WO2018171666A1 - 信息收发方法和设备 - Google Patents

信息收发方法和设备 Download PDF

Info

Publication number
WO2018171666A1
WO2018171666A1 PCT/CN2018/079994 CN2018079994W WO2018171666A1 WO 2018171666 A1 WO2018171666 A1 WO 2018171666A1 CN 2018079994 W CN2018079994 W CN 2018079994W WO 2018171666 A1 WO2018171666 A1 WO 2018171666A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
uplink
downlink
terminal device
configuration information
Prior art date
Application number
PCT/CN2018/079994
Other languages
English (en)
French (fr)
Inventor
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18772535.3A priority Critical patent/EP3573404B1/en
Publication of WO2018171666A1 publication Critical patent/WO2018171666A1/zh
Priority to US16/562,217 priority patent/US11064490B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present application relates to communication technologies, and in particular, to a method and device for transmitting and receiving information.
  • 5G fifth generation of mobile communication technology
  • LTE Long Term Evolution
  • NR New Radio
  • the NR system is generally deployed at high frequencies, such as 3.5 GHz or even 28 GHz. Therefore, the network device can transmit the downlink signal on the NR high-frequency downlink carrier, and the network device needs to adopt a large-scale antenna array to implement high-gain beamforming to enhance the coverage of the downlink signal, and then under the jurisdiction of the network device.
  • the terminal device can receive the downlink signal.
  • the terminal device generally does not use too many antenna numbers to implement beamforming due to size limitation, so that when the terminal device sends an uplink signal to the network device on the NR high-frequency uplink carrier, the uplink signal The signal coverage is small, causing inconsistency in the uplink and downlink coverage of the system. Eventually, the system deployment can only be covered by the above line, that is, the uplink coverage is the bottleneck of the system.
  • the current standard uses NR and LTE coexistence to solve the problem.
  • 1 is a deployment scenario in which NR and LTE coexist in the prior art.
  • the terminal device receives a downlink signal sent by the network device on the NR high-frequency downlink carrier, and the terminal device is on the LTE low-frequency uplink carrier.
  • the network device sends an uplink signal, thereby solving the problem that the signal quality of the uplink signal sent by the terminal device is poor.
  • the terminal device when the terminal device receives the downlink signal sent by the network device on the NR high-frequency downlink carrier, the terminal device may refer to the NR high-frequency downlink carrier according to the configuration information corresponding to the NR high-frequency downlink carrier.
  • the signal is measured to obtain downlink reference information, such as downlink path loss, downlink receiving timing, downlink time-frequency synchronization information, and the like; thus, the obtained downlink reference information can be used for the terminal device.
  • the reference quantity is determined when the uplink signal is sent to the network device on the LTE low-frequency uplink carrier, and the reference quantity includes, for example, uplink transmission power, uplink transmission timing, and the like.
  • the downlink reference information obtained by using the configuration information corresponding to the NR high-frequency downlink carrier is used to transmit the signal on the LTE low-frequency uplink carrier, and the downlink reference information is used.
  • the characteristics of the signals on the uplink carrier cannot be accurately expressed, which in turn leads to a degradation of the performance of the system in the NR and LTE coexistence scenarios.
  • the present application provides a method and device for transmitting and receiving information, so as to solve the problem that the downlink reference information in the prior art cannot accurately express the characteristics of the signal on the uplink carrier, and the performance of the system in the NR and LTE coexistence scenario is degraded. The problem.
  • the present application provides a method for transmitting and receiving information, including: receiving, by a terminal device, a broadcast message sent by a network device on a first downlink carrier, where the broadcast message includes a second downlink corresponding to a second downlink carrier Configuration information;
  • the second downlink configuration information includes second downlink frequency point information and/or physical cell identification information of the second downlink carrier, where the first downlink carrier and the second uplink carrier belong to the terminal device.
  • the serving carrier, and the second downlink carrier does not belong to the serving carrier of the terminal device; the second downlink carrier and the second uplink carrier are system-level paired carriers.
  • the first downlink carrier is located in a first frequency band
  • the second uplink carrier and the second downlink carrier are located in a second frequency band, where a frequency of the first frequency band is greater than The frequency of the second frequency band.
  • the method further includes:
  • the reference information includes at least one of the following:
  • Reference path loss reference downlink reception timing, reference time synchronization information, reference frequency synchronization information.
  • the method further includes:
  • the terminal device sends an uplink signal to the network device on the second uplink carrier according to the reference information of the second downlink carrier.
  • the method further includes:
  • the terminal device performs radio resource management (RRM) measurement on the second downlink carrier according to the second downlink configuration information, to obtain a measurement result;
  • RRM radio resource management
  • the terminal device performs mobility management on the second uplink carrier according to the measurement result.
  • the broadcast message further includes: random access configuration information on the second uplink carrier;
  • the method further includes:
  • the terminal device performs random access according to the random access configuration information on the second uplink carrier.
  • the broadcast message further includes second uplink configuration information corresponding to the second uplink carrier
  • the second uplink configuration information includes second uplink frequency information of the second uplink carrier.
  • the broadcast message further includes: first uplink configuration information corresponding to the first uplink carrier;
  • the first uplink configuration information includes first uplink frequency information of the first uplink carrier.
  • the method further includes:
  • the terminal device sends an uplink signal to the network device on the first uplink carrier according to the first uplink configuration information.
  • the first uplink carrier belongs to a serving carrier of the terminal device.
  • the present application provides a method for transmitting and receiving information, including: a network device transmitting a broadcast message on a first downlink carrier, where the broadcast message includes second downlink configuration information corresponding to a second downlink carrier;
  • the second downlink configuration information includes second downlink frequency point information and/or physical cell identification information of the second downlink carrier, where the first downlink carrier and the second uplink carrier belong to a service carrier of the terminal device. And the second downlink carrier does not belong to the service carrier of the terminal device; the second downlink carrier and the second uplink carrier are system-level paired carriers.
  • the first downlink carrier is located in a first frequency band
  • the second uplink carrier and the second downlink carrier are located in a second frequency band, where a frequency of the first frequency band is greater than The frequency of the second frequency band.
  • the method further includes:
  • the reference information of the second downlink carrier is determined by the terminal device according to the second downlink configuration information.
  • the reference information includes at least one of the following:
  • Reference path loss reference downlink reception timing, reference time synchronization information, reference frequency synchronization information.
  • the broadcast message further includes: random access configuration information on the second uplink carrier;
  • the method further includes:
  • the network device receives the random access request sent by the terminal device on the second uplink carrier according to the random access configuration information, to perform random access of the terminal device.
  • the broadcast message further includes second uplink configuration information corresponding to the second uplink carrier
  • the second uplink configuration information includes second uplink frequency information of the second uplink carrier.
  • the broadcast message further includes: first uplink configuration information corresponding to the first uplink carrier;
  • the first uplink configuration information includes first uplink frequency information of the first uplink carrier.
  • the method further includes:
  • the network device receives an uplink signal sent by the terminal device on the first uplink carrier according to the first uplink configuration information.
  • the first uplink carrier belongs to a serving carrier of the terminal device.
  • the application provides a terminal device, including:
  • a first receiving module configured to receive, by using a first downlink carrier, a broadcast message that is sent by the network device, where the broadcast message includes second downlink configuration information that is corresponding to the second downlink carrier;
  • the second downlink configuration information includes second downlink frequency point information and/or physical cell identification information of the second downlink carrier, where the first downlink carrier and the second uplink carrier belong to the terminal device.
  • the serving carrier, and the second downlink carrier does not belong to the serving carrier of the terminal device; the second downlink carrier and the second uplink carrier are system-level paired carriers.
  • the first downlink carrier is located in a first frequency band
  • the second uplink carrier and the second downlink carrier are located in a second frequency band, where a frequency of the first frequency band is greater than The frequency of the second frequency band.
  • the terminal device further includes:
  • a calculation module configured to determine, according to the second downlink configuration information, reference information of the second downlink carrier, after the first receiving module receives the broadcast message sent by the network device on the first downlink carrier.
  • the reference information includes at least one of the following:
  • Reference path loss reference downlink reception timing, reference time synchronization information, reference frequency synchronization information.
  • the terminal device further includes:
  • a first sending module configured to: after the calculating, by the calculating module, the reference information of the second downlink carrier, send, to the network device, an uplink on the second uplink carrier according to the reference information of the second downlink carrier signal.
  • the terminal device further includes:
  • a processing module after receiving, by the first receiving module, the broadcast message sent by the network device on the first downlink carrier, performing RRM measurement on the second downlink carrier according to the second downlink configuration information, and obtaining a measurement As a result, mobility management is performed on the second uplink carrier according to the measurement result.
  • the broadcast message further includes: random access configuration information on the second uplink carrier;
  • the terminal device further includes:
  • An access module configured to perform random access according to the random access configuration information on the second uplink carrier after the first receiving module receives the broadcast message sent by the network device on the first downlink carrier.
  • the broadcast message further includes second uplink configuration information corresponding to the second uplink carrier
  • the second uplink configuration information includes second uplink frequency information of the second uplink carrier.
  • the broadcast message further includes: first uplink configuration information corresponding to the first uplink carrier;
  • the first uplink configuration information includes first uplink frequency information of the first uplink carrier.
  • the terminal device further includes:
  • a second sending module configured to: after the first receiving module receives the broadcast message sent by the network device on the first downlink carrier, according to the first uplink configuration information, on the first uplink carrier The network device sends an uplink signal.
  • the first uplink carrier belongs to a serving carrier of the terminal device.
  • the application provides a network device, including: a third sending module, configured to send a broadcast message on a first downlink carrier, where the broadcast message includes a second downlink corresponding to a second downlink carrier Configuration information;
  • the second downlink configuration information includes second downlink frequency point information and/or physical cell identification information of the second downlink carrier, where the first downlink carrier and the second uplink carrier belong to a service carrier of the terminal device. And the second downlink carrier does not belong to the service carrier of the terminal device; the second downlink carrier and the second uplink carrier are system-level paired carriers.
  • the first downlink carrier is located in a first frequency band
  • the second uplink carrier and the second downlink carrier are located in a second frequency band, where a frequency of the first frequency band is greater than The frequency of the second frequency band.
  • the network device further includes:
  • a second receiving module configured to: after the third sending module sends a broadcast message on the first downlink carrier, receive the reference information sent by the terminal device according to the second downlink carrier, and send the information on the second uplink carrier Uplink signal
  • the reference information of the second downlink carrier is determined by the terminal device according to the second downlink configuration information.
  • the reference information includes at least one of the following:
  • Reference path loss reference downlink reception timing, reference time synchronization information, reference frequency synchronization information.
  • the broadcast message further includes: random access configuration information on the second uplink carrier;
  • the network device further includes:
  • An access processing module configured to send, after the third sending module sends a broadcast message on the first downlink carrier, the terminal device, according to the random access configuration information, on the second uplink carrier Random access request for random access of the terminal device.
  • the broadcast message further includes second uplink configuration information corresponding to the second uplink carrier
  • the second uplink configuration information includes second uplink frequency information of the second uplink carrier.
  • the broadcast message further includes: first uplink configuration information corresponding to the first uplink carrier;
  • the first uplink configuration information includes first uplink frequency information of the first uplink carrier.
  • the network device further includes:
  • a third receiving module configured to send, after the third sending module sends a broadcast message on the first downlink carrier, the terminal device sends the first uplink carrier according to the first uplink configuration information. Uplink signal.
  • the first uplink carrier belongs to a serving carrier of the terminal device.
  • the present application provides a computer program for performing the method of the above first aspect when executed by a processor.
  • the present application provides a computer program for performing the method of the above second aspect when executed by a processor.
  • a program product such as a computer readable storage medium, comprising the program of the fifth aspect is provided.
  • a program product such as a computer readable storage medium, comprising the program of the sixth aspect is provided.
  • a computer program product comprising instructions, when run on a computer, causes the computer to perform the methods described in the above aspects.
  • a computer readable storage medium having stored therein instructions that, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • the terminal device may obtain configuration information of the service carrier that is not the current terminal device from the first downlink carrier, so that the terminal device performs the configuration information of the service carrier that is not the current terminal device.
  • the transmission of the uplink signal may be obtained.
  • the downlink reference information acquired by using the configuration information corresponding to the NR high-frequency downlink carrier is not used to transmit the signal on the LTE low-frequency uplink carrier, but may be transmitted through the LTE low-frequency carrier carried on the NR high-frequency downlink carrier.
  • the downlink carrier configuration information is used to transmit signals on the LTE low-frequency uplink carrier, which helps improve the performance of the system in the NR and LTE coexistence scenarios.
  • FIG. 1 is a deployment scenario diagram of coexistence of NR and LTE in the prior art
  • FIG. 2 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for sending and receiving information according to an embodiment of the present disclosure
  • FIG. 4 is a signaling diagram of a method for sending and receiving information according to an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of still another method for sending and receiving information according to an embodiment of the present application.
  • FIG. 6 is a signaling diagram 1 of still another method for transmitting and receiving information according to an embodiment of the present application.
  • FIG. 7 is a signaling diagram of a random access procedure in another method for sending and receiving information according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of calculation of uplink transmission timing in another method for transmitting and receiving information according to an embodiment of the present disclosure
  • FIG. 9 is a signaling diagram 2 of still another method for transmitting and receiving information according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of still another method for sending and receiving information according to an embodiment of the present application.
  • FIG. 11 is a signaling diagram of still another method for transmitting and receiving information according to an embodiment of the present application.
  • FIG. 12 is a signaling diagram 1 of a random access of a terminal device in another method for transmitting and receiving information according to an embodiment of the present disclosure
  • FIG. 13 is a signaling diagram 2 of a random access of a terminal device in another method for transmitting and receiving information according to an embodiment of the present disclosure
  • FIG. 14 is a signaling diagram 3 of a random access of a terminal device in another method for transmitting and receiving information according to an embodiment of the present disclosure
  • FIG. 15 is a signaling diagram 4 of a random access of a terminal device in another method for transmitting and receiving information according to an embodiment of the present disclosure
  • FIG. 16 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of still another terminal device according to an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of still another terminal device according to an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of still another network device according to an embodiment of the present application.
  • FIG. 21 is a schematic structural diagram of still another network device according to an embodiment of the present application.
  • FIG. 22 is a schematic structural diagram of another terminal device according to an embodiment of the present disclosure.
  • FIG. 23 is a schematic structural diagram of another network device according to an embodiment of the present disclosure.
  • the embodiments of the present application are applied to a 5G communication system or other systems that may appear in the future, and some of the terms in the present application are explained below so as to be understood by those skilled in the art. It should be noted that, when the solution of the embodiment of the present application is applied to a 5G system or other systems that may appear in the future, the names of the network device, the terminal device, and the network device may change, but this does not affect the solution of the embodiment of the present application. Implementation.
  • a terminal device also referred to as a terminal or user device, is a device that provides voice and/or data connectivity to a user, for example, a handheld device having a wireless connection function, an in-vehicle device, and the like.
  • Common terminal devices include, for example, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a mobile internet device (MID), and a wearable device.
  • the wearable device includes, for example, a smart watch, a smart wristband, and a step counter. And so on.
  • a network device also known as a radio access network (RAN) device, is a device that accesses a terminal device to a wireless network, and includes network devices in various communication systems, including but not limited to : a base station, an evolved Node B (eNB), a radio network controller (RNC), a Node B (Node B, NB), a network device controller (BSC), a network device Base Transceiver Station (BTS), home network equipment (for example, Home evolved NodeB, or Home Node B, HNB), Baseband Unit (BBU), and the like.
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC network device controller
  • BTS Base Transceiver Station
  • home network equipment for example, Home evolved NodeB, or Home Node B, HNB
  • BBU Baseband Unit
  • Network equipment including network equipment of various frequency systems, including but not limited to: low frequency network equipment, high frequency network equipment.
  • Multiple means two or more, and other quantifiers are similar. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • FIG. 2 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • the networking architecture shown in Figure 2 mainly includes network devices and terminal devices.
  • the network device can communicate with the terminal device using a relatively high frequency millimeter wave band, and the millimeter wave band is usually a frequency band greater than 3.5 GHz, for example, 3.5 GHz, 28 GHz, 38 GHz; and the network device can also use a relatively low frequency.
  • the frequency band communicates with the terminal device, and the low frequency band is usually a frequency band less than 3.5 GHz, for example, 1.5 GHz, 800 M.
  • the network device supports multiple frequency bands and supports high frequency and low frequency.
  • the network device in the implementation of the present application may be a network side device working in a frequency band below 3.5 GHz and supporting a frequency band above 3.5 GHz (including 3.5 GHz), for example, a wireless-Fidelity (Wi-Fi) access point.
  • the base station of the next generation communication such as a 5G gNB or a small station, a micro station, a TRP, may also be a relay station, an access point, an in-vehicle device, a wearable device, etc. that operate in a high frequency band.
  • the terminal device in the embodiment of the present application may refer to an access terminal, a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • the terminal device in the embodiment of the present application may be a terminal supporting NR, or may be a terminal supporting future versions of LTE, for example, a terminal supporting LTE version 15 or later.
  • the LTE system downlink is implemented based on OFDMA
  • the LTE system uplink is based on a single carrier. It is implemented by Single Carrier Frequency Division Multiple Access (SC-FDMA).
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the time-frequency resources are divided into time-domain symbols in the time domain dimension and sub-carriers in the frequency domain dimension, wherein the time-domain symbols are OFDM or SC-FDMA symbols.
  • the smallest resource granularity is called a RE (Resouce Element, RE), which represents a time domain symbol in the time domain and a time-frequency grid composed of one subcarrier on the frequency domain.
  • the basic time unit for scheduling by the LTE system is generally one subframe, and the duration is 1 ms; wherein one subframe generally includes two slots, and one slot generally includes seven time domain symbols.
  • a resource block consisting of all the time domain symbols in a time slot and 12 subcarriers in the frequency domain is called RB (Resource Block, RB), and LTE resource scheduling is based on RB.
  • RB Resource Block
  • the basic frequency unit is the frequency domain width of the resource block RB, and one RB frequency domain includes 12 subcarriers, and the time domain occupies one subframe duration.
  • the LTE evolution system will also consider introducing shorter time scheduling units, such as scheduling in units of one time slot or even several time domain symbols.
  • LTE supports two types of duplex modes: Frequency Division Duplexing (FDD) and Time Division Duplexing (TDD).
  • FDD Frequency Division Duplexing
  • TDD Time Division Duplexing
  • uplink and downlink are transmitted at different times of the same carrier
  • downlink carrier, uplink subframe and special subframe are included in one carrier, where
  • the special subframe includes three parts: DwPTS, GP and UpPTS.
  • the GP is mainly used for downlink to uplink device conversion time and propagation delay compensation.
  • the LTE system is currently mainly deployed in low frequency bands, such as 800 MHz to 2 GHz.
  • 5G technology needs to support the downlink rate of up to 10G
  • 5G technology uses a very wide spectrum range, for example, from the frequency band below 6GHz to the frequency band of 100GHz, so high frequency technology is a problem that must be considered in 5G.
  • high-frequency signals are susceptible to transmission conditions, which in turn leads to poor quality of high-frequency signals.
  • beam forming techniques are generally used to enhance the antenna through the gain antenna. The performance of high frequency signal transmission.
  • FIG. 3 is a schematic flowchart of a method for sending and receiving information according to an embodiment of the present disclosure. As shown in FIG. 3, the method includes:
  • the terminal device receives, on the first downlink carrier, a broadcast message that is sent by the network device, where the broadcast message includes second downlink configuration information that is corresponding to the second downlink carrier.
  • the second downlink configuration information includes second downlink frequency point information and/or physical cell identification information of the second downlink carrier, where the first downlink carrier and the second uplink carrier belong to the serving carrier of the terminal device, and the second downlink carrier
  • the service carrier that does not belong to the terminal device; the second downlink carrier and the second uplink carrier are system-level paired carriers.
  • the broadcast message further includes second uplink configuration information corresponding to the second uplink carrier, where the second uplink configuration information includes second uplink frequency information of the second uplink carrier.
  • the first downlink carrier is located in the first frequency band
  • the second uplink carrier and the second downlink carrier are located in the second frequency band, wherein the frequency of the first frequency band is greater than the frequency of the second frequency band.
  • FIG. 4 is a signaling diagram of a method for transmitting and receiving information according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a method for transmitting and receiving information according to FIG. 3, as shown in FIG. 4, the method includes:
  • the terminal device receives the broadcast message sent by the network device on the first downlink carrier, where the broadcast message includes the second downlink configuration information corresponding to the second downlink carrier.
  • the second downlink configuration information includes second downlink frequency point information and/or physical cell identification information of the second downlink carrier, where the first downlink carrier and the second uplink carrier belong to the serving carrier of the terminal device, and the second downlink carrier The service carrier that does not belong to the terminal device; the second downlink carrier and the second uplink carrier are system-level paired carriers.
  • the broadcast message further includes second uplink configuration information corresponding to the second uplink carrier, where the second uplink configuration information includes second uplink frequency information of the second uplink carrier.
  • the first downlink carrier is located in the first frequency band
  • the second uplink carrier and the second downlink carrier are located in the second frequency band, wherein the frequency of the first frequency band is greater than the frequency of the second frequency band.
  • the terminal device uses the NR downlink carrier and the LTE uplink carrier as the serving carrier.
  • the uplink carrier corresponding to the NR downlink carrier is used. That is, the LTE uplink carrier, and the frequencies of the NR downlink carrier and the LTE uplink carrier are different.
  • the network device sends a downlink signal on an NR uplink (UL)/TDD carrier, and the terminal device located within the jurisdiction of the network device receives the downlink signal according to its own requirement; the terminal device is in the FDD downlink (Downlink, DL).
  • the uplink signal is sent to the network device on the carrier.
  • the terminal device does not configure the LTE downlink carrier as its serving carrier. Therefore, when the terminal device sends an uplink signal to the network device on the LTE uplink carrier, the reference information required for transmitting the uplink signal is calculated according to the NR downlink carrier.
  • the terminal device after the terminal device accesses the network device, after the terminal device establishes a Radio Resource Control (RRC) connection with the network device, the communication between the terminal device and the network device is A carrier carrying an uplink signal or a downlink signal is referred to as a serving carrier of the terminal device.
  • RRC Radio Resource Control
  • the terminal device sends an A uplink signal to the network device on the A uplink carrier.
  • the A uplink carrier is the service carrier of the terminal device; for example, the terminal
  • the terminal device receives the B downlink signal sent by the network device on the B downlink carrier.
  • the B downlink carrier is the service carrier of the terminal device; for example, the terminal device and the network device.
  • the terminal device receives the C downlink signal sent by the network device on the C downlink carrier, and after the terminal device performs the processing, the terminal device sends the D uplink signal to the network device on the D uplink carrier.
  • the carrier and the D uplink carrier are both service carriers of the terminal device, and the C downlink carrier and the D uplink carrier may be called a pair of service carriers of the terminal device.
  • the terminal device after the terminal device establishes an RRC connection with the network device, the terminal device receives the broadcast message sent by the network device on the first downlink carrier, so that the first downlink carrier belongs to the service carrier of the terminal device; In the subsequent process, the terminal device sends an uplink signal to the network device on the second uplink carrier, so that the second uplink carrier belongs to the service carrier of the terminal device; however, the terminal device does not receive the network device to send on the second downlink carrier.
  • the downlink signal such that the second downlink carrier does not belong to the serving carrier of the terminal device.
  • the first downlink carrier supported by the network device and the terminal device is an NR DL carrier.
  • the first downlink carrier may be an NR pure DL carrier, or a DL carrier in the NR TDD, or The DL carrier in the NR FDD; the first downlink carrier can be deployed in the first frequency band, and the frequency band with the frequency greater than or equal to 2.5 GHz can be selected.
  • the frequency of the first downlink carrier is 20 GHz to 30 GHz, or the first The frequency of the line carrier is 3.5 GHz.
  • the uplink carrier corresponding to the first downlink carrier is the second uplink carrier
  • the second uplink carrier supported by the network device and the terminal device is an LTE UL carrier
  • the second uplink carrier is located in the second frequency band, the first frequency band The frequency is greater than the frequency of the second frequency band; the second uplink carrier can be deployed in the low frequency band.
  • the second uplink carrier is an LTE FDD UL in the 800 MHz or 2 GHz band, or a TDD UL carrier in the 800 MHz or 2 GHz band.
  • the uplink carrier corresponding thereto is the second uplink carrier, and the first downlink carrier and the second uplink carrier belong to the current serving carrier of the terminal device.
  • the process by which the terminal device receives the broadcast message sent by the network device on the first downlink carrier is as follows.
  • the network device sends a broadcast message to the current terminal device on the first downlink carrier, where the broadcast message carries the cell level information of the first downlink carrier, for example, the first downlink. DL bandwidth information and/or carrier basic structure information on the carrier;
  • the broadcast message further carries second downlink configuration information corresponding to the second downlink carrier, and second uplink configuration information corresponding to the second uplink carrier;
  • the downlink configuration information includes second downlink frequency information and/or physical cell identification information of the second downlink carrier, and the second uplink configuration information includes second uplink frequency information of the second uplink carrier.
  • the terminal device may determine the specific frequency domain location of the second downlink carrier according to the second downlink frequency point information, where the physical cell identifier information may indicate the second downlink of the network device side corresponding to the second uplink carrier.
  • the carrier is the network device or the LTE cell in the vicinity of the terminal device. In this application, the terminal device does not need to perform the cell identity search of other LTE cells, and the terminal device can be accurate according to the physical cell identity information. Determining an LTE cell that governs the second downlink carrier.
  • the second downlink carrier does not belong to the service carrier of the current terminal device, and the network device does not send the downlink signal to the current terminal device by using the second downlink carrier.
  • the second downlink carrier is located in the second frequency band, and the second downlink carrier can be deployed in the low frequency band.
  • the second downlink carrier is an LTE FDD UL in the 800 MHz or 2 GHz band, or a TDD UL in the 800 MHz or 2 GHz band. Carrier.
  • the second uplink carrier and the second downlink carrier may be deployed on the same frequency of the second frequency band.
  • the second downlink carrier and the second uplink carrier are system-level pairs of carriers.
  • the system-level paired carrier is defined as: a pair of downlink carriers and an uplink carrier, where the first terminal device under the jurisdiction of the network device performs downlink access from the downlink carrier, and the first terminal device Reading, on the downlink carrier, the random access configuration information on the uplink carrier, and then the one terminal device initiates random access on the uplink carrier according to the random access configuration information, and finally, the terminal device completes the RRC connection establishment;
  • the uplink carrier and the downlink carrier that are completely functional as described above may be referred to as system level paired carriers.
  • a terminal device M under the jurisdiction of the network device performs downlink access from the E downlink carrier, and the terminal device M reads the random access configuration information on the F uplink carrier from the E downlink carrier, and further the terminal The device M initiates random access on the F uplink carrier according to the random access configuration information, and the terminal device M completes the RRC connection establishment.
  • the E downlink carrier and the F uplink carrier are system-level paired carriers.
  • the solution of the present application relates to two sets of system-level paired carriers: one set of system-level paired carriers refers to a first downlink carrier and a second uplink carrier, and specifically, an NR-enabled terminal device is disconnected from the first downlink.
  • the carrier accesses, and reads the random access configuration information on the second uplink carrier from the first downlink carrier, and the NR-enabled terminal device initiates the second uplink carrier according to the random access configuration information. Random access, and finally the NR-enabled terminal device completes RRC connection establishment, where the first downlink carrier and the second uplink carrier are system-level paired carriers; the other system-level paired carrier refers to the second downlink.
