WO2023226926A1 - 一种被用于定位的方法和装置 - Google Patents

一种被用于定位的方法和装置 Download PDF

Info

Publication number
WO2023226926A1
WO2023226926A1 PCT/CN2023/095492 CN2023095492W WO2023226926A1 WO 2023226926 A1 WO2023226926 A1 WO 2023226926A1 CN 2023095492 W CN2023095492 W CN 2023095492W WO 2023226926 A1 WO2023226926 A1 WO 2023226926A1
Authority
WO
WIPO (PCT)
Prior art keywords
sci
resource pool
reference signal
physical layer
node
Prior art date
Application number
PCT/CN2023/095492
Other languages
English (en)
French (fr)
Inventor
蒋琦
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2023226926A1 publication Critical patent/WO2023226926A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink

Definitions

  • the present application relates to transmission methods and devices in wireless communication systems, and in particular to solutions and devices for positioning in wireless communication systems.
  • Positioning is an important application in the field of wireless communications; the emergence of new applications such as V2X (Vehicle to everything) or the Industrial Internet of Things has put forward higher requirements for positioning accuracy or delay.
  • V2X Vehicle to everything
  • RAN Radio Access Network
  • the sender of the wireless signal used for positioning measurement may be mobile and needs to maintain communication with other V2X nodes and maintain the current V2X communication mechanism based on channel awareness, which makes traditional users
  • the positioning process or location information feedback scheme needs to be further enhanced.
  • this application discloses a solution.
  • the V2X scenario is only used as a typical application scenario or example; this application is also applicable to scenarios other than V2X that face similar problems, such as public safety (Public Safety) and industrial goods. Networking, etc., and achieve technical effects similar to those in NR V2X scenarios.
  • the motivation of this application is to target the scenario where the sender of the wireless signal used for positioning measurement is mobile, this application is still applicable to the scenario where the sender of the wireless signal used for positioning measurement is fixed, such as RSU (Road Side Unit, roadside unit), etc.
  • RSU Raad Side Unit, roadside unit
  • Using a unified solution for different scenarios also helps reduce hardware complexity and cost.
  • the embodiments and features in the embodiments in any node of this application can be applied to any other node.
  • the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily without conflict.
  • This application discloses a method in a first node for wireless communication, including:
  • the first physical layer channel is in the first resource pool, and the first resource pool is configured for secondary link communication;
  • the first reference signal is used for positioning; at least one of the first SCI and the second SCI is used to determine the first reference signal.
  • the above method is characterized by: in traditional V2X systems, transmission is performed in a resource pool, and different resource pools do not schedule each other; this solution uses reference signals and data transmission for positioning.
  • the channel is configured on two resource pools, and the scheduling signaling of the scheduling reference signal can be sent from the resource pool for data transmission to improve flexibility.
  • the second SCI includes at least some bits of a first layer 2 identity that is the same as a layer 2 identity of the first node.
  • the above method is characterized in that only when the V2X sending terminal and receiving terminal meet certain conditions, the above process for positioning will be triggered, thereby reducing the implementation complexity of the terminal.
  • the first message is used to configure a second resource pool
  • the first reference signal is in the second resource pool
  • the second resource pool includes at least one resource that does not belong to the first resource pool in the frequency domain.
  • the resource block of the resource pool is used to configure a second resource pool.
  • the SCI format of the first SCI among the first SCI and the second SCI is a SCI format recognized by a legacy UE; the legacy UE does not recognize the first reference signal.
  • the above method is characterized by defining a new SCI format for triggering the positioning reference signal to improve transmission efficiency.
  • the first resource pool is associated with a first parameter group
  • the second resource pool is associated with a second parameter group
  • the first parameter group and the second parameter group At least the second set of parameters in the set of parameters is used to determine the first reference signal.
  • the first resource pool and the second resource pool are different, the second resource pool is associated with the first resource pool, and the second resource pool is used for the transmission of positioning reference signals.
  • the first parameter group and the second parameter group both include parameters that can be used to determine the time domain resources or frequency domain resources occupied by the first reference signal. .
  • the above method is characterized in that: the configuration of the second resource pool used for positioning is simultaneously associated with the configuration of the first resource pool and its own second parameter group, simplifying high-level signaling design , reduce signaling overhead.
  • the second SCI includes at least some bits in the first layer 2 identity; the first layer 2 identity is used to determine whether to generate the first location information; the measurement of the first location information is based on the first Reference signal; the first set of conditions includes the first layer 2 identity being the same as a destination layer 2 identity of the first node.
  • the first location information includes a first time parameter group
  • the first time parameter group is used to determine the first time resource
  • the measurement of the first location information is executed in the first time resource.
  • the measurement of the first position information is based on the first reference signal
  • the first time parameter group is related to the first reference signal
  • the first time parameter group is used
  • the measurement of the first location information is based on the first reference signal in the second time resource.
  • the meaning of the first layer 2 identity being used to determine whether to generate the first location information includes: the first layer 2 identity is related to the second SCI, so The first node generates the first location information; the first layer 2 identity has nothing to do with the second SCI, and the first node does not generate the first location information.
  • the meaning of the first layer 2 identity being used to determine whether to generate the first location information includes: some bits in the first layer 2 identity are used by the second layer 2 identity.
  • the given information in the SCI indicates that the first node generates the first location information; some bits in the first layer 2 identity are not indicated by the given information in the second SCI, the first The node does not generate the first location information.
  • This application discloses a method in a second node for wireless communication, including:
  • the first physical layer channel is in the first resource pool, and the first resource pool is configured for secondary link communication;
  • the first reference signal is used for positioning; at least one of the first SCI and the second SCI is used to determine the first reference signal.
  • the second SCI includes at least part of the bits in the first layer 2 identity, the first layer 2 identity is the same as a layer 2 identity of the first node, and the first layer 2 identity is the same as a layer 2 identity of the first node.
  • the recipients of the SCI include the first node.
  • the first message is used to configure a second resource pool
  • the first reference signal is in the second resource pool
  • the second resource pool includes at least one resource that does not belong to the first resource pool in the frequency domain.
  • the resource block of the resource pool is used to configure a second resource pool.
  • the SCI format of the first SCI among the first SCI and the second SCI is a SCI format recognized by a legacy UE; the legacy UE does not recognize the first reference signal.
  • the first resource pool is associated with a first parameter group
  • the second resource pool is associated with a second parameter group
  • the first parameter group and the second parameter group At least the second set of parameters in the set of parameters is used to determine the first reference signal.
  • the first resource pool and the second resource pool are different, the second resource pool is associated with the first resource pool, and the second resource pool is used for the transmission of positioning reference signals.
  • the first parameter group and the second parameter group both include parameters that can be used to determine the time domain resources or frequency domain resources occupied by the first reference signal. .
  • the second SCI includes at least some bits in the first layer 2 identity; the first layer 2 identity is used to determine whether to generate the first location information; the measurement of the first location information is based on the first Reference signal; the first condition set includes that the first layer 2 identity is the same as a destination layer 2 identity of the first node that sends the first location information.
  • the first location information includes a first time parameter group
  • the first time parameter group is used to determine the first time resource
  • the measurement of the first location information is executed in the first time resource.
  • the measurement of the first position information is based on the first reference signal
  • the first time parameter group is related to the first reference signal
  • the first time parameter group is used
  • the measurement of the first location information is based on the first reference signal in the second time resource.
  • the meaning of the first layer 2 identity being used to determine whether to generate the first location information includes: the first layer 2 identity is related to the second SCI, so The first node generates the first location information; the first layer 2 identity has nothing to do with the second SCI, and the first node does not generate the first location information.
  • the meaning of the first layer 2 identity being used to determine whether to generate the first location information includes: some bits in the first layer 2 identity are used by the second layer 2 identity.
  • the given information in the SCI indicates that the first node generates the first location information; some bits in the first layer 2 identity are not indicated by the given information in the second SCI, the first The node does not generate the first location information.
  • This application discloses a first node for wireless communication, including:
  • the first receiver receives the first SCI in the first resource pool, and the first SCI is used to schedule the first physical layer channel; receives the second SCI in the first physical layer channel; and receives the first reference signal. ;
  • the first physical layer channel is in the first resource pool, and the first resource pool is configured for secondary link communication;
  • the first reference signal is used for positioning; at least one of the first SCI and the second SCI is used to determine the first reference signal.
  • This application discloses a second node for wireless communication, including:
  • the second transmitter sends the first SCI in the first resource pool, and the first SCI is used to schedule the first physical layer channel; sends the second SCI in the first physical layer channel; and sends the first reference signal. ;
  • the first physical layer channel is in the first resource pool, and the first resource pool is configured for secondary link communication;
  • the first reference signal is used for positioning; at least one of the first SCI and the second SCI is used to determine the first reference signal.
  • the benefit of the solution in this application is that on the basis of ensuring compatibility, the positioning between terminals is introduced into the V2X system, thereby improving the positioning accuracy between V2X terminals to improve overall performance.
  • Figure 1 shows a processing flow chart of a first node according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Figure 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a flow chart of a first SCI according to an embodiment of the present application
  • Figure 6 shows a flow chart of a first message according to an embodiment of the present application
  • Figure 7 shows a flow chart of first location information according to an embodiment of the present application
  • Figure 8 shows a schematic diagram of a first resource pool and a second resource pool according to an embodiment of the present application
  • Figure 9 shows a schematic diagram of a first reference signal according to an embodiment of the present application.
  • Figure 10 shows a schematic diagram of first temporal location information according to an embodiment of the present invention
  • Figure 11 shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application
  • Figure 12 shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flow chart of a first node, as shown in Figure 1.
  • each block represents a step.
  • the first node in this application receives the first SCI in the first resource pool in step 101, and the first SCI is used to schedule the first physical layer channel; in step 102, in the The second SCI is received in the first physical layer channel; in step 103, the first reference signal is received.
  • Embodiment 1 among the first physical layer channel and the first reference signal, only the first physical layer channel is in the first resource pool, and the first resource pool is configured for a secondary link communication; the first reference signal is used for positioning; at least one of the first SCI and the second SCI is used to determine the first reference signal.
  • the first resource pool occupies a positive integer number of REs (Resource Elements) greater than 1.
  • the first resource pool is configured by the sl-RxPool domain.
  • the first resource pool is configured by IE (Information Elements, Information Unit) SL-ResourcePool.
  • IE Information Elements, Information Unit
  • the first resource pool is periodically distributed in the time domain.
  • the first resource pool occupies a positive integer number of time slots (Slots) in the time domain.
  • the first resource pool occupies a positive integer number of OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols greater than 1 in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • the first resource pool occupies frequency domain resources corresponding to a positive integer number of RBs (Resource Blocks) greater than 1 in the frequency domain.
  • the first resource pool occupies a positive integer subchannel (Subchannel) in the frequency domain.
  • the first resource pool is configured through RRC signaling.
  • the SCI format (Format) of the first SCI is SCI format 1-A.
  • the SCI format (Format) of the first SCI is SCI format 1-B.
  • the SCI format (Format) of the first SCI is SCI format 1-C.
  • the physical layer channel occupied by the first SCI includes PSCCH (Physical Sidelink Control Channel).
  • PSCCH Physical Sidelink Control Channel
  • the first physical layer channel includes PSSCH (Physical Sidelink Shared Channel).
  • the first physical layer channel includes second-stage SCI (2nd-stage-SCI).
  • the first physical layer channel corresponds to the second order SCI.
  • the first SCI is used to determine the time domain resources occupied by the first physical layer channel.
  • the first SCI is used to determine frequency domain resources occupied by the first physical layer channel.
  • the first SCI is used to schedule the first physical layer channel.
  • the position of the time-frequency resource occupied by the second SCI in the first physical layer channel is predefined.
  • the predefined meaning includes: the initial OFDM (Orthogonal Frequency Division Multiplexing, orthogonal) in the time domain occupied by the second SCI in the first physical layer channel.
  • the frequency division multiplexing) symbol is related to the DMRS (Dedicated Demodulation Reference Signal, dedicated demodulation reference signal) pattern (Pattern) of the first physical layer channel.
  • the predefined meaning includes: the starting OFDM symbol in the time domain occupied by the second SCI in the first physical layer channel is the first physical layer The first OFDM symbol carrying DMRS in the channel.
  • the predefined meaning includes: the second SCI has priority over the first transport block mapping corresponding to the first physical layer channel on the first physical layer channel.
  • the format of the second SCI is SCI format 2-A.
  • the format of the second SCI is SCI format 2-B.
  • the first reference signal includes a side link (Sidelink) CSI-RS (Channel State Information Reference Signal, Channel State Information Reference Signal).
  • Sidelink Side Link
  • CSI-RS Channel State Information Reference Signal
  • the first reference signal includes a Sidelink PRS (Positioning Reference Signal).
  • the first reference signal includes a reference signal.
  • the first reference signal is used for positioning.
  • the first reference signal is used for positioning on the secondary link.
  • the first reference signal is used for positioning between terminals.
  • the first reference signal is used to generate the first position information.
  • the first SCI is used to determine the first reference signal.
  • the second SCI is used to determine the first reference signal.
  • the first SCI and the second SCI are jointly used to determine the first reference signal.
  • the meaning of the above phrase being used to determine the first reference signal includes: being used to trigger the transmission of the first reference signal.
  • the meaning of the above phrase being used to determine the first reference signal includes: being used to indicate the frequency domain resource occupied by the first reference signal.
  • the meaning of the above phrase used to determine the first reference signal includes: being used to indicate the time domain resource occupied by the first reference signal.
  • the meaning of the above phrase being used to determine the first reference signal includes: being used to schedule the first reference signal.
  • the secondary link is Sidelink.
  • the secondary link corresponds to the PC5 interface.
  • the secondary link includes a link between terminals.
  • the second SCI includes at least some bits of a first layer 2 identity that is the same as a layer 2 identity of the first node.
  • the transport blocks in the first physical layer channel are multicast or broadcast.
  • the first (First) Layer-2 identity includes a destination Layer-2 identity (Destination Layer-2 ID).
  • the at least some bits in the first layer 2 identity are indicated by the destination identity (Destination ID) in the second SCI.
  • the 16-bit LSB (Least Significant Bit, least significant bit) in the first layer 2 identity is indicated by the destination identity in the second SCI.
  • the transport blocks in the first physical layer channel are unicast.
  • the first node corresponds to a second layer-2 identity
  • the second layer-2 identity includes a source layer-2 identity (Source Layer-2 ID).
  • the at least some bits in the second layer 2 identity are indicated by a destination (Source ID) in the second SCI.
  • the 16-bit LSB in the second layer 2 identity is indicated by the destination identity in the second SCI.
  • the transport blocks in the first physical layer channel are unicast.
  • the first layer 2 identity includes a destination layer 2 identity.
  • said at least some of the bits in said first layer 2 identity are indicated by a source identity in said second SCI.
  • the 8-bit LSB in the first layer 2 identity is indicated by the source identity in the second SCI.
  • Embodiment 2 illustrates a schematic diagram of the network architecture, as shown in Figure 2.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in Figure 2.
  • Figure 2 illustrates the V2X communication architecture under 5G NR (New Radio), LTE (Long-Term Evolution, Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) system architecture.
  • the 5G NR or LTE network architecture can be called 5GS (5G System)/EPS (Evolved Packet System) or some other suitable term.
  • the V2X communication architecture of Embodiment 2 includes UE (User Equipment) 201, UE241, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core), Evolved packet core) 210, HSS (Home Subscriber Server, home subscriber server)/UDM (Unified Data Management, unified data management) 220, ProSe function 250 and ProSe application server 230.
  • the V2X communication architecture may interconnect with other access networks, but these entities/interfaces are not shown for simplicity.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201.
  • gNB 203 may connect to other gNBs 204 via the Xn interface (eg, backhaul).
  • gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmitting and receiving node) or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radio, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radio non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management field)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management field
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway, service gateway)/UPF (UserPlaneFunction, user plane function) 212 and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles signaling between UE201 and 5GC/EPC210. Basically, MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 is connected to Internet service 230.
  • Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching streaming services.
  • the ProSe function 250 is a logical function for network-related behaviors required by ProSe (Proximity-based Service); including DPF (Direct Provisioning Function), Direct Discovery Name Management Function (Direct Discovery Name) Management Function), EPC-level Discovery ProSe Function (EPC-level Discovery ProSe Function), etc.
  • the ProSe application server 230 has functions such as storing EPC ProSe user identifications, mapping between application layer user identifications and EPC ProSe user identifications, and allocating ProSe restricted code suffix pools.
  • the UE201 and the UE241 are connected through a PC5 reference point.
  • the ProSe function 250 is connected to the UE201 and the UE241 through the PC3 reference point respectively.
