WO2024037414A1 - 一种被用于定位的方法和装置 - Google Patents

一种被用于定位的方法和装置 Download PDF

Info

Publication number
WO2024037414A1
WO2024037414A1 PCT/CN2023/112239 CN2023112239W WO2024037414A1 WO 2024037414 A1 WO2024037414 A1 WO 2024037414A1 CN 2023112239 W CN2023112239 W CN 2023112239W WO 2024037414 A1 WO2024037414 A1 WO 2024037414A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
resource
type
time unit
unit
Prior art date
Application number
PCT/CN2023/112239
Other languages
English (en)
French (fr)
Inventor
刘瑾
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024037414A1 publication Critical patent/WO2024037414A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to transmission methods and devices in wireless communication systems, and in particular to solutions and devices related to positioning in wireless communications.
  • Positioning is an important application in the field of wireless communications; the emergence of new applications such as V2X (Vehicle to everything) or the Industrial Internet of Things has put forward higher requirements for positioning accuracy or delay.
  • V2X Vehicle to everything
  • RAN Radio Access Network
  • NR Rel-18 needs to support the enhanced positioning technology of Sidelink Positioning (SL Positioning).
  • the mainstream sidelink positioning technologies include SL RTT technology, SL AOA, and SL TDOA. and SL AOD, etc., and the execution of these technologies requires the measurement of SL PRS (Sidelink Positioning Reference Signal). Since the sender of SL PRS may be mobile, this requires further enhancement of the traditional positioning process or location information feedback scheme.
  • this application discloses a positioning solution.
  • the V2X scenario is only used as a typical application scenario or example; this application is also applicable to scenarios other than V2X that face similar problems, such as public safety (Public Safety) and industrial goods. Networking, etc., and achieve technical effects similar to those in NR V2X scenarios.
  • the motivation of this application is to target the scenario where the sender of the wireless signal used for positioning measurement is mobile, this application is still applicable to the scenario where the sender of the wireless signal used for positioning measurement is fixed, such as RSU (Road Side Unit, roadside unit), etc.
  • RSU Raad Side Unit, roadside unit
  • Using a unified solution for different scenarios also helps reduce hardware complexity and cost.
  • the embodiments and features in the embodiments in any node of this application can be applied to any other node.
  • the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily without conflict.
  • This application discloses a method used in a first node of wireless communication, which is characterized by including:
  • the first message indicates a first time length
  • the reception timing of the first time unit and the first time length are jointly used to generate the first location information.
  • the problem to be solved by this application is: the timing adjustment of the sending UE of the first RS causes a measurement error of the first location information.
  • the method of this application is to establish a relationship between the generation of the first location information and the first time length.
  • the method of the present application is to establish a relationship between the generation of the first location information and the first time length and the reception timing of the first time unit.
  • the method of the present application helps the sender of the first RS resource to flexibly adjust the sending timing.
  • the method of the present application is beneficial to saving the signaling overhead of the first location information.
  • the method of this application solves the impact of timing adjustment on position information estimation.
  • the above method is characterized in that the first location information includes a first transmission and reception time difference, the first transmission and reception time difference is the reception timing of the first time unit, and the first time length and the linear addition of the transmission timing of the second time unit.
  • the above method is characterized in that the at least first RS resource includes a plurality of first type RS resources, and the first RS resource is one of the plurality of first type RS resources, At least one first-type RS resource among the plurality of first-type RS resources
  • the source is used to carry SL PRS (Sidelink Positioning Reference Signal).
  • the above method is characterized in that the first time unit includes the time domain resource of the first RS resource, or the first time unit includes the plurality of first type RS resources. A time-domain resource of the first type of RS resource.
  • the above method is characterized in that the second time unit is closest to the first time unit in the time domain.
  • the above method is characterized in that the first resource pool includes a plurality of first-type time units in the time domain, and the first time unit is the plurality of first-type time units included in the first resource pool in the time domain.
  • a first type of time unit in a type of time unit includes a time domain resource of the first RS resource.
  • the above method is characterized in that the first resource pool includes a plurality of first-type time units in the time domain, and the first time unit is a first-type time unit in the first resource pool.
  • the second time unit is a first-type time unit that is closest to the first time unit in the time domain among the plurality of first-type time units included in the first resource pool.
  • the above method is characterized in that the second time unit is used by the first node to send wireless signals.
  • the above method is characterized in that the first message is a SCI, or the first message is a SL MAC CE.
  • the above method is characterized in that the first resource pool includes the at least first RS resource, the time-frequency resource occupied by the first message belongs to the second resource pool, and the second resource pool is related to The first resource pool is different.
  • the above method is characterized in that the first node is user equipment (UE, User Equipment).
  • UE user equipment
  • the above method is characterized in that the first node is a relay node.
  • the above method is characterized in that the first node is a roadside unit (RSU, Road Side Unit).
  • RSU Road Side Unit
  • This application discloses a method used in a second node of wireless communication, which is characterized by including:
  • the first message indicates a first time length
  • the first location information includes a first sending and receiving time difference
  • the first sending and receiving time difference is related to the first time length
  • the above method is characterized in that the first location information includes a first equivalent transmission and reception time difference, the first equivalent transmission and reception time difference is the reception timing of the first time unit, and the The sum of the linear addition of the first time length and the transmission timing of the second time unit.
  • the above method is characterized in that the at least first RS resource includes a plurality of first type RS resources, and the first RS resource is one of the plurality of first type RS resources,
  • the at least first RS includes a plurality of first type RSs, and at least one first type RS among the plurality of first type RSs is a SL PRS.
  • the above method is characterized in that the first time unit includes the time domain resource of the first RS resource, or the first time unit includes the plurality of first type RS resources. A time-domain resource of the first type of RS resource.
  • the above method is characterized in that the second time unit is closest to the first time unit in the time domain.
  • the above method is characterized in that the first resource pool includes a plurality of first-type time units in the time domain, and the first time unit is the plurality of first-type time units included in the first resource pool in the time domain.
  • a first type of time unit in a type of time unit includes a time domain resource of the first RS resource.
  • the above method is characterized in that the first resource pool includes a plurality of first-type time units in the time domain, and the first time unit is a first-type time unit in the first resource pool.
  • the second time unit is a first-type time unit that is closest to the first time unit in the time domain among the plurality of first-type time units included in the first resource pool.
  • the above method is characterized in that the second time unit is used by the second node to receive the wireless signal from the first node.
  • the above method is characterized in that the first message is a SCI, or the first message is a SL MAC CE.
  • the above method is characterized in that the first resource pool includes the at least first RS resource, the time-frequency resource occupied by the first message belongs to the second resource pool, and the second resource pool is related to The first resource pool is different.
  • the above method is characterized in that the second node is user equipment.
  • the above method is characterized in that the second node is a relay node.
  • the above method is characterized in that the second node is a roadside device.
  • This application discloses a first node used for wireless communication, which is characterized by including:
  • the first receiver receives the first message; performs the first measurement in at least the first RS resource to obtain the reception timing of the first time unit;
  • the first transmitter sends the first position information
  • the first message indicates a first time length
  • the reception timing of the first time unit and the first time length are jointly used to generate the first location information.
  • This application discloses a second node used for wireless communication, which is characterized in that it includes:
  • the second transmitter sends the first message; sends at least the first RS on at least the first RS resource;
  • a second receiver to receive the first location information
  • the first message indicates a first time length
  • the first location information includes a first sending and receiving time difference
  • the first sending and receiving time difference is related to the first time length
  • Figure 1 shows a processing flow chart of a first node according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of the wireless protocol architecture of the user plane and control plane according to one embodiment of the present application
  • Figure 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a structural diagram of UE positioning according to an embodiment of the present application
  • Figure 6 shows a wireless signal transmission flow chart according to an embodiment of the present application
  • Figure 7 shows a schematic diagram of the relationship between the first transmission and reception time difference, the reception timing of the first time unit, the first time length, and the transmission timing of the second time unit according to an embodiment of the present application;
  • Figure 8 shows a schematic diagram of the relationship between the first time unit and the second time unit according to an embodiment of the present application
  • Figure 9 shows a structural block diagram of a processing device used in a first node according to an embodiment of the present application.
  • Figure 10 shows a structural block diagram of a processing device used in a second node according to an embodiment of the present application
  • Embodiment 1 illustrates a processing flow chart of the first node according to an embodiment of the present application, as shown in Figure 1.
  • each box represents a step.
  • the first node in this application performs step 101 to receive the first message; in step 102, performs the first measurement in at least the first RS (Reference Signal, reference signal) resource to obtain the first time The receiving timing of the unit; finally step 103 is executed to send the first location information; the first message indicates the first time length, and the receiving timing of the first time unit and the first time length are jointly used to generate The first location information (Location Information).
  • RS Reference Signal, reference signal
  • the first RS is used for positioning (Positioning).
  • the first RS is used to obtain the Rx-Tx Time Difference.
  • the first RS is used to obtain the reception timing of the first RS.
  • the first RS is used to obtain the reception timing of the first time unit.
  • the first RS includes SL RS (Sidelink Reference Signal).
  • the first RS includes SL PRS (Sidelink Positioning Reference Signal). Number).
  • the first RS includes SRS (Sounding Reference Signal).
  • the first RS includes S-PSS (Sidelink Primary Synchronization Signal, secondary link primary synchronization signal), S-SSS (Sidelink Secondary Synchronization Signal, secondary link secondary synchronization signal), PSBCH (Physical Sidelink Broadcast) Channel, at least one of the three physical secondary link broadcast channels).
  • S-PSS Systemlink Primary Synchronization Signal, secondary link primary synchronization signal
  • S-SSS Sidelink Secondary Synchronization Signal, secondary link secondary synchronization signal
  • PSBCH Physical Sidelink Broadcast
  • At least the first RS includes only the first RS.
  • At least the first RS includes a plurality of first type RSs, and the first RS is one of the plurality of first type RSs.
  • the plurality of first type RSs are all used for positioning.
  • the plurality of first type RSs are used to obtain the transmission and reception time difference.
  • the plurality of first type RSs are used to obtain reception timing.
  • the plurality of first type RSs are used to obtain the reception timing of the first time unit.
  • At least one first-type RS among the plurality of first-type RSs is a SL PRS.
  • At least one first-type RS among the plurality of first-type RSs is an SRS.
  • At least one first-type RS among the plurality of first-type RSs is an SL PRS, and at least one first-type RS among the plurality of first-type RSs is an SRS.
  • the at least first RS resource includes a plurality of REs (Resource Elements).
  • the at least first RS resource is used to carry the at least first RS.
  • the at least first RS resource is reserved for the at least first RS.
  • the at least first RS resource is a time-frequency resource occupied by the at least first RS.
  • the at least first RS resource includes only the first RS resource.
  • the at least first RS resource includes a plurality of first type RS resources.
  • the first RS resource is used to carry the first RS.
  • the first RS resource is reserved for the first RS.
  • the first RS resource is a time-frequency resource occupied by the first RS.
  • the first RS resource occupies at least one multi-carrier symbol in the time domain, and the first RS resource occupies at least one subcarrier in the frequency domain.
  • the time domain resource occupied by the first RS resource belongs to a time slot, and the frequency domain resource occupied by the first RS resource spans a PRB (Physical Resource Block, physical resource block).
  • PRB Physical Resource Block, physical resource block
  • the time domain resource occupied by the first RS resource belongs to a time slot, and the frequency domain resource occupied by the first RS resource belongs to a Subchannel.
  • the first RS resource includes a fully-staggered pattern (Full-staggered pattern).
  • the first RS resource includes a semi-staggered pattern (Partial-staggered pattern).
  • the first RS resource includes an unstaggered pattern (Unstaggered pattern).
  • any first type RS resource among the plurality of first type RS resources occupies at least one multi-carrier symbol in the time domain, and any first type RS resource among the plurality of first type RS resources The resource occupies at least one subcarrier in the frequency domain.
  • the time domain resource occupied by any first type RS resource among the plurality of first type RS resources belongs to one time slot, and any first type among the plurality of first type RS resources
  • the frequency domain resources occupied by RS resources span one PRB.
  • the time domain resource occupied by any first type RS resource among the plurality of first type RS resources belongs to one time slot, and any first type among the plurality of first type RS resources
  • the frequency domain resources occupied by RS resources belong to a Subchannel.
  • the at least first RS resource belongs to the first resource pool.
  • the first resource pool includes the at least first RS resource.
  • the first RS resource belongs to the first resource pool.
  • the first resource pool includes the first RS resource.
  • the first resource pool includes a plurality of time slots in the time domain, and the first resource pool includes at least one sub-channel in the frequency domain.
  • the first resource pool includes multiple time slots in the time domain, and the first resource pool includes multiple PRBs in the frequency domain.
  • the time domain resource of the first RS resource belongs to a time slot in the first resource pool.
  • the frequency domain resource of the first RS resource includes at least one PRB in the first resource pool.
  • the frequency domain resource of the first RS resource belongs to a sub-channel in the first resource pool.
  • the sending timing of the sender of the first message in the first time unit is related to the first time length.
  • the first time length is used to determine the sending timing of the sender of the first message in the first time unit.
  • the sending timing of the first RS is related to the first time length.
  • the first time length is used to determine the sending timing of the first RS.
  • the first length of time is a timing advance (Timing Advance).
  • the first time length is one of multiple time lengths.
  • the first time length is related to the subcarrier spacing of the first RS resource in the frequency domain.
  • the subcarrier spacing of the first RS resource in the frequency domain is used to determine the first time length from the multiple time lengths.
  • the index of the first time length is used to indicate the position of the first time length in the plurality of time lengths.
  • the index of the first time length is used to indicate the first time length from the plurality of time lengths.
  • the index of the first time length is one of T consecutive non-negative integers starting from 0, and T is a positive integer greater than 1.
  • the index of the first length of time is one of 3847 consecutive non-negative integers from 0 to 3846.
  • the index of the first time length is one of ⁇ 0, 1, 2, ..., 3846 ⁇ .
  • the index of the first length of time is one of 64 consecutive non-negative integers from 0 to 63.
  • the index of the first time length is one of ⁇ 0, 1, 2, ..., 63 ⁇ .
  • the first time length is related to both the index of the first time length and the subcarrier spacing of the first RS resource in the frequency domain.
  • the first time length is equal to the quotient of the product of the index of the first time length and 16 and 64 respectively divided by 2 ⁇ , ⁇ is a non-negative integer and ⁇ is the same as the first time length.
  • the RS resources are related to the subcarrier spacing in the frequency domain.
  • the resolution of the first time length is TC
  • TC is 1/(480000 ⁇ 4096) seconds.
  • the resolution of the first time length is a positive integer multiple of TC , and TC is 1/(480000 ⁇ 4096) seconds.
  • the first time length is equal to ( TA ⁇ 16 ⁇ 64/2 ⁇ ) ⁇ T C , ⁇ is a non-negative integer, TA is the index of the first time length, and T C is 1 /(480000 ⁇ 4096) seconds.
  • the ⁇ is related to the subcarrier spacing of the at least first RS resource in the frequency domain.
  • is one of ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ .
  • the first time length is related to a second time length
  • the second time length is a time length before the first message is received.
  • the second time length is one of the plurality of time lengths.
  • the first time length is related to the second time length, the index of the first time length, and the subcarrier spacing of the first RS resource in the frequency domain.
  • the second length of time is a timing advance before the first message is received.
  • the second length of time is a timing advance of the first node before the first message is received.
  • the first time length is equal to the second time length + (( TA -31) ⁇ 16 ⁇ 64/2 ⁇ ) ⁇ T C , ⁇ is a non-negative integer, and T A is the first The index of the length of time, TC is 1/(480000 ⁇ 4096) seconds.
  • the subcarrier spacing of the first RS resource in the frequency domain is 2 ⁇ ⁇ 15 kHz.
  • the unit of the first time length is s (second).
  • the unit of the first time length is ms (millisecond).
  • the first time length is not greater than 2ms.
  • the first time length is no longer than 1 ms.
  • the first message is used to indicate the first time length.
  • the first message indicates an index of the first time length in the plurality of time lengths.
  • the first message indicates the index of the first length of time.
  • the first message includes a timing advance command (Timing Advance Command).
  • the first message indicates the at least first RS resource.
  • the first message is used to configure the at least first RS.
  • the first message is used to configure the first RS.
  • the first message is used to configure the first RS resource.
  • the first message includes configuration information of at least the first RS.