  • the carrier and the second uplink carrier specifically, the LTE-enabled terminal device accesses from the second downlink carrier, and reads the random access configuration information on the second uplink carrier from the second downlink carrier, thereby supporting LTE.
  • the terminal device initiates random access on the second uplink carrier according to the random access configuration information, and finally the LTE-enabled terminal device completes RRC connection establishment, where the second downlink carrier and the second System level paired downlink carrier to carrier.
  • the second uplink carrier is the service carrier of the current terminal device, and the second downlink carrier is not the service carrier of the terminal device, but the second downlink configuration information of the second downlink carrier is placed into the first uplink.
  • the broadcast information of the carrier may be based on the second downlink configuration information of the second downlink carrier when the uplink signal is sent on the second uplink carrier.
  • the terminal device does not need to receive downlink service data from the second downlink carrier, but can send uplink service data to the network device by using the second uplink carrier.
  • the second downlink carrier and the second uplink carrier are system-pair paired FDD carriers, or the second downlink carrier and the second uplink carrier are system-pair paired TDD carriers.
  • the second downlink carrier and the second uplink carrier involved in the present application may be service carriers of other terminal devices, for example, the second downlink carrier and the second uplink carrier may serve as a pair of service carriers of other LTE-enabled terminal devices.
  • the second downlink carrier and the second uplink carrier may serve as a pair of service carriers of other NR-enabled terminal devices; when the second downlink carrier and the second uplink carrier serve as a pair of service carriers of other terminal devices,
  • the broadcast message sent by the network device to the current terminal device on the first downlink carrier is not limited in the present application; and the information in the broadcast message may be a broadcast message. Or a plurality of broadcast information bearers, or the information in the broadcast message may be carried by one or more information elements in the high layer signaling, that is, the broadcast message received by the terminal device is not limited in the present application.
  • the cell basic information, the second uplink configuration information, and the second downlink configuration information of the first downlink carrier may be respectively carried in different broadcast messages.
  • the cell basic information of the first downlink carrier is carried in the NR.
  • the second uplink configuration information and the second downlink configuration information are simultaneously carried in the NR System Information Block (SIB), and, for example, the first downlink carrier itself.
  • SIB NR System Information Block
  • the cell basic information, the second uplink configuration information, and the second downlink configuration information are all carried in the NR SIB.
  • the terminal device discovers the first downlink carrier by detecting the NR synchronization signal, for example, by using an NR Primary Synchronization Sequence (PSS) and a Secondary Synchronization Sequence (SSS) to discover the first downlink carrier.
  • PSS Primary Synchronization Sequence
  • SSS Secondary Synchronization Sequence
  • the terminal device may identify the first downlink carrier by using sequence information of the NR PSS and the SSS, and then the terminal device reads the broadcast information sent by the network device on the first downlink carrier.
  • the terminal device receives the broadcast message sent by the network device on the first downlink carrier, where the broadcast message includes the second downlink configuration information corresponding to the second downlink carrier, where the second downlink configuration information includes the first Second downlink frequency point information and/or physical cell identification information of the second downlink carrier; the first downlink carrier and the second uplink carrier belong to the service carrier of the terminal device, and the second downlink carrier does not belong to the service carrier of the terminal device;
  • the downlink carrier and the second uplink carrier are system-level pairs of carriers. Therefore, the terminal device acquires the second downlink configuration information corresponding to the second downlink carrier that is sent by the network device, where the first downlink carrier belongs to the serving carrier of the terminal device, but the second downlink carrier does not belong to the first downlink carrier.
  • the terminal device may determine, according to the second downlink configuration information corresponding to the second downlink carrier, reference information according to the second uplink carrier, where the second uplink carrier belongs to the terminal device Service carrier.
  • the terminal device can obtain the configuration information of the service carrier that is not the current terminal device from the first downlink carrier, and facilitate the transmission of the uplink signal by the terminal device according to the configuration information of the service carrier that is not the current terminal device.
  • the downlink reference information acquired by using the configuration information corresponding to the NR high-frequency downlink carrier is not used to transmit the signal on the LTE low-frequency uplink carrier, but may be transmitted through the LTE low-frequency carrier carried on the NR high-frequency downlink carrier.
  • the downlink carrier configuration information is used to transmit signals on the LTE low-frequency uplink carrier, which helps improve the performance of the system in the NR and LTE coexistence scenarios.
  • FIG. 5 is a schematic flowchart of still another method for sending and receiving information according to an embodiment of the present application. As shown in FIG. 5, based on the embodiment shown in FIG. 3, the method includes:
  • the terminal device receives the broadcast message sent by the network device on the first downlink carrier, where the broadcast message includes the second downlink configuration information corresponding to the second downlink carrier and the random access configuration information on the second uplink carrier.
  • the second downlink configuration information includes second downlink frequency point information and/or physical cell identification information of the second downlink carrier, where the first downlink carrier and the second uplink carrier belong to the serving carrier of the terminal device, and the second downlink carrier
  • the service carrier that does not belong to the terminal device; the second downlink carrier and the second uplink carrier are system-level paired carriers.
  • the terminal device performs random access according to the random access configuration information on the second uplink carrier.
  • the terminal device determines, according to the second downlink configuration information, reference information of the second downlink carrier.
  • the reference information includes at least one of the following: a reference path loss, a reference downlink reception timing, reference time synchronization information, and reference frequency synchronization information.
  • the terminal device sends an uplink signal to the network device on the second uplink carrier according to the reference information of the second downlink carrier.
  • the terminal device performs RRM measurement on the second downlink carrier according to the second downlink configuration information, to obtain a measurement result, and the terminal device performs mobility management on the second uplink carrier according to the measurement result.
  • the S202-S204 and the S205 may be implemented separately or simultaneously, and the application is not limited.
  • FIG. 6 is a signaling diagram 1 of another method for transmitting and receiving information according to an embodiment of the present disclosure.
  • FIG. 6 is a flowchart of another method for transmitting and receiving information provided by FIG. 5, as shown in FIG.
  • the terminal device receives, on the first downlink carrier, a broadcast message that is sent by the network device, where the broadcast message includes second downlink configuration information corresponding to the second downlink carrier, and random access configuration information on the second uplink carrier. .
  • the second downlink configuration information includes second downlink frequency point information and/or physical cell identification information of the second downlink carrier, where the first downlink carrier and the second uplink carrier belong to the serving carrier of the terminal device, and the second downlink carrier
  • the service carrier that does not belong to the terminal device; the second downlink carrier and the second uplink carrier are system-level paired carriers.
  • the network device sends a broadcast message on the first downlink carrier, and the terminal device within the jurisdiction of the network device receives the broadcast message on the first downlink carrier according to the requirements of the network device.
  • step S11 in the signaling diagram of the information transceiving method provided in FIG. 4, and the principle and process are the same as step S11.
  • the broadcast message further includes random access configuration information on the second uplink carrier, and the random access configuration information may be preamble sequence related information and/or time-frequency resource information and the like.
  • the terminal device performs random access according to the random access configuration information on the second uplink carrier.
  • the terminal device after detecting the broadcast message, the terminal device first needs to perform random access according to the random access configuration information.
  • the terminal device may perform random access according to random access configuration information by using any existing random access method. This embodiment does not limit the method of random access.
  • FIG. 7 is a signaling diagram of a random access procedure in another method for sending and receiving information according to an embodiment of the present disclosure.
  • the terminal device needs to perform random access on the second uplink carrier.
  • Step S1 is that the terminal device sends a message 1 to the network device, where the message 1 is a preamble, the preamble is a preamble of the access channel
  • the step S2 is that the network device returns a message 2 to the terminal device, where the message 2 is a random access response message.
  • Step S3 is that the terminal device sends a message 3 to the network device, where, in general, the message 3 is an RRC type message, but the message 3 is not an RRC type message when initiated by the media intervention control layer (MAC).
  • MAC media intervention control layer
  • the message 3 may include an RRC message, such as a service request, a resume request, or a random access initiated by the MAC layer; in step S4, the network device returns a message 4 to the terminal device, and the message 4 is a contention resolution message; the terminal device may The current random access procedure is successfully determined according to the contention resolution message.
  • RRC message such as a service request, a resume request, or a random access initiated by the MAC layer
  • a two-step random method may also be adopted.
  • the terminal device may send the message 1 and the message 3 to the network device.
  • the message 1 is a preamble Preamble;
  • the network device returns a message 2 and a message 4 to the terminal device, the message 2 is a random access response message, and the message 4 is a contention resolution message.
  • the final terminal device can establish an RRC connection with the network device.
  • the terminal device determines, according to the second downlink configuration information, reference information of the second downlink carrier.
  • the reference information includes at least one of the following: a reference path loss, a reference downlink reception timing, reference time synchronization information, and reference frequency synchronization information.
  • the terminal device needs to calculate reference information of the second downlink carrier according to the second downlink configuration information.
  • the reference information of the second downlink carrier is calculated, any one or more of the reference path loss, the reference downlink reception timing, the reference time synchronization information, and the reference frequency synchronization information may be calculated.
  • the second downlink configuration information corresponding to the second downlink carrier carries the configured transmit power value of the reference signal on the second downlink carrier, where the reference signal may be a cell-specific reference signal (CRS) or The other reference signal, such as a channel state information reference signal (CSI-RS), the sequence of the reference signal is determined by the physical cell identifier included in the second downlink configuration information; the terminal device may be configured according to the second downlink configuration information.
  • the reference signal may be a cell-specific reference signal (CRS) or The other reference signal, such as a channel state information reference signal (CSI-RS), the sequence of the reference signal is determined by the physical cell identifier included in the second downlink configuration information; the terminal device may be configured according to the second downlink configuration information.
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • the terminal device can calculate the uplink signal sent by the terminal device on the second uplink carrier according to the determined reference path loss.
  • PUSCH Physical Uplink Shared Channel
  • the higher layer filtered RSRP is used by the terminal device to measure the received power value when the reference signal is sent on the second downlink carrier according to the second downlink configuration information, wherein, in the process of measuring the received power value, The terminal device is used as the receiving end side.
  • the terminal device receives the network device transmission on the NR DL carrier.
  • the broadcast message includes the LTE DL configuration information corresponding to the LTE DL carrier, where the LTE DL configuration information includes the configured transmit power value of the reference signal of the LTE DL carrier; the terminal device may configure the information according to the LTE DL And measuring the reference signal sent by the LTE DL carrier, and obtaining the received power value; the terminal device calculating the transmit power value and the currently calculated received power value according to the LTE DL configuration information, and calculating the frequency corresponding to the frequency of the LTE DL carrier
  • the reference path loss is calculated by the terminal device according to the reference path loss corresponding to the frequency of the LTE DL carrier, and the actual transmit power value when the terminal device sends the uplink signal on the LTE UL carrier is calculated.
  • the terminal device receives the broadcast message sent by the network device on the NR DL carrier, and includes the NR DL in the broadcast message.
  • the terminal device may measure the reference signal transmitted on the NR DL carrier according to the NR DL configuration information, and may obtain Receive power value; the terminal device calculates a reference path loss corresponding to the frequency of the NR DL carrier according to the configured transmit power value in the NR DL configuration information and the currently calculated received power value; the terminal device according to the NR DL carrier The reference path loss corresponding to the frequency calculates the actual transmit power value when the terminal device transmits the uplink signal on the LTE UL carrier.
  • NR is deployed in a high frequency band, generally at 3.5 GHz or even tens of GHz
  • LTE is deployed in a low frequency band, generally at 800 MHz or 2 GHz
  • the frequency difference between NR and LTE is large.
  • the reference path loss measured by the terminal device based on the reference signal transmitted on the NR downlink carrier can only represent the reference path loss in the NR band, and cannot represent the terminal device when transmitting the uplink signal on the LTE uplink carrier. Reference path loss.
  • the reference path loss measured based on the reference signal transmitted on the LTE downlink carrier can represent the reference path loss in the LTE frequency band, and can represent the reference path when the terminal device sends the uplink signal on the LTE uplink carrier. loss. Therefore, the method for calculating the reference path loss in the present application is more accurate than the method of measuring the reference path loss based on the reference signal transmitted on the NR downlink carrier in the prior art.
  • the terminal device may measure the downlink signal sent on the second downlink carrier according to the second downlink configuration information, for example, the downlink signal may be a downlink synchronization signal or a downlink reference signal, etc., and then measure a downlink reception timing of the second downlink carrier;
  • the terminal device adds the preset current uplink transmission timing advance amount to the downlink reception timing based on the downlink reception timing to obtain an uplink transmission timing, and the uplink transmission timing may also be referred to as an uplink transmission advance amount.
  • FIG. 8 is a schematic diagram of calculating the uplink transmission timing in another method for transmitting and receiving information according to the embodiment of the present application, as shown in FIG.
  • the standard protocol In order to standardize the frame structure, the standard protocol generally adopts a mechanism for uplink transmission advancement of the terminal device, so that the terminal device measures the downlink signal transmitted on the LTE DL carrier according to the LTE DL configuration information, and obtains downlink reception of one LTE DL carrier.
  • Timing N TA the terminal device can obtain the uplink transmission timing according to the downlink reception timing N TA and the current uplink transmission timing advance amount N TA offset .
  • the terminal device can obtain the formula (N TA + N TA offset ) ⁇ T s .
  • the terminal device receives the broadcast message sent by the network device on the NR DL carrier, and includes the NR DL in the broadcast message.
  • NR DL configuration information corresponding to the carrier;
  • the terminal device measures the downlink signal transmitted on the NR DL carrier according to the NR DL configuration information, and obtains a downlink reception timing N′ TA of one NR DL carrier; and the terminal device according to the downlink reception timing N′ TA , And the current uplink transmission timing advance amount N' TA offset , the uplink transmission timing can be obtained.
  • the terminal device can obtain the uplink transmission timing by using the formula (N′ TA + N′ TA offset ) ⁇ T s .
  • the frequency difference between NR and LTE is large. It can be seen that in the prior art, the frequency difference between the NR DL carrier and the LTE UL carrier is large, and since the FDD cells in the LTE system are asynchronous, the NR system is likely to adopt advanced interference coordination.
  • the technology of the interference cancellation and the like requires inter-cell synchronization, so that the frame timing of the NR DL carrier and the LTE UL carrier may be different. Therefore, in the prior art, the terminal device determines the LTE and the LTE according to the downlink reception timing of the NR DL carrier. The manner in which the UL carrier corresponds to the uplink transmission timing is inaccurate.
  • the manner in which the terminal device determines the uplink transmission timing corresponding to the LTE UL carrier according to the downlink reception timing of the LTE DL carrier is more accurate.
  • the process of calculating the reference time synchronization information and/or the reference frequency synchronization information of the second downlink carrier is as follows:
  • the terminal device may measure the downlink signal sent on the second downlink carrier according to the second downlink configuration information.
  • the downlink signal may be a downlink synchronization signal or a downlink reference signal, and the reference time synchronization information of the second downlink carrier may be measured. And/or reference frequency synchronization information; then, the terminal device acquires reference time synchronization information of the uplink signal sent by the terminal device on the second uplink carrier according to the reference time synchronization information of the second downlink carrier and/or the reference frequency synchronization information. Or refer to the frequency synchronization information.
  • the terminal device receives the network device transmission on the NR DL carrier.
  • the broadcast message includes the LTE DL configuration information corresponding to the LTE DL carrier in the broadcast message; the terminal device measures the downlink signal sent on the LTE DL carrier according to the LTE DL configuration information, and obtains the reference time synchronization information of the LTE DL carrier.
  • the terminal device acquires reference time synchronization information and/or reference frequency of the uplink signal sent by the terminal device on the LTE UL carrier according to the reference time synchronization information of the LTE DL carrier and/or the reference frequency synchronization information. Synchronization information.
  • the terminal device receives the broadcast message sent by the network device on the NR DL carrier, and includes the NR DL in the broadcast message.
  • the terminal device measures the downlink signal transmitted on the NR DL carrier according to the NR DL configuration information, and obtains reference time synchronization information and/or reference frequency synchronization information of one NR DL carrier; then, the terminal device is configured according to The reference time synchronization information and/or the reference frequency synchronization information of the NR DL carrier is used to obtain reference time synchronization information and/or reference frequency synchronization information for the terminal device to transmit an uplink signal on the LTE UL carrier.
  • the terminal device acquires the terminal device in the LTE according to the reference time synchronization information of the NR DL carrier and/or the reference frequency synchronization information.
  • the manner in which the reference time synchronization information and/or the reference frequency synchronization information of the uplink signal is transmitted on the UL carrier is not accurate.
  • the terminal device obtains reference time synchronization information and/or reference frequency synchronization information of the uplink signal sent by the terminal device on the LTE UL carrier according to the reference time synchronization information of the LTE DL carrier and/or the reference frequency synchronization information, and further accurate.
  • the terminal device sends an uplink signal to the network device on the second uplink carrier according to the reference information of the second downlink carrier.
  • the terminal device may send the uplink signal to the network device on the second uplink carrier according to the reference information of the second downlink carrier.
  • the present application does not limit the specific content of the uplink signal.
  • the uplink signal may be at least one of an uplink data channel, an uplink control channel, and an uplink reference signal.
  • FIG. 9 is a signaling diagram 2 of another method for transmitting and receiving information according to an embodiment of the present disclosure.
  • FIG. 9 is a flowchart of another method for transmitting and receiving information provided by FIG. 5, as shown in FIG.
  • the terminal device receives, on the first downlink carrier, a broadcast message that is sent by the network device, where the broadcast message includes second downlink configuration information corresponding to the second downlink carrier, and random access configuration information on the second uplink carrier. .
  • the second downlink configuration information includes second downlink frequency point information and/or physical cell identification information of the second downlink carrier, where the first downlink carrier and the second uplink carrier belong to the serving carrier of the terminal device, and the second downlink carrier
  • the service carrier that does not belong to the terminal device; the second downlink carrier and the second uplink carrier are system-level paired carriers.
  • the network device sends a broadcast message on the first downlink carrier, and the terminal device within the jurisdiction of the network device receives the broadcast message on the first downlink carrier according to the requirements of the network device.
  • step S11 in the signaling diagram of the information transceiving method provided in FIG. 4, and the principle and process are the same as step S11.
  • the terminal device performs RRM measurement on the second downlink carrier according to the second downlink configuration information, to obtain a measurement result, and the terminal device performs mobility management on the second uplink carrier according to the measurement result.
  • the second downlink carrier is not the serving carrier of the terminal device, but the second uplink carrier having the system level corresponding relationship with the second downlink carrier is the serving carrier of the terminal device, so that the terminal device is maintained in the low frequency band.
  • the mobility on the second uplink carrier requires the terminal device to perform RRM measurement on the second downlink carrier, and the RRM measurement may be specifically a Reference Signal Receiving Power (RSRP) measurement or a reference signal reception quality (Reference Signal) Receiving Quality, RSRQ) measurement, etc., so that the terminal device can use the measured measurement result to perform mobility management on the second uplink carrier that is the serving carrier of the current terminal device.
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal reception quality
  • the terminal device may use the second downlink frequency information and/or The physical cell identification information is used to perform downlink RRM measurement on the second downlink carrier, and a measurement result can be obtained. Then, the terminal device can use the measurement result to perform mobility management on the second uplink carrier.
  • the mobility management includes at least one of whether to replace the second uplink carrier and whether to configure the second uplink carrier.
  • the terminal device receives the network device transmission on the NR DL carrier.
  • the broadcast message includes the LTE DL configuration information corresponding to the LTE DL carrier in the broadcast message; the terminal device performs RRM measurement on the LTE DL carrier according to the LTE DL configuration information, to obtain a measurement result; the terminal device performs LTE on the basis of the measurement result.
  • UL carrier for mobility management.
  • the terminal device receives the broadcast message sent by the network device on the first downlink carrier, where the broadcast message includes the second downlink configuration information corresponding to the second downlink carrier, where the second downlink configuration information includes the first Second downlink frequency point information and/or physical cell identification information of the second downlink carrier; the first downlink carrier and the second uplink carrier belong to the service carrier of the terminal device, and the second downlink carrier does not belong to the service carrier of the terminal device;
  • the downlink carrier and the second uplink carrier are system-level paired carriers; the terminal device determines the reference information of the second downlink carrier according to the second downlink configuration information; and the terminal device is configured to use the reference information of the second downlink carrier on the second uplink carrier.
  • the terminal device acquires the second downlink configuration information corresponding to the second downlink carrier that is sent by the network device, where the first downlink carrier belongs to the serving carrier of the terminal device, but the second downlink carrier does not belong to the first downlink carrier.
  • the terminal device may determine, according to the second downlink configuration information corresponding to the second downlink carrier, reference information according to the second uplink carrier, where the second uplink carrier belongs to the terminal device Service carrier.
  • the terminal device can obtain the configuration information of the service carrier that is not the current terminal device from the first downlink carrier, and facilitate the transmission of the uplink signal by the terminal device according to the configuration information of the service carrier that is not the current terminal device.
  • the downlink reference information obtained by using the configuration information corresponding to the NR high-frequency downlink carrier is not used to transmit the signal on the LTE low-frequency uplink carrier, but may be configured by the LTE low-frequency downlink carrier carried on the NR high-frequency downlink carrier.
  • the information is used to obtain the reference information, and the signal on the LTE low-frequency uplink carrier is sent according to the reference information, which helps improve the performance of the system in the NR and LTE coexistence scenarios.
  • FIG. 10 is a schematic flowchart diagram of still another method for transmitting and receiving information according to an embodiment of the present application. As shown in FIG. 10, based on the embodiment shown in FIG. 3, the method includes:
  • the terminal device receives, on the first downlink carrier, a broadcast message that is sent by the network device, where the broadcast message includes second downlink configuration information corresponding to the second downlink carrier, and a first uplink configuration corresponding to the first uplink carrier. information;
  • the first uplink configuration information includes the first uplink frequency information of the first uplink carrier
  • the second downlink configuration information includes the second downlink frequency information and/or the physical cell identifier information of the second downlink carrier.
  • the line carrier and the second uplink carrier belong to the service carrier of the terminal device, and the second downlink carrier does not belong to the service carrier of the terminal device; the second downlink carrier and the second uplink carrier are system-level paired carriers; the first uplink carrier belongs to the terminal The service carrier of the device.
  • the terminal device sends an uplink signal to the network device on the first uplink carrier according to the first uplink configuration information.
  • FIG. 11 is a signaling diagram of still another method for transmitting and receiving information according to an embodiment of the present disclosure.
  • FIG. 11 is a flowchart of a method for transmitting and receiving information according to another embodiment of FIG. 10, as shown in FIG.
  • the terminal device receives, on the first downlink carrier, a broadcast message that is sent by the network device, where the broadcast message includes second downlink configuration information corresponding to the second downlink carrier, and a first uplink configuration corresponding to the first uplink carrier. information;
  • the first uplink configuration information includes the first uplink frequency information of the first uplink carrier
  • the second downlink configuration information includes the second downlink frequency information and/or the physical cell identifier information of the second downlink carrier.
  • the line carrier and the second uplink carrier belong to the service carrier of the terminal device, and the second downlink carrier does not belong to the service carrier of the terminal device; the second downlink carrier and the second uplink carrier are system-level paired carriers; the first uplink carrier belongs to the terminal The service carrier of the device.
  • the network device sends a broadcast message on the first downlink carrier, and the terminal device within the jurisdiction of the network device receives the broadcast message on the first downlink carrier according to the requirements of the network device.
  • step S11 in the signaling diagram of the information transceiving method provided in FIG. 4, and the principle and process are the same as step S11.
  • step S41 in the present embodiment The difference between step S41 in the present embodiment and step S11 in Fig. 4 will be described below.
  • the first uplink carrier paired with the first downlink carrier may also exist in the NR system level of the high frequency band, and then the network device sends the first downlink carrier.
  • the first uplink configuration information corresponding to the first uplink carrier is also included in the broadcast message, and the first uplink frequency information including the first uplink carrier is included in the first uplink configuration information.
  • both the first uplink carrier and the first downlink carrier are located in the first frequency band.
  • the first uplink carrier may be an NR pure UL carrier, or a UL carrier in the NR TDD, or a UL carrier in the NR FDD; the first uplink carrier may be deployed in the first frequency band, and the frequency may be selected to be greater than or equal to 2.5.
  • the frequency of the first uplink carrier is 20 GHz to 30 GHz, or the frequency of the first uplink carrier is 3.5 GHz.
  • the first uplink carrier may serve as a serving carrier of the terminal device, that is, the terminal device may send an uplink signal to the network device on the first uplink carrier.
  • the first downlink carrier and the first uplink carrier are a pair of NR FDD carriers, or the first downlink carrier and the first uplink carrier are a pair of NR TDD carriers.
  • the manner in which the terminal device accesses the network device may have the following four implementation manners:
  • FIG. 12 is a signaling diagram 1 of a random access of a terminal device in another method for sending and receiving information according to an embodiment of the present disclosure. As shown in FIG. 12, the method includes:
  • the network device sends a broadcast message on the first downlink carrier.
  • the broadcast message includes the second downlink configuration information corresponding to the second downlink carrier, and the first uplink configuration information corresponding to the first uplink carrier, where the first uplink configuration information includes the first uplink of the first uplink carrier. Frequency point information, and random access configuration information of the first uplink carrier.
  • the terminal device performs random access according to the random access configuration information of the first uplink carrier on the first uplink carrier.
  • the network device sends a broadcast message on the first downlink carrier, where the broadcast message includes the second downlink configuration information corresponding to the second downlink carrier, and the first uplink configuration information corresponding to the first uplink carrier, where
  • the first uplink configuration information includes the first uplink frequency information of the first uplink carrier and the random access configuration information of the first uplink carrier; and the terminal device may receive the broadcast message on the first downlink carrier; On the first uplink carrier, random access is performed according to the random access configuration information of the first uplink carrier to access the network device.
  • FIG. 13 is a signaling diagram 2 of a random access of a terminal device in another method for transmitting and receiving information according to an embodiment of the present disclosure. As shown in FIG. 13, the method includes:
  • the network device sends a broadcast message on the first downlink carrier.
  • the broadcast message includes the second downlink configuration information corresponding to the second downlink carrier, and the first uplink configuration information corresponding to the first uplink carrier, where the first uplink configuration information includes the first uplink of the first uplink carrier.
  • the second downlink configuration information includes second downlink frequency point information and/or physical cell identification information of the second downlink carrier, and random access configuration information of the second uplink carrier.
  • the terminal device initiates a random access request from the second uplink carrier to the network device to access the network device.
  • the network device configures a first uplink carrier for the terminal device by using the first RRC dedicated signaling.
  • the network device sends a broadcast message on the first downlink carrier, where the broadcast message includes the second downlink configuration information corresponding to the second downlink carrier, and the first uplink configuration information corresponding to the first uplink carrier, where the first The uplink configuration information includes first uplink frequency information of the first uplink carrier, where the second downlink configuration information includes second downlink frequency information and/or physical cell identification information of the second downlink carrier, and random of the second uplink carrier.
  • Accessing the configuration information; the terminal device may receive the broadcast message on the first downlink carrier; the terminal device initiates a random access request from the second uplink carrier to the network device to access the network device; the network device passes The first RRC dedicated signaling configures the first uplink carrier for the terminal device.
