WO2024067537A1 - 一种被用于定位的方法和装置 - Google Patents

一种被用于定位的方法和装置 Download PDF

Info

Publication number
WO2024067537A1
WO2024067537A1 PCT/CN2023/121320 CN2023121320W WO2024067537A1 WO 2024067537 A1 WO2024067537 A1 WO 2024067537A1 CN 2023121320 W CN2023121320 W CN 2023121320W WO 2024067537 A1 WO2024067537 A1 WO 2024067537A1
Authority
WO
WIPO (PCT)
Prior art keywords
resources
category
resource
configuration
reference signal
Prior art date
Application number
PCT/CN2023/121320
Other languages
English (en)
French (fr)
Inventor
刘瑾
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024067537A1 publication Critical patent/WO2024067537A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, and in particular to a positioning-related scheme and device in wireless communication.
  • Positioning is an important application in the field of wireless communications.
  • V2X Vehicle to everything
  • industrial Internet of Things has put forward higher requirements for positioning accuracy or latency.
  • 3GPP 3rd Generation Partner Project
  • RAN Radio Access Network #94e
  • NR Rel-18 needs to support enhanced positioning technology for sidelink positioning (SL Positioning), among which the mainstream sidelink positioning technologies include SL RTT-based technology, SL AOA, SL TDOA and SL AOD, etc., and the execution of these technologies all rely on the measurement of SL PRS (Sidelink Positioning Reference Signal). Since UE (User Equipment) autonomously selects resources for sending SL PRS, the traditional positioning process or location information feedback scheme needs to be further enhanced.
  • SL Positioning sidelink positioning
  • the present application discloses a positioning solution.
  • V2X Vehicle Safety
  • the present application is also applicable to scenarios other than V2X facing similar problems, such as public safety (Public Safety), industrial Internet of Things, etc., and achieves technical effects similar to those in the NR V2X scenario.
  • the motivation of the present application is for the scenario where the sender of the wireless signal used for positioning measurement is mobile, the present application is still applicable to the scenario where the sender of the wireless signal used for positioning measurement is fixed, such as RSU (Road Side Unit).
  • RSU Raad Side Unit
  • the use of a unified solution for different scenarios also helps to reduce hardware complexity and cost.
  • the embodiments and features in any node of the present application can be applied to any other node.
  • the embodiments and features in the embodiments of the present application can be arbitrarily combined with each other.
  • the present application discloses a method in a first node used for wireless communication, characterized by comprising:
  • M first-class RSSIs Receiveived Signal Strength Indicators
  • the first resource pool includes the M first-category resources, and the M first-category resources adopt a first configuration; the first target time domain resource block is used to determine the first time window; the first channel busy ratio is the proportion of the first-category resources whose first-category RSSI measured within the first time window exceeds a first threshold; the first channel busy ratio is used to determine whether to send the first positioning reference signal on the first target time domain resource block.
  • the problem to be solved by the present application is: in a mode where the UE autonomously selects SL PRS resources, when the resource pool used to send SLPRS is too congested, the UE autonomously selects resources and directly sends SL PRS, causing serious interference to other UEs.
  • the problem to be solved by the present application is: in a mode where the UE autonomously selects SL PRS resources, sending SL PRS in an overly congested resource pool results in poor SL PRS reception, thereby causing serious measurement errors.
  • the method of the present application is: to establish a relationship between the resources occupied by SL PRS and RSSI measurement.
  • the method of the present application is: establishing a relationship between the channel busy ratio and whether the SL PRS is sent.
  • the method of the present application is conducive to accurate congestion control.
  • the method of the present application is conducive to the effective transmission of SL PRS.
  • the method of the present application is helpful in improving positioning accuracy.
  • the method of the present application solves the problem of achieving effective SL PRS transmission in a mode where UE autonomously selects SL PRS resources.
  • the above method is characterized in that it includes:
  • the first configuration signaling is used to indicate the first resource pool and the first configuration; the first configuration includes at least one of a first comb size, a first number of symbols, a first number of frequency domain resource blocks, a first resource repetition factor, a first sending period and a first maximum transmission power value.
  • the above method is characterized in that the first resource pool includes Q alternative resources within the first time window, any first-category resource among the M first-category resources is one of the Q alternative resources, and Q is a positive integer greater than the M.
  • the above method is characterized in that any of the M1 first-class RSSIs measured respectively from the M1 first-class resources among the M first-class resources exceeds the first threshold; the proportion of the first-class RSSI measured within the first time window that exceeds the first threshold is the ratio of M1 to the first sample number, M1 is a positive integer not greater than the M; the first sample number is equal to the M, or the first sample number is equal to the Q.
  • the above method is characterized in that the first resource pool includes N second-category resources, any second-category resource among the N second-category resources is one of the Q alternative resources; the first configuration signaling is used to indicate the second configuration; the N second-category resources adopt the second configuration, and the second configuration is different from the first configuration.
  • the above method is characterized in that it includes:
  • the first transmitter sends the first positioning reference signal on the first target time domain resource block
  • the first resource pool includes Q1 first-class resources in the second time window, the resource occupied by the first positioning reference signal is one of the Q1 first-class resources, and Q1 is a positive integer greater than 1;
  • the second time window includes the first time window and the second time subwindow, and the first target time domain resource block is used to determine the second time window;
  • the first channel occupancy ratio (Channel Occupancy Ratio, CR) is the quotient of the sum of the number of first-class resources occupied by sending one or more first-class positioning reference signals in the first time window and the number of first-class resources granted in the second time subwindow divided by Q1;
  • the first channel occupancy ratio is not greater than the first maximum channel occupancy ratio, and the first channel busy ratio is used to determine the first maximum channel occupancy ratio;
  • the first positioning reference signal belongs to the first-class positioning reference signal, and the resources occupied by the first positioning reference signal belong to the first-class resources.
  • the above method is characterized in that the first node is a user equipment (UE, User Equipment).
  • UE User Equipment
  • the above method is characterized in that the first node is a relay node.
  • the above method is characterized in that the first node is a roadside unit.
  • the present application discloses a method used in a second node of wireless communication, characterized by comprising:
  • the second configuration signaling is used to indicate the first resource pool and the first configuration
  • the first configuration includes at least one of a first comb size, a first number of symbols, a first number of frequency domain resource blocks, a first resource repetition factor, a first sending period and a first maximum transmission power value
  • the first target time domain resource block belongs to the time domain resources occupied by the first resource pool
  • the first positioning reference signal is used to generate first location information (Location Information).
  • the above method is characterized in that the second node is a user equipment.
  • the above method is characterized in that the second node is a relay node.
  • the above method is characterized in that the second node is a roadside unit.
  • the present application discloses a first node used for wireless communication, characterized in that it includes:
  • the first receiver measures M first-category RSSIs on M first-category resources in a first time window, where M is a positive integer greater than 1.
  • a first transmitter determines whether to send a first positioning reference signal on a first target time domain resource block
  • the first resource pool includes the M first-category resources, and the M first-category resources adopt a first configuration; the first target time domain resource block is used to determine the first time window; the first channel busy ratio (CBR) is the proportion of the first-category resources whose first-category RSSI measured within the first time window exceeds a first threshold; the first channel busy ratio is used to determine whether to send the first positioning reference signal on the first target time domain resource block.
  • CBR channel busy ratio
  • the present application discloses a second node used for wireless communication, characterized in that it includes:
  • a second receiver receives a second configuration signaling; and receives a first positioning reference signal on a first target time domain resource block;
  • the second configuration signaling is used to indicate the first resource pool and the first configuration, the first configuration includes a first comb size, At least one of the first number of symbols, the first number of frequency domain resource blocks, the first resource repetition factor, the first sending period and the first maximum transmission power value; the first target time domain resource block belongs to the time domain resources occupied by the first resource pool; the first positioning reference signal is used to generate the first position information.
  • FIG1 shows a processing flow chart of a first node according to an embodiment of the present application
  • FIG2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG3 shows a schematic diagram of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • FIG4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG5 shows a structural diagram of UE positioning according to an embodiment of the present application
  • FIG6 shows a wireless signal transmission flow chart according to an embodiment of the present application
  • FIG7 is a schematic diagram showing a relationship between a first type of resource and a first configuration according to an embodiment of the present application
  • FIG8 is a schematic diagram showing a relationship between M first-category resources according to an embodiment of the present application.
  • FIG9 is a schematic diagram showing the relationship between M first-category resources, N second-category resources, Q candidate resources and the first resource pool according to an embodiment of the present application;
  • FIG10 shows a flowchart of determining whether to send a first positioning reference signal on a first target time domain resource according to an embodiment of the present application
  • FIG11 shows a structural block diagram of a processing device used in a first node according to an embodiment of the present application
  • FIG12 shows a structural block diagram of a processing device used in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flow chart of a first node of an embodiment of the present application, as shown in FIG1.
  • each box represents a step.
  • the first node in the present application first executes step 101, and measures M first-class RSSIs on M first-class resources within the first time window, where M is a positive integer greater than 1; then executes step 102 to determine whether to send a first positioning reference signal on a first target time domain resource block;
  • the first resource pool includes the M first-class resources, and the M first-class resources adopt a first configuration;
  • the first target time domain resource block is used to determine the first time window;
  • the first channel busy ratio is the proportion of first-class resources whose first-class RSSI measured within the first time window exceeds a first threshold; the first channel busy ratio is used to determine whether to send the first positioning reference signal on the first target time domain resource block.
  • the first resource pool includes a sidelink resource pool (Sidelink Resource Pool).
  • Sidelink Resource Pool Sidelink Resource Pool
  • the first resource pool is used for sidelink transmission.
  • the first resource pool is used for sidelink communication.
  • the first resource pool is used for sidelink positioning (Sidelink Positioning).
  • the first resource pool is used for SL PRS (Sidelink Positioning Reference Signal) transmission.
  • SL PRS Segmentlink Positioning Reference Signal
  • the first resource pool is dedicated to SL PRS transmission.
  • the first resource pool is used for SL PRS and SCI (Sidelink Control Information) transmission.
  • the first resource pool includes multiple REs (Resource Elements).
  • any RE in the first resource pool occupies a multi-carrier symbol in the time domain and occupies a subcarrier in the frequency domain.
  • the first resource pool includes multiple time domain resource blocks in the time domain, and the first resource pool includes multiple frequency domain resource blocks in the frequency domain. Resource block.
  • the multiple time domain resource blocks included in the first resource pool in the time domain are respectively multiple time slots.
  • the multiple time domain resource blocks included in the first resource pool in the time domain are respectively multiple multi-carrier symbols.
  • any time domain resource block among the multiple time domain resource blocks included in the first resource pool in the time domain belongs to a time slot.
  • any time domain resource block among the multiple time domain resource blocks included in the time domain of the first resource pool includes at least one multi-carrier symbol.
  • any time domain resource block among the multiple time domain resource blocks included in the time domain of the first resource pool includes multiple multi-carrier symbols.
  • the multiple frequency domain resource blocks included in the first resource pool in the frequency domain are respectively multiple subchannels.
  • the multiple frequency domain resource blocks included in the first resource pool in the frequency domain are respectively multiple RBs (Resource Blocks).
  • the multiple frequency domain resource blocks included in the first resource pool in the frequency domain are multiple PRBs (Physical Resource Blocks).
  • the multiple frequency domain resource blocks included in the first resource pool in the frequency domain are respectively multiple subcarriers.
  • any frequency domain resource block among the multiple frequency domain resource blocks included in the first resource pool in the frequency domain belongs to a sub-channel.
  • any frequency domain resource block among the multiple frequency domain resource blocks included in the first resource pool in the frequency domain belongs to one RB.
  • any frequency domain resource block among the multiple frequency domain resource blocks included in the first resource pool in the frequency domain belongs to a PRB.
  • any frequency domain resource block among the multiple frequency domain resource blocks included in the first resource pool in the frequency domain includes at least one subcarrier.
  • any frequency domain resource block among the multiple frequency domain resource blocks included in the first resource pool in the frequency domain includes at least one RB.
  • any frequency domain resource block among the multiple frequency domain resource blocks included in the first resource pool in the frequency domain includes at least one PRB.
  • any frequency domain resource block among the multiple frequency domain resource blocks included in the first resource pool in the frequency domain includes multiple subcarriers.
  • the multiple time domain resource blocks included in the time domain of the first resource pool are multiple time slots, and the multiple frequency domain resource blocks included in the frequency domain of the first resource pool are multiple PRBs.
  • the first resource pool includes multiple time-frequency resource blocks.
  • any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool is a time domain resource block in the first resource pool in the time domain
  • any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool is a frequency domain resource block in the first resource pool in the frequency domain
  • any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool belongs to a time domain resource block in the first resource pool in the time domain, and any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool is a frequency domain resource block in the first resource pool in the frequency domain.
  • any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool belongs to a time domain resource block in the first resource pool in the time domain
  • any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool belongs to a frequency domain resource block in the first resource pool in the frequency domain
  • any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool belongs to a time domain resource block in the first resource pool in the time domain, and any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool includes at least one frequency domain resource block in the first resource pool in the frequency domain.
  • any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool includes at least one time-domain resource block in the first resource pool in the time domain
  • any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool includes at least one time-domain resource block in the frequency domain.
  • the domain belongs to a frequency domain resource block in the first resource pool.
  • any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool includes at least one time domain resource block in the first resource pool in the time domain, and any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool includes at least one frequency domain resource block in the first resource pool in the frequency domain.
  • the multiple time-frequency resource blocks included in the first resource pool are respectively the multiple time domain resource blocks in the first resource pool in the time domain, and the multiple time-frequency resource blocks included in the first resource pool are respectively the multiple frequency domain resource blocks in the first resource pool in the frequency domain.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol is a SC-FDMA (Single-Carrier Frequency Division Multiple Access) symbol.
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • the multi-carrier symbol is a DFT-S-OFDM (Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing
  • the multi-carrier symbol is an IFDMA (Interleaved Frequency Division Multiple Access) symbol.
  • IFDMA Interleaved Frequency Division Multiple Access
  • the first positioning reference signal is used for positioning.
  • the first positioning reference signal is used for sidelink positioning (Sidelink Positioning).
  • the first positioning reference signal is used to obtain the Rx-Tx Time Difference.
  • the first positioning reference signal is used to obtain the sidelink Rx-Tx Time Difference.
  • the first positioning reference signal is used to obtain the UE Rx-Tx Time Difference.
  • the first positioning reference signal is used to obtain the reception timing of the first positioning reference signal.
  • the first positioning reference signal is used by a receiver of the first positioning reference signal for reception timing of a subframe.
  • the first positioning reference signal is used by a receiver of the first positioning reference signal for reception timing of a time slot.
  • the first positioning reference signal is used for positioning measurement (Positioning measurement).
  • the first positioning reference signal is used for sidelink positioning measurement.
  • the first positioning reference signal is used to obtain AoA (Angle-of-Arrival).
  • the first positioning reference signal is used to obtain RSRP (Reference Signal Received Power).
  • the first positioning reference signal is used to obtain RSRPP (Reference Signal Received Path Power).
  • RSRPP Reference Signal Received Path Power
  • the first positioning reference signal is used to obtain RSTD (Reference Signal Time Difference).
  • RSTD Reference Signal Time Difference
  • the first positioning reference signal is used to obtain RTOA (Relative Time of Arrival).
  • the first positioning reference signal is used to obtain SL-RTOA.
  • the first positioning reference signal is used for RTT positioning.
  • the first positioning reference signal is used for Single-sided RTT positioning.
  • the first positioning reference signal is used for Double-sided RTT positioning.
  • the first positioning reference signal is used to obtain location information (Location Information).
  • the first positioning reference signal is configured by a LMF (Location Management Function).
  • LMF Location Management Function
  • the first positioning reference signal is configured by gNB (g-Node-B).
  • the first positioning reference signal is configured by a UE.
  • the first positioning reference signal includes an SL RS (Sidelink Reference Signal, sidelink reference signal).
  • SL RS Sidelink Reference Signal
  • the first positioning reference signal includes SL PRS (Sidelink Positioning Reference Signal).
  • the first positioning reference signal includes SRS (Sounding Reference Signal).
  • the first positioning reference signal includes S-PSS (Sidelink Primary Synchronization Signal).
  • the first positioning reference signal includes S-SSS (Sidelink Secondary Synchronization Signal).
  • the first positioning reference signal includes PSBCH DMRS (Physical Sidelink Broadcast Channel Demodulation Reference Signal).
  • PSBCH DMRS Physical Sidelink Broadcast Channel Demodulation Reference Signal
  • the first positioning reference signal includes SL CSI-RS (Sidelink Channel State Information-Reference Signal).
  • the first positioning reference signal includes a first sequence.
  • a first sequence is used to generate the first positioning reference signal.
  • the first sequence is a pseudo-random sequence (Pseudo-Random Sequence).
  • the first sequence is a low peak-to-average power ratio sequence (Low-PAPR Sequence, Low-Peak to Average Power Ratio).
  • the first sequence is a Gold sequence.
  • the first sequence is an M sequence.
  • the first sequence is a ZC (Zadeoff-Chu) sequence.
  • the first sequence is sequentially subjected to sequence generation (Sequence Generation), discrete Fourier transform (Discrete Fourier Transform, DFT), modulation (Modulation) and resource element mapping (Resource Element Mapping), and then broadband symbol generation (Generation) to obtain the first positioning reference signal.
  • sequence generation Sequence Generation
  • discrete Fourier transform Discrete Fourier Transform, DFT
  • modulation Modulation
  • resource element mapping Resource Element Mapping
  • Geneation broadband symbol generation
  • the first sequence is sequentially subjected to sequence generation, resource unit mapping, and broadband symbol generation to obtain the first positioning reference signal.
  • the resources occupied by the first positioning reference signal include multiple REs.
  • the first sequence is mapped to the multiple REs included in the resources occupied by the first positioning reference signal.
  • the multiple REs included in the resources occupied by the first positioning reference signal belong to the first resource pool.
  • the first resource pool includes the first target time domain resource block in the time domain.
  • the first target time domain resource block is one of the multiple time domain resource blocks included in the first resource pool in the time domain.
  • the first target time domain resource block includes multiple multi-carrier symbols.
  • the first target time domain resource block includes a time slot.
  • the first target time domain resource block belongs to a time slot.
  • the first target time domain resource block is a time slot.
  • the first target time domain resource block is a secondary link time slot.
  • the first time window includes multiple time domain resource blocks.
  • the first time window includes multiple time domain resource blocks of the first resource pool in the time domain.
  • any time domain resource block among the multiple time domain resource blocks included in the first time window is one of the multiple time domain resource blocks included in the first resource pool in the time domain.
  • the first time window includes multiple time slots.
  • the length of the first time window is configured by a higher layer signaling.
  • the length of the first time window is preconfigured.
  • the length of the first time window is related to the subcarrier spacing in the first resource pool.
  • the first time window is a CBR measurement window.
  • the first time window is a time window for CBR measurement.
  • the first target time domain resource block is used to determine the first time window.
  • the first target time domain resource block is used to determine a second target time domain resource block
  • the second target time domain resource block is used to determine the first time window
  • the second target time domain resource block includes multiple multi-carrier symbols.
  • the second target time domain resource block includes a time slot.
  • the second target time domain resource block belongs to a time slot.
  • the second target time domain resource block is a time slot.
  • the second target time domain resource block is a secondary link time slot.
  • the second target time domain resource block is earlier than the first target time domain resource block, and the second target time domain resource block is N0 time slots earlier than the first target time domain resource block, where N0 is a positive integer.
  • the index of the second target time domain resource block in the multiple time domain resource blocks included in the first resource pool is equal to the difference between the index of the first target time domain resource block in the multiple time domain resource blocks included in the first resource pool and N0.
  • the N0 time slots are congestion control processing time.
  • the value of N0 is related to the subcarrier spacing in the first resource pool.
  • the first time domain resource block among the multiple time domain resource blocks included in the first time window is a time domain resource block ahead of the second target time domain resource block
  • the last time domain resource block among the multiple time domain resource blocks included in the first time window is 1 time domain resource block ahead of the second target time domain resource block
  • a is a positive integer
  • the first time slot of the multiple time slots included in the first time window is a time slot ahead of the second target time domain resource block
  • the last time slot of the multiple time slots included in the first time window is 1 time slot ahead of the second target time domain resource block
  • a is a positive integer
  • the first time window is [n-a, n-1], where n is the index of the second target time domain resource block.
  • the length of the first time window is a.
  • the length of the first time window is equal to 100.
  • the length of the first time window is equal to 100 ⁇ 2 ⁇ , where ⁇ is related to the subcarrier spacing in the first resource pool.
  • the first location information is reported to a LMF (Location Management Function).
  • LMF Location Management Function
  • the first location information is transmitted to a sender of the first positioning reference signal.
  • the first location information is reported to a LMF via the sender of the first positioning reference signal.
  • the first location information is transmitted to the first node in the present application.
  • the first location information is reported to a LMF via the first node in this application.
  • the first location information is used to determine RTT (Round Trip Time).
  • the first location information is used by a LMF to determine the RTT.
  • the first position information is used for positioning.
  • the first location information is used for location related measurement (Location related measurement).
  • the first location information is used for sidelink positioning.
  • the first position information is used to determine the propagation delay (Propagation Delay).
  • the first position information is used by the LMF to determine propagation delay.
  • the first location information is used for RTT positioning.
