WO2024078432A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2024078432A1
WO2024078432A1 PCT/CN2023/123480 CN2023123480W WO2024078432A1 WO 2024078432 A1 WO2024078432 A1 WO 2024078432A1 CN 2023123480 W CN2023123480 W CN 2023123480W WO 2024078432 A1 WO2024078432 A1 WO 2024078432A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
resource
signal resource
resources
occupied
Prior art date
Application number
PCT/CN2023/123480
Other languages
English (en)
French (fr)
Inventor
蒋琦
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024078432A1 publication Critical patent/WO2024078432A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, and in particular to a positioning-related scheme and device in wireless communication.
  • Positioning is an important application in the field of wireless communications. With the emergence of new applications such as V2X (Vehicle to everything) or industrial Internet of Things, the system has put forward higher requirements for the accuracy or timeliness of positioning. In the 3GPP (3rd Generation Partner Project) RAN (Radio Access Network) #94e meeting, a research project on positioning enhancement was established.
  • 3GPP 3rd Generation Partner Project
  • RAN Radio Access Network
  • NR Rel-18 needs to support enhanced positioning technology for sidelink positioning (SL Positioning), among which the mainstream sidelink positioning technologies include SL (Sidelink) RTT (Round Trip Time), SL AOA (Angle-of-Arrival), SL TDOA (Time Difference Of Arrival) and SL AOD (Angle-of-Departure), etc., and the execution of these technologies depends on the measurement of SL PRS (Positioning Reference Signal). Since UE (User Equipment) autonomously selects resources for sending SL PRS, the traditional positioning process or location information feedback scheme needs to be further enhanced, especially how to avoid interference and collision caused by different terminals when autonomously selecting SL PRS, which needs to be redesigned and enhanced.
  • SL Positioning Sidelink positioning
  • the mainstream sidelink positioning technologies include SL (Sidelink) RTT (Round Trip Time), SL AOA (Angle-of-Arrival), SL TDOA (Time Difference Of Arrival) and SL AOD (Angle-of-Departure
  • the present application discloses a positioning solution.
  • V2X Vehicle Safety
  • the present application is also applicable to scenarios other than V2X facing similar problems, such as public safety (Public Safety), industrial Internet of Things, cellular networks, etc., and achieves technical effects similar to those in the NR V2X scenario.
  • Public Safety public safety
  • the present application is still applicable to the scenario in which the positioning reference signal is uniformly configured by the control node, such as the unified configuration of LMF (Location Management Function).
  • the present application discloses a method in a first node for wireless communication, comprising:
  • the first reference signal resource set includes K1 reference signal resources, where K1 is a positive integer greater than 1; the target reference signal occupies one reference signal resource among the K1 reference signal resources; the K1 reference signal resources include at least a first reference signal resource and a second reference signal resource; in a given resource unit, the first reference signal resource occupies more resource particles than the second reference signal resource; the first reference signal resource set is used for secondary link positioning; any resource particle occupied by the second reference signal resource is occupied by the first reference signal resource, and at least one resource particle among the resource particles occupied by the first reference signal resource is not occupied by the second reference signal resource; the definition of the given resource unit includes at least one of the following:
  • the above method is characterized in that: the multiple reference signal resources used for SL positioning are occupied by There is a correlation in the aspect of REs (Resource Elements).
  • Reference signal resources with different time-frequency densities try to occupy the same REs to ensure that there is no collision with reference signal resources in other reference signal resource sets.
  • the first reference signal resource and the second reference signal resource adopt a nested structure similar to PDCCH (Physical Downlink Control Channel) Candidates, that is, the REs occupied by the second reference signal resource are a subset of the REs occupied by the first reference signal resource, thereby ensuring that reference signal resources with different time-frequency densities are nested to avoid collisions and conflicts.
  • PDCCH Physical Downlink Control Channel
  • another feature of the above method is that: multiple reference signal resources in a reference signal resource set configured for one terminal or multiple terminals conform to a nested structure, that is, while corresponding to different time-frequency densities, the occupied REs are also nested; and thus, occupying one or more reference signal resources in this reference signal resource set to send a positioning reference signal will not cause interference and impact on other resources, thereby improving spectrum efficiency.
  • the M1 candidate reference signal resources occupy the same number of resource particles in the given resource unit, and the time domain resources occupied by the target reference signal are used to determine the first time window;
  • the channel measurement for the M1 candidate reference signal resources is used to determine M1 RSSIs (Received Signal Strength Indicators);
  • M1 RSSIs Receiveived Signal Strength Indicators);
  • a first channel busy ratio is the proportion of the M1 RSSIs measured within the first time window that exceeds a target threshold; the first channel busy ratio is used to determine sending the target reference signal; there is at least one reference signal resource among the K1 reference signal resources that has the same identity as one of the M1 candidate reference signal resources; and M1 is a positive integer greater than 1.
  • a feature of the above method is that the sending of the target reference signal is based on channel sensing (Channel Sensing).
  • a feature of the above method is that the sending of the target reference signal is based on CBR (Channel Busy Ratio) measurement.
  • CBR Channel Busy Ratio
  • a feature of the above method is that the sending of the target reference signal is based on CR (Channel Occupancy Ratio) evaluation.
  • the M1 candidate reference signal resources correspond to the same configuration information
  • the configuration information includes at least one of a comb size, a number of occupied symbols, a number of occupied subcarriers, a repetition factor, a period, or a transmit power value.
  • a feature of the above method is that the M1 candidate reference signal resources correspond to M1 reference signals for positioning with the same time-frequency density.
  • the first reference signal resource and the second reference signal resource correspond to different configuration information
  • the configuration information includes at least one of a comb size, a number of occupied symbols, a number of occupied subcarriers, a repetition factor, a period or a transmit power value.
  • a feature of the above method is that the first reference signal resource and the second reference signal resource respectively correspond to two reference signals for positioning with different time-frequency densities.
  • the first reference signal resource and the second reference signal resource correspond to a first threshold and a second threshold respectively, the first threshold and the second threshold are different, and the first threshold and the second threshold are both used for secondary link congestion control.
  • a feature of the above method is that reference signals for positioning with different time-frequency densities correspond to different threshold values for comparison with the measured RSSI values, so as to more accurately determine the sending of the positioning reference signal.
  • the K1 reference signal resources include the M1 candidate reference signal resources, and the K1 is a positive integer not less than the M1.
  • the present application discloses a method in a second node for wireless communication, comprising:
  • the first reference signal resource set includes K1 reference signal resources, where K1 is a positive integer greater than 1; the target reference signal occupies one reference signal resource among the K1 reference signal resources; the K1 reference signal resources include at least a first reference signal resource and a second reference signal resource; in a given resource unit, the first reference signal resource occupies more resource particles than the second reference signal resource; the first reference signal resource set is used for secondary link positioning; any resource particle occupied by the second reference signal resource is occupied by the first reference signal resource, and at least one resource particle among the resource particles occupied by the first reference signal resource is not occupied by the second reference signal resource; the definition of the given resource unit includes at least one of the following:
  • the first information block is used to determine the first reference signal resource set.
  • the first information block is used to determine the first reference signal resource set.
  • the sender of the target reference signal performs channel measurement on M1 candidate reference signal resources in a first time window; the M1 candidate reference signal resources occupy the same number of resource particles in the given resource unit, and the time domain resources occupied by the target reference signal are used to determine the first time window; the channel measurement of the M1 candidate reference signal resources is used to determine M1 RSSIs; the first channel busy ratio is the proportion of the M1 RSSIs measured in the first time window that exceeds the target threshold; the first channel busy ratio is used to determine the sending of the target reference signal; there is at least one reference signal resource among the K1 reference signal resources that corresponds to the same identity as one of the M1 candidate reference signal resources; and M1 is a positive integer greater than 1.
  • the M1 candidate reference signal resources correspond to the same configuration information
  • the configuration information includes at least one of a comb size, a number of occupied symbols, a number of occupied subcarriers, a repetition factor, a period, or a transmit power value.
  • the first reference signal resource and the second reference signal resource correspond to different configuration information
  • the configuration information includes at least one of a comb size, a number of occupied symbols, a number of occupied subcarriers, a repetition factor, a period or a transmit power value.
  • the first reference signal resource and the second reference signal resource correspond to a first threshold and a second threshold respectively, the first threshold and the second threshold are different, and the first threshold and the second threshold are both used for secondary link congestion control.
  • the K1 reference signal resources include the M1 candidate reference signal resources, and the K1 is a positive integer not less than the M1.
  • the measurement of the target reference signal is used to generate the position information.
  • the present application discloses a method in a third node for wireless communication, comprising:
  • the first reference signal resource set includes K1 reference signal resources, where K1 is a positive integer greater than 1; the target reference signal occupies one reference signal resource among the K1 reference signal resources; the K1 reference signal resources include at least a first reference signal resource and a second reference signal resource; in a given resource unit, the first reference signal resource occupies more resource particles than the second reference signal resource; the first reference signal resource set is used for secondary link positioning; any resource particle occupied by the second reference signal resource is occupied by the first reference signal resource, and at least one resource particle among the resource particles occupied by the first reference signal resource is not occupied by the second reference signal resource; the measurement of the target reference signal by the receiver is used to generate the location information, and the receiver of the target reference signal sends the location information; the definition of the given resource unit includes at least one of the following:
  • the present application discloses a first node for wireless communication, comprising:
  • a first receiver receives a first information block, where the first information block is used to determine a first reference signal resource set;
  • a first transmitter sends a target reference signal
  • the first reference signal resource set includes K1 reference signal resources, where K1 is a positive integer greater than 1; the target reference signal occupies one reference signal resource among the K1 reference signal resources; the K1 reference signal resources include at least a first reference signal resource and a second reference signal resource; in a given resource unit, the first reference signal resource occupies more resource particles than the second reference signal resource; the first reference signal resource set is used for secondary link positioning; any resource particle occupied by the second reference signal resource is occupied by the first reference signal resource, and at least one resource particle among the resource particles occupied by the first reference signal resource is not occupied by the second reference signal resource; the definition of the given resource unit includes at least one of the following:
  • the present application discloses a second node for wireless communication, comprising:
  • a second receiver receiving a target reference signal
  • the first reference signal resource set includes K1 reference signal resources, where K1 is a positive integer greater than 1; the target reference signal occupies one reference signal resource among the K1 reference signal resources; the K1 reference signal resources include at least a first reference signal resource and a second reference signal resource; in a given resource unit, the first reference signal resource occupies more resource particles than the second reference signal resource; the first reference signal resource set is used for secondary link positioning; any resource particle occupied by the second reference signal resource is occupied by the first reference signal resource, and at least one resource particle among the resource particles occupied by the first reference signal resource is not occupied by the second reference signal resource; the definition of the given resource unit includes at least one of the following:
  • the present application discloses a third node for wireless communication, comprising:
  • a third transmitter sends a first information block, where the first information block is used to determine a first reference signal resource set;
  • a third receiver receiving the location information
  • the first reference signal resource set includes K1 reference signal resources, where K1 is a positive integer greater than 1; the target reference signal occupies one reference signal resource among the K1 reference signal resources; the K1 reference signal resources include at least a first reference signal resource and a second reference signal resource; in a given resource unit, the first reference signal resource occupies more resource particles than the second reference signal resource; the first reference signal resource set is used for secondary link positioning; any resource particle occupied by the second reference signal resource is occupied by the first reference signal resource, and at least one resource particle among the resource particles occupied by the first reference signal resource is not occupied by the second reference signal resource; the measurement of the target reference signal by the receiver is used to generate the location information, and the receiver of the target reference signal sends the location information; the definition of the given resource unit includes at least one of the following:
  • the benefit of the solution in the present application is to optimize the sending of the positioning reference signal of the SL to improve performance.
  • FIG1 shows a processing flow chart of a first node according to an embodiment of the present application
  • FIG2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG3 is a schematic diagram showing an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • FIG4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG5 shows a structural diagram of UE positioning according to an embodiment of the present invention
  • FIG6 shows a flow chart of a target reference signal according to an embodiment of the present application
  • FIG7 shows a flow chart of a target reference signal according to another embodiment of the present application.
  • FIG8 shows a flowchart of determining whether to send a target reference signal according to an embodiment of the present application
  • FIG9 shows a schematic diagram of a first node, a second node and a third node according to the present application.
  • FIG10 shows a schematic diagram of a first reference signal resource and a second reference signal resource according to an embodiment of the present application
  • FIG11 is a schematic diagram showing M1 candidate reference signal resources according to an embodiment of the present application.
  • FIG12 shows a structural block diagram of a processing device used in a first node according to an embodiment of the present invention
  • FIG13 shows a structural block diagram of a processing device used in a second node according to an embodiment of the present invention
  • FIG. 14 shows a structural block diagram of a processing device used in a third node according to an embodiment of the present invention.
  • Embodiment 1 illustrates a processing flow chart of a first node, as shown in FIG1.
  • each box represents a step.
  • the first node in the present application receives a first information block in step 101, and the first information block is used to determine a first reference signal resource set; and sends a target reference signal in step 102.
  • the first reference signal resource set includes K1 reference signal resources, where K1 is a positive integer greater than 1; the target reference signal occupies one reference signal resource among the K1 reference signal resources; and the K1 reference signal resources include at least The first reference signal resource and the second reference signal resource are included; in a given resource unit, the first reference signal resource occupies more resource elements than the second reference signal resource; the first reference signal resource set is used for secondary link positioning; any resource element occupied by the second reference signal resource is occupied by the first reference signal resource, and at least one resource element among the resource elements occupied by the first reference signal resource is not occupied by the second reference signal resource; the definition of the given resource unit includes at least one of the following:
  • the first information block includes all or part of an RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the first information block includes an RRC IE (Radio Resource Control Information Element).
  • RRC IE Radio Resource Control Information Element
  • the first information block includes all or part of a MAC (Multimedia Access Control) signaling.
  • MAC Multimedia Access Control
  • the first information block includes a MAC CE (Control Element).
  • the first information block includes multiple RRC signalings.
  • the first information block includes multiple RRC IEs.
  • the first information block includes multiple MAC signaling.
  • the first information block includes multiple MAC CEs.
  • the first information block is transmitted via RRC signaling.
  • the first information block is transmitted via MAC signaling.
  • the first information block is transmitted via higher layer signaling (Higher Layer Signaling).
  • higher layer signaling Higher Layer Signaling
  • the first information block is used to indicate the time domain resources occupied by any reference signal resource in the first reference signal resource set.
  • the first information block is used to indicate the frequency domain resources occupied by any reference signal resource in the first reference signal resource set.
  • the first information block is used to indicate REs (Resource Elements) occupied by any reference signal resource in the first reference signal resource set.
  • K1 is equal to 1.
  • the first information block is used to indicate the time domain resources occupied by any reference signal resource among the K1 reference signal resources.
  • the first information block is used to indicate the frequency domain resources occupied by any reference signal resource among the K1 reference signal resources.
  • the first information block is used to indicate the REs occupied by any reference signal resource among the K1 reference signal resources.
  • the first information block is used to determine the comb size (Comb Size) adopted by any reference signal resource among the K1 reference signal resources.
  • the first information block is used to determine a pattern adopted by any reference signal resource among the K1 reference signal resources.
  • the first information block is used to determine the ID corresponding to the first reference signal resource set.
  • the first information block is used to determine a period (Periodicity) adopted by the first reference signal resource set.
  • the first information block is used to determine a time slot offset (Slot offset) adopted by the first reference signal resource set.
  • Slot offset a time slot offset adopted by the first reference signal resource set.
  • the first information block is used to determine the repetition factor (Repetition Factor) adopted by the first reference signal resource set.
  • the first information block is used to determine the time interval (Time Gap) adopted by the first reference signal resource set.
  • the first information block is used to determine the number of symbols occupied by the first reference signal resource set.
  • the first information block is used to determine the muting configuration adopted by the first reference signal resource set.
  • the first information block is used to determine a muting pattern adopted by the first reference signal resource set.
  • the first information block is used to determine a resource ID (Resource ID) corresponding to any reference signal resource among the K1 reference signal resources.
  • the first information block is used to determine a sequence ID (Sequence ID) corresponding to any reference signal resource among the K1 reference signal resources.
  • the first information block is used to determine the CombSize (comb size) adopted by any reference signal resource among the K1 reference signal resources.
  • the first information block is used to determine the ReOffset (RE offset) adopted by any reference signal resource among the K1 reference signal resources.
  • the first information block is used to determine a SlotOffset (time slot offset) adopted by any reference signal resource among the K1 reference signal resources.
  • the first information block is used to determine the SymbolOffset (symbol offset) adopted by any reference signal resource among the K1 reference signal resources.
  • the first information block is used to determine the QCL-Info corresponding to any reference signal resource among the K1 reference signal resources.
  • the first reference signal resource set corresponds to a PRS Resource Set.
  • the first reference signal resource set belongs to a sidelink resource pool (Sidelink Resource Pool).
  • the first reference signal resource set is used for secondary link transmission.
  • the first reference signal resource set is used for secondary link communication.
  • the first reference signal resource set is used for secondary link positioning.
  • the first reference signal resource set is used for SL PRS transmission.
  • the first reference signal resource set is dedicated for SL PRS transmission.
  • the first reference signal resource set is configured by LMF (Location Management Function).
  • the first reference signal resource set is configured by gNB (g-Node-B).
  • the name of the first information block includes SL.
  • the name of the first information block includes PRS.
  • the name of the first information block includes Info.
  • the name of the first information block includes Positioning.
  • the target reference signal includes a PRS.
  • the target reference signal includes SL PRS.
  • the target reference signal includes CSI-RS (Channel State Information Reference Signal).
  • CSI-RS Channel State Information Reference Signal
  • the target reference signal includes SL CSI-RS.
  • the target reference signal includes SRS (Sounding Reference Signal).
  • the target reference signal includes SL SRS.
  • the target reference signal is used to generate position information.
  • the target reference signal is used for positioning.
  • the target reference signal is used for sidelink positioning.
  • the target reference signal is used to obtain the Rx-Tx Time Difference.
  • the target reference signal is used to obtain the sidelink Rx-Tx Time Difference.
  • the target reference signal is used to obtain the UE Rx-Tx Time Difference.
  • the target reference signal is used to obtain the reception timing of the target reference signal.
  • the target reference signal is used by a receiver of the target reference signal to determine a reception timing of a subframe.
  • the target reference signal is used by a receiver of the target reference signal to determine a reception timing of a time slot.
  • the target reference signal is used for positioning measurement.
  • the target reference signal is used for sidelink positioning measurement.
  • the target reference signal is used to obtain AoA (Angle-of-Arrival).
  • the target reference signal is used to obtain RSRP (Reference Signal Received Power).
  • RSRP Reference Signal Received Power
  • the target reference signal is used to obtain RSRPP (Reference Signal Received Path Power).
  • RSRPP Reference Signal Received Path Power
  • the target reference signal is used to obtain RSTD (Reference Signal Time Difference).
  • RSTD Reference Signal Time Difference
  • the target reference signal is used to obtain RTOA (Relative Time of Arrival).
  • the target reference signal is used to obtain SL-RTOA.
  • the target reference signal is used for RTT positioning.
  • the target reference signal is used for Single-sided RTT positioning.
  • the target reference signal is used for Double-sided RTT positioning.
  • the target reference signal is used to obtain location information (Location Information).
  • the target reference signal is a LMF configuration.
  • the first reference signal resource and the second reference signal resource correspond to two ResourceIDs respectively.
  • the two ResourceIDs are different.
  • the two ResourceIDs are associated.
  • the two ResourceIDs are the same.
  • the first reference signal resource and the second reference signal resource correspond to two different CombSizes respectively.
  • the first reference signal resource and the second reference signal resource correspond to two different ReOffsets respectively.
  • the first reference signal resource and the second reference signal resource correspond to two different frequency domain densities respectively.
  • the first reference signal resource and the second reference signal resource correspond to two different time domain densities respectively.
  • the frequency domain corresponding to the given resource unit refers to the same subchannel.
  • the frequency domain corresponding to the given resource unit refers to the bandwidth corresponding to the same PRB.
  • the frequency domain corresponding to the given resource unit refers to the same BWP.
  • the time domain corresponding to the given resource unit refers to the same number of consecutive OFDM symbols.
  • the time domain corresponding to the given resource unit refers to the same time slot.
  • the given resource unit is the same subchannel and the same number of consecutive OFDM symbols.
  • the given resource unit is the same sub-channel and the same time slot.
  • the given resource unit is the bandwidth corresponding to the same PRB and the same number of consecutive OFDM symbols.
  • the given resource unit is the bandwidth corresponding to the same PRB and the same time slot.
  • the given resource unit is the same BWP and the same number of consecutive OFDM symbols.
  • the given resource unit is the same BWP and the same time slot.
  • the sub-signal occupies a frequency bandwidth corresponding to a positive integer number of PRBs in the frequency domain.
  • the positive integer number of PRBs is continuous in the frequency domain.
  • the sub-signal occupies a number of sub-carriers corresponding to a positive integer number of PRBs in the frequency domain.
  • the number of REs occupied by the first reference signal resource is The number L1 is L1 times the number of REs occupied by the signal resource, where L1 is a positive integer greater than 1.
  • L1 is equal to 2.
  • L1 is equal to 4.
  • L1 is equal to 8.
  • L1 is equal to 16.
  • L1 is one of 2, 4, 8 or 16.
  • the target reference signal is measured to obtain the position information.
  • the target reference signal is used to generate position information.
  • the location information is reported to a LMF.
  • the location information is transmitted to the first node.
  • the location information is reported to a LMF via the first node.
  • the location information is transmitted to the second node in the present application.
