WO2023216896A1 - 用于定位的方法和装置 - Google Patents

用于定位的方法和装置 Download PDF

Info

Publication number
WO2023216896A1
WO2023216896A1 PCT/CN2023/091022 CN2023091022W WO2023216896A1 WO 2023216896 A1 WO2023216896 A1 WO 2023216896A1 CN 2023091022 W CN2023091022 W CN 2023091022W WO 2023216896 A1 WO2023216896 A1 WO 2023216896A1
Authority
WO
WIPO (PCT)
Prior art keywords
location information
time
message
link
wireless
Prior art date
Application number
PCT/CN2023/091022
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2023216896A1 publication Critical patent/WO2023216896A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present invention relates to methods and devices in wireless communication systems, and in particular to solutions and devices for positioning in wireless communication systems.
  • Positioning is an important application in the field of wireless communications; the emergence of new applications such as V2X (Vehicle to everything) or the Industrial Internet of Things has put forward higher requirements for positioning accuracy or delay.
  • V2X Vehicle to everything
  • RAN Radio Access Network
  • the sender of the wireless signal used for positioning measurement may be mobile, which requires further enhancement of the traditional positioning process or position information feedback scheme.
  • this application discloses a solution.
  • the V2X scenario is only used as a typical application scenario or example; this application is also applicable to scenarios other than V2X that face similar problems, such as public safety (Public Safety) and industrial goods. Networking, etc., and achieve technical effects similar to those in NRV2X scenarios.
  • the motivation of this application is to target the scenario where the sender of the wireless signal used for positioning measurement is mobile, this application is still applicable to the scenario where the sender of the wireless signal used for positioning measurement is fixed, such as RSU (Road Side Unit, roadside unit), etc.
  • RSU Raad Side Unit, roadside unit
  • Using a unified solution for different scenarios also helps reduce hardware complexity and cost.
  • the embodiments and features in the embodiments in any node of this application can be applied to any other node.
  • the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily without conflict.
  • This application discloses a method used in a first node for wireless communication, which includes:
  • the first message includes first location information (Location Information) and a first time parameter group, and the measurement of the first location information is based on the first wireless signal;
  • the first time parameter group and the first time parameter group are Related to a wireless link; when the first wireless link is a downlink, the first time parameter group is used to determine the first time resource, and the measurement of the first location information is performed on the first is performed in a time resource; when the first wireless link is a secondary link, the first time parameter group is used to determine the second time resource, and the measurement of the first location information is based on the the first wireless signal in the second time resource.
  • the above method clarifies the time domain resources occupied by the wireless signal used for measurement, avoids the impact of the movement of the sender of the first wireless signal, and improves positioning accuracy.
  • the above method clarifies the time domain resources for performing measurements, which on the one hand can support the movement of the first node; on the other hand, it improves the accuracy of the measurement, or improves the efficiency of the measurement. flexibility.
  • the above method is characterized in that the first location information includes at least one of first time difference information and first received power information.
  • the above method is characterized in that the first message is transmitted through the uplink and not through the secondary link; when the first wireless link is a secondary link, the The delivery of the first message passes through the secondary link.
  • the above method is characterized in that the first location information is related to the first wireless link; when the first wireless link is a downlink, the first The location information does not include the location information of the first node; when the first wireless link is a secondary link, the first location information includes the location information of the first node.
  • the above method is characterized by including:
  • the first receiver receives the second message
  • the second message is used to configure the second time resource
  • the first wireless link is a secondary link.
  • the above method can flexibly configure the second time resource and reduce the power overhead of the first node.
  • the above method is characterized by including:
  • the first sender sends a third message
  • the third message is used to determine the second time resource, and the first wireless link is a secondary link.
  • the third message is sent before the second time resource.
  • the above method can reduce signaling overhead for configuring the second time resource.
  • the above method can reduce the power overhead of the first node.
  • This application discloses a method used in a second node for wireless communication, which includes:
  • the second receiver receives the first message
  • the first message includes first location information and a first time parameter group, and the measurement of the first location information is based on a first wireless signal; the first wireless signal is sent on a first wireless link, so The first time parameter group is related to the first wireless link; when the first wireless link is a downlink, the first time parameter group is used to determine a first time resource, and the first time parameter group is used to determine a first time resource.
  • the measurement of location information is performed in the first time resource; when the first wireless link is a secondary link, the first time parameter set is used to determine the second time resource, the The measurement of a location information is based on the first wireless signal in the second time resource.
  • This application discloses a first node used for wireless communication, which includes:
  • a first receiver receives the first wireless signal through the first wireless link
  • the first sender sends the first message
  • the first message includes first location information and a first time parameter group, the measurement of the first location information is based on the first wireless signal; the first time parameter group and the first wireless link Relevantly; when the first wireless link is a downlink, the first time parameter set is used to determine a first time resource, and the measurement of the first location information is in the first time resource is performed; when the first wireless link is a secondary link, the first time parameter set is used to determine a second time resource, and the measurement of the first location information is based on the second time The first wireless signal in the resource.
  • This application discloses a second node used for wireless communication, which includes:
  • the second receiver receives the first message
  • the first message includes first location information and a first time parameter group, and the measurement of the first location information is based on a first wireless signal; the first wireless signal is sent on a first wireless link, so The first time parameter group is related to the first wireless link; when the first wireless link is a downlink, the first time parameter group is used to determine a first time resource, and the first time parameter group is used to determine a first time resource.
  • the measurement of location information is performed in the first time resource; when the first wireless link is a secondary link, the first time parameter set is used to determine the second time resource, the The measurement of a location information is based on the first wireless signal in the second time resource.
  • Figure 1 shows a flow chart of a first message transmission according to an embodiment of the present invention
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present invention
  • Figure 3 shows a schematic diagram of an embodiment of a radio protocol architecture for a user plane and a control plane according to an embodiment of the present invention
  • Figure 4 shows a schematic diagram of a hardware module of a communication node according to an embodiment of the present invention
  • Figure 5 shows a structural diagram of UE positioning according to an embodiment of the present invention
  • Figure 6 shows a flow chart of the transmission of a first wireless signal and a first message according to an embodiment of the present invention
  • Figure 7 shows a flow chart of the transmission of the first message and the second message according to an embodiment of the present invention
  • Figure 8 shows a flow chart of the transmission of the first message and the third message according to one embodiment of the present invention
  • Figure 9 shows a schematic diagram in which the first wireless link is a secondary link according to an embodiment of the present invention.
  • Figure 10 shows a schematic diagram in which the first wireless link is a downlink according to an embodiment of the present invention
  • Figure 11 shows a schematic diagram in which the first wireless link is a downlink according to yet another embodiment of the present invention.
  • Figure 12 shows a schematic diagram of first time location information according to an embodiment of the present invention
  • Figure 13 shows a schematic diagram of time resources according to an embodiment of the present invention.
  • Figure 14 shows a structural block diagram of a processing device used in a first node according to an embodiment of the present invention
  • Figure 15 shows a structural block diagram of a processing device used in a second node according to an embodiment of the present invention.
  • Embodiment 1 illustrates a flow chart of the first message transmission according to an embodiment of the present application, as shown in FIG. 1 .
  • the first node 100 receives the first wireless signal through the first wireless link in step 101; sends the first message in step 102;
  • the first message includes first location information and a first time parameter group, and the measurement of the first location information is based on the first wireless signal; the first time parameter group and the first time parameter group are Wireless link related; when the first wireless link is a downlink, the first time parameter set is used to determine the first time resource, and the measurement of the first location information is performed on the first is executed in time resources; when the first wireless link is a side link, the first time parameter group is used to determine the second time resource, and the measurement of the first location information is based on the first wireless signal in the second time resource.
  • the first node 100 is a UE (User Equipment).
  • the measurement of the first location information is not based on the first wireless signal outside the second time resource.
  • the measurement of the first location information is independent of the portion of the first wireless signal outside the second time resource.
  • the first node determines by itself which time domain resources the first wireless signal is used for the first location information. Measurement.
  • the first wireless link is a downlink
  • the first wireless signal includes a reference signal used for positioning.
  • the first wireless signal when the first wireless link is a downlink, the first wireless signal is a downlink reference signal; when the first wireless link is a secondary link, the first wireless signal includes a secondary link. Link reference signal.
  • the secondary link reference signal is SL (Sidelink)-PRS (Positioning reference signal, positioning reference signal).
  • the recipient of the first message when the first wireless link is a downlink, the recipient of the first message includes a location service center, the first time parameter group includes a first timestamp, and the The first time resource is indicated by the first timestamp.
  • the first timestamp is NR-TimeStamp IE (Information Element).
  • the first message is a NAS (Non-Access-Stratum, non-access stratum) message.
  • the first message is sent to the base station via the uplink, and then is sent to the location service center by the base station.
  • the first wireless signal includes DL (DownLink, downlink) PRS (Positioning reference signal, positioning reference signal) resources.
  • DL DownLink, downlink
  • PRS Positioning reference signal, positioning reference signal
  • the location service center is a NAS (Non-Access-Stratum, non-access layer) device.
  • NAS Non-Access-Stratum, non-access layer
  • the location service center includes LMF (Location Management Function).
  • the first timestamp includes SFN (System Frame Number, system frame number) and time slot number (Slot number).
  • SFN System Frame Number, system frame number
  • Slot number time slot number
  • the first wireless signal when the first wireless link is a secondary link, includes SL-SRS (Sounding Reference Signal) resources.
  • SL-SRS Sounding Reference Signal
  • the first wireless signal when the first wireless link is a secondary link, includes SL-PRS resources.
  • the first wireless signal when the first wireless link is a secondary link, includes PSBCH (Physical Sidelink Broadcast Channel, physical secondary link broadcast channel), S-PSS (Sidelink primary synchronization signal, Sidelink secondary synchronization signal), S-SSS (Sidelink secondary synchronization signal, secondary link auxiliary synchronization signal).
  • PSBCH Physical Sidelink Broadcast Channel, physical secondary link broadcast channel
  • S-PSS Segment primary synchronization signal, Sidelink secondary synchronization signal
  • S-SSS Segmentlink secondary synchronization signal
  • secondary link auxiliary synchronization signal secondary link auxiliary synchronization signal
  • the first location information includes timing quality (TimingQuality).
  • the first location information includes a receive beam index (RxBeamIndex).
  • RxBeamIndex receive beam index
  • the first received power information includes RSRP result difference (RSRP-ResultDiff).
  • the first time parameter group indicates a starting time slot of the second time resource.
  • the first time parameter group indicates an expiration time slot of the second time resource.
  • the first time parameter group indicates the duration of the second time resource.
  • the first time parameter group indicates each time slot occupied by the second time resource.
  • the second time resource includes multiple multi-carrier symbols, and the first wireless signal only occupies part of the multi-carrier symbols in the second time resource.
  • the second time resource includes multiple time slots, and the first wireless signal only occupies some of the time slots in the second time resource.
  • the first message is sent on a secondary link.
  • the first location information includes location information of the first node.
  • the multi-carrier symbols are OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols.
  • the multi-carrier symbols are SC-FDMA (Single-carrier Frequency-Division Multiple Access, single-carrier frequency division multiple access) symbols.
  • SC-FDMA Single-carrier Frequency-Division Multiple Access, single-carrier frequency division multiple access
  • the multi-carrier symbols are FBMC (Filterbank Multicarrier) symbols.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in Figure 2.
  • Figure 2 illustrates the V2X communication architecture under 5G NR (New Radio), LTE (Long-Term Evolution, Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) system architecture.
  • the 5G NR or LTE network architecture can be called 5GS (5G System)/EPS (Evolved Packet System) or some other suitable term.
  • the V2X communication architecture of Embodiment 2 includes UE (User Equipment) 201, UE241, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, Home Subscriber Server)/UDM (Unified Data Management, Unified Data Management) 220, ProSe function 250 and ProSe application server 230.
  • the V2X communication architecture may interconnect with other access networks, but these entities/interfaces are not shown for simplicity.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201.
  • gNB 203 may connect to other gNBs 204 via the Xn interface (eg, backhaul).
  • gNB203 can also be called base station, base transceiver station, wireless Electrical base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmitting Receiver Node) or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radio, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radio non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management domain
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway, service gateway)/UPF (UserPlaneFunction, user plane function) 212 and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles signaling between UE201 and 5GC/EPC210. Basically, MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 is connected to Internet service 230.
  • the Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, an intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching streaming services.
  • the ProSe function 250 is a logical function for network-related behaviors required by ProSe (Proximity-based Service); including DPF (Direct Provisioning Function, Direct Provisioning Function), Direct Discovery Name Management Function (Direct Discovery Name Management Function), EPC-level Discovery ProSe Function (EPC-level Discovery ProSe Function), etc.
  • the ProSe application server 230 has functions such as storing EPC ProSe user IDs, mapping between application layer user IDs and EPC ProSe user IDs, and allocating ProSe restricted code suffix pools.
  • the UE201 and the UE241 are connected through a PC5 reference point.
  • the ProSe function 250 is connected to the UE201 and the UE241 through the PC3 reference point respectively.
  • the ProSe function 250 is connected to the ProSe application server 230 through the PC2 reference point.
  • the ProSe application server 230 is connected to the ProSe application of the UE201 and the ProSe application of the UE241 through the PC1 reference point respectively.
  • the first node in this application is the UE201, and the second node in this application is the UE241.
  • the first node in this application is the UE241
  • the second node in this application is the UE201.
  • the wireless link between the UE201 and the UE241 corresponds to a side link (Sidelink, SL) in this application.
  • the wireless link from the UE 201 to the NR Node B is an uplink.
  • the wireless link from the NR Node B to the UE 201 is the downlink.
  • the UE201 supports V2X transmission.
  • the UE241 supports V2X transmission.
  • the gNB 203 is a macro cellular (MarcoCellular) base station.
  • the gNB 203 is a Micro Cell base station.
  • the gNB 203 is a PicoCell base station.
  • the gNB 203 is a home base station (Femtocell).
  • the gNB 203 is a base station device that supports a large delay difference.
  • the gNB 203 is an RSU.
  • the gNB 203 is a satellite device.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for user plane 350 and control plane 300, using three The layer presentation is for the first node device (UE or RSU in V2X, vehicle-mounted equipment or vehicle-mounted communication module) and the second node device (gNB, UE or RSU in V2X, vehicle-mounted equipment or vehicle-mounted communication module), or two UEs Radio protocol architecture between control plane 300: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions. The L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first node device and the second node device and the two UEs through the PHY 301.