  • the first location information is used for Single-sided RTT positioning.
  • the first location information is used for Double-sided RTT positioning.
  • the first location information is used for Multi-RTT (Multiple-Round Trip Time) positioning.
  • Multi-RTT Multiple-Round Trip Time
  • the first location information includes a first sending and receiving time difference.
  • the first positioning reference signal is measured to obtain the first sending and receiving time difference.
  • the first positioning reference signal is measured to obtain the first position information.
  • the first time difference between sending and receiving is used to generate the first location information.
  • the first location information includes location related measurements.
  • the first location information includes a location estimate (Location estimate).
  • the first location information includes positioning assistance data (Assistance Data).
  • the first location information includes timing quality (TimingQuality).
  • the first location information includes a receive beam index (RxBeamIndex).
  • RxBeamIndex receive beam index
  • the first location information includes receiving power information.
  • the first location information is used to transfer NAS (Non-Access-Stratum) specific information.
  • NAS Non-Access-Stratum
  • the first position information is used to transfer timing information of a clock.
  • the received power information includes RSRP (Reference Signal Received Power) of the first positioning reference signal.
  • RSRP Reference Signal Received Power
  • the received power information includes RSRPP (Reference Signal Received Path Power) of the first positioning reference signal.
  • RSRPP Reference Signal Received Path Power
  • the received power information includes RSRP result difference (RSRP-ResultDiff).
  • the unit of the received power information is dBm (decibel milli).
  • the unit of the received power information is dB (decibel).
  • the first receiving and transmitting time difference includes RSTD (Reference Signal Time Difference, reference signal time power).
  • RSTD Reference Signal Time Difference, reference signal time power
  • the first receiving and sending time difference includes a secondary link receiving and sending time difference.
  • the first receiving and sending time difference includes the receiving and sending time difference of the UE.
  • the first receiving and transmitting time difference includes RxTxTimeDiff (receiving and transmitting time difference).
  • the first receiving and transmitting time difference includes SL-RxTxTimeDiff (sub-link receiving and transmitting time difference).
  • the first sending and receiving time difference includes RTOA (Relative Time of Arrival).
  • the first transmit-receive time difference includes SL-RTOA.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG2.
  • FIG2 illustrates the V2X communication architecture under the 5G NR (New Radio), LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) system architecture.
  • the 5G NR or LTE network architecture may be referred to as 5GS (5G System)/EPS (Evolved Packet System) or some other appropriate terminology.
  • the V2X communication architecture of embodiment 2 includes UE (User Equipment) 201, UE 241, NG-RAN (next generation radio access network) 202, 5GC (5G Core Network)/EPC (Evolved Packet Core) 210, HSS (Home Subscriber Server)/UDM (Unified Data Management) 220, ProSe function 250 and ProSe application server 230.
  • the V2X communication architecture can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown, the V2X communication architecture provides packet switching services, but technicians in the field will easily understand that the various concepts presented throughout this application can be extended to networks that provide circuit switching services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201.
  • gNB 203 can be connected to other gNBs 204 via an Xn interface (e.g., backhaul).
  • the gNB 203 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), a transmit receive node (TRP), or some other suitable term.
  • the gNB 203 provides an access point to the 5GC/EPC 210 for the UE 201.
  • Examples of UE 201 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop computer, a personal digital assistant (PDA), a satellite radio, non-terrestrial base station communications, satellite mobile communications, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., an MP3 player), a camera, a game console, a drone, an aircraft, a narrowband Internet of Things device, a machine type communication device, a land vehicle, an automobile, a wearable device, or any other similarly functional device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • satellite radio non-terrestrial base station communications
  • satellite mobile communications a global positioning system
  • a multimedia device e.g., a digital audio player (e.g., an MP3 player), a camera, a game console, a drone, an aircraft, a narrowband Internet of Things device, a machine type communication device, a land vehicle, an automobile, a
  • UE201 may also refer to UE201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 via an S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/SMF (Session Management Function) 211, other MME/AMF/SMF214, S-GW (Service Gateway)/UPF (User Plane Function) 212 and P-GW (Packet Data Network Gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles the signaling between UE201 and 5GC/EPC210.
  • MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocal) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213.
  • P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF213 is connected to Internet service 230.
  • the Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, intranet, IMS (IP Multimedia Subsystem) and packet switching streaming services.
  • the ProSe function 250 is a logical function for network-related behaviors required for Proximity-based Service (ProSe); including DPF (Direct Provisioning Function), Direct Discovery Name Management Function, EPC-level Discovery ProSe Function, etc.
  • the ProSe application server 230 has the functions of storing EPC ProSe user identities, mapping between application layer user identities and EPC ProSe user identities, and allocating ProSe restricted code suffix pools.
  • the UE201 and the UE241 are connected via a PC5 reference point (Reference Point).
  • PC5 reference point Reference Point
  • the ProSe function 250 is connected to the UE 201 and the UE 241 via a PC3 reference point respectively.
  • the ProSe function 250 is connected to the ProSe application server 230 via a PC2 reference point.
  • the ProSe application server 230 is connected to the ProSe application of the UE 201 and the ProSe application of the UE 241 through a PC1 reference point respectively.
  • the first node in the present application is the UE201
  • the second node in the present application is the UE241.
  • the first node in the present application is the UE241
  • the second node in the present application is the UE201.
  • the wireless link between the UE201 and the UE241 corresponds to the side link (Sidelink, SL) in this application.
  • the wireless link from the UE201 to the NR Node B is an uplink.
  • the wireless link from the NR Node B to UE201 is a downlink.
  • the UE201 supports SL transmission.
  • the UE241 supports SL transmission.
  • the gNB203 is a macrocellular base station.
  • the gNB203 is a micro cell base station.
  • the gNB203 is a picoCell base station.
  • the gNB203 is a home base station (Femtocell).
  • the gNB203 is a base station device that supports large delay difference.
  • the gNB203 is an RSU (Road Side Unit).
  • the gNB203 includes a satellite device.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG3.
  • FIG3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300.
  • FIG3 shows the radio protocol architecture of the control plane 300 for a first node device (RSU in UE or V2X, vehicle-mounted device or vehicle-mounted communication module) and a second node device (gNB, RSU in UE or V2X, vehicle-mounted device or vehicle-mounted communication module), or between two UEs using three layers: layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first node device and the second node device and the two UEs through PHY301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol) sublayer 304, which terminate at the second node device.
  • the PDCP sublayer 304 provides data encryption and integrity protection.
  • the PDCP sublayer 304 also provides inter-zone mobility support for the second node device from the first node device.
  • the RLC sublayer 303 provides segmentation and reorganization of data packets, and realizes retransmission of lost data packets through ARQ.
  • the RLC sublayer 303 also provides duplicate data packet detection and protocol error detection.
  • the MAC sublayer 302 provides mapping between logical and transport channels and multiplexing of logical channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in a cell between the first node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (i.e., radio bearers) and using RRC signaling between the second node device and the first node device to configure the lower layer.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture for the first node device and the second node device in the user plane 350 is substantially the same as the corresponding layers and sublayers in the control plane 300 for the physical layer 351, the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355, but the PDCP sublayer 354 also provides header compression for upper layer data packets to reduce wireless transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol) sublayer 356, which is responsible for mapping between QoS flows and data radio bearers (DRBs) to support the diversity of services.
  • SDAP Service Data Adaptation Protocol
  • the first node device may have several upper layers above the L2 layer 355, including a network layer (e.g., an IP layer) terminated at the P-GW on the network side and an application layer terminated at the other end of the connection (e.g., a remote UE, a server, etc.).
  • a network layer e.g., an IP layer
  • an application layer terminated at the other end of the connection (e.g., a remote UE, a server, etc.).
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in the present application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in the present application.
  • the first positioning reference signal in the present application is generated by the PHY301.
  • the first configuration signaling in the present application is generated with the RRC sublayer 306.
  • the second configuration signaling in the present application is generated with the RRC sublayer 306.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in Figure 4.
  • Figure 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and an antenna 452.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocation to the second communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets and signaling to the second communication device 450.
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (i.e., the physical layer).
  • the transmit processor 416 implements coding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, as well as mapping of signal constellations based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing on the coded and modulated symbols to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to a subcarrier, multiplexes with a reference signal (e.g., a pilot) in the time domain and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate a physical channel carrying a time-domain multi-carrier symbol stream.
  • IFFT inverse fast Fourier transform
  • the multi-antenna transmit processor 471 then performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated onto the RF carrier and converts the RF stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receiving processor 458 performs a receiving analog precoding/beamforming operation on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a fast Fourier transform (FFT) to convert the baseband multi-carrier symbol stream after the receiving analog precoding/beamforming operation into a baseband multi-carrier symbol stream. Convert from time domain to frequency domain. In the frequency domain, the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458 to any spatial stream destined for the second communication device 450. The symbols on each spatial stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • FFT fast Fourier transform
  • the receiving processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 storing program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides multiplexing between the transport and logical channels, packet reassembly, decryption, header decompression, and control signal processing to recover the upper layer data packets from the core network.
  • the upper layer data packet is then provided to all protocol layers above the L2 layer.
  • Various control signals may also be provided to the L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels based on radio resource allocation, and implements L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for the retransmission of lost packets and signaling to the first communication device 410.
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing. Then, the transmit processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is then provided to different antennas 452 via the transmitter 454 after analog precoding/beamforming operations in the multi-antenna transmit processor 457. Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the function at the first communication device 410 is similar to the reception function at the second communication device 450 described in the transmission from the first communication device 410 to the second communication device 450.
  • Each receiver 418 receives a radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the multi-antenna reception processor 472 and the reception processor 470.
  • the reception processor 470 and the multi-antenna reception processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements the L2 layer functions.
  • the controller/processor 475 can be associated with a memory 476 storing program codes and data.
  • the memory 476 can be referred to as a computer-readable medium.
  • the controller/processor 475 In the transmission from the second communication device 450 to the first communication device 410, the controller/processor 475 provides multiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover the upper layer data packets from the UE 450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be used together with the at least one processor.
  • the second communication device 450 device at least: measures M first-class RSSIs on M first-class resources in a first time window, respectively, where M is a positive integer greater than 1; determines whether to send a first positioning reference signal on a first target time domain resource block; wherein the first resource pool includes the M first-class resources, and the M first-class resources adopt a first configuration; the first target time domain resource block is used to determine the first time window; the first channel busy ratio is the proportion of the first-class resources whose first-class RSSI measured in the first time window exceeds a first threshold; the first channel busy ratio is used to determine whether to send the first positioning reference signal on the first target time domain resource block.
  • the second communication device 450 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: measuring M first-class RSSIs on M first-class resources within a first time window, respectively, where M is a positive integer greater than 1; determining whether to send a first positioning reference signal on a first target time domain resource block; wherein the first resource pool includes the M first-class resources, and the M first-class resources adopt a first configuration; the first target time domain resource block is used to determine the first time window; the first channel busy ratio is the proportion of first-class resources whose first-class RSSI measured within the first time window exceeds a first threshold; the first channel busy ratio is used to determine whether to send the first positioning reference signal on the first target time domain resource block.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be used together with the at least one processor.
  • the first communication device 410 device at least: receives a second configuration signaling; receives a first positioning reference signal on a first target time domain resource block; wherein the second configuration signaling is used to indicate the first resource pool and the first configuration, the first configuration includes a first comb size, a first number of symbols, a first number of frequency domain resource blocks, a first resource repetition factor, a first sending period and a first maximum transmit power value; the first target time domain resource block belongs to the time domain resources occupied by the first resource pool; the first positioning reference signal is used to generate the first position information.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving a second configuration signaling; receiving a first positioning reference signal on a first target time domain resource block; wherein the second configuration signaling is used to indicate the first resource pool and a first configuration, and the first configuration includes at least one of a first comb size, a first number of symbols, a first number of frequency domain resource blocks, a first resource repetition factor, a first sending period and a first maximum transmission power value; the first target time domain resource block belongs to the time domain resources occupied by the first resource pool; and the first positioning reference signal is used to generate first position information.
  • the second communication device 450 corresponds to the first node in this application.
  • the first communication device 410 corresponds to the second node in this application.
  • the second communication device 450 is a UE.
  • the first communication device 410 is a UE.
  • the second communication device 450 is an RSU.
  • the first communication device 410 is an RSU.
  • At least one of ⁇ the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, and the memory 460 ⁇ is used to receive the first configuration signaling in the present application.
  • At least one of ⁇ the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, and the memory 460 ⁇ is used in the present application to measure and obtain M first-class RSSIs on M first-class resources within a first time window.
  • At least one of ⁇ the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, and the memory 460 ⁇ is used in the present application to measure N second-class RSSIs on N second-class resources within the first time window.
  • At least one of ⁇ the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used in the present application to determine whether to send a first positioning reference signal on a first target time domain resource block.
  • At least one of ⁇ the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, the controller/processor 459, the memory 460, the data source 467 ⁇ is used to send a first positioning reference signal on the first target time domain resource block in the present application.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 ⁇ is used to receive the second configuration signaling in the present application.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 ⁇ is used to receive the first positioning reference signal on the first target time domain resource block in the present application.
  • Embodiment 5 illustrates a structural diagram of UE positioning according to an embodiment of the present application, as shown in FIG5 .
  • UE501 communicates with UE502 via PC5 interface;
  • UE502 communicates with ng-eNB503 or gNB504 via LTE (Long Term Evolution)-Uu interface or NR (New Radio)-Uu new wireless interface;
  • ng-eNB503 and gNB504 are sometimes referred to as base stations, and ng-eNB503 and gNB504 are also referred to as NG (Next Generation)-RAN (Radio Access Network).
  • ng-eNB503 and gNB504 are connected to AMF (Authentication Management Field) 505 via NG (Next Generation)-C (Control plane);
  • AMF505 is connected to LMF (Location Management Function) 506 via NL1 interface.
  • the AMF 505 receives a location service request associated with a specific UE from another entity, such as a GMLC (Gateway Mobile Location Centre) or a UE, or the AMF 505 decides to start a location service associated with a specific UE; then the AMF 505 sends the location service request to a LMF, such as the LMF 506; then the LMF processes the request.
  • the location service request includes sending auxiliary data to the specific UE to assist UE-based or UE-assisted positioning, and receiving location information reported by the UE; then the LMF returns the result of the location service to the AMF505; if the location service is requested by another entity, the AMF505 returns the result of the location service to that entity.
  • the network device of the present application includes LMF.
  • the network equipment of the present application includes NG-RAN and LMF.
  • the network equipment of the present application includes NG-RAN, AMF and LMF.
  • Embodiment 6 illustrates a wireless signal transmission flow chart according to an embodiment of the present application, as shown in FIG6.
  • the first node U1 and the second node U2 communicate via an air interface.
  • the steps in the dotted box F0 are optional.
  • a first configuration signaling is received in step S11; in step S12, M first-class RSSIs are respectively measured on M first-class resources within a first time window, where M is a positive integer greater than 1; in step S13, it is determined whether a first positioning reference signal is sent on a first target time domain resource block; in step S14, a first positioning reference signal is sent on the first target time domain resource block.
  • step S21 For the second node U2 , in step S21, a second configuration signaling is received; in step S22, a first positioning reference signal is received on a first target time domain resource block.
  • the first configuration signaling is used to indicate a first resource pool and a first configuration; the second configuration signaling also indicates the first resource pool and the first configuration; the first resource pool includes the M first-class resources, any of the M first-class resources adopts the first configuration, and the first configuration includes at least one of a first comb size, a first number of symbols, a first number of frequency domain resource blocks, a first resource repetition factor, a first sending period and a first maximum transmission power value; the first target time domain resource block is used to determine the first time window; the first channel busy ratio is the proportion of the first-class resources whose first-class RSSI measured within the first time window exceeds the first threshold; the first channel busy ratio is used by the first node U1 to determine whether to send the first positioning reference signal; the first resource pool in The second time window includes Q1 first-class resources, and the resources occupied by the first positioning reference signal are one of the Q1 first-class resources, where Q1 is a positive integer greater than 1; the second time window includes the first time window and the first time
  • any of the M1 first-class RSSIs measured respectively from the M1 first-class resources among the M first-class resources exceeds the first threshold; the proportion of the first-class RSSI measured within the first time window that exceeds the first threshold is the ratio of M1 to M, and M1 is a positive integer not greater than M.
  • the first resource pool includes Q alternative resources within the first time window, any first-category resource among the M first-category resources is one of the Q alternative resources, and Q is a positive integer greater than M; any first-category RSSIs among M1 first-category resources measured respectively exceed the first threshold; the proportion of first-category resources whose first-category RSSI measured within the first time window exceeds the first threshold is the ratio of M1 to Q, and M1 is a positive integer not greater than M.
  • the second configuration signaling is the same as the first configuration signaling.
  • the second configuration signaling is different from the first configuration signaling.
  • the first node U1 and the second node U2 communicate with each other through a PC5 interface.
  • the steps in block F0 in FIG. 6 exist.
  • the step in block F0 in FIG. 6 does not exist.
  • the first node U1 sends the first location information to the second node U2.
  • the first node U1 sends the first location information to the second node U2, and the second node U2 reports the first location information to the LMF.
  • the first node U1 reports the first location information to LMF.
  • the step in box F0 in FIG. 6 exists.
  • the step in box F0 in FIG. 6 does not exist.
  • Embodiment 7 illustrates a schematic diagram of the relationship between the first-class resource and the first configuration according to an embodiment of the present application, as shown in FIG7.
  • the square filled with diagonal stripes represents the RE allocated to one of the M first-class resources
  • the rectangle filled with diagonal squares represents the time-frequency resource block occupied by one of the M first-class resources
  • the long rectangle marked with "AGC” represents the multi-carrier symbol used for automatic gain control (AGC)
  • the long rectangle marked with "GAP” represents the protection interval.
  • the first configuration signaling is used to indicate the first resource pool and the first configuration;
  • the first resource pool includes multiple first-class resources, and any first-class resource among the multiple first-class resources adopts the first configuration;
  • any first-class resource among the M first-class resources is a first-class resource among the multiple first-class resources included in the first resource pool;
  • the first configuration includes at least one of a first comb size, a first number of symbols, a first number of frequency domain resource blocks, a first resource repetition factor, a first sending period and a first maximum transmission power value.
  • the first configuration signaling includes all or part of a higher layer signaling.
  • the first configuration signaling includes all or part of an RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the first configuration signaling includes an RRC-IE (Radio Resource Control-Information Element).
  • RRC-IE Radio Resource Control-Information Element
  • the first configuration signaling includes all or part of a MAC (Multimedia Access Control) signaling.
  • MAC Multimedia Access Control
  • the first configuration signaling includes a MAC-CE (Multimedia Access Control-Control Element).
  • MAC-CE Multimedia Access Control-Control Element
  • the first configuration signaling is used to indicate the first resource pool.
  • the first configuration signaling is used to indicate configuration information of the first resource pool.
  • the first configuration signaling is used to indicate the time domain resources occupied by the first resource pool.
  • the first configuration signaling is used to indicate the frequency domain resources occupied by the first resource pool.
  • the first configuration signaling is used to indicate the number of frequency domain resource blocks included in the first resource pool in the frequency domain.
  • the first configuration signaling is used to indicate the number of RBs included in the first resource pool in the frequency domain.
  • the first configuration signaling is used to indicate the number of PRBs included in the first resource pool in the frequency domain.
  • the first configuration signaling is used to indicate the length of the first time window.
  • the first configuration signaling is used to indicate the length of the second time window.
  • the first configuration signaling is used to indicate the first configuration.
  • the first configuration signaling is used to configure the M first-category resources in the first resource pool.
  • the first configuration is used to configure the M first-category resources.
  • the first configuration is used to configure the M first-category resources in the first resource pool.
  • the first configuration indicated by the first configuration signaling is used to configure the M first-category resources in the first resource pool.
  • the M first-category resources adopt the first configuration.
  • any first-category resource among the M first-category resources adopts the first configuration.
  • the M first-class resources are used for SL PRS transmission.
  • the M first-class resources are configured for SL PRS transmission.
  • any first-category resource among the M first-category resources includes a fully-staggered pattern.
  • any first-category resource among the M first-category resources includes a partially-staggered pattern.
  • any first-category resource among the M first-category resources includes an unstaggered pattern.
  • the first configuration signaling is used to configure the first resource pool to include the multiple first-category resources.
  • the first configuration is used to configure the multiple first-category resources in the first resource pool.
  • the first configuration indicated by the first configuration signaling is used to configure the multiple first-category resources included in the first resource pool.
  • the multiple first-category resources included in the first resource pool adopt the first configuration.
  • any first-category resource among the multiple first-category resources included in the first resource pool adopts the first configuration.
  • the multiple first-category resources included in the first resource pool include the M first-category resources.
  • the M first-category resources belong to the multiple first-category resources included in the first resource pool.
  • any first-category resource among the M first-category resources is one of the multiple first-category resources included in the first resource pool.
  • the first resource pool includes M first-category resources within the first time window.
  • the first time window includes the M first-category resources in the first resource pool.
  • the M first-category resources in the first resource pool are within the first time window in the time domain.
  • the first time window includes the time domain resources of the M first-category resources.
  • the first time window includes the time domain resources of any first category resource among the M first category resources.
  • the first time window includes the time domain resources of the M first-category resources in the first resource pool.
  • the time domain resources of the M first-category resources are within the first time window.