  • the location information is reported to a LMF via the second node in the present application.
  • the location information is used to determine the RTT.
  • the location information is used by a LMF to determine the RTT.
  • the position information is used for positioning.
  • the location information is used for location related measurement.
  • the location information is used for sidelink positioning.
  • the location information is used to determine the propagation delay (Propagation Delay).
  • the position information is used by the LMF to determine propagation delay.
  • the location information is used for RTT positioning.
  • the location information is used for Single-sided RTT positioning.
  • the location information is used for Double-sided RTT positioning.
  • the location information is used for Multi-RTT (Multiple-Round Trip Time) positioning.
  • Multi-RTT Multiple-Round Trip Time
  • the location information includes a first sending and receiving time difference.
  • the location information includes location related measurements.
  • the location information includes a location estimate (Location estimate).
  • the location information includes positioning assistance data (Assistance Data).
  • the location information includes timing quality (TimingQuality).
  • the location information includes a receive beam index (RxBeamIndex).
  • RxBeamIndex receive beam index
  • the location information includes receiving power information.
  • the location information is used to transfer NAS (Non-Access-Stratum) specific information.
  • NAS Non-Access-Stratum
  • the location information is used to transfer timing information of a clock.
  • the received power information includes RSRP (Reference Signal Received Power) of the target reference signal.
  • RSRP Reference Signal Received Power
  • the received power information includes RSRPP (Reference Signal Received Path Power) of the target reference signal.
  • RSRPP Reference Signal Received Path Power
  • the received power information includes RSRP result difference (RSRP-ResultDiff).
  • the unit of the received power information is dBm (decibel milli).
  • the unit of the received power information is dB (decibel).
  • the location information includes RSTD (Reference Signal Time Difference).
  • the location information includes the time difference between sending and receiving the secondary link.
  • the location information includes the time difference between UE sending and receiving.
  • the location information includes RxTxTimeDiff (receive and transmit time difference).
  • the location information includes SL-RxTxTimeDiff (secondary link receive and transmit time difference).
  • the location information includes RTOA (Relative Time of Arrival).
  • the location information includes SL-RTOA.
  • the multi-carrier symbol in the present application is an OFDM (Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol in the present application is a SC-FDMA (Single-Carrier Frequency Division Multiple Access) symbol.
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • the multi-carrier symbol in the present application is a DFT-S-OFDM (Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing
  • the multi-carrier symbol in the present application is an IFDMA (Interleaved Frequency Division Multiple Access) symbol.
  • IFDMA Interleaved Frequency Division Multiple Access
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG2.
  • FIG2 illustrates the V2X communication architecture under the 5G NR (New Radio), LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) system architecture.
  • the 5G NR or LTE network architecture may be referred to as 5GS (5G System)/EPS (Evolved Packet System) or some other appropriate terminology.
  • the V2X communication architecture of Example 2 includes UE (User Equipment) 201, UE 241, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network)/EPC (Evolved Packet Core) 210, HSS (Home Subscriber Server)/UDM (Unified Data Management) 220, ProSe function 250 and ProSe application server 230.
  • the V2X communication architecture can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity.
  • the V2X communication architecture provides packet switching services, but it will be readily understood by those skilled in the art that the various concepts presented throughout this application can be extended to networks that provide circuit switching services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol terminations toward UE 201.
  • gNB203 may be connected to other gNB204 via an Xn interface (e.g., backhaul).
  • gNB203 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), a TRP (transmit receive node), or some other suitable term.
  • gNB203 provides an access point to 5GC/EPC210 for UE201.
  • Examples of UE201 include cellular phones, smart phones, session initiation protocol (SIP) phones, laptops, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices, video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband Internet of Things devices, machine type communication devices, land vehicles, cars, wearable devices, or any other similar functional devices.
  • SIP session initiation protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, narrowband Internet of Things devices, machine type communication devices, land vehicles, cars, wearable devices, or any other similar functional devices.
  • UE 201 may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable term.
  • gNB 203 is connected to 5GC/EPC 210 via an S1/NG interface.
  • 5GC/EPC 210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/SMF (Session Management Function) 211, other MME/AMF/SMF 214, S-GW (Service Gateway)/UPF (User Plane Function) 212, and P-GW (Packet Date Network Gateway)/UPF 213.
  • MME/AMF/SMF211 is the control node that handles the signaling between UE201 and 5GC/EPC210.
  • MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, which itself is connected to P-GW/UPF213.
  • P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF213 is connected to Internet service 230.
  • Internet service 230 includes operator-corresponding Internet protocol services, which may specifically include Internet, intranet, IMS (IP Multimedia Subsystem) and packet switching streaming services.
  • the ProSe function 250 is a logical function for network-related behaviors required for Proximity-based Service (ProSe), including DPF (Direct Provisioning Function), Direct Discovery Name Management Function, EPC-level Discovery ProSe Function, etc.
  • the ProSe application server 230 has functions such as storing EPC ProSe user identities, mapping between application layer user identities and EPC ProSe user identities, and allocating ProSe restricted code suffix pools.
  • the UE201 and the UE241 are connected via a PC5 reference point (Reference Point).
  • PC5 reference point Reference Point
  • the ProSe function 250 is connected to the UE 201 and the UE 241 via a PC3 reference point respectively.
  • the ProSe function 250 is connected to the ProSe application server 230 via a PC2 reference point.
  • the ProSe application server 230 is connected to the ProSe application of the UE 201 and the ProSe application of the UE 241 through a PC1 reference point respectively.
  • the first node in the present application is the UE201
  • the second node in the present application is the UE241.
  • the first node in the present application is the UE241
  • the second node in the present application is the UE201.
  • the wireless link between the UE201 and the UE241 corresponds to the side link (Sidelink, SL) in this application.
  • the gNB203 corresponds to the third node in this application.
  • the ProSe function 250 corresponds to the third node in the present application.
  • the ProSe application server 230 corresponds to the third node in this application.
  • the third node includes a location service center.
  • the third node includes a base station.
  • the location service center is a NAS (Non-Access-Stratum) device.
  • the location service center includes LMF.
  • the wireless link from the UE201 to the NR Node B is an uplink.
  • the wireless link from the NR Node B to UE201 is a downlink.
  • the UE 201 supports V2X transmission.
  • the UE 241 supports V2X transmission.
  • the NR Node B 203 is a macrocellular base station.
  • the NR node B203 is a micro cell base station.
  • the NR Node B 203 is a picoCell base station.
  • the NR Node B 203 is a home base station (Femtocell).
  • the NR Node B 203 is a base station device that supports a large delay difference.
  • the NR node B203 is an RSU (Road Side Unit).
  • the NR Node B 203 includes a satellite device.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture for a user plane and a control plane according to the present application, as shown in FIG3.
  • FIG3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300, and FIG3 shows the radio protocol architecture of the control plane 300 between a first communication node device (UE, gNB, or RSU in V2X) and a second communication node device (gNB, UE, or RSU in V2X) using three layers: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first communication node device and the second communication node device through PHY301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol) sublayer 304, which terminate at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and the PDCP sublayer 304 also provides inter-zone mobility support for the first communication node device to the second communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in a cell between the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in Layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (i.e., radio bearers) and using RRC signaling between the second communication node device and the first communication node device to configure the lower layer.
  • the radio protocol architecture of the user plane 350 includes Layer 1 (L1 layer) and Layer 2 (L2 layer).
  • the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is substantially the same as the corresponding layers and sublayers in the control plane 300 for the physical layer 351, the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355, but the PDCP sublayer 354 also provides header compression for upper layer data packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes an SDAP (Service Data Adaptation Protocol) sublayer 356, which is responsible for Mapping between QoS flows and data radio bearers (DRBs) to support the diversity of services.
  • SDAP Service Data Adaptation Protocol
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (e.g., an IP layer) terminated at the P-GW on the network side and an application layer terminated at the other end of the connection (e.g., a remote UE, a server, etc.).
  • a network layer e.g., an IP layer
  • an application layer terminated at the other end of the connection (e.g., a remote UE, a server, etc.).
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in the present application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in the present application.
  • the PDCP 304 of the second communication node device is used to generate the scheduling of the first communication node device.
  • the PDCP 354 of the second communication node device is used to generate the schedule of the first communication node device.
  • the first information block is generated in the RRC306.
  • the first information block is generated on the RRC306.
  • the first information block is generated at the NAS layer.
  • the target reference signal is generated by the PHY301 or the PHY351.
  • the measurement performed on the M1 candidate reference signal resources in the present application includes layer 3 filtering performed in the RRC sublayer 306 .
  • the measurement performed on the M1 candidate reference signal resources in the present application is performed in the PHY301 or the PHY351.
  • the location information is generated in the RRC306.
  • the location information is generated at the NAS layer.
  • the first node is a terminal.
  • the first node is a relay.
  • the first node is a vehicle.
  • the second node is a terminal.
  • the second node is a relay.
  • the second node is a vehicle.
  • the third node is a gNB.
  • the third node is a TRP (Transmitter Receiver Point).
  • the third node is used to manage multiple TRPs.
  • the third node is a node for managing multiple cells.
  • the third node is a node for managing multiple service cells.
  • the third node is LMF.
  • the third node is a location service center.
  • the third node corresponds to the network device in this application.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in Figure 4.
  • Figure 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in an access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and an antenna 452.
  • the second communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • controller/processor 475 In transmission from the second communication device 410 to the first communication device 450, at the second communication device 410, upper layer data packets from the core network are provided to the controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 In transmission from the second communication device 410 to the first communication device 450, the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocation to the first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets and signaling to the first communication device 450.
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (i.e., the physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 410, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing on the coded and modulated symbols to generate one or more spatial streams.
  • the transmit processor 416 then maps each spatial stream to a subcarrier, multiplexes it with a reference signal (e.g., a pilot) in the time domain and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate a physical channel carrying a time-domain multi-carrier symbol stream.
  • the multi-antenna transmit processor 471 then performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to different antennas 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated onto the RF carrier and converts the RF stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receiving processor 458 performs a receiving analog precoding/beamforming operation on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a fast Fourier transform (FFT) to convert the baseband multi-carrier symbol stream after the receiving analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT fast Fourier transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458 to any spatial stream destined for the first communication device 450.
  • the symbols on each spatial stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the second communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides multiplexing between transport and logical channels, packet reassembly, decryption, header decompression, and control signal processing to recover the upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels based on radio resource allocation, and implements L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for the retransmission of lost packets and signaling to the second communication device 410.
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing. Then, the transmit processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is then provided to different antennas 452 via the transmitter 454 after analog precoding/beamforming operations in the multi-antenna transmit processor 457. Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the function at the second communication device 410 is similar to the reception function at the first communication device 450 described in the transmission from the second communication device 410 to the first communication device 450.
  • Each receiver 418 receives a radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the multi-antenna reception processor 472 and the reception processor 470.
  • the reception processor 470 and the multi-antenna reception processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements the L2 layer functions.
  • the controller/processor 475 can be associated with a memory 476 storing program codes and data.
  • the memory 476 can be referred to as a computer-readable medium.
  • the controller/processor 475 In the transmission from the first communication device 450 to the second communication device 410, the controller/processor 475 provides multiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover the upper layer data packets from the UE 450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 apparatus includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be used together with the at least one processor, and the first communication device 450 apparatus at least: first receives a first information block, the first information block is used to determine a first reference signal resource set; then sends a target reference signal; the first reference signal resource set includes K1 reference signal resources, K1 is a positive integer greater than 1; the target reference signal occupies one reference signal resource among the K1 reference signal resources; the K1 reference signal resources include at least a first reference signal resource and a second reference signal resource; in a given resource unit, the first The reference signal resource occupies more resource elements than the second reference signal resource; the first reference signal resource set is used for sub-link positioning; any resource element occupied by the second reference signal resource is occupied by the first reference signal resource, and at least one resource element among the resource elements occupied by the first reference signal resource is not occupied by the second reference signal resource;
  • the first communication device 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, the action including: first receiving a first information block, the first information block being used to determine a first reference signal resource set; then sending a target reference signal; the first reference signal resource set includes K1 reference signal resources, and K1 is a positive integer greater than 1; the target reference signal occupies one reference signal resource among the K1 reference signal resources; the K1 reference signal resources include at least a first reference signal resource and a second reference signal resource; in a given resource unit, the first reference signal resource occupies more resource particles than the second reference signal resource; the first reference signal resource set is used for secondary link positioning; any resource particle occupied by the second reference signal resource is occupied by the first reference signal resource, and there is at least one resource particle among the resource particles occupied by the first reference signal resource that is not occupied by the second reference signal resource; the definition of the given resource unit includes at least one of ⁇ the same subchannel, the
  • the second communication device 410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be used with the at least one processor.
  • the second communication device 410 device at least: receives a target reference signal; the first reference signal resource set includes K1 reference signal resources, and K1 is a positive integer greater than 1; the target reference signal occupies one reference signal resource among the K1 reference signal resources; the K1 reference signal resources include at least a first reference signal resource and a second reference signal resource; in a given resource unit, the first reference signal resource occupies more resource elements than the second reference signal resource; the first reference signal resource set is used for secondary link positioning; any resource element occupied by the second reference signal resource is occupied by the first reference signal resource, and at least one resource element among the resource elements occupied by the first reference signal resource is not occupied by the second reference signal resource; the definition of the given resource unit includes at least one of ⁇ the same subchannel, the bandwidth corresponding to the same PRB,
  • the second communication device 410 apparatus includes: a memory storing a computer-readable instruction program, wherein the computer-readable instruction program generates an action when executed by at least one processor, the action including: receiving a target reference signal; a first reference signal resource set including K1 reference signal resources, wherein K1 is a positive integer greater than 1; the target reference signal occupies one reference signal resource among the K1 reference signal resources; the K1 reference signal resources include at least a first reference signal resource and a second reference signal resource; in a given resource unit, the first reference signal resource occupies more resource particles than the second reference signal resource; the first reference signal resource set is used for secondary link positioning; any resource particle occupied by the second reference signal resource is occupied by the first reference signal resource, and there is at least one resource particle among the resource particles occupied by the first reference signal resource that is not occupied by the second reference signal resource; the definition of the given resource unit includes at least one of ⁇ the same subchannel, the bandwidth corresponding to the same PRB, the same BWP, the same number of consecutive
  • the second communication device 410 comprises: at least one processor and at least one memory, wherein the at least one memory comprises computer program code; the at least one memory and the computer program code are configured to be used together with the at least one processor.
  • the second communication device 410 device at least: first sends a first information block, the first information block is used to determine a first reference signal resource set; then receives position information; the first reference signal resource set includes K1 reference signal resources, and K1 is a positive integer greater than 1; the target reference signal occupies one reference signal resource among the K1 reference signal resources; the K1 reference signal resources include at least a first reference signal resource and a second reference signal resource; in a given resource unit, the first reference signal resource occupies more resource particles than the second reference signal resource; the first reference signal resource set is used for secondary link positioning; any resource particle occupied by the second reference signal resource is occupied by the first reference signal resource, and at least one resource particle among the resource particles occupied by the first reference signal resource is not occupied by the second reference signal resource; the measurement of the
  • the second communication device 410 device includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, the action including: first sending a first information block, the first information block is used to determine a first reference signal resource set; then receiving location information; the first reference signal resource set includes K1 reference signal resources, the K1 is a positive integer greater than 1; the target reference signal occupies one reference signal resource among the K1 reference signal resources; the K1 reference signal resources include at least a first reference signal resource and a second reference signal resource; in a given resource unit, the first reference signal resource is compared to the second The reference signal resource occupies more resource particles; the first reference signal resource set is used for sub-link positioning; any resource particle occupied by the second reference signal resource is occupied by the first reference signal resource, and at least one resource particle among the resource particles occupied by the first reference signal resource is not occupied by the second reference signal resource; the measurement of the target reference signal by the receiver of the target reference signal is used to generate the
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the second communication device 410 corresponds to the third node in this application.
  • the first communication device 450 is a UE.
  • the first communication device 450 is a terminal.
  • the first communication device 450 is a relay.
  • the first communication device 450 is a terminal with positioning capability.
  • the second communication device 410 is a UE.
  • the second communication device 410 is a terminal.
  • the second communication device 410 is a relay.
  • the second communication device 410 is a terminal with positioning capability.
  • the second communication device 410 is a base station.
  • the second communication device 410 is a relay.
  • the second communication device 410 is a network device.
  • the second communication device 410 is a serving cell.
  • the second communication device 410 is a TRP.
  • the second communication device 410 is a base station with positioning capability.
  • the second communication device 410 is a LMF.
  • the second communication device 410 is a location service center.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive the first information block; and at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmitting processor 471, the transmitting processor 416, and the controller/processor 475 are used to send the first information block.
  • At least the first four of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 are used to send a target reference signal; and at least the first four of the antenna 420, the receiver 418, the multi-antenna receive processor 472, the receive processor 470, and the controller/processor 475 are used to receive a target reference signal.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to perform channel measurement on M1 candidate reference signal resources in a first time window.
  • At least the first four of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 are used to send location information; and at least the first four of the antenna 420, the receiver 418, the multi-antenna receive processor 472, the receive processor 470, and the controller/processor 475 are used to receive location information.
  • Embodiment 5 illustrates a structural diagram of UE positioning according to an embodiment of the present application, as shown in FIG5 .
  • UE501 communicates with ng-eNB502 or gNB503 through LTE (Long Term Evolution)-Uu interface or NR (New Radio)-Uu new wireless interface; ng-eNB502 and gNB503 are sometimes called base stations, and ng-eNB502 and gNB503 are also called NG (Next Generation)-RAN (Radio Access Network). ng-eNB502 and gNB503 are connected to AMF (Authentication Management Field) 504 through NG (Next Generation)-C (Control plane) respectively; AMF504 is connected to LMF (Location Management Function) 505 through NL1 interface.
  • LTE Long Term Evolution
  • NR New Radio
  • ng-eNB502 and gNB503 are sometimes called base stations, and ng-eNB502 and gNB503 are also called NG (Next Generation)-RAN (Radio Access Network).
  • ng-eNB502 and gNB503 are connected to AMF (Authentication Management Field) 50
  • the AMF504 receives a location service request associated with a specific UE from another entity, such as a GMLC (Gateway Mobile Location Centre) or a UE, or the AMF504 decides to start the location service associated with the specific UE; then the AMF504 sends the location service request to an LMF, such as the LMF505; then the LMF processes the location service request, including sending auxiliary data to the specific UE to assist UE-based or UE-assisted positioning, and including receiving location information (Location information) reported from the UE; then the LMF returns the result of the location service to the AMF504; if the location service is requested by another entity, the AMF504 returns the result of the location service to that entity.
  • GMLC Global System for Mobile Location
  • LMF505 Location Management Function
  • the LMF505 processes the location service request, including sending auxiliary data to the specific UE to assist UE-based or UE-assisted positioning, and including receiving location information (Location
  • the network device of the present application includes LMF.
  • the network equipment of the present application includes NG-RAN and LMF.
  • the network equipment of the present application includes NG-RAN, AMF and LMF.
  • Embodiment 6 illustrates a flow chart of a target reference signal, as shown in FIG6.
  • the first node U1, the second node U2 and the third node N3 communicate with each other through a wireless link.
  • the order in this embodiment does not limit the signal transmission order and implementation order in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 6 can be applied to the embodiments, sub-embodiments and subsidiary embodiments in Embodiments 7 and 8 of this application; conversely, in the absence of conflict, the embodiments, sub-embodiments and subsidiary embodiments in Embodiments 7 and 8 of this application can be applied to Embodiment 6.
  • a first information block is received in step S10; a channel measurement is performed on M1 candidate reference signal resources in a first time window in step S11; and a target reference signal is sent in step S12.
  • the first information block is received in step S20; the target reference signal is received in step S21; and the location information is sent in step S22.
  • the first information block is sent in step S30, and the location information is received in step S31.
  • the first information block is used to determine a first reference signal resource set; the first reference signal resource set includes K1 reference signal resources, and K1 is a positive integer greater than 1; the target reference signal occupies one reference signal resource among the K1 reference signal resources; the K1 reference signal resources include at least a first reference signal resource and a second reference signal resource; in a given resource unit, the first reference signal resource occupies more resource particles than the second reference signal resource; the first reference signal resource set is used for secondary link positioning; any resource particle occupied by the second reference signal resource is occupied by the first reference signal resource, and there is at least one resource particle among the resource particles occupied by the first reference signal resource that is not occupied by the second reference signal resource; the definition of the given resource unit includes ⁇ band width corresponding to the same subchannel and the same PRB width, the same BWP, the same number of consecutive multi-carrier symbols, the same time slot ⁇ ; the measurement of the target reference signal by the second node is used to generate the location information; the M1 candidate reference signal resources occupy the same
  • the first time window includes multiple time domain resource blocks.
  • the first time window includes multiple time domain resource blocks of the first resource pool in the present application in the time domain.
  • any time domain resource block among the multiple time domain resource blocks included in the first time window is the first resource block.
  • the pool comprises one of the plurality of time domain resource blocks in the time domain.
  • the first time window includes multiple time slots.
  • the length of the first time window is configured by a higher layer signaling.
  • the length of the first time window is preconfigured.
  • the length of the first time window is related to the subcarrier spacing in the first resource pool in the present application.
  • the first time window is a CBR measurement window.
  • the first time window is a time window for CBR measurement.
  • the channel measurement includes CBR measurement.
  • the channel measurement includes measurement for determining SL CR (Sidelink Channel Occupancy Ratio).
  • the M1 candidate reference signal resources correspond to M1 ResourceIDs respectively.