  • the first message includes configuration information of the first RS.
  • the first message is used to configure the sending of the first location information.
  • the first message is used to configure the reporting of the first location information.
  • the first message is used to trigger the sending of the first location information.
  • the first message is used to trigger reporting of the first location information.
  • the first message includes all or part of a higher layer signaling.
  • the first message includes one or more RRC IEs (Radio Resource Control Information Elements, Radio Resource Control Information Elements).
  • RRC IEs Radio Resource Control Information Elements, Radio Resource Control Information Elements.
  • the first message includes one or more MAC CEs (Multimedia Access Control Control Elements, Multimedia Access Control Elements).
  • MAC CEs Multimedia Access Control Control Elements, Multimedia Access Control Elements.
  • the first message includes one or more PHY layer (Physical Layer) signaling.
  • PHY layer Physical Layer
  • the first message includes a SCI (Sidelink Control Information).
  • SCI Servicelink Control Information
  • the first message includes a SL MAC CE.
  • the first message includes a SCI and a SL MAC CE.
  • the first message includes a first bit block, and the first bit block includes a plurality of bits.
  • the first message includes an SCI and the first bit block.
  • the first bit block is used to generate the SL MAC CE.
  • the first bit block includes a CW (Codeword, codeword).
  • the first bit block includes a CB (Code Block).
  • the first bit block includes a TB (Transport Block).
  • the first message is carried on PSCCH (Physical Sidelink Control Channel).
  • PSCCH Physical Sidelink Control Channel
  • the first message is carried on PSSCH (Physical Sidelink Shared Channel, Physical Sidelink Shared Channel).
  • PSSCH Physical Sidelink Shared Channel, Physical Sidelink Shared Channel
  • the first message is carried on PSCCH and PSSCH.
  • the time-frequency resources occupied by the first message belong to a resource pool (Resource Pool).
  • the time domain resources occupied by the first message belong to an SL (Sidelink, secondary link) resource pool.
  • the first measurement includes receiving timing measurement (Receiving Timing/Reception Timing/Received Timing/Rx Timing).
  • the first measurement includes a transmit-receive time difference measurement (Rx-Tx time difference measurement).
  • the first measurement includes UE Rx-Tx time difference measurement.
  • the first measurement includes SL transceiver time difference measurement (Sidelink Rx-Tx time difference measurement).
  • the first measurement includes positioning measurement (Positioning measurement).
  • the first measurement includes location related measurement.
  • the first measurement includes sidelink positioning measurement (Sidelink positioning measurement).
  • the first measurement is used to obtain the first position information.
  • the first measurement is used to obtain the time difference between transmission and reception.
  • the first measurement is used to obtain a first transmission and reception time difference.
  • the first measurement is used to obtain a first equivalent transmission and reception time difference.
  • the first measurement is used to obtain the reception timing (Rx Timing) of the first time unit.
  • a result of performing the first measurement is the reception timing of the first time unit.
  • a result of performing the first measurement is the reception timing of the first time unit.
  • a result of performing the first measurement is used to generate the first transmission and reception time difference.
  • a result of performing the first measurement is used to generate the first equivalent transmission and reception time difference.
  • a result of performing the first measurement is used to generate the first position information.
  • the result of performing the first measurement is reported to an LMF (Location Management Function).
  • LMF Location Management Function
  • the result of performing the first measurement is transmitted to the second node in this application.
  • the multi-carrier symbols are OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols.
  • the multi-carrier symbols are SC-FDMA (Single-Carrier Frequency Division Multiple Access, single-carrier frequency division multiple access) symbols.
  • the multi-carrier symbols are DFT-S-OFDM (Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing, Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing) symbols.
  • DFT-S-OFDM Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing, Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing
  • the multi-carrier symbols are IFDMA (Interleaved Frequency Division Multiple Access) symbols.
  • the first time unit includes time domain resources of the first RS resource.
  • the first time unit includes a time domain resource of a first type RS resource among the at least first RS resources.
  • the first time unit includes the time domain resource of the last first type RS resource in the time domain among the at least first RS resources.
  • the first RS resource belongs to the first time unit in the time domain.
  • a first type RS resource among the at least first RS resources belongs to the first time unit in the time domain.
  • the reception timing of the first time unit is the timing of the first time unit of the first path detected by the first node in the time domain.
  • the reception timing of the first time unit is the start of the first time unit of the first arrival path from the second node.
  • the reception timing of the first time unit is the first time unit of the first arrival path (the first arrival path) from the second node detected by the first node. Start.
  • the first time unit is a subframe (Subframe).
  • the first time unit is a sidelink subframe (Sidelink Subframe).
  • the first time unit is an uplink subframe (Uplink Subframe).
  • the first time unit is a subframe
  • the subframe includes an uplink symbol (Uplink Symbol).
  • the uplink symbols are the multi-carrier symbols.
  • the first time unit is a subframe, and the subframe is used for SL transmission.
  • the first time unit is a time slot (Slot).
  • the first time unit is a Sidelink Slot.
  • the first time unit is an uplink time slot (Uplink Slot).
  • the first time unit is a time slot, and the time slot includes an uplink symbol (Uplink Symbol).
  • the first time unit is a time slot, and the time slot is used for SL transmission.
  • the first location information is reported to an LMF (Location Management Function).
  • LMF Location Management Function
  • the first location information is transmitted to the sender of the first message.
  • the first location information is reported to an LMF via the sender of the first message.
  • the first location information is transmitted to the second node in this application.
  • the first location information is reported to an LMF via the second node in this application.
  • the first location information is used to determine RTT (Round Trip Time).
  • the first location information is used by an LMF to determine the RTT.
  • the first location information is used for positioning.
  • the first location information is used for location related measurement.
  • the first location information is used for side link positioning (Sidelink positioning).
  • the first location information is used to determine propagation delay (Propagation Delay).
  • the first location information is used by the LMF to determine propagation delay.
  • the first location information is used for RTT positioning.
  • the first position information is used for Single-sided RTT positioning.
  • the first position information is used for Double-sided RTT positioning.
  • the first location information is used for Multi-RTT (Multiple-Round Trip Time) positioning.
  • Multi-RTT Multiple-Round Trip Time
  • the first location information includes a first sending and receiving time difference.
  • the first transmission and reception time difference is used to generate the first location information.
  • the first location information includes location related measurements.
  • the first location information includes a location estimate.
  • the first location information includes positioning assistance data (Assistance Data).
  • the first location information includes timing quality (TimingQuality).
  • the first location information includes a receive beam index (RxBeamIndex).
  • RxBeamIndex receive beam index
  • the first location information includes first received power information.
  • the first location information is used to transfer (Transfer) NAS (Non-Access-Stratum, non-access stratum) specific information.
  • Transfer Transfer
  • NAS Non-Access-Stratum, non-access stratum
  • the first location information is used to transfer timing information of a clock.
  • the first received power information includes the RSRP (Reference Signal Received Power) of the first RS.
  • RSRP Reference Signal Received Power
  • the first received power information includes RSRPP (Reference Signal Received Path Power) of the first RS.
  • RSRPP Reference Signal Received Path Power
  • the first received power information includes RSRP result difference (RSRP-ResultDiff).
  • the unit of the first received power information is dBm (decibel millimeter).
  • the unit of the first received power information is dB (decibel).
  • the name of the first sending and receiving time difference includes RSTD (Reference Signal Time Difference, reference signal time power).
  • the name of the first transmission and reception time difference includes RxTxTimeDiff (reception and transmission time difference).
  • the name of the first transmission and reception time difference includes SL-RxTxTimeDiff (secondary link reception and transmission time difference).
  • the name of the first sending and receiving time difference includes RTOA (Relative Time of Arrival, relative time of arrival).
  • the name of the first sending and receiving time difference includes SL-RTOA.
  • the reception timing of the first time unit and the first time length are jointly used to generate the first location information.
  • the first location information is related to both the reception timing of the first time unit and the first time length.
  • the first location information includes the first transmission and reception time difference, and the first transmission and reception time difference is related to both the reception timing and the first time length of the first time unit.
  • the first location information includes the first transmission and reception time difference, and the reception timing of the first time unit and the first time length are jointly used to generate the first transmission and reception time difference.
  • the first sending and receiving time difference is linearly related to the receiving timing of the first time unit and the first time length.
  • the sum of the linear addition of the reception timing of the first time unit and the first time length is used to generate the first transmission and reception time difference.
  • the difference between the reception timing of the first time unit and the first time length is used to generate the first transmission and reception time difference.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in Figure 2.
  • Figure 2 illustrates the V2X communication architecture under 5G NR (New Radio), LTE (Long-Term Evolution, Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) system architecture.
  • the 5G NR or LTE network architecture can be called 5GS (5G System)/EPS (Evolved Packet System) or some other suitable term.
  • the V2X communication architecture of Embodiment 2 includes UE (User Equipment) 201, UE241, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core), Evolved packet core) 210, HSS (Home Subscriber Server, home subscriber server)/UDM (Unified Data Management, unified data management) 220, ProSe function 250 and ProSe application server 230.
  • the V2X communication architecture may interconnect with other access networks, but these entities/interfaces are not shown for simplicity.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201.
  • gNB 203 may connect to other gNBs 204 via the Xn interface (eg, backhaul).
  • gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), transmitting and receiving node (TRP), or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radio, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radio non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management field)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management field
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway, service gateway)/UPF (UserPlaneFunction, user plane function) 212 and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles signaling between UE201 and 5GC/EPC210. Basically, MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 is connected to Internet service 230.
  • Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching streaming services.
  • the ProSe function 250 is a logical function for network-related behaviors required by ProSe (Proximity-based Service); including DPF (Direct Provisioning Function), Direct Discovery Name Management Function (Direct Discovery Name) Management Function), EPC-level Discovery ProSe Function (EPC-level Discovery ProSe Function), etc.
  • the ProSe application server 230 has functions such as storing EPC ProSe user identifications, mapping between application layer user identifications and EPC ProSe user identifications, and allocating ProSe restricted code suffix pools.
  • the UE201 and the UE241 are connected through a PC5 reference point.
  • the ProSe function 250 is connected to the UE201 and the UE241 through the PC3 reference point respectively.
  • the ProSe function 250 is connected to the ProSe application server 230 through the PC2 reference point.
  • the ProSe application server 230 is connected to the ProSe application of the UE201 and the ProSe application of the UE241 through the PC1 reference point respectively.
  • the first node in this application is the UE201, and the second node in this application is the UE241.
  • the first node in this application is the UE241
  • the second node in this application is the UE201.
  • the wireless link between the UE201 and the UE241 corresponds to a side link (Sidelink, SL) in this application.
  • the wireless link from the UE 201 to the NR Node B is an uplink.
  • the wireless link from the NR Node B to the UE 201 is the downlink.
  • the UE 201 supports SL transmission.
  • the UE241 supports SL transmission.
  • the gNB 203 is a macro cellular (MarcoCellular) base station.
  • the gNB 203 is a Micro Cell base station.
  • the gNB 203 is a PicoCell base station.
  • the gNB 203 is a home base station (Femtocell).
  • the gNB 203 is a base station device that supports a large delay difference.
  • the gNB 203 is an RSU (Road Side Unit).
  • the gNB 203 includes satellite equipment.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300.
  • Figure 3 shows with three layers a first node device (UE or RSU in V2X, a vehicle-mounted device or a vehicle-mounted communication module). ) and the second node device (gNB, UE or RSU in V2X, vehicle-mounted device or vehicle-mounted communication module), or the radio protocol architecture of the control plane 300 between the two UEs: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first node device and the second node device and the two UEs through the PHY 301.
  • L2 layer 305 includes MAC (Medium Access Control, media access control) sublayer 302, RLC (Radio Link Control, wireless link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304, these sub-layers terminate at the second node device.
  • the PDCP sublayer 304 provides data encryption and integrity protection, and the PDCP sublayer 304 also provides hand-off support for the first node device to the second node device.
  • the RLC sublayer 303 provides segmentation and reassembly of data packets, and realizes retransmission of lost data packets through ARQ.
  • the RLC sublayer 303 also provides duplicate data packet detection and protocol error detection.
  • the MAC sublayer 302 provides mapping between logical and transport channels and multiplexing of logical channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among first node devices.
  • MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (i.e., radio bearers) and using the link between the second node device and the first node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer). Radio protocol architecture for the first node device and the second node device in the user plane 350.
  • L1 layer layer 1
  • L2 layer layer 2
  • Radio protocol architecture for the first node device and the second node device in the user plane 350 For the physical layer 351, the L2 layer 355
  • the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are generally the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides Header compression of upper layer data packets to reduce wireless transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • SDAP Service Data Adaptation Protocol
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • the first node device may have several upper layers above the L2 layer 355, including a network layer (eg, IP layer) terminating at the P-GW on the network side and terminating at the other end of the connection (e.g., remote UE, server, etc.) application layer.
  • a network layer eg, IP layer
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • the first message in this application is generated by the PHY301.
  • the first message in this application is generated in the MAC sublayer 302.
  • the first RS in this application is generated by the PHY301.
  • the first measurement in this application is performed by the PHY301.
  • the first location information in this application is generated in the RRC sublayer 306.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in the access network.
  • the first communication device 410 includes a controller/processor 475, a memory 476, a receive processor 470, a transmit processor 416, a multi-antenna receive processor 472, a multi-antenna transmit processor 471, a transmitter/receiver 418 and an antenna 420.
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and radio resource allocation to the second communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the second communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 450, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for M-phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for M-phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams. Transmit processor 416 then maps each spatial stream to a subcarrier, multiplexes it with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the second communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458.
  • the second communication device 450 is any spatial stream that is the destination. The symbols on each spatial stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover upper layer data and control signals transmitted by the first communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media.
  • the controller/processor 459 In transmission from the first communication device 410 to the second communication device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements headers based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the first communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the functionality at the first communication device 410 is similar to that in the transmission from the first communication device 410 to the second communication device 450.
  • the reception function at the second communication device 450 is described in the transmission.
  • Each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 In transmission from the second communications device 450 to the first communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the second communication device 450 at least: receives a first message; performs a first measurement in at least a first RS resource to obtain the reception timing of a first time unit; sends first location information; the first message indicates a first The length of time, the reception timing of the first time unit and the first length of time are jointly used to generate the first location information.
  • the second communication device 450 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: receiving a first A message; performing a first measurement in at least a first RS resource to obtain the reception timing of a first time unit; sending first location information; the first message indicates a first time length, and the first time unit The reception timing and the first length of time are jointly used to generate the first location information.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the first communication device 410 at least: sends a first message; sends at least a first RS on at least a first RS resource; receives first location information; wherein the first message indicates a first time length, and the first A position information includes a first transmission and reception time difference, and the first transmission and reception time difference is related to the first time length.
  • the first communication device 410 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: sending a first A message; transmitting at least a first RS on at least a first RS resource; receiving first location information; wherein the first message indicates a first time length, the first location information includes a first sending and receiving time difference, and the third A sending and receiving time difference is related to the first time length.
  • the second communication device 450 corresponds to the first node in this application.