  • L2 layer 305 includes MAC (Medium Access Control, media access control) sublayer 302, RLC (Radio Link Control, wireless link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304, these sub-layers terminate at the second node device.
  • the PDCP sublayer 304 provides data encryption and integrity protection, and the PDCP sublayer 304 also provides hand-off support for the first node device to the second node device.
  • the RLC sublayer 303 provides segmentation and reassembly of data packets, and realizes retransmission of lost data packets through ARQ.
  • the RLC sublayer 303 also provides duplicate data packet detection and protocol error detection.
  • the MAC sublayer 302 provides mapping between logical and transport channels and multiplexing of logical channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among first node devices.
  • the MAC sublayer 302 is also responsible for HARQ (Hybrid Automatic Repeat reQuest, Hybrid Automatic Repeat Request) operations.
  • HARQ Hybrid Automatic Repeat reQuest, Hybrid Automatic Repeat Request
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the link between the second node device and the first node device. RRC signaling to configure lower layers.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer). Radio protocol architecture for the first node device and the second node device in the user plane 350.
  • the L2 layer 355 For the physical layer 351, the L2 layer 355 The PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are generally the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides Header compression of upper layer data packets to reduce wireless transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes an SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • DRB Data Radio Bearer
  • the first node device may have several upper layers above the L2 layer 355, including a network layer (eg, IP layer) terminating at the P-GW on the network side and terminating at the other end of the connection (e.g., remote UE, server, etc.) application layer.
  • a network layer eg, IP layer
  • the connection e.g., remote UE, server, etc.
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • the first wireless signal in this application is generated by the PHY301.
  • the measurement of the first wireless signal in this application includes layer 3 filtering performed on the RRC sublayer 306 .
  • the measurement of the first wireless signal in this application is performed on the PHY301.
  • the measurement of the first position information in this application is performed on the PHY301.
  • the measurement of the first location information in this application includes layer 3 filtering performed at the RRC sub-layer 306 .
  • Embodiment 4 shows a schematic diagram of a hardware module of a communication node according to an embodiment of the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in the access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a receive processor 470, a transmit processor 416, a multi-antenna receive processor 472, a multi-antenna transmit processor 471, a transmitter/receiver 418 and an antenna 420.
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and radio resource allocation to the first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer). Transmit processor 416 implements coding and interleaving to facilitate forward error correction (FEC) at the second communications device 410, as well as based on various modulation schemes (e.g., binary phase shifting Mapping of signal clusters for keying (BPSK), quadrature phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • Transmit processor 416 maps each spatial stream to a subcarrier, multiplexes it with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • a reference signal eg, a pilot
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the first communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial stream that is the destination. The symbols on each spatial stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover upper layer data and control signals transmitted by the second communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media.
  • the controller/processor 459 In transmission from the second communication device 410 to the second node 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, Control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements headers based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 In transmission from the first communications device 450 to the second communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Using the at least one processor together, the first communication device 450 at least: receives a first wireless signal through a first wireless link; sends a first message; wherein the first message includes first location information and a first A time parameter set, the measurement of the first location information is based on the first wireless signal; the first time parameter set is related to the first wireless link; when the first wireless link is a downlink , the first time parameter group is used to determine a first time resource, and the measurement of the first location information is performed in the first time resource; when the first wireless link is a secondary link When, the first time parameter group is used to determine the second time resource, and the The measurement of a location information is based on the first wireless signal in the second time resource.
  • the first communication device 450 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: A wireless link receives a first wireless signal; sends a first message; wherein the first message includes first location information and a first time parameter group, and the measurement of the first location information is based on the first wireless signal;
  • the first time parameter group is related to the first wireless link; when the first wireless link is a downlink, the first time parameter group is used to determine a first time resource, and the first time parameter group is used to determine a first time resource.
  • the measurement of a location information is performed in the first time resource; when the first wireless link is a secondary link, the first time parameter set is used to determine the second time resource, the The measurement of first location information is based on the first wireless signal in the second time resource.
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the used with at least one of the above processors.
  • the second communication device 410 is configured to at least: send the first wireless signal through a first wireless link; receive the first message.
  • the second communication device 410 device includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: by The first wireless link sends the first wireless signal; and receives the first message.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a UE.
  • the second communication device 410 is a UE.
  • the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive the first wireless signal.
  • the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 are used to send the first message.
  • Embodiment 5 illustrates a structural diagram of UE positioning according to an embodiment of the present application, as shown in Figure 5.
  • UE501 communicates with ng-eNB502 or gNB503 through LTE (Long Term Evolution, Long Term Evolution)-Uu interface or NR (New Radio)-Uu new wireless interface;
  • ng-eNB502 and gNB 503 are sometimes called base stations, ng-eNB502 and gNB 503 is also called NG (Next Generation)-RAN (Radio Access Network).
  • ng-eNB502 and gNB 503 are connected to AMF (Authentication Management Field, authentication management field) 504 through NG (Next Generation)-C (Control plane) respectively;
  • AMF504 is connected to LMF (Location Management Function) through NL1 interface , location management function) 505 connection.
  • the AMF 504 receives a location service request associated with a specific UE from another entity, such as a GMLC (Gateway Mobile Location Center) or a UE, or the AMF 504 decides to start location services associated with a specific UE.
  • GMLC Gateway Mobile Location Center
  • UE User Equipment
  • the AMF 504 sends the location service request to an LMF, such as the LMF 505; the LMF then processes the location service request, including sending assistance data to the specific UE to assist UE-based or UE-assisted (UE-assisted) positioning, and includes receiving location information (Location information) reported from the UE; then the LMF returns the location service result to the AMF 504; if the location service is requested by another entity, the AMF 504 returns the results of the location service to that entity.
  • LMF location service request to an LMF, such as the LMF 505
  • the LMF processes the location service request, including sending assistance data to the specific UE to assist UE-based or UE-assisted (UE-assisted) positioning, and includes receiving location information (Location information) reported from the UE; then the LMF returns the location service result to the AMF 504; if the location service is requested by another entity, the AMF 504 returns the results of the location service to that entity.
  • the second node of this application includes LMF.
  • the second node in this application includes NG-RAN and LMF.
  • the second node in this application includes NG-RAN, AMF and LMF.
  • Embodiment 6 illustrates a flow chart of the transmission of the first wireless signal and the first message according to an embodiment of the present application, as shown in FIG. 6 .
  • the steps in block F0 are respectively optional.
  • step S101 the first wireless signal is received through the first wireless link; in step S102, the first message is sent;
  • the first message includes first location information and a first time parameter group, and the measurement of the first location information is based on the first wireless signal; the first time parameter group and the first time parameter group are Wireless link related; when the first wireless link is a downlink, the first time parameter set is used to determine the first time resource, and the measurement of the first location information is performed on the first is performed in time resources; when the first wireless link is a secondary link, the first time parameter set is used to determine the second time resource, and the measurement of the first location information is based on the The first wireless signal in the second time resource.
  • the first location information includes timing quality (TimingQuality).
  • the first location information includes a receive beam index (RxBeamIndex).
  • RxBeamIndex receive beam index
  • the first received power information includes RSRP result difference (RSRP-ResultDiff).
  • the first location information includes at least one of first time location information and first received power information.
  • the resolution of the first time location information is Ts, where Ts is 1/(15000*2048) seconds.
  • the resolution of the first time position information is 4 ⁇ Ts, where Ts is 1/(15000*2048) seconds.
  • the unit of the first received power information is dBm (decibel millimeter).
  • the unit of the first received power information is dB (decibel).
  • the name of the first time location information includes RSTD (Reference Signal Time Difference, Reference Signal Time Power).
  • the name of the first time location information includes RxTxTimeDiff (reception and transmission time difference).
  • the first node U1 is the UE to be located.
  • the above sub-embodiment can reduce the power loss of the first node U1.
  • the name of the first time location information includes RTOA (Relative Time of Arrival, relative time of arrival).
  • the name of the first time location information includes SL-RTOA.
  • the sender of the first wireless signal is the UE to be located.
  • the advantage of the above embodiment is that it avoids the UE to be positioned receiving reference signals sent by multiple UEs to calculate location information, thereby avoiding the adverse effects caused by asynchronous transmission between the multiple UEs.
  • the first received power information includes RSRP (Reference Signal Received Power) of the first wireless signal.
  • RSRP Reference Signal Received Power
  • the first received power information includes RSRPP (Reference Signal Received Path Power) of the first wireless signal.
  • RSRPP Reference Signal Received Path Power
  • the first location information includes the first time location information.
  • the first location information includes the first time location information and the first received power information.
  • the second node U2 sends the first wireless signal through the first wireless link in step S201.
  • the first wireless signal is sent by a node other than the second node U2.
  • the first node U1 and the second node U2 are each a UE; when the first wireless link is a secondary link, the first wireless signal is transmitted in step S201. send.
  • the first message includes MAC (Medium Access Control, Media Access Control) CE (Control Element, Control Unit).
  • MAC Medium Access Control, Media Access Control
  • CE Control Element, Control Unit
  • the above method can reduce delay and effectively improve positioning accuracy.
  • the first message includes a NAS message.
  • the above method has good compatibility.
  • the first wireless link when the first wireless link is a downlink, the first message is transmitted through the uplink and not through the secondary link; when the first wireless link is a secondary link , the first message is transmitted through the secondary link.
  • the transmission of the first message passes through the interface between the base station and the location service center.
  • the transmission of the first message passes through the uplink and the interface between the base station and the location service center.
  • the first location information is related to the first wireless link; when the first wireless link is a downlink, the first location information does not include the location of the first node. Information; when the first wireless link is a secondary link, the first location information includes location information of the first node.
  • the location information of the first node includes the longitude of the first node and the latitude of the first node.
  • the location information of the first node includes an altitude (Altitude) of the first node.
  • the location information of the first node includes the moving speed and moving direction of the first node.
  • the first time parameter group is used to determine the third time resource, and the measurement of the location information of the first node is in the It is executed in the third time resource.
  • the third time resource and the first time resource are respectively a timestamp.
  • the third time resource and the first time resource are respectively indicated by nr-timestamp-r16.
  • the name of the location information of the first node includes ellipsoid-Point.
  • the delivery of the first message passes through the ProSe function.
  • the delivery of the first message passes through the ProSe application.
  • Embodiment 7 illustrates a flow chart of the transmission of the first message and the second message according to an embodiment of the present application, as shown in FIG. 7 .
  • the second node U2 sends the second message in step S401 and receives the first message in step S402; the first node U1 receives the second message in step S301 and sends the first message in step S302.
  • the second message is used to configure the second time resource, and the first wireless link is a secondary link.
  • the second message is sent by a location service center or LMF.
  • the name of the second message includes SL-PRS.
  • the second message is NR-SL-PRS-Info IE (Information Element).
  • the second node U2 is the sender of the first wireless signal, and the second node is a UE.
  • the above method enables the UE that is out of coverage or in partial coverage to configure the second time resource by itself or in a predefined manner.
  • the second message includes an RRC message.
  • the second message includes MAC CE.
  • the second message indicates a first time length
  • the duration of the second time resource is the first time length
  • the second message indicates multiple time resources, and the second time resource is one of the multiple time resources.
  • the time interval between any two adjacent time resources among the plurality of time resources is equal.
  • the second message is transmitted through a secondary link.
  • the second message is an RRC layer message.
  • the second message is an RRC layer message.
  • the second message is sent through the first wireless link.
  • Embodiment 8 illustrates a flow chart of the transmission of the first message and the third message according to an embodiment of the present application, as shown in FIG. 8 .
  • the first node U1 sends the third message in step S501 and the first message in step S502; the second node U2 receives the third message in step S601 and the first message in step S602.
  • the third message is used to determine the second time resource, and the first wireless link is a secondary link.
  • the third message is transmitted through a secondary link.
  • the third message includes SCI.
  • the third message includes secondary link MAC CE.
  • the third message is used to trigger the sending of the first wireless signal.
  • the first node U1 and the second node U2 are respectively a UE, and the third message includes the first Layer-2 identity (Layer-2 ID) and the second Layer-2 identity.
  • the first layer 2 identity and the second layer 2 identity are the destination layer 2 identity (Destination Layer-2 ID) and the source layer 2 identity (Source Layer-2) of the first node U1 respectively. ID).
  • the first layer 2 identity and the second layer 2 identity are respectively the source layer 2 identity (Source Layer-2 ID) and the destination layer 2 identity (Destination Layer-2) of the second node U2. ID).
  • the third message includes a first SCI and a first MAC PDU, and the source layer 1 identity (Source Layer-1 ID) of the first SCI
  • the first domain in the first SCI requests the transmission of a first wireless signal.
  • the first field has only one bit.
  • the first domain is an SL-PRS request domain.
  • the second time resource is a first time window.
  • the second time resource is a time slot occupied by the first wireless signal in the first time window.
  • the first time window is associated with the time slot occupied by the third message.
  • the first time window is associated with a time slot occupied by a first HARQ-ACK, and the first HARQ-ACK indicates that the third message is received correctly.
  • the first time window is from the L1th time slot after the time slot occupied by the third message to the L2th time slot after the time slot occupied by the third message;
  • L2 is a positive integer greater than L1.
  • the first time window is from the L1th time slot after the time slot occupied by the first HARQ-ACK to the L2th time slot after the time slot occupied by the third message;
  • the L2 is a positive integer greater than the L1.
  • the first wireless signal only occupies one time slot in the first time window.
  • L1 is 1.
  • L1 is 4.
  • the L2 is configurable.
  • Embodiment 9 illustrates a schematic diagram in which the first wireless link is a secondary link according to an embodiment of the present application, as shown in FIG. 9 .
  • the steps in boxes F1, F2 and F3 are respectively optional.
  • the first node 700 receives the first wireless signal through the first wireless link in step S702; sends the first message in step S703;