  • the first uplink carrier and the second uplink carrier are configured for the terminal device at the same time, and the first uplink carrier and the second uplink carrier can both serve as service carriers of the terminal device.
  • FIG. 14 is a signaling diagram 3 of a random access of a terminal device in another method for sending and receiving information according to an embodiment of the present disclosure. As shown in FIG. 14, the method includes:
  • the network device sends a broadcast message on the first downlink carrier.
  • the broadcast message includes the second downlink configuration information corresponding to the second downlink carrier, and the first uplink configuration information corresponding to the first uplink carrier, where the first uplink configuration information includes the first uplink of the first uplink carrier.
  • Frequency point information, random access configuration information of the first uplink carrier, and second downlink configuration information includes second downlink frequency point information and/or physical cell identification information of the second downlink carrier.
  • the terminal device initiates a random access request from the first uplink carrier to the network device to access the network device.
  • the network device configures a second uplink carrier for the terminal device by using the second RRC dedicated signaling.
  • the network device sends a broadcast message on the first downlink carrier, where the broadcast message includes the second downlink configuration information corresponding to the second downlink carrier, and the first uplink configuration information corresponding to the first uplink carrier, where
  • the first uplink configuration information includes the first uplink frequency information of the first uplink carrier, and the random access configuration information of the first uplink carrier, where the second downlink configuration information includes the second downlink frequency information of the second downlink carrier and/or Or the physical cell identification information;
  • the terminal device may receive the broadcast message on the first downlink carrier; the terminal device initiates a random access request from the first uplink carrier to the network device to access the network device; the network device
  • the second uplink carrier is configured for the terminal device by using the second RRC dedicated signaling. Further, the first uplink carrier and the second uplink carrier may be configured for the terminal device at the same time, and the first uplink carrier and the second uplink carrier may both serve as service carriers of the terminal device.
  • FIG. 15 is a signaling diagram 4 of a random access of a terminal device in another method for transmitting and receiving information according to an embodiment of the present disclosure. As shown in FIG. 15, the method includes:
  • the network device sends a broadcast message on the first downlink carrier, where the broadcast message includes the first uplink configuration information corresponding to the first uplink carrier, where the first uplink configuration information includes the first uplink carrier.
  • the terminal device initiates a random access request from the first uplink carrier to the network device to access the network device.
  • the network device sends the second downlink configuration information corresponding to the second downlink carrier to the terminal device by using the third RRC dedicated signaling, and configures a second uplink carrier for the terminal device, where the second downlink configuration information includes the first Second downlink frequency point information and/or physical cell identification information of the second downlink carrier.
  • the network device sends a broadcast message on the first downlink carrier, where the broadcast message includes the first uplink configuration information corresponding to the first uplink carrier, where the first uplink configuration information includes the first uplink of the first uplink carrier.
  • Frequency point information random access configuration information of the first uplink carrier
  • the terminal device may receive the broadcast message on the first downlink carrier; the terminal device initiates a random access request from the first uplink carrier to the network device,
  • the network device configures the second uplink carrier for the terminal device by using the third RRC dedicated signaling, and the network device sends the second uplink carrier corresponding to the second downlink carrier by using the third RRC dedicated signaling.
  • the downlink configuration information is sent to the terminal device.
  • the second downlink configuration information includes second downlink frequency point information and/or physical cell identification information of the second downlink carrier.
  • the first uplink carrier and the second uplink carrier may be configured for the terminal device at the same time, and the first uplink carrier and the second uplink carrier may both serve as service carriers of the terminal device.
  • the terminal device sends an uplink signal to the network device on the first uplink carrier according to the first uplink configuration information.
  • the manner in which the terminal device sends an uplink signal to the network device on the first uplink carrier according to the first uplink configuration information in S31 has the following three implementation manners.
  • the terminal device simultaneously sends information on the first uplink carrier and the second uplink carrier, and the information sent at this time is different information.
  • the terminal device overlaps and sends information between the first uplink carrier and the second uplink carrier.
  • both the first uplink carrier and the second uplink carrier belong to the service carrier of the terminal device, but the terminal device is also not allowed to simultaneously send uplink signals on the first uplink carrier and the second uplink carrier, and the terminal device may overlap in time domain.
  • the uplink signal is sent on the first uplink carrier and the second uplink carrier, which can save the baseband capability of the terminal device.
  • the terminal device overlaps and sends information between the first uplink carrier and the second uplink carrier.
  • the terminal device sends an uplink reference signal on the first uplink carrier, for example, the uplink reference signal may be an NR SRS, and may further assist the uplink beam attachment operation on the first uplink carrier; the terminal device sends the uplink uplink carrier.
  • Uplink data channel, uplink control channel, and uplink reference signal may be an NR SRS, and may further assist the uplink beam attachment operation on the first uplink carrier; the terminal device sends the uplink uplink carrier.
  • the terminal device receives the broadcast message sent by the network device on the first downlink carrier, where the broadcast message includes the second downlink configuration information corresponding to the second downlink carrier, and the first corresponding to the first uplink carrier.
  • the uplink configuration information where the first uplink configuration information includes the first uplink frequency information of the first uplink carrier, and the second downlink configuration information includes the second downlink frequency information and/or the physical cell identifier information of the second downlink carrier.
  • the first downlink carrier and the second uplink carrier belong to the service carrier of the terminal device, and the second downlink carrier does not belong to the service carrier of the terminal device; the second downlink carrier and the second uplink carrier are system-level paired carriers;
  • the uplink carrier belongs to the service carrier of the terminal device; the terminal device sends the uplink signal to the network device on the first uplink carrier according to the first uplink configuration information. Therefore, on the basis of the foregoing embodiment, the first uplink carrier is configured for the terminal device, so that the first uplink carrier can also serve as a service carrier of the terminal device, and the terminal device simultaneously sends information on the first uplink carrier and the second uplink carrier, or The terminal device overlaps and transmits information between the first uplink carrier and the second uplink carrier.
  • FIG. 16 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure. As shown in FIG. 16, the terminal device includes:
  • the first receiving module 161 is configured to receive, by using the first downlink carrier, a broadcast message that is sent by the network device, where the broadcast message includes second downlink configuration information that is corresponding to the second downlink carrier.
  • the second downlink configuration information includes second downlink frequency point information and/or physical cell identification information of the second downlink carrier, where the first downlink carrier and the second uplink carrier belong to the serving carrier of the terminal device, and the second downlink carrier
  • the service carrier that does not belong to the terminal device; the second downlink carrier and the second uplink carrier are system-level paired carriers.
  • the first downlink carrier is located in the first frequency band
  • the second uplink carrier and the second downlink carrier are located in the second frequency band, wherein the frequency of the first frequency band is greater than the frequency of the second frequency band.
  • the broadcast message further includes second uplink configuration information corresponding to the second uplink carrier, where the second uplink configuration information includes second uplink frequency information of the second uplink carrier.
  • the first receiving module 161 can perform step S101 of the method shown in FIG. 3, that is, the first receiving module 161 can perform step S11 of the method shown in FIG.
  • the terminal device of the embodiment shown in FIG. 16 can be used to perform the technical solution of the embodiment shown in FIG. 2 to FIG. 4 in the foregoing method, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 17 is a schematic structural diagram of still another terminal device according to an embodiment of the present application.
  • the terminal device includes:
  • the first receiving module 161 is configured to receive, by using the first downlink carrier, a broadcast message that is sent by the network device, where the broadcast message includes the second downlink configuration information corresponding to the second downlink carrier, and the random connection on the second uplink carrier. Enter configuration information.
  • the second downlink configuration information includes second downlink frequency point information and/or physical cell identification information of the second downlink carrier, where the first downlink carrier and the second uplink carrier belong to the serving carrier of the terminal device, and the second downlink carrier
  • the service carrier that does not belong to the terminal device; the second downlink carrier and the second uplink carrier are system-level paired carriers.
  • the first receiving module 161 can perform step S201 of the method shown in FIG. 5, that is, the first receiving module 161 can perform step S21 of the method shown in FIG. 6.
  • the broadcast message further includes: random access configuration information on the second uplink carrier; the terminal device further includes:
  • the access module 171 is configured to perform random access according to the random access configuration information on the second uplink carrier after the first receiving module 161 receives the broadcast message sent by the network device on the first downlink carrier.
  • the access module 171 can perform step S202 of the method shown in FIG. 5, that is, the access module 171 can perform step S22 of the method shown in FIG. 6.
  • the calculating module 172 is configured to determine, according to the second downlink configuration information, the reference information of the second downlink carrier, after the first receiving module 161 receives the broadcast message sent by the network device on the first downlink carrier.
  • the calculation module 172 can perform step S203 of the method shown in FIG. 5, and the calculation module 172 can perform step S23 of the method shown in FIG. 6.
  • the reference information includes at least one of the following: a reference path loss, a reference downlink receive timing, reference time synchronization information, and reference frequency synchronization information.
  • the terminal device further includes:
  • the first sending module 173 is configured to send, after the calculating module 172 determines the reference information of the second downlink carrier, the uplink signal to the network device on the second uplink carrier according to the reference information of the second downlink carrier.
  • the first sending module 173 can perform step S204 of the method shown in FIG. 5, and the first sending module 173 can perform step S24 of the method shown in FIG. 6.
  • the terminal device further includes:
  • the processing module 174 is configured to: after the first receiving module 161 receives the broadcast message sent by the network device on the first downlink carrier, perform RRM measurement on the second downlink carrier according to the second downlink configuration information, to obtain a measurement result; As a result, mobility management is performed on the second uplink carrier.
  • the processing module 174 can perform step S205 of the method shown in FIG. 5, and the processing module 174 can perform steps S31-S32 of the method shown in FIG.
  • the terminal device of the embodiment shown in FIG. 17 can be used to perform the technical solution of the embodiment shown in FIG. 5 to FIG. 9 in the foregoing method, and the implementation principle and technical effects are similar, and details are not described herein again. Moreover, the implementation of the embodiment shown in FIG. 17 does not depend on whether or not the embodiment shown in FIG. 16 is implemented. The embodiment shown in FIG. 17 can be implemented separately.
  • FIG. 18 is a schematic structural diagram of still another terminal device according to an embodiment of the present application.
  • the terminal device includes:
  • the first receiving module 161 receives the broadcast message sent by the network device on the first downlink carrier, where the broadcast message includes the second downlink configuration information corresponding to the second downlink carrier, and the first corresponding to the first uplink carrier.
  • the uplink configuration information where the first uplink configuration information includes the first uplink frequency information of the first uplink carrier, and the second downlink configuration information includes the second downlink frequency information and/or the physical cell identifier information of the second downlink carrier.
  • the first downlink carrier and the second uplink carrier belong to the service carrier of the terminal device, and the second downlink carrier does not belong to the service carrier of the terminal device; the second downlink carrier and the second uplink carrier are system-level paired carriers;
  • the uplink carrier belongs to the service carrier of the terminal device.
  • the first receiving module 161 can perform step S301 of the method shown in FIG. 10, and the first receiving module 161 can perform step S41 of the method shown in FIG.
  • the broadcast message further includes: first uplink configuration information corresponding to the first uplink carrier, where the first uplink configuration information includes the first uplink frequency information of the first uplink carrier, and the terminal device further includes:
  • the second sending module 181 is configured to send an uplink signal to the network device on the first uplink carrier according to the first uplink configuration information after the first receiving module 161 receives the broadcast message sent by the network device on the first downlink carrier.
  • the second sending module 181 can execute step S302 of the method shown in FIG. 10, and the second sending module 181 can execute step S42 of the method shown in FIG.
  • the terminal device of the embodiment shown in FIG. 18 can be used to perform the technical solution of the embodiment shown in FIG. 10 to FIG. 15 in the foregoing method, and the implementation principle and technical effects are similar, and details are not described herein again. Moreover, the implementation of the embodiment shown in FIG. 18 does not depend on whether the embodiment shown in FIGS. 16 and 17 is implemented, and the embodiment shown in FIG. 18 can be implemented separately.
  • FIG. 19 is a schematic structural diagram of a network device according to an embodiment of the present disclosure. As shown in FIG. 19, the network device includes:
  • the third sending module 191 is configured to send a broadcast message on the first downlink carrier, where the broadcast message includes second downlink configuration information corresponding to the second downlink carrier.
  • the second downlink configuration information includes second downlink frequency point information and/or physical cell identification information of the second downlink carrier, where the first downlink carrier and the second uplink carrier belong to the serving carrier of the terminal device, and the second downlink carrier
  • the service carrier that does not belong to the terminal device; the second downlink carrier and the second uplink carrier are system-level paired carriers.
  • the first downlink carrier is located in the first frequency band
  • the second uplink carrier and the second downlink carrier are located in the second frequency band, wherein the frequency of the first frequency band is greater than the frequency of the second frequency band.
  • the broadcast message further includes second uplink configuration information corresponding to the second uplink carrier, where the second uplink configuration information includes second uplink frequency information of the second uplink carrier.
  • the third sending module 191 can perform step S11 of the method shown in FIG. 4 .
  • the network device of the embodiment shown in FIG. 19 can be used to perform the technical solution of the embodiment shown in FIG. 2 to FIG. 4 in the foregoing method, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 20 is a schematic structural diagram of still another network device according to an embodiment of the present application. As shown in FIG. 20, the network device includes:
  • the third sending module 191 is configured to send a broadcast message on the first downlink carrier, where the broadcast message includes second downlink configuration information corresponding to the second downlink carrier and random access configuration information on the second uplink carrier.
  • the second downlink configuration information includes second downlink frequency point information and/or physical cell identification information of the second downlink carrier, where the first downlink carrier and the second uplink carrier belong to the serving carrier of the terminal device, and the second downlink carrier
  • the service carrier that does not belong to the terminal device; the second downlink carrier and the second uplink carrier are system-level paired carriers.
  • the third sending module 201 can perform step S21 of the method shown in FIG. 6.
  • the broadcast message further includes: random access configuration information on the second uplink carrier; the network device further includes:
  • the access processing module 211 is configured to: after the third sending module 191 sends the broadcast message on the first downlink carrier, the receiving terminal device sends a random access request according to the random access configuration information on the second uplink carrier, Perform random access to the terminal device.
  • the access processing module 211 can perform step S22 of the method shown in FIG. 6.
  • the network device further includes:
  • the second receiving module 212 is configured to: after the third sending module 191 sends the broadcast message on the first downlink carrier, receive the uplink signal sent by the terminal device on the second uplink carrier according to the reference information of the second downlink carrier; The reference information of the second downlink carrier is determined by the terminal device according to the second downlink configuration information.
  • the second receiving module 212 can perform step S24 of the method shown in FIG. 6.
  • the reference information includes at least one of the following:
  • Reference path loss reference downlink reception timing, reference time synchronization information, reference frequency synchronization information.
  • the network device of the embodiment shown in FIG. 20 can be used to perform the technical solution of the embodiment shown in FIG. 5 to FIG. 9 in the foregoing method, and the implementation principle and technical effects are similar, and details are not described herein again. Moreover, the implementation of the embodiment shown in FIG. 20 does not depend on whether or not the embodiment shown in FIG. 19 is implemented. The embodiment shown in FIG. 20 can be implemented separately.
  • FIG. 21 is a schematic structural diagram of still another network device according to an embodiment of the present application. As shown in FIG. 21, the network device includes:
  • the third sending module 191 is configured to send a broadcast message on the first downlink carrier, where the broadcast message includes second downlink configuration information corresponding to the second downlink carrier, and a first uplink configuration corresponding to the first uplink carrier.
  • the first uplink configuration information includes the first uplink frequency information of the first uplink carrier
  • the second downlink configuration information includes the second downlink frequency information and/or the physical cell identifier information of the second downlink carrier.
  • the downlink carrier and the second uplink carrier belong to the service carrier of the terminal device, and the second downlink carrier does not belong to the service carrier of the terminal device; the second downlink carrier and the second uplink carrier are system-level paired carriers; the first uplink carrier A service carrier belonging to a terminal device.
  • the third sending module 191 can execute step S41 of the method shown in FIG.
  • the network device further includes:
  • the third receiving module 221 is configured to: after the third sending module 191 sends the broadcast message on the first downlink carrier, the receiving terminal sends the uplink signal on the first uplink carrier according to the first uplink configuration information.
  • the third receiving module 221 can perform step S42 of the method shown in FIG.
  • the network device of the embodiment shown in FIG. 21 can be used to perform the technical solution of the embodiment shown in FIG. 10 to FIG. 15 in the foregoing method, and the implementation principle and technical effects are similar, and details are not described herein again. Moreover, the implementation of the embodiment shown in FIG. 21 does not depend on whether the embodiment shown in FIGS. 19 and 20 is implemented, and the embodiment shown in FIG. 21 can be implemented separately.
  • each module of the above terminal device, network device, and network device is only a division of logical functions, and may be integrated into one physical entity or physically separated in whole or in part.
  • these modules can all be implemented by software in the form of processing component calls; or all of them can be realized in the form of hardware; some modules can be realized by software in the form of processing component calls, and some modules are realized by hardware.
  • the sending module may be a separately set processing component, or may be integrated in a chip of a terminal device or a network device, or may be stored in a memory of the terminal device or the network device in the form of a program.
  • a processing component of a device or network device invokes and performs the functions of each of the above modules.
  • the implementation of other modules is similar.
  • the processing element herein can be an integrated circuit with signal processing capabilities.
  • each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above receiving module is a module for controlling receiving, and the information transmitted by the network device can be received by a receiving device of the terminal device or the network device, such as an antenna and a radio frequency device.
  • the above sending module is a module for controlling transmission, and can send information to the terminal device through a network device or a transmitting device of the terminal device, such as an antenna and a radio frequency device.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital) Singnal processor (DSP), or one or more Field Programmable Gate Array (FPGA).
  • ASICs Application Specific Integrated Circuits
  • DSP digital Singnal processor
  • FPGA Field Programmable Gate Array
  • the processing component can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke the program.
  • CPU central processing unit
  • these units can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • FIG. 22 is a schematic structural diagram of another terminal device according to an embodiment of the present disclosure.
  • the terminal device includes: a receiver 231, a transmitter 232, a processor 233, and a memory 234, where the receiver 231 is configured to receive, on the first downlink carrier, a broadcast message sent by the network device, where the broadcast message is received.
  • the second downlink configuration information corresponding to the second downlink carrier is included, where the second downlink configuration information includes the second downlink frequency information and/or the physical cell identifier information of the second downlink carrier; the first downlink carrier and the first downlink carrier.
  • the second uplink carrier belongs to the service carrier of the terminal device, and the second downlink carrier does not belong to the service carrier of the terminal device; the second downlink carrier and the second uplink carrier are system-level paired carriers.
  • the receiver 231 can implement the function of the first receiving module 161 in the terminal device shown in FIG. 16, and further, the receiver 231 can perform step S101 of the method shown in FIG. 3, or the receiver 231 can perform the method in FIG. Step S11 of the method is shown, and the corresponding steps of the other method embodiments are implemented by the processor 233.
  • the first downlink carrier is located in the first frequency band
  • the second uplink carrier and the second downlink carrier are located in the second frequency band, where the frequency of the first frequency band is greater than the frequency of the second frequency band.
  • the broadcast message further includes second uplink configuration information corresponding to the second uplink carrier, where the second uplink configuration information includes second uplink frequency information of the second uplink carrier.
  • the processor 233 is configured to determine, according to the second downlink configuration information, the reference information of the second downlink carrier, after the receiver 231 receives the broadcast message sent by the network device on the first downlink carrier.
  • the processor 233 can implement the function of the calculation module 172 in the terminal device shown in FIG. 17, and further, the processor 233 performs the step S203 of the method shown in FIG. 5, or the processor 233 can perform the method shown in FIG. Step S23.
  • the reference information includes at least one of the following: a reference path loss, a reference downlink receive timing, reference time synchronization information, and reference frequency synchronization information.
  • the transmitter 232 is configured to send, after the processor 233 determines the reference information of the second downlink carrier, the uplink signal to the network device on the second uplink carrier according to the reference information of the second downlink carrier.
  • the transmitter 232 can implement the function of the first sending module 173 in the terminal device shown in FIG. 17, and further, the transmitter 232 can perform step S204 of the method shown in FIG. 5, or the transmitter 232 can perform the method in FIG. Step S24 of the method is shown.
  • the processor 233 is further configured to: after the receiver 231 receives the broadcast message sent by the network device on the first downlink carrier, perform RRM measurement on the second downlink carrier according to the second downlink configuration information, to obtain a measurement result. According to the measurement result, mobility management is performed on the second uplink carrier.
  • the processor 233 can implement the function of the processing module 174 in the terminal device shown in FIG. 17, and further, the processor 233 can execute step S205 of the method shown in FIG. 5, or the processor 233 can execute the method shown in FIG. Steps S31-S32.
  • the broadcast message further includes: random access configuration information on the second uplink carrier; the processor 233 is further configured to: after the receiver 231 receives the broadcast message sent by the network device on the first downlink carrier, On the second uplink carrier, random access is performed according to the random access configuration information.
  • the processor 233 can implement the function of the access module 171 in the terminal device shown in FIG. 17, and further, the processor 233 can perform step S202 of the method shown in FIG. 5, or the processor 233 can execute the method shown in FIG. Step S22 of the method.
  • the broadcast message further includes: first uplink configuration information corresponding to the first uplink carrier, where the first uplink configuration information includes first uplink frequency information of the first uplink carrier.
  • the transmitter 232 is further configured to: after the receiver 231 receives the broadcast message sent by the network device on the first downlink carrier, send the uplink signal to the network device on the first uplink carrier according to the first uplink configuration information. .
  • the transmitter 232 can implement the function of the second transmitting module 181 in the terminal device shown in FIG. 18. Further, the transmitter 232 can perform step S302 of the method shown in FIG. 10, or the transmitter 232 can perform the process shown in FIG. Step S42 of the method.
  • the first uplink carrier belongs to a service carrier of the terminal device.
  • the terminal device of the embodiment shown in FIG. 22 can be used to perform the technical solution of the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the receiver 231 and the transmitter 232 can be connected to an antenna.
  • the receiver 231 and the transmitter 232 receive the information transmitted by the network device through the antenna, and send the information to the processor 233 for processing.
  • the processor 233 processes the data of the terminal device and transmits it to the network device through the transmitter 232.
  • the memory 234 is used to store the program of the above method embodiment, or the modules of the embodiment shown in FIG. 16 to FIG. 18, and the processor 233 calls the program to perform the operations of the above method embodiments to implement the methods of FIG. 16-18. Each module shown.
  • the above modules may be implemented by being embedded in a chip of the device in the form of an integrated circuit. And they can be implemented separately or integrated. That is, the above modules may be configured to implement one or more integrated circuits of the above method, such as: one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital singnal processor) , DSP), or one or more Field Programmable Gate Arrays (FPGAs).
  • ASICs Application Specific Integrated Circuits
  • DSP digital singnal processor
  • FPGAs Field Programmable Gate Arrays
  • FIG. 23 is a schematic structural diagram of another network device according to an embodiment of the present disclosure.
  • the network device includes a transmitter 241, a receiver 242, and a processor 243, where the transmitter 241 is configured to send a broadcast message on the first downlink carrier, where the broadcast message includes a second downlink carrier.
  • the second downlink configuration information where the second downlink configuration information includes the second downlink frequency point information and/or the physical cell identifier information of the second downlink carrier; the first downlink carrier and the second uplink carrier belong to the service of the terminal device
  • the carrier, and the second downlink carrier does not belong to the service carrier of the terminal device; the second downlink carrier and the second uplink carrier are system-level paired carriers.
  • the transmitter 241 can implement the function of the third transmitting module 191 in the terminal device shown in FIG. 19, and further, the transmitter 241 can execute step S11 of the method shown in FIG.
  • the first downlink carrier is located in the first frequency band
  • the second uplink carrier and the second downlink carrier are located in the second frequency band, where the frequency of the first frequency band is greater than the frequency of the second frequency band.
  • the receiver 242 is configured to: after the transmitter 241 sends the broadcast message on the first downlink carrier, receive the uplink signal sent by the terminal device on the second uplink carrier according to the reference information of the second downlink carrier; The reference information of the second downlink carrier is determined by the terminal device according to the second downlink configuration information.
  • the receiver 242 can implement the function of the second receiving module 212 in the terminal device shown in FIG. 20, and further, the receiver 242 can perform step S24 of the method shown in FIG. 6.
  • the reference information includes at least one of the following: a reference path loss, a reference downlink receive timing, reference time synchronization information, and reference frequency synchronization information.
  • the broadcast message further includes: random access configuration information on the second uplink carrier; and the receiver 242 is further configured to: after the transmitter 241 sends the broadcast message on the first downlink carrier, the receiving terminal device is in the On the second uplink carrier, the random access request sent according to the random access configuration information is used for random access of the terminal device.
  • the receiver 242 can implement the function of the access processing module 211 in the terminal device shown in FIG. 20, and further, the receiver 242 can execute step S22 of the method shown in FIG. 6; other processes are implemented by the processor 243.
  • the broadcast message further includes second uplink configuration information corresponding to the second uplink carrier, where the second uplink configuration information includes second uplink frequency information of the second uplink carrier.
  • the broadcast message further includes: first uplink configuration information corresponding to the first uplink carrier, where the first uplink configuration information includes first uplink frequency information of the first uplink carrier.
  • the receiver 242 is further configured to: after the transmitter 241 sends the broadcast message on the first downlink carrier, receive the uplink signal sent by the terminal device on the first uplink carrier according to the first uplink configuration information. At this time, the receiver 242 can implement the function of the second receiving module 212 in the terminal device shown in FIG. 20, and further, the receiver 242 can perform step S24 of the method shown in FIG. 6.
  • the first uplink carrier belongs to a service carrier of the terminal device.
  • the network device of the embodiment shown in FIG. 23 can be used to execute the technical solution of the foregoing method embodiment, or the program of each module in the embodiment shown in FIG. 19 to FIG. 21, and the processor 243 calls the program to perform the operations of the foregoing method embodiment. To implement the various modules shown in Figures 19-21.
  • the processor 243 may also be a controller, and is represented as "controller/processor 243" in FIG.
  • the transmitter 241 and the receiver 242 are configured to support transmission and reception of information between the network device and the terminal device in the above embodiment, and to support radio communication between the terminal device and other terminal devices.
  • the processor 243 performs various functions for communicating with the terminal device.
  • the network device may further include a memory 244 for storing program codes and data of the network device.
  • the network device can also include a communication interface 245.
  • Communication interface 245 is used to support network devices to communicate with other network entities.
  • the processor 243 such as a central processing unit (CPU), may also be one or more integrated circuits configured to implement the above method, for example, one or more application specific integrated circuits (ASICs), Or, one or more microprocessors (DSPs), or one or more Field Programmable Gate Arrays (FPGAs).
  • the memory 244 may be a memory or a general term for a plurality of storage elements.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center by wire (eg, coaxial cable, fiber optic, Digital Subscriber Line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (eg, a Solid State Disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium eg, a Solid State Disk (SSD)
  • the functions described in the embodiments of the present application may be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种信息收发方法和设备,包括:终端设备在第一下行载波上接收网络设备发送的广播消息,其中,广播消息中包括与第二下行载波对应的第二下行配置信息;其中,第二下行配置信息中包括第二下行载波的第二下行频点信息和/或物理小区标识信息;第一下行载波与第二上行载波属于终端设备的服务载波,且第二下行载波不属于终端设备的服务载波;第二下行载波与第二上行载波为系统级成对的载波。通过承载在NR高频下行载波上的LTE低频下行载波配置信息,去进行LTE低频上行载波上信号的发送,有助于提高NR与LTE共存场景下的系统的性能。