  • the ProSe function 250 is connected to the ProSe application server 230 through the PC2 reference point.
  • the ProSe application server 230 is connected to the ProSe application of the UE201 and the ProSe application of the UE241 through the PC1 reference point respectively.
  • the first node in this application is the UE201, and the second node in this application is the UE241.
  • the first node in this application is the UE241
  • the second node in this application is the UE201.
  • the wireless link between the UE201 and the UE241 corresponds to a side link (Sidelink, SL) in this application.
  • the UE201 corresponds to the first node in this application
  • the UE241 corresponds to the second node in this application.
  • the UE201 corresponds to the second node in this application
  • the UE241 corresponds to the first node in this application.
  • the wireless link from the UE 201 to the NR Node B is an uplink.
  • the wireless link from the NR Node B to the UE 201 is the downlink.
  • the UE201 supports V2X transmission.
  • the UE241 supports V2X transmission.
  • the gNB 203 is a macro cellular (MarcoCellular) base station.
  • the gNB 203 is a Micro Cell base station.
  • the gNB 203 is a PicoCell base station.
  • the gNB 203 is a home base station (Femtocell).
  • the gNB 203 is a base station device that supports a large delay difference.
  • the gNB 203 is an RSU.
  • the gNB 203 is a satellite device.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for user plane 350 and control plane 300
  • Figure 3 shows with three layers for a first communication node device (UE, gNB or RSU in V2X) and a second Radio protocol architecture for the control plane 300 between communicating node devices (gNB, UE or RSU in V2X): Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions. The L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first communication node device and the second communication node device through the PHY 301.
  • L2 layer 305 includes MAC (Medium Access Control, media access control) sublayer 302, RLC (Radio Link Control, wireless link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sub-layers terminate at the second communication node device.
  • PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and the PDCP sublayer 304 also provides handoff support from a first communication node device to a second communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • MAC sublayer 302 provides multiplexing between logical and transport channels. The MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among first communication node devices. MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, Radio Resource Control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the connection between the second communication node device and the first communication node device. Inter-RRC signaling is used to configure the lower layers.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are generally the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 is also Provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol, service data adaptation protocol) sublayer 356, which is responsible for Mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer) to support business diversity.
  • SDAP Service Data Adaptation Protocol, service data adaptation protocol
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (eg, IP layer) terminating at the P-GW on the network side and another terminating at the connection.
  • the application layer at one end (e.g., remote UE, server, etc.).
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • the PDCP 304 of the second communication node device is used to generate a schedule of the first communication node device.
  • the PDCP 354 of the second communication node device is used to generate a schedule of the first communication node device.
  • the first SCI is generated from the PHY301 or the PHY351.
  • the first SCI is generated in the MAC302 or MAC352.
  • the second SCI is generated from the PHY301 or the PHY351.
  • the second SCI is generated from the MAC 302 or MAC 352.
  • the second SCI is generated in the RRC 306.
  • the first reference signal is generated from the PHY301 or the PHY351.
  • the first reference signal is generated in the MAC302 or MAC352.
  • the first reference signal is generated by the RRC306.
  • the first reference signal is generated from the ProSe.
  • the measurement of the first reference signal in this application includes layer 3 filtering performed on the RRC sub-layer 306 .
  • the measurement of the first reference signal in this application is performed on the PHY301.
  • the measurement of the first signal in this application includes layer 3 filtering performed on the RRC sub-layer 306 .
  • the measurement of the first signal in this application is performed on the PHY301.
  • the measurement of the first position information in this application is performed on the PHY301.
  • the measurement of the first location information in this application includes layer 3 filtering performed at the RRC sub-layer 306 .
  • the first node is a terminal.
  • the first node is a relay.
  • the first node is a vehicle.
  • the first node is a vehicle.
  • the second node is a terminal.
  • the second node is a relay.
  • the second node is a vehicle.
  • the second node is a positioning server.
  • the second node is a relay.
  • the second node is a base station.
  • the second node is a gNB.
  • the second node is a TRP (Transmitter Receiver Point, Transmitter Receiver Point).
  • TRP Transmitter Receiver Point, Transmitter Receiver Point
  • the second node is used to manage multiple TRPs.
  • the second node is a node used to manage multiple cells.
  • the second node is a node used to manage multiple serving cells.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in the access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a receive processor 470, a transmit processor 416, a multi-antenna receive processor 472, a multi-antenna transmit processor 471, a transmitter/receiver 418 and an antenna 420.
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and radio resource allocation to the first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer). Transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 410, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for M-phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for M-phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams. Transmit processor 416 then maps each spatial stream to a subcarrier, multiplexes it with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the first communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial stream that is the destination. The symbols on each spatial stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover upper layer data and control signals transmitted by the second communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media.
  • the controller/processor 459 In transmission from the second communication device 410 to the second communication device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements headers based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be configured with stored program code and Data storage 476 is associated. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 In transmission from the first communications device 450 to the second communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Using the at least one processor together, the first communication device 450 at least: first receives the first SCI in the first resource pool, the first SCI is used to schedule the first physical layer channel; and in the first Receive the second SCI in a physical layer channel; then receive the first reference signal; among the first physical layer channel and the first reference signal, only the first physical layer channel is in the first resource pool , the first resource pool is configured for secondary link communication; the first reference signal is used for positioning; at least one of the first SCI and the second SCI is used to determine the first a reference signal.
  • the first communication device 450 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: first The first SCI is received in the first resource pool, and the first SCI is used to schedule the first physical layer channel; and the second SCI is received in the first physical layer channel; and then the first reference signal is received; Among a physical layer channel and the first reference signal, only the first physical layer channel is in the first resource pool, and the first resource pool is configured for secondary link communication; the first reference signal The signal is used for positioning; at least one of the first SCI and the second SCI is used to determine the first reference signal.
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the used with at least one of the above processors.
  • the second communication device 410 at least: first sends a first SCI in the first resource pool, the first SCI is used to schedule a first physical layer channel; and sends a second second SCI in the first physical layer channel. SCI; then transmit the first reference signal; among the first physical layer channel and the first reference signal, only the first physical layer channel is in the first resource pool, and the first resource pool is Configured for secondary link communication; the first reference signal is used for positioning; at least one of the first SCI and the second SCI is used to determine the first reference signal.
  • the second communication device 410 device includes: a memory that stores a program of computer-readable instructions.
  • the program of computer-readable instructions generates actions when executed by at least one processor.
  • the actions include: firstly sending a first SCI in the first resource pool, where the first SCI is used to schedule a first physical layer channel; and sending a second SCI in the first physical layer channel; and then sending a first reference signal; Among the first physical layer channel and the first reference signal, only the first physical layer channel is in the first resource pool, and the first resource pool is configured for secondary link communication; the first The reference signal is used for positioning; at least one of the first SCI and the second SCI is used to determine the first reference signal.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a UE.
  • the first communication device 450 is a terminal.
  • the first communication device 450 is a relay.
  • the first communication device 450 is a vehicle.
  • the first communication device 450 is a vehicle.
  • the second communication device 410 is a UE.
  • the second communication device 410 is a terminal.
  • the second communication device 410 is a relay.
  • the second communication device 410 is a vehicle.
  • the second communication device 410 is a vehicle.
  • the second communication device 410 is an RSU.
  • the second communication device 410 is a base station.
  • the second communication device 410 is a relay.
  • the second communication device 410 is a network device.
  • the second communication device 410 is a serving cell.
  • the second communication device 410 is a TRP.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used in Receive the first SCI in the first resource pool; at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 or is used to send the first SCI in the first resource pool.
  • the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used in The second SCI is received in the first physical layer channel; the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475 At least the first four are used to send the second SCI in the first physical layer channel.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive First reference signal; at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 are used to transmit first reference signal.
  • the first four of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 are used in the The first position information is sent when a set of conditions is met; at least one of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 The first four are used to receive the first location information when the first set of conditions is met.
  • Embodiment 5 illustrates a flow chart of the first SCI, as shown in Figure 5.
  • the first node U1 and the second node N2 communicate through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 5 can be applied to any embodiment in Embodiment 6 or 7; conversely, in the case of no conflict, the embodiments Any of the embodiments, sub-embodiments and subsidiary embodiments in 6 or 7 can be applied to Embodiment 5.
  • the first SCI is received in the first resource pool in step S10; the second SCI is received in the first resource pool in step S11; and the first reference signal is received in step S12.
  • the first SCI is sent in the first resource pool in step S20; the second SCI is sent in the first resource pool in step S21; and the first reference signal is sent in step S22.
  • the first SCI is used to schedule the first physical layer channel; among the first physical layer channel and the first reference signal, only the first physical layer channel is in the In the first resource pool, the first resource pool is configured for secondary link communication; the first reference signal is used for positioning; at least one of the first SCI and the second SCI is used to determine the first reference signal.
  • At least the SCI format of the first SCI among the first SCI and the second SCI is a SCI format recognized by a legacy UE; the legacy UE does not recognize the first reference signal.
  • the SCI format of the first SCI is SCI format 1-A.
  • the SCI format of the first SCI is a SCI format recognized by a traditional UE.
  • the first reference signal is specified in a 3GPP standard released after all 3GPP standards supported by the legacy UE.
  • the first message is specified in a 3GPP standard released after all 3GPP standards supported by the legacy UE.
  • the configuration signaling of the first reference signal is specified in 3GPP standards released after all 3GPP standards supported by the legacy UE.
  • the first resource pool is associated with a first parameter group
  • the second resource pool is associated with a second parameter group; at least the second of the first parameter group and the second parameter group A set of parameters is used to determine the first reference signal.
  • the first parameter group includes one or more domains in IE SL-ResourcePool.
  • the first parameter group includes one or more fields in IE SL-BWP-PoolConfig.
  • the first parameter group includes one or more fields in IE SL-PSSCH-TxConfigList.
  • the first parameter group includes one or more fields in IE SL-PSSCH-RxConfigList.
  • the first parameter group includes one or more parameters in the sl-PSSCH-Config domain.
  • the second parameter group includes one or more fields in IE SL-ResourcePool.
  • the second parameter group includes one or more fields in IE SL-BWP-PoolConfig.
  • the second parameter group includes one or more fields in IE SL-PRS-TxConfigList.
  • the second parameter group includes one or more fields in IE SL-PRS-RxConfigList.
  • the second parameter group includes one or more parameters in the sl-PRS-Config domain.
  • the meaning of the above phrase being used to determine the first reference signal includes: being used to indicate the frequency domain resource occupied by the first reference signal.
  • the meaning of the above phrase used to determine the first reference signal includes: being used to indicate the time domain resource occupied by the first reference signal.
  • the meaning of the above phrase being used to determine the first reference signal includes: being used to indicate the transmission period of the first reference signal.
  • the meaning of the above phrase being used to determine the first reference signal includes: being used to indicate the frequency domain density of the first reference signal.
  • the meaning of the above phrase being used to determine the first reference signal includes: being used to indicate the time domain density of the first reference signal.
  • the meaning of the above phrase being used to determine the first reference signal includes: being used to indicate a pattern of the first reference signal.
  • the first resource pool and the second resource pool are different, the second resource pool is associated with the first resource pool, and the second resource pool is used for transmission of positioning reference signals.
  • the time-frequency resources occupied by the first resource pool and the time-frequency resources occupied by the second resource pool are orthogonal.
  • the first resource pool and the second resource pool respectively correspond to two different identities.
  • the first resource pool is configured for data transmission.
  • the second resource pool is configured for transmission of positioning reference signals.
  • the meaning that the second resource pool is associated with the first resource pool includes: the first message is used to indicate that the second resource pool is associated with the first resource pool.
  • the meaning of the second resource pool being associated with the first resource pool includes: the configuration information associated with the first resource pool can be used to determine the third resource pool in the second resource pool. At least one of time domain resources or frequency domain resources occupied by a reference signal.
  • the meaning of the second resource pool being associated with the first resource pool includes: the SCI transmitted in the first resource pool can be used to determine the first resource pool in the second resource pool. a reference signal.
  • the meaning of the second resource pool being associated with the first resource pool includes: the SCI transmitted in the first resource pool can be used to indicate the third resource pool in the second resource pool. a reference signal.
  • both the first parameter group and the second parameter group include parameters that can be used to determine the time domain resources or frequency domain resources occupied by the first reference signal.
  • the first parameter group includes one or more parameters in the sl-PSCCH-Config domain.
  • the first parameter group includes one or more parameters in the sl-PRS-Config domain.
  • the first parameter group is used to determine the subchannel occupied by the first reference signal.
  • the first parameter set is used to determine RBs occupied by the first reference signal.
  • the first parameter group is used to determine the time slot occupied by the first reference signal.
  • the second parameter set is used to determine the frequency domain density of the first reference signal.
  • the second parameter set is used to determine the time domain density of the first reference signal.
  • the second parameter set is used to determine the pattern of the first reference signal.
  • step S20 and step S21 are performed simultaneously.
  • step S10 and step S11 are performed simultaneously.
  • step S20 and step S21 are performed in the same time slot.
  • step S10 and step S11 are performed in the same time slot.
  • step S20, step S21 and step S22 are performed simultaneously.
  • step S10, step S11 and step S12 are performed simultaneously.
  • the steps S20, S21 and S22 are performed in the same time slot.
  • the steps S10, S11 and S12 are performed in the same time slot.
  • step S20, step S21 and step S22 in the time domain can be adjusted arbitrarily.
  • step S10, step S11 and step S12 in the time domain can be adjusted arbitrarily.
  • Embodiment 6 illustrates a flow chart of a first message, as shown in FIG. 6 .
  • the first node U3 and the second node N4 communicate through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 6 can be applied to any embodiment in Embodiment 5 or 7; conversely, in the case of no conflict, the embodiments Any of the embodiments, sub-embodiments and subsidiary embodiments in 5 or 7 can be applied to Embodiment 6.
  • the first message is received in step S30.
  • the first message is sent in step S40.
  • the first message is used to configure a second resource pool
  • the first reference signal is in the second resource pool
  • the second resource pool includes at least one resource that does not belong to the frequency domain. Resource blocks of the first resource pool.
  • the first message is transmitted through RRC signaling.
  • the first message corresponds to RRC signaling.
  • the second resource pool is configured by the sl-RxPool domain.
  • the first message includes one or more fields in IE (Information Elements, Information Unit) SL-ResourcePool.
  • IE Information Elements, Information Unit
  • the first message includes IE SL-ResourcePool.
  • At least one of the first SCI and the second SCI is used to determine REs occupied by the first reference signal in the second resource pool.
  • the first message is an IE or a domain in an IE, and the name of the first message includes sl-RxPool.
  • the first message is an IE or a domain in an IE, and the name of the first message includes SL-ResourcePool.
  • the first message is an IE or a domain in an IE, and the name of the first message includes SL.
  • the first message is an IE or a domain in an IE, and the name of the first message includes Resource.
  • the first message is an IE or a domain in an IE, and the name of the first message includes Pool.
  • the second resource pool is periodically distributed in the time domain.
  • the second resource pool occupies a positive integer number of time slots in the time domain.
  • the second resource pool occupies a positive integer number of OFDM symbols greater than 1 in the time domain.
  • the second resource pool occupies frequency domain resources corresponding to a positive integer number of RBs greater than 1 in the frequency domain.
  • the second resource pool occupies a positive integer number of sub-channels in the frequency domain.
  • the second resource pool is configured through RRC signaling.
  • part of the resources in the second resource pool are used for transmission of the first reference signal.
  • step S30 is located before step S10 in embodiment 5.
  • step S40 is located before step S20 in embodiment 5.
  • Embodiment 7 illustrates a flow chart of the first location information, as shown in FIG. 7 .
  • the first node U5 and the second node N6 communicate through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 7 can be applied to any embodiment in Embodiment 5 or 6; conversely, in the case of no conflict, the embodiments Any of the embodiments, sub-embodiments and subsidiary embodiments in 5 or 6 can be applied to Embodiment 7.
  • the first location information is sent when the first set of conditions is satisfied in step S50.
  • the first location information is received in step S60 when the first set of conditions is satisfied.