  • the second UE800 sends the first wireless signal through the first wireless link in step S802;
  • the first message includes first location information and a first time parameter group, and the measurement of the first location information is based on the first wireless signal; the first wireless link is a secondary link, The first set of time parameters is used to determine a second time resource in which the measurement of the first location information is based on the first wireless signal.
  • the first node 700 sends a third message in step S701, and the second UE 800 receives the third message in step S801; the third message is used to determine the second time resource.
  • the second time resource is associated with the time resource occupied by the third message.
  • the third message indicates the second time resource from a plurality of time resources, and the plurality of time resources are indicated by the second message.
  • the third message is used to trigger the sending of the first wireless signal within the second time resource.
  • the second time resource is a time slot.
  • the second UE800 is the second node, and the second UE800 receives the first message in step S803.
  • the first message includes the location information of the first node 700,
  • One advantage of the above method is to assist the second UE 800 to quickly determine its own position; the above method is particularly suitable for the second UE 800 to perform UE-based positioning (although it is also applicable to UE-assisted positioning).
  • the above method is suitable for a scenario where the second UE 800 is outside coverage or partially covered.
  • the location information of the first node 700 includes the longitude of the first node 700 and the latitude of the first node 700 .
  • the location information of the first node 700 includes the altitude (Altitude) of the first node 700 .
  • the location information of the first node 700 includes the moving speed and moving direction of the first node 700 .
  • the first time parameter set is used to determine a third time resource, and the measurement of the location information of the first node 700 is performed in the third time resource.
  • the measurement of the location information of the first node 700 is performed in the second time resource.
  • the above method avoids inaccurate positioning caused by the movement of the first node 700 .
  • the third time resource and the first time resource are respectively a timestamp.
  • the third time resource and the first time resource are respectively indicated by nr-timestamp-r16.
  • the name of the location information of the first node 700 includes ellipsoid-Point.
  • the network device 900 receives the first message in step S901, the network device 900 is the second node, and the first location information includes first time location information and first received power information. At least the former.
  • One advantage of the above method is that it reduces the computational complexity of the second UE 800; in addition, considering that the timing of the first node 700 is not synchronized with the timing of the network device, the reference time of the first time location information may need to be Correction of network equipment; the above method avoids transmitting auxiliary information for correcting the reference time through the secondary link, reducing air interface redundancy.
  • the network device 900 includes an LMF.
  • the network device 900 includes NG-RAN.
  • the network device 900 includes an AMF.
  • Embodiment 10 illustrates a schematic diagram in which the first wireless link is a downlink according to an embodiment of the present application, as shown in FIG. 10 .
  • the first node 1000 receives the first wireless signal through the first wireless link in step S1001, and sends the first message in step S1002;
  • the network device 1100 sends the first wireless signal through the first wireless link in step S1101, and receives the first message in step S1102;
  • the first message includes first location information and a first time parameter group, and the measurement of the first location information is based on the first wireless signal; the first wireless link is a downlink, The first set of temporal parameters is used to determine a first temporal resource in which the measurement of the first location information is performed.
  • the first time parameter group is nr-TimeStamp-r16.
  • the first message is NR-DL-TDOA-SignalMeasurementInformation-r16, and the first location information includes nr-RSTD-r16.
  • the first message is NR-DL-AoD-SignalMeasurementInformation-r16
  • the first location information includes nr-DL-PRS-RSRP-Result-r16, nr-DL-PRS-RxBeamIndex-r16, At least one of nr-DL-PRS-FirstPathRSRP-Result-r17, nr-los-nlos-Indicator-r17 and nr-DL-AoD-AdditionalMeasurementsExt-r17.
  • the first message is NR-Multi-RTT-SignalMeasurementInformation-r16
  • the first location information includes nr-UE-RxTxTimeDiff-r16, nr-AdditionalPathList-r16, nr-TimingQuality-r16, nr- At least one of DL-PRS-RSRP-Result-r16 and nr-Multi-RTT-AdditionalMeasurements-r16.
  • Embodiment 10 maintains good compatibility with existing systems.
  • Embodiment 11 illustrates a schematic diagram in which the first wireless link is a downlink according to yet another embodiment of the present application, as shown in FIG. 11 .
  • the network device 1300 sends the first wireless signal through the first wireless link in step S1301;
  • the first node 1200 receives the first wireless signal through the first wireless link in step S1201; sends the first message in step S1202;
  • the second UE1400 receives the first message in step S1401;
  • the first message includes first location information and a first time parameter group, and the measurement of the first location information is based on the first wireless signal; the first wireless link is a downlink, The first set of temporal parameters is used to determine a first temporal resource in which the measurement of the first location information is performed.
  • the first location information includes the longitude of the first node 1200 and the latitude of the first node 1200 .
  • the first location information includes the altitude (Altitude) of the first node 1200 .
  • the first location information includes the moving speed and moving direction of the first node 1200 .
  • the first node 1200 and the second UE 1400 are located within coverage and outside coverage respectively.
  • the first node 1200 and the second UE 1400 are located within coverage and partially covered respectively.
  • the first time resource is a timestamp.
  • the first time resource is a subframe.
  • the first time resource is a subframe in a radio frame identified by DFN.
  • the first message is transmitted through the ProSe function.
  • the first message is transmitted through the ProSe application.
  • Embodiment 11 One advantage of Embodiment 11 is that the second UE 1400 can be positioned quickly while ensuring positioning accuracy.
  • Embodiment 12 illustrates a schematic diagram of first time location information according to an embodiment of the present application, as shown in FIG. 12 .
  • Time unit I and time unit I+1 identified by the thick line frame in Figure 12 are time units for downlink transmission by the network device.
  • the first wireless link is a secondary link, and the propagation delay of the first wireless signal on the first wireless link is t1; the propagation delay of the downlink wireless signal from the network device to the first node is t3; due to the transmission Timing advance or transmission timing adjustment, the time unit of the first node's secondary link transmission (square filled with Q or square filled with Q+1) is compared with the time unit of the corresponding downlink reception (filled with J squares or squares filled with J+1) are ahead of t2 (as shown by the double-headed arrow marked by t2).
  • the time unit of the first node's uplink transmission is synchronized with the time unit of the first node's secondary link transmission; t2 is sometimes also called timing advance.
  • the time unit including at least part of the first wireless signal is the first time unit; the value of the starting moment of the first time unit received by the first node in the downlink is shown by arrow O1;
  • the first location information includes first time location information, and the starting moment of the first time unit received by the first node in downlink is used to generate the first time location information.
  • the recipient of the first message includes the LMF; considering that the LMF can obtain the timing advance of the first node through NG-RAN or the base station, the LMF can advance the timing of the first node in The first time unit starting moment received in the downlink is converted into the first time unit starting moment sent by the network device in the downlink.
  • the first node may advance the starting time of the first time unit received on the downlink by a first time offset. Shift amount.
  • the first location information includes first time location information, and the starting time of the first time unit of downlink transmission by the network device is used to generate the first time location information.
  • the first time offset is t3 in the above embodiment, that is, the value indicated by the arrow O1 is adjusted to the first time unit (the square filled with I) of the downlink transmission of the network device. square or square filled with I+1), as shown by arrow O2.
  • the advantage of the above embodiment is that the arrival time calculated by any receiver of the first wireless signal adopts the downlink transmission timing of the unified network device, avoiding timing failures caused by timing asynchronous between different receivers. ; At the same time, the processing complexity of the recipient of the first message can be reduced; In addition, considering that the time synchronization accuracy between network devices is much higher than the time synchronization accuracy between user devices, the timing synchronization of network devices can be used as a reference time. Achieve better positioning accuracy.
  • the t3 is t2/2.
  • the recipient of the first message includes the sender of the first wireless signal.
  • the first time offset is t2 - that is, the value indicated by the arrow O1 is adjusted to the first time unit (the Q-filled square) sent by the first node on the secondary link. square or square filled with Q+1), as shown by arrow O3.
  • One advantage of the above method is that the first node is avoided from calculating t3.
  • the first time location information includes RSTD (Reference Signal Time Difference, reference signal time power).
  • RSTD Reference Signal Time Difference, reference signal time power
  • the first time location information includes RxTxTimeDiff (reception and transmission time difference).
  • the first time location information includes RTOA (Relative Time of Arrival, relative time of arrival).
  • RTOA Relative Time of Arrival, relative time of arrival
  • the RTOA is a SL-RTOA.
  • the first time location information is the start of a first time unit received at a reception point (Reception Point) compared to a first reference time; the first time unit includes at least part of the first wireless signal,
  • the first reference time is a difference obtained by subtracting the first time offset from the sum of all components in a first component set, which includes a first component and a second component, and the first component set includes a first component and a second component.
  • One component is configurable and the second component is the index of the first time unit.
  • the receiving point is a receiving antenna connector (Rx antenna connector), or a receiving antenna (Rx antenna), or an Rx transceiver array boundary connector (Transceiver Array Boundary connector).
  • the first component is the nominal beginning time of SFN 0, and the nominal beginning time of SFN 0 is provided by the SFN Initialization Time.
  • the index of the first time unit is a non-negative integer not greater than 10239.
  • the index of the first time unit is 10m+n; where m is the SFN of the first time unit, and n is the subframe number of the first time unit.
  • the index of the first time unit is 10k+p; where k is the DFN (Direct Frame Number) of the first time unit, and p is the subframe of the first time unit. Number.
  • the first time unit is a subframe.
  • the first time unit is a frame.
  • Embodiment 13 illustrates a schematic diagram of time resources according to an embodiment of the present application, as shown in Figure 13.
  • a square represents a time domain resource; squares filled with i, i+1 and i+2 represent multiple configured time resources.
  • the second time resource is one of the plurality of time resources.
  • the second message is used to configure the plurality of time resources.
  • the time interval between any two adjacent time resources among the plurality of time resources is equal.
  • the multiple time resources belong to a secondary link resource pool.
  • any two adjacent time resources among the plurality of time resources include the same number of time slots belonging to the one secondary link resource pool.
  • Embodiment 14 illustrates a structural block diagram of a processing device used in a first node according to an embodiment of the present application; as shown in FIG. 14 .
  • the processing device 1600 in the first node includes a first receiver 1601 and a first transmitter 1602.
  • the first receiver 1601 receives a first wireless signal through a first wireless link; the first transmitter 1602 sends a first message;
  • the first message includes first location information and a first time parameter group, and the measurement of the first location information is based on the first wireless signal; the first time parameter group and the first time parameter group are Wireless link related; when the first wireless link is a downlink, the first time parameter set is used to determine the first time resource, and the measurement of the first location information is performed on the first is performed in time resources; when the first wireless link is a secondary link, the first time parameter set is used to determine the second time resource, and the measurement of the first location information is based on the The first wireless signal in the second time resource.
  • the first location information includes at least one of first time location information and first received power information.
  • the first wireless link when the first wireless link is a downlink, the first message is transmitted through the uplink and not through the secondary link; when the first wireless link is a secondary link , the first message is transmitted through the secondary link.
  • the first location information is related to the first wireless link; when the first wireless link is a downlink, the first location information does not include the location of the first node. Information; when the first wireless link is a secondary link, the first location information includes location information of the first node.
  • the first receiver 1601 receives the second message
  • the second message is used to configure the second time resource
  • the first wireless link is a secondary link.
  • the first sender 1602 sends the third message
  • the third message is used to determine the second time resource, and the first wireless link is a secondary link.
  • the first node 1600 is a user equipment.
  • the first transmitter 1602 includes the antenna 452, transmitter/receiver 454, multi-antenna transmitter processor 457, transmit processor 468, controller/processor 459 in Figure 4 of this application, At least one of memory 460 and data source 467.
  • the first transmitter 1602 includes the antenna 452, transmitter/receiver 454, multi-antenna transmitter processor 457, transmit processor 468, controller/processor 459 in Figure 4 of this application, Memory 460 and data source 467.
  • the first receiver 1601 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data in Figure 4 of this application. At least the first five of source 467.
  • the first receiver 1601 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data in Figure 4 of this application. At least the first four of source 467.
  • the first receiver 1601 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data in Figure 4 of this application. At least the first three of source 467.
  • Embodiment 15 illustrates a structural block diagram of a processing device used in a second node according to an embodiment of the present application; as shown in FIG. 15 .
  • the processing device 1700 in the second node includes a second transmitter 1701 and a second receiver 1702; wherein the second transmitter 1701 is optional.
  • the second receiver 1702 receives the first message
  • the first message includes first location information and a first time parameter group, and the measurement of the first location information is based on a first wireless signal; the first wireless signal is measured on the first wireless link.
  • Send, the first time parameter group is related to the first wireless link; when the first wireless link is a downlink, the first time parameter group is used to determine the first time resource, so the measurement of the first location information is performed in the first time resource; when the first wireless link is a secondary link, the first time parameter set is used to determine a second time resource, The measurement of the first location information is based on the information at the second time source of the first wireless signal.
  • the processing device 1700 in the second node includes the second sender 1701, and the second sender 1701 sends a second message; wherein the second message is used to configure The second time resource, the first wireless link is a secondary link.
  • the second receiver 1702 receives the third message
  • the third message is used to determine the second time resource, and the first wireless link is a secondary link.
  • the second node includes an LMF.
  • the second node includes NG-RAN.
  • the second node is a UE.
  • the processing device 1700 in the second node includes the second transmitter 1701, and the second transmitter 1701 sends the first wireless signal through the first wireless link.
  • the second receiver 1702 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475.
  • the second receiver 1702 includes the controller/processor 475.
  • the second transmitter 1701 sends the first wireless signal, and the second transmitter 1701 includes the antenna 420, the transmitter 418, the transmission processor 416, the controller /processor475.
  • the second transmitter 1701 transmits the first wireless signal.
  • the second transmitter 1701 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, and the Launch processor 416, the controller/processor 475.
  • the second transmitter 1701 sends the first wireless signal, and the second transmitter 1701 includes the antenna 420, the transmitter 418, the transmission processor 416, the controller /processor475.
  • the second transmitter 1701 transmits the first wireless signal.
  • the second transmitter 1701 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, and the Launch processor 416, the controller/processor 475.
  • User equipment, terminals and UEs in this application include but are not limited to drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC, enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost Cost-effective tablet computers and other wireless communication devices.
  • MTC Machine Type Communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point, transmitting and receiving node) and other wireless communications equipment.
  • gNB NR Node B
  • TRP Transmitter Receiver Point