Description

信息收发方法和设备
本申请要求于2017年03月23日提交中国专利局、申请号为201710179820.5、申请名称为“信息收发方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其涉及一种信息收发方法和设备。
背景技术
随着通信技术的不断发展,第五代移动通信技术(5th-Generation,5G)已经开始研究及标准化工作。从5G的兼容性来考虑,5G的兼容性分为两条分值,一条为兼容长期演进(Long Term Evolution,LTE)4G的持续演进,另一条为不兼容LTE的新无线(New Radio,NR)系统。其中的NR系统一般会部署在高频点,比如3.5GHz甚至28GHz等。因此,网络设备可以在NR高频下行载波上发送下行信号,且网络设备需要采用大规模天线阵列来实现高增益的波束赋形,来增强下行信号的覆盖,然后在该网络设备所管辖范围的终端设备可以接收到该下行信号。然而,终端设备一般来说由于尺寸限制很可能不会使用过多的天线个数去实现波束赋形,从而终端设备在NR高频上行载波上向网络设备发送上行信号的时候,该上行信号的信号覆盖较小,造成系统上下行覆盖不一致问题,最终导致系统的部署只能以上行覆盖为准,即上行覆盖为系统的瓶颈。
针对上述NR系统的上行覆盖受限的问题,目前标准上采用NR与LTE共存的方式来解决。图1为现有技术中NR与LTE共存的部署场景图,如图1所示,终端设备在NR高频下行载波上接收网络设备发送的下行信号,并且,终端设备在LTE低频上行载波上向网络设备发送上行信号,从而解决终端设备发送的上行信号的信号质量较差的问题。
然而上述现有技术中,终端设备在NR高频下行载波上接收网络设备发送的下行信号的时候,终端设备会根据该NR高频下行载波所对应的配置信息对该NR高频下行载波的参考信号等进行测量,以获取下行的参考信息,参考信息例如有下行的路径损耗、下行接收定时、下行时频同步信息等等;从而,就可以将获取到的下行的参考信息用于终端设备在LTE低频上行载波上向网络设备发送上行信号时参考量的确定,参考量例如有上行发送功率、上行发送定时等等。然而由于LTE与NR的频点相差加大,采用NR高频下行载波所对应的配置信息来获取到的下行的参考信息,去进行LTE低频上行载波上信号的发送的时候,该下行的参考信息不能准确的表达出上行载波上的信号的特征,进而会导致该NR与LTE共存场景下的系统的性能下降。
发明内容
本申请提供一种信息收发方法和设备,以解决现有技术中的下行的参考信息不能 准确的表达出上行载波上的信号的特征,进而会导致该NR与LTE共存场景下的系统的性能下降的问题。
第一方面,本申请提供一种信息收发方法,包括:终端设备在第一下行载波上接收网络设备发送的广播消息,其中,所述广播消息中包括与第二下行载波对应的第二下行配置信息;
其中,所述第二下行配置信息中包括所述第二下行载波的第二下行频点信息和/或物理小区标识信息;所述第一下行载波与第二上行载波属于所述终端设备的服务载波,且所述第二下行载波不属于所述终端设备的服务载波;所述第二下行载波与所述第二上行载波为系统级成对的载波。
在一种可能的设计中,所述第一下行载波位于第一频段,所述第二上行载波和所述第二下行载波位于第二频段,其中,所述第一频段的频率大于所述第二频段的频率。
在一种可能的设计中,在所述终端设备在第一下行载波上接收网络设备发送的广播消息之后,还包括:
所述终端设备根据所述第二下行配置信息,确定所述第二下行载波的参考信息。
在一种可能的设计中,所述参考信息,包括以下的至少一种:
参考路径损耗、参考下行接收定时、参考时间同步信息、参考频率同步信息。
在一种可能的设计中,在所述确定所述第二下行载波的参考信息之后,还包括:
所述终端设备依据所述第二下行载波的参考信息,在所述第二上行载波上向所述网络设备发送上行信号。
在一种可能的设计中,在所述终端设备在第一下行载波上接收网络设备发送的广播消息之后,还包括:
所述终端设备根据所述第二下行配置信息,对所述第二下行载波进行无线资源管理(Radio Resource Management,RRM)测量,得到测量结果;
所述终端设备根据所述测量结果,对所述第二上行载波进行移动性管理。
在一种可能的设计中,所述广播消息中还包括:所述第二上行载波上的随机接入配置信息;
在所述终端设备在第一下行载波上接收网络设备发送的广播消息之后,还包括:
所述终端设备在所述第二上行载波上,依据所述随机接入配置信息进行随机接入。
在一种可能的设计中,所述广播消息中还包括与第二上行载波对应的第二上行配置信息;
其中,所述第二上行配置信息中包括所述第二上行载波的第二上行频点信息。
在一种可能的设计中,所述广播消息中还包括:与第一上行载波对应的第一上行配置信息;
其中,所述第一上行配置信息中包括所述第一上行载波的第一上行频点信息。
在一种可能的设计中,在所述终端设备在第一下行载波上接收网络设备发送的广播消息之后,还包括:
所述终端设备依据所述第一上行配置信息,在所述第一上行载波上向所述网络设备发送上行信号。
在一种可能的设计中,所述第一上行载波属于所述终端设备的服务载波。
第二方面,本申请提供一种信息收发方法,包括:网络设备在第一下行载波上发送广播消息,其中,所述广播消息中包括与第二下行载波对应的第二下行配置信息;
其中,所述第二下行配置信息中包括所述第二下行载波的第二下行频点信息和/或物理小区标识信息;所述第一下行载波与第二上行载波属于终端设备的服务载波,且所述第二下行载波不属于所述终端设备的服务载波;所述第二下行载波与所述第二上行载波为系统级成对的载波。
在一种可能的设计中,所述第一下行载波位于第一频段,所述第二上行载波和所述第二下行载波位于第二频段,其中,所述第一频段的频率大于所述第二频段的频率。
在一种可能的设计中,在所述网络设备在第一下行载波上发送广播消息之后,还包括:
所述网络设备接收所述终端设备依据第二下行载波的参考信息,在所述第二上行载波上发送的上行信号;
其中,所述第二下行载波的参考信息为所述终端设备根据所述第二下行配置信息确定的。
在一种可能的设计中,所述参考信息,包括以下的至少一种:
参考路径损耗、参考下行接收定时、参考时间同步信息、参考频率同步信息。
在一种可能的设计中,所述广播消息中还包括:所述第二上行载波上的随机接入配置信息;
在所述网络设备在第一下行载波上发送广播消息之后,还包括:
所述网络设备接收所述终端设备在所述第二上行载波上,依据所述随机接入配置信息发送的随机接入请求,以进行所述终端设备的随机接入。
在一种可能的设计中,所述广播消息中还包括与第二上行载波对应的第二上行配置信息;
其中,所述第二上行配置信息中包括所述第二上行载波的第二上行频点信息。
在一种可能的设计中,所述广播消息中还包括:与第一上行载波对应的第一上行配置信息;
其中,所述第一上行配置信息中包括所述第一上行载波的第一上行频点信息。
在一种可能的设计中,在所述网络设备在第一下行载波上发送广播消息之后,还包括:
所述网络设备接收所述终端设备依据所述第一上行配置信息,在所述第一上行载波上发送的上行信号。
在一种可能的设计中,所述第一上行载波属于所述终端设备的服务载波。
第三方面,本申请提供一种终端设备,包括:
第一接收模块,用于在第一下行载波上接收网络设备发送的广播消息,其中,所述广播消息中包括与第二下行载波对应的第二下行配置信息;
其中,所述第二下行配置信息中包括所述第二下行载波的第二下行频点信息和/或物理小区标识信息;所述第一下行载波与第二上行载波属于所述终端设备的服务载波,且所述第二下行载波不属于所述终端设备的服务载波;所述第二下行载波与所述第二上行载波为系统级成对的载波。
在一种可能的设计中,所述第一下行载波位于第一频段,所述第二上行载波和所述第二下行载波位于第二频段,其中,所述第一频段的频率大于所述第二频段的频率。
在一种可能的设计中,所述终端设备,还包括:
计算模块,用于在所述第一接收模块在第一下行载波上接收网络设备发送的广播消息之后,根据所述第二下行配置信息,确定所述第二下行载波的参考信息。
在一种可能的设计中,所述参考信息,包括以下的至少一种:
参考路径损耗、参考下行接收定时、参考时间同步信息、参考频率同步信息。
在一种可能的设计中,所述终端设备,还包括:
第一发送模块,用于在所述计算模块确定所述第二下行载波的参考信息之后,依据所述第二下行载波的参考信息,在所述第二上行载波上向所述网络设备发送上行信号。
在一种可能的设计中,所述终端设备,还包括:
处理模块,用于在所述第一接收模块在第一下行载波上接收网络设备发送的广播消息之后,根据所述第二下行配置信息,对所述第二下行载波进行RRM测量,得到测量结果;根据所述测量结果,对所述第二上行载波进行移动性管理。
在一种可能的设计中,所述广播消息中还包括:所述第二上行载波上的随机接入配置信息;
所述终端设备,还包括:
接入模块,用于在所述第一接收模块在第一下行载波上接收网络设备发送的广播消息之后,在所述第二上行载波上,依据所述随机接入配置信息进行随机接入。
在一种可能的设计中,所述广播消息中还包括与第二上行载波对应的第二上行配置信息;
其中,所述第二上行配置信息中包括所述第二上行载波的第二上行频点信息。
在一种可能的设计中,所述广播消息中还包括:与第一上行载波对应的第一上行配置信息;
其中,所述第一上行配置信息中包括所述第一上行载波的第一上行频点信息。
在一种可能的设计中,所述终端设备,还包括:
第二发送模块,用于在所述第一接收模块在第一下行载波上接收网络设备发送的广播消息之后,依据所述第一上行配置信息,在所述第一上行载波上向所述网络设备发送上行信号。
在一种可能的设计中,所述第一上行载波属于所述终端设备的服务载波。
第四方面,本申请提供一种网络设备,包括:第三发送模块,用于在第一下行载波上发送广播消息,其中,所述广播消息中包括与第二下行载波对应的第二下行配置信息;
其中,所述第二下行配置信息中包括所述第二下行载波的第二下行频点信息和/或物理小区标识信息;所述第一下行载波与第二上行载波属于终端设备的服务载波,且所述第二下行载波不属于所述终端设备的服务载波;所述第二下行载波与所述第二上行载波为系统级成对的载波。
在一种可能的设计中,所述第一下行载波位于第一频段,所述第二上行载波和所 述第二下行载波位于第二频段,其中,所述第一频段的频率大于所述第二频段的频率。
在一种可能的设计中,所述网络设备,还包括:
第二接收模块,用于在所述第三发送模块在第一下行载波上发送广播消息之后,接收所述终端设备依据第二下行载波的参考信息,在所述第二上行载波上发送的上行信号;
其中,所述第二下行载波的参考信息为所述终端设备根据所述第二下行配置信息确定的。
在一种可能的设计中,所述参考信息,包括以下的至少一种:
参考路径损耗、参考下行接收定时、参考时间同步信息、参考频率同步信息。
在一种可能的设计中,所述广播消息中还包括:所述第二上行载波上的随机接入配置信息;
所述网络设备,还包括:
接入处理模块,用于在所述第三发送模块在第一下行载波上发送广播消息之后,接收所述终端设备在所述第二上行载波上,依据所述随机接入配置信息发送的随机接入请求,以进行所述终端设备的随机接入。
在一种可能的设计中,所述广播消息中还包括与第二上行载波对应的第二上行配置信息;
其中,所述第二上行配置信息中包括所述第二上行载波的第二上行频点信息。
在一种可能的设计中,所述广播消息中还包括:与第一上行载波对应的第一上行配置信息;
其中,所述第一上行配置信息中包括所述第一上行载波的第一上行频点信息。
在一种可能的设计中,所述网络设备,还包括:
第三接收模块,用于在所述第三发送模块在第一下行载波上发送广播消息之后,接收所述终端设备依据所述第一上行配置信息,在所述第一上行载波上发送的上行信号。
在一种可能的设计中,所述第一上行载波属于所述终端设备的服务载波。
第五方面,本申请提供一种计算机程序,该程序在被处理器执行时用于执行以上第一方面的方法。
第六方面,本申请提供一种计算机程序,该程序在被处理器执行时用于执行以上第二方面的方法。
第七方面,提供一种程序产品,例如计算机可读存储介质,包括第五方面的程序。
第八方面,提供一种程序产品,例如计算机可读存储介质,包括第六方面的程序。
第九方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第十方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
可见,在以上各个方面,终端设备可以从第一下行载波上获取到不是当前的终端设备的服务载波的配置信息,便于在终端设备依据不是当前的终端设备的服务载波的配置信息,去进行上行信号的发送。进一步的,不采用NR高频下行载波所对应的配 置信息来获取到的下行的参考信息,去进行LTE低频上行载波上信号的发送,而是可以通过承载在NR高频下行载波上的LTE低频下行载波配置信息,去进行LTE低频上行载波上信号的发送,有助于提高NR与LTE共存场景下的系统的性能。
附图说明
图1为现有技术中NR与LTE共存的部署场景图;
图2为本申请实施例提供的一种应用场景示意图;
图3为本申请实施例提供的一种信息收发方法的流程示意图;
图4为本申请实施例提供的一种信息收发方法的信令图;
图5为本申请实施例提供的又一种信息收发方法的流程示意图;
图6为本申请实施例提供的又一种信息收发方法的信令图一;
图7为本申请实施例提供的又一种信息收发方法中的随机接入过程的信令图;
图8为本申请实施例提供的又一种信息收发方法中的上行发送定时的计算示意图;
图9为本申请实施例提供的又一种信息收发方法的信令图二;
图10为本申请实施例提供的再一种信息收发方法的流程示意图;
图11为本申请实施例提供的再一种信息收发方法的信令图;
图12为本申请实施例提供的再一种信息收发方法中终端设备随机接入的信令图一;
图13为本申请实施例提供的再一种信息收发方法中终端设备随机接入的信令图二;
图14为本申请实施例提供的再一种信息收发方法中终端设备随机接入的信令图三;
图15为本申请实施例提供的再一种信息收发方法中终端设备随机接入的信令图四;
图16为本申请实施例提供的一种终端设备的结构示意图;
图17为本申请实施例提供的又一种终端设备的结构示意图;
图18为本申请实施例提供的再一种终端设备的结构示意图;
图19为本申请实施例提供的一种网络设备的结构示意图;
图20为本申请实施例提供的又一种网络设备的结构示意图;
图21为本申请实施例提供的再一种网络设备的结构示意图;
图22为本申请实施例提供的其他一种终端设备的结构示意图;
图23为本申请实施例提供的其他一种网络设备的结构示意图。
具体实施方式
本申请实施例应用于5G通信系统或未来可能出现的其他系统,以下对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。需要说明的是,当本申请实施例的方案应用于5G系统或未来可能出现的其他系统时,网络设备、终端设备、网络设备的名称可能发生变化,但这并不影响本申请实施例方案的实施。
1)终端设备,又称为终端、用户设备,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。常见的终端设备例如包括:手 机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,其中,可穿戴设备例如包括:智能手表、智能手环、计步器等。
2)网络设备,又称为无线接入网(Radio Access Network,RAN)设备是一种将终端设备接入到无线网络的设备,其包括各种通信制式中的网络设备,例如包括但不限于:基站、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、网络设备控制器(Base Station Controller,BSC)、网络设备收发台(Base Transceiver Station,BTS)、家庭网络设备(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU)等。
3)网络设备,包括了各类频率制式的网络设备,例如包括但不限于:低频网络设备、高频网络设备。
4)“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
图2为本申请实施例提供的一种应用场景示意图。如图2所示的组网架构,主要包括网络设备和终端设备。网络设备可以使用相对较高的频率的毫米波频段与终端设备通信,毫米波频段通常为大于3.5GHz以上的频段,例如,3.5GHz,28GHz,38GHz;并且,网络设备也可以使用相对较低的频率的频段与终端设备通信,低频频段通常为小于3.5GHz的频段,例如1.5GHz,800M。进而网络设备是支持多个频段的,是支持高频、低频的。
本申请实施中的网络设备可以是工作在3.5GHz以下频段、且支持3.5GHz(包括3.5GHz)以上频段的网络侧设备,例如,无线保真(Wireless-Fidelity,Wi-Fi)的接入点、下一代通信的基站,如5G的gNB或小站、微站,TRP,还可以是工作在高频频段的中继站、接入点、车载设备、可穿戴设备等。
其中,本申请实施例中的终端设备可以指接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端等。本申请实施例中的终端设备可以为支持NR的终端,也可以为支持未来版本LTE的终端,例如支持LTE版本15及以后版本的终端。
在介绍本申请的具体实施方式之前,首先介绍一下LTE系统,基于提高设备的功率效率、延长电池的续航时间、以及设备成本上的考虑,LTE系统下行基于OFDMA进行实现,LTE系统上行基于单载波频分多址(Single Carrier Frequency Division Multiple Access,SC-FDMA)进行实现。时频资源被划分成时间域维度上的时域符号和频率域维度上的子载波,其中,时域符号为OFDM或SC-FDMA符号。最小的资源粒度叫做一个RE(Resouce Element,RE),表示时间域上的一个时域符号和频率域上的一个子载波组成的时频格点。LTE系统进行调度的基本时间单位一般是一个子帧,时长为1ms;其中,一个子帧一般包括两个时隙,一个时隙一般包括7个时域符号。一个时隙内所有的时域符号与频域上12个子载波组成的一个资源块,叫做RB(Resource Block,RB),LTE资源调度就是以RB 为基本单位的,具体来说,LTE系统中调度的基本频率单位为资源块RB的频域宽度,一个RB频域上包括12个子载波,时域上占用一个子帧的时长。LTE演进系统中还会考虑引入更短的时间调度单位,比如以一个时隙甚至几个时域符号为单位的调度方式。LTE支持频分双工(Frequency Division Duplexing,FDD)和时分双工(Time Division Duplexing,TDD)两种双工方式。对于FDD来说,下行和上行在不同的载波上传输;对于TDD来说,上行和下行在同一载波的不同时间来传输;在一个载波上包括下行子帧,上行子帧和特殊子帧,其中,特殊子帧中包括DwPTS,GP和UpPTS三个部分。其中的GP主要用于下行到上行的器件转换时间和传播时延的补偿。LTE系统当前主要部署在低频段,比如800MHz至2GHz左右。
再介绍一下5G技术,5G技术需要支持高达10G的下行速率,5G技术使用的频谱范围非常广,例如从低于6GHz的频段到100GHz的频段,从而高频技术是5G必然要考虑的问题。在高频信号的传输中,高频信号易受到传输条件的影响,进而导致高频信号的质量会很差,为了增强高频信号,一般采用波束赋形(beam forming)技术通过增益天线去提升高频信号传输的性能。
如图2所示,网络设备01下具有至少一个小区,终端设备02位于网络设备01的小区之内,终端设备02与网络设备01之间会产生通信动作。图3为本申请实施例提供的一种信息收发方法的流程示意图。如图3所示,该方法包括:
S101、终端设备在第一下行载波上接收网络设备发送的广播消息,其中,广播消息中包括与第二下行载波对应的第二下行配置信息;
其中,第二下行配置信息中包括第二下行载波的第二下行频点信息和/或物理小区标识信息;第一下行载波与第二上行载波属于终端设备的服务载波,且第二下行载波不属于终端设备的服务载波;第二下行载波与第二上行载波为系统级成对的载波。
广播消息中还包括与第二上行载波对应的第二上行配置信息;其中,第二上行配置信息中包括第二上行载波的第二上行频点信息。
并且,第一下行载波位于第一频段,第二上行载波和第二下行载波位于第二频段,其中,第一频段的频率大于第二频段的频率。
图4为本申请实施例提供的一种信息收发方法的信令图,图4用于执行图3所提供的一种信息收发方法的流程,如图4所示,该方法包括:
S11、终端设备在第一下行载波上接收网络设备发送的广播消息,其中,广播消息中包括与第二下行载波对应的第二下行配置信息。
其中,第二下行配置信息中包括第二下行载波的第二下行频点信息和/或物理小区标识信息;第一下行载波与第二上行载波属于终端设备的服务载波,且第二下行载波不属于终端设备的服务载波;第二下行载波与第二上行载波为系统级成对的载波。广播消息中还包括与第二上行载波对应的第二上行配置信息;其中,第二上行配置信息中包括第二上行载波的第二上行频点信息。并且,第一下行载波位于第一频段,第二上行载波和第二下行载波位于第二频段,其中,第一频段的频率大于第二频段的频率。
在本实施例中,在现有技术中,在如图1所示的场景下,终端设备采用NR下行载波与LTE上行载波作为服务载波,现有技术中,与该NR下行载波对应的上行载波就是该LTE上行载波,而NR下行载波、LTE上行载波的频率是相差较大的。举例来说,网络设备在 NR上行(Uplink,UL)/TDD载波上发送下行信号,位于网络设备所管辖范围内的终端设备根据自身需求接收该下行信号;终端设备在FDD下行(Downlink,DL)载波上向网络设备发送上行信号。此时,终端设备没有配置LTE下行载波为其服务载波。从而,终端设备在LTE上行载波上向网络设备发送上行信号的时候,发送上行信号所需要的参考信息是依据NR下行载波而计算得到的。
其中,在本申请的方案中,终端设备接入到网络设备后,终端设备与网络设备建立了无线资源控制(Radio Resource Control,RRC)连接之后,为该终端设备与该网络设备之间的通信承载上行信号或下行信号的载波,称为该终端设备的服务载波。举例来说,终端设备与网络设备建立起了RRC连接之后,终端设备在A上行载波上向网络设备发送A上行信号,此时,A上行载波为终端设备的服务载波;再举例来说,终端设备与网络设备建立起了RRC连接之后,终端设备在B下行载波上接收网络设备发送的B下行信号,此时,B下行载波为终端设备的服务载波;再举例来说,终端设备与网络设备建立起了RRC连接之后,终端设备在C下行载波上接收网络设备发送的C下行信号,终端设备进行的处理之后,终端设备在D上行载波上向网络设备发送D上行信号,此时,C下行载波、D上行载波都是终端设备的服务载波,且可以称C下行载波与D上行载波是终端设备的一对服务载波。在本申请的方案中,终端设备与网络设备建立起了RRC连接之后,终端设备在第一下行载波上接收网络设备发送的广播消息,从而第一下行载波属于终端设备的服务载波;在后续的过程中,终端设备会在第二上行载波上向网络设备发送上行信号,从而第二上行载波属于终端设备的服务载波;然而,终端设备不会在第二下行载波上接收网络设备发送的下行信号,从而第二下行载波不属于终端设备的服务载波。
在本申请的方案中,网络设备和终端设备支持的第一下行载波为NR DL载波,举例来说,第一下行载波可以为NR纯DL载波、或为NR TDD中的DL载波、或者为NR FDD中的DL载波;第一下行载波可以部署在第一频段,可以选用频率大于等于2.5GHz的频段,举例来说,第一下行载波的频率为20GHz至30GHz,或者第一下行载波的频率为3.5GHz。
相应的,该第一下行载波所对应的上行载波为第二上行载波,网络设备和终端设备支持的该第二上行载波为LTE UL载波,该第二上行载波位于第二频段,第一频段的频率大于第二频段的频率;可以将第二上行载波部署在低频段,举例来说,第二上行载波为800MHz或2GHz频段的LTE FDD UL、或者为800MHz或2GHz频段的TDD UL载波。
由于对于作为下行载波的第一下行载波来说,与其对应的上行载波为第二上行载波,可知,第一下行载波与第二上行载波属于当前的终端设备的服务载波。
终端设备接收网络设备在第一下行载波上发送的广播消息的过程如下。如图4所示,在网络设备在第一下行载波上,向当前的终端设备发送一个广播消息,在该广播消息中会承载第一下行载波的小区级别信息,例如,第一下行载波上的DL带宽信息和/或载波基本结构信息;该广播消息中还会承载与第二下行载波对应的第二下行配置信息、以及与第二上行载波对应的第二上行配置信息;第二下行配置信息中包括第二下行载波的第二下行频点信息和/或物理小区标识信息;第二上行配置信息中包括第二上行载波的第二上行频点信息。终端设备接收到广播消息之后,终端设备可以根据第二下行频点信息确定第二下行载波的具体频域位置;物理小区标识信息可以指示该第二上行载波所对应的网络设备侧的第二下行载波是该终端设备附近的哪个网络设备或哪个LTE小区所管辖,进而在本申请中, 终端设备就不需要进行其他LTE小区的小区标识的搜索,并且依据该物理小区标识信息,终端设备可以准确的确定出管辖该第二下行载波的LTE小区。
在本申请中,第二下行载波不属于当前的终端设备的服务载波,网络设备不通过该第二下行载波向当前的终端设备发送下行信号。并且,该第二下行载波位于第二频段,可以将第二下行载波部署在低频段,举例来说,第二下行载波为800MHz或2GHz频段的LTE FDD UL、或者为800MHz或2GHz频段的TDD UL载波。在本申请中,可以将第二上行载波和第二下行载波部署在第二频段的同一频率上。
在本申请中,第二下行载波与第二上行载波是系统级成对的载波。
