工中继节点在带内(in-band)场景下带来的收发自干扰问题,提出BL和AL之间采用如下复用方式:时分复用 (Time Division Multiplexing,TDM)、频分复用(Frequency Division Multiplexing,FDM)、空分复用(Spatial Division Multiplexing,SDM),其中,TDM表示BL和AL之间采用不同的时间资源,SDM表示BL和AL之间采用不同的波束资源,FDM表示BL和AL之间采用不同的频率资源。还针对中继节点(Relay Node,RN也称为IAB Node)定义了两种功能,即IAB Node移动终端((Mobile Terminal,MT)和IAB Node分布单元(Distributed Unit,DU)。
为了保持网络同步,从而减少节点间相互干扰,要求各个节点间需要保持下行发射定时(Downlink Transmit Timing,DL Tx Timing,DTT)对齐。原则上只要子节点基于子节点下行接收定时(DL Receive Timing,DL Rx Timing,DRT)向前提前TA/2,其中,TA可以是时间提前量(Timing Advance)。即可获取子节点DTT=DRT-TA/2,则可以保持节点间DTT对齐。但由于父节点侧实现等原因,导致父节点上行接收定时(Uplink Rx Timing,UL Rx Timing,URT)和父节点DTT之间存在偏移,所以子节点不能简单地认为子节点DTT=DRT-TA/2是实际的子节点DTT,合理的应该是子节点通过计算(TA/2+T delta)获取父节点DTT和子节点DRT之间的时间差,则合理的子节点DTT=DRT-(TA/2+T delta)。其中,父节点上行接收和下行发射对齐可以参考图1a,父节点上行接收和下行发射不对齐可以参考图1b。
在一个示例性的实施方式中,图1c是本申请实施例提供的一种定时参量确定方法流程图,该方法可以由定时参量确定装置来执行,所述装置可以由软件和/或硬件来实现,所述装置可以集成在节点设备上。
如图1c所示,本申请提供的方法包括如下步骤:
S110:基于如下参数中的至少之一确定定时参量:
定时参量相关参数、定时提前相关参数和物理资源的相关参数。
在一个示例性的实施方式中,所述定时参量相关参数包括如下至少之一:
定时参量索引、定时参量索引偏移、定时参量范围、定时参量颗粒度和基准偏移。
在一个示例性的实施方式中,所述定时提前相关参数包括如下至少之一:
定时提前量、定时提前量颗粒度和定时提前偏移。
在一个示例性的实施方式中,所述物理资源相关参数包括频率范围或子载波间隔。
在一个示例性的实施方式中,确定定时参量的方法,包括:
基于所述参数计算得到所述定时参量。
在一个示例性的实施方式中,确定定时参量的方法,包括:基于所述参数查表得到所述定时参量。
在一个示例性的实施方式中,所述确定定时参量的方法包括:
基于所述频率范围确定定时参量相关参数和/或定时提前相关参数;基于所述定时参量相关参数和/或所述定时提前相关参数确定定时参量。
所述频率范围通过确定如下参数中的至少之一确定定时参量:
所述定时参量索引、所述定时参量索引偏移、所述定时参量范围、所述定时参量颗粒度、所述定时提前量、所述定时提前量颗粒度、所述定时提前偏移和所述基准偏移。
在一个示例性的实施方式中,所述确定定时参量的方法,包括:
基于所述子载波间隔确定定时参量相关参数和/或定时提前相关参数;基于所述定时参量相关参数和/或所述定时提前相关参数确定定时参量。
所述子载波间隔通过确定如下参数中的至少之一确定定时参量:
所述定时参量索引、所述定时参量索引偏移、所述定时参量范围、所述定时参量颗粒度、所述定时提前量、所述定时提前量颗粒度、所述定时提前偏移和所述基准偏移。
在一个示例性的实施方式中,所述子载波间隔由配置的方式或默认的方式进行确定。
在一个示例性的实施方式中,基于如下方式中的至少之一确定所述子载波间隔:
配置子载波间隔;配置部分带宽标识,所述部分宽带标识对应的部分带宽的子载波间隔;配置载波标识,所述载波标识对应的载波的子载波间隔。
基于如下方式中的至少之一确定所述子载波间隔:
配置子载波间隔;配置下行部分带宽标识或上行部分带宽标识,所述部分宽带标识对应的部分带宽的子载波间隔;配置下行载波标识或上行载波标识,所述载波标识对应的载波的子载波间隔。
在一个示例性的实施方式中,基于如下方式中的至少之一确定所述子载波间隔:
定时提前量颗粒度对应的子载波间隔;定时参量索引对应信令所在的部分带宽的子载波间隔;部分带宽的子载波间隔中最小或最大的子载波间隔;参考部分带宽的子载波间隔。
可以基于如下方式中的至少之一确定所述子载波间隔:
定时提前量颗粒度对应的子载波间隔;定时提前命令对应定时提前量颗粒度对应的子载波间隔;定时参量索引对应信令所在的下行部分带宽的子载波间隔;定时参量索引对应信令所在的下行载波的子载波间隔;其中,定时参量索引对应信令为携带定时参量索引的信令;一个或多个配置的下行部分带宽的子载波间隔中最小或最大的子载波间隔;一个或多个激活的下行部分带宽的子载波间隔中最小或最大的子载波间隔;一个或多个配置的下行载波的子载波间隔中最小或最大的子载波间隔;一个或多个激活的下行载波的子载波间隔中最小或最大的子载波间隔;一个或多个配置的下行部分带宽标识中最小或最大标识对应的下行部分带宽的子载波间隔;一个或多个激活的下行部分带宽标识中最小或最大标识对应的下行部分带宽的子载波间隔;一个或多个配置的下行载波标识中最小或最大标识对应的下行载波的子载波间隔;一个或多个激活的下行载波标识中最小或最大标识对应的下行载波的子载波间隔;默认参考下行部分带宽的子载波间隔;默认参考下行载波的子载波间隔;一个或多个配置的上行部分带宽的子载波间隔中最小或最大的子载波间隔;一个或多个激活的上行部分带宽的子载波间隔中最小或最大的子载波间隔;一个或多个配置的上行载波的子载波间隔中最小或最大的子载波间隔;一个或多个激活的上行载波的子载波间隔中最小或最大的子载波间隔;一个或多个配置的上行部分带宽标识中最小或最大标识对应的上行部分带宽的子载波间隔;一个或多个激活的上行部分带宽标识中最小或最大标识对应的上行部分带宽的子载波间隔;一个或多个配置的上行载波标识中最小或最大标识对应的上行载波的子载波间隔;一个或多个激活的上行载波标识中最小或最大标识对应的上行载波的子载波间隔;默认参考上行部分带宽的子载波间隔;默认参考上行载波的子载波间隔;集中单元半静态配置分布单元资源对应的参考子载波间隔。
在一个示例性的实施方式中,基于如下方式中的至少之一确定所述频率范围:
默认参考下行部分带宽所在的频率范围;默认参考下行载波所在的频率范围;默认参考上行部分带宽所在的频率范围;默认参考上行载波所在的频率范围。
在一个示例性的实施方式中,如果确定的子载波间隔对应的频率范围不同,确定所述频率范围为第一频率范围或者第二频率范围。
在一个示例性的实施方式中,所述定时提前量颗粒度对应的子载波间隔为一个或多个激活的上行部分带宽的子载波间隔中最大子载波间隔。
在一个示例性的实施方式中,所述定时提前量颗粒度对应的子载波间隔为 预定义的或配置的子载波间隔。
在一个示例性的实施方式中,在非补充上行链路或补充上行链路对应的上行部分带宽的子载波间隔小于所述定时提前量颗粒度对应的子载波间隔的情况下,保持所述非补充上行链路或所述补充上行链路对应的上行部分带宽的子载波间隔对应的定时提前量颗粒度不变。
在非补充上行链路或补充上行链路对应的上行部分带宽的子载波间隔小于所述定时提前量颗粒度对应的子载波间隔的情况下,不对所述非补充上行链路或所述补充上行链路对应的上行部分带宽的子载波间隔对应的定时提前量颗粒度进行整数倍运算。
在一个示例性的实施方式中,在上行部分带宽的子载波间隔小于所述定时提前量颗粒度对应的子载波间隔的情况下,保持所述上行部分带宽的子载波间隔对应的定时提前量颗粒度不变。
在上行部分带宽的子载波间隔小于所述定时提前量颗粒度对应的子载波间隔的情况下,不对所述上行部分带宽的子载波间隔对应的定时提前量颗粒度进行整数倍运算。
在一个示例性的实施方式中,在上行部分带宽的子载波间隔小于所述定时提前量颗粒度对应的子载波间隔的情况下,对所述所述上行部分带宽的子载波间隔对应的定时提前量颗粒度进行整数倍运算。
在一个示例性的实施方式中,在上行部分带宽的子载波间隔小于所述定时提前量颗粒度对应的子载波间隔的情况下,基于预定义方式或配置方式确定是否对所述上行部分带宽的子载波间隔对应的定时提前量颗粒度进行整数倍运算。
在一个示例性的实施方式中,在上行部分带宽的子载波间隔小于所述定时提前量颗粒度对应的子载波间隔情况下,基于反馈方式确定是否对所述上行部分带宽的子载波间隔对应的定时提前量颗粒度进行整数倍运算。
在一个示例性的实施方式中,在存在非补充上行链路和补充上行链路的情况下,定时参量由如下方式中的至少之一确定:
配置所述定时参量基于非补充上行链路的上行接收测量;配置所述定时参量基于补充上行链路的上行接收测量;默认所述定时参量基于非补充上行链路的上行接收测量;默认所述定时参量基于补充上行链路的上行接收测量;默认所述定时参量基于最新或最后时刻的上行接收测量,其中,最新或最后时刻的上行接收基于非补充上行链路和补充上行链路中最新或最后时刻的上行接收确定。
在本申请实施例中,对各个符号进行了定义,各个符号的定义可以参考如 下:
T c表示时间单元,T c=1/(Δf max·N f),Δf max=480·10 3Hz,N f=4096;N TA表示定时提前量,是指节点侧上行发射相对于节点侧下行接收的时间提前量;N TA,offset表示定时提前偏移,包括0·T c、13792·T c、25600·T c、39936·T c;T delta表示定时参量;T D表示定时参量索引;T D,offset表示定时参量索引偏移;L表示定时参量索引的范围下界,L是整数;U表示定时参量索引的范围上界,U是整数;m表示定时参量索引的范围下界偏移,m是整数;n表示定时参量索引的范围上界偏移,n是整数;O B表示定时参量信令开销;N B,offset表示基准偏移;N G表示定时参量颗粒度;Δf表示子载波间隔;μ表示子载波间隔索引,Δf=2 μ·15kHz;FR1表示频率范围1(Frequency Range1),范围为410MHz–7125MHz;FR2表示频率范围2(Frequency Range2),范围为24250MHz–52600MHz。
在一个示例性的实施方式中,基于如下公式和参数确定计算定时参量T delta