  • the first reference signal resource set includes the M1 candidate reference signal resources.
  • the M1 candidate reference signal resources all use the same CombSize.
  • the M1 candidate reference signal resources all use the same ReOffset.
  • the M1 candidate reference signal resources all adopt the same frequency domain density.
  • the M1 candidate reference signal resources all adopt the same time domain density.
  • the M1 candidate reference signal resources belong to the same reference signal resource set.
  • the target reference signal is sent starting from subframe n, the first time window corresponds to subframe (n-a) to subframe (n-1), and a is a positive integer greater than 1.
  • the a is related to the subcarrier spacing adopted by the target reference signal.
  • a is equal to 100 or 100 ⁇ 2 ⁇
  • the subcarrier spacing used by the target reference signal is used to determine the value of ⁇ .
  • the time domain resources occupied by the target reference signal correspond to a first target time domain resource block, and the first target time domain resource block is used to determine the first time window.
  • the first target time domain resource block is used to determine the second target time domain resource block
  • the second target time domain resource block is used to determine the first time window
  • the second target time domain resource block includes multiple multi-carrier symbols.
  • the second target time domain resource block includes a time slot.
  • the second target time domain resource block belongs to a time slot.
  • the second target time domain resource block is a time slot.
  • the second target time domain resource block is a secondary link time slot.
  • the second target time domain resource block is earlier than the first target time domain resource block, and the second target time domain resource block is N0 time slots ahead of the first target time domain resource block, where N0 is a positive integer.
  • the index of the second target time domain resource block in the multiple time domain resource blocks included in the first resource pool is equal to the difference between the index of the first target time domain resource block in the multiple time domain resource blocks included in the first resource pool and N0.
  • the N0 time slots are congestion control processing time.
  • the value of N0 is related to the subcarrier spacing in the first resource pool.
  • the first time domain resource block among the multiple time domain resource blocks included in the first time window is ahead of the second target time domain resource block by a time domain resource blocks
  • the last time domain resource block among the multiple time domain resource blocks included in the first time window is ahead of the second target time domain resource block by 1 time domain resource block
  • a is a positive integer
  • the first time slot of the multiple time slots included in the first time window is a time slots ahead of the second target time domain resource block
  • the last time slot of the multiple time slots included in the first time window is 1 time slot ahead of the second target time domain resource block
  • a is a positive integer
  • the first time window is [n-a, n-1], where n is the index of the second target time domain resource block.
  • the length of the first time window is a.
  • the length of the first time window is equal to 100.
  • the length of the first time window is equal to 100 ⁇ 2 ⁇ , where ⁇ is related to the subcarrier spacing in the first resource pool.
  • the target threshold is adopted for the SL CR evaluation of the M1 candidate reference signal resources.
  • the target threshold is adopted for the SL CBR measurement of the M1 candidate reference signal resources.
  • the target threshold is configurable.
  • the target threshold is preconfigured.
  • the unit of the target threshold is watt.
  • the unit of the target threshold is milliwatt.
  • the unit of the target threshold is dBm (millidecibels).
  • the target threshold is used for SL CBR measurement.
  • the target threshold is used for SL CR evaluation (Evaluate).
  • the target threshold is used to determine whether a positioning reference signal for SL can be sent.
  • the target threshold is used to determine whether a positioning reference signal for SL can be sent.
  • the M1 candidate reference signal resources correspond to the same configuration information
  • the configuration information includes at least one of a comb size, a number of occupied symbols, a number of occupied subcarriers, a repetition factor, a period, or a transmit power value.
  • the M1 candidate reference signal resources correspond to the same comb size.
  • the M1 candidate reference signal resources occupy the same number of symbols in the same time domain length.
  • the time domain length is one time slot.
  • the time domain length is a plurality of consecutive time slots.
  • the time domain length is one subframe.
  • the time domain length is a system frame.
  • the M1 candidate reference signal resources occupy the same number of subcarriers in the same frequency bandwidth.
  • the frequency bandwidth is a sub-channel.
  • the frequency bandwidth is one BWP.
  • the frequency bandwidth is one RB.
  • the time domain length is a plurality of consecutive RBs.
  • the M1 candidate reference signal resources adopt the same repetition factor.
  • the M1 candidate reference signal resources correspond to the same period.
  • the M1 candidate reference signal resources adopt the same transmission power value.
  • the first reference signal resource and the second reference signal resource correspond to different configuration information
  • the configuration information includes at least one of a comb size, a number of occupied symbols, a number of occupied subcarriers, a repetition factor, a period or a transmit power value.
  • the first reference signal resource and the second reference signal resource correspond to different comb sizes.
  • the first reference signal resource and the second reference signal resource occupy different numbers of symbols in the same time domain length.
  • the first reference signal resource and the second reference signal resource occupy different numbers of subcarriers in the same frequency bandwidth.
  • the first reference signal resource and the second reference signal resource respectively adopt different repetition factors.
  • the first reference signal resource and the second reference signal resource correspond to different periods respectively.
  • the first reference signal resource and the second reference signal resource correspond to different transmission power values respectively.
  • the first reference signal resource and the second reference signal resource correspond to a first threshold and a second threshold, respectively, the first threshold and the second threshold are different, and both the first threshold and the second threshold are used for secondary link congestion control.
  • the first threshold is adopted for the SL CR evaluation of the first reference signal resource.
  • the first threshold is adopted for the SL CBR measurement of the first reference signal resource.
  • the second threshold is adopted for the SL CR evaluation of the second reference signal resource.
  • the second threshold is adopted for SL CBR measurement of the second reference signal resource.
  • the first threshold is configurable.
  • the first threshold is preconfigured.
  • the unit of the first threshold is watt.
  • the unit of the first threshold is milliwatt.
  • the unit of the first threshold is dBm (millidecibels).
  • the second threshold is configurable.
  • the second threshold is preconfigured.
  • the unit of the second threshold is watt.
  • the unit of the second threshold is milliwatt.
  • the unit of the second threshold is dBm (millidecibels).
  • the first threshold is used to compare with a result of RSSI measurement for the first reference signal resource.
  • the first threshold is used to determine whether the first reference signal resource is busy.
  • the first threshold is used to determine whether the first reference signal resource is occupied.
  • the first threshold is used to determine whether the first reference signal resource is available.
  • the first threshold is used to compare with a result of RSSI measurement of a reference signal resource that uses the same configuration information as the first reference signal resource.
  • the first threshold is used to determine whether a reference signal resource using the same configuration information as the first reference signal resource is busy.
  • the first threshold is used to determine whether a reference signal resource using the same configuration information as the first reference signal resource is occupied.
  • the first threshold is used to determine whether a reference signal resource using the same configuration information as the first reference signal resource is available.
  • the second threshold is used to compare with a result of RSSI measurement for the second reference signal resource.
  • the second threshold is used to determine whether the second reference signal resource is busy.
  • the second threshold is used to determine whether the second reference signal resource is occupied.
  • the second threshold is used to determine whether the second reference signal resource is available.
  • the second threshold is used to compare with a result of RSSI measurement of a reference signal resource using the same configuration information as the second reference signal resource.
  • the second threshold is used to determine whether a reference signal resource using the same configuration information as the second reference signal resource is busy.
  • the second threshold is used to determine whether a reference signal resource using the same configuration information as the second reference signal resource is occupied.
  • the second threshold is used to determine whether a reference signal resource using the same configuration information as the second reference signal resource is available.
  • the first threshold is used for SL CBR measurement.
  • the first threshold is used for SL CR evaluation.
  • the second threshold is used for SL CBR measurement.
  • the second threshold is used for SL CR evaluation.
  • the first threshold is used to determine whether a positioning reference signal for SL can be sent.
  • the second threshold is used to determine whether a positioning reference signal for SL can be sent.
  • the K1 reference signal resources include the M1 candidate reference signal resources, and the K1 is a positive integer not less than the M1.
  • any candidate reference signal resource among the M1 candidate reference signal resources is one of the K1 reference signal resources.
  • the ResourceID used by any candidate reference signal resource among the M1 candidate reference signal resources is equal to the ResourceID used by one reference signal resource among the K1 reference signal resources.
  • an identity adopted by any candidate reference signal resource among the M1 candidate reference signal resources is equal to an identity adopted by one reference signal resource among the K1 reference signal resources.
  • an identifier adopted by any candidate reference signal resource among the M1 candidate reference signal resources is equal to an identifier adopted by one reference signal resource among the K1 reference signal resources.
  • the first resource pool includes a sidelink resource pool (Sidelink Resource Pool).
  • Sidelink Resource Pool Sidelink Resource Pool
  • the first resource pool is used for sidelink transmission.
  • the first resource pool is used for sidelink communication.
  • the first resource pool is used for sidelink positioning (Sidelink Positioning).
  • the first resource pool is used for SL PRS (Sidelink Positioning Reference Signal) transmission.
  • SL PRS Segmentlink Positioning Reference Signal
  • the first resource pool is dedicated to SL PRS transmission.
  • the first resource pool is used for SL PRS and SCI (Sidelink Control Information) transmission.
  • the first resource pool includes multiple REs (Resource Elements).
  • any RE in the first resource pool occupies a multi-carrier symbol in the time domain and occupies a subcarrier in the frequency domain.
  • the first resource pool includes multiple time domain resource blocks in the time domain, and the first resource pool includes multiple frequency domain resource blocks in the frequency domain.
  • the multiple time domain resource blocks included in the first resource pool in the time domain are respectively multiple time slots.
  • the multiple time domain resource blocks included in the first resource pool in the time domain are respectively multiple multi-carrier symbols.
  • any time domain resource block among the multiple time domain resource blocks included in the first resource pool in the time domain belongs to a time slot.
  • any time domain resource block among the multiple time domain resource blocks included in the time domain of the first resource pool includes at least one multi-carrier symbol.
  • any time domain resource block among the multiple time domain resource blocks included in the time domain of the first resource pool includes multiple multi-carrier symbols.
  • the multiple frequency domain resource blocks included in the first resource pool in the frequency domain are respectively multiple subchannels.
  • the multiple frequency domain resource blocks included in the first resource pool in the frequency domain are respectively multiple RBs (Resource Blocks).
  • the multiple frequency domain resource blocks included in the first resource pool in the frequency domain are multiple PRBs (Physical Resource Blocks).
  • the multiple frequency domain resource blocks included in the first resource pool in the frequency domain are respectively multiple subcarriers.
  • any frequency domain resource block among the multiple frequency domain resource blocks included in the first resource pool in the frequency domain belongs to a sub-channel.
  • any frequency domain resource block among the multiple frequency domain resource blocks included in the first resource pool in the frequency domain belongs to one RB.
  • any frequency domain resource block among the multiple frequency domain resource blocks included in the first resource pool in the frequency domain belongs to a PRB.
  • any frequency domain resource block among the multiple frequency domain resource blocks included in the first resource pool in the frequency domain includes at least one subcarrier.
  • any frequency domain resource block among the multiple frequency domain resource blocks included in the first resource pool in the frequency domain includes at least one RB.
  • any frequency domain resource block among the multiple frequency domain resource blocks included in the first resource pool in the frequency domain includes at least one PRB.
  • any frequency domain resource block among the multiple frequency domain resource blocks included in the first resource pool in the frequency domain includes multiple subcarriers.
  • the multiple time domain resource blocks included in the time domain of the first resource pool are multiple time slots, and the multiple frequency domain resource blocks included in the frequency domain of the first resource pool are multiple PRBs.
  • the first resource pool includes multiple time-frequency resource blocks.
  • any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool is a time domain resource block in the first resource pool in the time domain
  • any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool is a frequency domain resource block in the first resource pool in the frequency domain
  • any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool belongs to a time domain resource block in the first resource pool in the time domain, and any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool is a frequency domain resource block in the first resource pool in the frequency domain.
  • any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool belongs to a time domain resource block in the first resource pool in the time domain
  • any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool belongs to a frequency domain resource block in the first resource pool in the frequency domain
  • any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool belongs to a time domain resource block in the first resource pool in the time domain, and any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool includes at least one frequency domain resource block in the first resource pool in the frequency domain.
  • any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool includes at least one time domain resource block in the first resource pool in the time domain, and any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool belongs to a frequency domain resource block in the first resource pool in the frequency domain.
  • any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool includes at least one time domain resource block in the first resource pool in the time domain, and any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool includes at least one frequency domain resource block in the first resource pool in the frequency domain.
  • the multiple time-frequency resource blocks included in the first resource pool are respectively the multiple time domain resource blocks in the first resource pool in the time domain, and the multiple time-frequency resource blocks included in the first resource pool are respectively the multiple frequency domain resource blocks in the first resource pool in the frequency domain.
  • the first channel busy ratio is the ratio of the M2 RSSIs to the M1 RSSIs.
  • the first channel busy ratio is the ratio of the M2 candidate reference signal resources to the M1 candidate reference signal resources.
  • the first channel busy ratio is the ratio of the M2 RSSIs to the Q candidate RSSIs corresponding to the Q reference signal resources, and Q is a positive integer greater than M2.
  • the first channel busy ratio is the ratio of the M1 candidate reference signal resources to Q reference signal resources, where Q is a positive integer greater than M2.
  • the first channel busy ratio is the ratio of the M2 to the M1.
  • the first channel busy ratio is the quotient of the M2 divided by the M1.
  • the first channel busy ratio is the ratio of the M2 to the first sample number.
  • the first number of samples is the M1.
  • the first number of samples is the Q.
  • the first channel busy ratio is a decimal.
  • the first channel busy ratio is a percentage.
  • Embodiment 7 illustrates a flow chart of a target reference signal, as shown in FIG7.
  • the first node U4 and the second node Point U5 communicates with the third node N6 via a wireless link.
  • the order in this embodiment does not limit the signal transmission order and implementation order in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 7 can be applied to Embodiments 6 and 8; conversely, in the absence of conflict, any embodiment, sub-embodiment and subsidiary embodiment in Embodiments 6 and 8 can be applied to Embodiment 7.
  • a first information block is sent in step S40; channel measurement is performed on M1 candidate reference signal resources in a first time window in step S41; and a target reference signal is sent in step S42.
  • the first information block is received in step S50; the target reference signal is received in step S51; and the location information is sent in step S52.
  • the location information is received in step S60.
  • the first information block is used to determine a first reference signal resource set; the first reference signal resource set includes K1 reference signal resources, and K1 is a positive integer greater than 1; the target reference signal occupies one reference signal resource among the K1 reference signal resources; the K1 reference signal resources include at least a first reference signal resource and a second reference signal resource; in a given resource unit, the first reference signal resource occupies more resource particles than the second reference signal resource; the first reference signal resource set is used for secondary link positioning; any resource particle occupied by the second reference signal resource is occupied by the first reference signal resource, and there is at least one resource particle among the resource particles occupied by the first reference signal resource that is not occupied by the second reference signal resource; the definition of the given resource unit includes ⁇ band width corresponding to the same subchannel and the same PRB width, the same BWP, the same number of consecutive multi-carrier symbols, the same time slot ⁇ ; the measurement of the target reference signal by the second node is used to generate the location information; the M1 candidate reference signal resources occupy the same
  • the M1 candidate reference signal resources correspond to the same configuration information
  • the configuration information includes at least one of a comb size, a number of occupied symbols, a number of occupied subcarriers, a repetition factor, a period, or a transmit power value.
  • the first reference signal resource and the second reference signal resource correspond to different configuration information
  • the configuration information includes at least one of a comb size, a number of occupied symbols, a number of occupied subcarriers, a repetition factor, a period or a transmit power value.
  • the first reference signal resource and the second reference signal resource correspond to a first threshold and a second threshold, respectively, the first threshold and the second threshold are different, and both the first threshold and the second threshold are used for secondary link congestion control.
  • the K1 reference signal resources include the M1 candidate reference signal resources, and the K1 is a positive integer not less than the M1.
  • the first information block is generated at the third node.
  • the first information block is forwarded to the second node through the first node.
  • Embodiment 8 illustrates a flowchart of determining whether to send a target reference signal according to an embodiment of the present application, as shown in FIG8 .
  • a first channel busy ratio is determined in step S801; a first maximum channel occupancy ratio is determined in step S802; a first channel share is determined in step S803; a determination is made in step S804 as to whether the first channel occupancy ratio is not greater than the first maximum channel occupancy ratio; when the first channel occupancy ratio is not greater than the first channel occupancy ratio, step S805 is executed to send a target reference signal; when the first channel occupancy ratio is greater than the first channel occupancy ratio, step S806 is executed to abandon sending the target reference signal; wherein the first information busy ratio is used to determine the first maximum channel occupancy ratio; the first channel occupancy ratio is used to send or be granted within the second time window.
  • the proportion of resources is used to determine the first maximum channel occupancy ratio; the first channel occupancy ratio is used to send or be granted within the second time window.
  • the second time window includes multiple time domain resource blocks.
  • the second time window includes multiple time domain resource blocks of the first resource pool in the time domain.
  • the second time window includes multiple time slots.
  • the length of the second time window is configured by a higher layer signaling.
  • the length of the second time window is preconfigured.
  • the length of the second time window is related to the subcarrier spacing in the first resource pool.
  • the second time window is a CR evaluation window.
  • the second time period is a time window for CR evaluation.
  • the first target time domain resource block is used to determine the second target time domain resource block
  • the second target time domain resource block is used to determine the first time window and the second time window.
  • the first time domain resource block among the multiple time domain resource blocks included in the second time window is a time domain resource blocks ahead of the second target time domain resource block
  • the last time domain resource block among the multiple time domain resource blocks included in the second time window is b time domain resource blocks later than the second target time domain resource block
  • a is a positive integer
  • b is a non-negative integer
  • the first time slot of the multiple time slots included in the second time window is a time slots ahead of the second target time domain resource block
  • the last time slot of the multiple time slots included in the second time window is b time slots later than the second target time domain resource block
  • a is a positive integer
  • b is a non-negative integer
  • the second time window is [n-a, n+b], where n is the index of the second target time domain resource block.
  • the length of the second time window is a+b+1.
  • the length of the second time window is equal to 1000.
  • the length of the second time window is equal to 1000 ⁇ 2 ⁇ , where ⁇ is related to the subcarrier spacing in the first resource pool.
  • b is equal to 0.
  • b is a positive integer.
  • the sum of a, b and 1 is equal to 1000.
  • the sum of a, b and 1 is equal to 1000 ⁇ 2 ⁇ , where ⁇ is related to the subcarrier spacing in the first resource pool.
  • the second time window includes the first time window.
  • the second time window includes the first time window and the second time sub-window.
  • the second time subwindow includes b+1 time domain resource blocks.
  • the second time subwindow includes b+1 time slots.
  • the second time subwindow is [n, n+b], where n is the index of the second target time domain resource block.
  • the length of the first time window is equal to the sum of the length of the first time window and the length of the second time sub-window.
  • b is equal to 0, and the length of the second time subwindow is 1.
  • the first resource pool includes Q1 first-category resources within the second time window.
  • the second time window includes the Q1 first-category resources in the first resource pool, where Q1 is a positive integer greater than 1.
  • the Q1 first-category resources in the first resource pool are within the second time window in the time domain, and Q1 is a positive integer greater than 1.
  • the first resource pool is configured with Q1 first-category resources within the second time window, where Q1 is a positive integer.
  • the second time window includes the time domain resources of the Q1 first-category resources.
  • the second time window includes the time domain resources of the Q1 first-category resources, where Q1 is a positive integer greater than 1.
  • the second time window includes the time domain resources of any first-category resource among the Q1 first-category resources.
  • the resources occupied by the first positioning reference signal are one of the Q1 first-category resources.
  • the first resource pool includes Q0 candidate resources within the second time window, where Q0 is a positive integer greater than Q1.
  • the first resource pool is configured with Q0 candidate resources in the second time window, and Q0 is greater than Q1.
  • Q0 is greater than Q1.
  • the first node sends at least one first-type positioning reference signal on at least one first-type resource within the first time window.
  • the first positioning reference signal belongs to a first type of positioning reference signal.
  • the resources occupied by the first type of positioning reference signals are the first type of resources in the first resource pool.
  • the number of first-type resources occupied by sending the first-type positioning reference signal in the first time window is not less than 1.
  • the first node does not send any first-type positioning reference signal on any first-type resource within the first time window.
  • the number of first-type resources occupied by sending first-type positioning reference signals in the first time window is equal to 0.
  • the first channel proportion is the ratio of the sum of the number of first-class resources occupied by sending the first-class positioning reference signal in the first time window and the number of first-class resources granted in the second time subwindow to the Q1 first-class resources.
  • the first channel proportion is the ratio of the sum of the number of first-type resources occupied by sending the first-type positioning reference signal in the first time window and the number of first-type resources granted in the second time subwindow to Q1.
  • the first channel proportion is the quotient of the sum of the number of first-type resources occupied by sending the first-type positioning reference signal in the first time window and the number of first-type resources granted in the second time subwindow divided by the Q1.
  • the first channel proportion is the ratio of the sum of the number of first-type resources occupied by sending the first-type positioning reference signal in the first time window and the number of first-type resources granted in the second time subwindow to the second sample.
  • the first channel proportion is the ratio of the sum of the number of first-type resources occupied by sending the first-type positioning reference signal in the first time window and the number of first-type resources granted in the second time subwindow to the second sample.
  • the first channel proportion is the quotient of the sum of the number of first-type resources occupied by sending the first-type positioning reference signal in the first time window and the number of first-type resources granted in the second time subwindow divided by the second sample.
  • the third sample is equal to the Q1.
  • the third sample is equal to Q0.
  • the first channel proportion is a decimal.