  • the first communication device 410 corresponds to the second node in this application.
  • the second communication device 450 is a UE.
  • the first communication device 410 is a UE.
  • At least one of ⁇ the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, and the memory 460 ⁇ One is used in this application to receive the first message.
  • At least one of ⁇ the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, and the memory 460 ⁇ is used in this application to perform the first measurement on at least the first RS resource to obtain the reception timing of the first time unit.
  • the antenna 452 the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used in this application to send the first location information.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 ⁇ One is used in this application to send the first message.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 ⁇ One is used in this application to transmit at least the first RS on at least the first RS resource.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 ⁇ One is used in this application to receive the first location information.
  • Embodiment 5 illustrates a structural diagram of UE positioning according to an embodiment of the present application, as shown in Figure 5.
  • UE501 communicates with UE502 through the PC5 interface;
  • UE502 communicates with ng-eNB503 or gNB504 through the LTE (Long Term Evolution, Long Term Evolution)-Uu interface or NR (New Radio)-Uu new wireless interface;
  • ng-eNB503 and gNB 504 are sometimes called As base stations, ng-eNB503 and gNB 504 are also called NG (Next Generation, next generation)-RAN (Radio Access Network, wireless access network).
  • NG Next Generation, next generation
  • radio Access Network wireless access network
  • ng-eNB503 and gNB 504 are connected to AMF (Authentication Management Field, authentication management field) 505 through NG (Next Generation)-C (Control plane) respectively;
  • AMF505 is connected to LMF (Location Management Function) through NL1 interface , location management function) 506 connection.
  • the AMF505 receives a location service request associated with a specific UE from another entity, such as a GMLC (Gateway Mobile Location Center) or a UE, or the AMF505 itself decides to activate location services associated with a specific UE.
  • GMLC Gateway Mobile Location Center
  • UE User Equipment
  • the AMF 505 sends the location service request to an LMF, such as the LMF 506; then this LMF processes the location service request, including sending assistance data to the specific UE to assist UE-based (UE-based) or UE-assisted (UE-assisted) positioning, and includes receiving location information (Location information) reported from the UE; then the LMF returns the location service result to the AMF 505; if the location service is requested by another entity, the AMF 505 returns the results of the location service to that entity.
  • LMF location service request to an LMF, such as the LMF 506
  • this LMF processes the location service request, including sending assistance data to the specific UE to assist UE-based (UE-based) or UE-assisted (UE-assisted) positioning, and includes receiving location information (Location information) reported from the UE; then the LMF returns the location service result to the AMF 505; if the location service is requested by another entity, the AMF 505 returns the results of the location service
  • the network device of the present application includes an LMF.
  • the network equipment of this application includes NG-RAN and LMF.
  • the network equipment of this application includes NG-RAN, AMF and LMF.
  • Embodiment 6 illustrates a wireless signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 6 .
  • the first node U1 and the second node U2 communicate through the air interface.
  • the steps in dashed box F0 are optional.
  • the first message is received in step S11; the first measurement is performed on at least the first RS resource to obtain the reception timing of the first time unit in step S12; and the first location information is sent in step S13.
  • the first message is sent in step S21; at least the first RS is sent on at least the first RS resource in step S22; and the first location information is received in step S23.
  • the first message indicates a first time length, the reception timing of the first time unit and the first time length are jointly used to generate the first location information;
  • the third A position information includes a first transmission and reception time difference, and the first transmission and reception time difference is the sum of the linear addition of the reception timing of the first time unit, the first time length and the transmission timing of the second time unit;
  • the at least first RS resource includes a plurality of first type RS resources, the first RS resource is one of the plurality of first type RS resources, and at least one of the plurality of first type RS resources
  • the first type of RS resource is used to carry SL PRS;
  • the first time unit includes the time domain resource of the first RS resource, or the first time unit includes the plurality of first type RS resources.
  • a time domain resource of a first type RS resource, or the first time unit is associated with the at least first RS resource;
  • the first resource pool includes a plurality of first type time units in the time domain, and the first time unit
  • the unit is a first-type time unit in the first resource pool, and the second time unit is a time domain distance from the third time unit among the plurality of first-type time units included in the first resource pool.
  • a time unit is the nearest time unit of the first type; the second time unit is used by the first node U1 to send wireless signals;
  • the first message is a SCI, or the first message is a SL MAC CE;
  • the time-frequency resource occupied by the first message belongs to the second resource pool, and the second resource pool is different from the first resource pool.
  • the above steps are helpful for the second node U2 to flexibly adjust the sending timing.
  • the above steps are beneficial to saving signaling overhead of the first location information.
  • communication between the first node U1 and the second node U2 is through the PC5 interface.
  • the first node U1 sends the first location information to the second node U2.
  • the first node U1 sends the first location information to the second node U2, and the second node U2 reports the first location information to the LMF.
  • the first node U1 reports the first location information to the LMF.
  • Embodiment 7 illustrates a schematic diagram of the relationship between the first transmission and reception time difference, the reception timing of the first time unit, the first time length, and the transmission timing of the second time unit according to an embodiment of the present application, as shown in Figure 7 .
  • the first location information includes a first transmission and reception time difference
  • the first transmission and reception time difference is linearly related to the first time length
  • the reception timing of the first time unit is linearly related to the transmission timing of the second time unit.
  • the first sending and receiving time difference is an equivalent receiving and sending time difference (Rx-Tx Time Difference).
  • the first time length, the receiving timing of the first time unit and the sending timing of the second time unit are jointly used to determine the first sending and receiving time difference.
  • the first time length, the receiving timing of the first time unit and the sending timing of the second time unit are jointly used to generate the first sending and receiving time difference.
  • the first sending and receiving time difference is the sum of the linear addition of the first time length, the receiving timing of the first time unit and the sending timing of the second time unit.
  • the first sending and receiving time difference is the difference between the receiving timing of the first time unit minus the first time length and then minus the sending timing of the second time unit.
  • the first sending and receiving time difference (the receiving timing of the first time unit - the first time length - the sending timing of the second time unit).
  • the first transmission and reception time difference is the sum of the linear addition of the difference between the reception timing of the first time unit and the transmission timing of the second time unit and the first time length.
  • the first transmission and reception time difference is the sum of the linear addition of the difference between the reception timing of the first time unit and the first time length and the transmission timing of the second time unit.
  • the first transmission and reception time difference is a linear subtraction of the difference between the reception timing of the first time unit and the transmission timing of the second time unit and the first time length.
  • the first transmission and reception time difference is a linear subtraction difference between the reception timing of the first time unit and the first time length and the transmission timing of the second time unit.
  • the first sending and receiving time difference is the difference between the first sending and receiving time difference and the first time length
  • the first sending and receiving time difference is the receiving timing of the first time unit and the sending timing of the second time unit. the difference between.
  • the first transmission and reception time difference is the difference between the equivalent reception timing of the first time unit and the transmission timing of the second time unit, and the equivalent reception timing of the first time unit is the first time unit.
  • the resolution of the first sending and receiving time difference is Ts, where Ts is 1/(15000 ⁇ 2048) seconds.
  • the resolution of the first sending and receiving time difference is a positive integer multiple of Ts, where Ts is 1/(15000 ⁇ 2048) seconds.
  • the first sending and receiving time difference is not greater than 1 ms.
  • the first sending and receiving time difference is not greater than one CP (cyclic prefix).
  • Embodiment 8 illustrates a schematic diagram of the relationship between the first time unit and the second time unit according to an embodiment of the present application, as shown in FIG. 8 .
  • the first resource pool includes a plurality of first-type time units in the time domain, and the second time unit is far away from the first time unit in the time domain.
  • the second time unit is used by the first node to transmit wireless signals.
  • the second time unit is adjacent to the first time unit in the time domain.
  • the second time unit is closest to the first time unit in the time domain.
  • the first time unit and the second time unit are respectively two first-type time units among a plurality of first-type time units, and the second time unit is one of the plurality of first-type time units.
  • a first type time unit is closest to the first time unit in the time domain.
  • the plurality of first-type time units are used for SL transmission.
  • any first type time unit among the plurality of first type time units includes at least one uplink symbol.
  • the second time unit is used by the first node to send wireless signals.
  • the first time unit is used by the first node to receive wireless signals
  • the second time unit is used by the first node to send wireless signals
  • the first time unit is used by the first node for SL reception, and the second time unit is used by the first node for SL transmission.
  • the second time unit is closest to the first time unit in the time domain, and the second time unit is used by the first node to send wireless signals.
  • the sending timing of the second time unit is the start of the second time unit.
  • the sending timing of the second time unit is the start of the first node sending the SL signal after receiving the first time unit.
  • the sending timing of the second time unit is the closest sending time to the receiving timing of the first time unit.
  • the second time unit is a subframe.
  • the second time unit is a secondary link subframe.
  • the second time unit is an uplink subframe.
  • the second time unit is a subframe, and the subframe includes uplink symbols.
  • the second time unit is a subframe, and the subframe is used for SL transmission.
  • the second time unit is a time slot.
  • the second time unit is a secondary link time slot.
  • the second time unit is an uplink time slot.
  • the second time unit is a time slot, and the time slot includes uplink symbols.
  • the second time unit is a time slot, and the time slot is used for SL transmission.
  • the first resource pool includes a secondary link resource pool.
  • the first resource pool is used for SL transmission.
  • the first resource pool is used to transmit SL PRS.
  • the first resource pool includes the plurality of first-type time units in the time domain.
  • the time domain resources occupied by the first resource pool in the time domain include the plurality of first type time units.
  • At least two adjacent first-type time units among the plurality of first-type time units included in the first resource pool in the time domain are discontinuous in time.
  • the plurality of first-type time units included in the first resource pool are respectively a plurality of time slots.
  • the plurality of first-type time units included in the first resource pool are respectively multiple subframes.
  • the first time unit is a first-type time unit including the time-domain resource of the first RS resource among the plurality of first-type time units included in the first resource pool in the time domain.
  • the first time unit is one of the plurality of first-type time units included in the time domain of the first resource pool, and the first time unit includes the time of the first RS resource. domain resources.
  • the first time unit is one of the plurality of first-type time units included in the first resource pool in the time domain, and the first time unit includes at least one of the first RS resources.
  • the first time unit is one of the plurality of first-type time units included in the time domain by the first resource pool. 1.
  • the second time unit is a first-type time unit that is closest to the first time unit in the time domain among the plurality of first-type time units included in the first resource pool.
  • Embodiment 9 illustrates a structural block diagram of a processing device in the first node, as shown in FIG. 9 .
  • the first node device processing device 900 mainly consists of a first receiver 901 and a first transmitter 902.
  • the first receiver 901 includes the antenna 452, the transmitter/receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, and the memory 460 in Figure 4 of this application. at least one of.
  • the first transmitter 902 includes the antenna 452, the transmitter/receiver 454, the multi-antenna transmitter processor 457, the transmit processor 468, the controller/processor 459, and the memory 460 in Figure 4 of this application. and at least one of data sources 467.
  • the first receiver 901 receives the first message; the first receiver 901 performs a first measurement in at least a first RS resource to obtain the reception timing of the first time unit; the first The transmitter 902 transmits first location information; the first message indicates a first length of time, the reception timing of the first time unit and the first length of time are jointly used to generate the first location information.
  • the first location information includes a first transmission and reception time difference
  • the first transmission and reception time difference is the reception timing of the first time unit, the first time length and the transmission timing of the second time unit. The sum of the linear addition of the three.
  • the at least first RS resource includes a plurality of first type RS resources, the first RS resource is one of the plurality of first type RS resources, and the plurality of first type RS resources At least one type 1 RS resource in the resources is used to carry SL PRS (Sidelink Positioning Reference Signal, secondary link positioning reference signal).
  • SL PRS Segmentlink Positioning Reference Signal, secondary link positioning reference signal
  • the first time unit includes a time domain resource of the first RS resource, or the first time unit includes a first type RS resource among the plurality of first type RS resources. time domain resources.
  • the second time unit is closest to the first time unit in the time domain.
  • the first resource pool includes a plurality of first-type time units in the time domain, and the first time unit includes all of the plurality of first-type time units included in the first resource pool in the time domain.
  • the first resource pool includes multiple first-type time units in the time domain, the first time unit is a first-type time unit in the first resource pool, and the second time unit is Among the plurality of first-type time units included in the first resource pool, a first-type time unit is closest to the first time unit in the time domain.
  • the second time unit is used by the first node to send wireless signals.
  • the first message is a SCI, or the first message is a SL MAC CE.
  • the first resource pool includes the at least first RS resource, the time-frequency resource occupied by the first message belongs to the second resource pool, and the second resource pool is different from the first resource pool.
  • the first node 900 is user equipment.
  • the first node 900 is a relay node.
  • the first node 900 is a roadside device.
  • Embodiment 10 illustrates a structural block diagram of a processing device in the second node, as shown in FIG. 10 .
  • the second node device processing apparatus 1000 mainly consists of a second transmitter 1001 and a second receiver 1002.
  • the second transmitter 1001 includes the antenna 420 in Figure 4 of this application, the transmitter/receiver 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 at least one of.
  • the second receiver 1002 includes the antenna 420, the transmitter/receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 in Figure 4 of this application. at least one of.
  • the second transmitter 1001 sends a first message; the second transmitter 1001 sends at least a first RS on at least a first RS resource; and the second receiver 1002 receives the first location information. ;
  • the first message indicates a first time length, the first location information includes a first sending and receiving time difference, and the first sending and receiving time difference is related to the first time length.
  • the first location information includes a first equivalent sending and receiving time difference
  • the first equivalent sending and receiving time difference is the first time The sum of the linear addition of the reception timing of the unit, the first time length and the transmission timing of the second time unit.
  • the at least first RS resource includes a plurality of first type RS resources
  • the first RS resource is one of the plurality of first type RS resources
  • the at least first RS includes a plurality of first type RS resources.
  • a first type RS, at least one first type RS among the plurality of first type RSs is a SL PRS.
  • the first time unit includes a time domain resource of the first RS resource, or the first time unit includes a first type RS resource among the plurality of first type RS resources. time domain resources.
  • the second time unit is closest to the first time unit in the time domain.
  • the first resource pool includes a plurality of first-type time units in the time domain, and the first time unit includes all of the plurality of first-type time units included in the first resource pool in the time domain.
  • the first resource pool includes multiple first-type time units in the time domain, the first time unit is a first-type time unit in the first resource pool, and the second time unit is Among the plurality of first-type time units included in the first resource pool, a first-type time unit is closest to the first time unit in the time domain.
  • the second time unit is used by the second node to receive the wireless signal from the first node.
  • the first message is a SCI, or the first message is a SL MAC CE.
  • the first resource pool includes the at least first RS resource, the time-frequency resource occupied by the first message belongs to the second resource pool, and the second resource pool is different from the first resource pool.
  • the second node 1000 is user equipment.
  • the second node 1000 is a relay node.
  • the second node 1000 is a roadside device.
  • the first node devices in this application include but are not limited to mobile phones, tablets, laptops, Internet cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc.
  • Wireless communications equipment The second node devices in this application include but are not limited to mobile phones, tablets, laptops, Internet cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc. Wireless communications equipment.
  • the user equipment or UE or terminal in this application includes but is not limited to mobile phones, tablets, laptops, Internet cards, low-power devices, eMTC devices, NB-IoT devices, vehicle-mounted communication equipment, aircraft, aircraft, drones, remote controls Wireless communication equipment such as aircraft.
  • the base station equipment or base station or network side equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, eNB, gNB, transmission and reception node TRP, GNSS, relay satellite, satellite base station, aerial Base stations and other wireless communication equipment.