  • the time domain resource of any first-category resource among the M first-category resources is within the first time window.
  • the first time window includes multiple time domain resources, and the time domain resource of any first category resource among the M first category resources is one of the multiple time domain resources included in the first time window.
  • the M first-category resources include all first-category resources within the first time window in the time domain among the multiple first-category resources included in the first resource pool.
  • any first-category resource among the M first-category resources is a first-category resource within the first time window among the multiple first-category resources included in the first resource pool.
  • the M first-category resources are all the first-category resources in the first time window in the time domain among the multiple first-category resources included in the first resource pool.
  • the first configuration includes at least one of a first comb size, a first number of symbols, a first number of frequency domain resource blocks, a first resource repetition factor, a first transmission period and a first maximum transmission power value.
  • the first configuration includes the first comb size.
  • the first comb size is equal to K, where K is a positive integer.
  • the first comb size is the comb size of any first-category resource among the M first-category resources.
  • the first comb size is the comb size of any first-category resource among the multiple first-category resources included in the first resource pool.
  • K is a positive integer in ⁇ 2, 4, 6, 12 ⁇ .
  • K is equal to 2.
  • K is equal to 6.
  • the first configuration includes the first comb size, and the comb size of any first category resource among the M first category resources using the first configuration including any first category resource among the M first category resources is the first comb size.
  • the first configuration includes the first comb size, and any one of the M first-category resources adopts the first configuration including any one of the M first-category resources occupying one subcarrier out of every K subcarriers in the frequency domain.
  • the first configuration includes the first comb size, and any one of the M first-category resources adopts the first configuration including any one of the M first-category resources occupying one RE out of every K REs in the frequency domain.
  • the first configuration includes the first number of symbols.
  • the first symbol number is equal to L, and L is a positive integer.
  • the first number of symbols is the size of any first-category resource among the M first-category resources in the time domain.
  • the first number of symbols is the number of multi-carrier symbols occupied by any first-category resource among the M first-category resources in the time domain.
  • L is a positive integer among ⁇ 2, 4, 6, 12 ⁇ .
  • L is equal to 2.
  • L is equal to 4.
  • the first configuration includes the first number of symbols, and any one of the M first-category resources adopts the first configuration including a size of any one of the M first-category resources in the time domain being the first number of symbols.
  • the first configuration includes the first number of symbols, and the number of symbols occupied by any one of the M first-category resources in a time slot using the first configuration includes the first number of symbols.
  • the first configuration includes the first number of symbols, and any one of the M first-category resources adopts the first configuration including any one of the M first-category resources occupying L multi-carrier symbols in the time domain.
  • the first configuration includes the number of the first frequency domain resource blocks.
  • the number of the first frequency domain resource blocks is equal to B, where B is a positive integer.
  • the number of the first frequency domain resource blocks is the number of frequency domain resource blocks occupied by any first type of resource among the M first types of resources in the frequency domain.
  • the first number of frequency domain resource blocks is the number of frequency domain resource blocks allocated to the M first-category resources.
  • the number of the first frequency-domain resource blocks is the number of frequency-domain resource blocks allocated to any first-category resource among the M first-category resources.
  • the number of the first frequency domain resource blocks is the number of frequency domain resource blocks in the first resource pool allocated to the M first-category resources.
  • the number of the first frequency domain resource blocks is the number of frequency domain resource blocks in the first resource pool allocated to any first type of resource among the M first type of resources.
  • the number of the first frequency domain resource blocks is the number of PRBs occupied by any first type of resource among the M first types of resources in the frequency domain.
  • B is the number of PRBs.
  • B is a multiple of 4.
  • B is not less than 24.
  • B is not greater than 272.
  • the first configuration includes the number of the first frequency domain resource blocks, and any one of the M first-category resources adopts the first configuration, including any one of the M first-category resources occupying B frequency domain resource blocks, and the B frequency domain resource blocks belong to the first resource pool.
  • the first configuration includes the number of the first frequency domain resource blocks, and any one of the M first category resources adopts the first configuration including B frequency domain resource blocks in the first resource pool being allocated to any one of the M first category resources.
  • the B frequency domain resource blocks in the first resource pool are B PRBs respectively.
  • the B frequency domain resource blocks in the first resource pool are B RBs respectively.
  • the B frequency domain resource blocks in the first resource pool are respectively B subchannels.
  • the B frequency domain resource blocks in the first resource pool are B subcarriers respectively.
  • the first configuration includes a first comb size, a first number of symbols and the first number of frequency domain resource blocks, and any one of the M first-category resources adopts the first configuration including that the comb size of any one of the M first-category resources is the first comb size, any one of the M first-category resources occupies L multi-carrier symbols in the time domain, and any one of the M first-category resources occupies B frequency domain resource blocks in the first resource pool.
  • any one of the M first-category resources occupies at least one PRB in the frequency domain, and any one of the M first-category resources occupies at least two multi-carrier symbols in the time domain.
  • any one of the M first-category resources occupies one PRB in the frequency domain, and any one of the M first-category resources occupies at least two multi-carrier symbols in the time domain.
  • the first configuration includes the first resource repetition factor.
  • the first resource repetition factor is equal to T, where T is a positive integer.
  • the first resource repetition factor is the number of repetitions of any first-category resource among the M first-category resources.
  • the first resource repetition factor is the number of repetitions of any first-category resource among the M first-category resources in the first resource pool.
  • T is a positive integer among ⁇ 1, 2, 4, 6, 8, 16, 32 ⁇ .
  • T is equal to 1, and any first-category resource among the M first-category resources is not repeated.
  • T is equal to 2.
  • T is equal to 6.
  • the first configuration includes the first resource repetition factor, and the number of repetitions of any one of the M first-class resources in the first resource pool using the first configuration is the first resource repetition factor.
  • the first configuration includes the first sending cycle, and the first sending cycle includes S time slots, where S is a positive integer.
  • the first sending period is related to the subcarrier spacing in the first resource pool.
  • the first sending period is related to the subcarrier spacing of any first-category resource among the M first-category resources.
  • S is one of 2 ⁇ ⁇ 4,5,8,10,16,20,32,40,64,80,160,320,640,1280,2560,5120,10240 ⁇ , and ⁇ is one of 0,1,2,3.
  • depends on the subcarrier spacing of any first-category resource among the M first-category resources.
  • the first sending period is a period of any first-category resource among the M first-category resources.
  • the first configuration includes the first sending period, and a period in which any one of the M first-category resources uses the first configuration including any one of the M first-category resources is the first sending period.
  • the first configuration includes the first sending period, and any one of the M first-category resources is sent once in every S time slots using the first configuration including any one of the M first-category resources.
  • the first configuration includes the first maximum transmit power value.
  • the first configuration includes the first maximum transmission power value
  • a given positioning reference signal is transmitted on any one of the M first-category resources
  • any one of the M first-category resources adopts the first configuration including that the maximum transmission power value of the given positioning reference signal does not exceed the first maximum transmission power value.
  • the unit of the first maximum transmission power value is dB (decibel).
  • the unit of the first maximum transmission power value is dBm (millidecibels).
  • the unit of the first maximum transmission power value is W (watt).
  • the unit of the first maximum transmission power value is mW (milliwatt).
  • the first configuration includes the first comb size and the first number of symbols.
  • the first configuration includes the first comb size, the first number of symbols and the first number of frequency domain resource blocks.
  • the first configuration includes the first comb size, the first number of symbols, the first number of frequency domain resource blocks and the first maximum transmit power value.
  • the first resource pool includes a plurality of first-category resources.
  • the first resource pool is configured with multiple first-category resources.
  • the multiple first-category resources included in the first resource pool are used for SL PRS transmission.
  • the multiple first-category resources included in the first resource pool are multiple SL PRS resources.
  • any first-category resource among the multiple first-category resources included in the first resource pool occupies at least one multi-carrier symbol in the time domain, and any first-category resource among the multiple first-category resources included in the first resource pool occupies multiple subcarriers in the frequency domain.
  • any first-category resource among the multiple first-category resources included in the first resource pool occupies multiple multi-carrier symbols in the time domain, and any first-category resource among the multiple first-category resources included in the first resource pool occupies multiple subcarriers in the frequency domain.
  • the multiple multi-carrier symbols occupied by any first-category resource among the multiple first-category resources included in the first resource pool in the time domain are continuous.
  • the multiple subcarriers occupied by any first-category resource among the multiple first-category resources included in the first resource pool in the frequency domain are continuous.
  • the multiple subcarriers occupied by any first-category resource among the multiple first-category resources included in the first resource pool in the frequency domain are non-continuous.
  • the multiple subcarriers occupied by any one of the multiple first-category resources included in the first resource pool in the frequency domain are equally spaced.
  • any first-category resource among the multiple first-category resources included in the first resource pool is spaced by K-1 subcarriers between any two adjacent subcarriers among the multiple subcarriers occupied in the frequency domain, where K is a positive integer.
  • the comb size of any first-category resource among the multiple first-category resources included in the first resource pool is the first comb size.
  • the size in the time domain of any first-category resource among the multiple first-category resources included in the first resource pool is the first number of symbols.
  • the number of multi-carrier symbols occupied in the time domain by any first-category resource among the multiple first-category resources included in the first resource pool is the first number of symbols.
  • the number of frequency domain resource blocks occupied in the frequency domain by any first type of resource among the multiple first type of resources included in the first resource pool is the first frequency domain resource blocks.
  • the number of PRBs occupied in the frequency domain by any first-category resource among the multiple first-category resources included in the first resource pool is the first frequency-domain resource block.
  • the number of repetitions of any first-category resource among the multiple first-category resources included in the first resource pool in the first resource pool is the first resource repetition factor.
  • the period of any first-category resource among the multiple first-category resources included in the first resource pool is the first sending period.
  • the M first-category RSSIs are respectively linear averages of all received powers observed on the M first-category resources.
  • any first-category RSSI among the M first-category RSSIs is a linear average of all received powers observed on a first-category resource among the M first-category resources.
  • the given first-class resource is any first-class resource among the M first-class resources
  • the given first-class RSSI is the quotient of the sum of X received powers observed on the X REs included in the given first-class resource divided by X, where X is a positive integer.
  • the unit of any received power among the X received powers is W (watt).
  • the given first-category resource is any first-category resource among the M first-category resources
  • the given first-category RSSI is a linear average of all received powers observed on the given first-category resource.
  • the unit of the received power is W.
  • the given first-category RSSI is one of the M first-category RSSIs.
  • the given first-category RSSI is a first-category RSSI among the M first-category RSSIs corresponding to the given first-category resource.
  • the given first-category RSSI is a first-category RSSI among the M first-category RSSIs measured for the given first-category resource.
  • any first-category RSSI among the M first-category RSSIs is measured within the first time window.
  • the M first-category RSSIs include M1 first-category RSSIs, where M1 is a positive integer not greater than the M.
  • any RSSI among the M1 first-category RSSIs is one of the M first-category RSSIs, and M1 is a positive integer not greater than the M.
  • the M1 first-category RSSIs among the M first-category RSSIs all exceed the first threshold.
  • any first-category RSSI among the M1 first-category RSSIs exceeds the first threshold.
  • any first-class RSSI among the M first-class RSSIs except the M1 first-class RSSIs does not exceed exceeds the first threshold.
  • the first threshold is configurable.
  • the first threshold is preconfigured.
  • the unit of the first threshold is W.
  • the first channel busy ratio is SL CBR (Channel Busy Ratio).
  • the first channel busy ratio is SL-PRS CBR.
  • the first channel busy ratio is the proportion of the M first-category RSSIs that exceeds the first threshold.
  • the first channel busy ratio is the proportion of the M first-category RSSIs measured within the first time window that exceeds the first threshold.
  • the first channel busy ratio is the proportion of first category resources whose first category RSSI measured on the M first category resources exceeds the first threshold.
  • any first-category RSSI among the M1 first-category RSSIs respectively measured on M1 first-category resources among the M first-category resources exceeds the first threshold.
  • the first channel busy ratio is the ratio of the M1 first-category RSSIs to the M first-category RSSIs.
  • the first channel busy ratio is the ratio of the M1 first-category resources to the M first-category resources.
  • the first channel busy ratio is the ratio of the M1 first-category RSSIs to the Q candidate RSSIs, where Q is a positive integer greater than M.
  • the first channel busy ratio is the ratio of the M1 first-category resources to the Q candidate resources, where Q is a positive integer greater than M.
  • the first channel busy ratio is the ratio of the M1 to the M.
  • the first channel busy ratio is the quotient of M1 divided by M.
  • the first channel busy ratio is the ratio of the M1 to the first sample number.
  • the first number of samples is the M.
  • the first number of samples is the Q.
  • the first channel busy ratio is the ratio of the M1 to the Q.
  • the first channel busy ratio is the quotient of the M1 divided by the Q.
  • the first channel busy ratio is a decimal.
  • the first channel busy ratio is a percentage.
  • Embodiment 8 illustrates a schematic diagram of the relationship between M first-class resources according to an embodiment of the present application, as shown in FIG8.
  • each square represents an RE in the first resource pool; a square filled with "1" represents an RE allocated to the #1 first-class resource among the M first-class resources; a square filled with "2” represents an RE allocated to the #2 first-class resource among the M first-class resources; a square filled with "3” represents an RE allocated to the #3 first-class resource among the M first-class resources; a square filled with "4" represents an RE allocated to the #1 first-class resource among the M first-class resources; a long rectangle marked with "AGC” represents a multi-carrier symbol used for AGC; a long rectangle marked with "GAP” represents a guard interval.
  • #1 first-category resources, #2 first-category resources, #3 first-category resources and #4 first-category resources are respectively four first-category resources among the M first-category resources, and the #1 first-category resources, the #2 first-category resources, the #3 first-category resources and the #4 first-category resources occupy the same time-frequency resource block in the first resource pool, and the #1 first-category resources, the #2 first-category resources, the #3 first-category resources and the #4 first-category resources occupy different REs in the time-frequency resource block.
  • the first resource pool includes multiple time-frequency resource blocks.
  • any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool belongs to a time slot in the first resource pool in the time domain, and any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool is a PRB in the first resource pool in the frequency domain.
  • any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool belongs to a time slot in the first resource pool in the time domain, and any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool includes the At least one PRB in the first resource pool.
  • any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool includes at least one multi-carrier symbol in a time slot in the first resource pool in the time domain, and any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool includes at least one PRB in the first resource pool in the frequency domain.
  • any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool includes L1 multi-carrier symbols in a time slot in the first resource pool in the time domain
  • any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool includes B1 PRBs in the first resource pool in the frequency domain
  • L1 is a positive integer
  • B1 is a positive integer
  • L1 is a positive integer not less than 2 and not more than 14.
  • L1 is a positive integer not less than 2 and not more than 12.
  • B1 is a positive integer not less than 24 and not more than 272.
  • B1 is equal to 4.
  • the first time-frequency resource block is any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool, the first time-frequency resource block includes at least one PRB in the frequency domain, the first time-frequency resource block includes multiple multi-carrier symbols in the time domain, and the multiple multi-carrier symbols included in the first time-frequency resource block in the time domain belong to one time slot.
  • the first time-frequency resource block includes 4 PRBs in the frequency domain, and the first time-frequency resource block includes at least 2 multi-carrier symbols in the time domain.
  • the first time-frequency resource block is occupied by at least two first-category resources among the M first-category resources.
  • the first time-frequency resource block is alternately occupied by at least two first-category resources among the M first-category resources.
  • At least two first-category resources among the M first-category resources occupy the same time-frequency resource block in the first resource pool.
  • At least two first-category resources among the M first-category resources occupy different REs in the same time-frequency resource block in the first resource pool.
  • At least two first-category resources among the M first-category resources are staggered in the frequency domain on the same time-frequency resource block in the first resource pool.
  • At least two first-category resources among the M first-category resources are staggered in the frequency domain on the same time-frequency resource block in the first resource pool.
  • multi-carrier symbols occupied by at least two first-category resources among the M first-category resources are the same.
  • At least two first-category resources among the M first-category resources occupy the same PRB.
  • At least two first-category resources among the M first-category resources occupy the same RB.
  • the at least two first-category resources in the M first-category resources that occupy the same time-frequency resource block occupy different REs.
  • any two first-category resources among the M first-category resources occupy different REs.
  • any two first-category resources among the multiple first-category resources included in the first resource pool occupy different REs.
  • the first time-frequency resource block is any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool, and the first time-frequency resource block is allocated to at least two first-category resources.
  • the first time-frequency resource block is any time-frequency resource block among the multiple time-frequency resource blocks included in the first resource pool, and the first time-frequency resource block is allocated to at least two first-category resources in the first resource pool.
  • Embodiment 9 illustrates a schematic diagram of the relationship between M first-category resources, N second-category resources, Q candidate resources and the first resource pool according to an embodiment of the present application, as shown in FIG9.
  • the bold-lined large square represents the time-frequency resources of the first resource pool within the first time window; each square represents an alternative resource among the Q candidate resources that is neither a first-category resource nor a second-category resource; the rectangle filled with diagonal stripes represents one of the M first-category resources; and the rectangle filled with diagonal squares represents one of the N second-category resources.
  • the first resource pool includes Q candidate resources in the first time window, any first-category resource of the M first-category resources is one of the Q candidate resources, and any second-category resource of the N second-category resources is one of the Q candidate resources.
  • Select one of the resources, Q is a positive integer not less than the sum of the M and the N.
  • the first resource pool includes Q candidate resources within the first time window, any first-category resource among the M first-category resources is one of the Q candidate resources, and Q is a positive integer not greater than the M.
  • the Q is equal to the M.
  • the Q is greater than the M.
  • the Q candidate resources include at least one candidate resource that does not belong to the first category of resources.
  • the Q candidate resources include at least one candidate resource that is not any first-category resource among the M first-category resources.
  • the first resource pool includes Q candidate resources within the first time window, any second-category resource among the N second-category resources is one of the Q candidate resources, and Q is a positive integer not greater than the N.
  • the Q is greater than the N.
  • the Q candidate resources include at least one candidate resource that does not belong to the second category of resources.
  • the Q candidate resources include at least one candidate resource that is not any second-category resource among the N second-category resources.
  • the Q is equal to the sum of the M and the N.
  • the Q is greater than the sum of the M and the N.
  • the Q candidate resources include at least one candidate resource that does not belong to the first category of resources, nor to the second category of resources.
  • the Q candidate resources include at least one candidate resource that is neither any first-category resource among the M first-category resources nor any second-category resource among the N second-category resources.
  • the first configuration signaling is used to indicate the first configuration and the second configuration.
  • the first configuration signaling is used to configure the M first-category resources and the N second-category resources in the first resource pool.
  • the first configuration is used to configure the M first-category resources
  • the second configuration is used to configure the N second-category resources
  • the first configuration is used to configure the M first-category resources in the first resource pool
  • the second configuration is used to configure the N second-category resources in the first resource pool
  • the first configuration indicated by the first configuration signaling is used to configure the M first-category resources in the first resource pool
  • the second configuration indicated by the first configuration signaling is used to configure the N second-category resources in the first resource pool.
  • the N second-category resources adopt the second configuration.
  • any second-category resource among the N second-category resources adopts the second configuration.
  • the N second-type resources are used for SL PRS transmission.
  • the N second-type resources are configured for SL PRS transmission.
  • the first time window includes time domain resources of any second category resource among the N second category resources.
  • the first time window includes the time domain resources of the N second-category resources in the first resource pool.
  • the time domain resources of the N second-category resources are within the first time window.
  • the first time window includes multiple time domain resources, and the time domain resource of any second type resource among the N second type resources is one of the multiple time domain resources included in the first time window.
  • the second configuration includes at least one of a second comb size, a second number of symbols, a second number of frequency domain resource blocks, a second resource repetition factor, a second transmission period and a second maximum transmit power value.
  • the second configuration includes the second comb size, and the comb size of any second type resource among the N second type resources using the second configuration including any second type resource among the N second type resources is the second comb size.
  • the second configuration includes the second number of symbols, and any second type of resource among the N second type of resources adopts the second configuration including that the size of any second type of resource among the N second type of resources in the time domain is the second number of symbols.
  • the second configuration includes the second number of symbols, and the number of symbols occupied by any second type of resource among the N second type of resources using the second configuration including any second type of resource among the N second type of resources in a time slot is the second number of symbols.
  • the second configuration includes the number of the second frequency domain resource blocks, B2, and any second type of resource among the N second type of resources adopts the second configuration including B2 frequency domain resource blocks in the first resource pool being allocated to any second type of resource among the N second type of resources, and B2 is a positive integer.
  • any second type of resource among the N second type of resources occupies at least one PRB in the frequency domain, and any second type of resource among the N second type of resources occupies at least two multi-carrier symbols in the time domain.
  • any first-category resource among the N second-category resources occupies one PRB in the frequency domain
  • any second-category resource among the N second-category resources occupies at least two multi-carrier symbols in the time domain.
  • the second configuration includes the second resource repetition factor, and the number of repetitions of any second type resource among the N second type resources using the second configuration including any second type resource among the N second type resources in the first resource pool is the second resource repetition factor.
  • the second configuration includes the second sending period, and the period in which any second type of resource among the N second type of resources adopts the second configuration including any second type of resource among the N second type of resources is the second sending period.
