WO2023221903A1 - 用于定位的方法和装置 - Google Patents

用于定位的方法和装置 Download PDF

Info

Publication number
WO2023221903A1
WO2023221903A1 PCT/CN2023/094100 CN2023094100W WO2023221903A1 WO 2023221903 A1 WO2023221903 A1 WO 2023221903A1 CN 2023094100 W CN2023094100 W CN 2023094100W WO 2023221903 A1 WO2023221903 A1 WO 2023221903A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
subframe
node
signaling
reference signal
Prior art date
Application number
PCT/CN2023/094100
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2023221903A1 publication Critical patent/WO2023221903A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination

Definitions

  • the present invention relates to methods and devices in wireless communication systems, and in particular to solutions and devices for positioning in wireless communication systems.
  • Positioning is an important application in the field of wireless communications; the emergence of new applications such as V2X (Vehicle to everything) or the Industrial Internet of Things has put forward higher requirements for positioning accuracy or delay.
  • V2X Vehicle to everything
  • RAN Radio Access Network
  • the sender of the wireless signal used for positioning measurement may be mobile, which requires further enhancement of the traditional positioning process or position information feedback scheme.
  • this application discloses a solution.
  • the V2X scenario is only used as a typical application scenario or example; this application is also applicable to scenarios other than V2X that face similar problems, such as public safety (Public Safety) and industrial goods. Networking, etc., and achieve technical effects similar to those in NR V2X scenarios.
  • the motivation of this application is to target the scenario where the sender of the wireless signal used for positioning measurement is mobile, this application is still applicable to the scenario where the sender of the wireless signal used for positioning measurement is fixed, such as RSU (Road Side Unit, roadside unit), etc.
  • RSU Raad Side Unit, roadside unit
  • Using a unified solution for different scenarios also helps reduce hardware complexity and cost.
  • the embodiments and features in the embodiments in any node of this application can be applied to any other node.
  • the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily without conflict.
  • This application discloses a method used in a first node for wireless communication, which includes:
  • the first wireless signal includes a first reference signal
  • the measurement of the first reference signal is used to generate first location information
  • the first location information includes first time information; the first set of conditions Included is that the first timer has not expired.
  • the above method can ensure timely transmission of the first wireless signal, thereby ensuring the validity of the first location information.
  • the above method is characterized by including:
  • the measurement of the second reference signal is used to generate the second location information; the time resource occupied by the second reference signal is temporally associated with the first timer for starting the behavior.
  • the above method limits the time interval between the second reference signal and the first reference signal, which can effectively prevent positioning inaccuracies due to motion.
  • the first time information includes a receive-transmit (Rx-Tx) time difference (time difference), and the second time information includes a receive-transmit time difference.
  • Rx-Tx receive-transmit time difference
  • the above embodiment uses a pair of receiving and transmitting time differences for positioning, which can achieve higher positioning accuracy, and at the same time does not require high complexity of the first node.
  • the above method is characterized in that the first time information includes the first reception time and the first sending time; the first receiving time is the time when the second node receives the first subframe, and the first sending time is the time when the second node sends the first reference subframe;
  • the first reference subframe is a subframe closest to the received first subframe according to the transmission time of the second node; at least part of the first reference signal is included in the first subframe.
  • the above method is characterized in that the second time information includes the difference between the second receiving time and the second sending time; the second receiving time is when the first node receives the first The time of the second subframe, the second sending time is the time when the first node sends the second reference subframe; the second reference subframe is based on the sending time of the first node and the received third The nearest subframe of two subframes; at least part of the second reference signal is included in the second subframe.
  • the above method is characterized in that the first signaling is non-unicast.
  • the above method is characterized in that second signaling is used to generate the first wireless signal; and the second signaling is used to schedule the first reference signal.
  • the above method is characterized by including:
  • Third signaling is received, the third signaling being used to indicate the first set of conditions.
  • the above method is characterized in that the third signaling indicates Q1 parameter groups, and Q1 is a positive integer greater than 1; each of the Q1 parameter groups includes A length of time; the value of the first timer is the length of time indicated by the first parameter group, and the moving speed of the first node is used to determine the first parameter group from the Q1 parameter group.
  • a parameter group is characterized in that the third signaling indicates Q1 parameter groups, and Q1 is a positive integer greater than 1; each of the Q1 parameter groups includes A length of time; the value of the first timer is the length of time indicated by the first parameter group, and the moving speed of the first node is used to determine the first parameter group from the Q1 parameter group.