  • the second SCI includes at least some bits in the first layer 2 identity; the first layer 2 identity is used to determine whether to generate the first location information; the measurement of the first location information is based on the The first reference signal; the first condition set includes that the first layer 2 identity is the same as a destination layer 2 identity of the first node.
  • the second SCI includes at least part of the bits in the second layer 2 identity; the first condition set includes: the second layer 2 identity is a source layer 2 identity of the first node ( Source Layer-2 ID).
  • the first condition set includes: the first node is not scheduled to perform wireless transmission on the time resource to which the first physical layer channel belongs.
  • the first set of conditions includes: the first node receives a request (Request) from the second node and is instructed to send the first location information.
  • the first condition set includes: at least one of the first SCI and the second SCI is used to trigger the transmission of the first reference signal.
  • the physical layer channel occupied by the first location information is configured through the first parameter group.
  • the physical layer channel occupied by the first location information includes PSSCH.
  • the physical layer channel occupied by the first location information includes PSFCH (Physical Sidelink Feedback Channel).
  • PSFCH Physical Sidelink Feedback Channel
  • the first location information is transmitted through a MAC (Medium Access Control, Media Access Control) CE (Control Element, Control Unit).
  • MAC Medium Access Control, Media Access Control
  • CE Control Element, Control Unit
  • the first location information includes a first time parameter group, the first time parameter group is used to determine a first time resource, and the measurement of the first location information is in the first time resource. be executed.
  • the first time parameter group includes a first timestamp (Timestamp), and the first time resource is indicated by the first timestamp.
  • Timestamp a first timestamp
  • the first timestamp is NR-TimeStamp IE (Information Element).
  • the first time parameter group is nr-TimeStamp-r16.
  • the measurement of the first location information is based on the first reference signal
  • the first time parameter group is related to the first reference signal
  • the first time parameter group is used to determine the second time resource
  • the first time parameter group indicates a starting time slot of the second time resource.
  • the first time parameter group indicates a deadline time slot of the second time resource.
  • the first time parameter group indicates the duration of the second time resource.
  • the first time parameter group indicates each time slot occupied by the second time resource.
  • the meaning of the first layer 2 identity being used to determine whether to generate the first location information includes: the first layer 2 identity is related to the second SCI, and the first node generates the first location information. One location information; the first layer 2 identity has nothing to do with the second SCI, and the first node does not generate the first location information.
  • the meaning that the first layer 2 identity is used to determine whether to generate the first location information includes: some bits in the first layer 2 identity are indicated by the given information in the second SCI, The first node generates the first location information; some bits in the first layer 2 identity are not indicated by the given information in the second SCI, and the first node does not generate the first location information.
  • some of the bits in the first layer 2 identity include 16 LSBs in the first layer 2 identity.
  • some of the bits in the first layer 2 identity include the 8-bit LSB in the first layer 2 identity.
  • the given information in the second SCI includes the Source ID in the second-order SCI.
  • the given information in the second SCI includes the Destination ID in the second-level SCI.
  • the first location information includes timing quality (TimingQuality).
  • the first location information includes a receive beam index (RxBeamIndex).
  • RxBeamIndex receive beam index
  • the first location information includes RSRP result difference (RSRP-ResultDiff).
  • the first location information includes RSRP (Reference Signal Received Power).
  • the first location information includes location information of the first node.
  • the first location information includes at least one of first time bit value information and first received power information.
  • the resolution of the first time location information is Ts, where Ts is 1/(15000*2048) seconds.
  • the resolution of the first time position information is 4Ts, where Ts is 1/(15000*2048) seconds.
  • the unit of the first received power information is dBm (decibel millimeter).
  • the unit of the first received power information is dB (decibel).
  • the name of the first time location information includes RSTD (Reference Signal Time Difference, Reference Signal Time Power).
  • the name of the first time location information includes RxTxTimeDiff (reception and transmission time difference).
  • the name of the first time location information includes RTOA (Relative Time of Arrival, relative time of arrival).
  • the name of the first time location information includes SL-RTOA.
  • the first received power information includes the RSRP of the first signal.
  • the first received power information includes RSRPP (Reference Signal Received Path Power) of the first signal.
  • RSRPP Reference Signal Received Path Power
  • step S50 is located after step S12 in embodiment 5.
  • step S60 is located after step S22 in embodiment 5.
  • Embodiment 8 illustrates a schematic diagram of a first resource pool and a second resource pool, as shown in FIG. 8 .
  • the first resource pool and the second resource pool are orthogonal.
  • the first resource pool and the second resource pool are respectively located in two different sub-channels.
  • the first resource pool and the second resource pool are located in two different BWPs (Bandwidth Part, bandwidth part) respectively.
  • the first resource pool and the second resource pool are located on two different carriers (Carrier) respectively.
  • both the first resource pool and the second resource pool are periodically distributed.
  • the first resource pool and the second resource pool are configured independently.
  • the existence of the second resource pool depends on the configuration of the first resource pool.
  • Embodiment 9 illustrates a schematic diagram of a first reference signal, as shown in FIG. 9 .
  • the first reference signal is sent in the second resource pool.
  • the first reference signal is sent along with the first physical layer channel.
  • the position of the first reference signal in the first physical layer channel is fixed.
  • the position of the first reference signal in the first physical layer channel is predefined.
  • the position of the first reference signal in the first physical layer channel is configured through high-layer signaling.
  • the position of the first reference signal in the first physical layer channel is configured through explicit signaling.
  • the first SCI is used to indicate at least one of time domain resources or frequency domain resources occupied by the first reference signal.
  • the second SCI is used to indicate at least one of time domain resources or frequency domain resources occupied by the first reference signal.
  • the first SCI is used to indicate a pattern of the first reference signal.
  • the second SCI is used to indicate the pattern of the first reference signal.
  • Embodiment 10 illustrates a schematic diagram of first time location information according to an embodiment of the present application, as shown in FIG. 10 .
  • Time unit I and time unit I+1 identified by the thick line frame in Figure 10 are time units for downlink transmission by the network device.
  • the first wireless link is a secondary link, and the propagation delay of the first signal on the first wireless link is t1; the propagation delay of the downlink wireless signal from the network device to the first node is t3; due to the transmission timing Advance or transmit timing adjustment, the time unit of the first node's secondary link transmission (squares filled with Q or squares filled with Q+1) is compared with the time unit of the corresponding downlink reception (squares filled with J The square or the square filled with J+1) is ahead of t2 (as shown by the double-headed arrow marked by t2).
  • the time unit of the first node's uplink transmission is synchronized with the time unit of the first node's secondary link transmission; t2 is sometimes also called timing advance.
  • the time unit including at least part of the first signal is the first time unit; the value of the starting moment of the first time unit received by the first node in the downlink is shown by arrow O1;
  • the first location information includes first time location information, and the starting moment of the first time unit received by the first node in downlink is used to generate the first time location information.
  • the recipient of the first message includes the LMF; considering that the LMF can obtain the timing advance of the first node through NG-RAN or the base station, the LMF can advance the timing of the first node in The first time unit starting moment received in the downlink is converted into the first time unit starting moment sent by the network device in the downlink.
  • the first node may advance the starting time of the first time unit received on the downlink by a first time offset. Shift amount.
  • the first location information includes first time location information, and the starting time of the first time unit of downlink transmission by the network device is used to generate the first time location information.
  • the first time offset is t3 in the above embodiment, that is, the value indicated by the arrow O1 is adjusted to the first time unit (the square filled with I) of the downlink transmission of the network device. square or square filled with I+1), as shown by arrow O2.
  • the advantage of the above embodiment is that the arrival time calculated by any receiver of the first signal adopts the downlink transmission timing of the unified network device, avoiding timing failures caused by timing asynchronous between different receivers; At the same time, the processing complexity of the recipient of the first message can be reduced; in addition, considering that the time synchronization accuracy between network devices is much higher than the time synchronization accuracy between user devices, the timing synchronization of network devices as a reference time can be obtained Better positioning accuracy.
  • the t3 is t2/2.
  • the recipient of the first message includes the sender of the first signal.
  • the first time offset is t2 - that is, the value indicated by the arrow O1 is adjusted to the first time unit (the Q-filled square) sent by the first node on the secondary link. square or square filled with Q+1), as shown by arrow O3.
  • One advantage of the above method is that the first node is avoided from calculating t3.
  • the first time location information includes RSTD (Reference Signal Time Difference, reference signal time power).
  • RSTD Reference Signal Time Difference, reference signal time power
  • the first time location information includes RxTxTimeDiff (reception and transmission time difference).
  • the first time location information includes RTOA (Relative Time of Arrival). between).
  • the RTOA is a SL-RTOA.
  • the first time position information is the start of the first time unit received at the reception point (Reception Point) compared to the first reference time; the first time unit includes at least part of the first signal, so
  • the first reference time is a difference obtained by subtracting the first time offset from the sum of all components in a first component set, the first component set includes a first component and a second component, and the first The components are configurable and the second component is the index of the first time unit.
  • the receiving point is a receiving antenna connector (Rx antenna connector), or a receiving antenna (Rx antenna), or an Rx transceiver array boundary connector (Transceiver Array Boundary connector).
  • the first component is the nominal beginning time of SFN 0, and the nominal beginning time of SFN 0 is provided by the SFN Initialization Time.
  • the index of the first time unit is a non-negative integer not greater than 10239.
  • the index of the first time unit is 10m+n; where m is the SFN of the first time unit, and n is the subframe number of the first time unit.
  • the index of the first time unit is 10k+p; where k is the DFN (Direct Frame Number) of the first time unit, and p is the subframe of the first time unit. Number.
  • the first time unit is a subframe.
  • the first time unit is a frame.
  • Embodiment 11 illustrates a structural block diagram in a first node, as shown in Figure 11.
  • a first node 1100 includes a first receiver 1101 and a first transmitter 1102.
  • the first receiver 1101 receives the first SCI in the first resource pool, the first SCI is used to schedule the first physical layer channel; receives the second SCI in the first physical layer channel; receives the first reference Signal;
  • the first transmitter 1102 sends the first location information when the first set of conditions is satisfied
  • the first physical layer channel and the first reference signal only the first physical layer channel is in the first resource pool, and the first resource pool is configured for a secondary link communication; the first reference signal is used for positioning; at least one of the first SCI and the second SCI is used to determine the first reference signal; the second SCI includes the first at least some of the bits in the layer 2 identity; the first layer 2 identity is used to determine whether to generate first location information; the measurement of the first location information is based on the first reference signal; the first set of conditions includes The first layer 2 identity is the same as a destination layer 2 identity of the first node.
  • the second SCI includes at least some bits of a first layer 2 identity that is the same as a layer 2 identity of the first node.
  • the first receiver 1101 receives the first message
  • the first message is used to configure a second resource pool
  • the first reference signal is in the second resource pool
  • the second resource pool includes at least one resource that does not belong to the first resource pool in the frequency domain.
  • the resource block of the resource pool is used to configure a second resource pool.
  • At least the SCI format of the first SCI among the first SCI and the second SCI is a SCI format recognized by a legacy UE; the legacy UE does not recognize the first reference signal. .
  • the first resource pool is associated with a first parameter group
  • the second resource pool is associated with a second parameter group; at least one of the first parameter group and the second parameter group A second set of parameters is used to determine the first reference signal.
  • the first resource pool and the second resource pool are different, the second resource pool is associated with the first resource pool, and the second resource pool is used for transmission of positioning reference signals. .
  • both the first parameter group and the second parameter group include parameters that can be used to determine the time domain resources or frequency domain resources occupied by the first reference signal.
  • the first location information includes a first time parameter group, and the first time parameter group is used to determine the first A time resource in which the measurement of the first location information is performed.
  • the measurement of the first location information is based on the first reference signal
  • the first time parameter group is related to the first reference signal
  • the first time parameter group is used to determine the second time resource.
  • the measurement of the first location information is based on the first reference signal in the second time resource.
  • the meaning of the first layer 2 identity being used to determine whether to generate the first location information includes: the first layer 2 identity is related to the second SCI, and the first node generates the first location information.
  • the meaning that the first layer 2 identity is used to determine whether to generate the first location information includes: some bits in the first layer 2 identity are used by the given information in the second SCI. indicates that the first node generates the first location information; some bits in the first layer 2 identity are not indicated by the given information in the second SCI, and the first node does not generate the first location information. a location information.
  • the first receiver 1101 includes at least the first four of the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, and controller/processor 459 in Embodiment 4.
  • the first transmitter 1102 includes at least the first four of the antenna 452, transmitter 454, multi-antenna transmission processor 457, transmission processor 468, and controller/processor 459 in Embodiment 4.
  • Embodiment 12 illustrates a structural block diagram in the second node, as shown in Figure 12.
  • the second node 1200 includes a second transmitter 1201 and a second receiver 1202.
  • the second transmitter 1201 sends the first SCI in the first resource pool, and the first SCI is used to schedule the first physical layer channel; sends the second SCI in the first physical layer channel; sends the first reference Signal;
  • the second receiver 1202 receives the first location information when the first condition set is satisfied
  • the first physical layer channel and the first reference signal only the first physical layer channel is in the first resource pool, and the first resource pool is configured for a secondary link. communication; the first reference signal is used for positioning; at least one of the first SCI and the second SCI is used to determine the first reference signal; the second SCI includes the first at least some of the bits in the layer 2 identity; the first layer 2 identity is used to determine whether to generate first location information; the measurement of the first location information is based on the first reference signal; the first set of conditions includes The first layer 2 identity is the same as a destination layer 2 identity of the first node; the first node sends the first location information.
  • the second SCI includes at least part of the bits in the first layer 2 identity, the first layer 2 identity is the same as a layer 2 identity of the first node, and the recipient of the first SCI includes the Describe the first node.
  • the second transmitter 1201 sends the first message
  • the first message is used to configure a second resource pool
  • the first reference signal is in the second resource pool
  • the second resource pool includes at least one resource that does not belong to the first resource pool in the frequency domain.
  • the resource block of the resource pool is used to configure a second resource pool.
  • At least the SCI format of the first SCI among the first SCI and the second SCI is a SCI format recognized by a legacy UE; the legacy UE does not recognize the first reference signal. .
  • the first resource pool is associated with a first parameter group
  • the second resource pool is associated with a second parameter group; at least one of the first parameter group and the second parameter group A second set of parameters is used to determine the first reference signal.
  • the first resource pool and the second resource pool are different, the second resource pool is associated with the first resource pool, and the second resource pool is used for transmission of positioning reference signals. .
  • both the first parameter group and the second parameter group include parameters that can be used to determine the time domain resources or frequency domain resources occupied by the first reference signal.
  • the first location information includes a first time parameter group, the first time parameter group is used to determine the first time resource, and the measurement of the first location information is at the first time. resources are executed.
  • the measurement of the first location information is based on the first reference signal
  • the first time parameter group is related to the first reference signal
  • the first time parameter group is used to determine the second time resource.
  • the measurement of the first position information is based on The first reference signal in the second time resource.
  • the meaning of the first layer 2 identity being used to determine whether to generate the first location information includes: the first layer 2 identity is related to the second SCI, and the first node generates the first location information.
  • the meaning that the first layer 2 identity is used to determine whether to generate the first location information includes: some bits in the first layer 2 identity are used by the given information in the second SCI. indicates that the first node generates the first location information; some bits in the first layer 2 identity are not indicated by the given information in the second SCI, and the first node does not generate the first location information. a location information.
  • the second transmitter 1201 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 414, and the controller/processor 475 in Embodiment 4.
  • the second receiver 1202 includes at least the first four of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 in Embodiment 4.
  • the first node in this application includes but is not limited to mobile phones, tablets, laptops, Internet cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, transportation vehicles, vehicles, RSUs, aircraft, aircraft, none Human-machine, remote control aircraft and other wireless communication equipment.
  • the second node in this application includes but is not limited to macro cell base station, micro cell base station, small cell base station, home base station, relay base station, eNB, gNB, transmission and reception node TRP, GNSS, relay satellite, satellite base station, air base station , RSU, UAV, test equipment, such as transceiver device or signaling tester that simulates some functions of the base station, and other wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于定位的方法和装置。节点首先在第一资源池中接收第一SCI,所述第一SCI被用于调度第一物理层信道;并在所述第一物理层信道中接收第二SCI;随后接收第一参考信号;所述第一物理层信道和所述第一参考信号二者中仅所述第一物理层信道在所述第一资源池中,所述第一资源池被配置给副链路通信;所述第一参考信号被用于定位;所述第一SCI和所述第二SCI二者中至少之一被用于确定所述第一参考信号。本申请基于车联网协议架构给出了基于车联网中各个终端之间交互的定位方法,在保证系统灵活性和效率的同时,实现车联网的定位功能,进而提升系统整体性能。