  • the second configuration includes the second maximum transmission power value
  • a given positioning reference signal is transmitted on any second type of resource among the N second type of resources
  • any second type of resource among the N second type of resources adopts the second configuration including that the maximum transmission power value of the given positioning reference signal does not exceed the second maximum transmission power value.
  • the unit of the second maximum transmission power value is dB (decibel).
  • the unit of the second maximum transmission power value is dBm (millidecibels).
  • the unit of the second maximum transmission power value is W (watt).
  • the unit of the second maximum transmission power value is mW (milliwatt).
  • the second configuration includes the second comb size and the second number of symbols.
  • the second configuration includes the second comb size, the second number of symbols and the second number of frequency domain resource blocks.
  • the second configuration includes the second comb size, the second number of symbols, the second number of frequency domain resource blocks and the second maximum transmit power value.
  • the second configuration is different from the first configuration.
  • At least one of the second comb size, the second number of symbols, the second number of frequency domain resource blocks, the second resource repetition factor, the second transmission period and the second maximum transmission power value included in the second configuration is different from at least one of the first comb size, the first number of symbols, the first number of frequency domain resource blocks, the first resource repetition factor, the first transmission period and the first maximum transmission power value included in the first configuration.
  • the second comb size, the second number of symbols, the second number of frequency domain resource blocks, the second resource repetition factor, the second transmission period and the second maximum transmission power value included in the second configuration are different from the first comb size, the first number of symbols, the first number of frequency domain resource blocks, the first resource repetition factor, the first transmission period and the first maximum transmission power value included in the first configuration.
  • the second comb size included in the second configuration is the same as the first comb size included in the first configuration, and the second number of symbols included in the second configuration is different from the first number of symbols included in the first configuration.
  • the second comb size included in the second configuration is different from the first comb size included in the first configuration, and the second number of symbols included in the second configuration is the same as the first number of symbols included in the first configuration.
  • the second comb size included in the second configuration is different from the first comb size included in the first configuration, and the second number of symbols included in the second configuration is different from the first number of symbols included in the first configuration.
  • the second comb size included in the second configuration is the same as the first comb size included in the first configuration
  • the second number of symbols in the second configuration is the same as the first number of symbols included in the first configuration
  • the number of the second frequency domain resource blocks included in the second configuration is different from the number of the first frequency domain resource blocks included in the first configuration.
  • the N second-category RSSIs are respectively linear averages of all received powers observed on the N second-category resources.
  • any second type RSSI among the N second type RSSIs is a linear average of all received powers observed on a second type resource among the N second type resources.
  • any second-category RSSI among the N second-category RSSIs is measured within the first time window.
  • the Q candidate RSSIs are respectively linear averages of all received powers observed on the Q candidate resources.
  • any candidate RSSI among the Q candidate RSSIs is a linear average of all received powers observed on one candidate resource among the Q candidate resources.
  • any candidate RSSI among the Q candidate RSSIs is measured within the first time window.
  • the Q candidate RSSIs include the M first-category RSSIs and the N second-category RSSIs.
  • any first-category RSSI among the M first-category RSSIs is a candidate RSSI among the Q candidate RSSIs
  • any second-category RSSI among the N second-category RSSIs is a candidate RSSI among the Q candidate RSSIs.
  • the second sample number is the N.
  • the second sample number is the Q.
  • the second number of samples is equal to the first number of samples.
  • the second sample number is not equal to the first sample number.
  • the second channel busy ratio is the ratio of the N1 to the Q.
  • the second channel busy ratio is the quotient of the N1 divided by the Q.
  • the second channel busy ratio is a decimal.
  • the second channel busy ratio is a percentage.
  • Embodiment 10 illustrates a flowchart of determining whether to send a first positioning reference signal on a first target time domain resource according to an embodiment of the present application, as shown in FIG. 10 .
  • a first channel busy ratio is determined in step S1001; a first maximum channel occupancy ratio is determined in step S1002; a first channel share is determined in step S1003; a determination is made in step S1004 as to whether the first channel occupancy ratio is not greater than the first maximum channel occupancy ratio; when the first channel occupancy ratio is not greater than the first channel occupancy ratio, step S1005 is executed to send a first positioning reference signal on a first target time domain resource block; when the first channel occupancy ratio is greater than the first channel occupancy ratio, step S1006 is executed to abandon sending the first positioning reference signal on the first target time domain resource block; wherein the first information busy ratio is used to determine the first maximum channel occupancy ratio; the first channel occupancy ratio is the proportion of the first type of resources used for sending or granted within the second time window.
  • the second time window includes multiple time domain resource blocks.
  • the second time window includes multiple time domain resource blocks of the first resource pool in the time domain.
  • the second time window includes multiple time slots.
  • the length of the second time window is configured by a higher layer signaling.
  • the length of the second time window is preconfigured.
  • the length of the second time window is related to the subcarrier spacing in the first resource pool.
  • the second time window is a CR evaluation window.
  • the second time period is a time window for CR evaluation.
  • the first target time domain resource block is used to determine the second time window.
  • the first target time domain resource block is used to determine the second target time domain resource block
  • the second target time domain resource block is used to determine the first time window and the second time window.
  • the first time domain resource block among the multiple time domain resource blocks included in the second time window is a time domain resource blocks ahead of the second target time domain resource block
  • the last time domain resource block among the multiple time domain resource blocks included in the second time window is b time domain resource blocks later than the second target time domain resource block
  • a is a positive integer
  • b is a non-negative integer
  • the first time slot of the multiple time slots included in the second time window is a time slots ahead of the second target time domain resource block
  • the last time slot of the multiple time slots included in the second time window is b time slots later than the second target time domain resource block
  • a is a positive integer
  • b is a non-negative integer
  • the second time window is [n-a, n+b], where n is the index of the second target time domain resource block.
  • the length of the second time window is a+b+1.
  • the length of the second time window is equal to 1000.
  • the length of the second time window is equal to 1000 ⁇ 2 ⁇ , where ⁇ is related to the subcarrier spacing in the first resource pool.
  • b is equal to 0.
  • b is a positive integer.
  • the sum of a, b and 1 is equal to 1000.
  • the sum of a, b and 1 is equal to 1000 ⁇ 2 ⁇ , where ⁇ is related to the subcarrier spacing in the first resource pool.
  • the second time window includes the first time window.
  • the second time window includes the first time window and the second time sub-window.
  • the second time subwindow includes b+1 time domain resource blocks.
  • the second time subwindow includes b+1 time slots.
  • the second time subwindow is [n, n+b], where n is the index of the second target time domain resource block.
  • the length of the first time window is equal to the sum of the length of the first time window and the length of the second time sub-window.
  • b is equal to 0, and the length of the second time subwindow is 1.
  • the first resource pool includes Q1 first-category resources within the second time window.
  • the second time window includes the Q1 first-category resources in the first resource pool, where Q1 is a positive integer greater than 1.
  • the Q1 first-category resources in the first resource pool are within the second time window in the time domain, and Q1 is a positive integer greater than 1.
  • the first resource pool is configured with Q1 first-category resources within the second time window, where Q1 is a positive integer.
  • the second time window includes the time domain resources of the Q1 first-category resources.
  • the second time window includes the time domain resources of the Q1 first-category resources, where Q1 is a positive integer greater than 1.
  • the second time window includes the time domain resources of any first-category resource among the Q1 first-category resources.
  • the resources occupied by the first positioning reference signal are one of the Q1 first-category resources.
  • the first resource pool includes Q0 candidate resources within the second time window, where Q0 is a positive integer greater than Q1.
  • the first resource pool is configured with Q0 alternative resources within the second time window, where Q0 is a positive integer greater than Q1.
  • the first node sends at least one first-type positioning reference signal on at least one first-type resource within the first time window.
  • the first positioning reference signal belongs to a first type of positioning reference signal.
  • the resources occupied by the first type of positioning reference signals are the first type of resources in the first resource pool.
  • the number of first-type resources occupied by sending the first-type positioning reference signal in the first time window is not less than 1.
  • the first node does not send any first-type positioning reference signal on any first-type resource within the first time window.
  • the number of first-type resources occupied by sending first-type positioning reference signals in the first time window is equal to 0.
  • the first channel proportion is the ratio of the sum of the number of first-class resources occupied by sending the first-class positioning reference signal in the first time window and the number of first-class resources granted in the second time subwindow to the Q1 first-class resources.
  • the first channel proportion is the ratio of the sum of the number of first-type resources occupied by sending the first-type positioning reference signal in the first time window and the number of first-type resources granted in the second time subwindow to Q1.
  • the first channel proportion is the quotient of the sum of the number of first-type resources occupied by sending the first-type positioning reference signal in the first time window and the number of first-type resources granted in the second time subwindow divided by the Q1.
  • the first channel proportion is the ratio of the sum of the number of first-type resources occupied by sending the first-type positioning reference signal in the first time window and the number of first-type resources granted in the second time subwindow to the second sample.
  • the first channel proportion is the ratio of the sum of the number of first-type resources occupied by sending the first-type positioning reference signal in the first time window and the number of first-type resources granted in the second time subwindow to the second sample.
  • the first channel proportion is the quotient of the sum of the number of first-type resources occupied by sending the first-type positioning reference signal in the first time window and the number of first-type resources granted in the second time subwindow divided by the second sample.
  • the third sample is equal to the Q1.
  • the third sample is equal to Q0.
  • the first channel proportion is a decimal.
  • the proportion of the first channel is a percentage.
  • the maximum channel occupancy ratio list includes multiple maximum channel occupancy ratios, and the multiple maximum channel occupancy ratios correspond one-to-one to multiple channel busy ratio ranges respectively; the first maximum channel occupancy ratio is one of the multiple maximum channel occupancy ratios.
  • the first channel busy ratio belongs to one of the multiple channel busy ratio ranges, and a channel busy ratio range to which the first channel busy ratio belongs is used to determine the first maximum channel occupancy ratio from the multiple maximum channel occupancy ratios included in the maximum channel share list.
  • the first channel occupancy ratio is not greater than the first maximum channel occupancy ratio.
  • the first channel occupancy ratio is less than the first maximum channel occupancy ratio.
  • the first channel occupancy ratio is equal to the first maximum channel occupancy ratio.
  • the first channel occupancy ratio is greater than the first maximum channel occupancy ratio.
  • the first channel occupancy ratio is not greater than the first maximum channel occupancy ratio, and the first positioning reference signal is sent on the first target time domain resource block.
  • the first channel occupancy ratio is greater than the first maximum channel occupancy ratio, and the first positioning reference signal is abandoned from being sent on the first target time domain resource block.
  • the first positioning reference signal is sent on the first target time domain resource block.
  • Embodiment 11 illustrates a structural block diagram of a processing device used in a first node, as shown in FIG11 .
  • the first node device processing device 1100 is mainly composed of a first receiver 1101 and a first transmitter 1102 .
  • the first receiver 1101 includes at least one of the antenna 452, transmitter/receiver 454, multi-antenna reception processor 458, reception processor 456, controller/processor 459, and memory 460 in FIG. 4 of the present application.
  • the first transmitter 1102 includes at least one of the antenna 452, transmitter/receiver 454, multi-antenna transmitter processor 457, transmit processor 468, controller/processor 459, memory 460 and data source 467 in FIG. 4 of the present application.
  • the first receiver 1101 measures M first-class RSSIs on M first-class resources within a first time window, respectively, where M is a positive integer greater than 1; the first transmitter 1102 determines whether to send a first positioning reference signal on a first target time domain resource block; the first resource pool includes the M first-class resources, and the M first-class resources adopt a first configuration; the first target time domain resource block is used to determine the first time window; the first channel busy ratio (CBR) is the proportion of first-class resources whose first-class RSSI measured within the first time window exceeds a first threshold; the first channel busy ratio is used to determine whether to send the first positioning reference signal on the first target time domain resource block.
  • the first location information includes a first receiving and sending time difference, which is the linear sum of the receiving timing of the first time unit, the first time length, and the sending timing of the second time unit.
  • the first receiver 1101 receives a first configuration signaling; the first configuration signaling is used to indicate the first resource pool and the first configuration; the first configuration includes at least one of a first comb size, a first number of symbols, a first number of frequency domain resource blocks, a first resource repetition factor, a first sending period and a first maximum transmit power value.
  • the first resource pool includes Q candidate resources within the first time window, any first-category resource among the M first-category resources is one of the Q candidate resources, and Q is a positive integer greater than the M.
  • any of the M1 first-class RSSIs measured by the M1 first-class resources in the M first-class resources exceeds the first threshold; the first-class RSSI measured within the first time window exceeds the first threshold.
  • the ratio of the first type of resources of the threshold is the ratio of M1 to the first sample number, where M1 is a positive integer not greater than M; the first sample number is equal to M, or the first sample number is equal to Q.
  • the first resource pool includes N second-category resources, any second-category resource among the N second-category resources is one of the Q alternative resources; the first configuration signaling is used to indicate a second configuration; the N second-category resources adopt the second configuration, and the second configuration is different from the first configuration.
  • the first transmitter 1102 sends the first positioning reference signal on the first target time domain resource block;
  • the first resource pool includes Q1 first-class resources in the second time window, and the resources occupied by the first positioning reference signal are one of the Q1 first-class resources, and Q1 is a positive integer greater than 1;
  • the second time window includes the first time window and the second time subwindow, and the first target time domain resource block is used to determine the second time window;
  • the first channel occupancy ratio is the quotient of the sum of the number of first-class resources occupied by sending one or more first-class positioning reference signals in the first time window and the number of first-class resources granted in the second time subwindow divided by the Q1;
  • the first channel occupancy ratio is not greater than the first maximum channel occupancy ratio, and the first channel busy ratio is used to determine the first maximum channel occupancy ratio;
  • the first positioning reference signal belongs to the first-class positioning reference signal, and the resources occupied by the first positioning reference signal belong to the first-class resources.
  • the first node 1100 is a user equipment.
  • the first node 1100 is a relay node.
  • the first node 1100 is a roadside device.
  • Embodiment 12 illustrates a structural block diagram of a processing device used in a second node, as shown in FIG12 .
  • the second node device processing device 1200 is mainly composed of a second receiver 1201 .
  • the second receiver 1201 includes at least one of the antenna 420, the transmitter/receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 in FIG. 4 of the present application.
  • the second receiver 1201 receives a second configuration signaling; the second receiver 1201 receives a first positioning reference signal on a first target time domain resource block; the second configuration signaling is used to indicate the first resource pool and a first configuration, the first configuration including a first comb size, a first number of symbols, a first number of frequency domain resource blocks, a first resource repetition factor, a first sending period and at least one of a first maximum transmit power value; the first target time domain resource block belongs to the time domain resources occupied by the first resource pool; the first positioning reference signal is used to generate first position information.
  • the second node 1200 is a user equipment.
  • the second node 1200 is a relay node.
  • the second node 1200 is a roadside device.
  • each module unit in the above embodiment can be implemented in the form of hardware or in the form of a software function module, and the present application is not limited to any specific form of software and hardware combination.
  • the first node device in the present application includes but is not limited to mobile phones, tablet computers, notebooks, Internet cards, low-power devices, eMTC devices, NB-IoT devices, vehicle-mounted communication devices, aircraft, airplanes, drones, remote-controlled aircraft and other wireless communication devices.
  • the second node device in the present application includes but is not limited to mobile phones, tablet computers, notebooks, Internet cards, low-power devices, eMTC devices, NB-IoT devices, vehicle-mounted communication devices, aircraft, airplanes, drones, remote-controlled aircraft and other wireless communication devices.
  • the user equipment or UE or terminal in the present application includes but is not limited to mobile phones, tablet computers, notebooks, Internet cards, low-power devices, eMTC devices, NB-IoT devices, vehicle-mounted communication devices, aircraft, airplanes, drones, remote-controlled aircraft and other wireless communication devices.