Abstract

本申请公开了一种被用于定位的方法和装置。第一节点接收第一消息;在至少第一RS资源中执行第一测量以得到第一时间单元的接收定时;发送第一位置信息;所述第一消息指示第一时间长度,所述第一时间单元的所述接收定时以及所述第一时间长度共同被用于生成所述第一位置信息。本申请解决了定时调整对位置信息估计的影响。

Description

一种被用于定位的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中的与定位相关的方案和装置。
背景技术
定位是无线通信领域的一个重要应用;V2X(Vehicle to everything,车对外界)或者工业物联网等新应用的出现,对定位的精度或者延迟提出了更高的要求。在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#94e会议中,关于定位增强的研究课题被立项。
发明内容
根据RP-213588中的工作计划,NR Rel-18需要支持副链路定位(Sidelink Positioning,SL Positioning)的增强定位技术,其中主流的副链路定位技术包括基于SL RTT技术、SL AOA、SL TDOA和SL AOD等,而这些技术的执行都需要依赖对SL PRS(Sidelink Positioning Reference Signal,副链路定位参考信号)的测量。由于SL PRS的发送者可能是移动的,这就使得传统的用于定位的流程或者位置信息反馈方案需要进一步增强。
针对上述问题,本申请公开了一种定位解决方案。需要说明的是,在本申请的描述中,只是采用V2X场景作为一个典型应用场景或者例子;本申请也同样适用于面临相似问题的V2X之外的场景,例如公共安全(Public Safety)、工业物联网等等,并取得类似NR V2X场景中的技术效果。此外,虽然本申请的动机是针对用于定位测量的无线信号的发送者是移动的这一场景,本申请依然适用于用于定位测量的无线信号的发送者是固定的这一场景,例如RSU(Road Side Unit,路边单元)等。不同场景采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
在需要的情况下,可以参考3GPP标准TS38.211,TS38.212,TS38.213,TS38.214,TS38.215,TS38.321,TS38.331,TS38.305,TS37.355以辅助对本申请的理解。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一消息;
在至少第一RS(Reference Signal,参考信号)资源中执行第一测量以得到第一时间单元的接收定时;
发送第一位置信息;
其中,所述第一消息指示第一时间长度,所述第一时间单元的所述接收定时以及所述第一时间长度共同被用于生成所述第一位置信息。
作为一个实施例,本申请要解决的问题是:第一RS的发送UE发生定时调整导致第一位置信息的测量误差。
作为一个实施例,本申请的方法是:将第一位置信息的生成与第一时间长度建立关系。
作为一个实施例,本申请的方法是:将第一位置信息的生成与第一时间长度和第一时间单元的接收定时一起建立关系。
作为一个实施例,本申请的方法有利于第一RS资源的发送者灵活调整发送定时。
作为一个实施例,本申请的方法有利于节省第一位置信息的信令开销。
作为一个实施例,本申请的方法解决了定时调整对位置信息估计的影响。
根据本申请的一个方面,上述方法的特征在于,所述第一位置信息包括第一收发时差,所述第一收发时差是所述第一时间单元的所述接收定时,所述第一时间长度和第二时间单元的发送定时三者线性相加的和。
根据本申请的一个方面,上述方法的特征在于,所述至少第一RS资源包括多个第一类RS资源,所述第一RS资源是所述多个第一类RS资源中的之一,所述多个第一类RS资源中的至少一个第一类RS资 源被用于承载SL PRS(Sidelink Positioning Reference Signal,副链路定位参考信号)。
根据本申请的一个方面,上述方法的特征在于,所述第一时间单元包括所述第一RS资源的时域资源,或者,所述第一时间单元包括所述多个第一类RS资源中的一个第一类RS资源的时域资源。
根据本申请的一个方面,上述方法的特征在于,所述第二时间单元在时域离所述第一时间单元最近。
根据本申请的一个方面,上述方法的特征在于,第一资源池在时域包括多个第一类时间单元,所述第一时间单元是第一资源池在时域包括的所述多个第一类时间单元中的包括所述第一RS资源的时域资源的一个第一类时间单元。
根据本申请的一个方面,上述方法的特征在于,第一资源池在时域包括多个第一类时间单元,所述第一时间单元是所述第一资源池中的一个第一类时间单元,所述第二时间单元是所述第一资源池包括的所述多个第一类时间单元中的在时域离所述第一时间单元最近的一个第一类时间单元。
根据本申请的一个方面,上述方法的特征在于,所述第二时间单元被所述第一节点用于发送无线信号。
根据本申请的一个方面,上述方法的特征在于,所述第一消息是一个SCI,或者所述第一消息是一个SL MAC CE。
根据本申请的一个方面,上述方法的特征在于,第一资源池包括所述至少第一RS资源,所述第一消息所占用的时频资源属于第二资源池,所述第二资源池与所述第一资源池不同。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是用户设备(UE,User Equipment)。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是中继节点。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是路侧设备(RSU,Road Side Unit)。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一消息;
在至少第一RS资源上发送至少第一RS;
接收第一位置信息;
其中,所述第一消息指示第一时间长度,所述第一位置信息包括第一收发时差,所述第一收发时差与所述第一时间长度有关。
根据本申请的一个方面,上述方法的特征在于,所述第一位置信息包括第一等效收发时差,所述第一等效收发时差是所述第一时间单元的所述接收定时,所述第一时间长度和第二时间单元的发送定时三者线性相加的和。
根据本申请的一个方面,上述方法的特征在于,所述至少第一RS资源包括多个第一类RS资源,所述第一RS资源是所述多个第一类RS资源中的之一,所述至少第一RS包括多个第一类RS,所述多个第一类RS中的至少一个第一类RS是SL PRS。
根据本申请的一个方面,上述方法的特征在于,所述第一时间单元包括所述第一RS资源的时域资源,或者,所述第一时间单元包括所述多个第一类RS资源中的一个第一类RS资源的时域资源。
根据本申请的一个方面,上述方法的特征在于,所述第二时间单元在时域离所述第一时间单元最近。
根据本申请的一个方面,上述方法的特征在于,第一资源池在时域包括多个第一类时间单元,所述第一时间单元是第一资源池在时域包括的所述多个第一类时间单元中的包括所述第一RS资源的时域资源的一个第一类时间单元。
根据本申请的一个方面,上述方法的特征在于,第一资源池在时域包括多个第一类时间单元,所述第一时间单元是所述第一资源池中的一个第一类时间单元,所述第二时间单元是所述第一资源池包括的所述多个第一类时间单元中的在时域离所述第一时间单元最近的一个第一类时间单元。
根据本申请的一个方面,上述方法的特征在于,所述第二时间单元被所述第二节点用于接收来自所述第一节点的无线信号。
根据本申请的一个方面,上述方法的特征在于,所述第一消息是一个SCI,或者所述第一消息是一个SL MAC CE。
根据本申请的一个方面,上述方法的特征在于,第一资源池包括所述至少第一RS资源,所述第一消息所占用的时频资源属于第二资源池,所述第二资源池与所述第一资源池不同。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是用户设备。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是中继节点。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是路侧设备。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一接收机,接收第一消息;在至少第一RS资源中执行第一测量以得到第一时间单元的接收定时;
第一发射机,发送第一位置信息;
其中,所述第一消息指示第一时间长度,所述第一时间单元的所述接收定时以及所述第一时间长度共同被用于生成所述第一位置信息。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二发射机,发送第一消息;在至少第一RS资源上发送至少第一RS;
第二接收机,接收第一位置信息;
其中,所述第一消息指示第一时间长度,所述第一位置信息包括第一收发时差,所述第一收发时差与所述第一时间长度有关。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的UE定位的结构图;
图6示出了根据本申请的一个实施例的无线信号传输流程图;
图7示出了根据本申请的一个实施例的第一收发时差与第一时间单元的接收定时、第一时间长度和第二时间单元的发送定时之间关系的示意图;
图8示出了根据本申请的一个实施例的第一时间单元与第二时间单元之间关系的示意图;
图9示出了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;
图10示出了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了本申请的一个实施例的第一节点的处理流程图,如附图1所示。在附图1中,每个方框代表一个步骤。
在实施例1中,本申请中的第一节点执行步骤101,接收第一消息;在执行步骤102,在至少第一RS(Reference Signal,参考信号)资源中执行第一测量以得到第一时间单元的接收定时;最后执行步骤103,发送第一位置信息;所述第一消息指示第一时间长度,所述第一时间单元的所述接收定时以及所述第一时间长度共同被用于生成所述第一位置信息(Location Information)。
作为一个实施例,所述第一RS被用于定位(Positioning)。
作为一个实施例,所述第一RS被用于得到收发时差(Rx-Tx Time Difference)。
作为一个实施例,所述第一RS被用于得到所述第一RS的接收定时。
作为一个实施例,所述第一RS被用于得到所述第一时间单元的接收定时。
作为一个实施例,所述第一RS包括SL RS(Sidelink Reference Signal,副链路参考信号)。
作为一个实施例,所述第一RS包括SL PRS(Sidelink Positioning Reference Signal,副链路定位参考信 号)。
作为一个实施例,所述第一RS包括SRS(Sounding Reference Signal,探测参考信号)。
作为一个实施例,所述第一RS包括S-PSS(Sidelink Primary Synchronization Signal,副链路主同步信号),S-SSS(Sidelink Secondary Synchronization Signal,副链路辅同步信号),PSBCH(Physical Sidelink Broadcast Channel,物理副链路广播信道)三者中的至少之一。
作为一个实施例,至少第一RS仅包括所述第一RS。
作为一个实施例,至少第一RS包括多个第一类RS,所述第一RS是所述多个第一类RS中的之一。
作为一个实施例,所述多个第一类RS都被用于定位。
作为一个实施例,所述多个第一类RS都被用于得到收发时差。
作为一个实施例,所述多个第一类RS都被用于得到接收定时。
作为一个实施例,所述多个第一类RS都被用于得到所述第一时间单元的接收定时。
作为一个实施例,所述多个第一类RS中的至少一个第一类RS是SL PRS。
作为一个实施例,所述多个第一类RS中的至少一个第一类RS是SRS。
作为一个实施例,所述多个第一类RS中的至少一个第一类RS是SL PRS,所述多个第一类RS中的至少一个第一类RS是SRS。
作为一个实施例,所述至少第一RS资源包括多个REs(Resource Elements)。
作为一个实施例,所述至少第一RS资源被用于承载所述至少第一RS。
作为一个实施例,所述至少第一RS资源被预留给所述至少第一RS。
作为一个实施例,所述至少第一RS资源是所述至少第一RS所占用的时频资源。
作为一个实施例,所述至少第一RS资源仅包括所述第一RS资源。
作为一个实施例,所述至少第一RS资源包括多个第一类RS资源。
作为一个实施例,所述第一RS资源被用于承载所述第一RS。
作为一个实施例,所述第一RS资源被预留给所述第一RS。
作为一个实施例,所述第一RS资源是所述第一RS所占用的时频资源。
作为一个实施例,所述第一RS资源在时域占用至少一个多载波符号,所述第一RS资源在频域占用至少一个子载波。
作为一个实施例,所述第一RS资源所占用的时域资源属于一个时隙,所述第一RS资源所占用的频域资源横跨一个PRB(Physical Resource Block,物理资源块)。
作为一个实施例,所述第一RS资源所占用的时域资源属于一个时隙,所述第一RS资源所占用的频域资源属于一个Subchannel(子信道)。
作为一个实施例,所述第一RS资源包括全交错图谱(Full-staggered pattern)。
作为一个实施例,所述第一RS资源包括半交错图谱(Partial-staggered pattern)。
作为一个实施例,所述第一RS资源包括非交错图谱(Unstaggered pattern)。
作为一个实施例,所述多个第一类RS资源中的任一第一类RS资源在时域占用至少一个多载波符号,所述多个第一类RS资源中的任一第一类RS资源在频域占用至少一个子载波。
作为一个实施例,所述多个第一类RS资源中的任一第一类RS资源所占用的时域资源属于一个时隙,所述多个第一类RS资源中的任一第一类RS资源所占用的频域资源横跨一个PRB。
作为一个实施例,所述多个第一类RS资源中的任一第一类RS资源所占用的时域资源属于一个时隙,所述多个第一类RS资源中的任一第一类RS资源所占用的频域资源属于一个Subchannel。
作为一个实施例,所述至少第一RS资源属于第一资源池。
作为一个实施例,所述第一资源池包括所述至少第一RS资源。
作为一个实施例,所述第一RS资源属于第一资源池。
作为一个实施例,所述第一资源池包括所述第一RS资源。
作为一个实施例,所述第一资源池在时域包括多个时隙,所述第一资源池在频域包括至少一个子信道。
作为一个实施例,所述第一资源池在时域包括多个时隙,所述第一资源池在频域包括多个PRBs。
作为一个实施例,所述第一RS资源的时域资源属于所述第一资源池中的一个时隙。
作为一个实施例,所述第一RS资源的频域资源包括所述第一资源池中的至少一个PRB。
作为一个实施例,所述第一RS资源的频域资源属于所述第一资源池中的一个子信道。
作为一个实施例,所述第一消息的发送者在所述第一时间单元的发送定时与所述第一时间长度有关。
作为一个实施例,所述第一时间长度被用于确定所述所述第一消息的发送者在所述第一时间单元的发送定时。
作为一个实施例,所述第一RS的发送定时与所述第一时间长度有关。
作为一个实施例,所述第一时间长度被用于确定所述第一RS的发送定时。
作为一个实施例,所述第一时间长度是一个定时提前(Timing Advance)。
作为一个实施例,所述第一时间长度是多个时间长度中的之一。
作为一个实施例,所述第一时间长度与所述第一RS资源在频域的子载波间隔有关。
作为一个实施例,所述第一RS资源在频域的子载波间隔被用于从所述多个时间长度中确定所述第一时间长度。
作为一个实施例,所述第一时间长度的索引被用于指示所述第一时间长度在所述多个时间长度的位置。
作为一个实施例,所述第一时间长度的索引被用于从所述多个时间长度中指示所述第一时间长度。
作为一个实施例,所述第一时间长度的所述索引是从0开始连续T个非负整数中的之一,T是大于1的正整数。
作为一个实施例,所述第一时间长度的所述索引是从0到3846连续3847个非负整数中的之一。
作为一个实施例,所述第一时间长度的所述索引是{0,1,2,...,3846}中的之一。
作为一个实施例,所述第一时间长度的所述索引是从0到63连续64个非负整数中的之一。
作为一个实施例,所述第一时间长度的所述索引是{0,1,2,...,63}中的之一。
作为一个实施例,所述第一时间长度与所述第一时间长度的所述索引和所述第一RS资源在频域的子载波间隔都有关。