T delta=f(-N TA,offset/2+N B,offset+(T D+T D,offset)·N G)·T c,或,T delta=f(N B,offset+(T D+T D,offset)·N G)·T c,或,T delta=f(-N TA,offset/2+(T D+T D,offset)·N G)·T c,或,T delta=f((T D+T D,offset)·N G)·T c,或,T delta=f(-N TA,offset/2+N B,offset+T D·N G)·T c,或,T delta=f(N B,offset+T D·N G)·T c,或,T delta=f(-N TA,offset/2+T D·N G)·T c,或,T delta=f(T D·N G)·T c
上述函数f(x)具有如下特性:
函数形式1:f(x)=x,或,函数形式2:
Figure PCTCN2020134403-appb-000001
表示向下取整,或,函数形式3:
Figure PCTCN2020134403-appb-000002
表示向上取整。
在一个示例性的实施方式中,区分频率范围(FR),不同FR对应不同基准偏移。
对于FR1,例如T D总范围可以为{0,1,2,...,1199}。
对于μ为0,即Δf为15kHz,N B,offset为-70528,T D,offset为0,N G为64T c,T D的范围可以为{0,1,2,...,1199+n},其中,n可以为0。
对于μ为1,即Δf为30kHz,N B,offset为-70528,T D,offset为550,N G为64T c,T D范围可以为{0,1,2,...,647+n},n可以为0。
对于μ为2,即Δf为60kHz,N B,offset为-70528,T D,offset为826,N G为64T c,T D的范围可以为{0,1,2,...,370+n},n可以为0。
Figure PCTCN2020134403-appb-000003
或,
Figure PCTCN2020134403-appb-000004
或,
Figure PCTCN2020134403-appb-000005
对于FR2,例如T D总范围可以为{0,1,2,...,1199}。
对于μ为2,即Δf为60kHz,N B,offset为-17664,T D,offset为0,N G为32T c,T D的范围可以为{0,1,2,...,740+n},其中,n可以为0。
对于μ为3,即Δf为120kHz,N B,offset为-17664,T D,offset为277,N G为32T c,T D的范围可以为{0,1,2,...,463+n},n可以为0。
Figure PCTCN2020134403-appb-000006
或,
Figure PCTCN2020134403-appb-000007
或,
Figure PCTCN2020134403-appb-000008
当配置的T D对应的实际定时参量索引值超过T D范围的下界或上界时,使用T D范围下界或上界计算T delta,或认为是错误的配置,忽略此配置。
在一个示例性的实施方式中,可以区分FR,不同FR对应相同基准偏移。
对于FR1,例如,T D总范围可以为{0,1,2,...,1199}。
对于μ为0,即Δf为15kHz,N B,offset为-70528,T D,offset为0,N G为64T c,T D的范围可以为{0,1,2,...,1199+n},n可以为0。
对于μ为1,即Δf为30kHz,N B,offset为-70528,T D,offset为550,N G为64T c,T D范围可以为{0,1,2,...,647+n},n可以为0。
对于μ为2,即Δf为60kHz,N B,offset为-70528,T D,offset为826,N G为64T c,T D的范围为{0,1,2,...,370+n},n可以为0。
Figure PCTCN2020134403-appb-000009
或,
Figure PCTCN2020134403-appb-000010
或,
Figure PCTCN2020134403-appb-000011
对于FR2,例如T D的总范围可以为{0,1,2,...,1199}。
对于μ为2,即Δf为60kHz,N B,offset为-70528,T D,offset为1652,N G为32T c,T D的范围可以为{0,1,2,...,740+n},n可以为0。
对于μ为3,即Δf为120kHz,N B,offset为-70528,T D,offset为1929,N G为32T c,T D的范围为{0,1,2,...,463+n},n可以为0。
Figure PCTCN2020134403-appb-000012
或,
Figure PCTCN2020134403-appb-000013
或,
Figure PCTCN2020134403-appb-000014
当配置的T D对应的实际定时参量索引值超过T D范围下界或上界时,使用T D范围下界或上界计算T delta,或认为是错误的配置,忽略此配置。
在一个示例性的实施方式中,可以区分FR,不同子载波间隔对应不同基准偏移。
对于FR1,例如T D的总范围可以为{0,1,2,...,1199}。
对于μ为0,即Δf为15kHz,N B,offset为-70528,T D,offset为0,N G为64T c,T D的范围可以为{0,1,2,...,1199+n},n可以为0。
对于μ为1,即Δf为30kHz,N B,offset为-35328,T D,offset为0,N G为64T c,T D的范围为{0,1,2,...,647+n},n可以为0。
对于μ为2,即Δf为60kHz,N B,offset为-17664,T D,offset为0,N G为64T c,T D范围为{0,1,2,...,370+n},n可以为0。
Figure PCTCN2020134403-appb-000015
或,
Figure PCTCN2020134403-appb-000016
或,
Figure PCTCN2020134403-appb-000017
对于FR2,例如T D总范围可以为{0,1,2,...,1199}。
对于μ为2,即Δf为60kHz,N B,offset为-17664,T D,offset为0,N G为32T c,T D的范围可以为{0,1,2,...,740+n},n可以为0。
对于μ为3,即Δf为120kHz,N B,offset为-8816,T D,offset为0,N G为32T c,T D范围可以为{0,1,2,...,464+n},n可以为0。
Figure PCTCN2020134403-appb-000018
或,
Figure PCTCN2020134403-appb-000019
或,
Figure PCTCN2020134403-appb-000020
当配置的T D对应的实际定时参量索引值超过T D范围的下界或上界时,使用T D范围的下界或上界计算T delta,或认为是错误的配置,忽略此配置。
在一个示例性的实施方式中,可以区分FR,定时参量从上界向下界映射。定时参量从上界向下界映射和定时参量从下界向上界映射(上述实施例)同理,这里不再逐一累述。
对于FR1,例如T D总范围可以为{0,1,2,...,1199}。
对于μ为0,即Δf为15kHz,N B,offset为6256,T D,offset为0,N G为64T c,T D的范围可以为{0,1,2,...,1199+n},n可以为0。
对于μ为1,即Δf为30kHz,N B,offset为6128,T D,offset为0,N G为64T c,T D范围可以为{0,1,2,...,647+n},n可以为0。
对于μ为2,即Δf为60kHz,N B,offset为6032,T D,offset为0,N G为64T c,T D的范围为{0,1,2,...,370+n},n可以为0。
Figure PCTCN2020134403-appb-000021
或,
Figure PCTCN2020134403-appb-000022
或,
Figure PCTCN2020134403-appb-000023
对于FR2,例如T D的总范围可以为{0,1,2,...,1199}。
对于μ为2,即Δf为60kHz,N B,offset为6032,T D,offset为0,N G为32T c,T D的范围可以为{0,1,2,...,740+n},n可以为0。
对于μ为3,即Δf为120kHz,N B,offset为6032,T D,offset为0,N G为32T c,T D的范围可以为{0,1,2,...,464+n},n可以为0。
Figure PCTCN2020134403-appb-000024
或,
Figure PCTCN2020134403-appb-000025
或,
Figure PCTCN2020134403-appb-000026
当配置的T D对应的实际索引值超过T D范围的下界或上界时,使用T D范围的下界或上界计算T delta,或认为是错误的配置,忽略此配置。
在一个示例性的实施方式中,可以不区分FR,不同子载波间隔对应不同基准偏移。
例如T D的总范围可以为{0,1,2,...,1199}。
对于μ为0,即Δf为15kHz,N B,offset为-70528,T D,offset为0,N G为64T c,T D的范围可以为{0,1,2,...,1199+n},n可以为0。
对于μ为1,即Δf为30kHz,N B,offset为-70528,T D,offset为550,N G为64T c,T D的范围可以为{0,1,2,...,647+n},n可以为0。
对于μ为2,即Δf为60kHz,N B,offset为-17664,T D,offset为0,N G为32T c,T D的范围可以为{0,1,2,...,740+n},n可以为0。
对于μ为3,即Δf为120kHz,N B,offset为-17664,T D,offset为277,N G为32T c,T D的范围可以为{0,1,2,...,463+n},n可以为0。
Figure PCTCN2020134403-appb-000027
或,
Figure PCTCN2020134403-appb-000028
或,
Figure PCTCN2020134403-appb-000029
当配置的T D对应的实际索引值超过T D范围的下界或上界时,使用T D范围的下界或上界计算T delta,或认为是错误的配置,忽略此配置。
在一个示例性的实施方式中,可以不区分FR,不同子载波间隔对应相同基准偏移。
例如T D的总范围可以为{0,1,2,...,1199}。
对于μ为0,即Δf为15kHz,N B,offset为-70528,T D,offset为0,N G为64T c,T D的范围可以为{0,1,2,...,1199+n},n可以为0。