  • the base station equipment or base station or network side equipment in this application includes but is not limited to macrocellular base stations, microcellular base stations, home base stations, relay base stations, eNB, gNB, transmission receiving nodes TRP, GNSS, relay satellites, satellite base stations, aerial base stations and other wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于定位的方法和装置。第一节点在第一时间窗内的M个第一类资源上分别测量得到M个第一类RSSIs,M是大于1的正整数;确定在第一目标时域资源块上是否发送第一定位参考信号;第一资源池包括所述M个第一类资源,所述M个第一类资源采用第一配置;所述第一目标时域资源被用于确定所述第一时间窗;第一信道繁忙比是在所述第一时间窗内被测量得到的第一类RSSI超过第一阈值的第一类资源的比例;所述第一信道繁忙比被用于确定在所述第一目标时域资源上是否发送所述第一定位参考信号。本申请有利于控制拥塞,提高了副链路定位的准确度。

Description

一种被用于定位的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中的与定位相关的方案和装置。
背景技术
定位是无线通信领域的一个重要应用;V2X(Vehicle to everything,车对外界)或者工业物联网等新应用的出现,对定位的精度或者延迟提出了更高的要求。在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#94e会议中,关于定位增强的研究课题被立项。
发明内容
根据RP-213588中的工作计划,NR Rel-18需要支持副链路定位(Sidelink Positioning,SL Positioning)的增强定位技术,其中主流的副链路定位技术包括基于SL RTT技术、SL AOA、SL TDOA和SL AOD等,而这些技术的执行都需要依赖对SL PRS(Sidelink Positioning Reference Signal,副链路定位参考信号)的测量。由于UE(User Equipment,用户设备)自主选择资源用于发送SL PRS,这就使得传统的用于定位的流程或者位置信息反馈方案需要进一步增强。
针对上述问题,本申请公开了一种定位解决方案。需要说明的是,在本申请的描述中,只是采用V2X场景作为一个典型应用场景或者例子;本申请也同样适用于面临相似问题的V2X之外的场景,例如公共安全(Public Safety)、工业物联网等等,并取得类似NR V2X场景中的技术效果。此外,虽然本申请的动机是针对用于定位测量的无线信号的发送者是移动的这一场景,本申请依然适用于用于定位测量的无线信号的发送者是固定的这一场景,例如RSU(Road Side Unit,路边单元)等。不同场景采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
在需要的情况下,可以参考3GPP标准TS38.211,TS38.212,TS38.213,TS38.214,TS38.215,TS38.321,TS38.331,TS38.305,TS37.355以辅助对本申请的理解。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
在第一时间窗内的M个第一类资源上分别测量得到M个第一类RSSIs(Received Signal Strength Indicators,接收信号强度指示),M是大于1的正整数;
确定在第一目标时域资源块上是否发送第一定位参考信号;
其中,第一资源池包括所述M个第一类资源,所述M个第一类资源采用第一配置;所述第一目标时域资源块被用于确定所述第一时间窗;第一信道繁忙比是在所述第一时间窗内被测量得到的第一类RSSI超过第一阈值的第一类资源的比例;所述第一信道繁忙比被用于确定在所述第一目标时域资源块上是否发送所述第一定位参考信号。
作为一个实施例,本申请要解决的问题是:在UE自主选择SL PRS资源的模式下,当被用于发送SLPRS的资源池过于拥塞时,UE自主选择资源后直接发送SL PRS,对其他UEs造成严重的干扰。
作为一个实施例,本申请要解决的问题是:在UE自主选择SL PRS资源的模式下,在过于拥塞的资源池内发送SL PRS,导致SL PRS接收效果不好,从而产生严重的测量误差。
作为一个实施例,本申请的方法是:将SL PRS占用的资源与RSSI测量建立关系。
作为一个实施例,本申请的方法是:将信道繁忙比与SL PRS是否发送建立关系。
作为一个实施例,本申请的方法有利于准确地拥塞控制。
作为一个实施例,本申请的方法有利于SL PRS的有效发送。
作为一个实施例,本申请的方法有利于提高定位准确度。
作为一个实施例,本申请的方法解决了在UE自主选择SL PRS资源的模式下实现有效的SL PRS发送。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第一配置信令;
其中,所述第一配置信令被用于指示所述第一资源池和所述第一配置;所述第一配置包括第一梳状尺寸(Comb size),第一符号数,第一频域资源块个数,第一资源重复因子,第一发送周期和第一最大发射功率值中的至少之一。
根据本申请的一个方面,上述方法的特征在于,所述第一资源池在所述第一时间窗内包括Q个备选资源,所述M个第一类资源中的任一第一类资源是所述Q个备选资源中的之一,Q是大于所述M的正整数。
根据本申请的一个方面,上述方法的特征在于,所述M个第一类资源中的M1个第一类资源分别被测量得到的M1个第一类RSSIs中的任一第一类RSSI都超过所述第一阈值;在所述第一时间窗内被测量得到的第一类RSSI超过所述第一阈值的第一类资源的所述比例是M1与第一样本数的比值,M1是不大于所述M的正整数;所述第一样本数等于所述M,或者,所述第一样本数等于所述Q。
根据本申请的一个方面,上述方法的特征在于,所述第一资源池包括N个第二类资源,所述N个第二类资源中的任一第二类资源是所述Q个备选资源中的之一;所述第一配置信令被用于指示第二配置;所述N个第二类资源采用所述第二配置,所述第二配置与所述第一配置不同。
根据本申请的一个方面,上述方法的特征在于,包括:
所述第一发射机,在所述第一目标时域资源块上发送所述第一定位参考信号;
其中,所述第一资源池在第二时间窗内包括Q1个第一类资源,所述第一定位参考信号所占用的资源是所述Q1个第一类资源中的之一,Q1是大于1的正整数;所述第二时间窗包括所述第一时间窗和第二时间子窗,所述第一目标时域资源块被用于确定所述第二时间窗;第一信道占用比(Channel Occupancy Ratio,CR)是所述第一时间窗内被用于发送一个或多个第一类定位参考信号所占用的第一类资源的个数和所述第二时间子窗内被授予第一类资源的个数之和除以所述Q1的商;所述第一信道占用比不大于第一最大信道占用比,所述第一信道繁忙比被用于确定所述第一最大信道占用比;所述第一定位参考信号属于第一类定位参考信号,所述第一定位参考信号所占用的资源属于第一类资源。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是用户设备(UE,User Equipment)。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是中继节点。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是路边单元。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
接收第二配置信令;
在第一目标时域资源块上接收第一定位参考信号;
其中,所述第二配置信令被用于指示所述第一资源池和第一配置,所述第一配置包括第一梳状尺寸,第一符号数,第一频域资源块个数,第一资源重复因子,第一发送周期和第一最大发射功率值中的至少之一;所述第一目标时域资源块属于所述第一资源池所占用的时域资源;所述第一定位参考信号被用于生成第一位置信息(Location Information)。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是用户设备。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是中继节点。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是路边单元。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一接收机,在第一时间窗内的M个第一类资源上分别测量得到M个第一类RSSIs,M是大于1的正整数;
第一发射机,确定在第一目标时域资源块上是否发送第一定位参考信号;
其中,第一资源池包括所述M个第一类资源,所述M个第一类资源采用第一配置;所述第一目标时域资源块被用于确定所述第一时间窗;第一信道繁忙比(CBR)是在所述第一时间窗内被测量得到的第一类RSSI超过第一阈值的第一类资源的比例;所述第一信道繁忙比被用于确定在所述第一目标时域资源块上是否发送所述第一定位参考信号。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二接收机,接收第二配置信令;在第一目标时域资源块上接收第一定位参考信号;
其中,所述第二配置信令被用于指示所述第一资源池和第一配置,所述第一配置包括第一梳状尺寸, 第一符号数,第一频域资源块个数,第一资源重复因子,第一发送周期和第一最大发射功率值中的至少之一;所述第一目标时域资源块属于所述第一资源池所占用的时域资源;所述第一定位参考信号被用于生成第一位置信息。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的UE定位的结构图;
图6示出了根据本申请的一个实施例的无线信号传输流程图;
图7示出了根据本申请的一个实施例的第一类资源与第一配置之间关系的示意图;
图8示出了根据本申请的一个实施例的M个第一类资源之间关系的示意图;
图9示出了根据本申请的一个实施例的M个第一类资源、N个第二类资源、Q个备选资源与第一资源池之间关系的示意图;
图10示出了根据本申请的一个实施例的确定在第一目标时域资源上是否发送第一定位参考信号的流程图;
图11示出了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;
图12示出了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了本申请的一个实施例的第一节点的处理流程图,如附图1所示。在附图1中,每个方框代表一个步骤。
在实施例1中,本申请中的第一节点先执行步骤101,在第一时间窗内的M个第一类资源上分别测量得到M个第一类RSSIs,M是大于1的正整数;再执行步骤102,在确定在第一目标时域资源块上是否发送第一定位参考信号;第一资源池包括所述M个第一类资源,所述M个第一类资源采用第一配置;所述第一目标时域资源块被用于确定所述第一时间窗;第一信道繁忙比是在所述第一时间窗内被测量得到的第一类RSSI超过第一阈值的第一类资源的比例;所述第一信道繁忙比被用于确定在所述第一目标时域资源块上是否发送所述第一定位参考信号。
作为一个实施例,所述第一资源池包括一个副链路资源池(Sidelink Resource Pool)。
作为一个实施例,所述第一资源池被用于副链路传输(Sidelink Transmission)。
作为一个实施例,所述第一资源池被用于副链路通信(Sidelink Communication)。
作为一个实施例,所述第一资源池被用于副链路定位(Sidelink Positioning)。
作为一个实施例,所述第一资源池被用于SL PRS(Sidelink Positioning Reference Signal,副链路定位参考信号)传输。
作为一个实施例,所述第一资源池被专(Dedicated)用于SL PRS传输。
作为一个实施例,所述第一资源池被用于SL PRS和SCI(Sidelink Control Information)传输。
作为一个实施例,所述第一资源池包括多个REs(Resource Elements,资源粒子)。
作为一个实施例,所述第一资源池中的任一RE在时域占用一个多载波符号,在频域占用一个子载波(Subcarrier)。
作为一个实施例,所述第一资源池在时域包括多个时域资源块,所述第一资源池在频域包括多个频域 资源块。
作为一个实施例,所述第一资源池在时域包括的所述多个时域资源块分别是多个时隙。
作为一个实施例,所述第一资源池在时域包括的所述多个时域资源块分别是多个多载波符号。
作为一个实施例,所述第一资源池在时域包括的所述多个时域资源块中的任一时域资源块属于一个时隙。
作为一个实施例,所述第一资源池在时域包括的所述多个时域资源块中的任一时域资源块包括至少一个多载波符号。
作为一个实施例,所述第一资源池在时域包括的所述多个时域资源块中的任一时域资源块包括多个多载波符号。
作为一个实施例,所述第一资源池在频域包括的所述多个频域资源块分别是多个子信道(Subchannel)。
作为一个实施例,所述第一资源池在频域包括的所述多个频域资源块分别是多个RBs(Resource Blocks,资源块)。
作为一个实施例,所述第一资源池在频域包括的所述多个频域资源块分别是多个PRBs(Physical Resource Blocks,物理资源块)。
作为一个实施例,所述第一资源池在频域包括的所述多个频域资源块分别是多个子载波。
作为一个实施例,所述第一资源池在频域包括的所述多个频域资源块中的任一频域资源块属于一个子信道。
作为一个实施例,所述第一资源池在频域包括的所述多个频域资源块中的任一频域资源块属于一个RB。
作为一个实施例,所述第一资源池在频域包括的所述多个频域资源块中的任一频域资源块属于一个PRB。
作为一个实施例,所述第一资源池在频域包括的所述多个频域资源块中的任一频域资源块包括至少一个子载波。
作为一个实施例,所述第一资源池在频域包括的所述多个频域资源块中的任一频域资源块包括至少一个RB。
作为一个实施例,所述第一资源池在频域包括的所述多个频域资源块中的任一频域资源块包括至少一个PRB。
作为一个实施例,所述第一资源池在频域包括的所述多个频域资源块中的任一频域资源块包括多个子载波。
作为一个实施例,所述第一资源池在时域包括的所述多个时域资源块分别是多个时隙,所述第一资源池在频域包括的所述多个频域资源块分别是多个PRBs。
作为一个实施例,所述第一资源池包括多个时频资源块。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域是所述第一资源池中的一个时域资源块,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域是所述第一资源池中的一个频域资源块。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域属于所述第一资源池中的一个时域资源块,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域是所述第一资源池中的一个频域资源块。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域属于所述第一资源池中的一个时域资源块,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域属于所述第一资源池中的一个频域资源块。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域属于所述第一资源池中的一个时域资源块,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域包括所述第一资源池中的至少一个频域资源块。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域包括所述第一资源池中的至少一个时域资源块,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频 域属于所述第一资源池中的一个频域资源块。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域包括所述第一资源池中的至少一个时域资源块,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域包括所述第一资源池中的至少一个频域资源块。
作为一个实施例,所述第一资源池包括的所述多个时频资源块在时域分别是所述第一资源池中的所述多个所述时域资源块,所述第一资源池包括的所述多个时频资源块在频域分别是所述第一资源池中的所述多个频域资源块。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single-Carrier Frequency Division Multiple Access,单载波-频分多址)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩频正交频分复用)符号。
作为一个实施例,所述多载波符号是IFDMA(Interleaved Frequency Division Multiple Access,交织频分多址)符号。
作为一个实施例,所述第一定位参考信号被用于定位(Positioning)。
作为一个实施例,所述第一定位参考信号被用于副链路定位(Sidelink Positioning)。
作为一个实施例,所述第一定位参考信号被用于得到收发时差(Rx-Tx Time Difference)。
作为一个实施例,所述第一定位参考信号被用于得到副链路收发时差(Sidelink Rx-Tx Time Difference)。
作为一个实施例,所述第一定位参考信号被用于得到UE收发时差(UE Rx-Tx Time Difference)。
作为一个实施例,所述第一定位参考信号被用于得到所述第一定位参考信号的接收定时。
作为一个实施例,所述第一定位参考信号被所述第一定位参考信号的接收者用于一个子帧的接收定时。
作为一个实施例,所述第一定位参考信号被所述第一定位参考信号的接收者用于一个时隙的接收定时。
作为一个实施例,所述第一定位参考信号被用于定位测量(Positioning measurement)。
作为一个实施例,所述第一定位参考信号被用于副链路定位测量(Sidelink positioning measurement)。
作为一个实施例,所述第一定位参考信号被用于得到AoA(Angle-of-Arrival,到达角)。
作为一个实施例,所述第一定位参考信号被用于得到RSRP(Reference Signal Received Power,参考信号接收功率)。
作为一个实施例,所述第一定位参考信号被用于得到RSRPP(Reference Signal Received Path Power,参考信号接收路径功率)。
作为一个实施例,所述第一定位参考信号被用于得到RSTD(Reference Signal Time Difference,参考信号时差)。
作为一个实施例,所述第一定位参考信号被用于得到RTOA(Relative Time of Arrival,相对到达时间)。
作为一个实施例,所述第一定位参考信号被用于得到SL-RTOA。
作为一个实施例,所述第一定位参考信号被用于RTT定位。
作为一个实施例,所述第一定位参考信号被用于Single-sided(单边)RTT定位。
作为一个实施例,所述第一定位参考信号被用于Double-sided(双边)RTT定位。
作为一个实施例,所述第一定位参考信号被用于得位置信息(Location Information)。
作为一个实施例,所述第一定位参考信号是一个LMF(Location Management Function,位置管理功能)配置的。
作为一个实施例,所述第一定位参考信号是gNB(g-Node-B)配置的。
作为一个实施例,所述第一定位参考信号是一个UE配置的。
作为一个实施例,所述第一定位参考信号包括SL RS(Sidelink Reference Signal,副链路参考信号)。
作为一个实施例,所述第一定位参考信号包括SL PRS(Sidelink Positioning Reference Signal,副链路定位参考信号)。
作为一个实施例,所述第一定位参考信号包括SRS(Sounding Reference Signal,探测参考信号)。
作为一个实施例,所述第一定位参考信号包括S-PSS(Sidelink Primary Synchronization Signal,副链路主同步信号)。
作为一个实施例,所述第一定位参考信号包括S-SSS(Sidelink Secondary Synchronization Signal,副链路辅同步信号)。
作为一个实施例,所述第一定位参考信号包括PSBCH DMRS(Physical Sidelink Broadcast Channel Demodulation Reference Signal,物理副链路广播信道解调参考信号)。
作为一个实施例,所述第一定位参考信号包括SL CSI-RS(Sidelink Channel State Information-Reference Signal,副链路信道状态信息-参考信号)。
作为一个实施例,所述第一定位参考信号包括第一序列。
作为一个实施例,第一序列被用于生成所述第一定位参考信号。
作为一个实施例,所述第一序列是伪随机序列(Pseudo-Random Sequence)。
作为一个实施例,所述第一序列是低峰均比序列(Low-PAPR Sequence,Low-Peak to Average Power Ratio)。
作为一个实施例,所述第一序列是Gold序列。
作为一个实施例,所述第一序列是M序列。
作为一个实施例,所述第一序列是ZC(Zadeoff-Chu)序列。
作为一个实施例,所述第一序列依次经过序列生成(Sequence Generation),离散傅里叶变换(Discrete Fourier Transform,DFT),调制(Modulation)和资源单元映射(Resource Element Mapping),宽带符号生成(Generation)之后得到所述第一定位参考信号。
作为一个实施例,所述第一序列依次经过序列生成,资源单元映射,宽带符号生成之后得到所述第一定位参考信号。
作为一个实施例,所述第一定位参考信号所占用的资源包括多个REs。
作为一个实施例,所述第一序列被映射到所述第一定位参考信号所占用的资源包括的所述多个REs上。
作为一个实施例,所述第一定位参考信号所占用的资源包括的所述多个REs属于所述第一资源池。
作为一个实施例,所述第一资源池在时域包括所述第一目标时域资源块。
作为一个实施例,所述第一目标时域资源块是所述第一资源池在时域包括的所述多个时域资源块中的之一。
作为一个实施例,所述第一目标时域资源块包括多个多载波符号。
作为一个实施例,所述第一目标时域资源块包括一个时隙。
作为一个实施例,所述第一目标时域资源块属于一个时隙。
作为一个实施例,所述第一目标时域资源块是一个时隙。
作为一个实施例,所述第一目标时域资源块是一个副链路时隙。
作为一个实施例,所述第一时间窗包括多个时域资源块。
作为一个实施例,所述第一时间窗包括所述第一资源池在时域中的多个时域资源块。
作为一个实施例,所述第一时间窗包括的所述多个时域资源块中的任一时域资源块是所述第一资源池在时域包括的所述多个时域资源块中的之一。
作为一个实施例,所述第一时间窗包括多个时隙。
作为一个实施例,所述第一时间窗的长度是一个更高层信令配置的。
作为一个实施例,所述第一时间窗的长度是预配置的。
作为一个实施例,所述第一时间窗的长度与所述第一资源池中的子载波间隔有关。
作为一个实施例,所述第一时间窗是一个CBR测量窗。
作为一个实施例,所述第一时间窗是CBR测量的时间窗。
作为一个实施例,所述第一目标时域资源块被用于确定所述第一时间窗。
作为一个实施例,所述第一目标时域资源块被用于确定第二目标时域资源块,所述第二目标时域资源块被用于确定所述第一时间窗。
作为一个实施例,所述第二目标时域资源块包括多个多载波符号。
作为一个实施例,所述第二目标时域资源块包括一个时隙。
作为一个实施例,所述第二目标时域资源块属于一个时隙。
作为一个实施例,所述第二目标时域资源块是一个时隙。
作为一个实施例,所述第二目标时域资源块是一个副链路时隙。
作为一个实施例,所述第二目标时域资源块早于所述第一目标时域资源块,所述第二目标时域资源块比所述第一目标时域资源块提前N0个时隙,N0是正整数。
作为一个实施例,所述第二目标时域资源块在所述第一资源池包括的所述多个时域资源块中的索引等于所述第一目标时域资源块在所述第一资源池包括的所述多个时域资源块中的索引与所述N0的差值。
作为一个实施例,所述N0个时隙是拥塞控制处理时间。
作为一个实施例,所述N0的取值与所述第一资源池中的子载波间隔有关。
作为一个实施例,所述第一时间窗包括的所述多个时域资源块中的第一个时域资源块比所述第二目标时域资源块提前a个时域资源块,所述第一时间窗包括的所述多个时域资源块中的最后一个时域资源块比所述第二目标时域资源块提前1个时域资源块,a是一个正整数。