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了用于定位的方法和装置。第一节点通过第一无线链路接收第一无线信号;发送第一消息;其中,所述第一消息包括第一位置信息和第一时间参数组,所述第一位置信息的测量基于所述第一无线信号;所述第一时间参数组与所述第一无线链路有关;当所述第一无线链路是下行链路时,所述第一时间参数组被用于确定第一时间资源,所述第一位置信息的所述测量在所述第一时间资源中被执行;当所述第一无线链路是副链路时,所述第一时间参数组被用于确定第二时间资源,所述第一位置信息的所述测量基于在所述第二时间资源中的所述第一无线信号。本申请能提高定位性能。

Description

用于定位的方法和装置 技术领域
本发明涉及无线通信系统中的方法和装置,尤其涉及无线通信系统中的用于定位的方案和装置。
背景技术
定位是无线通信领域的一个重要应用;V2X(Vehicle to everything,车对外界)或者工业物联网等新应用的出现,对定位的精度或者延迟提出了更高的要求。在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#94e会议中,关于定位增强的研究课题被立项。
发明内容
涉及副链路的定位中,用于定位测量的无线信号的发送者可能是移动的,这就使得传统的用于定位的流程或者位置信息反馈方案需要进一步增强。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在本申请的描述中,只是采用V2X场景作为一个典型应用场景或者例子;本申请也同样适用于面临相似问题的V2X之外的场景,例如公共安全(Public Safety)、工业物联网等等,并取得类似NRV2X场景中的技术效果。此外,虽然本申请的动机是针对用于定位测量的无线信号的发送者是移动的这一场景,本申请依然适用于用于定位测量的无线信号的发送者是固定的这一场景,例如RSU(Road Side Unit,路边单元)等。不同场景采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
在需要的情况下,可以参考3GPP标准TS38.211,TS38.212,TS38.213,TS38.214,TS38.215,TS38.321,TS38.331,TS38.305,TS37.355以辅助对本申请的理解。
本申请公开了被用于无线通信的第一节点中的方法,其中,包括:
通过第一无线链路接收第一无线信号;
发送第一消息;
其中,所述第一消息包括第一位置信息(Location Information)和第一时间参数组,所述第一位置信息的测量基于所述第一无线信号;所述第一时间参数组与所述第一无线链路有关;当所述第一无线链路是下行链路时,所述第一时间参数组被用于确定第一时间资源,所述第一位置信息的所述测量在所述第一时间资源中被执行;当所述第一无线链路是副链路时,所述第一时间参数组被用于确定第二时间资源,所述第一位置信息的所述测量基于在所述第二时间资源中的所述第一无线信号。
作为一个实施例,对于基于副链路的定位,上述方法明确了用于测量的无线信号所占用的时域资源,避免了所述第一无线信号的发送者的移动带来的影响,提高了定位精度。
作为一个实施例,对于基于下行链路的定位,上述方法明确了执行测量的时域资源,一方面能支持所述第一节点的移动;另一方面提高了测量的准确性,或者提高了测量的灵活性。
具体的,根据本申请的一个方面,上述方法的特征在于,所述第一位置信息包括第一时间差值信息和第一接收功率信息二者中的至少之一。
具体的,根据本申请的一个方面,上述方法的特征在于,所述第一消息的传递经过上行链路且不经过副链路;当所述第一无线链路是副链路时,所述第一消息的传递经过副链路。
具体的,根据本申请的一个方面,上述方法的特征在于,所述第一位置信息与所述第一无线链路有关;当所述第一无线链路是下行链路时,所述第一位置信息不包括所述第一节点的位置信息;当所述第一无线链路是副链路时,所述第一位置信息包括所述第一节点的位置信息。
具体的,根据本申请的一个方面,上述方法的特征在于,包括:
所述第一接收机,接收第二消息;
其中,所述第二消息被用于配置所述第二时间资源,所述第一无线链路是副链路。
作为一个实施例,上述方法能够灵活配置所述第二时间资源,减少所述第一节点的功率开销。
具体的,根据本申请的一个方面,上述方法的特征在于,包括:
所述第一发送机,发送第三消息;
其中,所述第三消息被用于确定所述第二时间资源,所述第一无线链路是副链路。
典型的,所述第三消息在所述第二时间资源之前被发送。
作为一个实施例,上述方法能降低用于配置所述第二时间资源的信令开销。
作为一个实施例,上述方法能减少所述第一节点的功率开销。
本申请公开了被用于无线通信的第二节点中的方法,其中,包括:
第二接收机,接收第一消息;
其中,所述第一消息包括第一位置信息和第一时间参数组,所述第一位置信息的测量基于第一无线信号;所述第一无线信号在第一无线链路上被发送,所述第一时间参数组与所述第一无线链路有关;当所述第一无线链路是下行链路时,所述第一时间参数组被用于确定第一时间资源,所述第一位置信息的所述测量在所述第一时间资源中被执行;当所述第一无线链路是副链路时,所述第一时间参数组被用于确定第二时间资源,所述第一位置信息的所述测量基于在所述第二时间资源中的所述第一无线信号。
本申请公开了一种被用于无线通信的第一节点,其中,包括:
第一接收机,通过第一无线链路接收第一无线信号;
第一发送机,发送第一消息;
其中,所述第一消息包括第一位置信息和第一时间参数组,所述第一位置信息的测量基于所述第一无线信号;所述第一时间参数组与所述第一无线链路有关;当所述第一无线链路是下行链路时,所述第一时间参数组被用于确定第一时间资源,所述第一位置信息的所述测量在所述第一时间资源中被执行;当所述第一无线链路是副链路时,所述第一时间参数组被用于确定第二时间资源,所述第一位置信息的所述测量基于在所述第二时间资源中的所述第一无线信号。
本申请公开了一种被用于无线通信的第二节点,其中,包括:
第二接收机,接收第一消息;
其中,所述第一消息包括第一位置信息和第一时间参数组,所述第一位置信息的测量基于第一无线信号;所述第一无线信号在第一无线链路上被发送,所述第一时间参数组与所述第一无线链路有关;当所述第一无线链路是下行链路时,所述第一时间参数组被用于确定第一时间资源,所述第一位置信息的所述测量在所述第一时间资源中被执行;当所述第一无线链路是副链路时,所述第一时间参数组被用于确定第二时间资源,所述第一位置信息的所述测量基于在所述第二时间资源中的所述第一无线信号。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更加明显:
图1示出了根据本发明的一个实施例的第一消息传输的流程图;
图2示出了根据本发明的一个实施例的网络架构的示意图;
图3示出了根据本发明的一个实施例的用户平面和控制平面的无线电协议架构的实施例的示意图;
图4示出了根据本发明的一个实施例的通信节点的硬件模块示意图;
图5示出了根据本发明的一个实施例的UE定位的结构图;
图6示出了根据本发明的一个实施例的第一无线信号和第一消息的传输流程图;
图7示出了根据本发明的一个实施例的第一消息和第二消息的传输流程图;
图8示出了根据本发明的一个实施例的第一消息和第三消息的传输流程图;
图9示出了根据本发明的一个实施例的第一无线链路是副链路的示意图;
图10示出了根据本发明的一个实施例的第一无线链路是下行链路的示意图;
图11示出了根据本发明的又一个实施例的第一无线链路是下行链路的示意图;
图12示出了根据本发明的一个实施例的第一时间位置信息的示意图;
图13示出了根据本发明的一个实施例的时间资源的示意图;
图14示出了根据本发明的一个实施例的用于第一节点中的处理装置的结构框图;
图15示出了根据本发明的一个实施例的用于第二节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一消息传输的流程图,如附图1所示。
在实施例1中,第一节点100在步骤101中通过第一无线链路接收第一无线信号;在步骤102中发送第一消息;
实施例1中,所述第一消息包括第一位置信息和第一时间参数组,所述第一位置信息的测量基于所述第一无线信号;所述第一时间参数组与所述第一无线链路有关;当所述第一无线链路是下行链路时,所述第一时间参数组被用于确定第一时间资源,所述第一位置信息的所述测量在所述第一时间资源中被执行;当所述第一无线链路是副链路(Sidelink)时,所述第一时间参数组被用于确定第二时间资源,所述第一位置信息的所述测量基于在所述第二时间资源中的所述第一无线信号。
典型的,所述第一节点100是一个UE(User Equipment,用户设备)。
作为一个实施例,当所述第一无线链路是副链路时,所述第一位置信息的所述测量不基于在所述第二时间资源之外的所述第一无线信号。
作为一个实施例,当所述第一无线链路是副链路时,所述第一位置信息的所述测量与所述第一无线信号在所述第二时间资源之外的部分无关。
作为一个实施例,当所述第一无线链路是下行链路时,所述第一节点自行确定哪些时域资源中的所述第一无线信号被用于所述第一位置信息的所述测量。
作为一个实施例,当所述第一无线链路是下行链路时,哪些时域资源中的所述第一无线信号被用于所述第一位置信息的所述测量是不需要标准化的。
典型的,所述第一无线信号包括被用于定位的参考信号。
典型的,当所述第一无线链路是下行链路时,所述第一无线信号是下行参考信号;当所述第一无线链路是副链路时,所述第一无线信号包括副联路参考信号。
作为一个实施例,所述副链路参考信号是SL(Sidelink)-PRS(Positioning reference signal,定位参考信号)。
作为一个实施例,当所述第一无线链路是下行链路时,所述第一消息的接收者包括位置服务中心,所述第一时间参数组包括第一时间戳(Timestamp),所述第一时间资源被所述第一时间戳指示。
作为一个实施例,所述第一时间戳是NR-TimeStamp IE(Information Element,信息单元)。
作为上述实施例的一个子实施例,所述第一消息是NAS(Non-Access-Stratum,非接入层)消息。
作为上述实施例的一个子实施例,所述第一消息经由上行链路被发送给基站,然后被基站发送给位置服务中心。
作为上述实施例的一个子实施例,所述第一无线信号包括DL(DownLink,下行)PRS(Positioning reference signal,定位参考信号)资源。
作为一个实施例里,所述位置服务中心是NAS(Non-Access-Stratum,非接入层)设备。
作为一个实施例,所述位置服务中心包括LMF(Location Management Function,位置管理功能)。
作为一个实施例,所述第一时间戳包括SFN(System Frame Number,系统帧号)和时隙号(Slot number)。
作为一个实施例,当所述第一无线链路是副链路时,所述第一无线信号包括SL-SRS(Sounding Reference Signal,侦听参考信号)资源。
作为一个实施例,当所述第一无线链路是副链路时,所述第一无线信号包括SL-PRS资源。
作为一个实施例,当所述第一无线链路是副链路时,所述第一无线信号包括PSBCH(Physical Sidelink Broadcast Channel,物理副链路广播信道),S-PSS(Sidelink primary synchronization signal,副链路主同步信号),S-SSS(Sidelink secondary synchronization signal,副链路辅同步信号)。
作为一个实施例,所述第一位置信息包括时间质量(TimingQuality)。
作为一个实施例,所述第一位置信息包括接收波束索引(RxBeamIndex)。
作为一个实施例,所述第一接收功率信息包括RSRP结果差(RSRP-ResultDiff)。
作为一个实施例,当所述第一无线链路是副链路时,所述第一时间参数组指示所述第二时间资源的起始时隙。
作为一个实施例,当所述第一无线链路是副链路时,所述第一时间参数组指示所述第二时间资源的截止时隙。
作为一个实施例,当所述第一无线链路是副链路时,所述第一时间参数组指示所述第二时间资源的持续时间。
作为一个实施例,当所述第一无线链路是副链路时,所述第一时间参数组指示所述第二时间资源所占用的每个时隙。
作为一个实施例,所述第二时间资源包括多个多载波符号,所述第一无线信号仅占用所述第二时间资源中的部分多载波符号。
作为一个实施例,所述第二时间资源包括多个时隙,所述第一无线信号仅占用所述第二时间资源中的部分时隙。
作为一个实施例,当所述第一无线链路是下行链路时,所述第一消息在副链路上被发送。
作为上述实施例的一个子实施例,所述第一位置信息包括所述第一节点的位置信息。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single-carrier Frequency-Division Multiple Access,单载波频分多址)符号。
作为一个实施例,所述多载波符号是FBMC(Filterbank Multicarrier,滤波器组多载波)符号。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。附图2说明了5G NR(NewRadio,新空口),LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统架构下的V2X通信架构。5G NR或LTE网络架构可称为5GS(5GSystem)/EPS(Evolved Packet System,演进分组系统)某种其它合适术语。
实施例2的V2X通信架构包括UE(User Equipment,用户设备)201,UE241,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220,ProSe功能250和ProSe应用服务器230。所述V2X通信架构可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,所述V2X通信架构提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线 电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(UserPlaneFunction,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。所述ProSe功能250是用于适地服务(ProSe,Proximity-based Service)所需的网络相关行为的逻辑功能;包括DPF(Direct Provisioning Function,直接供应功能),直接发现名称管理功能(Direct Discovery Name Management Function),EPC水平发现ProSe功能(EPC-level Discovery ProSe Function)等。所述ProSe应用服务器230具备存储EPC ProSe用户标识,在应用层用户标识和EPC ProSe用户标识之间映射,分配ProSe限制的码后缀池等功能。
作为一个实施例,所述UE201和所述UE241之间通过PC5参考点(Reference Point)连接。
作为一个实施例,所述ProSe功能250分别通过PC3参考点与所述UE201和所述UE241连接。
作为一个实施例,所述ProSe功能250通过PC2参考点与所述ProSe应用服务器230连接。
作为一个实施例,所述ProSe应用服务器230连接分别通过PC1参考点与所述UE201的ProSe应用和所述UE241的ProSe应用连接。
作为一个实施例,本申请中的所述第一节点是所述UE201,本申请中的所述第二节点是所述UE241。
作为一个实施例,本申请中的所述第一节点是所述UE241,本申请中的所述第二节点是所述UE201。
作为一个实施例,所述UE201和所述UE241之间的无线链路对应本申请中的副链路(Sidelink,SL)。
作为一个实施例,从所述UE201到NR节点B的无线链路是上行链路。
作为一个实施例,从NR节点B到UE201的无线链路是下行链路。
作为一个实施例,所述UE201支持V2X传输。
作为一个实施例,所述UE241支持V2X传输。
作为一个实施例,所述gNB203是宏蜂窝(MarcoCellular)基站。
作为一个实施例,所述gNB203是微小区(Micro Cell)基站。
作为一个实施例,所述gNB203是微微小区(PicoCell)基站。
作为一个实施例,所述gNB203是家庭基站(Femtocell)。
作为一个实施例,所述gNB203是支持大时延差的基站设备。