对于μ为1,即Δf为30kHz,N B,offset为-70528,T D,offset为550,N G为64T c,T D的范围可以为{0,1,2,...,647+n},n可以为0。
对于μ为2,即Δf为60kHz,N B,offset为-70528,T D,offset为1652,N G为32T c,T D的范围可以为{0,1,2,...,740+n},n可以为0。
对于μ为3,即Δf为120kHz,N B,offset为-70528,T D,offset为1929,N G为32T c,T D的范围可以为{0,1,2,...,463+n},n可以为0。
Figure PCTCN2020134403-appb-000030
或,
Figure PCTCN2020134403-appb-000031
或,
Figure PCTCN2020134403-appb-000032
当配置的T D对应的实际定时参量索引值超过T D范围的下界或上界时,使用T D范围的下界或上界计算T delta,或认为是错误的配置,忽略此配置。
在一个示例性的实施方式中,可以不区分FR,不同子载波间隔对应不同基准偏移。
例如T D的总范围可以为{0,1,2,...,1199}。
对于μ为0,即Δf为15kHz,N B,offset为-70528,T D,offset为0,N G为64T c,T D的范围可以为{0,1,2,...,1199+n},n可以为0。
对于μ为1,即Δf为30kHz,N B,offset为-35328,T D,offset为0,N G为64T c,T D的范围可以为{0,1,2,...,647+n},n可以为0。
对于μ为2,即Δf为60kHz,N B,offset为-17664,T D,offset为0,N G为32T c,T D的范围可以为{0,1,2,...,740+n},n可以为0。
对于μ为3,即Δf为120kHz,N B,offset为-8816,T D,offset为0,N G为32T c,T D的范围可以为{0,1,2,...,464+n},n可以为0。
Figure PCTCN2020134403-appb-000033
或,
Figure PCTCN2020134403-appb-000034
或,
Figure PCTCN2020134403-appb-000035
当配置的T D对应的实际索引值超过T D范围的下界或上界时,使用T D范围的下界或上界计算T delta,或认为是错误的配置,忽略此配置。
在一个示例性的实施方式中,可以不区分FR,定时参量从上界向下界映射。定时参量从上界向下界映射和定时参量从下界向上界映射(上述实施例)同理,这里不再逐一累述。
例如T D的总范围可以为{0,1,2,...,1199}。
对于μ为0,即Δf为15kHz,N B,offset为6256,T D,offset为0,N G为64T c,T D的范围可以为{0,1,2,...,1199+n},n可以为0。
对于μ为1,即Δf为30kHz,N B,offset为6128,T D,offset为0,N G为64T c,T D的范围可以为{0,1,2,...,647+n},n可以为0。
对于μ为2,即Δf为60kHz,N B,offset为6032,T D,offset为0,N G为32T c,T D的范围可以为{0,1,2,...,740+n},n可以为0。
对于μ为3,即Δf为120kHz,N B,offset为6032,T D,offset为0,N G为32T c,T D的范围可以为{0,1,2,...,464+n},n可以为0。
Figure PCTCN2020134403-appb-000036
或,
Figure PCTCN2020134403-appb-000037
或,
Figure PCTCN2020134403-appb-000038
当配置的T D对应的实际定时参量索引值超过T D范围的下界或上界时,使用T D范围的下界或上界计算T delta,或认为是错误的配置,忽略此配置。
在一个示例性的实施方式中,可以区分FR,不区分子载波间隔,定时参量从下界向上界映射。
对于FR1,例如T D的总范围可以为{0,1,2,...,1199}。
N B,offset为-70528,T D,offset为0,N G为64T c,T D的范围可以为{0,1,2,...,1199+n},n可以为0。
T delta=(-N TA,offset/2-70528+T D·64)·T c
或,
Figure PCTCN2020134403-appb-000039
或,
T delta=|(-N TA,offset/2-70528+T D·64)/64|·64T c
对于FR2,例如T D的总范围可以为{0,1,2,...,1199}。
N B,offset为-17664,T D,offset为0,N G为32T c,T D的范围可以为{0,1,2,...,740+n},n可以为0。
T delta=(-N TA,offset/2-17664+T D·32)·T c
或,
Figure PCTCN2020134403-appb-000040
或,
T delta=|(-N TA,offset/2-17664+T D·32)/32|·32T c
当配置的T D对应的实际定时参量索引值超过T D范围的下界或上界时,使用T D范围的下界或上界计算T delta,或认为是错误的配置,忽略此配置。
在一个示例性的实施方式中,可以区分FR,不区分子载波间隔,定时参量从上界向下界映射。
对于FR1,例如T D的的总范围为{0,1,2,...,1199}。
N B,offset为6256,T D,offset为0,N G为64T c,T D的范围可以为{0,1,2,...,1199+n},n可以为0。
T delta=(-N TA,offset/2+6256-T D·64)·T c
或,
Figure PCTCN2020134403-appb-000041
或,
T delta=|(-N TA,offset/2+6256-T D·64)/64|·64T c
对于FR2,例如T D的总范围为{0,1,2,...,1199}。
N B,offset为6032,T D,offset为0,N G为32T c,T D的范围可以为{0,1,2,...,740+n},n可以为0。
T delta=(-N TA,offset/2+6032-T D·32)·T c
或,
Figure PCTCN2020134403-appb-000042
或,
T delta=|(-N TA,offset/2+6032-T D·32)/32|·32T c
当配置的T D对应的实际定时参量索引值超过T D范围的下界或上界时,使用T D范围的下界或上界计算T delta,或认为是错误的配置,忽略此配置。
在一个示例性的实施方式中,可以不区分FR,不区分子载波间隔,定时参量从下界向上界映射。
例如T D的总范围可以为{0,1,2,...,2399}。
N B,offset为-70528,T D,offset为0,N G为32T c,T D的范围为{0,1,2,...,2399+n},n为0。
T delta=(-N TA,offset/2-70528+T D·32)·T c
或,
Figure PCTCN2020134403-appb-000043
或,
T delta=|(-N TA,offset/2-70528+T D·32)/32|·32T c
当配置的T D对应的实际定时参量索引值超过T D范围的下界或上界时,使用T D范围的下界或上界计算T delta,或认为是错误的配置,忽略此配置。
在一个示例性的实施方式中,可以不区分FR,不区分子载波间隔,定时参量从上界向下界映射。
例如T D的总范围可以为{0,1,2,...,2399}。
N B,offset为6256,T D,offset为0,N G为32T c,T D的范围可以为{0,1,2,...,2399+n},n可以为0。
T delta=(-N TA,offset/2+6256-T D·32)·T c
或,
Figure PCTCN2020134403-appb-000044
或,
T delta=|(-N TA,offset/2+6256-T D·32)/32|·32T c
当配置的T D对应的实际定时参量索引值超过T D范围的下界或上界时,使用T D范围的下界或上界计算T delta,或认为是错误的配置,忽略此配置。
在一个实施例的实施方式中,可以区分FR,两个定时参量范围且有范围重叠,不区分子载波间隔,定时参量从下界向上界映射。
对于FR1,例如T D的总范围可以为{0,1,2,...,1573}。
N B,offset为-70528,T D,offset为0,N G为64T c,T D的范围可以为{0,1,2,...,825+n},n可以为0。
T delta=(-N TA,offset/2-70528+T D·64)·T c
或,
Figure PCTCN2020134403-appb-000045
或,
T delta=|(-N TA,offset/2-70528+T D·64)/64|·64T c
对于FR1、FR2,例如T D的总范围可以为{0,1,2,...,1573}。
N B,offset为-44096,T D,offset为0,N G为32T c,T D的范围可以为{826,827,828,...,1573+n},n可以为0。
T delta=(-N TA,offset/2-44096+T D·32)·T c
或,
Figure PCTCN2020134403-appb-000046
或,
T delta=|(-N TA,offset/2-44096+T D·32)/32|·32T c
当配置的T D对应的实际定时参量索引值超过T D范围的下界或上界时,使用T D范围的下界或上界计算T delta,或认为是错误的配置,忽略此配置。
在一个示例性的实施方式中,可以区分FR,两个定时参量范围且有范围重叠,不区分子载波间隔,定时参量从上界向下界映射。
对于FR1、FR2,例如T D的总范围可以为{0,1,2,...,1574}。
N B,offset为6256,T D,offset为0,N G为32T c,T D的范围可以为{0,1,2,...,747+n},n为0。
T delta=(-N TA,offset/2+6256-T D·32)·T c
或,
Figure PCTCN2020134403-appb-000047
或,
T delta=|(-N TA,offset/2+6256-T D·32)/32|·32T c