  • the proportion of the first channel is a percentage.
  • the maximum channel occupancy ratio list includes multiple maximum channel occupancy ratios, and the multiple maximum channel occupancy ratios correspond one-to-one to multiple channel busy ratio ranges respectively; the first maximum channel occupancy ratio is one of the multiple maximum channel occupancy ratios.
  • the first channel busy ratio belongs to one of the multiple channel busy ratio ranges, and a channel busy ratio range to which the first channel busy ratio belongs is used to determine the first maximum channel occupancy ratio from the multiple maximum channel occupancy ratios included in the maximum channel share list.
  • the first channel occupancy ratio is not greater than the first maximum channel occupancy ratio.
  • the first channel occupancy ratio is less than the first maximum channel occupancy ratio.
  • the first channel occupancy ratio is equal to the first maximum channel occupancy ratio.
  • the first channel occupancy ratio is greater than the first maximum channel occupancy ratio.
  • the first channel occupancy ratio is not greater than the first maximum channel occupancy ratio, and the first positioning reference signal is sent on the first target time domain resource block.
  • the first channel occupancy ratio is greater than the first maximum channel occupancy ratio, and the first positioning reference signal is abandoned from being sent on the first target time domain resource block.
  • the first positioning reference signal is sent on the first target time domain resource block.
  • Embodiment 9 illustrates a schematic diagram of the relationship among the first node, the second node and the third node according to an embodiment of the present application, as shown in FIG9 .
  • the third node configures a first information block, and the first node receives the first information block; the first node performs channel perception and determines to send a target reference signal, the second node receives the target reference signal, and generates location information based on the measurement of the target reference signal, and then sends the location information to the third node.
  • the third node is a positioning server.
  • the second node receives the first information block.
  • the first node sends a wireless signal to the second node to indicate the sending of the target reference signal.
  • the third node is a base station.
  • the first node is a terminal.
  • the first node is an RSU (Road Side Unit).
  • the second node is a terminal.
  • the second node is an RSU.
  • the first node receives the location information from the second node and forwards it to the third node
  • Embodiment 10 illustrates a schematic diagram of a first reference signal resource and a second reference signal resource, as shown in FIG10.
  • the first reference signal resource occupies P1 REs in the given resource unit, and P1 is a positive integer greater than 1
  • the second reference signal resource occupies P2 REs in the given resource unit, and P2 is a positive integer greater than 1
  • P1 is L1 times of P2, and L1 is a positive integer greater than 1.
  • the P2 REs are a subset of the P1 REs.
  • L1 is one of ⁇ 2, 4, 8, 16, 32 ⁇ .
  • the first reference signal resource and the second reference signal resource correspond to two different Patterns respectively.
  • the first reference signal resource and the second reference signal resource correspond to different repetition times of the same pattern in the frequency domain.
  • the first reference signal resource and the second reference signal resource correspond to different repetition times of the same pattern in the time domain.
  • the given resource unit occupies R1 consecutive subcarriers in the frequency domain and occupies R2 consecutive multi-carrier symbols in the time domain; both R1 and R2 are positive integers greater than 1.
  • R1 is a positive integer multiple of 12.
  • R2 is equal to one of ⁇ 2, 4, 6, 12 ⁇ .
  • R1 shown in FIG. 10 is equal to 12, and R2 is equal to 6.
  • Embodiment 11 illustrates a schematic diagram of M1 candidate reference signal resources, as shown in Figure 11.
  • the M1 candidate reference signal resources in the given resource unit all occupy the same number of REs; the figure shows three candidate reference signal resources among the M1 candidate reference signal resources, namely the first candidate reference signal resource, the second candidate reference signal resource and the third candidate reference signal resource; the given resource unit shown in the figure occupies R1 consecutive subcarriers in the frequency domain and R2 consecutive multicarrier symbols in the time domain, where R1 is equal to 12 and R2 is equal to 4.
  • REs occupied by any two candidate reference signal resources among the M1 candidate reference signal resources are orthogonal.
  • the M1 candidate reference signal resources correspond to the same aggregation level.
  • the M1 candidate reference signal resources correspond to the same repetition factor.
  • Embodiment 12 illustrates a structural block diagram of a first node, as shown in FIG12 .
  • the first node 1200 includes a first receiver 1201 and a first transmitter 1202 .
  • a first receiver 1201 receives a first information block, where the first information block is used to determine a first reference signal resource set;
  • a first transmitter 1202 sends a target reference signal
  • the first reference signal resource set includes K1 reference signal resources, where K1 is a positive integer greater than 1; the target reference signal occupies one reference signal resource among the K1 reference signal resources; the K1 reference signal resources include at least a first reference signal resource and a second reference signal resource; in a given resource unit, the first reference signal resource is The second reference signal resource occupies more resource cells; the first reference signal resource set is used for secondary link positioning; any resource cell occupied by the second reference signal resource is occupied by the first reference signal resource, and at least one resource cell among the resource cells occupied by the first reference signal resource is not occupied by the second reference signal resource; the definition of the given resource unit includes at least one of the following:
  • it includes:
  • the first receiver 1201 performs channel measurement on M1 candidate reference signal resources in a first time window
  • the M1 candidate reference signal resources occupy the same number of resource particles in the given resource unit, and the time domain resources occupied by the target reference signal are used to determine the first time window; the channel measurement for the M1 candidate reference signal resources is used to determine M1 RSSIs; the first channel busy ratio is the proportion of the M1 RSSIs measured within the first time window that exceeds the target threshold; the first channel busy ratio is used to determine the sending of the target reference signal; there is at least one reference signal resource among the K1 reference signal resources that corresponds to the same identity as one of the M1 candidate reference signal resources; and M1 is a positive integer greater than 1.
  • the M1 candidate reference signal resources correspond to the same configuration information
  • the configuration information includes at least one of a comb size, a number of occupied symbols, a number of occupied subcarriers, a repetition factor, a period, or a transmission power value.
  • the first reference signal resource and the second reference signal resource correspond to different configuration information
  • the configuration information includes at least one of a comb size, a number of occupied symbols, a number of occupied subcarriers, a repetition factor, a period or a transmission power value.
  • the first reference signal resource and the second reference signal resource correspond to a first threshold and a second threshold respectively, the first threshold and the second threshold are different, and the first threshold and the second threshold are both used for secondary link congestion control.
  • the K1 reference signal resources include the M1 candidate reference signal resources, and the K1 is a positive integer not less than the M1.
  • the first receiver 1201 includes at least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 in Embodiment 4.
  • the first transmitter 1202 includes at least the first four of the antenna 452, transmitter 454, multi-antenna transmit processor 457, transmit processor 468, and controller/processor 459 in Embodiment 4.
  • Embodiment 13 illustrates a structural block diagram of a second node, as shown in FIG13 .
  • the second node 1300 includes a second receiver 1301 .
  • a second receiver 1301 receives a target reference signal
  • the first reference signal resource set includes K1 reference signal resources, where K1 is a positive integer greater than 1; the target reference signal occupies one reference signal resource among the K1 reference signal resources; the K1 reference signal resources include at least a first reference signal resource and a second reference signal resource; in a given resource unit, the first reference signal resource occupies more resource particles than the second reference signal resource; the first reference signal resource set is used for secondary link positioning; any resource particle occupied by the second reference signal resource is occupied by the first reference signal resource, and at least one resource particle among the resource particles occupied by the first reference signal resource is not occupied by the second reference signal resource; the definition of the given resource unit includes at least one of the following:
  • it includes:
  • the second receiver 1301 receives a first information block
  • the first information block is used to determine the first reference signal resource set.
  • it includes:
  • the second transmitter 1302 sends a first information block
  • the first information block is used to determine the first reference signal resource set.
  • the sender of the target reference signal performs channel measurement on M1 candidate reference signal resources in a first time window; the M1 candidate reference signal resources occupy the same number of resource particles in the given resource unit, and the time domain resources occupied by the target reference signal are used to determine the first time window; the channel measurement of the M1 candidate reference signal resources is used to determine M1 RSSIs; the first channel busy ratio is the proportion of the M1 RSSIs measured in the first time window that exceeds the target threshold; the first channel busy ratio is used to determine the sending of the target reference signal; there is at least one reference signal resource among the K1 reference signal resources that corresponds to the same identity as one of the M1 candidate reference signal resources; and M1 is a positive integer greater than 1.
  • the M1 candidate reference signal resources correspond to the same configuration information
  • the configuration information includes at least one of a comb size, a number of occupied symbols, a number of occupied subcarriers, a repetition factor, a period, or a transmission power value.
  • the first reference signal resource and the second reference signal resource correspond to different configuration information
  • the configuration information includes at least one of a comb size, a number of occupied symbols, a number of occupied subcarriers, a repetition factor, a period or a transmission power value.
  • the first reference signal resource and the second reference signal resource correspond to a first threshold and a second threshold respectively, the first threshold and the second threshold are different, and the first threshold and the second threshold are both used for secondary link congestion control.
  • the K1 reference signal resources include the M1 candidate reference signal resources, and the K1 is a positive integer not less than the M1.
  • it includes:
  • the second transmitter 1302 sends location information