作为一个实施例,所述gNB203是一个RSU。
作为一个实施例,所述gNB203是卫星设备。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个 层展示用于第一节点设备(UE或V2X中的RSU,车载设备或车载通信模块)和第二节点设备(gNB,UE或V2X中的RSU,车载设备或车载通信模块),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,通过PHY301负责在第一节点设备与第二节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点设备处。PDCP子层304提供数据加密和完整性保护,PDCP子层304还提供第一节点设备对第二节点设备的越区移动支持。RLC子层303提供数据包的分段和重组,通过ARQ实现丢失数据包的重传,RLC子层303还提供重复数据包检测和协议错误检测。MAC子层302提供逻辑与传输信道之间的映射和逻辑信道的复用。MAC子层302还负责在第一节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点设备与第一节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点设备和第二节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的包头压缩以减少无线发送开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的针对所述第一无线信号的测量包括在所述RRC子层306执行的层3滤波。
作为一个实施例,本申请中的针对所述第一无线信号的测量是在所述PHY301被执行的。
作为一个实施例,本申请中的所述第一位置信息的所述测量是在所述PHY301被执行的。
作为一个实施例,本申请中的所述第一位置信息的所述测量包括在所述RRC子层306执行的层3滤波。
实施例4
实施例4示出了根据本申请的一个实施例的通信节点的硬件模块示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移 键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二节点450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:通过第一无线链路接收第一无线信号;发送第一消息;其中,所述第一消息包括第一位置信息和第一时间参数组,所述第一位置信息的测量基于所述第一无线信号;所述第一时间参数组与所述第一无线链路有关;当所述第一无线链路是下行链路时,所述第一时间参数组被用于确定第一时间资源,所述第一位置信息的所述测量在所述第一时间资源中被执行;当所述第一无线链路是副链路时,所述第一时间参数组被用于确定第二时间资源,所述第 一位置信息的所述测量基于在所述第二时间资源中的所述第一无线信号。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:通过第一无线链路接收第一无线信号;发送第一消息;其中,所述第一消息包括第一位置信息和第一时间参数组,所述第一位置信息的测量基于所述第一无线信号;所述第一时间参数组与所述第一无线链路有关;当所述第一无线链路是下行链路时,所述第一时间参数组被用于确定第一时间资源,所述第一位置信息的所述测量在所述第一时间资源中被执行;当所述第一无线链路是副链路时,所述第一时间参数组被用于确定第二时间资源,所述第一位置信息的所述测量基于在所述第二时间资源中的所述第一无线信号。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:通过第一无线链路发送所述第一无线信号;接收所述第一消息。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:通过第一无线链路发送所述第一无线信号;接收所述第一消息。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第二通信设备410是一个UE。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459被用于接收第一无线信号。
作为一个实施例,所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475被用于发送第一消息。
实施例5
实施例5示例了根据本申请的一个实施例的UE定位的结构图,如附图5所示。
UE501通过LTE(Long Term Evolution,长期演进)-Uu接口或NR(New Radio)-Uu新无线接口与ng-eNB502或gNB503通信;ng-eNB502和gNB 503有时被称为基站,ng-eNB502和gNB 503也被称为NG(Next Generation,下一代)-RAN(Radio Access Network,无线接入网)。ng-eNB502和gNB 503分别通过NG(Next Generation,下一代)-C(Control plane,控制面)与AMF(Authentication Management Field,鉴权管理域)504连接;AMF504通过NL1接口与LMF(Location Management Function,位置管理功能)505连接。
所述AMF504从另外一个实体,例如GMLC(Gateway Mobile Location Centre,网关移动位置中心)或者UE,接收到与特定UE关联的位置服务请求,或者所述AMF504自己决定启动被关联到特定UE的位置服务;然后所述AMF504发送位置服务请求到一个LMF,例如所述LMF505;然后这个LMF处理所述位置服务请求,包括发送辅助数据到所述特定UE以辅助基于UE(UE-based)的或者UE辅助的(UE-assisted)定位,以及包括接收来自UE上报的位置信息(Location information);接着这个LMF将位置服务的结果返回给所述AMF504;如果所述位置服务是另外一个实体请求的,所述AMF504将所述位置服务的结果返回给那个实体。
作为一个实施例,本申请的所述第二节点包括LMF。
作为一个实施例,本申请的所述第二节点包括NG-RAN和LMF。
作为一个实施例,本申请的所述第二节点包括NG-RAN、AMF和LMF。
实施例6
实施例6示例了根据本申请的一个实施例的第一无线信号和第一消息的传输流程图,如附图6所示。附图6中,方框F0中的步骤分别是可选的。
对于第一节点U1,在步骤S101中通过第一无线链路接收第一无线信号;在步骤S102中发送第一消息;
对于第二节点U2在步骤S202中接收所述第一消息;
实施例6中,所述第一消息包括第一位置信息和第一时间参数组,所述第一位置信息的测量基于所述第一无线信号;所述第一时间参数组与所述第一无线链路有关;当所述第一无线链路是下行链路时,所述第一时间参数组被用于确定第一时间资源,所述第一位置信息的所述测量在所述第一时间资源中被执行;当所述第一无线链路是副链路时,所述第一时间参数组被用于确定第二时间资源,所述第一位置信息的所述测量基于在所述第二时间资源中的所述第一无线信号。
作为一个实施例,所述第一位置信息包括时间质量(TimingQuality)。
作为一个实施例,所述第一位置信息包括接收波束索引(RxBeamIndex)。
作为一个实施例,所述第一接收功率信息包括RSRP结果差(RSRP-ResultDiff)。
作为一个实施例,所述第一位置信息包括第一时间位置信息和第一接收功率信息二者中的至少之一。
作为一个实施例,所述第一时间位置信息的解析度(resolution)是Ts,其中Ts为1/(15000*2048)秒。
作为一个实施例,所述第一时间位置信息的解析度(resolution)是4×Ts,其中Ts为1/(15000*2048)秒。
作为一个实施例,所述第一接收功率信息的单位是dBm(分贝毫)。
作为一个实施例,所述第一接收功率信息的单位是dB(分贝)。
作为一个实施例,所述第一时间位置信息的名字包括RSTD(Reference Signal Time Difference,参考信号时间功率)。
作为一个实施例,所述第一时间位置信息的名字包括RxTxTimeDiff(接收发送时间差)。
作为上述两个实施例的一个子实施例,当所述第一无线链路是副链路时,所述第一节点U1是待定位的UE。
上述子实施例能降低所述第一节点U1的功率损耗。
作为一个实施例,所述第一时间位置信息的名字包括RTOA(Relative Time of Arrival,相对到达时间)。
作为一个实施例,所述第一时间位置信息的名字包括SL-RTOA。
作为上述实施例的一个子实施例,当所述第一无线链路是副链路时,所述第一无线信号的发送者是待定位的UE。
上述实施例的有点在于避免了待定位的UE接收多个UE发送的参考信号以计算位置信息,进而避免了所述多个UE之间的发送不同步带来的不利影响。
作为一个实施例,所述第一接收功率信息包括所述第一无线信号的RSRP(Reference Signal Received Power,参考信号接收功率)。
作为一个实施例,所述第一接收功率信息包括所述第一无线信号的RSRPP(Reference Signal Received Path Power,参考信号接收路径功率)。
作为一个实施例,所述第一位置信息包括所述第一时间位置信息。
作为一个实施例,所述第一位置信息包括所述第一时间位置信息和所述第一接收功率信息。
作为一个实施例,所述第二节点U2在步骤S201中通过所述第一无线链路发送所述第一无线信号。
作为一个实施例,所述第一无线信号是由所述第二节点U2之外的节点发送的。
作为一个实施例,所述第一节点U1和所述第二节点U2分别是一个UE;当所述第一无线链路是副链路时,所述第一无线信号在所述步骤S201中被发送。
作为上述实施例的一个子实施例,所述第一消息包括MAC(Medium Access Control,媒体接入控制)CE(Control Element,控制单元)。
上述方法能够降低延迟,等效的提高了定位精度。
作为上述实施例的一个子实施例,所述第一消息包括NAS消息。
上述方法具备较好的兼容性。
作为一个实施例,当所述第一无线链路是下行链路时,所述第一消息的传递经过上行链路且不经过副链路;当所述第一无线链路是副链路时,所述第一消息的传递经过副链路。
作为一个实施例,当所述第一无线链路是下行链路时,所述第一消息的所述传递经过基站与位置服务中心的接口。
作为一个实施例,当所述第一无线链路是副链路时,所述第一消息的所述传递经过上行链路以及基站与位置服务中心的接口。
作为一个实施例,所述第一位置信息与所述第一无线链路有关;当所述第一无线链路是下行链路时,所述第一位置信息不包括所述第一节点的位置信息;当所述第一无线链路是副链路时,所述第一位置信息包括所述第一节点的位置信息。
作为一个实施例,所述第一节点的所述位置信息包括所述第一节点的经度和所述第一节点的纬度。
作为一个实施例,所述第一节点的所述位置信息包括所述第一节点的海拔高度(Altitude)。
作为一个实施例,所述第一节点的所述位置信息包括所述第一节点的移动速度和移动方向。
作为一个实施例,当所述第一无线链路是副链路时,所述第一时间参数组被用于确定第三时间资源,所述第一节点的所述位置信息的测量在所述第三时间资源中被执行。
作为一个实施例,所述第三时间资源和所述第一时间资源分别是一个时间戳。
作为一个实施例,所述第三时间资源和所述第一时间资源分别被nr-timestamp-r16指示。
作为一个实施例,所述第一节点的所述位置信息的名字包括ellipsoid-Point。
作为一个实施例,当所述第一无线链路是副链路时,所述第一消息的传递经过ProSe功能。
作为一个实施例,当所述第一无线链路是副链路时,所述第一消息的传递经过ProSe应用。
实施例7
实施例7示例了根据本申请的一个实施例的第一消息和第二消息的传输流程图,如附图7所示。
第二节点U2在步骤S401中发送第二消息,在步骤S402中接收第一消息;第一节点U1在步骤S301中接收第二消息,在步骤S302中发送第一消息。
实施例7中,所述第二消息被用于配置所述第二时间资源,第一无线链路是副链路。
作为一个实施例,所述第二消息被位置服务中心或者LMF发送。
作为上述实施例的一个子实施例,所述第二消息的名字包括SL-PRS。
作为上述实施例的一个子实施例,所述第二消息是NR-SL-PRS-Info IE(Information Element,信息单元)。
作为一个实施例,所述第二节点U2是所述第一无线信号的发送者,所述第二节点是一个UE。
上述方法使得处于覆盖外(out of coverage)或者处于部分覆盖(partial coverage)的UE能够自行或者按照预定义的方式配置所述第二时间资源。
作为上述实施例的一个子实施例,所述第二消息包括RRC消息。
作为上述实施例的一个子实施例,所述第二消息包括MAC CE。
作为一个实施例,所述第二消息指示第一时间长度,所述第二时间资源的持续时间是所述第一时间长度。
作为一个实施例,所述第二消息指示多个时间资源,所述第二时间资源是所述多个时间资源中之一。
作为一个实施例,所述多个时间资源中任意两个相邻的时间资源之间的时间间隔是相等的。
作为一个实施例,所述第二消息的传递经过副链路。
作为上述实施例的一个子实施例,所述第二消息是RRC层消息。
作为上述实施例的一个子实施例,所述第二消息是RRC层消息。
作为上述实施例的一个子实施例,所述第二消息通过所述第一无线链路被发送。
实施例8
实施例8示例了根据本申请的一个实施例的第一消息和第三消息的传输流程图,如附图8所示。
第一节点U1在步骤S501中发送第三消息,在步骤S502中发送第一消息;第二节点U2在步骤S601中接收第三消息,在步骤S602中接收第一消息。
实施例8中,所述第三消息被用于确定所述第二时间资源,所述第一无线链路是副链路。
作为一个实施例,所述第三消息的传递经过副链路。
作为一个实施例,所述第三消息包括SCI。
作为一个实施例,所述第三消息包括副链路MAC CE。
作为一个实施例,所述第三消息用于触发所述第一无线信号的发送。
作为一个实施例,所述第一节点U1和所述第二节点U2分别是一个UE,所述第三消息包括所述第一层2身份(Layer-2 ID)和第二层2身份。
作为一个实施例,所述第一层2身份和所述第二层2身份分别是所述第一节点U1的目的地层2身份(Destination Layer-2 ID)和源层2身份(Source Layer-2 ID)。
作为一个实施例,所述第一层2身份和所述第二层2身份分别是所述第二节点U2的源层2身份(Source Layer-2 ID)和目的地层2身份(Destination Layer-2 ID)。
作为一个实施例,所述第三消息包括第一SCI和第一MAC PDU,所述第一SCI的源层1身份(Source Layer-1 ID)
作为一个实施例,所述第一SCI中的第一域请求第一无线信号的发送。
作为一个实施例,所述第一域仅有一个比特。
作为一个实施例,所述第一域是SL-PRS请求域。
作为一个实施例,所述第二时间资源是第一时间窗。
作为一个实施例,所述第二时间资源是所述第一无线信号在所述第一时间窗中占用的时隙。
作为一个实施例,所述第一时间窗被关联到所述第三消息所占用的时隙。
作为一个实施例,所述第一时间窗被关联到第一HARQ-ACK所占用的时隙,所述第一HARQ-ACK指示所述第三消息被正确接收。
作为一个实施例,所述第一时间窗从所述第三消息所占用的时隙之后的第L1个时隙到所述第三消息所占用的时隙之后的第L2个时隙;所述L2是大于所述L1的正整数。
作为一个实施例,所述第一时间窗从所述第一HARQ-ACK所占用的时隙之后的第L1个时隙到所述第三消息所占用的时隙之后的第L2个时隙;所述L2是大于所述L1的正整数。
作为一个实施例,所述第一无线信号在所述第一时间窗中仅占用一个时隙。
作为一个实施例,所述L1为1。
作为一个实施例,所述L1为4。
作为一个实施例,所述L2是可配置的。
实施例9
实施例9示例了根据本申请的一个实施例的第一无线链路是副链路的示意图,如附图9所示。附图9中,方框F1、F2和F3中的步骤分别是可选的。
第一节点700在步骤S702中通过第一无线链路接收第一无线信号;在步骤S703中发送第一消息;
第二UE800在步骤S802中通过所述第一无线链路发送所述第一无线信号;
实施例9中,所述第一消息包括第一位置信息和第一时间参数组,所述第一位置信息的测量基于所述第一无线信号;所述第一无线链路是副链路,所述第一时间参数组被用于确定第二时间资源,所述第一位置信息的所述测量基于在所述第二时间资源中的所述第一无线信号。