对于FR1,例如T D的总范围可以为{0,1,2,...,1574}。
N B,offset为30208,T D,offset为0,N G为64T c,T D的范围可以为{748,749,750,...,1574+n},n可以为0。
T delta=(-N TA,offset/2+30208-T D·64)·T c
或,
Figure PCTCN2020134403-appb-000048
或,
T delta=|(-N TA,offset/2+30208-T D·64)/64|·64T c
当配置的T D对应的实际定时参量索引值超过T D范围的下界或上界时,使用T D范围的下界或上界计算T delta,或认为是错误的配置,忽略此配置。
在一个示例性的实施方式中,可以区分FR,三个定时参量范围且有范围重叠,不区分子载波间隔,定时参量从下界向上界映射。
对于FR1,例如T D的总范围可以为{0,1,2,...,1570}。
N B,offset为-70528,T D,offset为0,N G为64T c,T D的范围可以为{0,1,2,...,825+n},n可以为0。
T delta=(-N TA,offset/2-70528+T D·64)·T c
或,
Figure PCTCN2020134403-appb-000049
或,
T delta=|(-N TA,offset/2-70528+T D·64)/64|·64T c
对于FR1、FR2,例如T D的总范围可以为{0,1,2,...,1570}。
N B,offset为-44096,T D,offset为0,N G为32T c,T D的范围可以为{826,827,828,...,1566+n},n可以为0。
T delta=(-N TA,offset/2-44096+T D·32)·T c
或,
Figure PCTCN2020134403-appb-000050
或,
T delta=|(-N TA,offset/2-44096+T D·32)/32|·32T c
对于FR1,例如T D的总范围可以为{0,1,2,...,1570}。
N B,offset为-94256,T D,offset为0,N G为64T c,T D的范围可以为{1567,1568,1569,1570+n},n为0。
T delta=(-N TA,offset/2-94256+T D·64)·T c
或,
Figure PCTCN2020134403-appb-000051
或,
T delta=|(-N TA,offset/2-94256+T D·64)/64|·64T c
当配置的T D对应的实际定时参量索引值超过T D范围的下界或上界时,使用T D范围的下界或上界计算T delta,或认为是错误的配置,忽略此配置。
在一个示例性的实施方式中,可以区分FR,三个定时参量范围且有范围重叠,不区分子载波间隔,定时参量从上界向下界映射。
对于FR1,例如T D的总范围可以为{0,1,2,...,1571}。
N B,offset为6256,T D,offset为0,N G为64T c,T D的范围可以为{0,1,2,3+n},n可以为0。
T delta=(-N TA,offset/2+6256-T D·64)·T c
或,
Figure PCTCN2020134403-appb-000052
或,
T delta=|(-N TA,offset/2+6256-T D·64)/64|·64T c
当配置的T D对应的实际定时参量索引值超过T D范围的下界或上界时,使用T D范围的下界或上界计算T delta,或认为是错误的配置,忽略此配置。
对于FR1、FR2,例如T D的总范围可以为{0,1,2,...,1571}。
N B,offset为6160,T D,offset为0,N G为32T c,T D的范围可以为{4,5,6,...,744+n},n可以为0。
T delta=(-N TA,offset/2+6160-T D·32)·T c
或,
Figure PCTCN2020134403-appb-000053
或,
T delta=|(-N TA,offset/2+6160-T D·32)/32|·32T c
对于FR1,例如T D的总范围可以为{0,1,2,...,1571}。
N B,offset为30016,T D,offset为0,N G为64T c,T D的范围可以为{745,746,747,...,1571+n},n为0。
T delta=(-N TA,offset/2+30016-T D·64)·T c
或,
Figure PCTCN2020134403-appb-000054
或,
T delta=|(-N TA,offset/2+30016-T D·64)/64|·64T c
在一个示例性的实施方式中,可以基于参数查表得到定时参量T delta
在一个示例性的实施方式中,可以定时参量从下界向上界映射,索引计算网格位置,从而得到定时参量T delta
表1是定时参量的部分内容表,如表1所示,对于μ为0,即Δf为15kHz,N B,offset为-70528,N G为64T c,T D的范围可以为{0,1,2,...,1199+n},n可以为0。其中
Figure PCTCN2020134403-appb-000055
j=mod(T D,k),
Figure PCTCN2020134403-appb-000056
例如T D=12,k=10,则
Figure PCTCN2020134403-appb-000057
j=mod(12,10)=2,即T D=12表示表格中i=1行,j=2列对应的网格,网格内的值表示对应的T delta,本例子中T delta=-N TA,offset/2-69760。
其中“R”表示网格内的值是预留的,或表示不存在对应的网格。
表1
Figure PCTCN2020134403-appb-000058
Figure PCTCN2020134403-appb-000059
Figure PCTCN2020134403-appb-000060
在一个示例性的实施方式中,定时参量从上界向下界映射,索引计算网格位置,从而得到定时参量T delta
表2是定时参量的部分内容表,如表2所示,对于μ为3,即Δf为120kHz,N B,offset为6032,N G为32T c,T D的范围可以为{0,1,2,...,464+n},n可以为0。其中
Figure PCTCN2020134403-appb-000061
j=mod(T D,k),
Figure PCTCN2020134403-appb-000062
例如T D=15,k=10,则
Figure PCTCN2020134403-appb-000063
j=mod(15,10)=5,即T D=15表示表格中i=1行,j=5列对应的网格,网格内的值表示对应的T delta,本例子中T delta=-N TA,offset/2+5552。
其中“R”表示网格内的值是预留的,或表示不存在对应的网格。
表2
Figure PCTCN2020134403-appb-000064
Figure PCTCN2020134403-appb-000065
Figure PCTCN2020134403-appb-000066
Figure PCTCN2020134403-appb-000067
在一个示例性的实施方式中,定时参量从下界向上界映射,索引查出网格位置,从而得到定时参量T delta
表3为定时参量部分内容表,如表3所示,对于μ为0,即Δf为15kHz,N B,offset为-70528,N G为64T c,T D的范围可以为{0,1,2,...,1199+n},n可以为0。
例如T D=12表示表格中10-19索引区间内索引为12对应的网格,网格内的值表示对应的T delta,本例子中T delta=-N TA,offset/2-69760。
其中“R”表示网格内的值是预留的,或表示不存在对应的网格。
表3
Figure PCTCN2020134403-appb-000068
Figure PCTCN2020134403-appb-000069
Figure PCTCN2020134403-appb-000070
在一个示例性的实施方式中,定时参量从上界向下界映射,索引查表网格位置。
表4是定时参量的部分内容表,如表4所示,对于μ为3,即Δf为120kHz,N B,offset为6032,N G为32T c,T D的范围可以为{0,1,2,...,464+n},n可以为0。
例如T D=15表示表格中10-19索引区间内索引为15对应的网格,网格内的值表示对应的T delta,本例子中T delta=-N TA,offset/2+5552。
其中“R”表示网格内的值是预留的,或表示不存在对应的网格。
表4
Figure PCTCN2020134403-appb-000071
Figure PCTCN2020134403-appb-000072
Figure PCTCN2020134403-appb-000073
在一个示例性的实施方式中,可以通过配置的方式确定子载波间隔。
例如,直接配置子载波间隔,配置的子载波间隔作为确定的子载波间隔, 或,例如,间接配置子载波间隔,配置上行链路部分宽带标识(Uplink Bandwidth Part Identifier,UL BWPID)为“01”,则“01”对应的UL BWP的子载波间隔作为确定的子载波间隔,或,例如,间接配置子载波间隔,配置下行链路(Downlink,DL)载波(carrier)ID为“00001”,则“00001”对应的DL carrier的子载波间隔作为确定的子载波间隔。
使用上述确定的子载波间隔进行定时参量的计算或查表。
在一个示例性的实施方式中,可以通过默认的方式确定子载波间隔。
例如,定时参量索引对应信令承载在DL BWP ID为“01”的DL BWP上,“01”对应的DL BWP的子载波间隔作为确定的子载波间隔,或,例如,定时参量索引对应信令承载在DL carrier ID为“00001”的DL carrier上,“00001”对应的DL carrier的子载波间隔作为确定的子载波间隔,或,例如,存在2个激活的UL BWP ID为“01”和UL BWP ID为“10”,这两个UL BWP可以属于相同UL carrier,也可以属于不同UL carrier,“01”对应的UL BWP的子载波间隔和“10”对应的UL BWP的子载波间隔中最小值作为确定的子载波间隔,或,例如,存在2个激活的UL carrier ID为“00001”和UL carrier ID为“00010”,“00001”对应的UL carrier的子载波间隔和“00010”对应的UL carrier的子载波间隔中最小值作为确定的子载波间隔。