  • the measurement of the target reference signal is used to generate the position information.
  • the second receiver 1301 includes at least the first four of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 in Embodiment 4.
  • the second transmitter 1302 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 414, and the controller/processor 475 in Embodiment 4.
  • Embodiment 14 illustrates a structural block diagram of a third node, as shown in FIG14 .
  • the third node 1400 includes a third transmitter 1401 and a third receiver 1402 .
  • a third transmitter 1401 sends a first information block, where the first information block is used to determine a first reference signal resource set;
  • a third receiver 1402 receives location information
  • the first reference signal resource set includes K1 reference signal resources, where K1 is a positive integer greater than 1; the target reference signal occupies one reference signal resource among the K1 reference signal resources; and the K1 reference signal resources include at least a reference signal resource and a second reference signal resource; in a given resource unit, the first reference signal resource occupies more resource elements than the second reference signal resource; the first reference signal resource set is used for secondary link positioning; any resource element occupied by the second reference signal resource is occupied by the first reference signal resource, and at least one resource element among the resource elements occupied by the first reference signal resource is not occupied by the second reference signal resource; the measurement of the target reference signal by the receiver of the target reference signal is used to generate the location information, and the receiver of the target reference signal sends the location information; the definition of the given resource unit includes at least one of the following:
  • the third transmitter 1401 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 in Embodiment 4.
  • the third receiver 1402 includes at least the first four of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 in Embodiment 4.
  • each module unit in the above embodiment can be implemented in the form of hardware or in the form of a software functional module.
  • the present application is not limited to any specific form of combination of software and hardware.
  • the first node in the present application includes but is not limited to mobile phones, tablet computers, notebooks, Internet cards, low-power devices, eMTC devices, NB-IoT devices, vehicle-mounted communication equipment, transportation vehicles, vehicles, RSU (Road Side Unit), aircraft, airplanes, drones, remote-controlled aircraft and other wireless communication devices.
  • the second node in the present application includes but is not limited to macrocell base stations, microcell base stations, small cell base stations, home base stations, relay base stations, eNB, gNB, transmission receiving node TRP, GNSS (Global Navigation Satellite System), relay satellite, satellite base station, aerial base station, RSU, drone, test equipment, such as transceiver devices or signaling testers that simulate some functions of base stations, and other wireless communication equipment.
  • GNSS Global Navigation Satellite System

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。节点首先接收第一信息块,所述第一信息块被用于确定第一参考信号资源集合;随后发送目标参考信号;所述第一参考信号资源集合包括K1个参考信号资源;所述目标参考信号占用所述K1个参考信号资源中之一;所述K1个参考信号资源中至少包括第一参考信号资源和第二参考信号资源;在给定资源单位中,所述第一参考信号资源相较所述第二参考信号资源占用更多的资源颗粒;所述第一参考信号资源集合被用于副链路定位;所述第二参考信号资源所占用的任一资源颗粒都被所述第一参考信号资源占用。本申请有利于提高控制拥塞的效率,进而提高定位的准确度。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中的与定位相关的方案和装置。
背景技术
定位是无线通信领域的一个重要应用;随着V2X(Vehicle to everything,车对外界)或者工业物联网等新应用的出现,系统对定位的精度或者时效性提出了更高的要求。在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#94e会议中,关于定位增强的研究课题被立项。
发明内容
根据RP-213588中的工作计划,NR Rel-18需要支持副链路定位(Sidelink Positioning,SL Positioning)的增强定位技术,其中主流的副链路定位技术包括基于SL(Sidelink,副链路)RTT(Round Trip Time,往返路程时间)、SL AOA(Angle-of-Arrival,到达角)、SL TDOA(Time Difference Of Arrival,到达时间差)和SL AOD(Angle-of-Departure,出发角)等,而这些技术的执行都需要依赖对SL PRS(Positioning Reference Signal,副链路定位参考信号)的测量。由于UE(User Equipment,用户设备)自主选择资源用于发送SL PRS,这就使得传统的用于定位的流程或者位置信息反馈方案需要进一步增强,尤其是如何避免不同终端在自主选择SL PRS时产生的干扰以及碰撞,需要被重新设计及增强。
针对上述问题,本申请公开了一种定位解决方案。需要说明的是,在本申请的描述中,只是采用V2X场景作为一个典型应用场景或者例子;本申请也同样适用于面临相似问题的V2X之外的场景,例如公共安全(Public Safety)、工业物联网、蜂窝网等等,并取得类似NR V2X场景中的技术效果。此外,虽然本申请的动机是针对用于定位测量的无线信号的发送者通过信道感知确定定位参考信号的发送的这一场景,本申请依然适用于用于定位参考信号通过控制节点统一配置的这一场景,例如LMF(Location Management Function,位置管理功能)统一配置。不同场景采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
在需要的情况下,可以参考3GPP标准TS38.211,TS38.212,TS38.213,TS38.214,TS38.215,TS38.321,TS38.331,TS38.305,TS37.355以辅助对本申请的理解。
本申请公开了一种用于无线通信的第一节点中的方法,包括:
接收第一信息块,所述第一信息块被用于确定第一参考信号资源集合;
发送目标参考信号;
其中,所述第一参考信号资源集合包括K1个参考信号资源,所述K1是大于1的正整数;所述目标参考信号占用所述K1个参考信号资源中的一个参考信号资源;所述K1个参考信号资源中至少包括第一参考信号资源和第二参考信号资源;在给定资源单位中,所述第一参考信号资源相较所述第二参考信号资源占用更多的资源颗粒;所述第一参考信号资源集合被用于副链路定位;所述第二参考信号资源所占用的任一资源颗粒都被所述第一参考信号资源占用,且所述第一参考信号资源所占用的资源颗粒中至少存在一个资源颗粒不被所述第二参考信号资源所占用;所述给定资源单位的定义包括以下中的至少之一:
-同一个子信道;
-同一个PRB(Physical Resource Block,物理资源块)所对应的带宽;
-同一个BWP(Bandwidth Part,带宽部分);
-同一数量的连续的多载波符号;
-同一个时隙。
作为一个实施例,上述方法的特征在于:用于SL定位的多个参考信号资源之间在占用的 REs(Resource Elements,资源颗粒)这个方面存在关联,不同时频密度的参考信号资源尽量占用相同的RE,以保证不会与其它参考信号资源集合中的参考信号资源产生碰撞。
作为一个实施例,上述方法的另一个特征在于:所述第一参考信号资源和所述第二参考信号资源采用类似PDCCH(Physical Downlink Control Channel,物理下行控制信道)Candidates(备选)的嵌套(Nested)结构,即所述第二参考信号资源所占用的REs是所述第一参考信号资源所占用的REs的子集,进而保证不同时频密度的参考信号资源是嵌套的,以避免碰撞和冲突。
作为一个实施例,上述方法的再一个特征在于:配置给一个终端或者多个终端的一个参考信号资源集合中的多个参考信号资源符合嵌套结构,即对应不同时频密度的同时,占用的REs也是嵌套的;进而占用这个参考信号资源集合中的一个或多个参考信号资源发送定位参考信号,不会对其它的资源造成干扰和影响,以提高频谱效率。
根据本申请的一个方面,包括:
在第一时间窗中的M1个候选参考信号资源进行信道测量;
其中,所述M1个候选参考信号资源在所述给定资源单位中占用相同数量的资源颗粒,所述目标参考信号所占用的时域资源被用于确定所述第一时间窗;针对所述M1个候选参考信号资源的所述信道测量被用于确定M1个RSSIs(Received Signal Strength Indicators,接收信号强度指示);第一信道繁忙比是在所述第一时间窗内被测量得到的所述M1个RSSIs中超过目标阈值的比例;所述第一信道繁忙比被用于确定发送所述目标参考信号;所述K1个参考信号资源中至少存在一个参考信号资源与所述M1个候选参考信号资源中的一个候选参考信号资源对应相同的身份;所述M1是大于1的正整数。
作为一个实施例,上述方法的一个特征在于:所述目标参考信号的发送是基于信道侦听(Channel Sensing)的。
作为一个实施例,上述方法的一个特征在于:所述目标参考信号的发送是基于CBR(Channel Busy Ratio,信道繁忙比)测量的。
作为一个实施例,上述方法的一个特征在于:所述目标参考信号的发送是基于CR(Channel Occupancy Ratio,信道占用比)评估的。
根据本申请的一个方面,所述M1个候选参考信号资源对应相同的配置信息,所述配置信息包括梳状尺寸、占用符号数,占用子载波数、重复因子、周期或发送功率值中的至少之一。
作为一个实施例,上述方法的一个特征在于:所述M1个候选参考信号资源对应同一种时频密度的用于定位的M1个参考信号。
根据本申请的一个方面,所述第一参考信号资源和所述第二参考信号资源对应不同的配置信息,所述配置信息包括梳状尺寸、占用符号数,占用子载波数、重复因子、周期或发射功率值中的至少之一。
作为一个实施例,上述方法的一个特征在于:所述第一参考信号资源和所述第二参考信号资源分别对应两种采用不同时频密度的用于定位的参考信号。
根据本申请的一个方面,所述第一参考信号资源和所述第二参考信号资源分别对应第一阈值和第二阈值,所述第一阈值和所述第二阈值不同,所述第一阈值和所述第二阈值都被用于副链路拥塞控制。
作为一个实施例,上述方法的一个特征在于:不同时频密度的用于定位的参考信号分别对应不同的与测量的RSSI值进行比较的门限值,以更为精确的确定定位参考信号的发送。
根据本申请的一个方面,所述K1个参考信号资源包括所述M1个候选参考信号资源,所述K1是不小于所述M1的正整数。
根据本申请的一个方面,所述M1个候选参考信号资源中的M2个候选参考信号资源分别被测量得到的M2个RSSIs中的任一RSSI都超过所述目标阈值;在所述第一时间窗内被测量得到的RSSI超过所述第一阈值的候选参考信号资源的所述比例是M2与第一样本数的比值,M2是不大于所述M1的正整数;所述第一样本数等于所述M1,或者所述第一样本数等于Q;所述Q是大于1的正整数,第一资源池在所述第一时间窗内包括Q个参考信号资源,所述M2个候选参考信号资源中的任一候选参考信号资源是所述Q个参考信号资源中的之一,Q是大于所述M2的正整数。
本申请公开了一种用于无线通信的第二节点中的方法,包括:
接收目标参考信号;
其中,第一参考信号资源集合包括K1个参考信号资源,所述K1是大于1的正整数;所述目标参考信号占用所述K1个参考信号资源中的一个参考信号资源;所述K1个参考信号资源中至少包括第一参考信号资源和第二参考信号资源;在给定资源单位中,所述第一参考信号资源相较所述第二参考信号资源占用更多的资源颗粒;所述第一参考信号资源集合被用于副链路定位;所述第二参考信号资源所占用的任一资源颗粒都被所述第一参考信号资源占用,且所述第一参考信号资源所占用的资源颗粒中至少存在一个资源颗粒不被所述第二参考信号资源所占用;所述给定资源单位的定义包括以下中的至少之一:
-同一个子信道;
-同一个PRB所对应的带宽;
-同一个BWP;
-同一数量的连续的多载波符号;
-同一个时隙。
根据本申请的一个方面,包括:
接收第一信息块;
其中,所述第一信息块被用于确定所述第一参考信号资源集合。
根据本申请的一个方面,包括:
发送第一信息块;
其中,所述第一信息块被用于确定所述第一参考信号资源集合。
根据本申请的一个方面,所述目标参考信号的发送者在第一时间窗中的M1个候选参考信号资源进行信道测量;所述M1个候选参考信号资源在所述给定资源单位中占用相同数量的资源颗粒,所述目标参考信号所占用的时域资源被用于确定所述第一时间窗;针对所述M1个候选参考信号资源的所述信道测量被用于确定M1个RSSIs;第一信道繁忙比是在所述第一时间窗内被测量得到的所述M1个RSSIs中超过目标阈值的比例;所述第一信道繁忙比被用于确定发送所述目标参考信号;所述K1个参考信号资源中至少存在一个参考信号资源与所述M1个候选参考信号资源中的一个候选参考信号资源对应相同的身份;所述M1是大于1的正整数。
根据本申请的一个方面,所述M1个候选参考信号资源对应相同的配置信息,所述配置信息包括梳状尺寸、占用符号数,占用子载波数、重复因子、周期或发送功率值中的至少之一。
根据本申请的一个方面,所述第一参考信号资源和所述第二参考信号资源对应不同的配置信息,所述配置信息包括梳状尺寸、占用符号数,占用子载波数、重复因子、周期或发射功率值中的至少之一。
根据本申请的一个方面,所述第一参考信号资源和所述第二参考信号资源分别对应第一阈值和第二阈值,所述第一阈值和所述第二阈值不同,所述第一阈值和所述第二阈值都被用于副链路拥塞控制。
根据本申请的一个方面,所述K1个参考信号资源包括所述M1个候选参考信号资源,所述K1是不小于所述M1的正整数。
根据本申请的一个方面,所述M1个候选参考信号资源中的M2个候选参考信号资源分别被测量得到的M2个RSSIs中的任一RSSI都超过所述目标阈值;在所述第一时间窗内被测量得到的RSSI超过所述第一阈值的候选参考信号资源的所述比例是M2与第一样本数的比值,M2是不大于所述M1的正整数;所述第一样本数等于所述M1,或者所述第一样本数等于Q;所述Q是大于1的正整数,第一资源池在所述第一时间窗内包括Q个参考信号资源,所述M2个候选参考信号资源中的任一候选参考信号资源是所述Q个参考信号资源中的之一,Q是大于所述M2的正整数。
根据本申请的一个方面,包括:
发送位置信息;
其中,针对所述目标参考信号的测量被用于生成所述位置信息。
本申请公开了一种用于无线通信的第三节点中的方法,包括:
发送第一信息块,所述第一信息块被用于确定第一参考信号资源集合;
接收位置信息;
其中,所述第一参考信号资源集合包括K1个参考信号资源,所述K1是大于1的正整数;目标参考信号占用所述K1个参考信号资源中的一个参考信号资源;所述K1个参考信号资源中至少包括第一参考信号资源和第二参考信号资源;在给定资源单位中,所述第一参考信号资源相较所述第二参考信号资源占用更多的资源颗粒;所述第一参考信号资源集合被用于副链路定位;所述第二参考信号资源所占用的任一资源颗粒都被所述第一参考信号资源占用,且所述第一参考信号资源所占用的资源颗粒中至少存在一个资源颗粒不被所述第二参考信号资源所占用;所述目标参考信号的接收者针对所述目标参考信号的测量被用于生成所述位置信息,所述目标参考信号的所述接收者发送所述位置信息;所述给定资源单位的定义包括以下中的至少之一:
-同一个子信道;
-同一个PRB所对应的带宽;
-同一个BWP;
-同一数量的连续的多载波符号;
-同一个时隙。
本申请公开了一种用于无线通信的第一节点,包括:
第一接收机,接收第一信息块,所述第一信息块被用于确定第一参考信号资源集合;
第一发射机,发送目标参考信号;
其中,所述第一参考信号资源集合包括K1个参考信号资源,所述K1是大于1的正整数;所述目标参考信号占用所述K1个参考信号资源中的一个参考信号资源;所述K1个参考信号资源中至少包括第一参考信号资源和第二参考信号资源;在给定资源单位中,所述第一参考信号资源相较所述第二参考信号资源占用更多的资源颗粒;所述第一参考信号资源集合被用于副链路定位;所述第二参考信号资源所占用的任一资源颗粒都被所述第一参考信号资源占用,且所述第一参考信号资源所占用的资源颗粒中至少存在一个资源颗粒不被所述第二参考信号资源所占用;所述给定资源单位的定义包括以下中的至少之一:
-同一个子信道;
-同一个PRB所对应的带宽;
-同一个BWP;
-同一数量的连续的多载波符号;
-同一个时隙。
本申请公开了一种用于无线通信的第二节点,包括:
第二接收机,接收目标参考信号;
其中,第一参考信号资源集合包括K1个参考信号资源,所述K1是大于1的正整数;所述目标参考信号占用所述K1个参考信号资源中的一个参考信号资源;所述K1个参考信号资源中至少包括第一参考信号资源和第二参考信号资源;在给定资源单位中,所述第一参考信号资源相较所述第二参考信号资源占用更多的资源颗粒;所述第一参考信号资源集合被用于副链路定位;所述第二参考信号资源所占用的任一资源颗粒都被所述第一参考信号资源占用,且所述第一参考信号资源所占用的资源颗粒中至少存在一个资源颗粒不被所述第二参考信号资源所占用;所述给定资源单位的定义包括以下中的至少之一:
-同一个子信道;
-同一个PRB所对应的带宽;
-同一个BWP;
-同一数量的连续的多载波符号;
-同一个时隙。
本申请公开了一种用于无线通信的第三节点,包括:
第三发射机,发送第一信息块,所述第一信息块被用于确定第一参考信号资源集合;
第三接收机,接收位置信息;
其中,所述第一参考信号资源集合包括K1个参考信号资源,所述K1是大于1的正整数;目标参考信号占用所述K1个参考信号资源中的一个参考信号资源;所述K1个参考信号资源中至少包括第一参考信号资源和第二参考信号资源;在给定资源单位中,所述第一参考信号资源相较所述第二参考信号资源占用更多的资源颗粒;所述第一参考信号资源集合被用于副链路定位;所述第二参考信号资源所占用的任一资源颗粒都被所述第一参考信号资源占用,且所述第一参考信号资源所占用的资源颗粒中至少存在一个资源颗粒不被所述第二参考信号资源所占用;所述目标参考信号的接收者针对所述目标参考信号的测量被用于生成所述位置信息,所述目标参考信号的所述接收者发送所述位置信息;所述给定资源单位的定义包括以下中的至少之一:
-同一个子信道;
-同一个PRB所对应的带宽;
-同一个BWP;
-同一数量的连续的多载波符号;
-同一个时隙。
作为一个实施例,本申请中的方案的好处在于:优化SL的定位参考信号的发送,以提升性能。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本发明的一个实施例的UE定位的结构图;
图6示出了根据本申请的一个实施例的目标参考信号的流程图;
图7示出了根据本申请的另一个实施例的目标参考信号的流程图;
图8示出了根据本申请的一个实施例的确定是否发送目标参考信号的流程图;
图9示出了根据本申请的第一节点、第二节点和第三节点之间的示意图;
图10示出了根据本申请的一个实施例的第一参考信号资源和第二参考信号资源的示意图;
图11示出了根据本申请的一个实施例的M1个候选参考信号资源的示意图;
图12示出了根据本发明的一个实施例的用于第一节点中的处理装置的结构框图;
图13示出了根据本发明的一个实施例的用于第二节点中的处理装置的结构框图;
图14示出了根据本发明的一个实施例的用于第三节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了一个第一节点的处理流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。在实施例1中,本申请中的第一节点在步骤101中接收第一信息块,所述第一信息块被用于确定第一参考信号资源集合;在步骤102中发送目标参考信号。
实施例1中,所述第一参考信号资源集合包括K1个参考信号资源,所述K1是大于1的正整数;所述目标参考信号占用所述K1个参考信号资源中的一个参考信号资源;所述K1个参考信号资源中至少包 括第一参考信号资源和第二参考信号资源;在给定资源单位中,所述第一参考信号资源相较所述第二参考信号资源占用更多的资源颗粒;所述第一参考信号资源集合被用于副链路定位;所述第二参考信号资源所占用的任一资源颗粒都被所述第一参考信号资源占用,且所述第一参考信号资源所占用的资源颗粒中至少存在一个资源颗粒不被所述第二参考信号资源所占用;所述给定资源单位的定义包括以下中的至少之一:
-同一个子信道;
-同一个PRB所对应的带宽;
-同一个BWP;
-同一数量的连续的多载波符号;
-同一个时隙。
作为一个实施例,所述第一信息块包括一个RRC(Radio Resource Control,无线资源控制)信令中的全部或部分。
作为一个实施例,所述第一信息块包括一个RRC IE(Radio Resource Control Information Element,无线资源控制信息单元)。
作为一个实施例,所述第一信息块包括一个MAC(Multimedia Access Control,多媒体接入控制)信令中的全部或部分。
作为一个实施例,所述第一信息块包括一个MAC CE(Control Element,控制单元)。
作为一个实施例,所述第一信息块包括多个RRC信令。
作为一个实施例,所述第一信息块包括多个RRC IE。
作为一个实施例,所述第一信息块包括多个MAC信令。
作为一个实施例,所述第一信息块包括多个MAC CE。
作为一个实施例,所述第一信息块通过RRC信令传输。
作为一个实施例,所述第一信息块通过MAC信令传输。
作为一个实施例,所述第一信息块通过更高层信令(Higher Layer Signaling)传输。
作为一个实施例,所述第一信息块被用于指示所述第一参考信号资源集合中任一参考信号资源所占用的时域资源。
作为一个实施例,所述第一信息块被用于指示所述第一参考信号资源集合中任一参考信号资源所占用的频域资源。
作为一个实施例,所述第一信息块被用于指示所述第一参考信号资源集合中任一参考信号资源所占用的REs(Resource Elements,资源颗粒)。
作为一个实施例,所述K1等于1。
作为一个实施例,所述第一信息块被用于指示所述K1个参考信号资源中任一参考信号资源所占用的时域资源。
作为一个实施例,所述第一信息块被用于指示所述K1个参考信号资源中任一参考信号资源所占用的频域资源。
作为一个实施例,所述第一信息块被用于指示所述K1个参考信号资源中任一参考信号资源所占用的RE s。
作为一个实施例,所述第一信息块被用于确定所述K1个参考信号资源中任一参考信号资源所采用的梳状尺寸(Comb Size)。
作为一个实施例,所述第一信息块被用于确定所述K1个参考信号资源中任一参考信号资源所采用的图样(Pattern)。
作为一个实施例,所述第一信息块被用于确定所述第一参考信号资源集合所对应的ID。
作为一个实施例,所述第一信息块被用于确定所述第一参考信号资源集合所采用的周期(Periodicity)。
作为一个实施例,所述第一信息块被用于确定所述第一参考信号资源集合所采用的时隙偏移(Slot offset)。
作为一个实施例,所述第一信息块被用于确定所述第一参考信号资源集合所采用的重复因子(Repetition Factor)。
作为一个实施例,所述第一信息块被用于确定所述第一参考信号资源集合所采用的时间间隔(Time Gap)。
作为一个实施例,所述第一信息块被用于确定所述第一参考信号资源集合所占用的符号数。
作为一个实施例,所述第一信息块被用于确定所述第一参考信号资源集合采用的Muting配置。
作为一个实施例,所述第一信息块被用于确定所述第一参考信号资源集合采用的Muting图样(Pattern)。