作为一个实施例,所述第一节点700在步骤S701中发送第三消息,所述第二UE800在步骤S801中接收第三消息;所述第三消息被用于确定所述第二时间资源。
作为一个实施例,所述第二时间资源被关联到所述第三消息所占用的时间资源。
作为一个实施例,所述第三消息从多个时间资源中指示所述第二时间资源,所述多个时间资源被第二消息指示。
作为一个实施例,所述第三消息被用于触发所述第一无线信号在所述第二时间资源内发送。
作为一个实施例,所述第二时间资源是一个时隙。
作为一个实施例,所述第二UE800是所述第二节点,所述第二UE800在步骤S803中接收所述第一消息。
作为上述实施例的一个子实施例,所述第一消息包括所述第一节点700的位置信息,
上述方法的一个有点是辅助所述第二UE800快速确定自身的位置;上述方法尤其适合所述第二UE800执行基于UE的(UE-based)定位(虽然也适用于UE辅助定位)。
作为一个实施例,上述方法适合所述第二UE800位于覆盖外或者部分覆盖的场景。
作为一个实施例,所述第一节点700的所述位置信息包括所述第一节点700的经度和所述第一节点700的纬度。
作为一个实施例,所述第一节点700的所述位置信息包括所述第一节点700的海拔高度(Altitude)。
作为一个实施例,所述第一节点700的所述位置信息包括所述第一节点700的移动速度和移动方向。
作为一个实施例,所述第一时间参数组被用于确定第三时间资源,所述第一节点700的所述位置信息的测量在所述第三时间资源中被执行。
作为一个实施例,所述第一节点700的所述位置信息的测量在所述第二时间资源中被执行。
上述方法避免了所述第一节点700的移动所导致的定位不准确。
作为一个实施例,所述第三时间资源和所述第一时间资源分别是一个时间戳。
作为一个实施例,所述第三时间资源和所述第一时间资源分别被nr-timestamp-r16指示。
作为一个实施例,所述第一节点700的所述位置信息的名字包括ellipsoid-Point。
作为一个实施例,网络设备900在步骤S901中接收第一消息,所述网络设备900是所述第二节点,所述第一位置信息包括第一时间位置信息和第一接收功率信息二者中的至少前者。
上述方法的一个优点在于降低了所述第二UE800的计算复杂度;此外,考虑到所述第一节点700的定时与网络设备的定时不同步,所述第一时间位置信息的参考时间可能需要网络设备的校正;上述方法避免了通过副链路传递用于校正参考时间的辅助信息,降低了空口冗余。
典型的,所述网络设备900包括LMF。
作为一个实施例,所述网络设备900包括NG-RAN。
作为一个实施例,所述网络设备900包括AMF。
典型的,方框F2和方框F3中的步骤不能同时出现。
实施例10
实施例10示例了根据本申请的一个实施例的第一无线链路是下行链路的示意图,如附图10所示。
第一节点1000在步骤S1001通过第一无线链路接收第一无线信号,在步骤S1002发送第一消息;
网络设备1100在步骤S1101通过第一无线链路发送第一无线信号,在步骤S1102接收第一消息;
实施例10中,所述第一消息包括第一位置信息和第一时间参数组,所述第一位置信息的测量基于所述第一无线信号;所述第一无线链路是下行链路,所述第一时间参数组被用于确定第一时间资源,所述第一位置信息的所述测量在所述第一时间资源中被执行。
典型的,所述第一时间参数组是nr-TimeStamp-r16。
作为一个实施例,所述第一消息是NR-DL-TDOA-SignalMeasurementInformation-r16,所述第一位置信息包括nr-RSTD-r16。
作为一个实施例,所述第一消息是NR-DL-AoD-SignalMeasurementInformation-r16,所述第一位置信息包括nr-DL-PRS-RSRP-Result-r16、nr-DL-PRS-RxBeamIndex-r16、nr-DL-PRS-FirstPathRSRP-Result-r17、nr-los-nlos-Indicator-r17和nr-DL-AoD-AdditionalMeasurementsExt-r17中的至少之一。
作为一个实施例,所述第一消息是NR-Multi-RTT-SignalMeasurementInformation-r16,所述第一位置信息包括nr-UE-RxTxTimeDiff-r16、nr-AdditionalPathList-r16、nr-TimingQuality-r16、nr-DL-PRS-RSRP-Result-r16和nr-Multi-RTT-AdditionalMeasurements-r16中的至少之一。
实施例10和现有系统保持了较好的兼容性。
实施例11
实施例11示例了根据本申请的又一个实施例的第一无线链路是下行链路的示意图,如附图11所示。
网络设备1300在步骤S1301中通过第一无线链路发送第一无线信号;
第一节点1200在步骤S1201中通过第一无线链路接收第一无线信号;在步骤S1202中发送第一消息;
第二UE1400在步骤S1401中接收第一消息;
实施例11中,所述第一消息包括第一位置信息和第一时间参数组,所述第一位置信息的测量基于所述第一无线信号;所述第一无线链路是下行链路,所述第一时间参数组被用于确定第一时间资源,所述第一位置信息的所述测量在所述第一时间资源中被执行。
作为一个实施例,所述第一位置信息包括所述第一节点1200的经度和所述第一节点1200的纬度。
作为一个实施例,所述第一位置信息包括所述第一节点1200的海拔高度(Altitude)。
作为一个实施例,所述第一位置信息包括所述第一节点1200的移动速度和移动方向。
作为一个实施例,所述第一节点1200和所述第二UE1400分别位于覆盖内和覆盖外。
作为一个实施例,所述第一节点1200和所述第二UE1400分别位于覆盖内和部分覆盖。
作为一个实施例,所述第一时间资源分别是一个时间戳。
作为一个实施例,所述第一时间资源是一个子帧。
作为一个实施例,所述第一时间资源是DFN所标识的一个无线帧中的一个子帧。
作为一个实施例,所述第一消息的传递经过ProSe功能。
作为一个实施例,所述第一消息的传递经过ProSe应用。
实施例11的一个优点在于使得所述第二UE1400能够快速定位,同时确保定位精度。
实施例12
实施例12示例了根据本申请的一个实施例的第一时间位置信息的示意图,如附图12所示。附图12中粗线框标识的时间单元I和时间单元I+1是网络设备的下行发送的时间单元。
实施例12中,第一无线链路是副链路,第一无线信号在第一无线链路上的传播延迟为t1;下行无线信号从网络设备到第一节点的传播延迟为t3;由于发送定时提前或者发送定时调整,第一节点的副链路发送的时间单元(被Q填充的方格或者被Q+1填充的方格)相比对应的下行链路接收的时间单元(被J填充的方格或者被J+1填充的方格)提前了t2(如t2标识的双向箭头所示)。
作为一个实施例,第一节点的上行链路发送的时间单元与所述第一节点在副联路发送的时间单元是同步的;t2有时也被称为定时提前(timing advance)。
实施例12中,包括至少部分第一无线信号的时间单元为第一时间单元;所述第一节点在下行链路接收的所述第一时间单元的起始时刻的值如箭头O1所示;
作为一个实施例,第一位置信息包括第一时间位置信息,所述第一节点在下行链路接收的所述第一时间单元起始时刻被用于生成所述第一时间位置信息。
作为上述实施例的一个子实施例,所述第一消息的接收者包括LMF;考虑到LMF可以通过NG-RAN或者基站获得所述第一节点的定时提前,LMF能够将所述第一节点在下行链路接收的所述第一时间单元起始时刻转换成网络设备在下行链路发送的所述第一时间单元起始时刻。
为了将所述第一节点在副链路的接收定时转换成网络设备的定时,所述第一节点可以自行将在下行链路接收的所述第一时间单元的起始时刻提前第一时间偏移量。
作为一个实施例,第一位置信息包括第一时间位置信息,网络设备的下行发送的第一时间单元的起始时刻被用于生成所述第一时间位置信息。
结合附图12,所述第一时间偏移量在上述实施例中是t3,即将所述箭头O1所指示的值调整为网络设备的下行发送的所述第一时间单元(被I填充的方格或者被I+1填充的方格)的起始时刻的值,如箭头O2所示。
上述实施例的好处在于,所述第一无线信号的任一接收者所计算出的到达时间采用统一的网络设备的下行发送定时,避免了不同接收者之间的定时不同步带来的定时失败;同时可以降低所述第一消息的接收者的处理复杂度;此外,考虑到网络设备之间的时间同步精度远高于用户设备之间的时间同步精度,网络设备的定时同步作为参考时间能取得较好的定位精度。
典型的,所述t3为t2/2。
作为上述实施例的一个子实施例,所述第一消息的接收者包括所述第一无线信号的发送者。
作为一个实施例,所述第一时间偏移量是t2–即将所述箭头O1所指示的值调整为所述第一节点在副链路发送的所述第一时间单元(被Q填充的方格或者被Q+1填充的方格)的起始时刻的值,如箭头O3所示。
上述方法的一个优点在于避免了所述第一节点计算t3。
作为一个实施例,所述第一时间位置信息包括RSTD(Reference Signal Time Difference,参考信号时间功率)。
作为一个实施例,所述第一时间位置信息包括RxTxTimeDiff(接收发送时间差)。
作为一个实施例,所述第一时间位置信息包括RTOA(Relative Time of Arrival,相对到达时间)。
作为上述实施例的一个子实施例,所述RTOA是SL-RTOA。
下面以所述第一时间偏移量是t3为例并且所述第一时间位置信息是RTOA为例介绍所述第一时间位置信息的生成方法:
所述第一时间位置信息是相比于第一参考时间,在接收点(Reception Point)接收到的第一时间单元的起始;所述第一时间单元包括至少部分所述第一无线信号,所述第一参考时间是第一分量集合中所有分量的和减去所述第一时间偏移量所得到的差值,所述第一分量集合包括第一分量与第二分量,所述第一分量是可配置的,所述第二分量是所述第一时间单元的索引。
所述接收点是接收天线连接器(Rx antenna connector),或者接收天线(Rx antenna),或者Rx收发机阵列边界连接器(Transceiver Array Boundary connector)。
作为一个实施例,所述第一分量是SFN 0的名义开始时间(nominal beginning time),所述SFN0的名义开始时间被SFN初始化时间(SFN Initialisation Time)提供。
作为一个实施例,所述第一时间单元的索引是不大于10239的非负整数。
作为一个实施例,所述第一时间单元的索引为10m+n;其中m是所述第一时间单元的SFN,n是所述第一时间单元的子帧号。
作为一个实施例,所述第一时间单元的索引为10k+p;其中k是所述第一时间单元的DFN(Direct Frame Number,直接帧号),p是所述第一时间单元的子帧号。
作为一个实施例,所述第一时间单元是一个子帧。
作为一个实施例,所述第一时间单元是一个帧。
实施例13
实施例13示例了根据本申请的一个实施例的时间资源的示意图,如附图13所示。附图13中一个方格表示一个时域资源;被i、i+1和i+2填充的方格表示被配置的多个时间资源。
作为一个实施例,第二时间资源是所述多个时间资源中的一个时间资源。
作为一个实施例,第二消息被用于配置所述多个时间资源。
作为一个实施例,所述多个时间资源中任意两个相邻的时间资源之间的时间间隔相等。
作为一个实施例,所述多个时间资源属于一个副链路资源池。
作为上述实施例的一个子实施例,所述多个时间资源中任意两个相邻的时间资源之间的包括相同数量的属于所述一个副链路资源池的时隙。
实施例14
实施例14示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;如附图14所示。在附图14中,第一节点中的处理装置1600包括第一接收机1601和第一发送机1602。
所述第一接收机1601接通过第一无线链路接收第一无线信号;所述第一发送机1602发送第一消息;
实施例14中,所述第一消息包括第一位置信息和第一时间参数组,所述第一位置信息的测量基于所述第一无线信号;所述第一时间参数组与所述第一无线链路有关;当所述第一无线链路是下行链路时,所述第一时间参数组被用于确定第一时间资源,所述第一位置信息的所述测量在所述第一时间资源中被执行;当所述第一无线链路是副链路时,所述第一时间参数组被用于确定第二时间资源,所述第一位置信息的所述测量基于在所述第二时间资源中的所述第一无线信号。
作为一个实施例,所述第一位置信息包括第一时间位置信息和第一接收功率信息二者中的至少之一。
作为一个实施例,当所述第一无线链路是下行链路时,所述第一消息的传递经过上行链路且不经过副链路;当所述第一无线链路是副链路时,所述第一消息的传递经过副链路。
作为一个实施例,所述第一位置信息与所述第一无线链路有关;当所述第一无线链路是下行链路时,所述第一位置信息不包括所述第一节点的位置信息;当所述第一无线链路是副链路时,所述第一位置信息包括所述第一节点的位置信息。
作为一个实施例,所述第一接收机1601,接收第二消息;
其中,所述第二消息被用于配置所述第二时间资源,所述第一无线链路是副链路。
作为一个实施例,所述第一发送机1602,发送第三消息;
其中,所述第三消息被用于确定所述第二时间资源,所述第一无线链路是副链路。
作为一个实施例,所述第一节点1600是一个用户设备。
作为一个实施例,所述第一发送机1602包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一发送机1602包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467。
作为一个实施例,所述第一接收机1601包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一接收机1601包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一接收机1601包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前三者。
实施例15
实施例15示例了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;如附图15所示。在附图15中,第二节点中的处理装置1700包括第二发送机1701和第二接收机1702;其中所述第二发送机1701是可选的。
第二接收机1702,接收第一消息;
实施例15中,所述第一消息包括第一位置信息和第一时间参数组,所述第一位置信息的测量基于第一无线信号;所述第一无线信号在第一无线链路上被发送,所述第一时间参数组与所述第一无线链路有关;当所述第一无线链路是下行链路时,所述第一时间参数组被用于确定第一时间资源,所述第一位置信息的所述测量在所述第一时间资源中被执行;当所述第一无线链路是副链路时,所述第一时间参数组被用于确定第二时间资源,所述第一位置信息的所述测量基于在所述第二时间资 源中的所述第一无线信号。
作为一个实施例,所述第二节点中的所述处理装置1700包括所述第二发送机1701,所述第二发送机1701,发送第二消息;其中,所述第二消息被用于配置所述第二时间资源,所述第一无线链路是副链路。
作为一个实施例,所述第二接收机1702,接收第三消息;
其中,所述第三消息被用于确定所述第二时间资源,所述第一无线链路是副链路。
作为一个实施例,所述第二节点包括LMF。
作为一个实施例,所述第二节点包括NG-RAN。
作为一个实施例,所述第二节点是一个UE。
作为一个实施例,所述第二节点中的所述处理装置1700包括所述第二发送机1701,所述第二发送机1701,通过所述第一无线链路发送所述第一无线信号。
作为一个实施例,所述第二接收机1702包括所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475。
作为一个实施例,所述第二接收机1702包括所述控制器/处理器475。
作为一个实施例,所述第二发送机1701发送所述第一无线信号,所述第二发射机1701包括所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475。
作为一个实施例,所述第二发送机1701发送所述第一无线信号,所述第二发送机1701包括所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475。
作为一个实施例,所述第二发送机1701发送所述第一无线信号,所述第二发送机1701包括所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475。
作为一个实施例,所述第二发送机1701发送所述第一无线信号,所述第二发送机1701包括所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (26)