作为一个实施例,所述第一时间长度等于所述第一时间长度的所述索引分别与16和64的乘积再除以2μ的商,μ是一个非负整数且μ与所述第一RS资源在频域的所述子载波间隔有关。
作为一个实施例,所述第一时间长度的解析度是TC,TC为1/(480000×4096)秒。
作为一个实施例,所述第一时间长度的解析度是TC的正整数倍,TC为1/(480000×4096)秒。
作为一个实施例,所述第一时间长度等于(TA×16×64/2μ)×TC,μ是非负整数,TA是所述第一时间长度的所述索引,TC是1/(480000×4096)秒。
作为一个实施例,所述μ与所述至少第一RS资源在频域的子载波间隔有关。
作为一个实施例,所述μ是{0,1,2,3,4,5,6}中的之一。
作为一个实施例,所述第一时间长度与第二时间长度有关,所述第二时间长度是在收到所述第一消息之前的一个时间长度。
作为一个实施例,所述第二时间长度是所述多个时间长度中的之一。
作为一个实施例,所述第一时间长度与第二时间长度,所述第一时间长度的索引和所述第一RS资源在频域的子载波间隔都有关。
作为一个实施例,所述第二时间长度是所述第一消息被接收之前的定时提前。
作为一个实施例,所述第二时间长度是所述第一节点在所述第一消息被接收之前的定时提前。
作为一个实施例,所述第一时间长度等于所述第二时间长度+((TA-31)×16×64/2μ)×TC,μ是非负整数,TA是所述第一时间长度的所述索引,TC是1/(480000×4096)秒。
作为一个实施例,所述第一RS资源在频域的子载波间隔是2μ×15kHz。
作为一个实施例,所述第一时间长度的单位是s(秒)。
作为一个实施例,所述第一时间长度的单位是ms(毫秒)。
作为一个实施例,所述第一时间长度不大于2ms。
作为一个实施例,所述第一时间长度不大于1ms。
作为一个实施例,所述第一消息被用于指示所述第一时间长度。
作为一个实施例,所述第一消息指示所述第一时间长度在所述多个时间长度中的索引。
作为一个实施例,所述第一消息指示所述第一时间长度的所述索引。
作为一个实施例,所述第一消息包括定时提前命令(Timing Advance Command)。
作为一个实施例,所述第一消息指示所述至少第一RS资源。
作为一个实施例,所述第一消息被用于配置所述至少第一RS。
作为一个实施例,所述第一消息被用于配置所述第一RS。
作为一个实施例,所述第一消息被用于配置所述第一RS资源。
作为一个实施例,所述第一消息包括所述至少第一RS的配置信息。
作为一个实施例,所述第一消息包括所述第一RS的配置信息。
作为一个实施例,所述第一消息被用于配置所述第一位置信息的发送。
作为一个实施例,所述第一消息被用于配置所述第一位置信息的上报。
作为一个实施例,所述第一消息被用于触发所述第一位置信息的发送。
作为一个实施例,所述第一消息被用于触发所述第一位置信息的上报。
作为一个实施例,所述第一消息包括一个更高层(Higher layer)信令中的全部或部分。
作为一个实施例,所述第一消息包括一个或多个RRC IEs(Radio Resource Control Information Elements,无线资源控制信息单元)。
作为一个实施例,所述第一消息包括一个或多个MAC CEs(Multimedia Access Control Control Elements,多媒体接入控制控制单元)。
作为一个实施例,所述第一消息包括一个或多个PHY层(Physical Layer)信令。
作为一个实施例,所述第一消息包括一个SCI(Sidelink Control Information,副链路控制信息)。
作为一个实施例,所述第一消息包括一个SL MAC CE。
作为一个实施例,所述第一消息包括一个SCI和一个SL MAC CE。
作为一个实施例,所述第一消息包括第一比特块,所述第一比特块包括多个比特。
作为一个实施例,所述第一消息包括一个SCI和所述第一比特块。
作为一个实施例,所述第一比特块被用于生成所述SL MAC CE。
作为一个实施例,所述第一比特块包括一个CW(Codeword,码字)。
作为一个实施例,所述第一比特块包括一个CB(Code Block,编码块)。
作为一个实施例,所述第一比特块包括一个TB(Transport Block,传输块)。
作为一个实施例,所述第一消息被承载在PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)。
作为一个实施例,所述第一消息被承载在PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)。
作为一个实施例,所述第一消息被承载在PSCCH和PSSCH。
作为一个实施例,所述第一消息所占用的时频资源属于一个资源池(Resource Pool)。
作为一个实施例,所述第一消息所占用的时域资源属于一个SL(Sidelink,副链路)资源池。
作为一个实施例,所述第一测量包括接收定时测量(Receiving Timing/Reception Timing/Received Timing/Rx Timing)。
作为一个实施例,所述第一测量包括收发时差测量(Rx-Tx time difference measurement)。
作为一个实施例,所述第一测量包括UE收发时差测量(UE Rx-Tx time difference measurement)。
作为一个实施例,所述第一测量包括SL收发时差测量(Sidelink Rx-Tx time difference measurement)。
作为一个实施例,所述第一测量包括定位测量(Positioning measurement)。
作为一个实施例,所述第一测量包括位置有关的测量(Location related measurement)。
作为一个实施例,所述第一测量包括副链路定位测量(Sidelink positioning measurement)。
作为一个实施例,所述第一测量被用于获得所述第一位置信息。
作为一个实施例,所述第一测量被用于获得收发时差。
作为一个实施例,所述第一测量被用于获得第一收发时差。
作为一个实施例,所述第一测量被用于获得第一等效收发时差。
作为一个实施例,所述第一测量被用于获得所述第一时间单元的所述接收定时(Rx Timing)。
作为一个实施例,执行所述第一测量的结果是所述第一时间单元的所述接收定时。
作为一个实施例,执行所述第一测量的结果是所述第一时间单元的所述接收定时。
作为一个实施例,执行所述第一测量的结果被用于生成所述第一收发时差。
作为一个实施例,执行所述第一测量的结果被用于生成所述第一等效收发时差。
作为一个实施例,执行所述第一测量的结果被用于生成所述第一位置信息。
作为一个实施例,执行所述第一测量的结果被上报给一个LMF(Location Management Function,位置管理功能)。
作为一个实施例,执行所述第一测量的结果被传输给本申请中的第二节点。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single-Carrier Frequency Division Multiple Access,单载波-频分多址)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩频正交频分复用)符号。
作为一个实施例,所述多载波符号是IFDMA(Interleaved Frequency Division Multiple Access,交织频分多址)符号。
作为一个实施例,所述第一时间单元包括所述第一RS资源的时域资源。
作为一个实施例,所述第一时间单元包括所述至少第一RS资源中的一个第一类RS资源的时域资源。
作为一个实施例,所述第一时间单元包括所述至少第一RS资源中的在时域最后一个第一类RS资源的时域资源。
作为一个实施例,所述第一RS资源在时域属于所述第一时间单元。
作为一个实施例,所述至少第一RS资源中的一个第一类RS资源在时域属于所述第一时间单元。
作为一个实施例,所述第一时间单元的所述接收定时是所述第一节点在时域检测到的第一条路径的所述第一时间单元的定时。
作为一个实施例,所述第一时间单元的所述接收定时是从所述第二节点来的第一条到达路径(the first arrival path)的第一时间单元的起始。
作为一个实施例,所述第一时间单元的所述接收定时是所述第一节点检测到的从所述第二节点来的第一条到达路径(the first arrival path)的第一时间单元的起始。
作为一个实施例,所述第一时间单元是一个子帧(Subframe)。
作为一个实施例,所述第一时间单元是一个副链路子帧(Sidelink Subframe)。
作为一个实施例,所述第一时间单元是一个上行子帧(Uplink Subframe)。
作为一个实施例,所述第一时间单元是一个子帧,所述子帧包括上行符号(Uplink Symbol)。
作为一个实施例,所述上行符号是所述多载波符号。
作为一个实施例,所述第一时间单元是一个子帧,所述子帧被用于SL传输。
作为一个实施例,所述第一时间单元是一个时隙(Slot)。
作为一个实施例,所述第一时间单元是一个副链路时隙(Sidelink Slot)。
作为一个实施例,所述第一时间单元是一个上行时隙(Uplink Slot)。
作为一个实施例,所述第一时间单元是一个时隙,所述时隙包括上行符号(Uplink Symbol)。
作为一个实施例,所述第一时间单元是一个时隙,所述时隙被用于SL传输。
作为一个实施例,所述第一位置信息被上报给一个LMF(Location Management Function,位置管理功能)。
作为一个实施例,所述第一位置信息被传输给所述第一消息的发送者。
作为一个实施例,所述第一位置信息是经由所述第一消息的发送者上报给一个LMF。
作为一个实施例,所述第一位置信息被传输给本申请中的第二节点。
作为一个实施例,所述第一位置信息是经由本申请中的所述第二节点上报给一个LMF。
作为一个实施例,所述第一位置信息被用于确定RTT(Round Trip Time,往返时间)。
作为一个实施例,所述第一位置信息被一个LMF用于确定RTT。
作为一个实施例,所述第一位置信息被用于定位(positioning)。
作为一个实施例,所述第一位置信息被用于位置有关的测量(Location related measurement)。
作为一个实施例,所述第一位置信息被用于副链路定位(Sidelink positioning)。
作为一个实施例,所述第一位置信息被用于确定传播延迟(Propagation Delay)。
作为一个实施例,所述第一位置信息被所述LMF用于确定传播延迟。
作为一个实施例,所述第一位置信息被用于RTT定位。
作为一个实施例,所述第一位置信息被用于Single-sided(单边)RTT定位。
作为一个实施例,所述第一位置信息被用于Double-sided(双边)RTT定位。
作为一个实施例,所述第一位置信息被用于Multi-RTT(Multiple-Round Trip Time)定位。
作为一个实施例,所述第一位置信息(Location Information)包括第一收发时差。
作为一个实施例,所述第一收发时差被用于生成所述第一位置信息。
作为一个实施例,所述第一位置信息包括位置有关的测量(Location related measurements)。
作为一个实施例,所述第一位置信息包括位置估计(Location estimate)。
作为一个实施例,所述第一位置信息包括定位辅助数据(Assistance Data)。
作为一个实施例,所述第一位置信息包括时间质量(TimingQuality)。
作为一个实施例,所述第一位置信息包括接收波束索引(RxBeamIndex)。
作为一个实施例,所述第一位置信息包括第一接收功率信息。
作为一个实施例,所述第一位置信息被用于转让(Transfer)NAS(Non-Access-Stratum,非接入层)特定信息。
作为一个实施例,所述第一位置信息被用于转让时钟的定时信息。
作为一个实施例,所述第一接收功率信息包括所述第一RS的RSRP(Reference Signal Received Power,参考信号接收功率)。
作为一个实施例,所述第一接收功率信息包括所述第一RS的RSRPP(Reference Signal Received Path Power,参考信号接收路径功率)。
作为一个实施例,所述第一接收功率信息包括RSRP结果差(RSRP-ResultDiff)。
作为一个实施例,所述第一接收功率信息的单位是dBm(分贝毫)。
作为一个实施例,所述第一接收功率信息的单位是dB(分贝)。
作为一个实施例,所述第一收发时差的名字包括RSTD(Reference Signal Time Difference,参考信号时间功率)。
作为一个实施例,所述第一收发时差的名字包括RxTxTimeDiff(接收发送时间差)。
作为一个实施例,所述第一收发时差的名字包括SL-RxTxTimeDiff(副链路接收发送时间差)。
作为一个实施例,所述第一收发时差的名字包括RTOA(Relative Time of Arrival,相对到达时间)。
作为一个实施例,所述第一收发时差的名字包括SL-RTOA。
作为一个实施例,所述第一时间单元的所述接收定时和所述第一时间长度共同被用于生成所述第一位置信息。
作为一个实施例,所述第一位置信息与所述第一时间单元的所述接收定时和所述第一时间长度都有关。
作为一个实施例,所述第一位置信息包括所述第一收发时差,所述第一收发时差与所述第一时间单元的所述接收定时和所述第一时间长度都有关。
作为一个实施例,所述第一位置信息包括所述第一收发时差,所述第一时间单元的所述接收定时和所述第一时间长度共同被用于生成所述第一收发时差。
作为一个实施例,所述第一收发时差与所述第一时间单元的所述接收定时和所述第一时间长度线性相关。
作为一个实施例,所述第一时间单元的所述接收定时与所述第一时间长度线性相加的和被用于生成所述第一收发时差。
作为一个实施例,所述第一时间单元的所述接收定时与所述第一时间长度的差被用于生成所述第一收发时差。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。附图2说明了5G NR(New Radio,新空口),LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统架构下的V2X通信架构。5G NR或LTE网络架构可称为5GS(5GSystem)/EPS(Evolved Packet System,演进分组系统)某种其它合适术语。
实施例2的V2X通信架构包括UE(User Equipment,用户设备)201,UE241,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220,ProSe功能250和ProSe应用服务器230。所述V2X通信架构可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,所述V2X通信架构提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、发送接收节点(TRP)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(UserPlaneFunction,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。所述ProSe功能250是用于适地服务(ProSe,Proximity-based Service)所需的网络相关行为的逻辑功能;包括DPF(Direct Provisioning Function,直接供应功能),直接发现名称管理功能(Direct Discovery Name Management Function),EPC水平发现ProSe功能(EPC-level Discovery ProSe Function)等。所述ProSe应用服务器230具备存储EPC ProSe用户标识,在应用层用户标识和EPC ProSe用户标识之间映射,分配ProSe限制的码后缀池等功能。
作为一个实施例,所述UE201和所述UE241之间通过PC5参考点(Reference Point)连接。
作为一个实施例,所述ProSe功能250分别通过PC3参考点与所述UE201和所述UE241连接。
作为一个实施例,所述ProSe功能250通过PC2参考点与所述ProSe应用服务器230连接。
作为一个实施例,所述ProSe应用服务器230连接分别通过PC1参考点与所述UE201的ProSe应用和所述UE241的ProSe应用连接。
作为一个实施例,本申请中的所述第一节点是所述UE201,本申请中的所述第二节点是所述UE241。
作为一个实施例,本申请中的所述第一节点是所述UE241,本申请中的所述第二节点是所述UE201。