使用上述确定的子载波间隔进行定时参量的计算或查表。
在一个示例性的实施方式中,可以通过默认的方式确定频率范围。
如果确定的子载波间隔对应的频率范围不同,则确定频率范围为频率范围1或频率范围2。
例如,在IAB node MT或IAB node DU侧,如果有多个激活的UL BWP,且这些BWP具有相同的子载波间隔(例如为60kHz),且该子载波间隔是所有激活的UL BWP的子载波间隔的最大或者最小值,但这些BWP对应多个不同的频率范围,则确定频率范围为频率范围1或频率范围2。
所述多个激活的UL BWP可以属于同一个小区,如发射定时参量索引对应信令的服务小区,也可以属于不同的小区,例如一个TAG中的多个小区。
使用上述确定的子载波间隔、确定的频率范围进行定时参量的计算或查表。
在一个示例性的实施方式中,[L Δf,U Δf]表示除-N TA,offset/2分量之外的定时参量范围。
其中,L表示定时参量范围的下界,U表示定时参量范围的上界。L Δf表示Δf对应的除-N TA,offset/2分量之外的定时参量范围的下界,U Δf表示Δf对应的除-N TA,offset/2分量之外的定时参量范围的上界。
表5是定时参量范围表,如表5所示,L 15和U 15分别表示Δf为15kHz时定时参量除-N TA,offset/2分量之外的下界和上界,L 30和U 30分别表示Δf为30kHz时定时参量除-N TA,offset/2分量之外的下界和上界;L 60和U 60分别表示Δf为60kHz时定时参量除-N TA,offset/2分量之外的下界和上界;L 120和U 120分别表示Δf为120kHz时定时参量除-N TA,offset/2分量之外的下界和上界。
L 15、L 30、L 60、L 120其值可以是正值、0、负值;L 15、L 30、L 60、L 120其值可以相等;U 15、U 30、U 60、U 120其值可以是正值、0、负值;U 15、U 30、U 60、U 120其值可以相等;L 15、U 15绝对值可以相等;L 30、U 30绝对值可以相等;L 60、U 60绝对值可以相等;L 120、U 120绝对值可以相等;N B,offset其值大于等于L Δf;N B,offset其值小于等于U Δf
表5
Δf[kHz] Min T delta[Tc] Max T delta[Tc]
15 -N TA,offset/2+L 15 -N TA,offset/2+U 15
30 -N TA,offset/2+L 30 -N TA,offset/2+U 30
60 -N TA,offset/2+L 60 -N TA,offset/2+U 60
120 -N TA,offset/2+L 120 -N TA,offset/2+U 120
在一个示例性的实施方式中,
Figure PCTCN2020134403-appb-000074
表示与-N TA,offset/2分量无关的定时参量范围。
Figure PCTCN2020134403-appb-000075
表示定时参量范围的下界,
Figure PCTCN2020134403-appb-000076
表示定时参量范围的上界。
Figure PCTCN2020134403-appb-000077
表示Δf对应的定时参量范围的下界,
Figure PCTCN2020134403-appb-000078
表示Δf对应的定时参量范围的上界。
表6是定时参量范围表,如表6所示,
Figure PCTCN2020134403-appb-000079
Figure PCTCN2020134403-appb-000080
分别表示Δf为15kHz时定时参量的下界和上界,
Figure PCTCN2020134403-appb-000081
Figure PCTCN2020134403-appb-000082
分别表示Δf为30kHz时定时参量的下界和上界;
Figure PCTCN2020134403-appb-000083
Figure PCTCN2020134403-appb-000084
分别表示Δf为60kHz时定时参量的下界和上界;
Figure PCTCN2020134403-appb-000085
Figure PCTCN2020134403-appb-000086
分别表示Δf为120kHz时定时参量的下界和上界。
其中,
Figure PCTCN2020134403-appb-000087
其值可以是正值、0、负值;
Figure PCTCN2020134403-appb-000088
其值可以相等;
Figure PCTCN2020134403-appb-000089
其值可以是正值、0、负值;
Figure PCTCN2020134403-appb-000090
Figure PCTCN2020134403-appb-000091
其值可以相等;
Figure PCTCN2020134403-appb-000092
绝对值可以相等;
Figure PCTCN2020134403-appb-000093
绝对值可以相等;
Figure PCTCN2020134403-appb-000094
Figure PCTCN2020134403-appb-000095
绝对值可以相等;
Figure PCTCN2020134403-appb-000096
绝对值可以相等;N B,offset其值大于等于
Figure PCTCN2020134403-appb-000097
N B,offset其值小于等于
Figure PCTCN2020134403-appb-000098
其值等于-N TA,offset/2+LΔf;
Figure PCTCN2020134403-appb-000099
其值等于-N TA,offset/2+U Δf
表6
Figure PCTCN2020134403-appb-000100
在一个示例性的实施方式中,不同子载波间隔对应不同定时参量索引信令开销。
每个Δf对应的T D的信令开销O B=log 2((U Δf-L Δf)/N G),例如,Δf为15kHz的L 15=-128T c,U 15=128T c,N G=64T c;Δf为30kHz的L 30=-64T c,U 30=64T c,N G=64T c;则,Δf为15kHz对应的T D的信令开销O B=log 2((U Δf-L Δf)/N G)=log 2((128-(-128))/64)=2比特;Δf为30kHz对应的T D的信令开销O B=log 2((U Δf-L Δf)/N G)=log 2((64-(-64))/64)=1比特。
在一个示例性的实施方式中,不同子载波间隔对应相同定时参量索引信令开销。
每个Δf对应的T D的信令开销O B=max(log 2((U Δf-L Δf)/N G)),其中,max表示取最大值,例如,Δf为15kHz的L 15=-128T c,U 15=128T c,N G’=64T c;Δf为30kHz的L 30=-64T c,U 30=64T c,N G=64T c;则,Δf为15kHz、30kHz对应的T D的信令开销O B=max(log 2((U Δf-L Δf)/N G))=max(log 2((128-(-128))/64),log 2((64-(-64))/64))=max(2,1)=2比特。
在一个示例性的实施方式中,可以是统一的定时参量索引信令开销。
所有Δf对应的T D的信令开销O B=log 2((U Δf-L Δf)/N G),例如,L 15=L 30=L 60=L 120=0T c,U 15=U 30=U 60=U 120=65535·N G,N G=32T c;则,所有Δf对应的T D的信令开销O B=log 2((U Δf-L Δf)/N G)=log 2((65535·32-0)/32)=16比特。
在一个示例性的实施方式中,子载波间隔决定的定时提前量颗粒度为16·64T c/2 μ
15kHz可用的定时提前量是定时提前量颗粒度16·64T c的整数倍,如定时提前值的集合set_0为0·64T c、±16·64T c、±32·64T c、±48·64T c、±64·64T c......;30kHz可用的定时提前量是定时提前量颗粒度8·64T c整数倍,如定时提前值的集合set_1为0·64T c、±8·64T c、±16·64T c、±24·64T c、±32·64T c......;60kHz可用的定时提前量是定时提前量颗粒度4·64T c整数倍,如定时提前值的集合set_2为0·64T c、±4·64T c、±8·64T c、±12·64T c、±16·64T c......;120kHz可用的定时提前量是定时提前量颗粒度2·64T c整数倍,如定时提前值的集合set_3为0·64T c、±2·64T c、±4·64T c、±6·64T c、±8·64T c......。
在一个示例性的实施方式中,可以通过默认最大的子载波间隔。
例如,2个激活的上行部分带宽的子载波间隔分别为15kHz、60kHz,这两个子载波间隔也可以分别是补充上行链路部分带宽对应的子载波间隔和非补充上行链路部分带宽对应的子载波间隔。
对于父节点或子节点,以max(15,60)=60kHz作为统一的定时提前量颗粒度对应的子载波间隔,即此时统一的定时提前量颗粒度为4·64T c,可用的定时提前量是定时提前量颗粒度4·64T c整数倍,如0·64T c、±4·64T c、±8·64T c、±12·64T c、±16·64T c......。
在一个示例性的实施方式中,可以预定义的或配置的子载波间隔。
例如,对于父节点或子节点,预定义120kHz作为统一的定时提前量颗粒度对应的子载波间隔,即此时统一的定时提前量颗粒度为2·64T c,可用的定时提前量是定时提前量颗粒度2·64T c整数倍,如0·64T c、±2·64T c、±4·64T c、±6·64T c、±8·64T c......。
例如,父节点配置子节点、子节点被父节点配置120kHz作为统一的定时提前量颗粒度对应的子载波间隔,即此时统一的定时提前量颗粒度为2·64T c,可用的定时提前量是定时提前量颗粒度2·64T c整数倍,如0·64T c、±2·64T c、±4·64T c、±6·64T c、±8·64T c......。
在一个示例性的实施方式中,对定时提前量颗粒度不进行整数倍运算。
基于上述实施例,当节点处于子载波间隔为15kHz的上行部分带宽时,15kHz小于统一的定时提前量颗粒度对应的子载波间隔60kHz,例如一特定时刻 的定时提前量是定时提前量颗粒度4·64T c的3倍,即定时提前量为12·64T c