首先,系统级成对的载波的定义为:一对下行载波和一个上行载波,在网络设备所管辖范围下的第一终端设备从该下行载波进行下行接入,并且该第一终端设备从该下行载波上读取该上行载波上随机接入配置信息,进而该某一个终端设备根据该随机接入配置信息在该上行载波上发起随机接入,最终该某一个终端设备完成RRC连接建立;能够完全上述功能的该上行载波和该下行载波可以称为系统级成对载波。举例来说,在网络设备所管辖范围下的某一个终端设备M从E下行载波进行下行接入,并且该终端设备M从E下行载波上读取F上行载波上随机接入配置信息,进而终端设备M根据该随机接入配置信息在F上行载波上发起随机接入,终端设备M完成RRC连接建立,此时,E下行载波与F上行载波为系统级成对载波。
本申请的方案中涉及两套系统级成对载波:其中的一套系统级成对载波是指第一下行载波和第二上行载波,具体的,一个支持NR的终端设备从第一下行载波接入,并从该第一下行载波上读取该第二上行载波上的随机接入配置信息,进而该支持NR的终端设备根据该随机接入配置信息在该第二上行载波上发起随机接入,最终该支持NR的终端设备完成RRC连接建立,在这里,第一下行载波与第二上行载波为系统级成对的载波;另一套系统级成对载波是指第二下行载波和第二上行载波,具体的,一个支持LTE的终端设备从第二下行载波接入,并从该第二下行载波上读取该第二上行载波上的随机接入配置信息,进而支持LTE的终端设备根据该随机接入配置信息在该第二上行载波上发起随机接入,最终该支持LTE的终端设备完成RRC连接建立,在这里,第二下行载波与第二上行载波为系统级成对的载波。
在本申请中,第二上行载波为当前的终端设备的服务载波,第二下行载波不是该终端设备的服务载波,但是,会将第二下行载波的第二下行配置信息放入到第一上行载波的广播信息中,使得在第二上行载波上发送上行信号的时候,可以以第二下行载波的第二下行配置信息为依据。终端设备不需要从第二下行载波上接收下行业务数据,但可以通过第二上行载波向网络设备发送上行业务数据。举例来说,在本申请中,第二下行载波与第二上行载波为系统级成对的一对FDD载波,或者第二下行载波与第二上行载波为系统级成对的一对TDD载波。但是,本申请中涉及的第二下行载波、以及第二上行载波可以是其他终端设备的服务载波,例如,第二下行载波和第二上行载波可以作为其他支持LTE的终端设备的一对服务载波,或者,第二下行载波和第二上行载波可以作为其他支持NR的终端设备的一对服务载波;当第二下行载波和第二上行载波作为其他终端设备的一对服务载波的时候,也可以在终端设备在第二下行载波上接收网络设备发送的广播消息,此时,的广播消息中可以包括第二上行载波的频点信息、带宽信息等等配置信息,以及第二上行载波 上的随机接入配置信息等等。
其中,在本申请中,网络设备在第一下行载波上向当前的终端设备发送的广播消息,其具体名称在本申请中不做限定;并且,该广播消息中的信息可以由一条广播消息或多条广播信息承载,或者,该广播消息中的信息可以由高层信令中的一个或多个信息元素(Information Element)进行承载,即在本申请中终端设备接收到的广播消息也不限定为一条广播消息或一条广播信道。举例来说,第一下行载波本身的小区基本信息、第二上行配置信息、第二下行配置信息可以分别承载在不同的广播消息里,例如,第一下行载波的小区基本信息承载在NR主系统模块(Master Information Block,MIB)里,同时将第二上行配置信息以及第二下行配置信息承载在NR系统信息块(System Information Block,SIB)里,再例如,将第一下行载波本身的小区基本信息、第二上行配置信息、第二下行配置信息都承载在NR SIB里。进而,终端设备通过检测NR同步信号来发现该第一下行载波,例如通过NR主同步序列(Primary Synchronization Sequence,PSS)和辅同步序列(Secondary Synchronization Sequence,SSS)来发现该第一下行载波,举例来说,终端设备可以通过NR PSS和SSS的序列信息来识别该第一下行载波,然后终端设备读取网络设备在该第一下行载波上发送的广播信息。
本实施例通过终端设备在第一下行载波上接收网络设备发送的广播消息,其中,广播消息中包括与第二下行载波对应的第二下行配置信息;其中,第二下行配置信息中包括第二下行载波的第二下行频点信息和/或物理小区标识信息;第一下行载波与第二上行载波属于终端设备的服务载波,且第二下行载波不属于终端设备的服务载波;第二下行载波与第二上行载波为系统级成对的载波。从而终端设备在第一下行载波上获取到网络设备发送的与第二下行载波对应的第二下行配置信息,其中,第一下行载波属于终端设备的服务载波,但是第二下行载波不属于终端设备的服务载波,终端设备可以根据与第二下行载波对应的第二下行配置信息,确定出在第二上行载波上发送信号时所依据的参考信息,其中,第二上行载波属于终端设备的服务载波。进而终端设备可以从第一下行载波上获取到不是当前的终端设备的服务载波的配置信息,便于在终端设备依据不是当前的终端设备的服务载波的配置信息,去进行上行信号的发送。进一步的,不采用NR高频下行载波所对应的配置信息来获取到的下行的参考信息,去进行LTE低频上行载波上信号的发送,而是可以通过承载在NR高频下行载波上的LTE低频下行载波配置信息,去进行LTE低频上行载波上信号的发送,有助于提高NR与LTE共存场景下的系统的性能。
图5为本申请实施例提供的又一种信息收发方法的流程示意图。如图5所示,在图3所示的实施例的基础上,该方法,包括:
S201、终端设备在第一下行载波上接收网络设备发送的广播消息,其中,广播消息中包括与第二下行载波对应的第二下行配置信息、第二上行载波上的随机接入配置信息。其中,第二下行配置信息中包括第二下行载波的第二下行频点信息和/或物理小区标识信息;第一下行载波与第二上行载波属于终端设备的服务载波,且第二下行载波不属于终端设备的服务载波;第二下行载波与第二上行载波为系统级成对的载波。
S202、终端设备在第二上行载波上,依据随机接入配置信息进行随机接入。
S203、终端设备根据第二下行配置信息,确定第二下行载波的参考信息。其中,参考 信息,包括以下的至少一种:参考路径损耗、参考下行接收定时、参考时间同步信息、参考频率同步信息。
S204、终端设备依据第二下行载波的参考信息,在第二上行载波上向网络设备发送上行信号。
在S201之后,还包括:
S205、终端设备根据第二下行配置信息,对第二下行载波进行RRM测量,得到测量结果;终端设备根据测量结果,对第二上行载波进行移动性管理。
其中,S202-S204,与S205之间可以单独实施,也可以同时实施,本申请不做限定。
图6为本申请实施例提供的又一种信息收发方法的信令图一,图6用于执行图5所提供的又一种信息收发方法的流程,如图6所示,该方法包括:
S21、终端设备在第一下行载波上接收网络设备发送的广播消息,其中,广播消息中包括与第二下行载波对应的第二下行配置信息、以及第二上行载波上的随机接入配置信息。
其中,第二下行配置信息中包括第二下行载波的第二下行频点信息和/或物理小区标识信息;第一下行载波与第二上行载波属于终端设备的服务载波,且第二下行载波不属于终端设备的服务载波;第二下行载波与第二上行载波为系统级成对的载波。
在本实施例中,网络设备在第一下行载波上发送广播消息,网络设备所管辖范围内的终端设备根据自身的需求,在第一下行载波上接收该广播消息。本步骤的过程参见图4所提供的一种信息收发方法的信令图中的步骤S11,原理和过程与步骤S11相同。
但是在图6中的S21中,广播消息中还会包括第二上行载波上的随机接入配置信息,该随机接入配置信息可以为前导的序列相关信息和/或时频资源信息等。
S22、终端设备在第二上行载波上,依据随机接入配置信息进行随机接入。
在本实施例中,终端设备在检测到广播消息之后,终端设备首先需要根据随机接入配置信息进行随机接入。终端设备可以采用现有的任一随机接入方法,根据随机接入配置信息进行随机接入。本实施例对于随机接入的方法不做限定。
举例来说,图7为本申请实施例提供的又一种信息收发方法中的随机接入过程的信令图,如图7所示,终端设备需要在第二上行载波上进行随机接入,步骤S1为终端设备向网络设备发送消息1,消息1为前导符(Preamble),Preamble是接入信道的前导码;步骤S2为网络设备向终端设备返回消息2,消息2为随机接入响应消息;步骤S3为终端设备向网络设备发送消息3,其中,一般情况下,消息3是RRC类型的消息,但是由媒体介入控制层(Media Access Control,MAC)发起的时候消息3不是RRC类型的消息,例如,消息3中可以包括RRC消息,如service request、resume request,或者MAC层发起的随机接入;步骤S4为网络设备向终端设备返回消息4,消息4为竞争解决消息;终端设备就可以根据该竞争解决消息确定当前的随机接入过程竞争成功。
再举例来说,终端设备需要根据随机接入配置信息进行随机接入的时候,也可以采用两步随机方法,在两步随机接入过程中,终端设备可以向网络设备发送消息1和消息3,消息1为前导符Preamble;网络设备向终端设备返回消息2和消息4,消息2为随机接入响应消息,消息4为竞争解决消息。最终终端设备可以与网络设备建立起RRC 连接。
S23、终端设备根据第二下行配置信息,确定第二下行载波的参考信息。其中,参考信息,包括以下的至少一种:参考路径损耗、参考下行接收定时、参考时间同步信息、参考频率同步信息。
在本实施例中,终端设备需要依据第二下行配置信息,计算出第二下行载波的参考信息。在计算出第二下行载波的参考信息的时候,可以计算出参考路径损耗、参考下行接收定时、参考时间同步信息、参考频率同步信息中的任意一种或几种。
本申请中,计算出第二下行载波的参考路径损耗的过程如下:
与第二下行载波对应的第二下行配置信息中,会携带第二下行载波上的参考信号的配置发送功率值,其中,参考信号可以为小区特定参考信号(Cell-specific Reference Signal,CRS)或其他参考信号,比如信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),该参考信号的序列由第二下行配置信息中包括的物理小区标识确定;终端设备可以根据第二下行配置信息,测量在第二下行载波上发送的参考信号,进而在测量的过程中得到测量该参考信号时的接收功率值;然后终端设备根据第二下行配置信息中包括的参考信号的发送功率值、以及测量得到的接收功率值,得到与第二下行载波的频率相对应的参考路径损耗;然后终端设备就可以根据确定出的参考路径损耗,计算出终端设备在第二上行载波上发送的上行信号的实际发送功率值。例如,以LTE系统中的上行数据信道(Physical Uplink Shared Channel,PUSCH)为例,可以采用公式PL=referenceSignalPower–higher layer filtered RSRP,其中,PL为参考路径损耗,referenceSignalPower为高层信令通知的参考信号的配置发送功率值,higher layer filtered RSRP为终端设备根据第二下行配置信息,测量在第二下行载波上发送的参考信号时的接收功率值,其中,在测量得到该接收功率值的过程中,终端设备是作为接收端一侧的,从上述公式中可以得出,配置发送功率值与接收功率值相减之后,就可以到网络设备与终端设备之间的参考路径损耗PL的值;然后采用公式P PUSCH(i)=min{P CMAX,10log 10(M PUSCH(i))+P O_PUSCH(j)+α(j)·PL+Δ TF(i)+f(i)},得到终端设备在第二上行载波上发送的上行信号的实际发送功率值,其中,P CMAX是当前的终端设备被配置的最大发送功率,M PUSCH(i)是当前的PUSCH被分配的带宽,P O_PUSCH是高层信令配置的一个预设参数,α(j)为补偿因子,Δ TF(i)是与当前的PUSCH的与调制与编码策略(Modulation and Coding Scheme,MCS)相关的参数,f(i)是与闭环功率相关的功率调整值,i为子帧索引,j为不同场景下发送PUSCH的场景标识。其他的上行信道,例如上行控制信道、上行参考信号等,它们的实际发送功率值都可以采用上述公式类似的进行计算。
在图1所示的场景下,若第一下行载波为NR DL载波,第二下行载波为LTE DL载波,第二上行载波为LTE UL载波,终端设备在NR DL载波上接收到网络设备发送的广播消息,在广播消息中包括了与LTE DL载波对应的LTE DL配置信息,在该LTE DL配置信息中包括了LTE DL载波的参考信号的配置发送功率值;终端设备可以根据LTE DL配置信息,测量在LTE DL载波发送的参考信号,可以得到接收功率值;终端设备根据LTE DL配置信息中的配置发送功率值、以及当前计算出的接收功率值,计算得到与LTE DL载波的频率对应的参考路径损耗;终端设备根据该与LTE DL载波的频率对应的参考路径损耗,计算出终端设备在LTE UL载波上发送上行信号时的实际发送功率值。
现有技术中,若第一下行载波为NR DL载波,第二上行载波为LTE UL载波,终端设备在NR DL载波上接收到网络设备发送的广播消息,在广播消息中包括了与NR DL载波对应的NR DL配置信息,在该NR DL配置信息中包括了NR DL载波的参考信号的配置发送功率值;终端设备可以根据NR DL配置信息,测量在NR DL载波发送的参考信号,可以得到接收功率值;终端设备根据NR DL配置信息中的配置发送功率值、以及当前计算出的接收功率值,计算得到与NR DL载波的频率对应的参考路径损耗;终端设备根据该与NR DL载波的频率对应的参考路径损耗,计算出终端设备在LTE UL载波上发送上行信号时的实际发送功率值。
由于NR部署在高频段,一般在3.5GHz甚至几十GHz,但是LTE部署在低频段,一般在800MHz或2GHz,NR与LTE之间的频点相差较大。现有技术中,终端设备基于NR下行载波上发送的参考信号而测量得到的参考路径损耗,只能表征在NR频段内的参考路径损耗,而不能表征终端设备在LTE上行载波上发送上行信号时的参考路径损耗。
而在本申请中,基于LTE下行载波上发送的参考信号而测量得到的参考路径损耗,可以表征在LTE频段内的参考路径损耗,可以表征终端设备在LTE上行载波上发送上行信号时的参考路径损耗。从而本申请计算参考路径损耗的方式,与现有技术中基于NR下行载波上发送的参考信号而测量得到参考路径损耗的方式,更加准确。
本申请中,计算出第二下行载波的参考下行接收定时的过程如下:
终端设备可以根据第二下行配置信息,测量在第二下行载波上发送的下行信号,例如,下行信号可以是下行同步信号或下行参考信号等,进而测量得到第二下行载波的下行接收定时;然后终端设备以该下行接收定时为基准,将该下行接收定时加上预设的当前的上行发送定时提前量,去得到一个上行发送定时,该上行发送定时也可以称作上行发送提前量。
在图1所示的场景下,若第一下行载波为NR DL载波,第二下行载波为LTE DL载波,第二上行载波为LTE UL载波,终端设备在NR DL载波上接收到网络设备发送的广播消息,在广播消息中包括了与LTE DL载波对应的LTE DL配置信息;图8为本申请实施例提供的又一种信息收发方法中的上行发送定时的计算示意图,如图8所示,为了规范帧结构,标准协议一般都是采用终端设备的上行发送提前的机制,从而,终端设备根据LTE DL配置信息,测量在LTE DL载波上发送的下行信号,得到一个LTE DL载波的下行接收定时N TA;终端设备根据下行接收定时N TA,以及当前的上行发送定时提前量N TA offset,可以得到上行发送定时,例如,终端设备可以采用公式(N TA+N TA offset)×T s得到上行发送定时,其中,T s为基本时间单位。
现有技术中,若第一下行载波为NR DL载波,第二上行载波为LTE UL载波,终端设备在NR DL载波上接收到网络设备发送的广播消息,在广播消息中包括了与NR DL载波对应的NR DL配置信息;终端设备根据NR DL配置信息,测量在NR DL载波上发送的下行信号,得到一个NR DL载波的下行接收定时N′ TA;终端设备根据下行接收定时N′ TA,以及当前的上行发送定时提前量N′ TA offset,可以得到上行发送定时,例如,终端设备可以采用公式(N′ TA+N′ TA offset)×T s得到上行发送定时。
由于NR与LTE之间的频点相差较大。可以看出,在现有技术中,NR DL载波与LTE UL载波的如频点相差较大,并且,由于LTE系统中FDD小区之间是异步的,而NR系统中很可能为了采用高级干扰协调和干扰删除等技术要求小区间同步,从而NR DL载波与 LTE UL载波的帧定时都有可能不一样,因此,现有技术中,终端设备根据NR DL载波的下行接收定时,去确定出与LTE UL载波对应的上行发送定时的方式,是不准确的。
而在本申请中,终端设备根据LTE DL载波的下行接收定时,去确定出与LTE UL载波对应的上行发送定时的方式更加准确。
本申请中,计算出第二下行载波的参考时间同步信息和/或参考频率同步信息的过程如下:
终端设备可以根据第二下行配置信息,测量在第二下行载波上发送的下行信号,例如,下行信号可以是下行同步信号或下行参考信号等,进而可以测量得到第二下行载波的参考时间同步信息和/或参考频率同步信息;然后,终端设备根据第二下行载波的参考时间同步信息和/或参考频率同步信息,去获取终端设备在第二上行载波上发送上行信号的参考时间同步信息和/或参考频率同步信息。
在图1所示的场景下,若第一下行载波为NR DL载波,第二下行载波为LTE DL载波,第二上行载波为LTE UL载波,终端设备在NR DL载波上接收到网络设备发送的广播消息,在广播消息中包括了与LTE DL载波对应的LTE DL配置信息;终端设备根据LTE DL配置信息,测量在LTE DL载波上发送的下行信号,得到LTE DL载波的参考时间同步信息和/或参考频率同步信息;然后,终端设备根据LTE DL载波的参考时间同步信息和/或参考频率同步信息,去获取终端设备在LTE UL载波上发送上行信号的参考时间同步信息和/或参考频率同步信息。
现有技术中,若第一下行载波为NR DL载波,第二上行载波为LTE UL载波,终端设备在NR DL载波上接收到网络设备发送的广播消息,在广播消息中包括了与NR DL载波对应的NR DL配置信息;终端设备根据NR DL配置信息,测量在NR DL载波上发送的下行信号,得到一个NR DL载波的参考时间同步信息和/或参考频率同步信息;然后,终端设备根据NR DL载波的参考时间同步信息和/或参考频率同步信息,去获取终端设备在LTE UL载波上发送上行信号的参考时间同步信息和/或参考频率同步信息。
由于NR与LTE之间的频点相差较大。可以看出,在现有技术中,NR DL载波与LTE UL载波的如频点相差较大,终端设备根据NR DL载波的参考时间同步信息和/或参考频率同步信息,去获取终端设备在LTE UL载波上发送上行信号的参考时间同步信息和/或参考频率同步信息的方式,并不准确。
本申请中,终端设备根据LTE DL载波的参考时间同步信息和/或参考频率同步信息,去获取终端设备在LTE UL载波上发送上行信号的参考时间同步信息和/或参考频率同步信息方式,更加准确。
S24、终端设备依据第二下行载波的参考信息,在第二上行载波上向网络设备发送上行信号。
在本实施例中,终端设备确定出第二下行载波的参考信息之后,就可以根据该第二下行载波的参考信息在第二上行载波上向网络设备发送上行信号了。其中,本申请不对上行信号的具体内容做限定,举例来说,上行信号可以为上行数据信道、上行控制信道和上行参考信号中的至少一种。
图9为本申请实施例提供的又一种信息收发方法的信令图二,图9用于执行图5所提供的又一种信息收发方法的流程,如图9所示,该方法包括:
S31、终端设备在第一下行载波上接收网络设备发送的广播消息,其中,广播消息中包括与第二下行载波对应的第二下行配置信息、以及第二上行载波上的随机接入配置信息。
其中,第二下行配置信息中包括第二下行载波的第二下行频点信息和/或物理小区标识信息;第一下行载波与第二上行载波属于终端设备的服务载波,且第二下行载波不属于终端设备的服务载波;第二下行载波与第二上行载波为系统级成对的载波。
在本实施例中,网络设备在第一下行载波上发送广播消息,网络设备所管辖范围内的终端设备根据自身的需求,在第一下行载波上接收该广播消息。本步骤的过程参见图4所提供的一种信息收发方法的信令图中的步骤S11,原理和过程与步骤S11相同。
S32、终端设备根据第二下行配置信息,对第二下行载波进行RRM测量,得到测量结果;终端设备根据测量结果,对第二上行载波进行移动性管理。
在本实施例中,由于第二下行载波不是终端设备的服务载波,但是与第二下行载波有系统级对应关系的第二上行载波是终端设备的服务载波,从而为了维持终端设备在低频段的第二上行载波上的移动性,就需要终端设备在第二下行载波上做RRM测量,RRM测量可以具体为参考信号接收功率(Reference Signal Receiving Power,RSRP)测量、或参考信号接收质量(Reference Signal Receiving Quality,RSRQ)测量等等,进而终端设备才可以利用测量得到的测量结果对作为当前终端设备的服务载波的第二上行载波进行移动性管理。在S25中,在终端设备检测到第二下行配置信息中的第二下行载波的第二下行频点信息和/或物理小区标识信息之后,终端设备就可以根据第二下行频点信息和/或物理小区标识信息,对第二下行载波进行下行的RRM测量了,可以得到一个测量结果;然后,终端设备就可以利用该测量结果,进行第二上行载波进行移动性管理。其中,移动性管理包括了以下的至少一种:是否更换第二上行载波、是否去配置第二上行载波。
在图1所示的场景下,若第一下行载波为NR DL载波,第二下行载波为LTE DL载波,第二上行载波为LTE UL载波,终端设备在NR DL载波上接收到网络设备发送的广播消息,在广播消息中包括了与LTE DL载波对应的LTE DL配置信息;终端设备根据LTE DL配置信息,对LTE DL载波进行RRM测量,得到一个测量结果;终端设备根据测量结果,对LTE UL载波进行移动性管理。
本实施例通过终端设备在第一下行载波上接收网络设备发送的广播消息,其中,广播消息中包括与第二下行载波对应的第二下行配置信息;其中,第二下行配置信息中包括第二下行载波的第二下行频点信息和/或物理小区标识信息;第一下行载波与第二上行载波属于终端设备的服务载波,且第二下行载波不属于终端设备的服务载波;第二下行载波与第二上行载波为系统级成对的载波;终端设备根据第二下行配置信息,确定第二下行载波的参考信息;终端设备依据第二下行载波的参考信息,在第二上行载波上向网络设备发送上行信号。从而终端设备在第一下行载波上获取到网络设备发送的与第二下行载波对应的第二下行配置信息,其中,第一下行载波属于终端设备的服务载波,但是第二下行载波不属于终端设备的服务载波,终端设备可以根据与第二下行载波对应的第二下行配置信息,确定出在第二上行载波上发送信号时所依据的参考信息,其中,第二上行载波属于终端设备的服务载波。进而终端设备可以从第一下行载波上获取到不是当前的终端设备的服务载波的配置信息,便于在终端设备依据不是当前的终端设备的服务载波的配置信息,去进行上 行信号的发送。不采用NR高频下行载波所对应的配置信息来获取到的下行的参考信息,去进行LTE低频上行载波上信号的发送,而是可以通过承载在NR高频下行载波上的LTE低频下行载波配置信息去获取参考信息,根据该参考信息去进行LTE低频上行载波上信号的发送,有助于提高NR与LTE共存场景下的系统的性能。
图10为本申请实施例提供的再一种信息收发方法的流程示意图。如图10所示,在图3所示的实施例的基础上,该方法,包括:
S301、终端设备在第一下行载波上接收网络设备发送的广播消息,其中,广播消息中包括与第二下行载波对应的第二下行配置信息、以及与第一上行载波对应的第一上行配置信息;
其中,第一上行配置信息中包括第一上行载波的第一上行频点信息,第二下行配置信息中包括第二下行载波的第二下行频点信息和/或物理小区标识信息;第一下行载波与第二上行载波属于终端设备的服务载波,且第二下行载波不属于终端设备的服务载波;第二下行载波与第二上行载波为系统级成对的载波;第一上行载波属于终端设备的服务载波。
S302、终端设备依据第一上行配置信息,在第一上行载波上向网络设备发送上行信号。
图11为本申请实施例提供的再一种信息收发方法的信令图,图11用于执行图10所提供的再一种信息收发方法的流程,如图11所示,该方法包括:
S41、终端设备在第一下行载波上接收网络设备发送的广播消息,其中,广播消息中包括与第二下行载波对应的第二下行配置信息、以及与第一上行载波对应的第一上行配置信息;
其中,第一上行配置信息中包括第一上行载波的第一上行频点信息,第二下行配置信息中包括第二下行载波的第二下行频点信息和/或物理小区标识信息;第一下行载波与第二上行载波属于终端设备的服务载波,且第二下行载波不属于终端设备的服务载波;第二下行载波与第二上行载波为系统级成对的载波;第一上行载波属于终端设备的服务载波。
在本实施例中,网络设备在第一下行载波上发送广播消息,网络设备所管辖范围内的终端设备根据自身的需求,在第一下行载波上接收该广播消息。本步骤的过程参见图4所提供的一种信息收发方法的信令图中的步骤S11,原理和过程与步骤S11相同。
下面介绍本实施例中的步骤S41与图4中步骤S11的不同之处。
与图4不同的地方为:在本实施例中,由于高频段的NR系统级中也可以存在与第一下行载波成对的第一上行载波,进而网络设备在第一下行载波上发送的广播消息中,还会携带有与第一上行载波对应的第一上行配置信息,在第一上行配置信息中包括了包括第一上行载波的第一上行频点信息。并且,第一上行载波与第一下行载波都位于第一频段。举例来说,第一上行载波可以为NR纯UL载波、或为NR TDD中的UL载波、或者为NR FDD中的UL载波;第一上行载波可以部署在第一频段,可以选用频率大于等于2.5GHz的频段,举例来说,第一上行载波的频率为20GHz至30GHz,或者第一上行载波的频率为3.5GHz。在本实施例中,第一上行载波可以作为终端设备的服务载波,即终端设备可以在第一上行载波上向网络设备发送上行信号。
举例来说,第一下行载波和第一上行载波为一对NR FDD载波,或者,第一下行载波和第一上行载波为一对NR TDD载波。