作为一个实施例,所述UE201和所述UE241之间的无线链路对应本申请中的副链路(Sidelink,SL)。
作为一个实施例,从所述UE201到NR节点B的无线链路是上行链路。
作为一个实施例,从NR节点B到UE201的无线链路是下行链路。
作为一个实施例,所述UE201支持SL传输。
作为一个实施例,所述UE241支持SL传输。
作为一个实施例,所述gNB203是宏蜂窝(MarcoCellular)基站。
作为一个实施例,所述gNB203是微小区(Micro Cell)基站。
作为一个实施例,所述gNB203是微微小区(PicoCell)基站。
作为一个实施例,所述gNB203是家庭基站(Femtocell)。
作为一个实施例,所述gNB203是支持大时延差的基站设备。
作为一个实施例,所述gNB203是一个RSU(Road Side Unit,路边单元)。
作为一个实施例,所述gNB203包括卫星设备。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一节点设备(UE或V2X中的RSU,车载设备或车载通信模块)和第二节点设备(gNB,UE或V2X中的RSU,车载设备或车载通信模块),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,通过PHY301负责在第一节点设备与第二节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点设备处。PDCP子层304提供数据加密和完整性保护,PDCP子层304还提供第一节点设备对第二节点设备的越区移动支持。RLC子层303提供数据包的分段和重组,通过ARQ实现丢失数据包的重传,RLC子层303还提供重复数据包检测和协议错误检测。MAC子层302提供逻辑与传输信道之间的映射和逻辑信道的复用。MAC子层302还负责在第一节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点设备与第一节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点设备和第二节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的包头压缩以减少无线发送开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一消息生成于所述PHY301。
作为一个实施例,本申请中的所述第一消息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一RS生成于所述PHY301。
作为一个实施例,本申请中的所述第一测量是在所述被PHY301执行的。
作为一个实施例,本申请中的所述第一位置信息生成于所述RRC子层306。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第一通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第二通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第二通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第一通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述所述第一通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射 处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第二通信设备450到所述第一通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收第一消息;在至少第一RS资源中执行第一测量以得到第一时间单元的接收定时;发送第一位置信息;所述第一消息指示第一时间长度,所述第一时间单元的所述接收定时以及所述第一时间长度共同被用于生成所述第一位置信息。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一消息;在至少第一RS资源中执行第一测量以得到第一时间单元的接收定时;发送第一位置信息;所述第一消息指示第一时间长度,所述第一时间单元的所述接收定时以及所述第一时间长度共同被用于生成所述第一位置信息。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送第一消息;在至少第一RS资源上发送至少第一RS;接收第一位置信息;其中,所述第一消息指示第一时间长度,所述第一位置信息包括第一收发时差,所述第一收发时差与所述第一时间长度有关。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一消息;在至少第一RS资源上发送至少第一RS;接收第一位置信息;其中,所述第一消息指示第一时间长度,所述第一位置信息包括第一收发时差,所述第一收发时差与所述第一时间长度有关。
作为一个实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,所述第二通信设备450是一个UE。
作为一个实施例,所述第一通信设备410是一个UE。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460}中的至少之一被用于本申请中的接收第一消息。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460}中的至少之一被用于本申请中的在至少第一RS资源上执行第一测量以得到第一时间单元的接收定时。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的发送第一位置信息。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中的发送第一消息。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中的在至少第一RS资源上发送至少第一RS。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中的接收第一位置信息。
实施例5
实施例5示例了根据本申请的一个实施例的UE定位的结构图,如附图5所示。
UE501通过PC5接口与UE502通信;UE502通过LTE(Long Term Evolution,长期演进)-Uu接口或NR(New Radio)-Uu新无线接口与ng-eNB503或gNB504通信;ng-eNB503和gNB 504有时被称为基站,ng-eNB503和gNB 504也被称为NG(Next Generation,下一代)-RAN(Radio Access Network,无线接入网)。ng-eNB503和gNB 504分别通过NG(Next Generation,下一代)-C(Control plane,控制面)与AMF(Authentication Management Field,鉴权管理域)505连接;AMF505通过NL1接口与LMF(Location Management Function,位置管理功能)506连接。
所述AMF505从另外一个实体,例如GMLC(Gateway Mobile Location Centre,网关移动位置中心)或者UE,接收到与特定UE关联的位置服务请求,或者所述AMF505自己决定启动被关联到特定UE的位置服务;然后所述AMF505发送位置服务请求到一个LMF,例如所述LMF506;然后这个LMF处理所述位置服务请求,包括发送辅助数据到所述特定UE以辅助基于UE(UE-based)的或者UE辅助的(UE-assisted)定位,以及包括接收来自UE上报的位置信息(Location information);接着这个LMF将位置服务的结果返回给所述AMF505;如果所述位置服务是另外一个实体请求的,所述AMF505将所述位置服务的结果返回给那个实体。
作为一个实施例,本申请的网络设备包括LMF。
作为一个实施例,本申请的网络设备包括NG-RAN和LMF。
作为一个实施例,本申请的网络设备包括NG-RAN、AMF和LMF。
实施例6
实施例6示例了根据本申请的一个实施例的无线信号传输流程图,如附图6所示。在附图6中,第一节点U1与第二节点U2之间是通过空中接口进行通信。在附图5中,虚线方框F0中的步骤是可选的。
对于第一节点U1,在步骤S11中接收第一消息;在步骤S12中在至少第一RS资源上执行第一测量以得到第一时间单元的接收定时;在步骤S13中发送第一位置信息。
对于第二节点U2,在步骤S21中发送第一消息;在步骤S22中在至少第一RS资源上发送至少第一RS;在步骤S23中接收第一位置信息。
在实施例6中,所述第一消息指示第一时间长度,所述第一时间单元的所述接收定时以及所述第一时间长度共同被用于生成所述第一位置信息;所述第一位置信息包括第一收发时差,所述第一收发时差是所述第一时间单元的所述接收定时,所述第一时间长度和第二时间单元的发送定时三者线性相加的和;所述至少第一RS资源包括多个第一类RS资源,所述第一RS资源是所述多个第一类RS资源中的之一,所述多个第一类RS资源中的至少一个第一类RS资源被用于承载SL PRS;所述第一时间单元包括所述第一RS资源的时域资源,或者,所述第一时间单元包括所述多个第一类RS资源中的一个第一类RS资源的时域资源,或者,所述第一时间单元与所述至少第一RS资源关联;第一资源池在时域包括多个第一类时间单元,所述第一时间单元是所述第一资源池中的一个第一类时间单元,所述第二时间单元是所述第一资源池包括的所述多个第一类时间单元中的在时域离所述第一时间单元最近的一个第一类时间单元;所述第二时间单元被所述第一节点U1用于发送无线信号;所述第一消息是一个SCI,或者,所述第一消息是一个SL MAC CE;所述第一消息所占用的时频资源属于第二资源池,所述第二资源池与所述第一资源池不同。
作为一个实施例,上述步骤有利于第二节点U2灵活调整发送定时。
作为一个实施例,上述步骤有利于节省第一位置信息的信令开销。
作为一个实施例,所述第一节点U1和所述第二节点U2之间是通过PC5接口进行通信。
作为一个实施例,附图5中的方框F0中的步骤存在。
作为一个实施例,附图5中的方框F0中的步骤不存在。
作为一个实施例,所述第一节点U1向所述第二节点U2发送所述第一位置信息。
作为一个实施例,所述第一节点U1向所述第二节点U2发送所述第一位置信息,所述第二节点U2向LMF上报所述第一位置信息。
作为一个实施例,所述第一节点U1向LMF上报所述第一位置信息。
作为一个实施例,当所述第一节点U1向所述第二节点U2发送所述第一位置信息时,附图5中的方框F0中的步骤存在。
作为一个实施例,当所述第一节点U1向LMF上报所述第一位置信息时,附图5中的方框F0中的步骤不存在。
实施例7
实施例7示例了根据本申请的一个实施例的第一收发时差与第一时间单元的接收定时、第一时间长度和第二时间单元的发送定时之间关系的示意图,如附图7所示。
在实施例7中,所述第一位置信息包括第一收发时差,所述第一收发时差与所述第一时间长度,第一时间单元的接收定时与第二时间单元的发送定时线性相关。
作为一个实施例,所述第一收发时差是一个等效的接收发送时间差(Rx-Tx Time Difference)。
作为一个实施例,所述第一时间长度,所述第一时间单元的所述接收定时和所述第二时间单元的所述发送定时三者共同被用于确定所述第一收发时差。
作为一个实施例,所述第一时间长度,所述第一时间单元的所述接收定时和所述第二时间单元的所述发送定时三者共同被用于生成所述第一收发时差。
作为一个实施例,所述第一收发时差是所述第一时间长度,所述第一时间单元的所述接收定时和所述第二时间单元的所述发送定时三者线性相加的和。
作为一个实施例,所述第一收发时差是所述第一时间单元的所述接收定时减去所述第一时间长度再减去所述第二时间单元的所述发送定时的差。
作为一个实施例,所述第一收发时差=(所述第一时间单元的所述接收定时-所述第一时间长度-所述第二时间单元的所述发送定时)。
作为一个实施例,所述第一收发时差是所述第一时间单元的所述接收定时和所述第二时间单元的所述发送定时的差与所述第一时间长度线性相加的和。
作为一个实施例,所述第一收发时差是所述第一时间单元的所述接收定时和所述第一时间长度的差与所述第二时间单元的所述发送定时线性相加的和。
作为一个实施例,所述第一收发时差是所述第一时间单元的所述接收定时和所述第二时间单元的所述发送定时的差与所述第一时间长度线性相减的差。
作为一个实施例,所述第一收发时差是所述第一时间单元的所述接收定时和所述第一时间长度的差与所述第二时间单元的所述发送定时线性相减的差。
作为一个实施例,所述第一收发时差是第一收发时差与所述第一时间长度的差,所述第一收发时差是所述第一时间单元的接收定时与第二时间单元的发送定时之间的差值。
作为一个实施例,所述第一收发时差是第一时间单元的等效接收定时与第二时间单元的发送定时的差,所述第一时间单元的所述等效接收定时是所述第一时间单元的所述接收定时与所述第一时间长度的差。
作为一个实施例,所述第一收发时差的解析度(resolution)是Ts,其中Ts为1/(15000×2048)秒。
作为一个实施例,所述第一收发时差的解析度是Ts的正整数倍,其中Ts为1/(15000×2048)秒。
作为一个实施例,所述第一收发时差不大于1ms。
作为一个实施例,所述第一收发时差不大于一个CP(循环前缀)。
实施例8
实施例8示例了根据本申请的一个实施例的第一时间单元与第二时间单元之间关系的示意图,如附图8所示。
在实施例8中,第一资源池在时域包括多个第一类时间单元,所述第二时间单元在时域离所述第一时 间单元最近,所述第二时间单元被所述第一节点用于发送无线信号。
作为一个实施例,所述第二时间单元在时域与所述第一时间单元相邻。
作为一个实施例,所述第二时间单元在时域离所述第一时间单元最近。
作为一个实施例,所述第一时间单元和所述第二时间单元分别是多个第一类时间单元中的两个第一类时间单元,所述第二时间单元是所述多个第一类时间单元中在时域离所述第一时间单元最近的一个第一类时间单元。
作为一个实施例,所述多个第一类时间单元被用于SL传输。
作为一个实施例,所述多个第一类时间单元中的任一第一类时间单元包括至少一个上行符号。
作为一个实施例,所述第二时间单元被所述第一节点用于发送无线信号。
作为一个实施例,所述第一时间单元被所述第一节点用于接收无线信号,所述第二时间单元被所述第一节点用于发送无线信号。
作为一个实施例,所述第一时间单元被所述第一节点用于SL接收,所述第二时间单元被所述第一节点用于SL发送。
作为一个实施例,所述第二时间单元在时域离所述第一时间单元最近,所述第二时间单元被所述第一节点用于发送无线信号。
作为一个实施例,所述第二时间单元的所述发送定时是所述第二时间单元的起始。
作为一个实施例,所述第二时间单元的所述发送定时是所述第一节点在所述第一时间单元接收后发送SL信号的起始。
作为一个实施例,所述第二时间单元的所述发送定时是离所述第一时间单元的所述接收定时最近的发送时刻。
作为一个实施例,所述第二时间单元是一个子帧。
作为一个实施例,所述第二时间单元是一个副链路子帧。
作为一个实施例,所述第二时间单元是一个上行子帧。
作为一个实施例,所述第二时间单元是一个子帧,所述子帧包括上行符号。
作为一个实施例,所述第二时间单元是一个子帧,所述子帧被用于SL传输。
作为一个实施例,所述第二时间单元是一个时隙。
作为一个实施例,所述第二时间单元是一个副链路时隙。
作为一个实施例,所述第二时间单元是一个上行时隙。
作为一个实施例,所述第二时间单元是一个时隙,所述时隙包括上行符号。
作为一个实施例,所述第二时间单元是一个时隙,所述时隙被用于SL传输。
作为一个实施例,所述第一资源池包括一个副链路资源池。
作为一个实施例,所述第一资源池被用于SL传输。
作为一个实施例,所述第一资源池被用于传输SL PRS。
作为一个实施例,所述第一资源池在时域包括所述多个第一类时间单元。
作为一个实施例,所述第一资源池在时域所占用的时域资源包括所述多个第一类时间单元。
作为一个实施例,所述第一资源池在时域包括的所述多个第一类时间单元中的至少两个相邻的第一类时间单元在时间上是不连续的。
作为一个实施例,所述第一资源池包括的所述多个第一类时间单元分别是多个时隙。
作为一个实施例,所述第一资源池包括的所述多个第一类时间单元分别是多个子帧。
作为一个实施例,所述第一时间单元是第一资源池在时域包括的所述多个第一类时间单元中的包括所述第一RS资源的时域资源的一个第一类时间单元。
作为一个实施例,所述第一时间单元是第一资源池在时域包括的所述多个第一类时间单元中的之一,所述第一时间单元包括所述第一RS资源的时域资源。