  1. 一种被用于无线通信的第一节点,其中,包括:
    第一接收机,通过第一无线链路接收第一无线信号;
    第一发送机,发送第一消息;
    其中,所述第一消息包括第一位置信息和第一时间参数组,所述第一位置信息的测量基于所述第一无线信号;所述第一时间参数组与所述第一无线链路有关;当所述第一无线链路是下行链路时,所述第一时间参数组被用于确定第一时间资源,所述第一位置信息的所述测量在所述第一时间资源中被执行;当所述第一无线链路是副链路时,所述第一时间参数组被用于确定第二时间资源,所述第一位置信息的所述测量基于在所述第二时间资源中的所述第一无线信号。
  2. 根据权利要求1所述的第一节点,其特征在于,所述第一位置信息包括第一时间位置信息和第一接收功率信息二者中的至少之一。
  3. 根据权利要求1或2所述的第一节点,其特征在于,当所述第一无线链路是下行链路时,所述第一消息的传递经过上行链路且不经过副链路;当所述第一无线链路是副链路时,所述第一消息的传递经过副链路。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,所述第一位置信息与所述第一无线链路有关;当所述第一无线链路是下行链路时,所述第一位置信息不包括所述第一节点的位置信息;当所述第一无线链路是副链路时,所述第一位置信息包括所述第一节点的位置信息。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一接收机,接收第二消息;
    其中,所述第二消息被用于配置所述第二时间资源,所述第一无线链路是副链路。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一发送机,发送第三消息;
    其中,所述第三消息被用于确定所述第二时间资源,所述第一无线链路是副链路。
  7. 一种被用于无线通信的第二节点,其中,包括:
    第二接收机,接收第一消息;
    其中,所述第一消息包括第一位置信息和第一时间参数组,所述第一位置信息的测量基于第一无线信号;所述第一无线信号在第一无线链路上被发送,所述第一时间参数组与所述第一无线链路有关;当所述第一无线链路是下行链路时,所述第一时间参数组被用于确定第一时间资源,所述第一位置信息的所述测量在所述第一时间资源中被执行;当所述第一无线链路是副链路时,所述第一时间参数组被用于确定第二时间资源,所述第一位置信息的所述测量基于在所述第二时间资源中的所述第一无线信号。
  8. 根据权利要求7所述的第二节点,其特征在于,包括:
    第二发送机,通过所述第一无线链路发送所述第一无线信号。
  9. 根据权利要求7至8中任一权利要求所述的第二节点,其特征在于,包括:
    第二发送机,发送第二消息;
    其中,所述第二消息被用于配置所述第二时间资源,所述第一无线链路是副链路。
  10. 根据权利要求7至9中任一权利要求所述的第二节点,其特征在于,包括:
    所述第二接收机,接收第三消息;
    其中,所述第三消息被用于确定所述第二时间资源,所述第一无线链路是副链路。
  11. 根据权利要求7至10中任一权利要求所述的第二节点,其特征在于,所述第一位置信息包括第一时间位置信息和第一接收功率信息二者中的至少之一。
  12. 根据权利要求7至11中任一权利要求所述的第二节点,其特征在于,当所述第一无线链路是下行链路时,所述第一消息的传递经过上行链路且不经过副链路;当所述第一无线链路是副链路时,所述第一消息的传递经过副链路。
  13. 根据权利要求7至12中任一权利要求所述的第二节点,其特征在于,所述第一位置信息与所述第一无线链路有关;当所述第一无线链路是下行链路时,所述第一位置信息不包括所述第一节点的位置信息;当所述第一无线链路是副链路时,所述第一位置信息包括所述第一节点的位置信息。
  14. 一种被用于无线通信的第一节点中的方法,其中,包括:
    通过第一无线链路接收第一无线信号;
    发送第一消息;
    其中,所述第一消息包括第一位置信息和第一时间参数组,所述第一位置信息的测量基于所述第一无线信号;所述第一时间参数组与所述第一无线链路有关;当所述第一无线链路是下行链路时,所述第一时间参数组被用于确定第一时间资源,所述第一位置信息的所述测量在所述第一时间资源中被执行;当所述第一无线链路是副链路时,所述第一时间参数组被用于确定第二时间资源,所述第一位置信息的所述测量基于在所述第二时间资源中的所述第一无线信号。
  15. 根据权利要求14所述的第一节点中的方法,其特征在于,所述第一位置信息包括第一时间位置信息和第一接收功率信息二者中的至少之一。
  16. 根据权利要求14或15所述的第一节点中的方法,其特征在于,当所述第一无线链路是下行链路时,所述第一消息的传递经过上行链路且不经过副链路;当所述第一无线链路是副链路时,所述第一消息的传递经过副链路。
  17. 根据权利要求14至16中任一权利要求所述的第一节点中的方法,其特征在于,所述第一位置信息与所述第一无线链路有关;当所述第一无线链路是下行链路时,所述第一位置信息不包括所述第一节点的位置信息;当所述第一无线链路是副链路时,所述第一位置信息包括所述第一节点的位置信息。
  18. 根据权利要求14至17中任一权利要求所述的第一节点中的方法,其特征在于,包括:
    接收第二消息;
    其中,所述第二消息被用于配置所述第二时间资源,所述第一无线链路是副链路。
  19. 根据权利要求14至18中任一权利要求所述的第一节点中的方法,其特征在于,包括:
    发送第三消息;
    其中,所述第三消息被用于确定所述第二时间资源,所述第一无线链路是副链路。
  20. 一种被用于无线通信的第二节点中的方法,其中,包括:
    接收第一消息;
    其中,所述第一消息包括第一位置信息和第一时间参数组,所述第一位置信息的测量基于第一无线信号;所述第一无线信号在第一无线链路上被发送,所述第一时间参数组与所述第一无线链路有关;当所述第一无线链路是下行链路时,所述第一时间参数组被用于确定第一时间资源,所述第一位置信息的所述测量在所述第一时间资源中被执行;当所述第一无线链路是副链路时,所述第一时间参数组被用于确定第二时间资源,所述第一位置信息的所述测量基于在所述第二时间资源中的所述第一无线信号。
  21. 根据权利要求20所述的第二节点中的方法,其特征在于,包括:
    通过所述第一无线链路发送所述第一无线信号。
  22. 根据权利要求20至21中任一权利要求所述的第二节点中的方法,其特征在于,包括:
    发送第二消息;
    其中,所述第二消息被用于配置所述第二时间资源,所述第一无线链路是副链路。
  23. 根据权利要求20至22中任一权利要求所述的第二节点中的方法,其特征在于,包括:
    接收第三消息;
    其中,所述第三消息被用于确定所述第二时间资源,所述第一无线链路是副链路。
  24. 根据权利要求20至23中任一权利要求所述的第二节点中的方法,其特征在于,所述第一位置信息包括第一时间位置信息和第一接收功率信息二者中的至少之一。
  25. 根据权利要求20至24中任一权利要求所述的第二节点中的方法,其特征在于,当所述第一无线链路是下行链路时,所述第一消息的传递经过上行链路且不经过副链路;当所述第一无线链路是副链路时,所述第一消息的传递经过副链路。
  26. 根据权利要求20至25中任一权利要求所述的第二节点中的方法,其特征在于,所述第一位置信息与所述第一无线链路有关;当所述第一无线链路是下行链路时,所述第一位置信息不包括 所述第一节点的位置信息;当所述第一无线链路是副链路时,所述第一位置信息包括所述第一节点的位置信息。
PCT/CN2023/091022 2022-05-11 2023-04-27 用于定位的方法和装置 WO2023216896A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210512983.1A CN117098222A (zh) 2022-05-11 2022-05-11 用于定位的方法和装置
CN202210512983.1 2022-05-11