节点不对12·64T c就定时提前值的集合set_0内的定时提前值就近取定时提前量颗粒度16·64T c的整数倍,即节点不对12·64T c向下或向上调整到接近定时提前值的集合set_0内的定时提前值为0·64T c、16·64T c,即节点仍然保持定时提前量为12·64T c
在一个示例性的实施方式中,对定时提前量颗粒度进行整数倍运算。
基于上述实施例,当节点处于子载波间隔为15kHz的上行部分带宽时,15kHz小于统一的定时提前量颗粒度对应的子载波间隔60kHz,例如一特定时刻的定时提前量是定时提前量颗粒度4·64T c的3倍,即定时提前量为12·64T c
节点对12·64T c就定时提前值的集合set_0内的定时提前值就近取定时提前量颗粒度16·64T c的整数倍,即节点对12·64T c向下或向上调整到接近定时提前值的集合set_0内的定时提前值为0·64T c、16·64T c,即节点把定时提前量为12·64T c更改到向下的0·64T c和向上的16·64T c
在一个示例性的实施方式中,预定义方式或配置方式确定是否对定时提前量颗粒度进行整数倍运算。
基于上述实施例,当节点处于子载波间隔为15kHz的上行部分带宽时,15kHz小于统一的定时提前量颗粒度对应的子载波间隔60kHz,例如一特定时刻的定时提前量是定时提前量颗粒度4·64T c的3倍,即定时提前量为12·64T c
例如,对于父节点或子节点,预定义对或不对12·64T c就定时提前值的集合set_0内的定时提前值就近取定时提前量颗粒度16·64T c的整数倍,即节点对或不对12·64T c向下或向上调整到接近定时提前值的集合set_0内的定时提前值为0·64T c、16·64T c,即节点仍然保持定时提前量为12·64T c
例如,父节点配置子节点、子节点被父节点配置对或不对12·64T c就定时提前值的集合set_0内的定时提前值就近取定时提前量颗粒度16·64T c的整数倍,即节点对或不对12·64T c向下或向上调整到接近定时提前值的集合set_0内的定时提前值为0·64T c、16·64T c,即节点仍然保持定时提前量为12·64T c
在一个示例性的实施方式中,通过反馈方式确定是否对定时提前量颗粒度进行整数倍运算。
基于上述实施例,当节点处于子载波间隔为15kHz的上行部分带宽时,15 kHz小于统一的定时提前量颗粒度对应的子载波间隔60kHz,例如一特定时刻的定时提前量是定时提前量颗粒度4·64T c的3倍,即定时提前量为12·64T c
例如,子节点反馈父节点、父节点接收子节点反馈对或不对12·64T c就定时提前值的集合set_0内的定时提前值就近取定时提前的颗粒度16·64T c的整数倍,即节点对或不对12·64T c向下或向上调整到接近定时提前值的集合set_0内的定时提前值为0·64T c、16·64T c,即节点仍然保持定时提前为12·64T c
在一个示例性的实施方式中,当存在非补充上行链路(Non Supplementary Uplink,称为Non-SUL或称为NUL或称为UL)和补充上行链路(Supplementary Uplink,称为SUL)时,或当存在非补充上行链路部分带宽(称为Non-SUL BWP或称为NUL BWP或称为UL BWP)和补充上行链路部分带宽(称为SUL BWP)时,定时参量由如下方式中的至少之一决定:
配置定时参量测量来自哪个链路;默认定时参量测量来自哪个固定链路;默认定时参量测量来自最新或最后时刻的链路。
配置定时参量测量来自哪个链路:
例如,父节点配置子节点、子节点被父节点配置定时参量基于UL接收Rx测量,即配置定时参量来自UL;例如,父节点配置子节点、子节点被父节点配置定时参量基于SUL Rx测量,即配置定时参量来自SUL。
默认定时参量测量来自哪个固定链路:
例如,对于父节点或子节点,默认定时参量基于UL Rx测量,即默认定时参量来自UL;例如,对于父节点或子节点,默认定时参量基于SUL Rx测量,即默认定时参量来自SUL。
默认定时参量测量来自最新或最后时刻的链路:
例如,对于父节点或子节点,默认定时参量基于最新或最后时刻的上行接收测量,即默认定时参量来自最新或最后时刻的上行接收,假设UL是t0时刻,SUL是t1时刻,t1时刻晚于t0时刻,则默认定时参量基于SUL Rx测量,即默认定时参量来自SUL。
本申请提供的技术方案,解决了定时参量索引确定实际定时参量的问题,通过本申请的技术方案可以确保在信令开销基础上支持任何定时参量索引到实际定时参量的映射,确保支持射频技术需求。无线移动通信系统中,无论是扩大网络覆盖、还是提高密集小区频谱效率,都需要部署更多的基站来保证,IAB不仅可以解决上述场景,还可以大幅降低运营商的资本投入和运营成本。
图2是本申请实施例提供的一种定时参量确定装置,所述装置包括:
确定模块210,被设置为基于如下参数中的至少之一确定定时参量:
定时参量相关参数、定时提前相关参数和物理资源的相关参数。
在一个示例性的实施方式中,所述定时参量相关参数包括如下至少之一:
定时参量索引、定时参量索引偏移、定时参量范围、定时参量颗粒度和基准偏移。
在一个示例性的实施方式中,所述定时提前相关参数包括如下至少之一:
定时提前量、定时提前量颗粒度和定时提前偏移。
在一个示例性的实施方式中,所述物理资源相关参数包括频率范围或子载波间隔。
在一个示例性的实施方式中,确定模块210,被设置为:
基于所述频率范围确定定时参量相关参数和/或定时提前相关参数;基于所述定时参量相关参数和/或所述定时提前相关参数确定定时参量。
在一个示例性的实施方式中,确定模块210,被设置为:
基于所述子载波间隔确定定时参量相关参数和/或定时提前相关参数;基于所述定时参量相关参数和/或所述定时提前相关参数确定定时参量。
在一个示例性的实施方式中,所述子载波间隔由配置的方式或默认的方式进行确定。
在一个示例性的实施方式中,基于如下方式中的至少之一确定所述子载波间隔:
配置子载波间隔;配置部分带宽标识,所述部分宽带标识对应的部分带宽的子载波间隔;配置载波标识,所述载波标识对应的载波的子载波间隔。
在一个示例性的实施方式中,基于如下方式中的至少之一确定所述子载波间隔:
定时提前量颗粒度对应的子载波间隔;定时参量索引对应信令所在的部分带宽的子载波间隔;部分带宽的子载波间隔中最小或最大的子载波间隔;参考部分带宽的子载波间隔。
在一个示例性的实施方式中,基于部分宽带或载波所在的频率范围确定所述频率范围。
在一个示例性的实施方式中,如果确定的子载波间隔对应的频率范围不同,确定所述频率范围为第一频率范围或者第二频率范围。
在一个示例性的实施方式中,所述定时提前量颗粒度对应的子载波间隔为一个或多个激活的上行部分带宽的子载波间隔中最大子载波间隔。
在一个示例性的实施方式中,所述定时提前量颗粒度对应的子载波间隔为预定义的或配置的子载波间隔。
在一个示例性的实施方式中,在非补充上行链路或补充上行链路对应的上行部分带宽的子载波间隔小于所述定时提前量颗粒度对应的子载波间隔的情况下,保持所述非补充上行链路或所述补充上行链路对应的上行部分带宽的子载波间隔对应的定时提前量颗粒度不变。
在一个示例性的实施方式中,在上行部分带宽的子载波间隔小于所述定时提前量颗粒度对应的子载波间隔的情况下,保持所述上行部分带宽的子载波间隔对应的定时提前量颗粒度不变。
在一个示例性的实施方式中,在上行部分带宽的子载波间隔小于所述定时提前量颗粒度对应的子载波间隔的情况下,对所述上行部分带宽的子载波间隔对应的定时提前量颗粒度进行整数倍运算。
在一个示例性的实施方式中,在上行部分带宽的子载波间隔小于所述定时提前量颗粒度对应的子载波间隔的情况下,基于预定义方式或配置方式确定是否对所述所述上行部分带宽的子载波间隔对应的定时提前量颗粒度进行整数倍运算。
在一个示例性的实施方式中,在上行部分带宽的子载波间隔小于所述定时提前量颗粒度对应的子载波间隔情况下,基于反馈方式确定是否对所述上行部分带宽的子载波间隔对应的定时提前量颗粒度进行整数倍运算。
在一个示例性的实施方式中,在存在非补充上行链路和补充上行链路的情况下,定时参量由如下方式确定:
默认所述定时参量基于最新或最后时刻的上行接收测量,其中,最新或最后时刻的上行接收基于非补充上行链路和补充上行链路中最新或最后时刻的上行接收确定。
上述装置执行本申请实施例提供的方法,具有执行方法对应的功能模块和技术效果。
本申请实施例还提供了一种设备,图3为本申请实施例提供的一种设备的 结构示意图,如图3所示,本申请提供的设备,包括一个或多个处理器121和存储器122;该设备中的处理器121可以是一个或多个,图3中以一个处理器121为例;存储器122用于存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器121执行,使得所述一个或多个处理器121实现如本申请实施例中所述的方法。
设备还包括:通信装置123、输入装置124和输出装置125。
设备中的处理器121、存储器122、通信装置123、输入装置124和输出装置125可以通过总线或其他方式连接,图3中以通过总线连接为例。
输入装置124可用于接收输入的数字或字符信息,以及产生与设备的用户设置以及功能控制有关的按键信号输入。输出装置125可包括显示屏等显示设备。
通信装置123可以包括接收器和发送器。通信装置123设置为根据处理器121的控制进行信息收发通信。
存储器122作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例所述定时参量确定方法对应的程序指令/模块(例如,定时参量确定装置中的确定模块)。存储器122可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器122可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器122可包括相对于处理器121远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中任一所述的方法。
实现本申请实施例中任一所述的定时参量方法时,所述方法包括:
基于如下参数中的至少之一确定定时参量:
定时参量相关参数、定时提前相关参数和物理资源的相关参数。
术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其 任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑判决的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (22)