作为一个实施例,所述第一时间单元是第一资源池在时域包括的所述多个第一类时间单元中的之一,所述第一时间单元包括所述至少第一RS资源中的一个第一类RS资源的时域资源。
作为一个实施例,所述第一时间单元是所述第一资源池在时域包括的所述多个第一类时间单元的之 一,所述第二时间单元是所述第一资源池包括的所述多个第一类时间单元中的在时域离所述第一时间单元最近的一个第一类时间单元。
实施例9
实施例9示例了一个用于第一节点中的处理装置的结构框图,如附图9所示。在实施例9中,第一节点设备处理装置900主要由第一接收机901和第一发射机902组成。
作为一个实施例,第一接收机901包括本申请附图4中的天线452,发射器/接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460中的至少之一。
作为一个实施例,第一发射机902包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
在实施例9中,所述第一接收机901接收第一消息;所述第一接收机901在至少第一RS资源中执行第一测量以得到第一时间单元的接收定时;所述第一发射机902发送第一位置信息;所述第一消息指示第一时间长度,所述第一时间单元的所述接收定时以及所述第一时间长度共同被用于生成所述第一位置信息。
作为一个实施例,所述第一位置信息包括第一收发时差,所述第一收发时差是所述第一时间单元的所述接收定时,所述第一时间长度和第二时间单元的发送定时三者线性相加的和。
作为一个实施例,所述至少第一RS资源包括多个第一类RS资源,所述第一RS资源是所述多个第一类RS资源中的之一,所述多个第一类RS资源中的至少一个第一类RS资源被用于承载SL PRS(Sidelink Positioning Reference Signal,副链路定位参考信号)。
作为一个实施例,所述第一时间单元包括所述第一RS资源的时域资源,或者,所述第一时间单元包括所述多个第一类RS资源中的一个第一类RS资源的时域资源。
作为一个实施例,所述第二时间单元在时域离所述第一时间单元最近。
作为一个实施例,第一资源池在时域包括多个第一类时间单元,所述第一时间单元是第一资源池在时域包括的所述多个第一类时间单元中的包括所述第一RS资源的时域资源的一个第一类时间单元。
作为一个实施例,第一资源池在时域包括多个第一类时间单元,所述第一时间单元是所述第一资源池中的一个第一类时间单元,所述第二时间单元是所述第一资源池包括的所述多个第一类时间单元中的在时域离所述第一时间单元最近的一个第一类时间单元。
作为一个实施例,所述第二时间单元被所述第一节点用于发送无线信号。
作为一个实施例,所述第一消息是一个SCI,或者所述第一消息是一个SL MAC CE。
作为一个实施例,第一资源池包括所述至少第一RS资源,所述第一消息所占用的时频资源属于第二资源池,所述第二资源池与所述第一资源池不同。
作为一个实施例,所述第一节点900是用户设备。
作为一个实施例,所述第一节点900是中继节点。
作为一个实施例,所述第一节点900是路侧设备。
实施例10
实施例10示例了一个用于第二节点中的处理装置的一个结构框图,如附图10所示。在实施例10中,第二节点设备处理装置1000主要由第二发射机1001和第二接收机1002组成。
作为一个实施例,第二发射机1001包括本申请附图4中的天线420,发射器/接收器418,多天线发射处理器471,发射处理器416,控制器/处理器475,存储器476中的至少之一。
作为一个实施例,第二接收机1002包括本申请附图4中的天线420,发射器/接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475,存储器476中的至少之一。
在实施例10中,所述第二发射机1001发送第一消息;所述第二发射机1001在至少第一RS资源上发送至少第一RS;所述第二接收机1002接收第一位置信息;所述第一消息指示第一时间长度,所述第一位置信息包括第一收发时差,所述第一收发时差与所述第一时间长度有关。
作为一个实施例,所述第一位置信息包括第一等效收发时差,所述第一等效收发时差是所述第一时间 单元的所述接收定时,所述第一时间长度和第二时间单元的发送定时三者线性相加的和。
作为一个实施例,所述至少第一RS资源包括多个第一类RS资源,所述第一RS资源是所述多个第一类RS资源中的之一,所述至少第一RS包括多个第一类RS,所述多个第一类RS中的至少一个第一类RS是SL PRS。
作为一个实施例,所述第一时间单元包括所述第一RS资源的时域资源,或者,所述第一时间单元包括所述多个第一类RS资源中的一个第一类RS资源的时域资源。
作为一个实施例,所述第二时间单元在时域离所述第一时间单元最近。
作为一个实施例,第一资源池在时域包括多个第一类时间单元,所述第一时间单元是第一资源池在时域包括的所述多个第一类时间单元中的包括所述第一RS资源的时域资源的一个第一类时间单元。
作为一个实施例,第一资源池在时域包括多个第一类时间单元,所述第一时间单元是所述第一资源池中的一个第一类时间单元,所述第二时间单元是所述第一资源池包括的所述多个第一类时间单元中的在时域离所述第一时间单元最近的一个第一类时间单元。
作为一个实施例,所述第二时间单元被所述第二节点用于接收来自所述第一节点的无线信号。
作为一个实施例,所述第一消息是一个SCI,或者所述第一消息是一个SL MAC CE。
作为一个实施例,第一资源池包括所述至少第一RS资源,所述第一消息所占用的时频资源属于第二资源池,所述第二资源池与所述第一资源池不同。
作为一个实施例,所述第二节点1000是用户设备。
作为一个实施例,所述第二节点1000是中继节点。
作为一个实施例,所述第二节点1000是路侧设备。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的用户设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (40)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一接收机,接收第一消息;在至少第一RS资源中执行第一测量以得到第一时间单元的接收定时;
    第一发射机,发送第一位置信息;
    其中,所述第一消息指示第一时间长度,所述第一时间单元的所述接收定时以及所述第一时间长度共同被用于生成所述第一位置信息。
  2. 根据权利要求1所述的第一节点,其特征在于,所述第一位置信息包括第一收发时差,所述第一收发时差是所述第一时间单元的所述接收定时,所述第一时间长度和第二时间单元的发送定时三者线性相加的和。
  3. 根据权利要求1或2所述的第一节点,其特征在于,所述至少第一RS资源包括多个第一类RS资源,所述第一RS资源是所述多个第一类RS资源中的之一,所述多个第一类RS资源中的至少一个第一类RS资源被用于承载SL PRS。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,所述第一时间单元包括所述第一RS资源的时域资源,或者,所述第一时间单元包括所述多个第一类RS资源中的一个第一类RS资源的时域资源。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,所述第二时间单元在时域离所述第一时间单元最近。
  6. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,第一资源池在时域包括多个第一类时间单元,所述第一时间单元是第一资源池在时域包括的所述多个第一类时间单元中的包括所述第一RS资源的时域资源的一个第一类时间单元。
  7. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,第一资源池在时域包括多个第一类时间单元,所述第一时间单元是所述第一资源池中的一个第一类时间单元,所述第二时间单元是所述第一资源池包括的所述多个第一类时间单元中的在时域离所述第一时间单元最近的一个第一类时间单元。
  8. 根据权利要求1至7中任一权利要求所述的第一节点,其特征在于,所述第二时间单元被所述第一节点用于发送无线信号。
  9. 根据权利要求1至8中任一权利要求所述的第一节点,其特征在于,所述第一消息是一个SCI,或者所述第一消息是一个SL MAC CE。
  10. 根据权利要求1至9中任一权利要求所述的第一节点,其特征在于,第一资源池包括所述至少第一RS资源,所述第一消息所占用的时频资源属于第二资源池,所述第二资源池与所述第一资源池不同。
  11. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二发射机,发送第一消息;在至少第一RS资源中发送至少第一RS;
    第二接收机,接收第一位置信息;
    其中,所述第一消息指示第一时间长度,所述第一位置信息包括第一收发时差,所述第一收发时差与所述第一时间长度有关。
  12. 根据权利要求11所述的第二节点,其特征在于,
    所述第一位置信息包括第一等效收发时差,所述第一等效收发时差是所述第一时间单元的所述接收定时,所述第一时间长度和第二时间单元的发送定时三者线性相加的和。
  13. 根据权利要求11或12所述的第二节点,其特征在于,
    所述至少第一RS资源包括多个第一类RS资源,所述第一RS资源是所述多个第一类RS资源中的之一,所述至少第一RS包括多个第一类RS,所述多个第一类RS中的至少一个第一类RS是SL PRS。
  14. 根据权利要求11至13中任一权利要求所述的第二节点,其特征在于,
    所述第一时间单元包括所述第一RS资源的时域资源,或者,所述第一时间单元包括所述多个第一类RS资源中的一个第一类RS资源的时域资源。
  15. 根据权利要求11至14中任一权利要求所述的第二节点,其特征在于,
    所述第二时间单元在时域离所述第一时间单元最近。
  16. 根据权利要求11至13中任一权利要求所述的第二节点,其特征在于,
    第一资源池在时域包括多个第一类时间单元,所述第一时间单元是第一资源池在时域包括的所述多个第一类时间单元中的包括所述第一RS资源的时域资源的一个第一类时间单元。
  17. 根据权利要求11至13中任一权利要求所述的第二节点,其特征在于,
    第一资源池在时域包括多个第一类时间单元,所述第一时间单元是所述第一资源池中的一个第一类时间单元,所述第二时间单元是所述第一资源池包括的所述多个第一类时间单元中的在时域离所述第一时间单元最近的一个第一类时间单元。
  18. 根据权利要求11至17中任一权利要求所述的第二节点,其特征在于,
    所述第二时间单元被所述第二节点用于接收来自所述第一节点的无线信号。
  19. 根据权利要求11至18中任一权利要求所述的第二节点,其特征在于,
    所述第一消息是一个SCI,或者所述第一消息是一个SL MAC CE。
  20. 根据权利要求11至19中任一权利要求所述的第二节点,其特征在于,
    第一资源池包括所述至少第一RS资源,所述第一消息所占用的时频资源属于第二资源池,所述第二资源池与所述第一资源池不同。
  21. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一消息;
    在至少第一RS资源中执行第一测量以得到第一时间单元的接收定时;
    发送第一位置信息;
    其中,所述第一消息指示第一时间长度,所述第一时间单元的所述接收定时以及所述第一时间长度共同被用于生成所述第一位置信息。
  22. 根据权利要求21所述的第一节点中的方法,其特征在于,
    所述第一位置信息包括第一收发时差,所述第一收发时差是所述第一时间单元的所述接收定时,所述第一时间长度和第二时间单元的发送定时三者线性相加的和。
  23. 根据权利要求21或22所述的第一节点中的方法,其特征在于,
    所述至少第一RS资源包括多个第一类RS资源,所述第一RS资源是所述多个第一类RS资源中的之一,所述多个第一类RS资源中的至少一个第一类RS资源被用于承载SL PRS。
  24. 根据权利要求21至23中任一项所述的第一节点中的方法,其特征在于,
    所述第一时间单元包括所述第一RS资源的时域资源,或者,所述第一时间单元包括所述多个第一类RS资源中的一个第一类RS资源的时域资源。
  25. 根据权利要求21至24中任一项所述的第一节点中的方法,其特征在于,
    所述第二时间单元在时域离所述第一时间单元最近。
  26. 根据权利要求21至23中任一项所述的第一节点中的方法,其特征在于,
    第一资源池在时域包括多个第一类时间单元,所述第一时间单元是第一资源池在时域包括的所述多个第一类时间单元中的包括所述第一RS资源的时域资源的一个第一类时间单元。
  27. 根据权利要求21至23中任一项所述的第一节点中的方法,其特征在于,
    第一资源池在时域包括多个第一类时间单元,所述第一时间单元是所述第一资源池中的一个第一类时间单元,所述第二时间单元是所述第一资源池包括的所述多个第一类时间单元中的在时域离所述第一时间单元最近的一个第一类时间单元。
  28. 根据权利要求21至27中任一项所述的第一节点中的方法,其特征在于,
    所述第二时间单元被所述第一节点用于发送无线信号。
  29. 根据权利要求21至28中任一项所述的第一节点中的方法,其特征在于,
    所述第一消息是一个SCI,或者所述第一消息是一个SL MAC CE。
  30. 根据权利要求21至29中任一项所述的第一节点中的方法,其特征在于,
    第一资源池包括所述至少第一RS资源,所述第一消息所占用的时频资源属于第二资源池,所述第二资源池与所述第一资源池不同。
  31. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一消息;在至少第一RS资源中发送至少第一RS;
    接收第一位置信息;
    其中,所述第一消息指示第一时间长度,所述第一位置信息包括第一收发时差,所述第一收发时差与所述第一时间长度有关。
  32. 根据权利要求31所述的第二节点中的方法,其特征在于,
    所述第一位置信息包括第一等效收发时差,所述第一等效收发时差是所述第一时间单元的所述接收定时,所述第一时间长度和第二时间单元的发送定时三者线性相加的和。
  33. 根据权利要求31或32所述的第二节点中的方法,其特征在于,
    所述至少第一RS资源包括多个第一类RS资源,所述第一RS资源是所述多个第一类RS资源中的之一,所述至少第一RS包括多个第一类RS,所述多个第一类RS中的至少一个第一类RS是SL PRS。
  34. 根据权利要求31至33中任一项所述的第二节点中的方法,其特征在于,
    所述第一时间单元包括所述第一RS资源的时域资源,或者,所述第一时间单元包括所述多个第一类RS资源中的一个第一类RS资源的时域资源。
  35. 根据权利要求31至34中任一项所述的第二节点中的方法,其特征在于,
    所述第二时间单元在时域离所述第一时间单元最近。
  36. 根据权利要求31至33中任一项所述的第二节点中的方法,其特征在于,
    第一资源池在时域包括多个第一类时间单元,所述第一时间单元是第一资源池在时域包括的所述多个第一类时间单元中的包括所述第一RS资源的时域资源的一个第一类时间单元。
  37. 根据权利要求31至33中任一项所述的第二节点中的方法,其特征在于,
    第一资源池在时域包括多个第一类时间单元,所述第一时间单元是所述第一资源池中的一个第一类时间单元,所述第二时间单元是所述第一资源池包括的所述多个第一类时间单元中的在时域离所述第一时间单元最近的一个第一类时间单元。
  38. 根据权利要求31至37中任一项所述的第二节点中的方法,其特征在于,
    所述第二时间单元被所述第二节点用于接收来自所述第一节点的无线信号。
  39. 根据权利要求31至38中任一项所述的第二节点中的方法,其特征在于,
    所述第一消息是一个SCI,或者所述第一消息是一个SL MAC CE。
  40. 根据权利要求31至39中任一项所述的第二节点中的方法,其特征在于,
    第一资源池包括所述至少第一RS资源,所述第一消息所占用的时频资源属于第二资源池,所述第二资源池与所述第一资源池不同。
PCT/CN2023/112239 2022-08-16 2023-08-10 一种被用于定位的方法和装置 WO2024037414A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210978886.1 2022-08-16
CN202210978886.1A CN117651334A (zh) 2022-08-16 2022-08-16 一种被用于定位的方法和装置