Description

一种被用于定位的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信系统中的用于定位的方案和装置。
背景技术
定位是无线通信领域的一个重要应用;V2X(Vehicle to everything,车对外界)或者工业物联网等新应用的出现,对定位的精度或者延迟提出了更高的要求。在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#94e会议中,关于定位增强的研究课题被立项。
发明内容
涉及副链路的定位中,用于定位测量的无线信号的发送者可能是移动的,且需要和其它V2X节点保持通信,并维持现在基于信道感知的V2X通信的机制,这就使得传统的用于定位的流程或者位置信息反馈方案需要进一步增强。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在本申请的描述中,只是采用V2X场景作为一个典型应用场景或者例子;本申请也同样适用于面临相似问题的V2X之外的场景,例如公共安全(Public Safety)、工业物联网等等,并取得类似NR V2X场景中的技术效果。此外,虽然本申请的动机是针对用于定位测量的无线信号的发送者是移动的这一场景,本申请依然适用于用于定位测量的无线信号的发送者是固定的这一场景,例如RSU(Road Side Unit,路边单元)等。不同场景采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
在需要的情况下,可以参考3GPP标准TS38.211,TS38.212,TS38.213,TS38.214,TS38.215,TS38.321,TS38.331,TS38.305,TS37.355以辅助对本申请的理解。
本申请公开了一种用于无线通信的第一节点中的方法,包括:
在第一资源池中接收第一SCI(Sidelink Control Information,副链路控制信息),所述第一SCI被用于调度第一物理层信道;
在所述第一物理层信道中接收第二SCI;
接收第一参考信号;
其中,所述第一物理层信道和所述第一参考信号二者中仅所述第一物理层信道在所述第一资源池中,所述第一资源池被配置给副链路通信;所述第一参考信号被用于定位;所述第一SCI和所述第二SCI二者中至少之一被用于确定所述第一参考信号。
作为一个实施例,上述方法的特征在于:传统的V2X系统中,传输均是在一个资源池中进行的,不同资源池之间不会相互调度;本方案将用于定位的参考信号和数据传输的一般信道配置在两个资源池上,且可以从数据传输的资源池中发送调度参考信号的调度信令,以提高灵活性。
根据本申请的一个方面,其特征在于,所述第二SCI包括第一层2身份中的至少部分比特,所述第一层2身份与所述第一节点的一个层2身份相同。
作为一个实施例,上述方法的特征在于:只有在V2X的发送终端和接收终端满足一定条件下,上述用于定位的过程才会被触发,进而降低终端的实现复杂度。
根据本申请的一个方面,其特征在于,包括:
接收第一消息;
其中,所述第一消息被用于配置第二资源池,所述第一参考信号在所述第二资源池中,所述第二资源池包括至少一个在频域上不属于所述第一资源池的资源块。
根据本申请的一个方面,其特征在于,所述第一SCI和所述第二SCI二者中的至少所述第一SCI的SCI格式是被传统UE识别的SCI格式;所述传统UE不识别所述第一参考信号。
作为一个实施例,上述方法的特征在于:定义一种新的SCI格式用于定位参考信号的触发,以提高传输效率。
根据本申请的一个方面,其特征在于,所述第一资源池被关联到第一参数组,所述第二资源池被关联到第二参数组;所述第一参数组和所述第二参数组中至少所述第二参数组被用于确定所述第一参考信号。
根据本申请的一个方面,其特征在于,所述第一资源池和所述第二资源池不同,所述第二资源池被关联到所述第一资源池,所述第二资源池被用于定位参考信号的传输。
根据本申请的一个方面,其特征在于,所述第一参数组和所述第二参数组中均包括能够被用于确定所述第一参考信号所占用的时域资源或频域资源的参数。
作为一个实施例,上述方法的特征在于:用于定位的所述第二资源池的配置同时关联到所述第一资源池的配置,以及自身的所述第二参数组,简化高层信令设计,降低信令开销。
根据本申请的一个方面,其特征在于,包括:
在第一条件集合被满足时发送所述第一位置信息;
其中,所述第二SCI包括第一层2身份中的至少部分比特;所述第一层2身份被用于确定是否生成第一位置信息;所述第一位置信息的测量基于所述第一参考信号;所述第一条件集合包括所述第一层2身份与所述第一节点的一个目的地层2身份相同。
根据本申请的一个方面,其特征在于,所述第一位置信息包括第一时间参数组,所述第一时间参数组被用于确定第一时间资源,所述第一位置信息的所述测量在所述第一时间资源中被执行。
根据本申请的一个方面,其特征在于,所述第一位置信息的测量基于所述第一参考信号,第一时间参数组与所述第一参考信号有关,所述第一时间参数组被用于确定第二时间资源,所述第一位置信息的所述测量基于在所述第二时间资源中的所述第一参考信号。
根据本申请的一个方面,其特征在于,所述第一层2身份被用于确定是否生成所述第一位置信息的意思包括:所述第一层2身份与所述第二SCI有关,所述第一节点生成所述第一位置信息;所述第一层2身份与所述第二SCI无关,所述第一节点不生成所述第一位置信息。
根据本申请的一个方面,其特征在于,所述第一层2身份被用于确定是否生成所述第一位置信息的意思包括:所述第一层2身份中的部分比特被所述第二SCI中的给定信息指示,所述第一节点生成所述第一位置信息;所述第一层2身份中的部分比特不被所述第二SCI中的给定信息指示,所述第一节点不生成所述第一位置信息。
本申请公开了一种用于无线通信的第二节点中的方法,包括:
在第一资源池中发送第一SCI,所述第一SCI被用于调度第一物理层信道;
在所述第一物理层信道中发送第二SCI;
发送第一参考信号;
其中,所述第一物理层信道和所述第一参考信号二者中仅所述第一物理层信道在所述第一资源池中,所述第一资源池被配置给副链路通信;所述第一参考信号被用于定位;所述第一SCI和所述第二SCI二者中至少之一被用于确定所述第一参考信号。
根据本申请的一个方面,其特征在于,所述第二SCI包括第一层2身份中的至少部分比特,所述第一层2身份与第一节点的一个层2身份相同,所述第一SCI的接收者包括所述第一节点。
根据本申请的一个方面,其特征在于,包括:
发送第一消息;
其中,所述第一消息被用于配置第二资源池,所述第一参考信号在所述第二资源池中,所述第二资源池包括至少一个在频域上不属于所述第一资源池的资源块。
根据本申请的一个方面,其特征在于,所述第一SCI和所述第二SCI二者中的至少所述第一SCI的SCI格式是被传统UE识别的SCI格式;所述传统UE不识别所述第一参考信号。
根据本申请的一个方面,其特征在于,所述第一资源池被关联到第一参数组,所述第二资源池被关联到第二参数组;所述第一参数组和所述第二参数组中至少所述第二参数组被用于确定所述第一参考信号。
根据本申请的一个方面,其特征在于,所述第一资源池和所述第二资源池不同,所述第二资源池被关联到所述第一资源池,所述第二资源池被用于定位参考信号的传输。
根据本申请的一个方面,其特征在于,所述第一参数组和所述第二参数组中均包括能够被用于确定所述第一参考信号所占用的时域资源或频域资源的参数。
根据本申请的一个方面,其特征在于,包括:
在第一条件集合被满足时接收所述第一位置信息;
其中,所述第二SCI包括第一层2身份中的至少部分比特;所述第一层2身份被用于确定是否生成第一位置信息;所述第一位置信息的测量基于所述第一参考信号;所述第一条件集合包括所述第一层2身份与第一节点的一个目的地层2身份相同,所述第一节点发送所述第一位置信息。
根据本申请的一个方面,其特征在于,所述第一位置信息包括第一时间参数组,所述第一时间参数组被用于确定第一时间资源,所述第一位置信息的所述测量在所述第一时间资源中被执行。
根据本申请的一个方面,其特征在于,所述第一位置信息的测量基于所述第一参考信号,第一时间参数组与所述第一参考信号有关,所述第一时间参数组被用于确定第二时间资源,所述第一位置信息的所述测量基于在所述第二时间资源中的所述第一参考信号。
根据本申请的一个方面,其特征在于,所述第一层2身份被用于确定是否生成所述第一位置信息的意思包括:所述第一层2身份与所述第二SCI有关,所述第一节点生成所述第一位置信息;所述第一层2身份与所述第二SCI无关,所述第一节点不生成所述第一位置信息。
根据本申请的一个方面,其特征在于,所述第一层2身份被用于确定是否生成所述第一位置信息的意思包括:所述第一层2身份中的部分比特被所述第二SCI中的给定信息指示,所述第一节点生成所述第一位置信息;所述第一层2身份中的部分比特不被所述第二SCI中的给定信息指示,所述第一节点不生成所述第一位置信息。
本申请公开了一种用于无线通信的第一节点,包括:
第一接收机,在第一资源池中接收第一SCI,所述第一SCI被用于调度第一物理层信道;在所述第一物理层信道中接收第二SCI;接收第一参考信号;
其中,所述第一物理层信道和所述第一参考信号二者中仅所述第一物理层信道在所述第一资源池中,所述第一资源池被配置给副链路通信;所述第一参考信号被用于定位;所述第一SCI和所述第二SCI二者中至少之一被用于确定所述第一参考信号。
本申请公开了一种用于无线通信的第二节点,包括:
第二发射机,在第一资源池中发送第一SCI,所述第一SCI被用于调度第一物理层信道;在所述第一物理层信道中发送第二SCI;发送第一参考信号;
其中,所述第一物理层信道和所述第一参考信号二者中仅所述第一物理层信道在所述第一资源池中,所述第一资源池被配置给副链路通信;所述第一参考信号被用于定位;所述第一SCI和所述第二SCI二者中至少之一被用于确定所述第一参考信号。
作为一个实施例,本申请中的方案的好处在于:在保证兼容性的基础上,将终端之间的定位引入到V2X系统中,进而提高V2X终端之间的定位精度,以提高整体性能。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的第一SCI的流程图;
图6示出了根据本申请的一个实施例的第一消息的流程图;
图7示出了根据本申请的一个实施例的第一位置信息的流程图;
图8示出了根据本申请的一个实施例的第一资源池和第二资源池的示意图;
图9示出了根据本申请的一个实施例的第一参考信号的示意图;
图10示出了根据本发明的一个实施例的第一时间位置信息的示意图;
图11示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图12示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了一个第一节点的处理流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。在实施例1中,本申请中的第一节点在步骤101中在第一资源池中接收第一SCI,所述第一SCI被用于调度第一物理层信道;在步骤102中在所述第一物理层信道中接收第二SCI;在步骤103中接收第一参考信号。
实施例1中,所述第一物理层信道和所述第一参考信号二者中仅所述第一物理层信道在所述第一资源池中,所述第一资源池被配置给副链路通信;所述第一参考信号被用于定位;所述第一SCI和所述第二SCI二者中至少之一被用于确定所述第一参考信号。
作为一个实施例,所述第一资源池占用大于1的正整数个REs(Resource Elements,资源单元)。
作为一个实施例,所述第一资源池被sl-RxPool域配置。
作为一个实施例,所述第一资源池被IE(Information Elements,信息单元)SL-ResourcePool配置。
作为一个实施例,所述第一资源池在时域是周期分布的。
作为一个实施例,所述第一资源池在时域占用正整数个时隙(Slot)。
作为一个实施例,所述第一资源池在时域占用大于1的正整数个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述第一资源池在频域占用大于1的正整数个RBs(Resource Blocks,资源块)所对应的频域资源。
作为一个实施例,所述第一资源池在频域占用正整数个子信道(Subchannel)。
作为一个实施例,所述第一资源池通过RRC信令配置。
作为一个实施例,所述第一SCI的SCI格式(Format)是SCI format 1-A。
作为一个实施例,所述第一SCI的SCI格式(Format)是SCI format 1-B。
作为一个实施例,所述第一SCI的SCI格式(Format)是SCI format 1-C。
作为一个实施例,所述第一SCI所占用的物理层信道包括PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)。
作为一个实施例,所述第一物理层信道包括PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)。
作为一个实施例,所述第一物理层信道包括第二阶SCI(2nd-stage-SCI)。
作为一个实施例,所述第一物理层信道对应第二阶SCI。
作为一个实施例,所述第一SCI被用于确定所述第一物理层信道所占用的时域资源。
作为一个实施例,所述第一SCI被用于确定所述第一物理层信道所占用的频域资源。
作为一个实施例,所述第一SCI被用于调度所述第一物理层信道。
作为一个实施例,所述第二SCI在所述第一物理层信道中所占用的时频资源的位置是预定义的。
作为该实施例的一个子实施例,所述预定义的意思包括:所述第二SCI在所述第一物理层信道中所占用的位于时域的起始OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号与所述第一物理层信道的DMRS(Dedicated Demodulation Reference Signal,专属的解调参考信号)图样(Pattern)有关。
作为该实施例的一个子实施例,所述预定义的意思包括:所述第二SCI在所述第一物理层信道中所占用的位于时域的起始OFDM符号是所述第一物理层信道中第一个承载DMRS的OFDM符号。
作为该实施例的一个子实施例,所述预定义的意思包括:所述第二SCI在所述第一物理层信道优先于所述第一物理层信道所对应的第一传输块映射。
作为一个实施例,所述第二SCI的格式是SCI格式2-A。
作为一个实施例,所述第二SCI的格式是SCI格式2-B。
作为一个实施例,所述第一参考信号包括副链路(Sidelink)CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号)。
作为一个实施例,所述第一参考信号包括副链路(Sidelink)PRS(Positioning Reference Signal,定位参考信号)。
作为一个实施例,所述第一参考信号包括参考信号。
作为一个实施例,所述第一参考信号被用于定位。
作为一个实施例,所述第一参考信号被用于副链路上的定位。
作为一个实施例,所述第一参考信号被用于终端与终端之间的定位。
作为一个实施例,所述第一参考信号被用于生成所述第一位置信息。
作为一个实施例,所述第一SCI被用于确定所述第一参考信号。
作为一个实施例,所述第二SCI被用于确定所述第一参考信号。
作为一个实施例,所述第一SCI和所述第二SCI被共同用于确定所述第一参考信号。
作为一个实施例,上述短语被用于确定所述第一参考信号的意思包括:被用于触发所述第一参考信号的发送。
作为一个实施例,上述短语被用于确定所述第一参考信号的意思包括:被用于指示所述第一参考信号所占用的频域资源。