  1. 一种定时参量确定方法,包括:
    基于如下参数中的至少之一确定定时参量:
    定时参量相关参数、定时提前相关参数和物理资源的相关参数。
  2. 根据权利要求1所述的方法,其中,所述定时参量相关参数包括如下至少之一:
    定时参量索引、定时参量索引偏移、定时参量范围、定时参量颗粒度和基准偏移。
  3. 根据权利要求1所述的方法,其中,所述定时提前相关参数包括如下至少之一:
    定时提前量、定时提前量颗粒度和定时提前偏移。
  4. 根据权利要求1所述的方法,其中,所述物理资源相关参数包括频率范围或子载波间隔。
  5. 根据权利要求4所述的方法,其中,所述确定定时参量,包括:
    基于所述频率范围确定定时参量相关参数和定时提前相关参数中的至少之一;
    基于确定的相关参数确定所述定时参量。
  6. 根据权利要求4所述的方法,其中,所述确定定时参量,包括:
    基于所述子载波间隔确定定时参量相关参数和定时提前相关参数中的至少之一;
    基于确定的相关参数确定所述定时参量。
  7. 根据权利要求4所述的方法,其中,所述子载波间隔由配置的方式或默认的方式进行确定。
  8. 根据权利要求7所述的方法,其中,基于如下方式中的至少之一确定所述子载波间隔:
    配置子载波间隔;
    配置部分带宽标识,所述部分宽带标识对应的部分带宽的子载波间隔;
    配置载波标识,所述载波标识对应的载波的子载波间隔。
  9. 根据权利要求7所述的方法,其中,基于如下方式中的至少之一确定所述子载波间隔:
    定时提前量颗粒度对应的子载波间隔;
    定时参量索引对应信令所在的部分带宽的子载波间隔;
    部分带宽的子载波间隔中最小或最大的子载波间隔;
    参考部分带宽的子载波间隔。
  10. 根据权利要求4所述的方法,其中,基于部分宽带或载波所在的频率范围确定所述频率范围。
  11. 根据权利要求7所述的方法,其中,在确定的子载波间隔对应的频率范围不同的情况下,确定所述物理资源相关参数包括的频率范围为第一频率范围或者第二频率范围。
  12. 根据权利要求3所述的方法,其中,所述定时提前量颗粒度对应的子载波间隔为至少一个激活的上行部分带宽的子载波间隔中的最大子载波间隔。
  13. 根据权利要求3所述的方法,其中,所述定时提前量颗粒度对应的子载波间隔为预定义的或配置的子载波间隔。
  14. 根据权利要求12或者13所述的方法,其中,在非补充上行链路或补充上行链路对应的上行部分带宽的子载波间隔小于所述定时提前量颗粒度对应的子载波间隔的情况下,保持所述非补充上行链路和补充上行链路对应的上行部分带宽的子载波间隔对应的定时提前量颗粒度不变。
  15. 根据权利要求12或13所述的方法,其中,在上行部分带宽的子载波间隔小于所述定时提前量颗粒度对应的子载波间隔的情况下,保持所述上行部分带宽的子载波间隔对应的定时提前量颗粒度不变。
  16. 根据权利要求12或13所述的方法,其中,在上行部分带宽的子载波间隔小于所述定时提前量颗粒度对应的子载波间隔的情况下,对所述上行部分带宽的子载波间隔对应的定时提前量颗粒度进行整数倍运算。
  17. 根据权利要求12或13所述的方法,其中,在上行部分带宽的子载波间隔小于所述定时提前量颗粒度对应的子载波间隔的情况下,基于预定义方式或配置方式确定是否对所述上行部分带宽的子载波间隔对应的定时提前量颗粒度进行整数倍运算。
  18. 根据权利要求12或13所述的方法,其中,在上行部分带宽的子载波间隔小于所述定时提前量颗粒度对应的子载波间隔情况下,基于反馈方式确定是否对所述上行部分带宽的子载波间隔对应的定时提前量颗粒度进行整数倍运算。
  19. 根据权利要求1所述的方法,其中,在存在非补充上行链路和补充上行链路的情况下,所述定时参量由如下方式确定:
    默认所述定时参量基于最新或最后时刻的上行接收测量,其中,所述最新或最后时刻的上行接收基于所述非补充上行链路和所述补充上行链路中最新或最后时刻的上行接收确定。
  20. 一种定时参量确定装置,包括:
    确定模块,被设置为基于如下参数中的至少之一确定定时参量:
    定时参量相关参数、定时提前相关参数和物理资源的相关参数。
  21. 一种设备,包括:
    至少一个处理器;
    存储器,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-19任一项所述的定时参量确定方法。
  22. 一种存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-19任一项所述的定时参量确定方法。
PCT/CN2020/134403 2020-04-02 2020-12-08 定时参量确定方法、装置、设备和存储介质 WO2021196702A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/916,701 US20230156644A1 (en) 2020-04-02 2020-12-08 Timing difference determination method and apparatus, device, and storage medium
JP2022560163A JP7448681B2 (ja) 2020-04-02 2020-12-08 タイミング変化決定方法、装置、機器および記憶媒体
EP20928351.4A EP4132128A4 (en) 2020-04-02 2020-12-08 METHOD, APPARATUS AND DEVICE FOR DETERMINING THE TIMING ARGUMENT AND STORAGE MEDIUM
AU2020439938A AU2020439938A1 (en) 2020-04-02 2020-12-08 Method, apparatus and device for determining timing argument, and storage medium
KR1020227037790A KR20220160664A (ko) 2020-04-02 2020-12-08 시간 차 결정 방법, 장치, 기기 및 저장 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010256349.7 2020-04-02
CN202010256349.7A CN111901863A (zh) 2020-04-02 2020-04-02 一种定时参量确定方法、装置、设备和存储介质