  • a parameter group is characterized in that the third signaling indicates Q1 parameter groups, and Q1 is a positive integer greater than 1; each of the Q1 parameter groups includes A length of time; the value of the first timer is the length of time indicated by the first parameter group, and the moving speed of the first node is used to determine the first parameter
  • the present application discloses a method used in a second node for wireless communication, which includes:
  • the first wireless signal includes a first reference signal
  • the measurement of the first reference signal is used to generate first location information
  • the first location information includes first time information; the first set of conditions Included is that the first timer has not expired.
  • the above method is characterized by including:
  • the first wireless signal is detected.
  • the above method is characterized by including:
  • the measurement of the second reference signal is used to generate second location information
  • the second location information includes second time information
  • the time resource occupied by the second reference signal is related to the first timing of the start of the behavior.
  • the devices are related in time.
  • This application discloses a first node used for wireless communication, which includes:
  • the first receiver receives the first signaling
  • the first transmitter in response to receiving the first signaling, starts a first timer; and only sends the first wireless signal under the condition that the first set of conditions is satisfied;
  • the first wireless signal includes a first reference signal
  • the measurement of the first reference signal is used to generate first location information
  • the first location information includes first time information; the first set of conditions Included is that the first timer has not expired.
  • the characteristics of the above method include:
  • the first transmitter stops the first timer in response to transmitting the first wireless signal.
  • This application discloses a second node used for wireless communication, which includes:
  • the second sender sends first signaling, and the first signaling is used to start the first timer;
  • a second receiver that detects the first wireless signal after the first timer starts
  • the first wireless signal includes a first reference signal
  • the measurement of the first reference signal is used to generate first location information
  • the first location information includes first time information; the first set of conditions Included is that the first timer has not expired.
  • Figure 1 shows a flow chart of first wireless signal transmission according to an embodiment of the present invention
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present invention
  • Figure 3 shows a schematic diagram of an embodiment of a radio protocol architecture for a user plane and a control plane according to an embodiment of the present invention
  • Figure 4 shows a schematic diagram of a hardware module of a communication node according to an embodiment of the present invention
  • Figure 5 shows a structural diagram of UE positioning according to an embodiment of the present invention
  • Figure 6 shows a schematic diagram of transmitting a first wireless signal only under the condition that the first set of conditions is satisfied according to an embodiment of the present invention
  • Figure 7 shows a transmission flow chart of a first wireless signal according to an embodiment of the present invention
  • Figure 8 shows a transmission flow chart of a second reference signal according to an embodiment of the present invention
  • Figure 9 shows a schematic diagram of the start of the first timer and the expiration of the first timer according to one embodiment of the present invention.
  • Figure 10 shows a schematic diagram of a second node sending first location information to a network device and a first node sending second location information to a network device according to an embodiment of the present invention
  • Figure 11 shows a schematic diagram of a first node sending first location information and second location information to a network device according to an embodiment of the present invention
  • Figure 12 shows a schematic diagram of a second node sending first location information and second location information to a network device according to an embodiment of the present invention
  • Figure 13 shows a schematic diagram of first time information and second time information according to an embodiment of the present invention
  • Figure 14 shows a structural block diagram of a processing device used in a first node according to an embodiment of the present invention
  • Figure 15 shows a structural block diagram of a processing device used in a second node according to an embodiment of the present invention.
  • Embodiment 1 illustrates a flow chart of first wireless signal transmission according to an embodiment of the present application, as shown in FIG. 1 .
  • the first node 100 receives the first signaling in step 101; in step 102, as a response to receiving the first signaling, starts a first timer; in step 102, only under the first condition When the set of conditions is met, send the first wireless signal;
  • the first wireless signal includes a first reference signal, measurement of the first reference signal is used to generate first location information (Location Information), and the first location information includes first time information. ;
  • the first condition set includes that the first timer has not expired.
  • the first signaling and the first wireless signal are both sent on the secondary link.
  • the above method allows direct communication between UEs (User Equipment), reducing air interface redundancy and delay caused by base station transfer.
  • the phrase first timer has not expired, that is, the first timer is running.
  • the phrase "the first timer has not expired” means that the first timer has not expired after the behavior starts the first timer.
  • the first signaling is signaling at a protocol layer below the RRC (Radio Resource Control) layer.
  • RRC Radio Resource Control
  • the first signaling includes SCI (Sidelink control information).
  • the first signaling includes second-stage (2nd-stage) SCI.
  • the first field in the second stage SCI is used to request a first type reference signal
  • the first reference signal is the first type reference signal
  • the first signaling includes a MAC PDU (Protocol Data Unit) scheduled by the SCI, and the SL-SCH subheader in the MAC PDU scheduled by the SCI is used to determine the The destination of the first signaling includes the first One node.
  • MAC PDU Protocol Data Unit
  • the first signaling includes MAC (Medium Access Control, medium access control) CE (Control Element, control unit).