作为一个实施例,上述短语被用于确定所述第一参考信号的意思包括:被用于指示所述第一参考信号所占用的时域资源。
作为一个实施例,上述短语被用于确定所述第一参考信号的意思包括:被用于调度所述第一参考信号。
作为一个实施例,所述副链路是Sidelink。
作为一个实施例,所述副链路对应PC5接口。
作为一个实施例,所述副链路包括终端与终端之间的链路。
典型的,所述第二SCI包括第一层2身份中的至少部分比特,所述第一层2身份与所述第一节点的一个层2身份相同。
作为一个实施例,所述第一物理层信道中的传输块是组播的或者广播的。
作为一个实施例,所述第一(First)层2身份(Layer-2 ID)包括目的地层2身份(Destination Layer-2 ID)。
作为一个实施例,所述第一层2身份中的所述至少部分比特被所述第二SCI中的目的地身份(Destination ID)指示。
作为一个实施例,所述第一层2身份中的16位LSB(Least Significant Bit,最低有效位)被所述第二SCI中的目的地身份指示。
作为一个实施例,所述第一物理层信道中的传输块是单播的。
作为一个实施例,所述第一节点对应第二层2身份,所述第二层2身份包括源层2身份(Source Layer-2 ID)。
作为一个实施例,所述第二层2身份中的所述至少部分比特被所述第二SCI中的目的地(Source ID)指示。
作为一个实施例,所述第二层2身份中的16位LSB被所述第二SCI中的目的地身份指示。
作为一个实施例,所述第一物理层信道中的传输块是单播的。
作为一个实施例,所述第一层2身份包括目的地层2身份。
作为一个实施例,所述第一层2身份中的所述至少部分比特被所述第二SCI中的源身份指示。
作为一个实施例,所述第一层2身份中的8位LSB被所述第二SCI中的源身份指示。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。附图2说明了5G NR(NewRadio,新空口),LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统架构下的V2X通信架构。5G NR或LTE网络架构可称为5GS(5GSystem)/EPS(Evolved Packet System,演进分组系统)某种其它合适术语。
实施例2的V2X通信架构包括UE(User Equipment,用户设备)201,UE241,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220,ProSe功能250和ProSe应用服务器230。所述V2X通信架构可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,所述V2X通信架构提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(UserPlaneFunction,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。所述ProSe功能250是用于适地服务(ProSe,Proximity-based Service)所需的网络相关行为的逻辑功能;包括DPF(Direct Provisioning Function,直接供应功能),直接发现名称管理功能(Direct Discovery Name Management Function),EPC水平发现ProSe功能(EPC-level Discovery ProSe Function)等。所述ProSe应用服务器230具备存储EPC ProSe用户标识,在应用层用户标识和EPC ProSe用户标识之间映射,分配ProSe限制的码后缀池等功能。
作为一个实施例,所述UE201和所述UE241之间通过PC5参考点(Reference Point)连接。
作为一个实施例,所述ProSe功能250分别通过PC3参考点与所述UE201和所述UE241连接。
作为一个实施例,所述ProSe功能250通过PC2参考点与所述ProSe应用服务器230连接。
作为一个实施例,所述ProSe应用服务器230连接分别通过PC1参考点与所述UE201的ProSe应用和所述UE241的ProSe应用连接。
作为一个实施例,本申请中的所述第一节点是所述UE201,本申请中的所述第二节点是所述UE241。
作为一个实施例,本申请中的所述第一节点是所述UE241,本申请中的所述第二节点是所述UE201。
作为一个实施例,所述UE201和所述UE241之间的无线链路对应本申请中的副链路(Sidelink,SL)。
作为一个实施例,所述UE201对应本申请中的所述第一节点,所述UE241对应本申请中的所述第二节点。
作为一个实施例,所述UE201对应本申请中的所述第二节点,所述UE241对应本申请中的所述第一节点。
作为一个实施例,从所述UE201到NR节点B的无线链路是上行链路。
作为一个实施例,从NR节点B到UE201的无线链路是下行链路。
作为一个实施例,所述UE201支持V2X传输。
作为一个实施例,所述UE241支持V2X传输。
作为一个实施例,所述gNB203是宏蜂窝(MarcoCellular)基站。
作为一个实施例,所述gNB203是微小区(Micro Cell)基站。
作为一个实施例,所述gNB203是微微小区(PicoCell)基站。
作为一个实施例,所述gNB203是家庭基站(Femtocell)。
作为一个实施例,所述gNB203是支持大时延差的基站设备。
作为一个实施例,所述gNB203是一个RSU。
作为一个实施例,所述gNB203是卫星设备。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,PDCP子层304还提供第一通信节点设备对第二通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责 QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第二通信节点设备的PDCP304被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述第二通信节点设备的PDCP354被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述第一SCI生成于所述PHY301或者所述PHY351。
作为一个实施例,所述第一SCI生成于所述MAC302或者MAC352。
作为一个实施例,所述第二SCI生成于所述PHY301或者所述PHY351。
作为一个实施例,所述第二SCI生成于所述MAC302或者MAC352。
作为一个实施例,所述第二SCI生成于所述RRC306。
作为一个实施例,所述第一参考信号生成于所述PHY301或者所述PHY351。
作为一个实施例,所述第一参考信号生成于所述MAC302或者MAC352。
作为一个实施例,所述第一参考信号生成于所述RRC306。
作为一个实施例,所述第一参考信号生成于所述ProSe。
作为一个实施例,本申请中的针对所述第一参考信号的测量包括在所述RRC子层306执行的层3滤波。
作为一个实施例,本申请中的针对所述第一参考信号的测量是在所述PHY301被执行的。
作为一个实施例,本申请中的针对所述第一信号的测量包括在所述RRC子层306执行的层3滤波。
作为一个实施例,本申请中的针对所述第一信号的测量是在所述PHY301被执行的。
作为一个实施例,本申请中的所述第一位置信息的所述测量是在所述PHY301被执行的。
作为一个实施例,本申请中的所述第一位置信息的所述测量包括在所述RRC子层306执行的层3滤波。
作为一个实施例,所述第一节点是一个终端。
作为一个实施例,所述第一节点是一个中继。
作为一个实施例,所述第一节点是一个交通工具。
作为一个实施例,所述第一节点是一个车辆。
作为一个实施例,所述第二节点是一个终端。
作为一个实施例,所述第二节点是一个中继。
作为一个实施例,所述第二节点是一个交通工具。
作为一个实施例,所述第二节点是一个定位服务器。
作为一个实施例,所述第二节点是一个中继。
作为一个实施例,所述第二节点是一个基站。
作为一个实施例,所述第二节点是一个gNB。
作为一个实施例,所述第二节点是一个TRP(Transmitter Receiver Point,发送接收点)。
作为一个实施例,所述第二节点被用于管理多个TRP。
作为一个实施例,所述第二节点是用于管理多个小区的节点。
作为一个实施例,所述第二节点是用于管理多个服务小区的节点。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和 数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:首先在第一资源池中接收第一SCI,所述第一SCI被用于调度第一物理层信道;并在所述第一物理层信道中接收第二SCI;随后接收第一参考信号;所述第一物理层信道和所述第一参考信号二者中仅所述第一物理层信道在所述第一资源池中,所述第一资源池被配置给副链路通信;所述第一参考信号被用于定位;所述第一SCI和所述第二SCI二者中至少之一被用于确定所述第一参考信号。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先在第一资源池中接收第一SCI,所述第一SCI被用于调度第一物理层信道;并在所述第一物理层信道中接收第二SCI;随后接收第一参考信号;所述第一物理层信道和所述第一参考信号二者中仅所述第一物理层信道在所述第一资源池中,所述第一资源池被配置给副链路通信;所述第一参考信号被用于定位;所述第一SCI和所述第二SCI二者中至少之一被用于确定所述第一参考信号。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:首先在第一资源池中发送第一SCI,所述第一SCI被用于调度第一物理层信道;并在所述第一物理层信道中发送第二SCI;随后发送第一参考信号;所述第一物理层信道和所述第一参考信号二者中仅所述第一物理层信道在所述第一资源池中,所述第一资源池被配置给副链路通信;所述第一参考信号被用于定位;所述第一SCI和所述第二SCI二者中至少之一被用于确定所述第一参考信号。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先在第一资源池中发送第一SCI,所述第一SCI被用于调度第一物理层信道;并在所述第一物理层信道中发送第二SCI;随后发送第一参考信号;所述第一物理层信道和所述第一参考信号二者中仅所述第一物理层信道在所述第一资源池中,所述第一资源池被配置给副链路通信;所述第一参考信号被用于定位;所述第一SCI和所述第二SCI二者中至少之一被用于确定所述第一参考信号。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第一通信设备450是一个终端。
作为一个实施例,所述第一通信设备450是一个中继。
作为一个实施例,所述第一通信设备450是一个交通工具。
作为一个实施例,所述第一通信设备450是一个车辆。
作为一个实施例,所述第二通信设备410是一个UE。
作为一个实施例,所述第二通信设备410是一个终端。
作为一个实施例,所述第二通信设备410是一个中继。
作为一个实施例,所述第二通信设备410是一个交通工具。
作为一个实施例,所述第二通信设备410是一个车辆。
作为一个实施例,所述第二通信设备410是一个RSU。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,所述第二通信设备410是一个中继。
作为一个实施例,所述第二通信设备410是一个网络设备。
作为一个实施例,所述第二通信设备410是一个服务小区。
作为一个实施例,所述第二通信设备410是一个TRP。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于在第一资源池中接收第一SCI;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于在第一资源池中发送第一SCI。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于在所述第一物理层信道中接收第二SCI;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于在所述第一物理层信道中发送第二SCI。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第一参考信号;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第一参考信号。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于在第一条件集合被满足时发送第一位置信息;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于在第一条件集合被满足时接收第一位置信息。
实施例5
实施例5示例了一个第一SCI的流程图,如附图5所示。在附图5中,第一节点U1与第二节点N2之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例5中的实施例、子实施例和附属实施例能够被应用到实施例6或7中的任一实施例中;反之,在不冲突的情况下,实施例6或7中的任一实施例、子实施例和附属实施例能够被应用到实施例5中。
对于第一节点U1,在步骤S10中在第一资源池中接收第一SCI;在步骤S11中在第一资源池中接收第二SCI;在步骤S12中接收第一参考信号。
对于第二节点N2,在步骤S20中在第一资源池中发送第一SCI;在步骤S21中在第一资源池中发送第二SCI;在步骤S22中发送第一参考信号。
实施例5中,所述第一SCI被用于调度所述第一物理层信道;所述第一物理层信道和所述第一参考信号二者中仅所述第一物理层信道在所述第一资源池中,所述第一资源池被配置给副链路通信;所述第一参考信号被用于定位;所述第一SCI和所述第二SCI二者中至少之一被用于确定所述第一参考信号。
典型的,所述第一SCI和所述第二SCI二者中的至少所述第一SCI的SCI格式是被传统UE识别的SCI格式;所述传统UE不识别所述第一参考信号。
作为一个实施例,所述第一SCI的所述SCI格式是SCI格式1-A。
作为一个实施例,所述第一SCI的SCI格式是被传统UE识别的SCI格式。
作为一个实施例,所述第一参考信号是在所述传统UE支持的所有3GPP标准之后被发布的3GPP标准中被规定(specify)的。
作为一个实施例,所述第一消息是在所述传统UE支持的所有3GPP标准之后被发布的3GPP标准中被规定的。
作为一个实施例,所述第一参考信号的配置信令是在所述传统UE支持的所有3GPP标准之后被发布的3GPP标准中被规定(specify)的。
典型的,所述第一资源池被关联到第一参数组,所述第二资源池被关联到第二参数组;所述第一参数组和所述第二参数组中至少所述第二参数组被用于确定所述第一参考信号。
作为一个实施例,所述第一参数组包括IE SL-ResourcePool中的一个或多个域。
作为一个实施例,所述第一参数组包括IE SL-BWP-PoolConfig中的一个或多个域。
作为一个实施例,所述第一参数组包括IE SL-PSSCH-TxConfigList中的一个或多个域。
作为一个实施例,所述第一参数组包括IE SL-PSSCH-RxConfigList中的一个或多个域。