Publications (1)

Publication Number Publication Date
WO2023216896A1 true WO2023216896A1 (zh) 2023-11-16

Family

ID=88729631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091022 WO2023216896A1 (zh) 2022-05-11 2023-04-27 用于定位的方法和装置

Country Status (2)

Country Link
CN (1) CN117098222A (zh)
WO (1) WO2023216896A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021088618A1 (zh) * 2019-11-09 2021-05-14 上海朗帛通信技术有限公司 一种被用于无线通信的方法和装置
WO2021188220A1 (en) * 2020-03-20 2021-09-23 Qualcomm Incorporated Methods and apparatuses for sidelink-assisted cooperative positioning
CN114189881A (zh) * 2020-09-14 2022-03-15 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114205735A (zh) * 2020-09-03 2022-03-18 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021088618A1 (zh) * 2019-11-09 2021-05-14 上海朗帛通信技术有限公司 一种被用于无线通信的方法和装置
WO2021188220A1 (en) * 2020-03-20 2021-09-23 Qualcomm Incorporated Methods and apparatuses for sidelink-assisted cooperative positioning
CN114205735A (zh) * 2020-09-03 2022-03-18 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114189881A (zh) * 2020-09-14 2022-03-15 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUTUREWEI: "Considerations on scenarios and target requirements for sidelink positioning", 3GPP DRAFT; R1-2203057, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052152845 *

Also Published As

Publication number Publication date
CN117098222A (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
WO2020034848A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2020052446A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20220286256A1 (en) Method and device for wireless communication
US20230300936A1 (en) Method and device for wireless communication
WO2020038208A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2019222935A1 (zh) 被用于无线通信中的定位的方法和装置
WO2018040815A1 (zh) 一种支持广播信号的无线通信系统中的方法和装置
WO2021031901A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020259238A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023216896A1 (zh) 用于定位的方法和装置
WO2024037414A1 (zh) 一种被用于定位的方法和装置
WO2024061249A1 (zh) 一种被用于定位的方法和装置
WO2024046249A1 (zh) 一种被用于定位的方法和装置
WO2024051623A1 (zh) 一种用于无线通信的方法和装置
WO2024046154A1 (zh) 一种用于无线通信的方法和装置
WO2023226926A1 (zh) 一种被用于定位的方法和装置
WO2023221903A1 (zh) 用于定位的方法和装置
WO2024051625A1 (zh) 一种被用于定位的方法和装置
WO2023221902A1 (zh) 一种用于定位的方法和装置
WO2024027612A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2020253530A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021027538A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023174376A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023246671A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2021036789A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802669

Country of ref document: EP

Kind code of ref document: A1