作为一个实施例,所述第一时间窗包括的所述多个时隙中的第一个时隙比所述第二目标时域资源块提前a个时隙,所述第一时间窗包括的所述多个时隙中的最后一个时隙比所述第二目标时域资源块提前1个时隙,a是一个正整数。
作为一个实施例,所述第一时间窗是[n-a,n-1],n是所述第二目标时域资源块的索引。
作为一个实施例,所述第一时间窗的长度是所述a。
作为一个实施例,所述第一时间窗的长度等于100。
作为一个实施例,所述第一时间窗的长度等于100×2μ,μ与所述第一资源池中的子载波间隔有关。
作为一个实施例,所述第一位置信息被上报给一个LMF(Location Management Function,位置管理功能)。
作为一个实施例,所述第一位置信息被传输给所述第一定位参考信号的发送者。
作为一个实施例,所述第一位置信息是经由所述第一定位参考信号的发送者上报给一个LMF。
作为一个实施例,所述第一位置信息被传输给本申请中的第一节点。
作为一个实施例,所述第一位置信息是经由本申请中的所述第一节点上报给一个LMF。
作为一个实施例,所述第一位置信息被用于确定RTT(Round Trip Time,往返时间)。
作为一个实施例,所述第一位置信息被一个LMF用于确定RTT。
作为一个实施例,所述第一位置信息被用于定位(positioning)。
作为一个实施例,所述第一位置信息被用于位置有关的测量(Location related measurement)。
作为一个实施例,所述第一位置信息被用于副链路定位(Sidelink positioning)。
作为一个实施例,所述第一位置信息被用于确定传播延迟(Propagation Delay)。
作为一个实施例,所述第一位置信息被所述LMF用于确定传播延迟。
作为一个实施例,所述第一位置信息被用于RTT定位。
作为一个实施例,所述第一位置信息被用于Single-sided(单边)RTT定位。
作为一个实施例,所述第一位置信息被用于Double-sided(双边)RTT定位。
作为一个实施例,所述第一位置信息被用于Multi-RTT(Multiple-Round Trip Time)定位。
作为一个实施例,所述第一位置信息包括第一收发时差。
作为一个实施例,测量所述第一定位参考信号得到所述第一收发时差。
作为一个实施例,测量所述第一定位参考信号得到所述第一位置信息。
作为一个实施例,所述第一收发时差被用于生成所述第一位置信息。
作为一个实施例,所述第一位置信息包括位置有关的测量(Location related measurements)。
作为一个实施例,所述第一位置信息包括位置估计(Location estimate)。
作为一个实施例,所述第一位置信息包括定位辅助数据(Assistance Data)。
作为一个实施例,所述第一位置信息包括时间质量(TimingQuality)。
作为一个实施例,所述第一位置信息包括接收波束索引(RxBeamIndex)。
作为一个实施例,所述第一位置信息包括接收功率信息。
作为一个实施例,所述第一位置信息被用于转让(Transfer)NAS(Non-Access-Stratum,非接入层)特定信息。
作为一个实施例,所述第一位置信息被用于转让时钟的定时信息。
作为一个实施例,所述接收功率信息包括所述第一定位参考信号的RSRP(Reference Signal Received Power,参考信号接收功率)。
作为一个实施例,所述接收功率信息包括所述第一定位参考信号的RSRPP(Reference Signal Received Path Power,参考信号接收路径功率)。
作为一个实施例,所述接收功率信息包括RSRP结果差(RSRP-ResultDiff)。
作为一个实施例,所述接收功率信息的单位是dBm(分贝毫)。
作为一个实施例,所述接收功率信息的单位是dB(分贝)。
作为一个实施例,所述第一收发时差包括RSTD(Reference Signal Time Difference,参考信号时间功率)。
作为一个实施例,所述第一收发时差包括副链路收发时差。
作为一个实施例,所述第一收发时差包括UE收发时差。
作为一个实施例,所述第一收发时差包括RxTxTimeDiff(接收发送时间差)。
作为一个实施例,所述第一收发时差包括SL-RxTxTimeDiff(副链路接收发送时间差)。
作为一个实施例,所述第一收发时差包括RTOA(Relative Time ofArrival,相对到达时间)。
作为一个实施例,所述第一收发时差包括SL-RTOA。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。附图2说明了5G NR(New Radio,新空口),LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统架构下的V2X通信架构。5G NR或LTE网络架构可称为5GS(5GSystem)/EPS(Evolved Packet System,演进分组系统)某种其它合适术语。
实施例2的V2X通信架构包括UE(User Equipment,用户设备)201,UE241,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220,ProSe功能250和ProSe应用服务器230。所述V2X通信架构可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,所述V2X通信架构提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、发送接收节点(TRP)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF (Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(UserPlaneFunction,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。所述ProSe功能250是用于适地服务(ProSe,Proximity-based Service)所需的网络相关行为的逻辑功能;包括DPF(Direct Provisioning Function,直接供应功能),直接发现名称管理功能(Direct Discovery Name Management Function),EPC水平发现ProSe功能(EPC-level Discovery ProSe Function)等。所述ProSe应用服务器230具备存储EPC ProSe用户标识,在应用层用户标识和EPC ProSe用户标识之间映射,分配ProSe限制的码后缀池等功能。
作为一个实施例,所述UE201和所述UE241之间通过PC5参考点(Reference Point)连接。
作为一个实施例,所述ProSe功能250分别通过PC3参考点与所述UE201和所述UE241连接。
作为一个实施例,所述ProSe功能250通过PC2参考点与所述ProSe应用服务器230连接。
作为一个实施例,所述ProSe应用服务器230连接分别通过PC1参考点与所述UE201的ProSe应用和所述UE241的ProSe应用连接。
作为一个实施例,本申请中的所述第一节点是所述UE201,本申请中的所述第二节点是所述UE241。
作为一个实施例,本申请中的所述第一节点是所述UE241,本申请中的所述第二节点是所述UE201。
作为一个实施例,所述UE201和所述UE241之间的无线链路对应本申请中的副链路(Sidelink,SL)。
作为一个实施例,从所述UE201到NR节点B的无线链路是上行链路。
作为一个实施例,从NR节点B到UE201的无线链路是下行链路。
作为一个实施例,所述UE201支持SL传输。
作为一个实施例,所述UE241支持SL传输。
作为一个实施例,所述gNB203是宏蜂窝(MarcoCellular)基站。
作为一个实施例,所述gNB203是微小区(Micro Cell)基站。
作为一个实施例,所述gNB203是微微小区(PicoCell)基站。
作为一个实施例,所述gNB203是家庭基站(Femtocell)。
作为一个实施例,所述gNB203是支持大时延差的基站设备。
作为一个实施例,所述gNB203是一个RSU(Road Side Unit,路边单元)。
作为一个实施例,所述gNB203包括卫星设备。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一节点设备(UE或V2X中的RSU,车载设备或车载通信模块)和第二节点设备(gNB,UE或V2X中的RSU,车载设备或车载通信模块),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,通过PHY301负责在第一节点设备与第二节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点设备处。PDCP子层304提供数据加密和完整性保护, PDCP子层304还提供第一节点设备对第二节点设备的越区移动支持。RLC子层303提供数据包的分段和重组,通过ARQ实现丢失数据包的重传,RLC子层303还提供重复数据包检测和协议错误检测。MAC子层302提供逻辑与传输信道之间的映射和逻辑信道的复用。MAC子层302还负责在第一节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点设备与第一节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点设备和第二节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的包头压缩以减少无线发送开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一定位参考信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一配置信令生成与所述RRC子层306。
作为一个实施例,本申请中的所述第二配置信令生成与所述RRC子层306。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第一通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第二通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流 从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第二通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第一通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述所述第一通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第二通信设备450到所述第一通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:在第一时间窗内的M个第一类资源上分别测量得到M个第一类RSSIs,M是大于1的正整数;确定在第一目标时域资源块上是否发送第一定位参考信号;其中,第一资源池包括所述M个第一类资源,所述M个第一类资源采用第一配置;所述第一目标时域资源块被用于确定所述第一时间窗;第一信道繁忙比是在所述第一时间窗内被测量得到的第一类RSSI超过第一阈值的第一类资源的比例;所述第一信道繁忙比被用于确定在所述第一目标时域资源块上是否发送所述第一定位参考信号。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一时间窗内的M个第一类资源上分别测量得到M个第一类RSSIs,M是大于1的正整数;确定在第一目标时域资源块上是否发送第一定位参考信号;其中,第一资源池包括所述M个第一类资源,所述M个第一类资源采用第一配置;所述第一目标时域资源块被用于确定所述第一时间窗;第一信道繁忙比是在所述第一时间窗内被测量得到的第一类RSSI超过第一阈值的第一类资源的比例;所述第一信道繁忙比被用于确定在所述第一目标时域资源块上是否发送所述第一定位参考信号。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:接收第二配置信令;在第一目标时域资源块上接收第一定位参考信号;其中,所述第二配置信令被用于指示所述第一资源池和第一配置,所述第一配置包括第一梳状 尺寸,第一符号数,第一频域资源块个数,第一资源重复因子,第一发送周期和第一最大发射功率值中的至少之一;所述第一目标时域资源块属于所述第一资源池所占用的时域资源;所述第一定位参考信号被用于生成第一位置信息。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第二配置信令;在第一目标时域资源块上接收第一定位参考信号;其中,所述第二配置信令被用于指示所述第一资源池和第一配置,所述第一配置包括第一梳状尺寸,第一符号数,第一频域资源块个数,第一资源重复因子,第一发送周期和第一最大发射功率值中的至少之一;所述第一目标时域资源块属于所述第一资源池所占用的时域资源;所述第一定位参考信号被用于生成第一位置信息。
作为一个实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,所述第二通信设备450是一个UE。
作为一个实施例,所述第一通信设备410是一个UE。
作为一个实施例,所述第二通信设备450是一个RSU。
作为一个实施例,所述第一通信设备410是一个RSU。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460}中的至少之一被用于本申请中的接收第一配置信令。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460}中的至少之一被用于本申请中的在第一时间窗内的M个第一类资源上分别测量得到M个第一类RSSIs。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460}中的至少之一被用于本申请中的在第一时间窗内的N个第二类资源上分别测量得到N个第二类RSSIs。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的确定在第一目标时域资源块上是否发送第一定位参考信号。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的在第一目标时域资源块上发送第一定位参考信号。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中的接收第二配置信令。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中的在第一目标时域资源块上接收第一定位参考信号。
实施例5
实施例5示例了根据本申请的一个实施例的UE定位的结构图,如附图5所示。
UE501通过PC5接口与UE502通信;UE502通过LTE(Long Term Evolution,长期演进)-Uu接口或NR(New Radio)-Uu新无线接口与ng-eNB503或gNB504通信;ng-eNB503和gNB 504有时被称为基站,ng-eNB503和gNB 504也被称为NG(Next Generation,下一代)-RAN(Radio Access Network,无线接入网)。ng-eNB503和gNB 504分别通过NG(Next Generation,下一代)-C(Control plane,控制面)与AMF(Authentication Management Field,鉴权管理域)505连接;AMF505通过NL1接口与LMF(Location Management Function,位置管理功能)506连接。
所述AMF505从另外一个实体,例如GMLC(Gateway Mobile Location Centre,网关移动位置中心)或者UE,接收到与特定UE关联的位置服务请求,或者所述AMF505自己决定启动被关联到特定UE的位置服务;然后所述AMF505发送位置服务请求到一个LMF,例如所述LMF506;然后这个LMF处理所 述位置服务请求,包括发送辅助数据到所述特定UE以辅助基于UE(UE-based)的或者UE辅助的(UE-assisted)定位,以及包括接收来自UE上报的位置信息(Location information);接着这个LMF将位置服务的结果返回给所述AMF505;如果所述位置服务是另外一个实体请求的,所述AMF505将所述位置服务的结果返回给那个实体。
作为一个实施例,本申请的网络设备包括LMF。
作为一个实施例,本申请的网络设备包括NG-RAN和LMF。
作为一个实施例,本申请的网络设备包括NG-RAN、AMF和LMF。
实施例6
实施例6示例了根据本申请的一个实施例的无线信号传输流程图,如附图6所示。在附图6中,第一节点U1与第二节点U2之间是通过空中接口进行通信。在附图6中,虚线方框F0中的步骤是可选的。
对于第一节点U1,在步骤S11中接收第一配置信令;在步骤S12中在第一时间窗内的M个第一类资源上分别测量得到M个第一类RSSIs,M是大于1的正整数;在步骤S13中确定在第一目标时域资源块上是否发送第一定位参考信号;在步骤S14中在第一目标时域资源块上发送第一定位参考信号。
对于第二节点U2,在步骤S21中接收第二配置信令;在步骤S22中在第一目标时域资源块上接收第一定位参考信号。
在实施例6中,所述第一配置信令被用于指示第一资源池和第一配置;所述第二配置信令也指示所述一资源池和所述第一配置;所述第一资源池包括所述M个第一类资源,所述M个第一类资源中的任一第一类资源都采用所述第一配置,所述第一配置包括第一梳状尺寸,第一符号数,第一频域资源块个数,第一资源重复因子,第一发送周期和第一最大发射功率值中的至少之一;所述第一目标时域资源块被用于确定所述第一时间窗;第一信道繁忙比是在所述第一时间窗内被测量得到的第一类RSSI超过第一阈值的第一类资源的比例;所述第一信道繁忙比被所述第一节点U1用于确定是否发送所述第一定位参考信号;所述第一资源池在第二时间窗内包括Q1个第一类资源,所述第一定位参考信号所占用的资源是所述Q1个第一类资源中的之一,Q1是大于1的正整数;所述第二时间窗包括所述第一时间窗和第二时间子窗,所述第一目标时域资源块被用于确定所述第二时间窗;第一信道占用比是所述第一时间窗内被用于发送一个或多个第一类定位参考信号所占用的第一类资源的个数和所述第二时间子窗内被授予第一类资源的个数之和除以所述Q1的商;所述第一信道占用比不大于第一最大信道占用比,所述第一信道繁忙比被用于确定所述第一最大信道占用比;所述第一定位参考信号属于第一类定位参考信号,所述第一定位参考信号所占用的资源属于第一类资源。
作为一个实施例,所述M个第一类资源中的M1个第一类资源分别被测量得到的M1个第一类RSSIs中的任一第一类RSSI都超过所述第一阈值;在所述第一时间窗内被测量得到的第一类RSSI超过所述第一阈值的第一类资源的所述比例是M1与所述M的比值,M1是不大于所述M的正整数。
作为一个实施例,所述第一资源池在所述第一时间窗内包括Q个备选资源,所述M个第一类资源中的任一第一类资源是所述Q个备选资源中的之一,Q是大于所述M的正整数;所述M个第一类资源中的M1个第一类资源分别被测量得到的M1个第一类RSSIs中的任一第一类RSSI都超过所述第一阈值;在所述第一时间窗内被测量得到的第一类RSSI超过所述第一阈值的第一类资源的所述比例是M1与所述Q的比值,M1是不大于所述M的正整数。
作为一个实施例,所述第二配置信令与所述第一配置信令相同。
作为一个实施例,所述第二配置信令与所述第一配置信令不同。
作为一个实施例,所述第一节点U1和所述第二节点U2之间是通过PC5接口进行通信。
作为一个实施例,附图6中的方框F0中的步骤存在。
作为一个实施例,附图6中的方框F0中的步骤不存在。
作为一个实施例,所述第一节点U1向所述第二节点U2发送所述第一位置信息。
作为一个实施例,所述第一节点U1向所述第二节点U2发送所述第一位置信息,所述第二节点U2向LMF上报所述第一位置信息。
作为一个实施例,所述第一节点U1向LMF上报所述第一位置信息。
作为一个实施例,当所述第一信道占用比不大于所述第一最大信道占用比时,附图6中的方框F0中的步骤存在。
作为一个实施例,当所述第一信道占用比大于所述第一最大信道占用比时,附图6中的方框F0中的步骤不存在。
实施例7
实施例7示例了根据本申请的一个实施例的第一类资源与第一配置之间关系的示意图,如附图7所示。在附图7中,斜纹填充的正方形代表分配给M个第一类资源中的一个第一类资源的RE;斜方格填充的矩形代表M个第一类资源中的一个第一类资源所占用的时频资源块;标有“AGC”的长矩形代表被用于自动增益控制(Automatic Gain Control,AGC)的多载波符号;标有“GAP”的长矩形代表保护间隔。
在实施例7中,所述第一配置信令被用于指示所述第一资源池和所述第一配置;所述第一资源池包括多个第一类资源,所述多个第一类资源中的任一第一类资源采用所述第一配置;所述M个第一类资源中的任一第一类资源是所述第一资源池包括的所述多个第一类资源中的一个第一类资源;所述第一配置包括第一梳状尺寸(Comb size),第一符号数,第一频域资源块个数,第一资源重复因子,第一发送周期和第一最大发射功率值中的至少之一。
作为一个实施例,所述第一配置信令包括一个更高层(Higher layer)信令中的全部或部分。
作为一个实施例,所述第一配置信令包括一个RRC(Radio Resource Control,无线资源控制)信令中的全部或部分。
作为一个实施例,所述第一配置信令包括一个RRC-IE(Radio Resource Control-Information Element,无线资源控制-信息单元)。
作为一个实施例,所述第一配置信令包括一个MAC(Multimedia Access Control,多媒体接入控制)信令中的全部或部分。
作为一个实施例,所述第一配置信令包括一个MAC-CE(Multimedia Access Control-Control Element,多媒体接入控制-控制单元)。
作为一个实施例,所述第一配置信令被用于指示所述第一资源池。
作为一个实施例,所述第一配置信令被用于指示所述第一资源池的配置信息。
作为一个实施例,所述第一配置信令被用于指示所述第一资源池所占用的时域资源。
作为一个实施例,所述第一配置信令被用于指示所述第一资源池所占用的频域资源。
作为一个实施例,所述第一配置信令被用于指示所述第一资源池在频域所包括的频域资源块的个数。
作为一个实施例,所述第一配置信令被用于指示所述第一资源池在频域所包括的RBs的个数。
作为一个实施例,所述第一配置信令被用于指示所述第一资源池在频域所包括的PRBs的个数。
作为一个实施例,所述第一配置信令被用于指示所述第一时间窗的长度。
作为一个实施例,所述第一配置信令被用于指示所述第二时间窗的长度。
作为一个实施例,所述第一配置信令被用于指示所述第一配置。
作为一个实施例,所述第一配置信令被用于配置所述第一资源池中的所述M个第一类资源。
作为一个实施例,所述第一配置被用于配置所述M个第一类资源。
作为一个实施例,所述第一配置被用于配置所述第一资源池中的所述M个第一类资源。
作为一个实施例,所述第一配置信令指示的所述第一配置被用于配置所述第一资源池中的所述M个第一类资源。
作为一个实施例,所述M个第一类资源采用所述第一配置。
作为一个实施例,所述M个第一类资源中的任一第一类资源采用所述第一配置。
作为一个实施例,所述M个第一类资源被用于SL PRS传输。
作为一个实施例,所述M个第一类资源被配置用于SL PRS传输。
作为一个实施例,所述M个第一类资源中的任一第一类资源包括全交错图谱(Full-staggered pattern)。
作为一个实施例,所述M个第一类资源中的任一第一类资源包括半交错图谱(Partial-staggered pattern)。
作为一个实施例,所述M个第一类资源中的任一第一类资源包括非交错图谱(Unstaggered pattern)。
作为一个实施例,所述第一配置信令被用于配置所述第一资源池包括所述多个第一类资源。
作为一个实施例,所述第一配置被用于配置所述第一资源池中的所述多个第一类资源。
作为一个实施例,所述第一配置信令指示的所述第一配置被用于配置所述第一资源池包括的所述多个第一类资源。
作为一个实施例,所述第一资源池包括的所述多个第一类资源采用所述第一配置。
作为一个实施例,所述第一资源池包括的所述多个第一类资源中的任一第一类资源采用所述第一配置。
作为一个实施例,所述第一资源池包括的所述多个第一类资源包括所述M个第一类资源。
作为一个实施例,所述M个第一类资源属于所述第一资源池包括的所述多个第一类资源。
作为一个实施例,所述M个第一类资源中的任一第一类资源是所述第一资源池包括的所述多个第一类资源中的之一。
作为一个实施例,所述第一资源池在所述第一时间窗内包括M个第一类资源。
作为一个实施例,所述第一时间窗包括所述第一资源池中的所述M个第一类资源。
作为一个实施例,所述第一资源池中的所述M个第一类资源在时域处于所述第一时间窗之内。
作为一个实施例,所述第一时间窗包括所述M个第一类资源的时域资源。
作为一个实施例,所述第一时间窗包括所述M个第一类资源中的任一第一类资源的时域资源。
作为一个实施例,所述第一时间窗包括所述第一资源池中的所述M个第一类资源的时域资源。
作为一个实施例,所述M个第一类资源的时域资源在所述第一时间窗之内。