作为一个实施例,所述第一参数组包括sl-PSSCH-Config域中的一个或多个参数。
作为一个实施例,所述第二参数组包括IE SL-ResourcePool中的一个或多个域。
作为一个实施例,所述第二参数组包括IE SL-BWP-PoolConfig中的一个或多个域。
作为一个实施例,所述第二参数组包括IE SL-PRS-TxConfigList中的一个或多个域。
作为一个实施例,所述第二参数组包括IE SL-PRS-RxConfigList中的一个或多个域。
作为一个实施例,所述第二参数组包括sl-PRS-Config域中的一个或多个参数。
作为一个实施例,上述短语被用于确定所述第一参考信号的意思包括:被用于指示所述第一参考信号所占用的频域资源。
作为一个实施例,上述短语被用于确定所述第一参考信号的意思包括:被用于指示所述第一参考信号所占用的时域资源。
作为一个实施例,上述短语被用于确定所述第一参考信号的意思包括:被用于指示所述第一参考信号的传输周期。
作为一个实施例,上述短语被用于确定所述第一参考信号的意思包括:被用于指示所述第一参考信号的频域密度。
作为一个实施例,上述短语被用于确定所述第一参考信号的意思包括:被用于指示所述第一参考信号的时域密度。
作为一个实施例,上述短语被用于确定所述第一参考信号的意思包括:被用于指示所述第一参考信号的图样。
典型的,所述第一资源池和所述第二资源池不同,所述第二资源池被关联到所述第一资源池,所述第二资源池被用于定位参考信号的传输。
作为一个实施例,所述第一资源池所占用的时频资源和所述第二资源池所占用的时频资源是正交的。
作为一个实施例,至少存在一个RB不同时属于所述第一资源池和所述第二资源池。
作为一个实施例,至少存在一个RE不同时属于所述第一资源池和所述第二资源池。
作为一个实施例,所述第一资源池和所述第二资源池分别对应两个不同的身份。
作为一个实施例,所述第一资源池被配置用于数据传输。
作为一个实施例,所述第二资源池被配置用于定位参考信号的传输。
作为一个实施例,所述第二资源池被关联到所述第一资源池的意思包括:所述第一消息被用于指示所述第二资源池被关联到所述第一资源池。
作为一个实施例,所述第二资源池被关联到所述第一资源池的意思包括:所述第一资源池所关联的配置信息能够被用于确定所述第二资源池中所述第一参考信号所占用的时域资源或频域资源中的至少之一。
作为一个实施例,所述第二资源池被关联到所述第一资源池的意思包括:所述第一资源池中传输的SCI能够被用于确定所述第二资源池中的所述第一参考信号。
作为一个实施例,所述第二资源池被关联到所述第一资源池的意思包括:所述第一资源池中传输的SCI能够被用于指示所述第二资源池中的所述第一参考信号。
典型的,所述第一参数组和所述第二参数组中均包括能够被用于确定所述第一参考信号所占用的时域资源或频域资源的参数。
作为一个实施例,所述第一参数组包括sl-PSCCH-Config域中的一个或多个参数。
作为一个实施例,所述第一参数组包括sl-PRS-Config域中的一个或多个参数。
作为一个实施例,所述第一参数组被用于确定所述第一参考信号所占用的子信道。
作为一个实施例,所述第一参数组被用于确定所述第一参考信号所占用的RBs。
作为一个实施例,所述第一参数组被用于确定所述第一参考信号所占用的时隙。
作为一个实施例,所述第二参数组被用于确定所述第一参考信号的频域密度。
作为一个实施例,所述第二参数组被用于确定所述第一参考信号的时域密度。
作为一个实施例,所述第二参数组被用于确定所述第一参考信号的图样。
作为一个实施例,所述步骤S20和步骤S21同时进行。
作为一个实施例,所述步骤S10和步骤S11同时进行。
作为一个实施例,所述步骤S20和步骤S21在同一个时隙中进行。
作为一个实施例,所述步骤S10和步骤S11在同一个时隙中进行。
作为一个实施例,所述步骤S20、步骤S21和步骤S22同时进行。
作为一个实施例,所述步骤S10、步骤S11和步骤S12同时进行。
作为一个实施例,所述步骤S20、步骤S21和步骤S22在同一个时隙中进行。
作为一个实施例,所述步骤S10、步骤S11和步骤S12在同一个时隙中进行。
作为一个实施例,所述步骤S20、步骤S21和步骤S22在时域的先后顺序可以任意调整。
作为一个实施例,所述步骤S10、步骤S11和步骤S12在时域的先后顺序可以任意调整。
实施例6
实施例6示例了一个第一消息的流程图,如附图6所示。在附图6中,第一节点U3与第二节点N4之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例6中的实施例、子实施例和附属实施例能够被应用到实施例5或7中的任一实施例中;反之,在不冲突的情况下,实施例5或7中的任一实施例、子实施例和附属实施例能够被应用到实施例6中。
对于第一节点U3,在步骤S30中接收第一消息。
对于第二节点N4,在步骤S40中发送第一消息。
实施例6中,所述第一消息被用于配置第二资源池,所述第一参考信号在所述第二资源池中,所述第二资源池包括至少一个在频域上不属于所述第一资源池的资源块。
作为一个实施例,所述第一消息通过RRC信令传输。
作为一个实施例,所述第一消息对应RRC信令。
作为一个实施例,所述第二资源池被sl-RxPool域配置。
作为一个实施例,所述第一消息包括IE(Information Elements,信息单元)SL-ResourcePool中的一个或多个域。
作为一个实施例,所述第一消息包括IE SL-ResourcePool。
作为一个实施例,所述第一SCI和所述第二SCI二者中所述至少之一被用于确定所述第一参考信号在所述第二资源池中占用的REs。
作为一个实施例,所述第一消息是一个IE或者一个IE中的域,所述第一消息的名字包括sl-RxPool。
作为一个实施例,所述第一消息是一个IE或者一个IE中的域,所述第一消息的名字包括SL-ResourcePool。
作为一个实施例,所述第一消息是一个IE或者一个IE中的域,所述第一消息的名字包括SL。
作为一个实施例,所述第一消息是一个IE或者一个IE中的域,所述第一消息的名字包括Resource。
作为一个实施例,所述第一消息是一个IE或者一个IE中的域,所述第一消息的名字包括Pool。
作为一个实施例,所述第二资源池在时域是周期分布的。
作为一个实施例,所述第二资源池在时域占用正整数个时隙。
作为一个实施例,所述第二资源池在时域占用大于1的正整数个OFDM符号。
作为一个实施例,所述第二资源池在频域占用大于1的正整数个RBs所对应的频域资源。
作为一个实施例,所述第二资源池在频域占用正整数个子信道。
作为一个实施例,所述第二资源池通过RRC信令配置。
作为一个实施例,所述第二资源池中的部分资源被用于所述第一参考信号的传输。
作为一个实施例,所述步骤S30位于实施例5中步骤S10之前。
作为一个实施例,所述步骤S40位于实施例5中步骤S20之前。
实施例7
实施例7示例了一个第一位置信息的流程图,如附图7所示。在附图7中,第一节点U5与第二节点N6之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例7中的实施例、子实施例和附属实施例能够被应用到实施例5或6中的任一实施例中;反之,在不冲突的情况下,实施例5或6中的任一实施例、子实施例和附属实施例能够被应用到实施例7中。
对于第一节点U5,在步骤S50中在第一条件集合被满足时发送第一位置信息。
对于第二节点N6,在步骤S60中在第一条件集合被满足时接收第一位置信息。
实施例7中,所述第二SCI包括第一层2身份中的至少部分比特;所述第一层2身份被用于确定是否生成第一位置信息;所述第一位置信息的测量基于所述第一参考信号;所述第一条件集合包括所述第一层2身份与所述第一节点的一个目的地层2身份相同。
作为一个实施例,所述第二SCI包括第二层2身份中的至少部分比特;所述第一条件集合包括:所述第二层2身份是所述第一节点的一个源层2身份(Source Layer-2 ID)。
作为一个实施例,所述第一条件集合包括:所述第一节点在所述第一物理层信道所属的时间资源上没有被调度进行无线发送。
作为一个实施例,所述第一条件集合包括:所述第一节点接收到来自所述第二节点的请求(Request),被指示发送所述第一位置信息。
作为一个实施例,所述第一条件集合包括:所述第一SCI和所述第二SCI二者中至少之一被用于触发所述第一参考信号的发送。
作为一个实施例,所述第一位置信息所占用的物理层信道通过所述第一参数组配置。
作为一个实施例,所述第一位置信息所占用的物理层信道包括PSSCH。
作为一个实施例,所述第一位置信息所占用的物理层信道包括PSFCH(Physical Sidelink Feedback Channel,物理副链路反馈信道)。
作为一个实施例,所述第一位置信息通过MAC(Medium Access Control,媒体接入控制)CE(Control Element,控制单元)传输。
典型的,所述第一位置信息包括第一时间参数组,所述第一时间参数组被用于确定第一时间资源,所述第一位置信息的所述测量在所述第一时间资源中被执行。
作为一个实施例,所述第一时间参数组包括第一时间戳(Timestamp),所述第一时间资源被所述第一时间戳指示。
作为一个实施例,所述第一时间戳是NR-TimeStamp IE(Information Element,信息单元)。
作为一个实施例,所述第一时间参数组是nr-TimeStamp-r16。
典型的,所述第一位置信息的测量基于所述第一参考信号,第一时间参数组与所述第一参考信号有关,所述第一时间参数组被用于确定第二时间资源,所述第一位置信息的所述测量基于在所述第二时间资源中的所述第一参考信号。
作为一个实施例,所述第一时间参数组指示所述第二时间资源的起始时隙。
作为一个实施例,所述第一时间参数组指示所述第二时间资源的截止时隙。
作为一个实施例,所述第一时间参数组指示所述第二时间资源的持续时间。
作为一个实施例,所述第一时间参数组指示所述第二时间资源所占用的每个时隙。
典型的,所述第一层2身份被用于确定是否生成所述第一位置信息的意思包括:所述第一层2身份与所述第二SCI有关,所述第一节点生成所述第一位置信息;所述第一层2身份与所述第二SCI无关,所述第一节点不生成所述第一位置信息。
典型的,所述第一层2身份被用于确定是否生成所述第一位置信息的意思包括:所述第一层2身份中的部分比特被所述第二SCI中的给定信息指示,所述第一节点生成所述第一位置信息;所述第一层2身份中的部分比特不被所述第二SCI中的给定信息指示,所述第一节点不生成所述第一位置信息。
作为一个实施例,所述第一层2身份中的部分比特包括所述第一层2身份中16位LSB。
作为一个实施例,所述第一层2身份中的部分比特包括所述第一层2身份中8位LSB。
作为一个实施例,所述第二SCI中的给定信息包括所述第二阶SCI中的Source ID。
作为一个实施例,所述第二SCI中的给定信息包括所述第二阶SCI中的Destination ID。
作为一个实施例,所述第一位置信息包括时间质量(TimingQuality)。
作为一个实施例,所述第一位置信息包括接收波束索引(RxBeamIndex)。
作为一个实施例,所述第一位置信息包括RSRP结果差(RSRP-ResultDiff)。
作为一个实施例,所述第一位置信息包括RSRP(Reference Signal Received Power,参考信号接收功率)。
作为一个实施例,所述第一位置信息包括所述第一节点的位置信息。
作为一个实施例,所述第一位置信息包括第一时间位值信息和第一接收功率信息二者中的至少之一。
作为该实施例的一个子实施例,所述第一时间位置信息的解析度(resolution)是Ts,其中Ts为1/(15000*2048)秒。
作为该实施例的一个子实施例,所述第一时间位置信息的解析度(resolution)是4Ts,其中Ts为1/(15000*2048)秒。
作为该实施例的一个子实施例,所述第一接收功率信息的单位是dBm(分贝毫)。
作为该实施例的一个子实施例,所述第一接收功率信息的单位是dB(分贝)。
作为该实施例的一个子实施例,所述第一时间位置信息的名字包括RSTD(Reference Signal Time Difference,参考信号时间功率)。
作为该实施例的一个子实施例,所述第一时间位置信息的名字包括RxTxTimeDiff(接收发送时间差)。
作为该实施例的一个子实施例,所述第一时间位置信息的名字包括RTOA(Relative Time of Arrival,相对到达时间)。
作为该实施例的一个子实施例,所述第一时间位置信息的名字包括SL-RTOA。
作为该实施例的一个子实施例,所述第一接收功率信息包括所述第一信号的RSRP。
作为该实施例的一个子实施例,所述第一接收功率信息包括所述第一信号的RSRPP(Reference Signal Received Path Power,参考信号接收路径功率)。
作为一个实施例,所述步骤S50位于实施例5中步骤S12之后。
作为一个实施例,所述步骤S60位于实施例5中步骤S22之后。
实施例8
实施例8示例了一个第一资源池和第二资源池的示意图,如附图8所示。在附图8中,所述第一资源池和所述第二资源池是正交的。
作为一个实施例,所述第一资源池和所述第二资源池分别位于两个不同的子信道。
作为一个实施例,所述第一资源池和所述第二资源池分别位于两个不同的BWP(Bandwidth Part,带宽部分)。
作为一个实施例,所述第一资源池和所述第二资源池分别位于两个不同的载波(Carrier)。
作为一个实施例,所述第一资源池和所述第二资源池均是周期分布的。
作为一个实施例,所述第一资源池和所述第二资源池分别是独立配置的。
作为一个实施例,所述第二资源池的存在依赖于所述第一资源池的配置。
实施例9
实施例9示例了一个第一参考信号的示意图,如附图9所示。在附图9中,所述第一参考信号在所述第二资源池中被发送。
作为一个实施例,所述第一参考信号伴随着所述第一物理层信道被发送。
作为一个实施例,所述第一参考信号在所述第一物理层信道中的位置是固定的。
作为一个实施例,所述第一参考信号在所述第一物理层信道中的位置是预定义的。
作为一个实施例,所述第一参考信号在所述第一物理层信道中的位置是通过高层信令配置的。
作为一个实施例,所述第一参考信号在所述第一物理层信道中的位置是通过显性信令配置的。
作为一个实施例,所述第一SCI被用于指示所述第一参考信号所占用的时域资源或频域资源中的至少之一。
作为一个实施例,所述第二SCI被用于指示所述第一参考信号所占用的时域资源或频域资源中的至少之一。
作为一个实施例,所述第一SCI被用于指示所述第一参考信号的图样。
作为一个实施例,所述第二SCI被用于指示所述第一参考信号的图样。
实施例10
实施例10示例了根据本申请的一个实施例的第一时间位置信息的示意图,如附图10所示。附图10中粗线框标识的时间单元I和时间单元I+1是网络设备的下行发送的时间单元。
实施例10中,第一无线链路是副链路,第一信号在第一无线链路上的传播延迟为t1;下行无线信号从网络设备到第一节点的传播延迟为t3;由于发送定时提前或者发送定时调整,第一节点的副链路发送的时间单元(被Q填充的方格或者被Q+1填充的方格)相比对应的下行链路接收的时间单元(被J填充的方格或者被J+1填充的方格)提前了t2(如t2标识的双向箭头所示)。
作为一个实施例,第一节点的上行链路发送的时间单元与所述第一节点在副联路发送的时间单元是同步的;t2有时也被称为定时提前(timing advance)。
实施例10中,包括至少部分第一信号的时间单元为第一时间单元;所述第一节点在下行链路接收的所述第一时间单元的起始时刻的值如箭头O1所示;