并且,终端设备接入到网络设备的方式可以有以下四种实施方式:
第一种实施方式,图12为本申请实施例提供的再一种信息收发方法中终端设备随机接入的信令图一,如图12所示,该方法包括:
S51、网络设备在第一下行载波上发送广播消息。
其中,广播消息中包括与第二下行载波对应的第二下行配置信息、以及与第一上行载波对应的第一上行配置信息,其中,第一上行配置信息中包括第一上行载波的第一上行频点信息、以及第一上行载波的随机接入配置信息。
S52、终端设备在第一上行载波上,依据第一上行载波的随机接入配置信息进行随机接入。
这里,网络设备在第一下行载波上发送广播消息,其中,广播消息中包括与第二下行载波对应的第二下行配置信息、以及与第一上行载波对应的第一上行配置信息,其中,第一上行配置信息中包括第一上行载波的第一上行频点信息、以及第一上行载波的随机接入配置信息;进而终端设备可以在第一下行载波上接收到该广播消息;终端设备在第一上行载波上,依据第一上行载波的随机接入配置信息进行随机接入,以接入到网络设备中。
第二种实施方式,图13为本申请实施例提供的再一种信息收发方法中终端设备随机接入的信令图二,如图13所示,该方法包括:
S61、网络设备在第一下行载波上发送广播消息。
其中,广播消息中包括与第二下行载波对应的第二下行配置信息、以及与第一上行载波对应的第一上行配置信息,其中,第一上行配置信息中包括第一上行载波的第一上行频点信息,第二下行配置信息中包括第二下行载波的第二下行频点信息和/或物理小区标识信息、以及第二上行载波的随机接入配置信息。
S62、终端设备从第二上行载波上,向网络设备发起随机接入请求,以接入网络设备中。
S63、网络设备通过第一RRC专有信令,为该终端设备配置第一上行载波。
这里。网络设备在第一下行载波上发送广播消息,其中,广播消息中包括与第二下行载波对应的第二下行配置信息、以及与第一上行载波对应的第一上行配置信息,其中,第一上行配置信息中包括第一上行载波的第一上行频点信息,第二下行配置信息中包括第二下行载波的第二下行频点信息和/或物理小区标识信息、以及第二上行载波的随机接入配置信息;进而终端设备可以在第一下行载波上接收到该广播消息;终端设备从第二上行载波上,向网络设备发起随机接入请求,以接入网络设备中;网络设备通过第一RRC专有信令,为该终端设备配置第一上行载波。进而为终端设备同时配置第一上行载波和第二上行载波,第一上行载波和第二上行载波就可以都作为终端设备的服务载波了。
第三种实施方式,图14为本申请实施例提供的再一种信息收发方法中终端设备随机接入的信令图三,如图14所示,该方法包括:
S71、网络设备在第一下行载波上发送广播消息。
其中,广播消息中包括与第二下行载波对应的第二下行配置信息、以及与第一上行载波对应的第一上行配置信息,其中,第一上行配置信息中包括第一上行载波的第一上行频点信息、第一上行载波的随机接入配置信息,第二下行配置信息中包括第二下行载波的第二下行频点信息和/或物理小区标识信息。
S72、终端设备从第一上行载波上,向网络设备发起随机接入请求,以接入网络设备中。
S73、网络设备通过第二RRC专有信令,为该终端设备配置第二上行载波。
这里,网络设备在第一下行载波上发送广播消息,其中,广播消息中包括与第二下行载波对应的第二下行配置信息、以及与第一上行载波对应的第一上行配置信息,其中,第一上行配置信息中包括第一上行载波的第一上行频点信息、第一上行载波的随机接入配置信息,第二下行配置信息中包括第二下行载波的第二下行频点信息和/或物理小区标识信息;进而终端设备可以在第一下行载波上接收到该广播消息;终端设备从第一上行载波上,向网络设备发起随机接入请求,以接入网络设备中;网络设备通过第二RRC专有信令,为该终端设备配置上述第二上行载波。进而也可以为终端设备同时配置第一上行载波和第二上行载波,第一上行载波和第二上行载波就可以都作为终端设备的服务载波了。
第四种实施方式,图15为本申请实施例提供的再一种信息收发方法中终端设备随机接入的信令图四,如图15所示,该方法包括:
S81、网络设备在第一下行载波上发送广播消息,其中,广播消息中包括以及与第一上行载波对应的第一上行配置信息,其中,第一上行配置信息中包括第一上行载波的第一上行频点信息、第一上行载波的随机接入配置信息。
S82、终端设备从第一上行载波上,向网络设备发起随机接入请求,以接入网络设备中。
S83、网络设备通过第三RRC专有信令将与第二下行载波对应的第二下行配置信息发送给终端设备,为该终端设备配置第二上行载波,其中,第二下行配置信息中包括第二下行载波的第二下行频点信息和/或物理小区标识信息。
这里。网络设备在第一下行载波上发送广播消息,其中,广播消息中包括以及与第一上行载波对应的第一上行配置信息,其中,第一上行配置信息中包括第一上行载波的第一上行频点信息、第一上行载波的随机接入配置信息;进而终端设备可以在第一下行载波上接收到该广播消息;终端设备从第一上行载波上,向网络设备发起随机接入请求,以接入网络设备中;网络设备通过第三RRC专有信令,为该终端设备配置第二上行载波,同时,网络设备通过第三RRC专有信令将与第二下行载波对应的第二下行配置信息发送给终端设备,此时,第二下行配置信息中包括第二下行载波的第二下行频点信息和/或物理小区标识信息。进而也可以为终端设备同时配置第一上行载波和第二上行载波,第一上行载波和第二上行载波就可以都作为终端设备的服务载波了。
S42、终端设备依据第一上行配置信息,在第一上行载波上向网络设备发送上行信号。
在本实施例中,终端设备依据S31中的第一上行配置信息,在第一上行载波上向网络设备发送上行信号的方式,具有以下三种实施方式。
第一种实施方式为:终端设备在第一上行载波和第二上行载波同时发送信息,此时发送的信息为不同的信息。
第二种实施方式为:终端设备在第一上行载波和第二上行载波间交叠发送信息。此时,第一上行载波和第二上行载波都属于终端设备的服务载波,但是也不允许终端设备同时在第一上行载波和第二上行载波上发送上行信号,终端设备可以时域交叠在第一上行载波和第二上行载波上发送上行信号,这样可以节省终端设备的基带能力。
第三种实施方式为:终端设备在第一上行载波和第二上行载波间交叠发送信息。此时,终端设备在第一上行载波上发送上行参考信号,例如上行参考信号可以为NR SRS,进而可以以辅助第一上行载波上的上行波束附型操作;终端设备在第二上行载波上发送上行数据信道、上行控制信道以及上行参考信号等。
本实施例通过终端设备在第一下行载波上接收网络设备发送的广播消息,其中,广播消息中包括与第二下行载波对应的第二下行配置信息、以及与第一上行载波对应的第一上行配置信息;其中,第一上行配置信息中包括第一上行载波的第一上行频点信息,第二下行配置信息中包括第二下行载波的第二下行频点信息和/或物理小区标识信息;第一下行载波与第二上行载波属于终端设备的服务载波,且第二下行载波不属于终端设备的服务载波;第二下行载波与第二上行载波为系统级成对的载波;第一上行载波属于终端设备的服务载波;终端设备依据第一上行配置信息,在第一上行载波上向网络设备发送上行信号。从而在以上实施例的基础上,为终端设备配置了第一上行载波,使得第一上行载波也可以作为终端设备的服务载波,终端设备在第一上行载波和第二上行载波同时发送信息,或者终端设备在第一上行载波和第二上行载波间交叠发送信息。
图16为本申请实施例提供的一种终端设备的结构示意图。如图16所示,该终端设备包括:
第一接收模块161,用于在第一下行载波上接收网络设备发送的广播消息,其中,广播消息中包括与第二下行载波对应的第二下行配置信息;
其中,第二下行配置信息中包括第二下行载波的第二下行频点信息和/或物理小区标识信息;第一下行载波与第二上行载波属于终端设备的服务载波,且第二下行载波不属于终端设备的服务载波;第二下行载波与第二上行载波为系统级成对的载波。
第一下行载波位于第一频段,第二上行载波和第二下行载波位于第二频段,其中,第一频段的频率大于第二频段的频率。
广播消息中还包括与第二上行载波对应的第二上行配置信息;其中,第二上行配置信息中包括第二上行载波的第二上行频点信息。
其中,第一接收模块161可以执行图3所示方法的步骤S101,即第一接收模块161可以执行图4所示方法的步骤S11。
图16所示实施例的终端设备可用于执行上述方法中图2-图4所示实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图17为本申请实施例提供的又一种终端设备的结构示意图。在图16所示终端设备的基础上,如图17所示,该终端设备,包括:
第一接收模块161,用于在第一下行载波上接收网络设备发送的广播消息,其中,广播消息中包括与第二下行载波对应的第二下行配置信息、第二上行载波上的随机接入配置信息。其中,第二下行配置信息中包括第二下行载波的第二下行频点信息和/或物理小区标识信息;第一下行载波与第二上行载波属于终端设备的服务载波,且第二下行载波不属于终端设备的服务载波;第二下行载波与第二上行载波为系统级成对的载波。其中,第一接收模块161可以执行图5所示方法的步骤S201,即第一接收模块161可以执行图6所示方 法的步骤S21。
可选的,广播消息中还包括:第二上行载波上的随机接入配置信息;终端设备,还包括:
接入模块171,用于在第一接收模块161在第一下行载波上接收网络设备发送的广播消息之后,在第二上行载波上,依据随机接入配置信息进行随机接入。其中,接入模块171可以执行图5所示方法的步骤S202,即接入模块171可以执行图6所示方法的步骤S22。
计算模块172,用于在第一接收模块161在第一下行载波上接收网络设备发送的广播消息之后,根据第二下行配置信息,确定第二下行载波的参考信息。其中,计算模块172可以执行图5所示方法的步骤S203,计算模块172可以执行图6所示方法的步骤S23。
可选的,参考信息,包括以下的至少一种:参考路径损耗、参考下行接收定时、参考时间同步信息、参考频率同步信息。
可选的,终端设备,还包括:
第一发送模块173,用于在计算模块172确定第二下行载波的参考信息之后,依据第二下行载波的参考信息,在第二上行载波上向网络设备发送上行信号。其中,第一发送模块173可以执行图5所示方法的步骤S204,第一发送模块173可以执行图6所示方法的步骤S24。
可选的,终端设备,还包括:
处理模块174,用于在第一接收模块161在第一下行载波上接收网络设备发送的广播消息之后,根据第二下行配置信息,对第二下行载波进行RRM测量,得到测量结果;根据测量结果,对第二上行载波进行移动性管理。其中,处理模块174可以执行图5所示方法的步骤S205,处理模块174可以执行图9所示方法的步骤S31-S32。
图17所示实施例的终端设备可用于执行上述方法中图5-图9所示实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。并且,图17所示实施例的实施不依赖于图16所示实施例是否实施,图17所示实施例可以单独实施。
图18为本申请实施例提供的再一种终端设备的结构示意图。在图16所示终端设备的基础上,如图18所示,该终端设备,包括:
第一接收模块161,在第一下行载波上接收网络设备发送的广播消息,其中,广播消息中包括与第二下行载波对应的第二下行配置信息、以及与第一上行载波对应的第一上行配置信息;其中,第一上行配置信息中包括第一上行载波的第一上行频点信息,第二下行配置信息中包括第二下行载波的第二下行频点信息和/或物理小区标识信息;第一下行载波与第二上行载波属于终端设备的服务载波,且第二下行载波不属于终端设备的服务载波;第二下行载波与第二上行载波为系统级成对的载波;第一上行载波属于终端设备的服务载波。其中,第一接收模块161可以执行图10所示方法的步骤S301,第一接收模块161可以执行图11所示方法的步骤S41。
可选的,广播消息中还包括:与第一上行载波对应的第一上行配置信息;其中,第一上行配置信息中包括第一上行载波的第一上行频点信息;终端设备,还包括:
第二发送模块181,用于在第一接收模块161在第一下行载波上接收网络设备发送的广播消息之后,依据第一上行配置信息,在第一上行载波上向网络设备发送上行信号。其 中,第二发送模块181可以执行图10所示方法的步骤S302,第二发送模块181可以执行图11所示方法的步骤S42。
图18所示实施例的终端设备可用于执行上述方法中图10-图15所示实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。并且,图18所示实施例的实施不依赖于图16和图17所示实施例是否实施,图18所示实施例可以单独实施。
图19为本申请实施例提供的一种网络设备的结构示意图。如图19所示,该网络设备包括:
第三发送模块191,用于在第一下行载波上发送广播消息,其中,广播消息中包括与第二下行载波对应的第二下行配置信息;
其中,第二下行配置信息中包括第二下行载波的第二下行频点信息和/或物理小区标识信息;第一下行载波与第二上行载波属于终端设备的服务载波,且第二下行载波不属于终端设备的服务载波;第二下行载波与第二上行载波为系统级成对的载波。
第一下行载波位于第一频段,第二上行载波和第二下行载波位于第二频段,其中,第一频段的频率大于第二频段的频率。
广播消息中还包括与第二上行载波对应的第二上行配置信息;其中,第二上行配置信息中包括第二上行载波的第二上行频点信息。
其中,第三发送模块191可以执行图4所示方法的步骤S11。
图19所示实施例的网络设备可用于执行上述方法中图2-图4所示实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图20为本申请实施例提供的又一种网络设备的结构示意图。如图20所示,该网络设备包括:
第三发送模块191,用于在第一下行载波上发送广播消息,其中,广播消息中包括与第二下行载波对应的第二下行配置信息、第二上行载波上的随机接入配置信息。其中,第二下行配置信息中包括第二下行载波的第二下行频点信息和/或物理小区标识信息;第一下行载波与第二上行载波属于终端设备的服务载波,且第二下行载波不属于终端设备的服务载波;第二下行载波与第二上行载波为系统级成对的载波。其中,第三发送模块201可以执行图6所示方法的步骤S21。
可选的,广播消息中还包括:第二上行载波上的随机接入配置信息;网络设备,还包括:
接入处理模块211,用于在第三发送模块191在第一下行载波上发送广播消息之后,接收终端设备在第二上行载波上,依据随机接入配置信息发送的随机接入请求,以进行终端设备的随机接入。其中,接入处理模块211可以执行图6所示方法的步骤S22。
可选的,网络设备,还包括:
第二接收模块212,用于在第三发送模块191在第一下行载波上发送广播消息之后,接收终端设备依据第二下行载波的参考信息,在第二上行载波上发送的上行信号;其中,第二下行载波的参考信息为终端设备根据第二下行配置信息确定的。其中,第二接收模块212可以执行图6所示方法的步骤S24。
可选的,参考信息,包括以下的至少一种:
参考路径损耗、参考下行接收定时、参考时间同步信息、参考频率同步信息。
图20所示实施例的网络设备可用于执行上述方法中图5-图9所示实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。并且,图20所示实施例的实施不依赖于图19所示实施例是否实施,图20所示实施例可以单独实施。
图21为本申请实施例提供的再一种网络设备的结构示意图。如图21所示,该网络设备包括:
第三发送模块191,用于在第一下行载波上发送广播消息,其中,广播消息中包括与第二下行载波对应的第二下行配置信息、以及与第一上行载波对应的第一上行配置信息;其中,第一上行配置信息中包括第一上行载波的第一上行频点信息,第二下行配置信息中包括第二下行载波的第二下行频点信息和/或物理小区标识信息;第一下行载波与第二上行载波属于终端设备的服务载波,且第二下行载波不属于终端设备的服务载波;第二下行载波与第二上行载波为系统级成对的载波;第一上行载波属于终端设备的服务载波。其中,第三发送模块191可以执行图11所示方法的步骤S41。
可选的,网络设备,还包括:
第三接收模块221,用于在第三发送模块191在第一下行载波上发送广播消息之后,接收终端设备依据第一上行配置信息,在第一上行载波上发送的上行信号。其中,第三接收模块221可以执行图11所示方法的步骤S42。
图21所示实施例的网络设备可用于执行上述方法中图10-图15所示实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。并且,图21所示实施例的实施不依赖于图19和图20所示实施例是否实施,图21所示实施例可以单独实施。
应理解以上终端设备、网络设备、网络设备的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过软件通过处理元件调用的形式实现,部分模块通过硬件的形式实现。例如,发送模块可以为单独设立的处理元件,也可以集成在例如终端设备或网络设备的某一个芯片中实现,此外,也可以以程序的形式存储于终端设备或网络设备的存储器中,由终端设备或网络设备的某一个处理元件调用并执行以上各个模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。此外,以上接收模块是一种控制接收的模块,可以通过终端设备或网络设备的接收装置,例如天线和射频装置接收网络设备发送的信息。以上发送模块是一种控制发送的模块,可以通过网络设备或终端设备的发送装置,例如天线和射频装置向终端设备发送信息。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理 元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
图22为本申请实施例提供的其他一种终端设备的结构示意图。如图22所示,该终端设备包括:接收器231、发送器232、处理器233、存储器234,接收器231用于在第一下行载波上接收网络设备发送的广播消息,其中,广播消息中包括与第二下行载波对应的第二下行配置信息;其中,第二下行配置信息中包括第二下行载波的第二下行频点信息和/或物理小区标识信息;第一下行载波与第二上行载波属于终端设备的服务载波,且第二下行载波不属于终端设备的服务载波;第二下行载波与第二上行载波为系统级成对的载波。此时,接收器231可以实现图16所示终端设备中的第一接收模块161的功能,进而,接收器231可以执行图3所示方法的步骤S101,或者,接收器231可以执行图4所示方法的步骤S11,其它方法实施例相应的步骤由处理器233实现。
可选的,第一下行载波位于第一频段,第二上行载波和第二下行载波位于第二频段,其中,第一频段的频率大于第二频段的频率。
可选的,广播消息中还包括与第二上行载波对应的第二上行配置信息;其中,第二上行配置信息中包括第二上行载波的第二上行频点信息。
可选的,处理器233,用于在接收器231在第一下行载波上接收网络设备发送的广播消息之后,根据第二下行配置信息,确定第二下行载波的参考信息。此时,处理器233可以实现图17所示终端设备中的计算模块172的功能,进而,处理器233执行图5所示方法的步骤S203,或者,处理器233可以执行图6所示方法的步骤S23。
可选的,参考信息,包括以下的至少一种:参考路径损耗、参考下行接收定时、参考时间同步信息、参考频率同步信息。
可选的,发送器232,用于在处理器233确定第二下行载波的参考信息之后,依据第二下行载波的参考信息,在第二上行载波上向网络设备发送上行信号。此时,发送器232可以实现图17所示终端设备中的第一发送模块173的功能,进而,发送器232可以执行图5所示方法的步骤S204,或者,发送器232可以执行图6所示方法的步骤S24。
可选的,处理器233,还用于在接收器231在第一下行载波上接收网络设备发送的广播消息之后,根据第二下行配置信息,对第二下行载波进行RRM测量,得到测量结果;根据测量结果,对第二上行载波进行移动性管理。此时,处理器233可以实现图17所示终端设备中的处理模块174的功能,进而,处理器233可以执行图5所示方法的步骤S205,或者,处理器233可以执行图9所示方法的步骤S31-S32。
可选的,广播消息中还包括:第二上行载波上的随机接入配置信息;处理器233,还用于在接收器231在第一下行载波上接收网络设备发送的广播消息之后,在第二上行载波上,依据随机接入配置信息进行随机接入。此时,处理器233可以实现图17所示终端设备中的接入模块171的功能,进而,处理器233可以执行图5所示方法的步骤S202,或者,处理器233可以执行图6所示方法的步骤S22。
可选的,广播消息中还包括:与第一上行载波对应的第一上行配置信息;其中,第一上行配置信息中包括第一上行载波的第一上行频点信息。
可选的,发送器232,还用于在接收器231在第一下行载波上接收网络设备发送的广播消息之后,依据第一上行配置信息,在第一上行载波上向网络设备发送上行信号。此时,发送器232可以实现图18所示终端设备中的第二发送模块181的功能,进而,发送器232可以执行图10所示方法的步骤S302,或者发送器232可以执行图11所示方法的步骤S42。
可选的,第一上行载波属于终端设备的服务载波。
图22所示实施例的终端设备可用于执行上述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
接收器231、发送器232可以与天线连接。在下行方向上,接收器231、发送器232通过天线接收网络设备发送的信息,并将信息发送给处理器233进行处理。在上行方向上,处理器233对终端设备的数据进行处理,并通过发送器232发送给网络设备。
该存储器234用于存储实现以上方法实施例,或者图16-图18所示实施例各个模块的程序,处理器233调用该程序,执行以上方法实施例的操作,以实现图16-图18所示的各个模块。
或者,以上各个模块的部分或全部也可以通过集成电路的形式内嵌于该用设备的某一个芯片上来实现。且它们可以单独实现,也可以集成在一起。即以上这些模块可以被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。
图23为本申请实施例提供的其他一种网络设备的结构示意图。如图23所示,该网络设备包括发送器241、接收器242和处理器243,发送器241用于在第一下行载波上发送广播消息,其中,广播消息中包括与第二下行载波对应的第二下行配置信息;其中,第二下行配置信息中包括第二下行载波的第二下行频点信息和/或物理小区标识信息;第一下行载波与第二上行载波属于终端设备的服务载波,且第二下行载波不属于终端设备的服务载波;第二下行载波与第二上行载波为系统级成对的载波。此时,发送器241可以实现图19所示终端设备中的第三发送模块191的功能,进而,发送器241可以执行图4所示方法的步骤S11。
可选的,第一下行载波位于第一频段,第二上行载波和第二下行载波位于第二频段,其中,第一频段的频率大于第二频段的频率。
可选的,接收器242,用于在发送器241在第一下行载波上发送广播消息之后,接收终端设备依据第二下行载波的参考信息,在第二上行载波上发送的上行信号;其中,第二下行载波的参考信息为终端设备根据第二下行配置信息确定的。此时,接收器242可以实现图20所示终端设备中的第二接收模块212的功能,进而,接收器242可以执行图6所示方法的步骤S24。
可选的,参考信息,包括以下的至少一种:参考路径损耗、参考下行接收定时、参考时间同步信息、参考频率同步信息。
可选的,广播消息中还包括:第二上行载波上的随机接入配置信息;接收器242,还 用于在发送器241在第一下行载波上发送广播消息之后,接收终端设备在第二上行载波上,依据随机接入配置信息发送的随机接入请求,以进行终端设备的随机接入。此时,接收器242可以实现图20所示终端设备中的接入处理模块211的功能,进而,接收器242可以执行图6所示方法的步骤S22;其他的过程由处理器243实现。
可选的,广播消息中还包括与第二上行载波对应的第二上行配置信息;其中,第二上行配置信息中包括第二上行载波的第二上行频点信息。
可选的,广播消息中还包括:与第一上行载波对应的第一上行配置信息;其中,第一上行配置信息中包括第一上行载波的第一上行频点信息。
可选的,接收器242,还用于在发送器241在第一下行载波上发送广播消息之后,接收终端设备依据第一上行配置信息,在第一上行载波上发送的上行信号。此时,接收器242可以实现图20所示终端设备中的第二接收模块212的功能,进而,接收器242可以执行图6所示方法的步骤S24。
可选的,第一上行载波属于终端设备的服务载波。
图23所示实施例的网络设备可用于执行上述方法实施例的技术方案,或者图19-图21所示实施例各个模块的程序,处理器243调用该程序,执行以上方法实施例的操作,以实现图19-图21所示的各个模块。
其中,处理器243也可以为控制器,图23中表示为“控制器/处理器243”。发送器241和接收器242用于支持网络设备与上述实施例中的终端设备之间收发信息,以及支持终端设备与其他终端设备之间进行无线电通信。处理器243执行各种用于与终端设备通信的功能。
进一步的,网络设备还可以包括存储器244,存储器244用于存储网络设备的程序代码和数据。此外,网络设备还可以包括通信接口245。通信接口245用于支持网络设备与其他网络实体进行通信。
处理器243例如中央处理器(Central Processing Unit,CPU),还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。存储器244可以是一个存储器,也可以是多个存储元件的统称。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如,同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如,红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者 是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (42)