  • MAC Medium Access Control, medium access control
  • CE Control Element, control unit
  • the second domain in the MAC CE is used to request a first type of reference signal
  • the first reference signal is the first type of reference signal
  • the first type of reference signal is used for positioning (Positioning).
  • the first type of reference signal includes SL (SideLink, secondary link)-PRS (Positioning Reference Signal, positioning reference signal) resources.
  • the first type of reference signal includes SL-SRS (Sounding Reference Signal) resources.
  • SL-SRS Sounding Reference Signal
  • the first type of reference signal includes PSBCH (Physical Sidelink Broadcast Channel, physical secondary link broadcast channel), S-PSS (Sidelink primary synchronization signal, secondary link primary synchronization signal), S-SSS (Sidelink secondary synchronization signal, secondary link auxiliary synchronization signal).
  • PSBCH Physical Sidelink Broadcast Channel, physical secondary link broadcast channel
  • S-PSS Segment primary synchronization signal, secondary link primary synchronization signal
  • S-SSS Segmentlink secondary synchronization signal, secondary link auxiliary synchronization signal.
  • the first location information includes timing quality (TimingQuality).
  • the first location information includes a receive beam index (RxBeamIndex).
  • RxBeamIndex receive beam index
  • the first location information includes first received power information.
  • the first received power information includes the RSRP (Reference Signal Received Power) of the first reference signal.
  • RSRP Reference Signal Received Power
  • the first received power information includes RSRPP (Reference Signal Received Path Power) of the first reference signal.
  • RSRPP Reference Signal Received Path Power
  • the first received power information includes RSRP result difference (RSRP-ResultDiff).
  • the resolution of the first time information is Ts, where Ts is 1/(15000*2048) seconds.
  • the resolution of the first time information is 4 ⁇ Ts, where Ts is 1/(15000*2048) seconds.
  • the resolution of the first time information is a positive integer multiple of Ts, where Ts is 1/(15000*2048) seconds.
  • the unit of the first received power information is dBm (decibel millimeter).
  • the unit of the first received power information is dB (decibel).
  • the name of the first time information includes RSTD (Reference Signal Time Difference, Reference Signal Time Power).
  • the name of the first time information includes RxTxTimeDiff (reception and transmission time difference).
  • the name of the first time information includes SL-RxTxTimeDiff.
  • the name of the first time information includes RTOA (Relative Time of Arrival, relative time of arrival).
  • the name of the first time information includes SL-RTOA.
  • the first timer is maintained at the MAC layer of the first node.
  • the above embodiment is beneficial to the implementation of the first node and maintains good compatibility with existing protocols.
  • the behavior of starting the first timer in response to receiving the first signaling includes: when the first signaling is received and the first timer is not running, starting the first timer. timer.
  • the first timer is most recently started before the action sends the first wireless signal.
  • the first set of conditions includes that the movement speed of the first node does not exceed or be less than a first threshold.
  • the above embodiment avoids using a UE that moves too fast for positioning and improves positioning accuracy.
  • the first threshold is configurable.
  • the first threshold is 250 kilometers per hour.
  • the first threshold is 300 kilometers per hour.
  • the value of the first timer is configurable.
  • the value of the first timer is configured by higher layer signaling.
  • the value of the first timer is configured by the RRCReconfigurationSidelink message.
  • the first time information includes the starting time of the first subframe received by the second node relative to the first reference time, and at least part of the first reference signal is included in the first subframe.
  • the first reference time is configurable.
  • the above method avoids the increase in complexity or delay caused by using the Rx-Tx time difference.
  • the first reference time needs to be configured to ensure synchronization of the first reference time.
  • the first reference time is explicitly configured.
  • the first reference time is the sum of the first component and the second component, and the first component is the nominal beginning time (nominal beginning time) relative to SFN (System Frame Number, system frame number) 0
  • SFN System Frame Number, system frame number
  • the starting time of the third subframe, the nominal starting time of the SFN 0 is provided by the SFN initialization time, the third subframe is the nearest downlink receiving subframe to the first subframe; the second Portions are configurable.
  • the second component is configurable.
  • the first time information includes a receive-transmit (Rx-Tx) time difference.
  • the first signaling is non-unicast.
  • the value of the first timer is applied to any destination of the first signaling.
  • a destination layer-2 ID of a UE is the same as the destination Layer-2 ID (layer 2 identity) indicated by the first signaling, the one UE is the destination of the first signaling. Destination; the first node is a destination of the first signaling.
  • the above method enables the first signaling to trigger multiple UEs (if present) to send reference signals for positioning, and each UE in the multiple UEs maintains the destination indicated by the first signaling. ) Layer 2 identity; This saves air interface resources and reduces delay; further, the value of the first timer is shared by the multiple UEs to ensure that multiple UEs send usernames in the same time period (time period)
  • the reference signal for positioning avoids positioning errors caused by UE movement.