作为一个实施例,第一位置信息包括第一时间位置信息,所述第一节点在下行链路接收的所述第一时间单元起始时刻被用于生成所述第一时间位置信息。
作为上述实施例的一个子实施例,所述第一消息的接收者包括LMF;考虑到LMF可以通过NG-RAN或者基站获得所述第一节点的定时提前,LMF能够将所述第一节点在下行链路接收的所述第一时间单元起始时刻转换成网络设备在下行链路发送的所述第一时间单元起始时刻。
为了将所述第一节点在副链路的接收定时转换成网络设备的定时,所述第一节点可以自行将在下行链路接收的所述第一时间单元的起始时刻提前第一时间偏移量。
作为一个实施例,第一位置信息包括第一时间位置信息,网络设备的下行发送的第一时间单元的起始时刻被用于生成所述第一时间位置信息。
结合附图10,所述第一时间偏移量在上述实施例中是t3,即将所述箭头O1所指示的值调整为网络设备的下行发送的所述第一时间单元(被I填充的方格或者被I+1填充的方格)的起始时刻的值,如箭头O2所示。
上述实施例的好处在于,所述第一信号的任一接收者所计算出的到达时间采用统一的网络设备的下行发送定时,避免了不同接收者之间的定时不同步带来的定时失败;同时可以降低所述第一消息的接收者的处理复杂度;此外,考虑到网络设备之间的时间同步精度远高于用户设备之间的时间同步精度,网络设备的定时同步作为参考时间能取得较好的定位精度。
典型的,所述t3为t2/2。
作为上述实施例的一个子实施例,所述第一消息的接收者包括所述第一信号的发送者。
作为一个实施例,所述第一时间偏移量是t2–即将所述箭头O1所指示的值调整为所述第一节点在副链路发送的所述第一时间单元(被Q填充的方格或者被Q+1填充的方格)的起始时刻的值,如箭头O3所示。
上述方法的一个优点在于避免了所述第一节点计算t3。
作为一个实施例,所述第一时间位置信息包括RSTD(Reference Signal Time Difference,参考信号时间功率)。
作为一个实施例,所述第一时间位置信息包括RxTxTimeDiff(接收发送时间差)。
作为一个实施例,所述第一时间位置信息包括RTOA(Relative Time of Arrival,相对到达时 间)。
作为上述实施例的一个子实施例,所述RTOA是SL-RTOA。
下面以所述第一时间偏移量是t3为例并且所述第一时间位置信息是RTOA为例介绍所述第一时间位置信息的生成方法:
所述第一时间位置信息是相比于第一参考时间,在接收点(Reception Point)接收到的第一时间单元的起始;所述第一时间单元包括至少部分所述第一信号,所述第一参考时间是第一分量集合中所有分量的和减去所述第一时间偏移量所得到的差值,所述第一分量集合包括第一分量与第二分量,所述第一分量是可配置的,所述第二分量是所述第一时间单元的索引。
所述接收点是接收天线连接器(Rx antenna connector),或者接收天线(Rx antenna),或者Rx收发机阵列边界连接器(Transceiver Array Boundary connector)。
作为一个实施例,所述第一分量是SFN 0的名义开始时间(nominal beginning time),所述SFN0的名义开始时间被SFN初始化时间(SFN Initialisation Time)提供。
作为一个实施例,所述第一时间单元的索引是不大于10239的非负整数。
作为一个实施例,所述第一时间单元的索引为10m+n;其中m是所述第一时间单元的SFN,n是所述第一时间单元的子帧号。
作为一个实施例,所述第一时间单元的索引为10k+p;其中k是所述第一时间单元的DFN(Direct Frame Number,直接帧号),p是所述第一时间单元的子帧号。
作为一个实施例,所述第一时间单元是一个子帧。
作为一个实施例,所述第一时间单元是一个帧。
实施例11
实施例11示例了一个第一节点中的结构框图,如附图11所示。附图11中,第一节点1100包括第一接收机1101和第一发射机1102。
第一接收机1101,在第一资源池中接收第一SCI,所述第一SCI被用于调度第一物理层信道;在所述第一物理层信道中接收第二SCI;接收第一参考信号;
第一发射机1102,在第一条件集合被满足时发送所述第一位置信息;
实施例11中,所述第一物理层信道和所述第一参考信号二者中仅所述第一物理层信道在所述第一资源池中,所述第一资源池被配置给副链路通信;所述第一参考信号被用于定位;所述第一SCI和所述第二SCI二者中至少之一被用于确定所述第一参考信号;所述第二SCI包括第一层2身份中的至少部分比特;所述第一层2身份被用于确定是否生成第一位置信息;所述第一位置信息的测量基于所述第一参考信号;所述第一条件集合包括所述第一层2身份与所述第一节点的一个目的地层2身份相同。
作为一个实施例,所述第二SCI包括第一层2身份中的至少部分比特,所述第一层2身份与所述第一节点的一个层2身份相同。
作为一个实施例,包括:
所述第一接收机1101,接收第一消息;
其中,所述第一消息被用于配置第二资源池,所述第一参考信号在所述第二资源池中,所述第二资源池包括至少一个在频域上不属于所述第一资源池的资源块。
作为一个实施例,所述第一SCI和所述第二SCI二者中的至少所述第一SCI的SCI格式是被传统UE识别的SCI格式;所述传统UE不识别所述第一参考信号。
作为一个实施例,所述第一资源池被关联到第一参数组,所述第二资源池被关联到第二参数组;所述第一参数组和所述第二参数组中至少所述第二参数组被用于确定所述第一参考信号。
作为一个实施例,所述第一资源池和所述第二资源池不同,所述第二资源池被关联到所述第一资源池,所述第二资源池被用于定位参考信号的传输。
作为一个实施例,所述第一参数组和所述第二参数组中均包括能够被用于确定所述第一参考信号所占用的时域资源或频域资源的参数。
作为一个实施例,所述第一位置信息包括第一时间参数组,所述第一时间参数组被用于确定第一 时间资源,所述第一位置信息的所述测量在所述第一时间资源中被执行。
作为一个实施例,所述第一位置信息的测量基于所述第一参考信号,第一时间参数组与所述第一参考信号有关,所述第一时间参数组被用于确定第二时间资源,所述第一位置信息的所述测量基于在所述第二时间资源中的所述第一参考信号。
作为一个实施例,所述第一层2身份被用于确定是否生成所述第一位置信息的意思包括:所述第一层2身份与所述第二SCI有关,所述第一节点生成所述第一位置信息;所述第一层2身份与所述第二SCI无关,所述第一节点不生成所述第一位置信息。
作为一个实施例,所述第一层2身份被用于确定是否生成所述第一位置信息的意思包括:所述第一层2身份中的部分比特被所述第二SCI中的给定信息指示,所述第一节点生成所述第一位置信息;所述第一层2身份中的部分比特不被所述第二SCI中的给定信息指示,所述第一节点不生成所述第一位置信息。
作为一个实施例,所述第一接收机1101包括实施例4中的天线452、接收器454、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前4者。
作为一个实施例,所述第一发射机1102包括实施例4中的天线452、发射器454、多天线发射处理器457、发射处理器468、控制器/处理器459中的至少前4者。
实施例12
实施例12示例了一个第二节点中的结构框图,如附图12所示。附图12中,第二节点1200包括第二发射机1201和第二接收机1202。
第二发射机1201,在第一资源池中发送第一SCI,所述第一SCI被用于调度第一物理层信道;在所述第一物理层信道中发送第二SCI;发送第一参考信号;
第二接收机1202,在第一条件集合被满足时接收所述第一位置信息;
实施例12中,所述第一物理层信道和所述第一参考信号二者中仅所述第一物理层信道在所述第一资源池中,所述第一资源池被配置给副链路通信;所述第一参考信号被用于定位;所述第一SCI和所述第二SCI二者中至少之一被用于确定所述第一参考信号;所述第二SCI包括第一层2身份中的至少部分比特;所述第一层2身份被用于确定是否生成第一位置信息;所述第一位置信息的测量基于所述第一参考信号;所述第一条件集合包括所述第一层2身份与第一节点的一个目的地层2身份相同;所述第一节点发送所述第一位置信息。
作为一个实施例,所述第二SCI包括第一层2身份中的至少部分比特,所述第一层2身份与第一节点的一个层2身份相同,所述第一SCI的接收者包括所述第一节点。
作为一个实施例,包括:
所述第二发射机1201,发送第一消息;
其中,所述第一消息被用于配置第二资源池,所述第一参考信号在所述第二资源池中,所述第二资源池包括至少一个在频域上不属于所述第一资源池的资源块。
作为一个实施例,所述第一SCI和所述第二SCI二者中的至少所述第一SCI的SCI格式是被传统UE识别的SCI格式;所述传统UE不识别所述第一参考信号。
作为一个实施例,所述第一资源池被关联到第一参数组,所述第二资源池被关联到第二参数组;所述第一参数组和所述第二参数组中至少所述第二参数组被用于确定所述第一参考信号。
作为一个实施例,所述第一资源池和所述第二资源池不同,所述第二资源池被关联到所述第一资源池,所述第二资源池被用于定位参考信号的传输。
作为一个实施例,所述第一参数组和所述第二参数组中均包括能够被用于确定所述第一参考信号所占用的时域资源或频域资源的参数。
作为一个实施例,所述第一位置信息包括第一时间参数组,所述第一时间参数组被用于确定第一时间资源,所述第一位置信息的所述测量在所述第一时间资源中被执行。
作为一个实施例,所述第一位置信息的测量基于所述第一参考信号,第一时间参数组与所述第一参考信号有关,所述第一时间参数组被用于确定第二时间资源,所述第一位置信息的所述测量基于在 所述第二时间资源中的所述第一参考信号。
作为一个实施例,所述第一层2身份被用于确定是否生成所述第一位置信息的意思包括:所述第一层2身份与所述第二SCI有关,所述第一节点生成所述第一位置信息;所述第一层2身份与所述第二SCI无关,所述第一节点不生成所述第一位置信息。
作为一个实施例,所述第一层2身份被用于确定是否生成所述第一位置信息的意思包括:所述第一层2身份中的部分比特被所述第二SCI中的给定信息指示,所述第一节点生成所述第一位置信息;所述第一层2身份中的部分比特不被所述第二SCI中的给定信息指示,所述第一节点不生成所述第一位置信息。
作为一个实施例,所述第二发射机1201包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器414、控制器/处理器475中的至少前4者。
作为一个实施例,所述第二接收机1202包括实施例4中的天线420、接收器418、多天线接收处理器472、接收处理器470、控制器/处理器475中的至少前4者。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,交通工具,车辆,RSU,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点包括但不限于宏蜂窝基站,微蜂窝基站,小蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站,RSU,无人机,测试设备、例如模拟基站部分功能的收发装置或信令测试仪,等无线通信设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (10)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一接收机,在第一资源池中接收第一SCI,所述第一SCI被用于调度第一物理层信道;在所述第一物理层信道中接收第二SCI;接收第一参考信号;
    其中,所述第一物理层信道和所述第一参考信号二者中仅所述第一物理层信道在所述第一资源池中,所述第一资源池被配置给副链路通信;所述第一参考信号被用于定位;所述第一SCI和所述第二SCI二者中至少之一被用于确定所述第一参考信号。
  2. 根据权利要求1所述的第一节点,其特征在于,包括:
    所述第一接收机,接收第一消息;
    其中,所述第一消息被用于配置第二资源池,所述第一参考信号在所述第二资源池中,所述第二资源池包括至少一个在频域上不属于所述第一资源池的资源块。
  3. 根据权利要求1或2所述的第一节点,其特征在于,所述第一SCI和所述第二SCI二者中的至少所述第一SCI的SCI格式是被传统UE识别的SCI格式;所述传统UE不识别所述第一参考信号。
  4. 根据权利要求2或3所述的第一节点,其特征在于,所述第一资源池被关联到第一参数组,所述第二资源池被关联到第二参数组;所述第一参数组和所述第二参数组中至少所述第二参数组被用于确定所述第一参考信号。
  5. 根据权利要求2至4中任一权利要求所述的第一节点,其特征在于,所述第一资源池和所述第二资源池不同,所述第二资源池被关联到所述第一资源池,所述第二资源池被用于定位参考信号的传输。
  6. 根据权利要求4或5所述的第一节点,其特征在于,所述第一参数组和所述第二参数组中均包括能够被用于确定所述第一参考信号所占用的时域资源或频域资源的参数。
  7. 根据权利要求1至6中任一权利要求所述的第一节点,其特征在于,包括:
    第一发射机,在第一条件集合被满足时发送第一位置信息;
    其中,所述第二SCI包括第一层2身份中的至少部分比特;所述第一层2身份被用于确定是否生成所述第一位置信息;所述第一位置信息的测量基于所述第一参考信号;所述第一条件集合包括所述第一层2身份与所述第一节点的一个目的地层2身份相同。
  8. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二发射机,在第一资源池中发送第一SCI,所述第一SCI被用于调度第一物理层信道;在所述第一物理层信道中发送第二SCI;发送第一参考信号;
    其中,所述第一物理层信道和所述第一参考信号二者中仅所述第一物理层信道在所述第一资源池中,所述第一资源池被配置给副链路通信;所述第一参考信号被用于定位;所述第一SCI和所述第二SCI二者中至少之一被用于确定所述第一参考信号。
  9. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    在第一资源池中接收第一SCI,所述第一SCI被用于调度第一物理层信道;
    在所述第一物理层信道中接收第二SCI;
    接收第一参考信号;
    其中,所述第一物理层信道和所述第一参考信号二者中仅所述第一物理层信道在所述第一资源池中,所述第一资源池被配置给副链路通信;所述第一参考信号被用于定位;所述第一SCI和所述第二SCI二者中至少之一被用于确定所述第一参考信号。
  10. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    在第一资源池中发送第一SCI,所述第一SCI被用于调度第一物理层信道;
    在所述第一物理层信道中发送第二SCI;
    发送第一参考信号;
    其中,所述第一物理层信道和所述第一参考信号二者中仅所述第一物理层信道在所述第一资源池中,所述第一资源池被配置给副链路通信;所述第一参考信号被用于定位;所述第一SCI和所述第二SCI二者中至少之一被用于确定所述第一参考信号。
PCT/CN2023/095492 2022-05-26 2023-05-22 一种被用于定位的方法和装置 WO2023226926A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210584437.9A CN117202354A (zh) 2022-05-26 2022-05-26 一种被用于定位的方法和装置
CN202210584437.9 2022-05-26