Publications (1)

Publication Number Publication Date
WO2024037414A1 true WO2024037414A1 (zh) 2024-02-22

Family

ID=89940711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/112239 WO2024037414A1 (zh) 2022-08-16 2023-08-10 一种被用于定位的方法和装置

Country Status (2)

Country Link
CN (1) CN117651334A (zh)
WO (1) WO2024037414A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014106976A1 (ko) * 2013-01-04 2014-07-10 주식회사 케이티 무선 신호 처리 장치와 위치 측정 장치, 및 그의 위치 측정 방법
WO2019148488A1 (zh) * 2018-02-05 2019-08-08 南通朗恒通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110838898A (zh) * 2018-08-15 2020-02-25 上海朗帛通信技术有限公司 一种被用于无线通信节点中的方法和装置
CN114080020A (zh) * 2020-08-12 2022-02-22 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114205735A (zh) * 2020-09-03 2022-03-18 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114651492A (zh) * 2019-11-13 2022-06-21 上海诺基亚贝尔股份有限公司 准确的侧链路定位参考信号传输时序

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014106976A1 (ko) * 2013-01-04 2014-07-10 주식회사 케이티 무선 신호 처리 장치와 위치 측정 장치, 및 그의 위치 측정 방법
WO2019148488A1 (zh) * 2018-02-05 2019-08-08 南通朗恒通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110838898A (zh) * 2018-08-15 2020-02-25 上海朗帛通信技术有限公司 一种被用于无线通信节点中的方法和装置
CN114651492A (zh) * 2019-11-13 2022-06-21 上海诺基亚贝尔股份有限公司 准确的侧链路定位参考信号传输时序
CN114080020A (zh) * 2020-08-12 2022-02-22 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114205735A (zh) * 2020-09-03 2022-03-18 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Further discussion on beam selection during handover", 3GPP DRAFT; R2-1712507 FURTHER DISCUSSION ON BEAM SELECTION DURING HANDOVER, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20171127 - 20171201, 17 November 2017 (2017-11-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051371507 *

Also Published As

Publication number Publication date
CN117651334A (zh) 2024-03-05

Similar Documents

Publication Publication Date Title
WO2020034848A1 (zh) 一种被用于无线通信节点中的方法和装置
CN113114437B (zh) 一种被用于无线通信的节点中的方法和装置
US20220368479A1 (en) Method and device in nodes used for wireless communication
WO2019228145A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020001228A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20230300936A1 (en) Method and device for wireless communication
WO2020038208A1 (zh) 一种被用于无线通信节点中的方法和装置
CN113133124B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021031901A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024037414A1 (zh) 一种被用于定位的方法和装置
WO2024046249A1 (zh) 一种被用于定位的方法和装置
WO2023216896A1 (zh) 用于定位的方法和装置
WO2024061249A1 (zh) 一种被用于定位的方法和装置
WO2024046154A1 (zh) 一种用于无线通信的方法和装置
WO2024051625A1 (zh) 一种被用于定位的方法和装置
WO2024051623A1 (zh) 一种用于无线通信的方法和装置
WO2024078432A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023221903A1 (zh) 用于定位的方法和装置
WO2023226926A1 (zh) 一种被用于定位的方法和装置
CN113473598B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023221902A1 (zh) 一种用于定位的方法和装置
WO2024093837A1 (zh) 一种被用于定位的方法和装置
WO2024067537A1 (zh) 一种被用于定位的方法和装置
WO2023217075A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20240163853A1 (en) Method and device used for positioning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854316

Country of ref document: EP

Kind code of ref document: A1