作为一个实施例,所述M个第一类资源中的任一第一类资源的时域资源在所述第一时间窗之内。
作为一个实施例,所述第一时间窗包括多个时域资源,所述M个第一类资源中的任一第一类资源的时域资源是所述第一时间窗包括的所述多个时域资源中的之一。
作为一个实施例,所述M个第一类资源包括所述第一资源池包括的所述多个第一类资源中在时域在第一时间窗内的所有第一类资源。
作为一个实施例,所述M个第一类资源中的任一第一类资源是所述第一资源池包括的所述多个第一类资源中在所述第一时间窗内的一个第一类资源。
作为一个实施例,所述M个第一类资源是所述第一资源池包括的所述多个第一类资源中在时域在第一时间窗内的所有第一类资源。
作为一个实施例,所述第一配置包括第一梳状尺寸,第一符号数,第一频域资源块个数,第一资源重复因子,第一发送周期和第一最大发射功率值中的至少之一。
作为一个实施例,所述第一配置包括所述第一梳状尺寸。
作为一个实施例,所述第一梳状尺寸等于K,K是一个正整数。
作为一个实施例,所述第一梳状尺寸是所述M个第一类资源中的任一第一类资源的梳状尺寸。
作为一个实施例,所述第一梳状尺寸是所述第一资源池包括的所述多个第一类资源中的任一第一类资源的梳状尺寸。
作为一个实施例,所述K是{2,4,6,12}中的一个正整数。
作为一个实施例,所述K等于2。
作为一个实施例,所述K等于6。
作为一个实施例,所述第一配置包括所述第一梳状尺寸,所述M个第一类资源中的任一第一类资源采用所述第一配置包括所述M个第一类资源中的任一第一类资源的梳状尺寸是所述第一梳状尺寸。
作为一个实施例,所述第一配置包括所述第一梳状尺寸,所述M个第一类资源中的任一第一类资源采用所述第一配置包括所述M个第一类资源中的任一第一类资源在频域占用每K个子载波中的一个子载波。
作为一个实施例,所述第一配置包括所述第一梳状尺寸,所述M个第一类资源中的任一第一类资源采用所述第一配置包括所述M个第一类资源中的任一第一类资源在频域占用每K个REs中的一个RE。
作为一个实施例,所述第一配置包括所述第一符号数。
作为一个实施例,所述第一符号数等于L,L是一个正整数。
作为一个实施例,所述第一符号数是所述M个第一类资源中的任一第一类资源在时域的尺寸。
作为一个实施例,所述第一符号数是所述M个第一类资源中的任一第一类资源在时域占用的多载波符号个数。
作为一个实施例,所述L是{2,4,6,12}中的一个正整数。
作为一个实施例,所述L等于2。
作为一个实施例,所述L等于4。
作为一个实施例,所述第一配置包括所述第一符号数,所述M个第一类资源中的任一第一类资源采用所述第一配置包括所述M个第一类资源中的任一第一类资源在时域的尺寸是所述第一符号数。
作为一个实施例,所述第一配置包括所述第一符号数,所述M个第一类资源中的任一第一类资源采用所述第一配置包括所述M个第一类资源中的任一第一类资源在一个时隙中所占用的符号数是所述第一符号数。
作为一个实施例,所述第一配置包括所述第一符号数,所述M个第一类资源中的任一第一类资源采用所述第一配置包括所述M个第一类资源中的任一第一类资源在时域占用L个多载波符号。
作为一个实施例,所述第一配置包括所述第一频域资源块个数。
作为一个实施例,所述第一频域资源块个数等于B,B是一个正整数。
作为一个实施例,所述第一频域资源块个数是所述M个第一类资源中的任一第一类资源在频域占用的频域资源块的个数。
作为一个实施例,所述第一频域资源块个数是被分配给所述M个第一类资源的频域资源块的个数。
为一个实施例,所述第一频域资源块个数是被分配给所述M个第一类资源中的任一第一类资源的频域资源块的个数。
作为一个实施例,所述第一频域资源块个数是所述第一资源池中被分配给所述M个第一类资源的频域资源块的个数。
作为一个实施例,所述第一频域资源块个数是所述第一资源池中被分配给所述M个第一类资源中的任一第一类资源的频域资源块的个数。
作为一个实施例,所述第一频域资源块个数是所述M个第一类资源中的任一第一类资源在频域占用的PRB的个数。
作为一个实施例,所述B是PRB的个数。
作为一个实施例,所述B是4的倍数。
作为一个实施例,所述B不小于24。
作为一个实施例,所述B不大于272。
作为一个实施例,所述第一配置包括所述第一频域资源块个数,所述M个第一类资源中的任一第一类资源采用所述第一配置包括所述M个第一类资源中的任一第一类资源占用B个频域资源块,所述B个频域资源块属于所述第一资源池。
作为一个实施例,所述第一配置包括所述第一频域资源块个数,所述M个第一类资源中的任一第一类资源采用所述第一配置包括所述第一资源池中的B个频域资源块被分配给所述M个第一类资源中的任一第一类资源。
作为一个实施例,所述第一资源池中的所述B个频域资源块分别是B个PRBs。
作为一个实施例,所述第一资源池中的所述B个频域资源块分别是B个RBs。
作为一个实施例,所述第一资源池中的所述B个频域资源块分别是B个subchannels。
作为一个实施例,所述第一资源池中的所述B个频域资源块分别是B个子载波。
作为一个实施例,所述第一配置包括第一梳状尺寸,第一符号数和所述第一频域资源块个数,所述M个第一类资源中的任一第一类资源采用所述第一配置包括所述M个第一类资源中的任一第一类资源的梳状尺寸是所述第一梳状尺寸,所述M个第一类资源中的任一第一类资源在时域占用L个多载波符号,所述M个第一类资源中的任一第一类资源占用所述第一资源池中的B个频域资源块。
作为一个实施例,所述M个第一类资源中的任一第一类资源在频域占用至少一个PRB,所述M个第一类资源中的任一第一类资源在时域占用至少两个多载波符号。
作为一个实施例,所述M个第一类资源中的任一第一类资源在频域占用一个PRB,所述M个第一类资源中的任一第一类资源在时域占用至少两个多载波符号。
作为一个实施例,所述第一配置包括所述第一资源重复因子。
作为一个实施例,所述第一资源重复因子等于T,T是一个正整数。
作为一个实施例,所述第一资源重复因子是所述M个第一类资源中的任一第一类资源的重复次数。
作为一个实施例,所述第一资源重复因子是所述M个第一类资源中的任一第一类资源在所述第一资源池中的重复次数。
作为一个实施例,所述T是{1,2,4,6,8,16,32}中的一个正整数。
作为一个实施例,所述T等于1,所述M个第一类资源中的任一第一类资源不重复。
作为一个实施例,所述T等于2。
作为一个实施例,所述T等于6。
作为一个实施例,所述第一配置包括所述第一资源重复因子,所述M个第一类资源中的任一第一类资源采用所述第一配置包括所述M个第一类资源中的任一第一类资源在所述第一资源池中的重复次数是所述第一资源重复因子。
作为一个实施例,所述第一配置包括所述第一发送周期,所述第一发送周期包括S个时隙,S是一个正整数。
作为一个实施例,所述第一发送周期与所述第一资源池中的子载波间隔有关。
作为一个实施例,所述第一发送周期与所述M个第一类资源中的任一第一类资源的子载波间隔有关。
作为一个实施例,所述S是2μ×{4,5,8,10,16,20,32,40,64,80,160,320,640,1280,2560,5120,10240}中的一个,μ是0,1,2,3中的之一。
作为一个实施例,μ依赖所述M个第一类资源中的任一第一类资源的子载波间隔。
作为一个实施例,所述第一发送周期是所述M个第一类资源中的任一第一类资源的周期。
作为一个实施例,所述第一配置包括所述第一发送周期,所述M个第一类资源中的任一第一类资源采用所述第一配置包括所述M个第一类资源中的任一第一类资源的周期是所述第一发送周期。
作为一个实施例,所述第一配置包括所述第一发送周期,所述M个第一类资源中的任一第一类资源采用所述第一配置包括所述M个第一类资源中的任一第一类资源在每S个时隙中发送一次。
作为一个实施例,所述第一配置包括所述第一最大发射功率值。
作为一个实施例,所述第一配置包括所述第一最大发射功率值,给定定位参考信号在所述M个第一类资源上的任一第一类资源上传输,所述M个第一类资源中的任一第一类资源采用所述第一配置包括所述给定定位参考信号的最大发射功率值不超过所述第一最大发射功率值。
作为一个实施例,所述第一最大发射功率值的单位是dB(分贝)。
作为一个实施例,所述第一最大发射功率值的单位是dBm(毫分贝)。
作为一个实施例,所述第一最大发射功率值的单位是W(瓦)。
作为一个实施例,所述第一最大发射功率值的单位是mW(毫瓦)。
作为一个实施例,所述第一配置包括所述第一梳状尺寸和所述第一符号数。
作为一个实施例,所述第一配置包括所述第一梳状尺寸,所述第一符号数和所述第一频域资源块个数。
作为一个实施例,所述第一配置包括所述第一梳状尺寸,所述第一符号数,所述第一频域资源块个数和所述第一最大发射功率值。
作为一个实施例,所述第一资源池包括多个第一类资源。
作为一个实施例,所述第一资源池被配置多个第一类资源。
作为一个实施例,所述第一资源池包括的所述多个第一类资源被用于SL PRS传输。
作为一个实施例,所述第一资源池包括的所述多个第一类资源分别是多个SL PRS资源。
作为一个实施例,所述第一资源池包括的所述多个第一类资源中的任一第一类资源在时域占用至少一个多载波符号,所述第一资源池包括的所述多个第一类资源中的任一第一类资源在频域占用多个子载波。
作为一个实施例,所述第一资源池包括的所述多个第一类资源中的任一第一类资源在时域占用多个多载波符号,所述第一资源池包括的所述多个第一类资源中的任一第一类资源在频域占用多个子载波。
作为一个实施例,所述第一资源池包括的所述多个第一类资源中的任一第一类资源在时域占用的所述多个多载波符号是连续的。
作为一个实施例,所述第一资源池包括的所述多个第一类资源中的任一第一类资源在频域占用的所述多个子载波是连续的。
作为一个实施例,所述第一资源池包括的所述多个第一类资源中的任一第一类资源在频域占用的所述多个子载波是非连续的。
作为一个实施例,所述第一资源池包括的所述多个第一类资源中的任一第一类资源在频域占用的所述多个子载波是等间隔的。
作为一个实施例,所述第一资源池包括的所述多个第一类资源中的任一第一类资源在频域占用的所述多个子载波中的任意两个相邻的子载波之间间隔K-1个子载波,K是正整数。
作为一个实施例,所述第一资源池包括的所述多个第一类资源中的任一第一类资源的梳状尺寸是所述第一梳状尺寸。
作为一个实施例,所述第一资源池包括的所述多个第一类资源中的任一第一类资源在时域的尺寸是所述第一符号数。
所述第一资源池包括的所述多个第一类资源中的任一第一类资源在时域占用的多载波符号个数是所述第一符号数。
作为一个实施例,所述第一资源池包括的所述多个第一类资源中的任一第一类资源在频域占用的频域资源块的个数是所述第一频域资源块。
作为一个实施例,所述第一资源池包括的所述多个第一类资源中的任一第一类资源在频域占用的PRB的个数是所述第一频域资源块。
作为一个实施例,所述第一资源池包括的所述多个第一类资源中的任一第一类资源在所述第一资源池中的重复次数是所述第一资源重复因子。
作为一个实施例,所述第一资源池包括的所述多个第一类资源中的任一第一类资源的周期是所述第一发送周期。
作为一个实施例,所述M个第一类RSSIs分别是在所述M个第一类资源上分别观察到的所有接收功率的线性平均值。
作为一个实施例,所述M个第一类RSSIs中的任一第一类RSSI是在所述M个第一类资源中的一个第一类资源上观察到的所有接收功率的线性平均值。
作为一个实施例,给定第一类资源是所述M个第一类资源中的任一第一类资源,给定第一类RSSI是在所述给定第一类资源包括的X个REs上观察到的X个接收功率的总和再除以X的商,X是正整数。
作为一个实施例,所述X个接收功率中的任一接收功率的单位是W(瓦)。
作为一个实施例,给定第一类资源是所述M个第一类资源中的任一第一类资源,给定第一类RSSI是在所述给定第一类资源上观察到的所有接收功率的线性平均值。
作为一个实施例,所述接收功率的单位是W。
作为一个实施例,所述给定第一类RSSI是所述M个第一类RSSIs中的之一。
作为一个实施例,所述给定第一类RSSI是所述M个第一类RSSIs中的与所述给定第一类资源对应的一个第一类RSSI。
作为一个实施例,所述给定第一类RSSI是所述M个第一类RSSIs中的与所述给定第一类资源测量到的一个第一类RSSI。
作为一个实施例,所述M个第一类RSSIs中的任一第一类RSSI是在所述第一时间窗内被测量到的。
作为一个实施例,所述M个第一类RSSIs包括M1个第一类RSSIs,M1是不大于所述M的正整数。
作为一个实施例,M1个第一类RSSIs中的任一RSSI是所述M个第一类RSSIs中的之一,M1是不大于所述M的正整数。
作为一个实施例,所述M个第一类RSSIs中的所述M1个第一类RSSIs都超过所述第一阈值。
作为一个实施例,所述M1个第一类RSSIs中的任一第一类RSSI超过所述第一阈值。
作为一个实施例,所述M个第一类RSSIs中除所述M1个第一类RSSIs之外的任一第一类RSSI不超 过所述第一阈值。
作为一个实施例,所述第一阈值是配置的。
作为一个实施例,所述第一阈值是预配置的。
作为一个实施例,所述第一阈值的单位是W。
作为一个实施例,所述第一信道繁忙比是SL CBR(Channel Busy Ratio,信道繁忙比)。
作为一个实施例,所述第一信道繁忙比是SL-PRS CBR。
作为一个实施例,所述第一信道繁忙比是所述M个第一类RSSIs中超过所述第一阈值的比例。
作为一个实施例,所述第一信道繁忙比是在所述第一时间窗内被测量到的所述M个第一类RSSIs中超过所述第一阈值的比例。
作为一个实施例,所述第一信道繁忙比是在所述M个第一类资源上测量到的第一类RSSI超过所述第一阈值的第一类资源的比例。
作为一个实施例,在所述M个第一类资源中的M1个第一类资源上分别测量到的所述M1个第一类RSSIs中的任一第一类RSSI超过所述第一阈值。
作为一个实施例,所述第一信道繁忙比是所述M1个第一类RSSIs占所述M个第一类RSSIs的比例。
作为一个实施例,所述第一信道繁忙比是所述M1个第一类资源占所述M个第一类资源的比例。
作为一个实施例,所述第一信道繁忙比是所述M1个第一类RSSIs占Q个备选RSSIs的比例,所述Q是大于所述M的正整数。
作为一个实施例,所述第一信道繁忙比是所述M1个第一类资源占Q个备选资源的比例,所述Q是大于所述M的正整数。
作为一个实施例,所述第一信道繁忙比是所述M1与所述M的比值。
作为一个实施例,所述第一信道繁忙比是所述M1除以所述M的商。
作为一个实施例,所述第一信道繁忙比是所述M1与第一样本数的比值。
作为一个实施例,所述第一样本数是所述M。
作为一个实施例,所述第一样本数是所述Q。
作为一个实施例,所述第一信道繁忙比是所述M1与所述Q的比值。
作为一个实施例,所述第一信道繁忙比是所述M1除以所述Q的商。
作为一个实施例,所述第一信道繁忙比是一个小数。
作为一个实施例,所述第一信道繁忙比是一个百分数。
实施例8
实施例8示例了根据本申请的一个实施例的M个第一类资源之间关系的示意图,如附图8所示。在附图8中,每个正方形代表第一资源池中的RE;“1”填充的正方形代表被分配给M个第一类资源中的#1第一类资源的RE;“2”填充的正方形代表被分配给M个第一类资源中的#2第一类资源的RE;“3”填充的正方形代表被分配给M个第一类资源中的#3第一类资源的RE;“4”填充的正方形代表被分配给M个第一类资源中的#1第一类资源的RE;标有“AGC”的长矩形代表被用于AGC的多载波符号;标有“GAP”的长矩形代表保护间隔。
在实施例8中,#1第一类资源,#2第一类资源,#3第一类资源和#4第一类资源分别是所述M个第一类资源中的四个第一类资源,所述#1第一类资源,所述#2第一类资源,所述#3第一类资源和所述#4第一类资源占用所述第一资源池中的同一个时频资源块,所述#1第一类资源,所述#2第一类资源,所述#3第一类资源和所述#4第一类资源占用的所述时频资源块中的不同的REs。
作为一个实施例,所述第一资源池包括多个时频资源块。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域属于所述第一资源池中的一个时隙,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域是所述第一资源池中的一个PRB。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域属于所述第一资源池中的一个时隙,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域包括所述 第一资源池中的至少一个PRB。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域包括所述第一资源池中的一个时隙中的至少一个多载波符号,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域包括所述第一资源池中的至少一个PRB。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域包括所述第一资源池中的一个时隙中的L1个多载波符号,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域包括所述第一资源池中的B1个PRB,L1是正整数,B1是正整数。
作为一个实施例,L1是不小于2且不大于14的正整数。
作为一个实施例,L1是不小于2且不大于12的正整数。
作为一个实施例,B1是不小于24且不大于272的正整数。
作为一个实施例,B1等于4。
作为一个实施例,第一时频资源块是所述第一资源池包括的所述多个时频资源块中的任一时频资源块,所述第一时频资源块在频域包括至少一个PRB,所述第一时频资源块在时域包括多个多载波符号,所述第一时频资源块在时域包括的所述多个多载波符号属于一个时隙。
作为一个实施例,所述第一时频资源块在频域包括4个PRBs,所述第一时频资源块在时域包括至少2个多载波符号。
作为一个实施例,所述第一时频资源块被所述M个第一类资源中的至少两个个第一类资源占用。
作为一个实施例,所述第一时频资源块被所述M个第一类资源中的至少两个个第一类资源交错占用。
作为一个实施例,所述M个第一类资源中的至少两个第一类资源占用所述第一资源池中的同一个时频资源块。
作为一个实施例,所述M个第一类资源中的至少两个第一类资源占用所述第一资源池中的同一个时频资源块中的不同的REs。
作为一个实施例,所述M个第一类资源中的至少两个第一类资源在所述第一资源池中的同一个时频资源块上在频域交错占用。
作为一个实施例,所述M个第一类资源中的至少两个第一类资源在所述第一资源池中的同一个时频资源块上在频域交错占用。
作为一个实施例,所述M个第一类资源中的至少两个第一类资源占用的多载波符号相同。
作为一个实施例,所述M个第一类资源中的至少两个第一类资源占用的PRB相同。
作为一个实施例,所述M个第一类资源中的至少两个第一类资源占用的RB相同。
作为一个实施例,所述M个第一类资源中占用相同的时频资源块的所述至少两个第一类资源的所占用的REs不同。
作为一个实施例,所述M个第一类资源中的任意两个第一类资源占用不同的REs。
作为一个实施例,所述第一资源池包括的所述多个第一类资源中的任意两个第一类资源占用不同的REs。
作为一个实施例,所述第一时频资源块是所述第一资源池包括的所述多个时频资源块中的任一时频资源块,所述第一时频资源块被分配给至少两个第一类资源。
作为一个实施例,所述第一时频资源块是所述第一资源池包括的所述多个时频资源块中的任一时频资源块,所述第一时频资源块被分配给所述第一资源池中的至少两个第一类资源。
实施例9
实施例9示例了根据本申请的一个实施例的M个第一类资源、N个第二类资源、Q个备选资源与第一资源池之间关系的示意图,如附图9所示。在附图9中,粗线大方框代表第一资源池在第一时间窗内的时频资源;每个正方形代表Q个备选资源中的既非第一类资源也非第二类资源的一个备选资源;斜纹填充的矩形代表M个第一类资源中的之一;斜方格填充的矩形代表N个第二类资源中的之一。
在实施例9中,所述第一资源池在所述第一时间窗内包括Q个备选资源,所述M个第一类资源中的任一第一类资源是所述Q个备选资源中的之一,所述N个第二类资源中的任一第二类资源是所述Q个备 选资源中的之一,Q是不小于所述M与所述N的和的正整数。
作为一个实施例,所述第一资源池在所述第一时间窗内包括Q个备选资源,所述M个第一类资源中的任一第一类资源是所述Q个备选资源中的之一,Q是不大于所述M的正整数。
作为一个实施例,所述Q等于所述M。
作为一个实施例,所述Q大于所述M。
作为一个实施例,所述Q个备选资源包括至少一个备选资源不属于第一类资源。
作为一个实施例,所述Q个备选资源包括至少一个备选资源不是所述M个第一类资源中的任一第一类资源。
作为一个实施例,所述第一资源池在所述第一时间窗内包括Q个备选资源,所述N个第二类资源中的任一第二类资源是所述Q个备选资源中的之一,Q是不大于所述N的正整数。
作为一个实施例,所述Q大于所述N。
作为一个实施例,所述Q个备选资源包括至少一个备选资源不属于第二类资源。
作为一个实施例,所述Q个备选资源包括至少一个备选资源不是所述N个第二类资源中的任一第二类资源。
作为一个实施例,所述Q等于所述M与所述N的和。
作为一个实施例,所述Q大于所述M与所述N的和。
作为一个实施例,所述Q个备选资源包括至少一个备选资源不属于第一类资源,也不属于第二类资源。
作为一个实施例,所述Q个备选资源包括至少一个备选资源不是所述M个第一类资源中的任一第一类资源,也不是所述N个第二类资源中的任一第二类资源。
作为一个实施例,所述第一配置信令被用于指示所述第一配置和所述第二配置。
作为一个实施例,所述第一配置信令被用于配置所述第一资源池中的所述M个第一类资源和所述N个第二类资源。
作为一个实施例,所述第一配置被用于配置所述M个第一类资源,所述第二配置被用于配置所述N个第二类资源。
作为一个实施例,所述第一配置被用于配置所述第一资源池中的所述M个第一类资源,所述第二配置被用于配置所述第一资源池中的所述N个第二类资源。
作为一个实施例,所述第一配置信令指示的所述第一配置被用于配置所述第一资源池中的所述M个第一类资源,所述第一配置信令指示的所述第二配置被用于配置所述第一资源池中的所述N个第二类资源。
作为一个实施例,所述N个第二类资源采用所述第二配置。
作为一个实施例,所述N个第二类资源中的任一第二类资源采用所述第二配置。
作为一个实施例,所述N个第二类资源被用于SL PRS传输。
作为一个实施例,所述N个第二类资源被配置用于SL PRS传输。
作为一个实施例,所述第一时间窗包括所述N个第二类资源中的任一第二类资源的时域资源。
作为一个实施例,所述第一时间窗包括所述第一资源池中的所述N个第二类资源的时域资源。
作为一个实施例,所述N个第二类资源的时域资源在所述第一时间窗之内。
作为一个实施例,所述第一时间窗包括多个时域资源,所述N个第二类资源中的任一第二类资源的时域资源是所述第一时间窗包括的所述多个时域资源中的之一。
作为一个实施例,所述第二配置包括第二梳状尺寸,第二符号数,第二频域资源块个数,第二资源重复因子,第二发送周期和第二最大发射功率值中的至少之一。
作为一个实施例,所述第二配置包括所述第二梳状尺寸,所述N个第二类资源中的任一第二类资源采用所述第二配置包括所述N个第二类资源中的任一第二类资源的梳状尺寸是所述第二梳状尺寸。
作为一个实施例,所述第二配置包括所述第二符号数,所述N个第二类资源中的任一第二类资源采用所述第二配置包括所述N个第二类资源中的任一第二类资源在时域的尺寸是所述第二符号数。
作为一个实施例,所述第二配置包括所述第二符号数,所述N个第二类资源中的任一第二类资源采用所述第二配置包括所述N个第二类资源中的任一第二类资源在一个时隙中所占用的符号数是所述第二符号数。
作为一个实施例,所述第二配置包括所述第二频域资源块个数,B2,所述N个第二类资源中的任一第二类资源采用所述第二配置包括所述第一资源池中的B2个频域资源块被分配给所述N个第二类资源中的任一第二类资源,B2是正整数。
作为一个实施例,所述N个第二类资源中的任一第二类资源在频域占用至少一个PRB,所述N个第二类资源中的任一第二类资源在时域占用至少两个多载波符号。
作为一个实施例,所述N个第二类资源中的任一第一类资源在频域占用一个PRB,所述N个第二类资源中的任一第二类资源在时域占用至少两个多载波符号。
作为一个实施例,所述第二配置包括所述第二资源重复因子,所述N个第二类资源中的任一第二类资源采用所述第二配置包括所述N个第二类资源中的任一第二类资源在所述第一资源池中的重复次数是所述第二资源重复因子。
作为一个实施例,所述第二配置包括所述第二发送周期,所述N个第二类资源中的任一第二类资源采用所述第二配置包括所述N个第二类资源中的任一第二类资源的周期是所述第二发送周期。
作为一个实施例,所述第二配置包括所述第二最大发射功率值,给定定位参考信号在所述N个第二类资源上的任一第二类资源上传输,所述N个第二类资源中的任一第二类资源采用所述第二配置包括所述给定定位参考信号的最大发射功率值不超过所述第二最大发射功率值。
作为一个实施例,所述第二最大发射功率值的单位是dB(分贝)。
作为一个实施例,所述第二最大发射功率值的单位是dBm(毫分贝)。
作为一个实施例,所述第二最大发射功率值的单位是W(瓦)。
作为一个实施例,所述第二最大发射功率值的单位是mW(毫瓦)。
作为一个实施例,所述第二配置包括所述第二梳状尺寸和所述第二符号数。
作为一个实施例,所述第二配置包括所述第二梳状尺寸,所述第二符号数和所述第二频域资源块个数。
作为一个实施例,所述第二配置包括所述第二梳状尺寸,所述第二符号数,所述第二频域资源块个数和所述第二最大发射功率值。
作为一个实施例,所述第二配置不同于所述第一配置。
作为一个实施例,所述第二配置包括的所述第二梳状尺寸,所述第二符号数,所述第二频域资源块个数,所述第二资源重复因子,所述第二发送周期和所述第二最大发射功率值中的至少之一与所述第一配置包括的所述第一梳状尺寸,所述第一符号数,所述第一频域资源块个数,所述第一资源重复因子,所述第一发送周期和所述第一最大发射功率值中的至少之一不同。