Publications (1)

Publication Number Publication Date
WO2023226926A1 true WO2023226926A1 (zh) 2023-11-30

Family

ID=88918479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095492 WO2023226926A1 (zh) 2022-05-26 2023-05-22 一种被用于定位的方法和装置

Country Status (2)

Country Link
CN (1) CN117202354A (zh)
WO (1) WO2023226926A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112994858A (zh) * 2019-12-17 2021-06-18 大唐移动通信设备有限公司 一种直通链路定位参考信号的发送、接收方法及终端
CN113055136A (zh) * 2019-12-26 2021-06-29 大唐移动通信设备有限公司 一种定位参考信号的传输资源的配置、接收方法及终端
US20210297206A1 (en) * 2020-03-19 2021-09-23 Qualcomm Incorporated Determination of positioning reference signal resources in out-of-coverage sidelink-assisted cooperative positioning
CN115699662A (zh) * 2020-05-29 2023-02-03 联想(新加坡)私人有限公司 请求侧行链路定位参考信号资源

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112994858A (zh) * 2019-12-17 2021-06-18 大唐移动通信设备有限公司 一种直通链路定位参考信号的发送、接收方法及终端
CN113055136A (zh) * 2019-12-26 2021-06-29 大唐移动通信设备有限公司 一种定位参考信号的传输资源的配置、接收方法及终端
US20210297206A1 (en) * 2020-03-19 2021-09-23 Qualcomm Incorporated Determination of positioning reference signal resources in out-of-coverage sidelink-assisted cooperative positioning
CN115699662A (zh) * 2020-05-29 2023-02-03 联想(新加坡)私人有限公司 请求侧行链路定位参考信号资源

Also Published As

Publication number Publication date
CN117202354A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
WO2020034848A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20220368479A1 (en) Method and device in nodes used for wireless communication
WO2020001228A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20230413294A1 (en) Method and device in nodes used for wireless communication
US20230300936A1 (en) Method and device for wireless communication
WO2020038208A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2022184080A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2018040815A1 (zh) 一种支持广播信号的无线通信系统中的方法和装置
WO2021031901A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023226926A1 (zh) 一种被用于定位的方法和装置
WO2023221902A1 (zh) 一种用于定位的方法和装置
WO2024046154A1 (zh) 一种用于无线通信的方法和装置
WO2023216896A1 (zh) 用于定位的方法和装置
WO2024051623A1 (zh) 一种用于无线通信的方法和装置
CN115396822B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024037414A1 (zh) 一种被用于定位的方法和装置
CN115580381B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023221903A1 (zh) 用于定位的方法和装置
WO2024061249A1 (zh) 一种被用于定位的方法和装置
WO2021027538A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024046249A1 (zh) 一种被用于定位的方法和装置
WO2024027612A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024120139A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024078432A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23810997

Country of ref document: EP

Kind code of ref document: A1