作为一个实施例,所述第一信息块被用于确定所述K1个参考信号资源中任一参考信号资源对应的资源ID(ResourceID)。
作为一个实施例,所述第一信息块被用于确定所述K1个参考信号资源中任一参考信号资源对应的序列ID(SequenceID)。
作为一个实施例,所述第一信息块被用于确定所述K1个参考信号资源中任一参考信号资源采用的CombSize(梳尺寸)。
作为一个实施例,所述第一信息块被用于确定所述K1个参考信号资源中任一参考信号资源采用的ReOffset(RE偏移)。
作为一个实施例,所述第一信息块被用于确定所述K1个参考信号资源中任一参考信号资源采用的SlotOffset(时隙偏移)。
作为一个实施例,所述第一信息块被用于确定所述K1个参考信号资源中任一参考信号资源采用的SymbolOffset(符号偏移)。
作为一个实施例,所述第一信息块被用于确定所述K1个参考信号资源中任一参考信号资源所对应的QCL-Info。
作为一个实施例,所述第一参考信号资源集合对应一个PRS Resource Set。
作为一个实施例,所述第一参考信号资源集合属于一个副链路资源池(Sidelink Resource Pool)。
作为一个实施例,所述第一参考信号资源集合被用于副链路传输。
作为一个实施例,所述第一参考信号资源集合被用于副链路通信。
作为一个实施例,所述第一参考信号资源集合被用于副链路定位。
作为一个实施例,所述第一参考信号资源集合被用于SL PRS传输。
作为一个实施例,所述第一参考信号资源集合被专用于(Dedicated for)SL PRS传输。
作为一个实施例,所述第一参考信号资源集合是LMF(Location Management Function,位置管理功能)配置的。
作为一个实施例,所述第一参考信号资源集合是gNB(g-Node-B)配置的。
作为一个实施例,所述第一信息块的名字包括SL。
作为一个实施例,所述第一信息块的名字包括PRS。
作为一个实施例,所述第一信息块的名字包括Info。
作为一个实施例,所述第一信息块的名字包括Positioning。
作为一个实施例,所述目标参考信号包括PRS。
作为一个实施例,所述目标参考信号包括SL PRS。
作为一个实施例,所述目标参考信号包括CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号)。
作为一个实施例,所述目标参考信号包括SL CSI-RS。
作为一个实施例,所述目标参考信号包括SRS(Sounding Reference Signal,侦听参考信号)。
作为一个实施例,所述目标参考信号包括SL SRS。
作为一个实施例,所述目标参考信号被用于生成位置信息。
作为一个实施例,所述目标参考信号被用于定位(Positioning)。
作为一个实施例,所述目标参考信号被用于副链路定位(Sidelink Positioning)。
作为一个实施例,所述目标参考信号被用于得到收发时差(Rx-Tx Time Difference)。
作为一个实施例,所述目标参考信号被用于得到副链路收发时差(Sidelink Rx-Tx Time Difference)。
作为一个实施例,所述目标参考信号被用于得到UE收发时差(UE Rx-Tx Time Difference)。
作为一个实施例,所述目标参考信号被用于得到所述目标参考信号的接收定时。
作为一个实施例,所述目标参考信号被所述目标参考信号的接收者用于确定一个子帧的接收定时。
作为一个实施例,所述目标参考信号被所述目标参考信号的接收者用于确定一个时隙的接收定时。
作为一个实施例,所述目标参考信号被用于定位测量(Positioning measurement)。
作为一个实施例,所述目标参考信号被用于副链路定位测量(Sidelink positioning measurement)。
作为一个实施例,所述目标参考信号被用于得到AoA(Angle-of-Arrival,到达角)。
作为一个实施例,所述目标参考信号被用于得到RSRP(Reference Signal Received Power,参考信号接收功率)。
作为一个实施例,所述目标参考信号被用于得到RSRPP(Reference Signal Received Path Power,参考信号接收路径功率)。
作为一个实施例,所述目标参考信号被用于得到RSTD(Reference Signal Time Difference,参考信号时差)。
作为一个实施例,所述目标参考信号被用于得到RTOA(Relative Time of Arrival,相对到达时间)。
作为一个实施例,所述目标参考信号被用于得到SL-RTOA。
作为一个实施例,所述目标参考信号被用于RTT定位。
作为一个实施例,所述目标参考信号被用于Single-sided(单边)RTT定位。
作为一个实施例,所述目标参考信号被用于Double-sided(双边)RTT定位。
作为一个实施例,所述目标参考信号被用于得到位置信息(Location Information)。
作为一个实施例,所述目标参考信号是一个LMF配置的。
作为一个实施例,所述第一参考信号资源和所述第二参考信号资源分别对应两个ResourceID。
作为该实施例的一个子实施例,所述两个ResourceID是不同的。
作为该实施例的一个子实施例,所述两个ResourceID是相关联的。
作为该实施例的一个子实施例,所述两个ResourceID是相同的。
作为一个实施例,所述第一参考信号资源和所述第二参考信号资源分别对应两个不同的CombSize。
作为一个实施例,所述第一参考信号资源和所述第二参考信号资源分别对应两个不同的ReOffset。
作为一个实施例,所述第一参考信号资源和所述第二参考信号资源分别对应两个不同的频域密度。
作为一个实施例,所述第一参考信号资源和所述第二参考信号资源分别对应两个不同的时域密度。
作为一个实施例,所述给定资源单位对应频域是指同一个子信道。
作为一个实施例,所述给定资源单位对应频域是指同一个PRB所对应的带宽。
作为一个实施例,所述给定资源单位对应频域是指同一个BWP。
作为一个实施例,所述给定资源单位对应时域是指同一数量的连续的OFDM符号。
作为一个实施例,所述给定资源单位对应时域是指同一个时隙。
作为一个实施例,所述给定资源单位是同一个子信道且同一数量的连续的OFDM符号。
作为一个实施例,所述给定资源单位是同一个子信道且同一个时隙。
作为一个实施例,所述给定资源单位是同一个PRB所对应的带宽且同一数量的连续的OFDM符号。
作为一个实施例,所述给定资源单位是同一个PRB所对应的带宽且同一个时隙。
作为一个实施例,所述给定资源单位是同一个BWP且同一数量的连续的OFDM符号。
作为一个实施例,所述给定资源单位是同一个BWP且同一个时隙。
作为一个实施例,所述子信号在频域占用正整数个PRB所对应的频带宽度。
作为该实施例的一个子实施例,所述正整数个PRB在频域是连续的。
作为一个实施例,所述子信号在频域占用正整数个PRB所对应的子载波数。
作为一个实施例,在所述给定资源单位中,所述第一参考信号资源所占用的RE数是所述第二参考信 号资源所占用的RE数的L1倍,所述L1是大于1的正整数。
作为该实施例的一个子实施例,所述L1等于2。
作为该实施例的一个子实施例,所述L1等于4。
作为该实施例的一个子实施例,所述L1等于8。
作为该实施例的一个子实施例,所述L1等于16。
作为该实施例的一个子实施例,所述L1是2、4、8或16中的之一。
作为一个实施例,测量所述目标参考信号得到位置信息。
作为一个实施例,所述目标参考信号被用于生成位置信息。
作为一个实施例,所述位置信息被上报给一个LMF。
作为一个实施例,所述位置信息被传输给所述第一节点。
作为一个实施例,所述位置信息是经由所述第一节点上报给一个LMF。
作为一个实施例,所述位置信息被传输给本申请中的第二节点。
作为一个实施例,所述位置信息是经由本申请中的所述第二节点上报给一个LMF。
作为一个实施例,所述位置信息被用于确定RTT。
作为一个实施例,所述位置信息被一个LMF用于确定RTT。
作为一个实施例,所述位置信息被用于定位(positioning)。
作为一个实施例,所述位置信息被用于位置有关的测量(Location related measurement)。
作为一个实施例,所述位置信息被用于副链路定位(Sidelink positioning)。
作为一个实施例,所述位置信息被用于确定传播延迟(Propagation Delay)。
作为一个实施例,所述位置信息被所述LMF用于确定传播延迟。
作为一个实施例,所述位置信息被用于RTT定位。
作为一个实施例,所述位置信息被用于Single-sided(单边)RTT定位。
作为一个实施例,所述位置信息被用于Double-sided(双边)RTT定位。
作为一个实施例,所述位置信息被用于Multi-RTT(Multiple-Round Trip Time)定位。
作为一个实施例,所述位置信息包括第一收发时差。
作为一个实施例,所述位置信息包括位置有关的测量(Location related measurements)。
作为一个实施例,所述位置信息包括位置估计(Location estimate)。
作为一个实施例,所述位置信息包括定位辅助数据(Assistance Data)。
作为一个实施例,所述位置信息包括时间质量(TimingQuality)。
作为一个实施例,所述位置信息包括接收波束索引(RxBeamIndex)。
作为一个实施例,所述位置信息包括接收功率信息。
作为一个实施例,所述位置信息被用于转让(Transfer)NAS(Non-Access-Stratum,非接入层)特定信息。
作为一个实施例,所述位置信息被用于转让时钟的定时信息。
作为一个实施例,所述接收功率信息包括所述目标参考信号的RSRP(Reference Signal Received Power,参考信号接收功率)。
作为一个实施例,所述接收功率信息包括所述目标参考信号的RSRPP(Reference Signal Received Path Power,参考信号接收路径功率)。
作为一个实施例,所述接收功率信息包括RSRP结果差(RSRP-ResultDiff)。
作为一个实施例,所述接收功率信息的单位是dBm(分贝毫)。
作为一个实施例,所述接收功率信息的单位是dB(分贝)。
作为一个实施例,所述位置信息包括RSTD(Reference Signal Time Difference,参考信号时间功率)。
作为一个实施例,所述位置信息包括副链路收发时差。
作为一个实施例,所述位置信息包括UE收发时差。
作为一个实施例,所述位置信息包括RxTxTimeDiff(接收发送时间差)。
作为一个实施例,所述位置信息包括SL-RxTxTimeDiff(副链路接收发送时间差)。
作为一个实施例,所述位置信息包括RTOA(Relative Time of Arrival,相对到达时间)。
作为一个实施例,所述位置信息包括SL-RTOA。
作为一个实施例,本申请中的所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,本申请中的所述多载波符号是SC-FDMA(Single-Carrier Frequency Division Multiple Access,单载波-频分多址)符号。
作为一个实施例,本申请中的所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩频正交频分复用)符号。
作为一个实施例,本申请中的所述多载波符号是IFDMA(Interleaved Frequency Division Multiple Access,交织频分多址)符号。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。附图2说明了5G NR(New Radio,新空口),LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统架构下的V2X通信架构。5G NR或LTE网络架构可称为5GS(5GSystem)/EPS(Evolved Packet System,演进分组系统)某种其它合适术语。
实施例2的V2X通信架构包括UE(User Equipment,用户设备)201,UE241,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220,ProSe功能250和ProSe应用服务器230。所述V2X通信架构可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,所述V2X通信架构提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(UserPlaneFunction,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。所述ProSe功能250是用于适地服务(ProSe,Proximity-based Service)所需的网络相关行为的逻辑功能;包括DPF(Direct Provisioning Function,直接供应功能),直接发现名称管理功能(Direct Discovery Name Management Function),EPC水平发现ProSe功能(EPC-level Discovery ProSe Function)等。所述ProSe应用服务器230具备存储EPC ProSe用户标识,在应用层用户标识和EPC ProSe用户标识之间映射,分配ProSe限制的码后缀池等功能。
作为一个实施例,所述UE201和所述UE241之间通过PC5参考点(Reference Point)连接。
作为一个实施例,所述ProSe功能250分别通过PC3参考点与所述UE201和所述UE241连接。
作为一个实施例,所述ProSe功能250通过PC2参考点与所述ProSe应用服务器230连接。
作为一个实施例,所述ProSe应用服务器230连接分别通过PC1参考点与所述UE201的ProSe应用和所述UE241的ProSe应用连接。
作为一个实施例,本申请中的所述第一节点是所述UE201,本申请中的所述第二节点是所述UE241。
作为一个实施例,本申请中的所述第一节点是所述UE241,本申请中的所述第二节点是所述UE201。
作为一个实施例,所述UE201和所述UE241之间的无线链路对应本申请中的副链路(Sidelink,SL)。
作为一个实施例,所述gNB203对应本申请中的所述第三节点。
作为一个实施例,所述ProSe功能250对应本申请中的所述第三节点。
作为一个实施例,所述ProSe应用服务器230对应本申请中的所述第三节点。
作为一个实施例,所述第三节点包括位置服务中心。
作为一个实施例,所述第三节点包括基站。
作为一个实施例里,所述位置服务中心是NAS(Non-Access-Stratum,非接入层)设备。
作为一个实施例,所述位置服务中心包括LMF。
作为一个实施例,从所述UE201到NR节点B的无线链路是上行链路。
作为一个实施例,从NR节点B到UE201的无线链路是下行链路。
作为一个实施例,所述UE201支持V2X传输。
作为一个实施例,所述UE241支持V2X传输。
作为一个实施例,所述NR节点B203是宏蜂窝(MarcoCellular)基站。
作为一个实施例,所述NR节点B203是微小区(Micro Cell)基站。
作为一个实施例,所述NR节点B203是微微小区(PicoCell)基站。
作为一个实施例,所述NR节点B203是家庭基站(Femtocell)。
作为一个实施例,所述NR节点B203是支持大时延差的基站设备。
作为一个实施例,所述NR节点B203是一个RSU(Road Side Unit,路边单元)。
作为一个实施例,所述NR节点B203包括卫星设备。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,PDCP子层304还提供第一通信节点设备对第二通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责 QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第二通信节点设备的PDCP304被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述第二通信节点设备的PDCP354被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述第一信息块生成于所述RRC306。
作为一个实施例,所述第一信息块生成于所述RRC306之上。
作为一个实施例,所述第一信息块生成于NAS层。
作为一个实施例,所述目标参考信号生成于所述PHY301或者所述PHY351。
作为一个实施例,本申请中的针对所述M1个候选参考信号资源进行的测量包括在所述RRC子层306执行的层3滤波。
作为一个实施例,本申请中的针对所述M1个候选参考信号资源进行的测量是在所述PHY301或者所述PHY351被执行的。
作为一个实施例,所述位置信息生成于所述RRC306。
作为一个实施例,所述位置信息生成于NAS层。
作为一个实施例,所述第一节点是一个终端。
作为一个实施例,所述第一节点是一个中继。
作为一个实施例,所述第一节点是一个交通工具。
作为一个实施例,所述第二节点是一个终端。
作为一个实施例,所述第二节点是一个中继。
作为一个实施例,所述第二节点是一个交通工具。
作为一个实施例,所述第三节点是一个gNB。
作为一个实施例,所述第三节点是一个TRP(Transmitter Receiver Point,发送接收点)。
作为一个实施例,所述第三节点被用于管理多个TRP。
作为一个实施例,所述第三节点是用于管理多个小区的节点。
作为一个实施例,所述第三节点是用于管理多个服务小区的节点。
作为一个实施例,所述第三节点是LMF。
作为一个实施例,所述第三节点是位置服务中心。
作为一个实施例,所述第三节点对应本申请中的所述网络设备。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM)) 的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:首先接收第一信息块,所述第一信息块被用于确定第一参考信号资源集合;随后发送目标参考信号;所述第一参考信号资源集合包括K1个参考信号资源,所述K1是大于1的正整数;所述目标参考信号占用所述K1个参考信号资源中的一个参考信号资源;所述K1个参考信号资源中至少包括第一参考信号资源和第二参考信号资源;在给定资源单位中,所述第一 参考信号资源相较所述第二参考信号资源占用更多的资源颗粒;所述第一参考信号资源集合被用于副链路定位;所述第二参考信号资源所占用的任一资源颗粒都被所述第一参考信号资源占用,且所述第一参考信号资源所占用的资源颗粒中至少存在一个资源颗粒不被所述第二参考信号资源所占用;所述给定资源单位的定义包括{同一个子信道、同一个PRB所对应的带宽、同一个BWP、同一数量的连续的多载波符号、同一个时隙}中的至少之一。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先接收第一信息块,所述第一信息块被用于确定第一参考信号资源集合;随后发送目标参考信号;所述第一参考信号资源集合包括K1个参考信号资源,所述K1是大于1的正整数;所述目标参考信号占用所述K1个参考信号资源中的一个参考信号资源;所述K1个参考信号资源中至少包括第一参考信号资源和第二参考信号资源;在给定资源单位中,所述第一参考信号资源相较所述第二参考信号资源占用更多的资源颗粒;所述第一参考信号资源集合被用于副链路定位;所述第二参考信号资源所占用的任一资源颗粒都被所述第一参考信号资源占用,且所述第一参考信号资源所占用的资源颗粒中至少存在一个资源颗粒不被所述第二参考信号资源所占用;所述给定资源单位的定义包括{同一个子信道、同一个PRB所对应的带宽、同一个BWP、同一数量的连续的多载波符号、同一个时隙}中的至少之一。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:接收目标参考信号;第一参考信号资源集合包括K1个参考信号资源,所述K1是大于1的正整数;所述目标参考信号占用所述K1个参考信号资源中的一个参考信号资源;所述K1个参考信号资源中至少包括第一参考信号资源和第二参考信号资源;在给定资源单位中,所述第一参考信号资源相较所述第二参考信号资源占用更多的资源颗粒;所述第一参考信号资源集合被用于副链路定位;所述第二参考信号资源所占用的任一资源颗粒都被所述第一参考信号资源占用,且所述第一参考信号资源所占用的资源颗粒中至少存在一个资源颗粒不被所述第二参考信号资源所占用;所述给定资源单位的定义包括{同一个子信道、同一个PRB所对应的带宽、同一个BWP、同一数量的连续的多载波符号、同一个时隙}中的至少之一。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收目标参考信号;第一参考信号资源集合包括K1个参考信号资源,所述K1是大于1的正整数;所述目标参考信号占用所述K1个参考信号资源中的一个参考信号资源;所述K1个参考信号资源中至少包括第一参考信号资源和第二参考信号资源;在给定资源单位中,所述第一参考信号资源相较所述第二参考信号资源占用更多的资源颗粒;所述第一参考信号资源集合被用于副链路定位;所述第二参考信号资源所占用的任一资源颗粒都被所述第一参考信号资源占用,且所述第一参考信号资源所占用的资源颗粒中至少存在一个资源颗粒不被所述第二参考信号资源所占用;所述给定资源单位的定义包括{同一个子信道、同一个PRB所对应的带宽、同一个BWP、同一数量的连续的多载波符号、同一个时隙}中的至少之一。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:首先发送第一信息块,所述第一信息块被用于确定第一参考信号资源集合;随后接收位置信息;所述第一参考信号资源集合包括K1个参考信号资源,所述K1是大于1的正整数;目标参考信号占用所述K1个参考信号资源中的一个参考信号资源;所述K1个参考信号资源中至少包括第一参考信号资源和第二参考信号资源;在给定资源单位中,所述第一参考信号资源相较所述第二参考信号资源占用更多的资源颗粒;所述第一参考信号资源集合被用于副链路定位;所述第二参考信号资源所占用的任一资源颗粒都被所述第一参考信号资源占用,且所述第一参考信号资源所占用的资源颗粒中至少存在一个资源颗粒不被所述第二参考信号资源所占用;所述目标参考信号的接收者针对所述目标参考信号的测量被用于生成所述位置信息,所述目标参考信号的所述接收者发送所述位置信息;所述给定资源单位的定义包括{同一个子信道、同一个PRB所对应的带宽、同一个BWP、同一数量的连续的多载波符号、同一个时隙}中的至少之一。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先发送第一信息块,所述第一信息块被用于确定第一参考信号资源集合;随后接收位置信息;所述第一参考信号资源集合包括K1个参考信号资源,所述K1是大于1的正整数;目标参考信号占用所述K1个参考信号资源中的一个参考信号资源;所述K1个参考信号资源中至少包括第一参考信号资源和第二参考信号资源;在给定资源单位中,所述第一参考信号资源相较所述第二参考信号资源占用更多的资源颗粒;所述第一参考信号资源集合被用于副链路定位;所述第二参考信号资源所占用的任一资源颗粒都被所述第一参考信号资源占用,且所述第一参考信号资源所占用的资源颗粒中至少存在一个资源颗粒不被所述第二参考信号资源所占用;所述目标参考信号的接收者针对所述目标参考信号的测量被用于生成所述位置信息,所述目标参考信号的所述接收者发送所述位置信息;所述给定资源单位的定义包括{同一个子信道、同一个PRB所对应的带宽、同一个BWP、同一数量的连续的多载波符号、同一个时隙}中的至少之一。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第二通信设备410对应本申请中的第三节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第一通信设备450是一个终端。
作为一个实施例,所述第一通信设备450是一个中继。
作为一个实施例,所述第一通信设备450是一个具有定位能力的终端。
作为一个实施例,所述第二通信设备410是一个UE。
作为一个实施例,所述第二通信设备410是一个终端。
作为一个实施例,所述第二通信设备410是一个中继。
作为一个实施例,所述第二通信设备410是一个具有定位能力的终端。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,所述第二通信设备410是一个中继。
作为一个实施例,所述第二通信设备410是一个网络设备。
作为一个实施例,所述第二通信设备410是一个服务小区。
作为一个实施例,所述第二通信设备410是一个TRP。
作为一个实施例,所述第二通信设备410是一个具有定位能力的基站。
作为一个实施例,所述第二通信设备410是LMF。
作为一个实施例,所述第二通信设备410是位置服务中心。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第一信息块;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第一信息块。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于发送目标参考信号;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于接收目标参考信号。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于在第一时间窗中的M1个候选参考信号资源进行信道测量。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于发送位置信息;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于接收位置信息。
实施例5
实施例5示例了根据本申请的一个实施例的UE定位的结构图,如附图5所示。
UE501通过LTE(Long Term Evolution,长期演进)-Uu接口或NR(New Radio)-Uu新无线接口与ng-eNB502或gNB503通信;ng-eNB502和gNB 503有时被称为基站,ng-eNB502和gNB 503也被称为NG(Next Generation,下一代)-RAN(Radio Access Network,无线接入网)。ng-eNB502和gNB 503分别通过NG(Next Generation,下一代)-C(Control plane,控制面)与AMF(Authentication Management Field,鉴权管理域)504连接;AMF504通过NL1接口与LMF(Location Management Function,位置管理功能)505连接。
所述AMF504从另外一个实体,例如GMLC(Gateway Mobile Location Centre,网关移动位置中心)或者UE,接收到与特定UE关联的位置服务请求,或者所述AMF504自己决定启动被关联到特定UE的位置服务;然后所述AMF504发送位置服务请求到一个LMF,例如所述LMF505;然后这个LMF处理所述位置服务请求,包括发送辅助数据到所述特定UE以辅助基于UE(UE-based)的或者UE辅助的(UE-assisted)定位,以及包括接收来自UE上报的位置信息(Location information);接着这个LMF将位置服务的结果返回给所述AMF504;如果所述位置服务是另外一个实体请求的,所述AMF504将所述位置服务的结果返回给那个实体。
作为一个实施例,本申请的网络设备包括LMF。
作为一个实施例,本申请的网络设备包括NG-RAN和LMF。
作为一个实施例,本申请的网络设备包括NG-RAN、AMF和LMF。
实施例6
实施例6示例了一个目标参考信号的流程图,如附图6所示。在附图6中,第一节点U1、第二节点U2和第三节点N3两两之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例6中的实施例、子实施例和附属实施例能够被应用到本申请中的实施例7、8中的实施例、子实施例和附属实施例中;反之,在不冲突的情况下,本申请中的实施例7、8中的实施例、子实施例和附属实施例能够被应用到实施例6中。