  1. 一种信息收发方法,其特征在于,包括:
    终端设备在第一下行载波上接收网络设备发送的广播消息,其中,所述广播消息中包括与第二下行载波对应的第二下行配置信息;
    其中,所述第二下行配置信息中包括所述第二下行载波的第二下行频点信息和/或物理小区标识信息;所述第一下行载波与第二上行载波属于所述终端设备的服务载波,且所述第二下行载波不属于所述终端设备的服务载波;所述第二下行载波与所述第二上行载波为系统级成对的载波。
  2. 根据权利要求1所述的方法,其特征在于,所述第一下行载波位于第一频段,所述第二上行载波和所述第二下行载波位于第二频段,其中,所述第一频段的频率大于所述第二频段的频率。
  3. 根据权利要求1或2所述的方法,其特征在于,在所述终端设备在第一下行载波上接收网络设备发送的广播消息之后,还包括:
    所述终端设备根据所述第二下行配置信息,确定所述第二下行载波的参考信息。
  4. 根据权利要求3所述的方法,其特征在于,所述参考信息,包括以下的至少一种:
    参考路径损耗、参考下行接收定时、参考时间同步信息、参考频率同步信息。
  5. 根据权利要求3所述的方法,其特征在于,在所述确定所述第二下行载波的参考信息之后,还包括:
    所述终端设备依据所述第二下行载波的参考信息,在所述第二上行载波上向所述网络设备发送上行信号。
  6. 根据权利要求1所述的方法,其特征在于,在所述终端设备在第一下行载波上接收网络设备发送的广播消息之后,还包括:
    所述终端设备根据所述第二下行配置信息,对所述第二下行载波进行无线资源管理RRM测量,得到测量结果;
    所述终端设备根据所述测量结果,对所述第二上行载波进行移动性管理。
  7. 根据权利要求1至5任一项所述的方法,其特征在于,所述广播消息中还包括:所述第二上行载波上的随机接入配置信息;
    在所述终端设备在第一下行载波上接收网络设备发送的广播消息之后,还包括:
    所述终端设备在所述第二上行载波上,依据所述随机接入配置信息进行随机接入。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述广播消息中还包括与第二上行载波对应的第二上行配置信息;
    其中,所述第二上行配置信息中包括所述第二上行载波的第二上行频点信息。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述广播消息中还包括:与第一上行载波对应的第一上行配置信息;
    其中,所述第一上行配置信息中包括所述第一上行载波的第一上行频点信息。
  10. 根据权利要求9所述的方法,其特征在于,在所述终端设备在第一下行载波上接收网络设备发送的广播消息之后,还包括:
    所述终端设备依据所述第一上行配置信息,在所述第一上行载波上向所述网络设备发 送上行信号。
  11. 根据权利要求10所述的方法,其特征在于,所述第一上行载波属于所述终端设备的服务载波。
  12. 一种信息收发方法,其特征在于,包括:
    网络设备在第一下行载波上发送广播消息,其中,所述广播消息中包括与第二下行载波对应的第二下行配置信息;
    其中,所述第二下行配置信息中包括所述第二下行载波的第二下行频点信息和/或物理小区标识信息;所述第一下行载波与第二上行载波属于终端设备的服务载波,且所述第二下行载波不属于所述终端设备的服务载波;所述第二下行载波与所述第二上行载波为系统级成对的载波。
  13. 根据权利要求12所述的方法,其特征在于,所述第一下行载波位于第一频段,所述第二上行载波和所述第二下行载波位于第二频段,其中,所述第一频段的频率大于所述第二频段的频率。
  14. 根据权利要求12或13所述的方法,其特征在于,在所述网络设备在第一下行载波上发送广播消息之后,还包括:
    所述网络设备接收所述终端设备依据第二下行载波的参考信息,在所述第二上行载波上发送的上行信号;
    其中,所述第二下行载波的参考信息为所述终端设备根据所述第二下行配置信息确定的。
  15. 根据权利要求14所述的方法,其特征在于,所述参考信息,包括以下的至少一种:
    参考路径损耗、参考下行接收定时、参考时间同步信息、参考频率同步信息。
  16. 根据权利要求12-15任一项所述的方法,其特征在于,所述广播消息中还包括:所述第二上行载波上的随机接入配置信息;
    在所述网络设备在第一下行载波上发送广播消息之后,还包括:
    所述网络设备接收所述终端设备在所述第二上行载波上,依据所述随机接入配置信息发送的随机接入请求,以进行所述终端设备的随机接入。
  17. 根据权利要求12-16任一项所述的方法,其特征在于,所述广播消息中还包括与第二上行载波对应的第二上行配置信息;
    其中,所述第二上行配置信息中包括所述第二上行载波的第二上行频点信息。
  18. 根据权利要求12-17任一项所述的方法,其特征在于,所述广播消息中还包括:与第一上行载波对应的第一上行配置信息;
    其中,所述第一上行配置信息中包括所述第一上行载波的第一上行频点信息。
  19. 根据权利要求18所述的方法,其特征在于,在所述网络设备在第一下行载波上发送广播消息之后,还包括:
    所述网络设备接收所述终端设备依据所述第一上行配置信息,在所述第一上行载波上发送的上行信号。
  20. 根据权利要求19所述的方法,其特征在于,所述第一上行载波属于所述终端设备的服务载波。
  21. 一种终端设备,其特征在于,包括:
    第一接收模块,用于在第一下行载波上接收网络设备发送的广播消息,其中,所述广播消息中包括与第二下行载波对应的第二下行配置信息;
    其中,所述第二下行配置信息中包括所述第二下行载波的第二下行频点信息和/或物理小区标识信息;所述第一下行载波与第二上行载波属于所述终端设备的服务载波,且所述第二下行载波不属于所述终端设备的服务载波;所述第二下行载波与所述第二上行载波为系统级成对的载波。
  22. 根据权利要求21所述的终端设备,其特征在于,所述第一下行载波位于第一频段,所述第二上行载波和所述第二下行载波位于第二频段,其中,所述第一频段的频率大于所述第二频段的频率。
  23. 根据权利要求21或22所述的终端设备,其特征在于,所述终端设备,还包括:
    计算模块,用于在所述第一接收模块在第一下行载波上接收网络设备发送的广播消息之后,根据所述第二下行配置信息,确定所述第二下行载波的参考信息。
  24. 根据权利要求23所述的终端设备,其特征在于,所述参考信息,包括以下的至少一种:
    参考路径损耗、参考下行接收定时、参考时间同步信息、参考频率同步信息。
  25. 根据权利要求23所述的终端设备,其特征在于,所述终端设备,还包括:
    第一发送模块,用于在所述计算模块确定所述第二下行载波的参考信息之后,依据所述第二下行载波的参考信息,在所述第二上行载波上向所述网络设备发送上行信号。
  26. 根据权利要求21所述的终端设备,其特征在于,所述终端设备,还包括:
    处理模块,用于在所述第一接收模块在第一下行载波上接收网络设备发送的广播消息之后,根据所述第二下行配置信息,对所述第二下行载波进行RRM测量,得到测量结果;根据所述测量结果,对所述第二上行载波进行移动性管理。
  27. 根据权利要求21至25任一项所述的终端设备,其特征在于,所述广播消息中还包括:所述第二上行载波上的随机接入配置信息;
    所述终端设备,还包括:
    接入模块,用于在所述第一接收模块在第一下行载波上接收网络设备发送的广播消息之后,在所述第二上行载波上,依据所述随机接入配置信息进行随机接入。
  28. 根据权利要求21-27任一项所述的终端设备,其特征在于,所述广播消息中还包括与第二上行载波对应的第二上行配置信息;
    其中,所述第二上行配置信息中包括所述第二上行载波的第二上行频点信息。
  29. 根据权利要求21-28任一项所述的终端设备,其特征在于,所述广播消息中还包括:与第一上行载波对应的第一上行配置信息;
    其中,所述第一上行配置信息中包括所述第一上行载波的第一上行频点信息。
  30. 根据权利要求29所述的终端设备,其特征在于,所述终端设备,还包括:
    第二发送模块,用于在所述第一接收模块在第一下行载波上接收网络设备发送的广播消息之后,依据所述第一上行配置信息,在所述第一上行载波上向所述网络设备发送上行信号。
  31. 根据权利要求30所述的终端设备,其特征在于,所述第一上行载波属于所述终 端设备的服务载波。
  32. 一种网络设备,其特征在于,包括:
    第三发送模块,用于在第一下行载波上发送广播消息,其中,所述广播消息中包括与第二下行载波对应的第二下行配置信息;
    其中,所述第二下行配置信息中包括所述第二下行载波的第二下行频点信息和/或物理小区标识信息;所述第一下行载波与第二上行载波属于终端设备的服务载波,且所述第二下行载波不属于所述终端设备的服务载波;所述第二下行载波与所述第二上行载波为系统级成对的载波。
  33. 根据权利要求32所述的网络设备,其特征在于,所述第一下行载波位于第一频段,所述第二上行载波和所述第二下行载波位于第二频段,其中,所述第一频段的频率大于所述第二频段的频率。
  34. 根据权利要求32或33所述的网络设备,其特征在于,所述网络设备,还包括:
    第二接收模块,用于在所述第三发送模块在第一下行载波上发送广播消息之后,接收所述终端设备依据第二下行载波的参考信息,在所述第二上行载波上发送的上行信号;
    其中,所述第二下行载波的参考信息为所述终端设备根据所述第二下行配置信息确定的。
  35. 根据权利要求34所述的网络设备,其特征在于,所述参考信息,包括以下的至少一种:参考路径损耗、参考下行接收定时、参考时间同步信息、参考频率同步信息。
  36. 根据权利要求32-35任一项所述的网络设备,其特征在于,所述广播消息中还包括:所述第二上行载波上的随机接入配置信息;
    所述网络设备,还包括:
    接入处理模块,用于在所述第三发送模块在第一下行载波上发送广播消息之后,接收所述终端设备在所述第二上行载波上,依据所述随机接入配置信息发送的随机接入请求,以进行所述终端设备的随机接入。
  37. 根据权利要求32-36任一项所述的网络设备,其特征在于,所述广播消息中还包括与第二上行载波对应的第二上行配置信息;
    其中,所述第二上行配置信息中包括所述第二上行载波的第二上行频点信息。
  38. 根据权利要求32-37任一项所述的网络设备,其特征在于,所述广播消息中还包括:与第一上行载波对应的第一上行配置信息;
    其中,所述第一上行配置信息中包括所述第一上行载波的第一上行频点信息。
  39. 根据权利要求38所述的网络设备,其特征在于,所述网络设备,还包括:
    第三接收模块,用于在所述第三发送模块在第一下行载波上发送广播消息之后,接收所述终端设备依据所述第一上行配置信息,在所述第一上行载波上发送的上行信号。
  40. 根据权利要求39所述的网络设备,其特征在于,所述第一上行载波属于所述终端设备的服务载波。
  41. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-11任一项所述的方法。
  42. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求12-20任一项所述的方法。
PCT/CN2018/079994 2017-03-23 2018-03-22 信息收发方法和设备 WO2018171666A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18772535.3A EP3573404B1 (en) 2017-03-23 2018-03-22 Method and device for transmitting and receiving information
US16/562,217 US11064490B2 (en) 2017-03-23 2019-09-05 Method and device for transmitting and receiving information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710179820.5A CN108633019B (zh) 2017-03-23 2017-03-23 信息收发方法和设备
CN201710179820.5 2017-03-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/562,217 Continuation US11064490B2 (en) 2017-03-23 2019-09-05 Method and device for transmitting and receiving information