作为一个实施例,所述第二配置包括的所述第二梳状尺寸,所述第二符号数,所述第二频域资源块个数,所述第二资源重复因子,所述第二发送周期和所述第二最大发射功率值与所述第一配置包括的所述第一梳状尺寸,所述第一符号数,所述第一频域资源块个数,所述第一资源重复因子,所述第一发送周期和所述第一最大发射功率值分别不同。
作为一个实施例,所述第二配置包括的所述第二梳状尺寸与所述第一配置包括的所述第一梳状尺寸相同,所述第二配置的所述第二符号数与所述第一配置包括的所述第一符号数不同。
作为一个实施例,所述第二配置包括的所述第二梳状尺寸与所述第一配置包括的所述第一梳状尺寸不同,所述第二配置的所述第二符号数与所述第一配置包括的所述第一符号数相同。
作为一个实施例,所述第二配置包括的所述第二梳状尺寸与所述第一配置包括的所述第一梳状尺寸不同,所述第二配置的所述第二符号数与所述第一配置包括的所述第一符号数不同。
作为一个实施例,所述第二配置包括的所述第二梳状尺寸与所述第一配置包括的所述第一梳状尺寸相同,所述第二配置的所述第二符号数与所述第一配置包括的所述第一符号数相同,所述第二配置包括的所述第二频域资源块个数与所述第一配置包括的所述第一频域资源块个数不同。
作为一个实施例,所述N个第二类RSSIs分别是在所述N个第二类资源上分别观察到的所有接收功率的线性平均值。
作为一个实施例,所述N个第二类RSSIs中的任一第二类RSSI是在所述N个第二类资源中的一个第二类资源上观察到的所有接收功率的线性平均值。
作为一个实施例,所述N个第二类RSSIs中的任一第二类RSSI是在所述第一时间窗内被测量到的。
作为一个实施例,所述Q个备选RSSIs分别是在所述Q个备选资源上分别观察到的所有接收功率的线性平均值。
作为一个实施例,所述Q个备选RSSIs中的任一备选RSSI是在所述Q个备选资源中的一个备选资源上观察到的所有接收功率的线性平均值。
作为一个实施例,所述Q个备选RSSIs中的任一备选RSSI是在所述第一时间窗内被测量到的。
作为一个实施例,所述Q个备选RSSIs包括所述M个第一类RSSIs和所述N个第二类RSSIs
作为一个实施例,所述M个第一类RSSIs中的任一第一类RSSI是所述Q个备选RSSIs中的一个备选RSSI,所述N个第二类RSSIs中的任一第二类RSSI是所述Q个备选RSSIs中的一个备选RSSI。
作为一个实施例,所述第二样本数是所述N。
作为一个实施例,所述第二样本数是所述Q。
作为一个实施例,所述第二样本数等于所述第一样本数。
作为一个实施例,所述第二样本数不等于所述第一样本数。
作为一个实施例,所述第二信道繁忙比是所述N1与所述Q的比值。
作为一个实施例,所述第二信道繁忙比是所述N1除以所述Q的商。
作为一个实施例,所述第二信道繁忙比是一个小数。
作为一个实施例,所述第二信道繁忙比是一个百分数。
实施例10
实施例10示例了根据本申请的一个实施例的确定在第一目标时域资源上是否发送第一定位参考信号的流程图,如附图10所示。
在实施例10中,在步骤S1001中确定第一信道繁忙比;在步骤S1002中确定第一最大信道占用比;在步骤S1003中确定第一信道占比;在步骤S1004中判断第一信道占用比是否不大于第一最大信道占用比;当第一信道占用比不大于第一信道占用比时,执行步骤S1005,在第一目标时域资源块上发送第一定位参考信号;当第一信道占用比大于第一信道占用比是,执行步骤S1006,在第一目标时域资源块上放弃发送第一定位参考信号;其中,所述第一信息繁忙比被用于确定所述第一最大信道占用比;所述第一信道占用比是在第二时间窗内被用于发送或者被授予的第一类资源的比例。
作为一个实施例,所述第二时间窗包括多个时域资源块。
作为一个实施例,所述第二时间窗包括所述第一资源池在时域中的多个时域资源块。
作为一个实施例,所述第二时间窗包括多个时隙。
作为一个实施例,所述第二时间窗的长度是一个更高层信令配置的。
作为一个实施例,所述第二时间窗的长度是预配置的。
作为一个实施例,所述第二时间窗的长度与所述第一资源池中的子载波间隔有关。
作为一个实施例,所述第二时间窗是一个CR评估窗。
作为一个实施例,所述第二时间长是CR评估的时间窗。
作为一个实施例,所述第一目标时域资源块被用于确定所述第二时间窗。
作为一个实施例,所述第一目标时域资源块被用于确定所述第二目标时域资源块,所述第二目标时域资源块被用于确定所述第一时间窗和所述第二时间窗。
作为一个实施例,所述第二时间窗包括的所述多个时域资源块中的第一个时域资源块比所述第二目标时域资源块提前a个时域资源块,所述第二时间窗包括的所述多个时域资源块中的最后一个时域资源块比所述第二目标时域资源块晚b个时域资源块,a是一个正整数,b是一个非负整数。
作为一个实施例,所述第二时间窗包括的所述多个时隙中的第一个时隙比所述第二目标时域资源块提前a个时隙,所述第二时间窗包括的所述多个时隙中的最后一个时隙比所述第二目标时域资源块晚b个时隙,a是一个正整数,b是一个非负整数。
作为一个实施例,所述第二时间窗是[n-a,n+b],n是所述第二目标时域资源块的索引。
作为一个实施例,所述第二时间窗的长度是a+b+1。
作为一个实施例,所述第二时间窗的长度等于1000。
作为一个实施例,所述第二时间窗的长度等于1000×2μ,μ与所述第一资源池中的子载波间隔有关。
作为一个实施例,所述b等于0。
作为一个实施例,所述b是一个正整数。
作为一个实施例,所述a,所述b与1的和等于1000。
作为一个实施例,所述a,所述b与1的和等于1000×2μ,μ与所述第一资源池中的子载波间隔有关。
作为一个实施例,所述第二时间窗包括所述第一时间窗。
作为一个实施例,所述第二时间窗包括所述第一时间窗和所述第二时间子窗。
作为一个实施例,所述第二时间子窗包括b+1个时域资源块。
作为一个实施例,所述第二时间子窗包括b+1个时隙。
作为一个实施例,所述第二时间子窗是[n,n+b],n是所述第二目标时域资源块的索引。
作为一个实施例,所述第一时间窗的长度等于所述第一时间窗的长度与所述第二时间子窗的长度之和。
作为一个实施例,所述b等于0,所述第二时间子窗的长度为1。
作为一个实施例,所述第一资源池在所述第二时间窗内包括Q1个第一类资源。
作为一个实施例,所述第二时间窗包括所述第一资源池中的所述Q1个第一类资源,Q1是大于1的正整数。
作为一个实施例,所述第一资源池中的所述Q1个第一类资源在时域处于所述第二时间窗之内,Q1是大于1的正整数。
作为一个实施例,所述第一资源池在所述第二时间窗内被配置Q1个第一类资源,Q1是正整数。
作为一个实施例,所述第二时间窗包括所述Q1个第一类资源的时域资源。
作为一个实施例,所述第二时间窗包括所述Q1个第一类资源的时域资源,Q1是大于1的正整数。
作为一个实施例,所述第二时间窗包括所述Q1个第一类资源中的任一第一类资源的时域资源。
作为一个实施例,所述第一定位参考信号所占用的资源是所述Q1个第一类资源中的之一。
作为一个实施例,所述第一资源池在所述第二时间窗内包括Q0个备选资源,Q0是大于所述Q1的正整数。
作为一个实施例,所述第一资源池在所述第二时间窗内被配置Q0个备选资源,Q0是大于所述Q1的正整数。
作为一个实施例,所述第一节点在所述第一时间窗内的至少一个第一类资源上分别发送至少一个第一类定位参考信号。
作为一个实施例,所述第一定位参考信号属于第一类定位参考信号。
作为一个实施例,所述第一类定位参考信号所占用的资源是所述第一资源池中的第一类资源。
作为一个实施例,在所述第一时间窗内被用于发送第一类定位参考信号所占用的第一类资源的个数不小于1。
作为一个实施例,所述第一节点未在所述第一时间窗内的任一第一类资源上发送任一第一类定位参考信号。
作为一个实施例,在所述第一时间窗内被用于发送第一类定位参考信号所占用的第一类资源的个数等于0。
作为一个实施例,所述第一信道占比是所述第一时间窗内被用于发送第一类定位参考信号所占用的第一类资源的个数以及所述第二时间子窗内被授予的第一类资源的个数的总和占所述Q1个第一类资源的比例。
作为一个实施例,所述第一信道占比是所述第一时间窗内被用于发送第一类定位参考信号所占用的第一类资源的个数以及所述第二时间子窗内被授予的第一类资源的个数的总和与所述Q1的比值。
作为一个实施例,所述第一信道占比是所述第一时间窗内被用于发送第一类定位参考信号所占用的第一类资源的个数以及所述第二时间子窗内被授予的第一类资源的个数的总和除以所述Q1的商。
作为一个实施例,所述第一信道占比是所述第一时间窗内被用于发送第一类定位参考信号所占用的第一类资源的个数以及所述第二时间子窗内被授予的第一类资源的个数的总和占第二样本的比例。
作为一个实施例,所述第一信道占比是所述第一时间窗内被用于发送第一类定位参考信号所占用的第一类资源的个数以及所述第二时间子窗内被授予的第一类资源的个数的总和与第二样本的比值。
作为一个实施例,所述第一信道占比是所述第一时间窗内被用于发送第一类定位参考信号所占用的第一类资源的个数以及所述第二时间子窗内被授予的第一类资源的个数的总和除以第二样本的商。
作为一个实施例,所述第三样本等于所述Q1。
作为一个实施例,所述第三样本等于所述Q0。
作为一个实施例,所述第一信道占比是一个小数。
作为一个实施例,所述第一信道占比是一个百分数。
作为一个实施例,最大信道占用比列表包括多个最大信道占用比,所述多个最大信道占用比分别与多个信道繁忙比范围(range)一一对应;所述第一最大信道占用比是所述多个最大信道占用比中的之一。
作为一个实施例,所述第一信道繁忙比属于所述多个信道繁忙比范围中的之一,所述第一信道繁忙比所属的一个信道繁忙比范围被用于从所述最大信道占比列表包括的所述多个最大信道占用比中确定所述第一最大信道占用比。
作为一个实施例,所述第一信道占用比不大于所述第一最大信道占用比。
作为一个实施例,所述第一信道占用比小于所述第一最大信道占用比。
作为一个实施例,所述第一信道占用比等于所述第一最大信道占用比。
作为一个实施例,所述第一信道占用比大于所述第一最大信道占用比。
作为一个实施例,所述第一信道占用比不大于所述第一最大信道占用比,所述第一定位参考信号在所述第一目标时域资源块上被发送。
作为一个实施例,所述第一信道占用比大于所述第一最大信道占用比,所述第一定位参考信号在所述第一目标时域资源块上被放弃发送。
作为一个实施例,当所述第一信道占用比不大于所述第一最大信道占用比时,所述第一定位参考信号在所述第一目标时域资源块上被发送。
实施例11
实施例11示例了一个用于第一节点中的处理装置的结构框图,如附图11所示。在实施例11中,第一节点设备处理装置1100主要由第一接收机1101和第一发射机1102组成。
作为一个实施例,第一接收机1101包括本申请附图4中的天线452,发射器/接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460中的至少之一。
作为一个实施例,第一发射机1102包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
在实施例11中,所述第一接收机1101在第一时间窗内的M个第一类资源上分别测量得到M个第一类RSSIs,M是大于1的正整数;所述第一发射机1102确定在第一目标时域资源块上是否发送第一定位参考信号;第一资源池包括所述M个第一类资源,所述M个第一类资源采用第一配置;所述第一目标时域资源块被用于确定所述第一时间窗;第一信道繁忙比(CBR)是在所述第一时间窗内被测量得到的第一类RSSI超过第一阈值的第一类资源的比例;所述第一信道繁忙比被用于确定在所述第一目标时域资源块上是否发送所述第一定位参考信号。作为一个实施例,所述第一位置信息包括第一收发时差,所述第一收发时差是所述第一时间单元的所述接收定时,所述第一时间长度和第二时间单元的发送定时三者线性相加的和。
作为一个实施例,所述第一接收机1101接收第一配置信令;所述第一配置信令被用于指示所述第一资源池和所述第一配置;所述第一配置包括第一梳状尺寸,第一符号数,第一频域资源块个数,第一资源重复因子,第一发送周期和第一最大发射功率值中的至少之一。
作为一个实施例,所述第一资源池在所述第一时间窗内包括Q个备选资源,所述M个第一类资源中的任一第一类资源是所述Q个备选资源中的之一,Q是大于所述M的正整数。
作为一个实施例,所述M个第一类资源中的M1个第一类资源分别被测量得到的M1个第一类RSSIs中的任一第一类RSSI都超过所述第一阈值;在所述第一时间窗内被测量得到的第一类RSSI超过所述第一 阈值的第一类资源的所述比例是M1与第一样本数的比值,M1是不大于所述M的正整数;所述第一样本数等于所述M,或者,所述第一样本数等于所述Q。
作为一个实施例,所述第一资源池包括N个第二类资源,所述N个第二类资源中的任一第二类资源是所述Q个备选资源中的之一;所述第一配置信令被用于指示第二配置;所述N个第二类资源采用所述第二配置,所述第二配置与所述第一配置不同。
作为一个实施例,所述第一发射机1102在所述第一目标时域资源块上发送所述第一定位参考信号;所述第一资源池在第二时间窗内包括Q1个第一类资源,所述第一定位参考信号所占用的资源是所述Q1个第一类资源中的之一,Q1是大于1的正整数;所述第二时间窗包括所述第一时间窗和第二时间子窗,所述第一目标时域资源块被用于确定所述第二时间窗;第一信道占用比是所述第一时间窗内被用于发送一个或多个第一类定位参考信号所占用的第一类资源的个数和所述第二时间子窗内被授予第一类资源的个数之和除以所述Q1的商;所述第一信道占用比不大于第一最大信道占用比,所述第一信道繁忙比被用于确定所述第一最大信道占用比;所述第一定位参考信号属于第一类定位参考信号,所述第一定位参考信号所占用的资源属于第一类资源。
作为一个实施例,所述第一节点1100是用户设备。
作为一个实施例,所述第一节点1100是中继节点。
作为一个实施例,所述第一节点1100是路侧设备。
实施例12
实施例12示例了一个用于第二节点中的处理装置的一个结构框图,如附图12所示。在实施例12中,第二节点设备处理装置1200主要由第二接收机1201组成。
作为一个实施例,第二接收机1201包括本申请附图4中的天线420,发射器/接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475,存储器476中的至少之一。
在实施例12中,所述第二接收机1201接收第二配置信令;所述第二接收机1201在第一目标时域资源块上接收第一定位参考信号;所述第二配置信令被用于指示所述第一资源池和第一配置,所述第一配置包括第一梳状尺寸,第一符号数,第一频域资源块个数,第一资源重复因子,第一发送周期和第一最大发射功率值中的至少之一;所述第一目标时域资源块属于所述第一资源池所占用的时域资源;所述第一定位参考信号被用于生成第一位置信息。
作为一个实施例,所述第二节点1200是用户设备。
作为一个实施例,所述第二节点1200是中继节点。
作为一个实施例,所述第二节点1200是路侧设备。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的用户设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (9)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一接收机,在第一时间窗内的M个第一类资源上分别测量得到M个第一类RSSIs,M是大于1的正整数;
    第一发射机,确定在第一目标时域资源块上是否发送第一定位参考信号;
    其中,第一资源池包括所述M个第一类资源,所述M个第一类资源采用第一配置;所述第一目标时域资源被用于确定所述第一时间窗;第一信道繁忙比是在所述第一时间窗内被测量得到的第一类RSSI超过第一阈值的第一类资源的比例;所述第一信道繁忙比被用于确定在所述第一目标时域资源上是否发送所述第一定位参考信号。
  2. 根据权利要求1所述的第一节点,其特征在于,包括:
    所述第一接收机,接收第一配置信令;
    其中,所述第一配置信息被用于指示所述第一资源池和所述第一配置;所述第一配置包括第一梳状尺寸,第一符号数,第一频域资源块个数,第一资源重复因子,第一发送周期和第一最大发射功率值中的至少之一。
  3. 根据权利要求1或2所述的第一节点,其特征在于,所述第一资源池在所述第一时间窗内包括Q个备选资源,所述M个第一类资源中的任一第一类资源是所述Q个备选资源中的之一,Q是大于所述M的正整数。
  4. 根据权利要求3所述的第一节点,其特征在于,所述M个第一类资源中的M1个第一类资源分别被测量得到的M1个第一类RSSIs中的任一第一类RSSI都超过所述第一阈值;在所述第一时间窗内被测量得到的第一类RSSI超过所述第一阈值的第一类资源的所述比例是M1与第一样本数的比值,M1是不大于所述M的正整数;所述第一样本数等于所述M,或者,所述第一样本数等于所述Q。
  5. 根据权利要求3或4所述的第一节点,其特征在于,所述第一资源池包括所述N个第二类资源,所述N个第二类资源中的任一第二类资源是所述Q个备选资源中的之一;所述第一配置信令被用于指示第二配置,所述N个第二类资源采用所述第二配置,所述第二配置与所述第一配置不同。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一发射机,在所述第一目标时域资源块上发送所述第一定位参考信号;
    其中,所述第一资源池在第二时间窗内包括Q1个第一类资源,所述第一定位参考信号所占用的资源是所述Q1个第一类资源中的之一,Q1是大于1的正整数;所述第二时间窗包括所述第一时间窗和第二时间子窗,所述第一目标时域资源块被用于确定所述第二时间窗;第一信道占用比是所述第一时间窗内被用于发送一个或多个第一类定位参考信号所占用的第一类资源的个数和所述第二时间子窗内被授予第一类资源的个数之和除以所述Q1的商;所述第一信道占用比不大于第一最大信道占用比,所述第一信道繁忙比被用于确定所述第一最大信道占用比;所述第一定位参考信号属于第一类定位参考信号,所述第一定位参考信号所占用的资源属于第一类资源。
  7. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二接收机,接收第二配置信令;
    在第一目标时域资源块上接收第一定位参考信号;
    其中,所述第二配置信令被用于指示所述第一资源池和第一配置,所述第一配置包括第一梳状尺寸,第一符号数,第一频域资源块个数,第一资源重复因子,第一发送周期和第一最大发射功率值中的至少之一;所述第一目标时域资源块属于所述第一资源池所占用的时域资源;所述第一定位参考信号被用于生成第一位置信息。
  8. 一种被用于无线通信的第一节点的方法,其特征在于,包括:
    在第一时间窗内的M个第一类资源上分别测量得到M个第一类RSSIs,M是大于1的正整数;
    确定在第一目标时域资源块上是否发送第一定位参考信号;
    其中,第一资源池包括所述M个第一类资源,所述M个第一类资源采用第一配置;所述第一目标时域资源被用于确定所述第一时间窗;第一信道繁忙比是在所述第一时间窗内被测量得到的第一类RSSI超过第一阈值的第一类资源的比例;所述第一信道繁忙比被用于确定在所述第一目标时域资源上是否发送所述第一定位参考信号。
  9. 一种被用于无线通信的第二节点的方法,其特征在于,包括:
    接收第二配置信令;
    在第一目标时域资源块上接收第一定位参考信号;
    其中,所述第二配置信令被用于指示所述第一资源池和第一配置,所述第一配置包括第一梳状尺寸,第一符号数,第一频域资源块个数,第一资源重复因子,第一发送周期和第一最大发射功率值中的至少之一;所述第一目标时域资源块属于所述第一资源池所占用的时域资源;所述第一定位参考信号被用于生成第一位置信息。
PCT/CN2023/121320 2022-09-27 2023-09-26 一种被用于定位的方法和装置 WO2024067537A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211183072.5A CN117835141A (zh) 2022-09-27 2022-09-27 一种被用于定位的方法和装置
CN202211183072.5 2022-09-27

Publications (1)

Publication Number Publication Date
WO2024067537A1 true WO2024067537A1 (zh) 2024-04-04

Family

ID=90476332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121320 WO2024067537A1 (zh) 2022-09-27 2023-09-26 一种被用于定位的方法和装置

Country Status (2)

Country Link
CN (1) CN117835141A (zh)
WO (1) WO2024067537A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200187252A1 (en) * 2018-08-09 2020-06-11 Lg Electronics Inc. Method and apparatus for performing congestion control in nr v2x
CN114080020A (zh) * 2020-08-12 2022-02-22 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114125694A (zh) * 2020-08-31 2022-03-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
EP4054102A1 (en) * 2019-11-03 2022-09-07 LG Electronics Inc. Method and device for transmitting s-prs in nr v2x

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200187252A1 (en) * 2018-08-09 2020-06-11 Lg Electronics Inc. Method and apparatus for performing congestion control in nr v2x
EP4054102A1 (en) * 2019-11-03 2022-09-07 LG Electronics Inc. Method and device for transmitting s-prs in nr v2x
CN114080020A (zh) * 2020-08-12 2022-02-22 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114125694A (zh) * 2020-08-31 2022-03-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN117835141A (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
CN110972110B (zh) 一种被用于无线通信节点中的方法和装置
CN110913483B (zh) 一种被用于无线通信节点中的方法和装置
CN114125694A (zh) 一种被用于无线通信的节点中的方法和装置
CN112436870B (zh) 一种被用于无线通信的节点中的方法和装置
CN114080020A (zh) 一种被用于无线通信的节点中的方法和装置
WO2020001228A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022016933A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024067537A1 (zh) 一种被用于定位的方法和装置
WO2024093837A1 (zh) 一种被用于定位的方法和装置
WO2024078432A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024061249A1 (zh) 一种被用于定位的方法和装置
US20240163853A1 (en) Method and device used for positioning
CN113395764B (zh) 一种被用于无线通信的节点中的方法和装置
CN114070362B (zh) 一种被用于无线通信的节点及其方法
WO2024051625A1 (zh) 一种被用于定位的方法和装置
US20240178968A1 (en) Method and device used for positioning
CN113473598B (zh) 一种被用于无线通信的节点中的方法和装置
US20240163056A1 (en) Method and device used for positioning
WO2024046249A1 (zh) 一种被用于定位的方法和装置
WO2024037414A1 (zh) 一种被用于定位的方法和装置
CN117998577A (zh) 一种被用于定位的方法和装置
CN117693020A (zh) 一种被用于定位的方法和装置
CN118075865A (zh) 一种被用于定位的方法和装置
WO2020063264A1 (zh) 一种被用于无线通信节点中的方法和装置
CN118118996A (zh) 一种被用于定位的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870766

Country of ref document: EP

Kind code of ref document: A1