对于第一节点U1,在步骤S10中接收第一信息块;在步骤S11中在第一时间窗中的M1个候选参考信号资源进行信道测量;在步骤S12中发送目标参考信号。
对于第二节点U2,在步骤S20中接收第一信息块;在步骤S21中接收目标参考信号;在步骤S22中发送位置信息。
对于第三节点N3,在步骤S30中发送第一信息块;在步骤S31中接收位置信息。
实施例6中,所述第一信息块被用于确定第一参考信号资源集合;所述第一参考信号资源集合包括K1个参考信号资源,所述K1是大于1的正整数;所述目标参考信号占用所述K1个参考信号资源中的一个参考信号资源;所述K1个参考信号资源中至少包括第一参考信号资源和第二参考信号资源;在给定资源单位中,所述第一参考信号资源相较所述第二参考信号资源占用更多的资源颗粒;所述第一参考信号资源集合被用于副链路定位;所述第二参考信号资源所占用的任一资源颗粒都被所述第一参考信号资源占用,且所述第一参考信号资源所占用的资源颗粒中至少存在一个资源颗粒不被所述第二参考信号资源所占用;所述给定资源单位的定义包括{同一个子信道、同一个PRB所对应的带宽、同一个BWP、同一数量的连续的多载波符号、同一个时隙}中的至少之一;所述第二节点针对所述目标参考信号的测量被用于生成所述位置信息;所述M1个候选参考信号资源在所述给定资源单位中占用相同数量的资源颗粒,所述目标参考信号所占用的时域资源被用于确定所述第一时间窗;针对所述M1个候选参考信号资源的所述信道测量被用于确定M1个RSSIs;第一信道繁忙比是在所述第一时间窗内被测量得到的所述M1个RSSIs中超过目标阈值的比例;所述第一信道繁忙比被用于确定发送所述目标参考信号;所述K1个参考信号资源中至少存在一个参考信号资源与所述M1个候选参考信号资源中的一个候选参考信号资源对应相同的身份;所述M1是大于1的正整数。
作为一个实施例,所述第一时间窗包括多个时域资源块。
作为一个实施例,所述第一时间窗包括本申请中的所述第一资源池在时域中的多个时域资源块。
作为一个实施例,所述第一时间窗包括的所述多个时域资源块中的任一时域资源块是所述第一资源 池在时域包括的所述多个时域资源块中的之一。
作为一个实施例,所述第一时间窗包括多个时隙。
作为一个实施例,所述第一时间窗的长度是一个更高层信令配置的。
作为一个实施例,所述第一时间窗的长度是预配置的。
作为一个实施例,所述第一时间窗的长度与本申请中的所述第一资源池中的子载波间隔有关。
作为一个实施例,所述第一时间窗是一个CBR测量窗。
作为一个实施例,所述第一时间窗是CBR测量的时间窗。
作为一个实施例,所述信道测量包括CBR测量。
作为一个实施例,所述信道测量包括用于确定SL CR(Sidelink Channel Occupancy Ratio,副链路信道占用率)的测量。
作为一个实施例,所述M1个候选参考信号资源分别对应M1个ResourceID。
作为一个实施例,所述第一参考信号资源集合包括所述M1个候选参考信号资源。
作为一个实施例,所述M1个候选参考信号资源都采用相同的CombSize。
作为一个实施例,所述M1个候选参考信号资源都采用相同的ReOffset。
作为一个实施例,所述M1个候选参考信号资源都采用相同的频域密度。
作为一个实施例,所述M1个候选参考信号资源都采用相同的时域密度。
作为一个实施例,所述M1个候选参考信号资源属于同一个参考信号资源集合。
作为一个实施例,所述目标参考信号在子帧n开始被发送,所述第一时间窗对应子帧(n-a)到子帧(n-1),所述a是大于1的正整数。
作为该实施例的一个子实施例,所述a与所述目标参考信号所采用的子载波间隔有关。
作为该实施例的一个子实施例,所述a等于100或100·2μ,所述目标参考信号所采用的子载波间隔被用于确定μ的值。
作为一个实施例,所述目标参考信号所占用的时域资源对应第一目标时域资源块,所述第一目标时域资源块被用于确定所述第一时间窗。
作为该实施例的一个子实施例,所述第一目标时域资源块被用于确定第二目标时域资源块,所述第二目标时域资源块被用于确定所述第一时间窗。
作为该实施例的一个子实施例,所述第二目标时域资源块包括多个多载波符号。
作为该实施例的一个子实施例,所述第二目标时域资源块包括一个时隙。
作为该实施例的一个子实施例,所述第二目标时域资源块属于一个时隙。
作为该实施例的一个子实施例,所述第二目标时域资源块是一个时隙。
作为该实施例的一个子实施例,所述第二目标时域资源块是一个副链路时隙。
作为该实施例的一个子实施例,所述第二目标时域资源块早于所述第一目标时域资源块,所述第二目标时域资源块比所述第一目标时域资源块提前N0个时隙,N0是正整数。
作为该实施例的一个子实施例,所述第二目标时域资源块在所述第一资源池包括的所述多个时域资源块中的索引等于所述第一目标时域资源块在所述第一资源池包括的所述多个时域资源块中的索引与所述N0的差值。
作为该实施例的一个子实施例,所述N0个时隙是拥塞控制处理时间。
作为该实施例的一个子实施例,所述N0的取值与所述第一资源池中的子载波间隔有关。
作为该实施例的一个子实施例,所述第一时间窗包括的所述多个时域资源块中的第一个时域资源块比所述第二目标时域资源块提前a个时域资源块,所述第一时间窗包括的所述多个时域资源块中的最后一个时域资源块比所述第二目标时域资源块提前1个时域资源块,a是一个正整数。
作为该实施例的一个子实施例,所述第一时间窗包括的所述多个时隙中的第一个时隙比所述第二目标时域资源块提前a个时隙,所述第一时间窗包括的所述多个时隙中的最后一个时隙比所述第二目标时域资源块提前1个时隙,a是一个正整数。
作为该实施例的一个子实施例,所述第一时间窗是[n-a,n-1],n是所述第二目标时域资源块的索引。
作为该实施例的一个子实施例,所述第一时间窗的长度是所述a。
作为该实施例的一个子实施例,所述第一时间窗的长度等于100。
作为该实施例的一个子实施例,所述第一时间窗的长度等于100×2μ,μ与所述第一资源池中的子载波间隔有关。
作为一个实施例,针对所述M1个候选参考信号资源的SL CR评估采用所述目标阈值。
作为一个实施例,针对所述M1个候选参考信号资源的SL CBR测量采用所述目标阈值。
作为一个实施例,所述目标阈值是配置的。
作为一个实施例,所述目标阈值是预配置的。
作为一个实施例,所述目标阈值的单位是瓦。
作为一个实施例,所述目标阈值的单位是毫瓦。
作为一个实施例,所述目标阈值的单位是dBm(毫分贝)。
作为一个实施例,所述目标阈值被用于SL CBR测量。
作为一个实施例,所述目标阈值被用于SL CR评估(Evaluate)。
作为一个实施例,所述目标阈值被用于确定是否能够发送用于SL的定位参考信号。
作为一个实施例,所述目标阈值被用于确定是否能够发送用于SL的定位参考信号。
典型的,所述M1个候选参考信号资源对应相同的配置信息,所述配置信息包括梳状尺寸、占用符号数,占用子载波数、重复因子、周期或发送功率值中的至少之一。
作为一个实施例,所述M1个候选参考信号资源对应相同的梳状尺寸。
作为一个实施例,所述M1个候选参考信号资源在相同的时域长度中占用相同的符号数。
作为该实施例的一个子实施例,所述时域长度是一个时隙。
作为该实施例的一个子实施例,所述时域长度是连续的多个时隙。
作为该实施例的一个子实施例,所述时域长度是一个子帧。
作为该实施例的一个子实施例,所述时域长度是一个系统帧。
作为一个实施例,所述M1个候选参考信号资源在相同的频带宽度中占用相同的子载波数。
作为该实施例的一个子实施例,所述频带宽度是一个子信道。
作为该实施例的一个子实施例,所述频带宽度是一个BWP。
作为该实施例的一个子实施例,所述频带宽度是一个RB。
作为该实施例的一个子实施例,所述时域长度是多个连续的RB。
作为一个实施例,所述M1个候选参考信号资源采用相同的重复因子。
作为一个实施例,所述M1个候选参考信号资源对应相同的周期。
作为一个实施例,所述M1个候选参考信号资源采用相同的发送功率值。
典型的,所述第一参考信号资源和所述第二参考信号资源对应不同的配置信息,所述配置信息包括梳状尺寸、占用符号数,占用子载波数、重复因子、周期或发射功率值中的至少之一。
作为一个实施例,所述第一参考信号资源和所述第二参考信号资源对应不同的梳状尺寸。
作为一个实施例,所述第一参考信号资源和所述第二参考信号资源在相同的时域长度中占用不同的符号数。
作为一个实施例,所述第一参考信号资源和所述第二参考信号资源在相同的频带宽度中占用不同的子载波数。
作为一个实施例,所述第一参考信号资源和所述第二参考信号资源分别采用不同的重复因子。
作为一个实施例,所述第一参考信号资源和所述第二参考信号资源分别对应不同的周期。
作为一个实施例,所述第一参考信号资源和所述第二参考信号资源分别对应不同的发送功率值。
典型的,所述第一参考信号资源和所述第二参考信号资源分别对应第一阈值和第二阈值,所述第一阈值和所述第二阈值不同,所述第一阈值和所述第二阈值都被用于副链路拥塞控制。
作为一个实施例,针对所述第一参考信号资源的SL CR评估采用所述第一阈值。
作为一个实施例,针对所述第一参考信号资源的SL CBR测量采用所述第一阈值。
作为一个实施例,针对所述第二参考信号资源的SL CR评估采用所述第二阈值。
作为一个实施例,针对所述第二参考信号资源的SL CBR测量采用所述第二阈值。
作为一个实施例,所述第一阈值是配置的。
作为一个实施例,所述第一阈值是预配置的。
作为一个实施例,所述第一阈值的单位是瓦。
作为一个实施例,所述第一阈值的单位是毫瓦。
作为一个实施例,所述第一阈值的单位是dBm(毫分贝)。
作为一个实施例,所述第二阈值是配置的。
作为一个实施例,所述第二阈值是预配置的。
作为一个实施例,所述第二阈值的单位是瓦。
作为一个实施例,所述第二阈值的单位是毫瓦。
作为一个实施例,所述第二阈值的单位是dBm(毫分贝)。
作为一个实施例,所述第一阈值被用于与针对所述第一参考信号资源的RSSI测量的结果进行比较。
作为一个实施例,所述第一阈值被用于确定所述第一参考信号资源的是否忙碌。
作为一个实施例,所述第一阈值被用于确定所述第一参考信号资源的是否被占用。
作为一个实施例,所述第一阈值被用于确定所述第一参考信号资源的是否可用。
作为一个实施例,所述第一阈值被用于与针对和所述第一参考信号资源采用相同配置信息的参考信号资源的RSSI测量的结果进行比较。
作为一个实施例,所述第一阈值被用于确定和所述第一参考信号资源采用相同配置信息的参考信号资源的是否忙碌。
作为一个实施例,所述第一阈值被用于确定和所述第一参考信号资源采用相同配置信息的参考信号资源是否被占用。
作为一个实施例,所述第一阈值被用于确定和所述第一参考信号资源采用相同配置信息的参考信号资源是否可用。
作为一个实施例,所述第二阈值被用于与针对所述第二参考信号资源的RSSI测量的结果进行比较。
作为一个实施例,所述第二阈值被用于确定所述第二参考信号资源的是否忙碌。
作为一个实施例,所述第二阈值被用于确定所述第二参考信号资源的是否被占用。
作为一个实施例,所述第二阈值被用于确定所述第二参考信号资源的是否可用。
作为一个实施例,所述第二阈值被用于与针对和所述第二参考信号资源采用相同配置信息的参考信号资源的RSSI测量的结果进行比较。
作为一个实施例,所述第二阈值被用于确定和所述第二参考信号资源采用相同配置信息的参考信号资源的是否忙碌。
作为一个实施例,所述第二阈值被用于确定和所述第二参考信号资源采用相同配置信息的参考信号资源是否被占用。
作为一个实施例,所述第二阈值被用于确定和所述第二参考信号资源采用相同配置信息的参考信号资源是否可用。
作为一个实施例,所述第一阈值被用于SL CBR测量。
作为一个实施例,所述第一阈值被用于SL CR评估。
作为一个实施例,所述第二阈值被用于SL CBR测量。
作为一个实施例,所述第二阈值被用于SL CR评估。
作为一个实施例,所述第一阈值被用于确定是否能够发送用于SL的定位参考信号。
作为一个实施例,所述第二阈值被用于确定是否能够发送用于SL的定位参考信号。
典型的,所述K1个参考信号资源包括所述M1个候选参考信号资源,所述K1是不小于所述M1的正整数。
作为一个实施例,所述M1个候选参考信号资源中的任一候选参考信号资源是所述K1个参考信号资源中的之一。
作为一个实施例,所述M1个候选参考信号资源中的任一候选参考信号资源所采用的ResourceID等于所述K1个参考信号资源中的一个参考信号资源所采用的ResourceID。
作为一个实施例,所述M1个候选参考信号资源中的任一候选参考信号资源所采用的身份等于所述K1个参考信号资源中的一个参考信号资源所采用的身份。
作为一个实施例,所述M1个候选参考信号资源中的任一候选参考信号资源所采用的标识等于所述K1个参考信号资源中的一个参考信号资源所采用的标识。
典型的,所述M1个候选参考信号资源中的M2个候选参考信号资源分别被测量得到的M2个RSSIs中的任一RSSI都超过所述目标阈值;在所述第一时间窗内被测量得到的RSSI超过所述第一阈值的候选参考信号资源的所述比例是M2与第一样本数的比值,M2是不大于所述M1的正整数;所述第一样本数等于所述M1,或者所述第一样本数等于Q;所述Q是大于1的正整数,第一资源池在所述第一时间窗内包括Q个参考信号资源,所述M2个候选参考信号资源中的任一候选参考信号资源是所述Q个参考信号资源中的之一,Q是大于所述M2的正整数。
作为一个实施例,所述第一资源池包括一个副链路资源池(Sidelink Resource Pool)。
作为一个实施例,所述第一资源池被用于副链路传输(Sidelink Transmission)。
作为一个实施例,所述第一资源池被用于副链路通信(Sidelink Communication)。
作为一个实施例,所述第一资源池被用于副链路定位(Sidelink Positioning)。
作为一个实施例,所述第一资源池被用于SL PRS(Sidelink Positioning Reference Signal,副链路定位参考信号)传输。
作为一个实施例,所述第一资源池被专(Dedicated)用于SL PRS传输。
作为一个实施例,所述第一资源池被用于SL PRS和SCI(Sidelink Control Information)传输。
作为一个实施例,所述第一资源池包括多个REs(Resource Elements,资源粒子)。
作为一个实施例,所述第一资源池中的任一RE在时域占用一个多载波符号,在频域占用一个子载波(Subcarrier)。
作为一个实施例,所述第一资源池在时域包括多个时域资源块,所述第一资源池在频域包括多个频域资源块。
作为一个实施例,所述第一资源池在时域包括的所述多个时域资源块分别是多个时隙。
作为一个实施例,所述第一资源池在时域包括的所述多个时域资源块分别是多个多载波符号。
作为一个实施例,所述第一资源池在时域包括的所述多个时域资源块中的任一时域资源块属于一个时隙。
作为一个实施例,所述第一资源池在时域包括的所述多个时域资源块中的任一时域资源块包括至少一个多载波符号。
作为一个实施例,所述第一资源池在时域包括的所述多个时域资源块中的任一时域资源块包括多个多载波符号。
作为一个实施例,所述第一资源池在频域包括的所述多个频域资源块分别是多个子信道(Subchannel)。
作为一个实施例,所述第一资源池在频域包括的所述多个频域资源块分别是多个RBs(Resource Blocks,资源块)。
作为一个实施例,所述第一资源池在频域包括的所述多个频域资源块分别是多个PRBs(Physical Resource Blocks,物理资源块)。
作为一个实施例,所述第一资源池在频域包括的所述多个频域资源块分别是多个子载波。
作为一个实施例,所述第一资源池在频域包括的所述多个频域资源块中的任一频域资源块属于一个子信道。
作为一个实施例,所述第一资源池在频域包括的所述多个频域资源块中的任一频域资源块属于一个RB。
作为一个实施例,所述第一资源池在频域包括的所述多个频域资源块中的任一频域资源块属于一个PRB。
作为一个实施例,所述第一资源池在频域包括的所述多个频域资源块中的任一频域资源块包括至少一个子载波。
作为一个实施例,所述第一资源池在频域包括的所述多个频域资源块中的任一频域资源块包括至少一个RB。
作为一个实施例,所述第一资源池在频域包括的所述多个频域资源块中的任一频域资源块包括至少一个PRB。
作为一个实施例,所述第一资源池在频域包括的所述多个频域资源块中的任一频域资源块包括多个子载波。
作为一个实施例,所述第一资源池在时域包括的所述多个时域资源块分别是多个时隙,所述第一资源池在频域包括的所述多个频域资源块分别是多个PRBs。
作为一个实施例,所述第一资源池包括多个时频资源块。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域是所述第一资源池中的一个时域资源块,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域是所述第一资源池中的一个频域资源块。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域属于所述第一资源池中的一个时域资源块,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域是所述第一资源池中的一个频域资源块。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域属于所述第一资源池中的一个时域资源块,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域属于所述第一资源池中的一个频域资源块。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域属于所述第一资源池中的一个时域资源块,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域包括所述第一资源池中的至少一个频域资源块。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域包括所述第一资源池中的至少一个时域资源块,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域属于所述第一资源池中的一个频域资源块。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域包括所述第一资源池中的至少一个时域资源块,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域包括所述第一资源池中的至少一个频域资源块。
作为一个实施例,所述第一资源池包括的所述多个时频资源块在时域分别是所述第一资源池中的所述多个所述时域资源块,所述第一资源池包括的所述多个时频资源块在频域分别是所述第一资源池中的所述多个频域资源块。
作为一个实施例,所述第一信道繁忙比是所述M2个RSSIs占所述M1个RSSIs的比例。
作为一个实施例,所述第一信道繁忙比是所述M2个候选参考信号资源占所述M1个候选参考信号资源的比例。
作为一个实施例,所述第一信道繁忙比是所述M2个RSSIs占所述Q个参考信号资源所对应的Q个备选RSSIs的比例,所述Q是大于所述M2的正整数。
作为一个实施例,所述第一信道繁忙比是所述M1个候选参考信号资源占Q个参考信号资源的比例,所述Q是大于所述M2的正整数。
作为一个实施例,所述第一信道繁忙比是所述M2与所述M1的比值。
作为一个实施例,所述第一信道繁忙比是所述M2除以所述M1的商。
作为一个实施例,所述第一信道繁忙比是所述M2与第一样本数的比值。
作为一个实施例,所述第一样本数是所述M1。
作为一个实施例,所述第一样本数是所述Q。
作为一个实施例,所述第一信道繁忙比是一个小数。
作为一个实施例,所述第一信道繁忙比是一个百分数。
实施例7
实施例7示例了一个目标参考信号的流程图,如附图7所示。在附图7中,第一节点U4、第二节 点U5和第三节点N6之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例7中的实施例、子实施例和附属实施例能够被应用到实施例6、8中;反之,在不冲突的情况下,实施例6、8中的任一实施例、子实施例和附属实施例能够被应用到实施例7中。
对于第一节点U4,在步骤S40中发送第一信息块;在步骤S41中在第一时间窗中的M1个候选参考信号资源进行信道测量;在步骤S42中发送目标参考信号。
对于第二节点U5,在步骤S50中接收第一信息块;在步骤S51中接收目标参考信号;在步骤S52中发送位置信息。
对于第三节点N6,在步骤S60中接收位置信息。
实施例7中,所述第一信息块被用于确定第一参考信号资源集合;所述第一参考信号资源集合包括K1个参考信号资源,所述K1是大于1的正整数;所述目标参考信号占用所述K1个参考信号资源中的一个参考信号资源;所述K1个参考信号资源中至少包括第一参考信号资源和第二参考信号资源;在给定资源单位中,所述第一参考信号资源相较所述第二参考信号资源占用更多的资源颗粒;所述第一参考信号资源集合被用于副链路定位;所述第二参考信号资源所占用的任一资源颗粒都被所述第一参考信号资源占用,且所述第一参考信号资源所占用的资源颗粒中至少存在一个资源颗粒不被所述第二参考信号资源所占用;所述给定资源单位的定义包括{同一个子信道、同一个PRB所对应的带宽、同一个BWP、同一数量的连续的多载波符号、同一个时隙}中的至少之一;所述第二节点针对所述目标参考信号的测量被用于生成所述位置信息;所述M1个候选参考信号资源在所述给定资源单位中占用相同数量的资源颗粒,所述目标参考信号所占用的时域资源被用于确定所述第一时间窗;针对所述M1个候选参考信号资源的所述信道测量被用于确定M1个RSSIs;第一信道繁忙比是在所述第一时间窗内被测量得到的所述M1个RSSIs中超过目标阈值的比例;所述第一信道繁忙比被用于确定发送所述目标参考信号;所述K1个参考信号资源中至少存在一个参考信号资源与所述M1个候选参考信号资源中的一个候选参考信号资源对应相同的身份;所述M1是大于1的正整数。
典型的,所述M1个候选参考信号资源对应相同的配置信息,所述配置信息包括梳状尺寸、占用符号数,占用子载波数、重复因子、周期或发送功率值中的至少之一。
典型的,所述第一参考信号资源和所述第二参考信号资源对应不同的配置信息,所述配置信息包括梳状尺寸、占用符号数,占用子载波数、重复因子、周期或发射功率值中的至少之一。
典型的,所述第一参考信号资源和所述第二参考信号资源分别对应第一阈值和第二阈值,所述第一阈值和所述第二阈值不同,所述第一阈值和所述第二阈值都被用于副链路拥塞控制。
典型的,所述K1个参考信号资源包括所述M1个候选参考信号资源,所述K1是不小于所述M1的正整数。
典型的,所述M1个候选参考信号资源中的M2个候选参考信号资源分别被测量得到的M2个RSSIs中的任一RSSI都超过所述目标阈值;在所述第一时间窗内被测量得到的RSSI超过所述第一阈值的候选参考信号资源的所述比例是M2与第一样本数的比值,M2是不大于所述M1的正整数;所述第一样本数等于所述M1,或者所述第一样本数等于Q;所述Q是大于1的正整数,第一资源池在所述第一时间窗内包括Q个参考信号资源,所述M2个候选参考信号资源中的任一候选参考信号资源是所述Q个参考信号资源中的之一,Q是大于所述M2的正整数。
作为一个实施例,所述第一信息块生成于所述第三节点。
作为一个实施例,所述第一信息块通过所述第一节点转发给所述第二节点。
实施例8
实施例8示例了根据本申请的一个实施例的确定是否发送目标参考信号的流程图,如附图8所示。
在实施例8中,在步骤S801中确定第一信道繁忙比;在步骤S802中确定第一最大信道占用比;在步骤S803中确定第一信道占比;在步骤S804中判断第一信道占用比是否不大于第一最大信道占用比;当第一信道占用比不大于第一信道占用比时,执行步骤S805,发送目标参考信号;当第一信道占用比大于第一信道占用比是,执行步骤S806,放弃发送目标参考信号;其中,所述第一信息繁忙比被用于确定所述第一最大信道占用比;所述第一信道占用比是在第二时间窗内被用于发送或者被授予的 资源的比例。
作为一个实施例,所述第二时间窗包括多个时域资源块。
作为一个实施例,所述第二时间窗包括所述第一资源池在时域中的多个时域资源块。
作为一个实施例,所述第二时间窗包括多个时隙。
作为一个实施例,所述第二时间窗的长度是一个更高层信令配置的。
作为一个实施例,所述第二时间窗的长度是预配置的。
作为一个实施例,所述第二时间窗的长度与所述第一资源池中的子载波间隔有关。
作为一个实施例,所述第二时间窗是一个CR评估窗。
作为一个实施例,所述第二时间长是CR评估的时间窗。
作为一个实施例,所述第一目标时域资源块被用于确定所述第二目标时域资源块,所述第二目标时域资源块被用于确定所述第一时间窗和所述第二时间窗。
作为一个实施例,所述第二时间窗包括的所述多个时域资源块中的第一个时域资源块比所述第二目标时域资源块提前a个时域资源块,所述第二时间窗包括的所述多个时域资源块中的最后一个时域资源块比所述第二目标时域资源块晚b个时域资源块,a是一个正整数,b是一个非负整数。
作为一个实施例,所述第二时间窗包括的所述多个时隙中的第一个时隙比所述第二目标时域资源块提前a个时隙,所述第二时间窗包括的所述多个时隙中的最后一个时隙比所述第二目标时域资源块晚b个时隙,a是一个正整数,b是一个非负整数。
作为一个实施例,所述第二时间窗是[n-a,n+b],n是所述第二目标时域资源块的索引。
作为一个实施例,所述第二时间窗的长度是a+b+1。
作为一个实施例,所述第二时间窗的长度等于1000。
作为一个实施例,所述第二时间窗的长度等于1000×2μ,μ与所述第一资源池中的子载波间隔有关。
作为一个实施例,所述b等于0。
作为一个实施例,所述b是一个正整数。
作为一个实施例,所述a,所述b与1的和等于1000。
作为一个实施例,所述a,所述b与1的和等于1000×2μ,μ与所述第一资源池中的子载波间隔有关。
作为一个实施例,所述第二时间窗包括所述第一时间窗。
作为一个实施例,所述第二时间窗包括所述第一时间窗和所述第二时间子窗。
作为一个实施例,所述第二时间子窗包括b+1个时域资源块。
作为一个实施例,所述第二时间子窗包括b+1个时隙。
作为一个实施例,所述第二时间子窗是[n,n+b],n是所述第二目标时域资源块的索引。
作为一个实施例,所述第一时间窗的长度等于所述第一时间窗的长度与所述第二时间子窗的长度之和。
作为一个实施例,所述b等于0,所述第二时间子窗的长度为1。
作为一个实施例,所述第一资源池在所述第二时间窗内包括Q1个第一类资源。
作为一个实施例,所述第二时间窗包括所述第一资源池中的所述Q1个第一类资源,Q1是大于1的正整数。
作为一个实施例,所述第一资源池中的所述Q1个第一类资源在时域处于所述第二时间窗之内,Q1是大于1的正整数。
作为一个实施例,所述第一资源池在所述第二时间窗内被配置Q1个第一类资源,Q1是正整数。
作为一个实施例,所述第二时间窗包括所述Q1个第一类资源的时域资源。
作为一个实施例,所述第二时间窗包括所述Q1个第一类资源的时域资源,Q1是大于1的正整数。
作为一个实施例,所述第二时间窗包括所述Q1个第一类资源中的任一第一类资源的时域资源。
作为一个实施例,所述第一定位参考信号所占用的资源是所述Q1个第一类资源中的之一。
作为一个实施例,所述第一资源池在所述第二时间窗内包括Q0个备选资源,Q0是大于所述Q1的正整数。
作为一个实施例,所述第一资源池在所述第二时间窗内被配置Q0个备选资源,Q0是大于所述Q1的 正整数。
作为一个实施例,所述第一节点在所述第一时间窗内的至少一个第一类资源上分别发送至少一个第一类定位参考信号。
作为一个实施例,所述第一定位参考信号属于第一类定位参考信号。
作为一个实施例,所述第一类定位参考信号所占用的资源是所述第一资源池中的第一类资源。
作为一个实施例,在所述第一时间窗内被用于发送第一类定位参考信号所占用的第一类资源的个数不小于1。
作为一个实施例,所述第一节点未在所述第一时间窗内的任一第一类资源上发送任一第一类定位参考信号。
作为一个实施例,在所述第一时间窗内被用于发送第一类定位参考信号所占用的第一类资源的个数等于0。
作为一个实施例,所述第一信道占比是所述第一时间窗内被用于发送第一类定位参考信号所占用的第一类资源的个数以及所述第二时间子窗内被授予的第一类资源的个数的总和占所述Q1个第一类资源的比例。
作为一个实施例,所述第一信道占比是所述第一时间窗内被用于发送第一类定位参考信号所占用的第一类资源的个数以及所述第二时间子窗内被授予的第一类资源的个数的总和与所述Q1的比值。
作为一个实施例,所述第一信道占比是所述第一时间窗内被用于发送第一类定位参考信号所占用的第一类资源的个数以及所述第二时间子窗内被授予的第一类资源的个数的总和除以所述Q1的商。