Publications (1)

Publication Number Publication Date
WO2018171666A1 true WO2018171666A1 (zh) 2018-09-27

Family

ID=63584171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079994 WO2018171666A1 (zh) 2017-03-23 2018-03-22 信息收发方法和设备

Country Status (4)

Country Link
US (1) US11064490B2 (zh)
EP (1) EP3573404B1 (zh)
CN (1) CN108633019B (zh)
WO (1) WO2018171666A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111818631B (zh) * 2016-01-26 2021-12-03 华为技术有限公司 识别同步信息的方法、通信方法和装置、可读存储介质
CN109152016B (zh) * 2017-06-16 2022-04-05 华为技术有限公司 一种通信方法和装置
EP4241514A4 (en) * 2020-12-24 2023-12-27 Huawei Technologies Co., Ltd. DEVICES AND METHODS FOR FLEXIBLE SPECTRUM
CN114828166A (zh) * 2021-01-22 2022-07-29 华为技术有限公司 一种通信方法及设备
US20230030066A1 (en) * 2021-07-29 2023-02-02 Qualcomm Incorporated Intra-band carrier aggregation/dual connectivity

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104683082A (zh) * 2013-12-03 2015-06-03 索尼公司 无线通信系统和在无线通信系统中进行无线通信的方法
CN104770033A (zh) * 2013-10-23 2015-07-08 华为技术有限公司 传输信息的方法、装置和系统
WO2016072700A2 (ko) * 2014-11-05 2016-05-12 엘지전자 주식회사 차세대 이동통신 시스템에서의 데이터 송수신 방법 및 사용자 장치
WO2016149887A1 (zh) * 2015-03-20 2016-09-29 华为技术有限公司 一种信道状态信息的传输方法、用户设备及接入网设备
CN106231637A (zh) * 2016-07-29 2016-12-14 深圳市金立通信设备有限公司 辅小区变换方法、装置以及基站

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI508602B (zh) * 2009-04-23 2015-11-11 Interdigital Patent Holdings 在多載波無線通訊中隨機存取方法及裝置
EP3474621B1 (en) * 2009-09-25 2022-05-04 BlackBerry Limited System and method for multi-carrier network operation
CN103687037B (zh) * 2012-09-12 2017-04-12 华为技术有限公司 一种资源调度的方法、设备及通信系统
EP2930987A4 (en) * 2012-12-31 2015-12-09 Huawei Tech Co Ltd INFORMATION TRANSMISSION METHOD AND DEVICE
WO2014168336A1 (ko) * 2013-04-11 2014-10-16 엘지전자 주식회사 상향링크 신호 전송 방법 및 사용자기기
CN104519576A (zh) * 2013-09-27 2015-04-15 北京三星通信技术研究有限公司 一种移动终端及其在无线小区中的数据传输方法
EP2983425B1 (en) * 2014-08-08 2019-03-06 Panasonic Intellectual Property Corporation of America D2D Data Transmission - Timing Advance for Idle Mode UE
US10149217B2 (en) * 2015-09-01 2018-12-04 Qualcomm Incorporated Service-based, separated access and paging cell selection and reselection
US10630410B2 (en) * 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
CN107734687B (zh) * 2016-08-12 2024-01-02 中兴通讯股份有限公司 一种获取网络系统资源配置方法、终端、网络设备及系统
WO2018030953A1 (en) * 2016-08-12 2018-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Load distribution for random access
CN107734667A (zh) * 2016-08-12 2018-02-23 夏普株式会社 执行随机接入的方法、用户设备和基站
US10405332B2 (en) * 2016-09-06 2019-09-03 Samsung Electronics Co., Ltd. Coexistence of different radio access technologies or services on a same carrier
US10405353B2 (en) * 2016-09-23 2019-09-03 Samsung Electronics Co., Ltd. Method and apparatus for random access in wireless systems
US10873929B2 (en) * 2016-11-06 2020-12-22 Lg Electronics Inc. Method and user equipment for transmitting random access signals, and method and base station for receiving random access signals
US10405354B2 (en) * 2016-12-09 2019-09-03 Samsung Electronics Co., Ltd. Method and apparatus for RACH procedure in wireless systems
WO2018128426A1 (en) * 2017-01-04 2018-07-12 Lg Electronics Inc. Method and apparatus for sharing spectrum between 3gpp lte and nr in wireless communication system
US10548079B2 (en) * 2017-02-06 2020-01-28 Qualcomm Incorporated Tracking reference signal for new radio
US10194440B2 (en) * 2017-03-03 2019-01-29 Qualcomm Incorporated Channel raster design in wireless communications
US11184785B2 (en) * 2017-03-17 2021-11-23 Qualcomm Incorporated Radio measurement and configuration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104770033A (zh) * 2013-10-23 2015-07-08 华为技术有限公司 传输信息的方法、装置和系统
CN104683082A (zh) * 2013-12-03 2015-06-03 索尼公司 无线通信系统和在无线通信系统中进行无线通信的方法
WO2016072700A2 (ko) * 2014-11-05 2016-05-12 엘지전자 주식회사 차세대 이동통신 시스템에서의 데이터 송수신 방법 및 사용자 장치
WO2016149887A1 (zh) * 2015-03-20 2016-09-29 华为技术有限公司 一种信道状态信息的传输方法、用户设备及接入网设备
CN106231637A (zh) * 2016-07-29 2016-12-14 深圳市金立通信设备有限公司 辅小区变换方法、装置以及基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3573404A4

Also Published As

Publication number Publication date
CN108633019A (zh) 2018-10-09
CN108633019B (zh) 2022-02-08
US11064490B2 (en) 2021-07-13
EP3573404A4 (en) 2020-02-19
EP3573404A1 (en) 2019-11-27
EP3573404B1 (en) 2023-07-26
US20190394779A1 (en) 2019-12-26

Similar Documents

Publication Publication Date Title
US11303343B2 (en) Method, terminal device, and network device for beam failure management and beam recovery
EP3817479B1 (en) Communication method and communication apparatus
EP3577938B1 (en) Methods for determining reporting configuration based on ue power class
US11974246B2 (en) Method, terminal device and network device for time advance adjustment
WO2021031921A1 (zh) 用于测量的方法与装置
JP7038816B2 (ja) 無線通信ネットワークにおけるユーザ機器、ネットワークノードおよび方法
US11064490B2 (en) Method and device for transmitting and receiving information
WO2015174904A1 (en) Determination of ue band and synchronization capability in dual connectivity
US11832319B2 (en) System and method for providing time domain allocations in a communication system
WO2018137703A1 (zh) 一种信息传输方法和装置
EP3846532A1 (en) Power control method and device
US20200137703A1 (en) Synchronization method and apparatus
US10631236B2 (en) Method of handling measurement and related communication device
WO2023050472A1 (zh) 用于寻呼的方法和装置
KR20220050157A (ko) 리소스 다중화 방법 및 장치
WO2019238007A1 (zh) 检测波束的方法和装置
EP3854124A1 (en) Channel state information reference signal resource mapping
WO2019096232A1 (zh) 通信方法和通信装置
EP4027738B1 (en) Communication method and apparatus
CN116783840A (zh) 对多trp场景中波束组报告的增强
US20230171704A1 (en) Communication method and apparatus
CN111385865B (zh) 随机接入方法、装置、系统及存储介质
US20230209634A1 (en) Failure recovery in cellular communication networks
WO2023030443A1 (zh) 无线通信方法和通信装置
WO2024051584A1 (zh) 配置的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772535

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018772535

Country of ref document: EP

Effective date: 20190819

NENP Non-entry into the national phase

Ref country code: DE