Publications (1)

Publication Number Publication Date
WO2021196702A1 true WO2021196702A1 (zh) 2021-10-07

Family

ID=73206218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134403 WO2021196702A1 (zh) 2020-04-02 2020-12-08 定时参量确定方法、装置、设备和存储介质

Country Status (7)

Country Link
US (1) US20230156644A1 (zh)
EP (1) EP4132128A4 (zh)
JP (1) JP7448681B2 (zh)
KR (1) KR20220160664A (zh)
CN (1) CN111901863A (zh)
AU (1) AU2020439938A1 (zh)
WO (1) WO2021196702A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111901863A (zh) * 2020-04-02 2020-11-06 中兴通讯股份有限公司 一种定时参量确定方法、装置、设备和存储介质
CN112839376A (zh) * 2021-01-04 2021-05-25 中兴通讯股份有限公司 定时确定方法、装置、通信节点及存储介质
CN115843095A (zh) * 2022-01-07 2023-03-24 中兴通讯股份有限公司 一种时间差确定方法、电子设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103891166A (zh) * 2011-09-30 2014-06-25 交互数字专利控股公司 无线通信中的多点传输
CN107889261A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 通信方法、基站和终端设备
US20190159147A1 (en) * 2017-11-21 2019-05-23 Qualcomm Incorporated Uplink transmissions without uplink timing control and measurement
US20190223224A1 (en) * 2018-01-12 2019-07-18 Innovative Technology Lab Co., Ltd. Apparatus and method for performing random access in wireless communication system
CN111901863A (zh) * 2020-04-02 2020-11-06 中兴通讯股份有限公司 一种定时参量确定方法、装置、设备和存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230309032A1 (en) * 2020-05-19 2023-09-28 Lenovo (Singapore) Pte. Ltd. Timing alignment in integrated access and backhaul

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103891166A (zh) * 2011-09-30 2014-06-25 交互数字专利控股公司 无线通信中的多点传输
CN107889261A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 通信方法、基站和终端设备
US20190159147A1 (en) * 2017-11-21 2019-05-23 Qualcomm Incorporated Uplink transmissions without uplink timing control and measurement
US20190223224A1 (en) * 2018-01-12 2019-07-18 Innovative Technology Lab Co., Ltd. Apparatus and method for performing random access in wireless communication system
CN111901863A (zh) * 2020-04-02 2020-11-06 中兴通讯股份有限公司 一种定时参量确定方法、装置、设备和存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Correction to timing advance for BL/CE UEs", 3GPP DRAFT; R1-1720834 CORRECTION TO TIMING ADVANCE FOR BLCE UES, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20171127 - 20171201, 18 November 2017 (2017-11-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051370261 *
See also references of EP4132128A4

Also Published As

Publication number Publication date
US20230156644A1 (en) 2023-05-18
AU2020439938A1 (en) 2022-12-08
CN111901863A (zh) 2020-11-06
EP4132128A1 (en) 2023-02-08
KR20220160664A (ko) 2022-12-06
JP7448681B2 (ja) 2024-03-12
JP2023520082A (ja) 2023-05-15
EP4132128A4 (en) 2024-04-24

Similar Documents

Publication Publication Date Title
WO2021196702A1 (zh) 定时参量确定方法、装置、设备和存储介质
US10951371B2 (en) Method and apparatus for reduction of CSI-RS transmission overhead in wireless communication system
US20230370180A1 (en) Method and apparatus for determining pathloss in wireless communication system
US20240064675A1 (en) Timing determination method and device, communication node and storage medium
JP6918124B2 (ja) 無線通信システムにおけるデータ通信実行方法、及び前記方法を用いる端末
US20150215957A1 (en) System and method for channel state information transmission on lte dual connectivity
WO2020030254A1 (en) Joint channel estimation
US20230232479A1 (en) Apparatus and methods for operating multi-link devices in wirless networks
Hynek et al. Hardware implementation of distributed learning algorithm for mapping selection for wireless physical layer network coding
US20240073819A1 (en) Wake-up signal traffic indication techniques for wireless communications
WO2023041064A1 (zh) 时间参数确定方法、设备和存储介质
WO2024036504A1 (en) On-off keying-modulated orthogonal frequency division multiplexing waveform generation
WO2024087135A1 (en) Tracking reference signals for energy saving modes
WO2023197198A1 (en) Cross-carrier rach transmissions for inter-band carrier aggregation with ssb-less carriers
US20240121715A1 (en) Control channel monitoring adaptation under a sequence of network operations
US20240014991A1 (en) Signaling patterns for time drift reference signals
US20240015538A1 (en) Beam measurement reporting for spatially offset beams
US20240031937A1 (en) Downlink transmit power control group common dci
US20240040503A1 (en) Energy saving mode patterns
US20240056899A1 (en) Techniques for signaling in subband full-duplex operation
US20230388094A1 (en) Enhancing reference signal transmission in carrier aggregation
US20230422256A1 (en) Physical layer association of extended reality data
US20240040660A1 (en) Monitoring for periodic signals during non-uniform discontinuous reception cycles
WO2024031532A1 (en) Control signaling for transport blocks in slot aggregation
WO2023225442A1 (en) Automatic gain control for super-high order modulations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928351

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560163

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227037790

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020928351

Country of ref document: EP

Effective date: 20221102

ENP Entry into the national phase

Ref document number: 2020439938

Country of ref document: AU

Date of ref document: 20201208

Kind code of ref document: A