作为一个实施例,所述第一信道占比是所述第一时间窗内被用于发送第一类定位参考信号所占用的第一类资源的个数以及所述第二时间子窗内被授予的第一类资源的个数的总和占第二样本的比例。
作为一个实施例,所述第一信道占比是所述第一时间窗内被用于发送第一类定位参考信号所占用的第一类资源的个数以及所述第二时间子窗内被授予的第一类资源的个数的总和与第二样本的比值。
作为一个实施例,所述第一信道占比是所述第一时间窗内被用于发送第一类定位参考信号所占用的第一类资源的个数以及所述第二时间子窗内被授予的第一类资源的个数的总和除以第二样本的商。
作为一个实施例,所述第三样本等于所述Q1。
作为一个实施例,所述第三样本等于所述Q0。
作为一个实施例,所述第一信道占比是一个小数。
作为一个实施例,所述第一信道占比是一个百分数。
作为一个实施例,最大信道占用比列表包括多个最大信道占用比,所述多个最大信道占用比分别与多个信道繁忙比范围(range)一一对应;所述第一最大信道占用比是所述多个最大信道占用比中的之一。
作为一个实施例,所述第一信道繁忙比属于所述多个信道繁忙比范围中的之一,所述第一信道繁忙比所属的一个信道繁忙比范围被用于从所述最大信道占比列表包括的所述多个最大信道占用比中确定所述第一最大信道占用比。
作为一个实施例,所述第一信道占用比不大于所述第一最大信道占用比。
作为一个实施例,所述第一信道占用比小于所述第一最大信道占用比。
作为一个实施例,所述第一信道占用比等于所述第一最大信道占用比。
作为一个实施例,所述第一信道占用比大于所述第一最大信道占用比。
作为一个实施例,所述第一信道占用比不大于所述第一最大信道占用比,所述第一定位参考信号在所述第一目标时域资源块上被发送。
作为一个实施例,所述第一信道占用比大于所述第一最大信道占用比,所述第一定位参考信号在所述第一目标时域资源块上被放弃发送。
作为一个实施例,当所述第一信道占用比不大于所述第一最大信道占用比时,所述第一定位参考信号在所述第一目标时域资源块上被发送。
实施例9
实施例9示例了根据本申请的一个实施例的第一节点、第二节点和第三节点之间关系的示意图,如附图9所示。
在实施例9中,所述第三节点配置第一信息块,所述第一节点接收所述第一信息块;所述第一节点进行信道感知并确定发送目标参考信号,所述第二节点接收目标参考信号,并针对目标参考信号的测量生成位置信息,随后将位置信息发送给所述第三节点。
作为一个实施例,所述第三节点是定位服务器。
作为一个实施例,所述第二节点接收所述第一信息块。
作为一个实施例,所述第一节点向所述第二节点发送无线信号以指示所述目标参考信号的发送。
作为一个实施例,所述第三节点是基站。
作为一个实施例,所述第一节点是终端。
作为一个实施例,所述第一节点是RSU(Road Side Unit,路边单元)。
作为一个实施例,所述第二节点是终端。
作为一个实施例,所述第二节点是RSU。
作为一个实施例,所述第一节点接收来自所述第二节点的位置信息并转发给所述第三节点
实施例10
实施例10示例了一个第一参考信号资源和第二参考信号资源的示意图,如附图10所示。在附图10中,所述第一参考信号资源在所述给定资源单位中占用的P1个REs,所述P1是大于1的正整数;所述第二参考信号资源在所述给定资源单位中占用P2个REs,所述P2是大于1的正整数;所述P1是所述P2的L1倍,所述L1是大于1的正整数。
作为一个实施例,所述P2个REs是所述P1个REs的子集。
作为一个实施例,所述L1是{2,4,8,16,32}中的之一。
作为一个实施例,所述第一参考信号资源和所述第二参考信号资源分别对应两种不同的Pattern。
作为一个实施例,所述第一参考信号资源和所述第二参考信号资源对应同一种Pattern在频域不同的重复次数。
作为一个实施例,所述第一参考信号资源和所述第二参考信号资源对应同一种Pattern在时域不同的重复次数。
作为一个实施例,所述给定资源单位在频域占用R1个连续的子载波,且在时域占用R2个连续的多载波符号;所述R1和所述R2都是大于1的正整数。
作为该实施例的一个子实施例,所述R1是12的正整数倍。
作为该实施例的一个子实施例,所述R2等于{2、4、6、12}中的之一。
作为该实施例的一个子实施例,图10中所示的R1等于12,R2等于6。
实施例11
实施例11示例了一个M1个候选参考信号资源的示意图,如附图11所示。在附图11中,所述M1个候选参考信号资源中在所述给定资源单位中的都占用相同数量的REs;图中示出了所述M1个候选参考信号资源中的三个候选参考信号资源,分别是第一候选参考信号资源、第二候选参考信号资源和第三候选参考信号资源;图中所示的给定资源单位在频域占用R1个连续的子载波,在时域占用R2个连续的多载波符号,所述R1等于12,所述R2等于4。
作为一个实施例,所述M1个候选参考信号资源中任意两个候选参考信号资源所占用的REs是正交的。
作为一个实施例,所述M1个候选参考信号资源对应同一个聚合等级。
作为一个实施例,所述M1个候选参考信号资源对应同一个重复因子。
实施例12
实施例12示例了一个第一节点中的结构框图,如附图12所示。附图12中,第一节点1200包括第一接收机1201和第一发射机1202。
第一接收机1201,接收第一信息块,所述第一信息块被用于确定第一参考信号资源集合;
第一发射机1202,发送目标参考信号;
实施例12中,所述第一参考信号资源集合包括K1个参考信号资源,所述K1是大于1的正整数;所述目标参考信号占用所述K1个参考信号资源中的一个参考信号资源;所述K1个参考信号资源中至少包括第一参考信号资源和第二参考信号资源;在给定资源单位中,所述第一参考信号资源相较所述 第二参考信号资源占用更多的资源颗粒;所述第一参考信号资源集合被用于副链路定位;所述第二参考信号资源所占用的任一资源颗粒都被所述第一参考信号资源占用,且所述第一参考信号资源所占用的资源颗粒中至少存在一个资源颗粒不被所述第二参考信号资源所占用;所述给定资源单位的定义包括以下中的至少之一:
-同一个子信道;
-同一个PRB所对应的带宽;
-同一个BWP;
-同一数量的连续的OFDM符号;
-同一个时隙。
作为一个实施例,包括:
所述第一接收机1201,在第一时间窗中的M1个候选参考信号资源进行信道测量;
其中,所述M1个候选参考信号资源在所述给定资源单位中占用相同数量的资源颗粒,所述目标参考信号所占用的时域资源被用于确定所述第一时间窗;针对所述M1个候选参考信号资源的所述信道测量被用于确定M1个RSSIs;第一信道繁忙比是在所述第一时间窗内被测量得到的所述M1个RSSIs中超过目标阈值的比例;所述第一信道繁忙比被用于确定发送所述目标参考信号;所述K1个参考信号资源中至少存在一个参考信号资源与所述M1个候选参考信号资源中的一个候选参考信号资源对应相同的身份;所述M1是大于1的正整数。
作为一个实施例,所述M1个候选参考信号资源对应相同的配置信息,所述配置信息包括梳状尺寸、占用符号数,占用子载波数、重复因子、周期或发送功率值中的至少之一。
作为一个实施例,所述第一参考信号资源和所述第二参考信号资源对应不同的配置信息,所述配置信息包括梳状尺寸、占用符号数,占用子载波数、重复因子、周期或发射功率值中的至少之一。
作为一个实施例,所述第一参考信号资源和所述第二参考信号资源分别对应第一阈值和第二阈值,所述第一阈值和所述第二阈值不同,所述第一阈值和所述第二阈值都被用于副链路拥塞控制。
作为一个实施例,所述K1个参考信号资源包括所述M1个候选参考信号资源,所述K1是不小于所述M1的正整数。
作为一个实施例,所述M1个候选参考信号资源中的M2个候选参考信号资源分别被测量得到的M2个RSSIs中的任一RSSI都超过所述目标阈值;在所述第一时间窗内被测量得到的RSSI超过所述第一阈值的候选参考信号资源的所述比例是M2与第一样本数的比值,M2是不大于所述M1的正整数;所述第一样本数等于所述M1,或者所述第一样本数等于Q;所述Q是大于1的正整数,第一资源池在所述第一时间窗内包括Q个参考信号资源,所述M2个候选参考信号资源中的任一候选参考信号资源是所述Q个参考信号资源中的之一,Q是大于所述M2的正整数。
作为一个实施例,所述第一接收机1201包括实施例4中的天线452、接收器454、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前4者。
作为一个实施例,所述第一发射机1202包括实施例4中的天线452、发射器454、多天线发射处理器457、发射处理器468、控制器/处理器459中的至少前4者。
实施例13
实施例13示例了一个第二节点中的结构框图,如附图13所示。附图13中,第二节点1300包括第二接收机1301。
第二接收机1301,接收目标参考信号;
实施例13中,第一参考信号资源集合包括K1个参考信号资源,所述K1是大于1的正整数;所述目标参考信号占用所述K1个参考信号资源中的一个参考信号资源;所述K1个参考信号资源中至少包括第一参考信号资源和第二参考信号资源;在给定资源单位中,所述第一参考信号资源相较所述第二参考信号资源占用更多的资源颗粒;所述第一参考信号资源集合被用于副链路定位;所述第二参考信号资源所占用的任一资源颗粒都被所述第一参考信号资源占用,且所述第一参考信号资源所占用的资源颗粒中至少存在一个资源颗粒不被所述第二参考信号资源所占用;所述给定资源单位的定义包括以下中的至少之一:
-同一个子信道;
-同一个PRB所对应的带宽;
-同一个BWP;
-同一数量的连续的OFDM符号;
-同一个时隙。
作为一个实施例,包括:
所述第二接收机1301,接收第一信息块;
其中,所述第一信息块被用于确定所述第一参考信号资源集合。
作为一个实施例,包括:
所述第二发射机1302,发送第一信息块;
其中,所述第一信息块被用于确定所述第一参考信号资源集合。
作为一个实施例,所述目标参考信号的发送者在第一时间窗中的M1个候选参考信号资源进行信道测量;所述M1个候选参考信号资源在所述给定资源单位中占用相同数量的资源颗粒,所述目标参考信号所占用的时域资源被用于确定所述第一时间窗;针对所述M1个候选参考信号资源的所述信道测量被用于确定M1个RSSIs;第一信道繁忙比是在所述第一时间窗内被测量得到的所述M1个RSSIs中超过目标阈值的比例;所述第一信道繁忙比被用于确定发送所述目标参考信号;所述K1个参考信号资源中至少存在一个参考信号资源与所述M1个候选参考信号资源中的一个候选参考信号资源对应相同的身份;所述M1是大于1的正整数。
作为一个实施例,所述M1个候选参考信号资源对应相同的配置信息,所述配置信息包括梳状尺寸、占用符号数,占用子载波数、重复因子、周期或发送功率值中的至少之一。
作为一个实施例,所述第一参考信号资源和所述第二参考信号资源对应不同的配置信息,所述配置信息包括梳状尺寸、占用符号数,占用子载波数、重复因子、周期或发射功率值中的至少之一。
作为一个实施例,所述第一参考信号资源和所述第二参考信号资源分别对应第一阈值和第二阈值,所述第一阈值和所述第二阈值不同,所述第一阈值和所述第二阈值都被用于副链路拥塞控制。
作为一个实施例,所述K1个参考信号资源包括所述M1个候选参考信号资源,所述K1是不小于所述M1的正整数。
作为一个实施例,所述M1个候选参考信号资源中的M2个候选参考信号资源分别被测量得到的M2个RSSIs中的任一RSSI都超过所述目标阈值;在所述第一时间窗内被测量得到的RSSI超过所述第一阈值的候选参考信号资源的所述比例是M2与第一样本数的比值,M2是不大于所述M1的正整数;所述第一样本数等于所述M1,或者所述第一样本数等于Q;所述Q是大于1的正整数,第一资源池在所述第一时间窗内包括Q个参考信号资源,所述M2个候选参考信号资源中的任一候选参考信号资源是所述Q个参考信号资源中的之一,Q是大于所述M2的正整数。
作为一个实施例,包括:
所述第二发射机1302,发送位置信息;
其中,针对所述目标参考信号的测量被用于生成所述位置信息。
作为一个实施例,所述第二接收机1301包括实施例4中的天线420、接收器418、多天线接收处理器472、接收处理器470、控制器/处理器475中的至少前4者。
作为一个实施例,所述第二发射机1302包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器414、控制器/处理器475中的至少前4者。
实施例14
实施例14示例了一个第三节点中的结构框图,如附图14所示。附图14中,第三节点1400包括第三发射机1401和第三接收机1402。
第三发射机1401,发送第一信息块,所述第一信息块被用于确定第一参考信号资源集合;
第三接收机1402,接收位置信息;
实施例14中,所述第一参考信号资源集合包括K1个参考信号资源,所述K1是大于1的正整数;目标参考信号占用所述K1个参考信号资源中的一个参考信号资源;所述K1个参考信号资源中至少包括第 一参考信号资源和第二参考信号资源;在给定资源单位中,所述第一参考信号资源相较所述第二参考信号资源占用更多的资源颗粒;所述第一参考信号资源集合被用于副链路定位;所述第二参考信号资源所占用的任一资源颗粒都被所述第一参考信号资源占用,且所述第一参考信号资源所占用的资源颗粒中至少存在一个资源颗粒不被所述第二参考信号资源所占用;所述目标参考信号的接收者针对所述目标参考信号的测量被用于生成所述位置信息,所述目标参考信号的所述接收者发送所述位置信息;所述给定资源单位的定义包括以下中的至少之一:
-同一个子信道;
-同一个PRB(Physical Resource Block,物理资源块)所对应的带宽;
-同一个BWP(Bandwidth Part,带宽部分);
-同一数量的连续的OFDM符号;
-同一个时隙。
作为一个实施例,所述第三发射机1401包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器416、控制器/处理器475中的至少前4者。
作为一个实施例,所述第三接收机1402包括实施例4中的天线420、接收器418、多天线接收处理器472、接收处理器470、控制器/处理器475中的至少前4者。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,交通工具,车辆,RSU(Road Side Unit,路侧单元),飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点包括但不限于宏蜂窝基站,微蜂窝基站,小蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS(Global Navigation Satellite System,全球导航卫星系统),中继卫星,卫星基站,空中基站,RSU,无人机,测试设备、例如模拟基站部分功能的收发装置或信令测试仪,等无线通信设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (10)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一接收机,接收第一信息块,所述第一信息块被用于确定第一参考信号资源集合;
    第一发射机,发送目标参考信号;
    其中,所述第一参考信号资源集合包括K1个参考信号资源,所述K1是大于1的正整数;所述目标参考信号占用所述K1个参考信号资源中的一个参考信号资源;所述K1个参考信号资源中至少包括第一参考信号资源和第二参考信号资源;在给定资源单位中,所述第一参考信号资源相较所述第二参考信号资源占用更多的资源颗粒;所述第一参考信号资源集合被用于副链路定位;所述第二参考信号资源所占用的任一资源颗粒都被所述第一参考信号资源占用,且所述第一参考信号资源所占用的资源颗粒中至少存在一个资源颗粒不被所述第二参考信号资源所占用;所述给定资源单位的定义包括以下中的至少之一:
    -同一个子信道;
    -同一个PRB所对应的带宽;
    -同一个BWP;
    -同一数量的连续的多载波符号;
    -同一个时隙。
  2. 根据权利要求1所述的第一节点,其特征在于包括:
    所述第一接收机,在第一时间窗中的M1个候选参考信号资源进行信道测量;
    其中,所述M1个候选参考信号资源在所述给定资源单位中占用相同数量的资源颗粒,所述目标参考信号所占用的时域资源被用于确定所述第一时间窗;针对所述M1个候选参考信号资源的所述信道测量被用于确定M1个RSSIs;第一信道繁忙比是在所述第一时间窗内被测量得到的所述M1个RSSIs中超过目标阈值的比例;所述第一信道繁忙比被用于确定发送所述目标参考信号;所述K1个参考信号资源中至少存在一个参考信号资源与所述M1个候选参考信号资源中的一个候选参考信号资源对应相同的身份;所述M1是大于1的正整数。
  3. 根据权利要求2所述的第一节点,其特征在于,所述M1个候选参考信号资源对应相同的配置信息,所述配置信息包括梳状尺寸、占用符号数,占用子载波数、重复因子、周期或发送功率值中的至少之一。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,所述第一参考信号资源和所述第二参考信号资源对应不同的配置信息,所述配置信息包括梳状尺寸、占用符号数,占用子载波数、重复因子、周期或发射功率值中的至少之一。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,所述第一参考信号资源和所述第二参考信号资源分别对应第一阈值和第二阈值,所述第一阈值和所述第二阈值不同,所述第一阈值和所述第二阈值都被用于副链路拥塞控制。
  6. 根据权利要求2至5中任一权利要求所述的第一节点,其特征在于,所述K1个参考信号资源包括所述M1个候选参考信号资源,所述K1是不小于所述M1的正整数。
  7. 根据权利要求1至6中任一权利要求所述的第一节点,其特征在于,所述M1个候选参考信号资源中的M2个候选参考信号资源分别被测量得到的M2个RSSIs中的任一RSSI都超过所述目标阈值;在所述第一时间窗内被测量得到的RSSI超过所述第一阈值的候选参考信号资源的所述比例是M2与第一样本数的比值,M2是不大于所述M1的正整数;所述第一样本数等于所述M1,或者所述第一样本数等于Q;所述Q是大于1的正整数,第一资源池在所述第一时间窗内包括Q个参考信号资源,所述M2个候选参考信号资源中的任一候选参考信号资源是所述Q个参考信号资源中的之一,Q是大于所述M2的正整数。
  8. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二接收机,接收目标参考信号;
    其中,第一参考信号资源集合包括K1个参考信号资源,所述K1是大于1的正整数;所述目标参考信号占用所述K1个参考信号资源中的一个参考信号资源;所述K1个参考信号资源中至少包括第一参考信号资源和第二参考信号资源;在给定资源单位中,所述第一参考信号资源相较所述第二参考信号资源占用更多的资源颗粒;所述第一参考信号资源集合被用于副链路定位;所述第二参考信号资源所占用的任一资源颗粒都被所述第一参考信号资源占用,且所述第一参考信号资源所占用的资源颗粒中至少存在一个资源颗粒不被所述第二参考信号资源所占用;所述给定资源单位的定义包括以下中的至少之一:
    -同一个子信道;
    -同一个PRB所对应的带宽;
    -同一个BWP;
    -同一数量的连续的多载波符号;
    -同一个时隙。
  9. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信息块,所述第一信息块被用于确定第一参考信号资源集合;
    发送目标参考信号;
    其中,所述第一参考信号资源集合包括K1个参考信号资源,所述K1是大于1的正整数;所述目标参考信号占用所述K1个参考信号资源中的一个参考信号资源;所述K1个参考信号资源中至少包括第一参考信号资源和第二参考信号资源;在给定资源单位中,所述第一参考信号资源相较所述第二参考信号资源占用更多的资源颗粒;所述第一参考信号资源集合被用于副链路定位;所述第二参考信号资源所占用的任一资源颗粒都被所述第一参考信号资源占用,且所述第一参考信号资源所占用的资源颗粒中至少存在一个资源颗粒不被所述第二参考信号资源所占用;所述给定资源单位的定义包括以下中的至少之一:
    -同一个子信道;
    -同一个PRB所对应的带宽;
    -同一个BWP;
    -同一数量的连续的多载波符号;
    -同一个时隙。
  10. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    接收目标参考信号;
    其中,第一参考信号资源集合包括K1个参考信号资源,所述K1是大于1的正整数;所述目标参考信号占用所述K1个参考信号资源中的一个参考信号资源;所述K1个参考信号资源中至少包括第一参考信号资源和第二参考信号资源;在给定资源单位中,所述第一参考信号资源相较所述第二参考信号资源占用更多的资源颗粒;所述第一参考信号资源集合被用于副链路定位;所述第二参考信号资源所占用的任一资源颗粒都被所述第一参考信号资源占用,且所述第一参考信号资源所占用的资源颗粒中至少存在一个资源颗粒不被所述第二参考信号资源所占用;所述给定资源单位的定义包括以下中的至少之一:
    -同一个子信道;
    -同一个PRB所对应的带宽;
    -同一个BWP;
    -同一数量的连续的多载波符号;
    -同一个时隙。
PCT/CN2023/123480 2022-10-13 2023-10-09 一种被用于无线通信的节点中的方法和装置 WO2024078432A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211252728.4 2022-10-13
CN202211252728.4A CN117896829A (zh) 2022-10-13 2022-10-13 一种被用于无线通信的节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2024078432A1 true WO2024078432A1 (zh) 2024-04-18

Family

ID=90640091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/123480 WO2024078432A1 (zh) 2022-10-13 2023-10-09 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN117896829A (zh)
WO (1) WO2024078432A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210112522A1 (en) * 2018-05-04 2021-04-15 Kt Corporation Method and device for performing positioning in new radio network
WO2021121058A1 (zh) * 2019-12-17 2021-06-24 大唐移动通信设备有限公司 直通链路定位参考信号的发送、接收方法及终端
US20220053289A1 (en) * 2020-08-12 2022-02-17 Shanghai Langbo Communication Technology Company Limited Method and device in communication nodes for wireless communication
CN114205735A (zh) * 2020-09-03 2022-03-18 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US20220116169A1 (en) * 2019-01-11 2022-04-14 Telefonaktiebolaget Lm Ericsson (Publ) Positioning reference signaling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210112522A1 (en) * 2018-05-04 2021-04-15 Kt Corporation Method and device for performing positioning in new radio network
US20220116169A1 (en) * 2019-01-11 2022-04-14 Telefonaktiebolaget Lm Ericsson (Publ) Positioning reference signaling
WO2021121058A1 (zh) * 2019-12-17 2021-06-24 大唐移动通信设备有限公司 直通链路定位参考信号的发送、接收方法及终端
US20220053289A1 (en) * 2020-08-12 2022-02-17 Shanghai Langbo Communication Technology Company Limited Method and device in communication nodes for wireless communication
CN114205735A (zh) * 2020-09-03 2022-03-18 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN117896829A (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
WO2019113766A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN110913483B (zh) 一种被用于无线通信节点中的方法和装置
CN113114437B (zh) 一种被用于无线通信的节点中的方法和装置
CN113225814B (zh) 一种被用于无线通信的节点中的方法和装置
US20220368479A1 (en) Method and device in nodes used for wireless communication
CN110972110B (zh) 一种被用于无线通信节点中的方法和装置
WO2020001228A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022016933A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20230300936A1 (en) Method and device for wireless communication
WO2021031901A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113133124B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024078432A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024067537A1 (zh) 一种被用于定位的方法和装置
WO2024093837A1 (zh) 一种被用于定位的方法和装置
WO2024061249A1 (zh) 一种被用于定位的方法和装置
CN113395764B (zh) 一种被用于无线通信的节点中的方法和装置
CN114070362B (zh) 一种被用于无线通信的节点及其方法
WO2024037414A1 (zh) 一种被用于定位的方法和装置
US20240163853A1 (en) Method and device used for positioning
CN113556826B (zh) 一种被用于无线通信的节点中的方法和装置
US20240163056A1 (en) Method and device used for positioning
CN113473598B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024046154A1 (zh) 一种用于无线通信的方法和装置
US20240178968A1 (en) Method and device used for positioning
CN118075865A (zh) 一种被用于定位的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876634

Country of ref document: EP

Kind code of ref document: A1