  • the first signaling is multicast or broadcast.
  • the first signaling includes a SCI
  • the casttype indicator (Casttype indicator) field in the SCI is one of 00, 01 and 11.
  • the RE occupied by the first reference signal is related to the identity of the first node, and the identity of the first node is indicated by a higher layer.
  • the identity of the first node is used to determine the pattern (Pattern) of the first reference signal within a time-frequency resource block, and the one time-frequency resource block occupies a time domain A time slot occupies one RB (Resource Block) in the frequency domain.
  • the pattern of the first reference signal in a time-frequency resource block is the same as the pattern of the downlink PRS in a time-frequency resource block.
  • the pattern of the first reference signal in a time-frequency resource block is the same as the pattern of the SRS in a time-frequency resource block.
  • the pattern of the first reference signal in a time-frequency resource block is the same as the pattern of CSI-RS (channel state information reference signal) in a time-frequency resource block.
  • the identity of the first node is configured by a network device.
  • the above method can avoid or reduce interference between reference signals sent by multiple UEs.
  • the second signaling is used to generate the first wireless signal; the second signaling is used to schedule the first reference signal.
  • the resources occupied by the first wireless signal include a PSCCH (Physical sidelink control channel, physical sidelink control channel), and the second signaling is sent in the PSCCH.
  • PSCCH Physical sidelink control channel, physical sidelink control channel
  • the second signaling is used to schedule the one PSSCH (Physical sidelink shared channel, physical sidelink shared channel), and the first node sends the second location information on the one PSSCH.
  • PSSCH Physical sidelink shared channel, physical sidelink shared channel
  • the first reference signal is sent within a transmission of the one PSSCH.
  • the second signaling is unicast, and the destination of the second signaling is the second node.
  • the first node is a UE (User Equipment).
  • the first node is a relay device.
  • the unit of the value of the first timer is a time slot.
  • the unit of the value of the first timer is a multi-carrier symbol.
  • the network device includes a location service center.
  • the network device includes a base station.
  • the location service center is a NAS (Non-Access-Stratum, non-access layer) device.
  • NAS Non-Access-Stratum, non-access layer
  • the location service center includes LMF (Location Management Function).
  • the multi-carrier symbols are OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols.
  • the multi-carrier symbols are SC-FDMA (Single-carrier Frequency-Division Multiple Access, single-carrier frequency division multiple access) symbols.
  • SC-FDMA Single-carrier Frequency-Division Multiple Access, single-carrier frequency division multiple access
  • the multi-carrier symbols are FBMC (Filterbank Multicarrier) symbols.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in Figure 2.
  • Figure 2 illustrates the V2X communication architecture under 5G NR (New Radio), LTE (Long-Term Evolution, Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) system architecture.
  • the 5G NR or LTE network architecture can be called 5GS (5G System)/EPS (Evolved Packet System) or some other suitable term.
  • the V2X communication architecture of Embodiment 2 includes UE (User Equipment) 201, UE241, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, Home Subscriber Server)/UDM (Unified Data Management, Unified Data Management) 220, ProSe function 250 and ProSe application server 230.
  • the V2X communication architecture may interconnect with other access networks, but these entities/interfaces are not shown for simplicity.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201.
  • gNB 203 may connect to other gNBs 204 via the Xn interface (eg, backhaul).
  • gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmitting and receiving node) or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radio, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radio non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management domain
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway, service gateway)/UPF (UserPlaneFunction, user plane function) 212 and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles signaling between UE201 and 5GC/EPC210. Basically, MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 is connected to Internet service 230.
  • the Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, an intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching streaming services.
  • the ProSe function 250 is a logical function for network-related behaviors required by ProSe (Proximity-based Service); including DPF (Direct Provisioning Function), direct provisioning function Direct Discovery Name Management Function, EPC-level Discovery ProSe Function, etc.
  • the ProSe application server 230 has functions such as storing EPC ProSe user IDs, mapping between application layer user IDs and EPC ProSe user IDs, and allocating ProSe restricted code suffix pools.
  • the UE201 and the UE241 are connected through a PC5 reference point.
  • the ProSe function 250 is connected to the UE201 and the UE241 through the PC3 reference point respectively.
  • the ProSe function 250 is connected to the ProSe application server 230 through the PC2 reference point.
  • the ProSe application server 230 is connected to the ProSe application of the UE201 and the ProSe application of the UE241 through the PC1 reference point respectively.
  • the first node in this application is the UE201, and the second node in this application is the UE241.
  • the first node in this application is the UE241
  • the second node in this application is the UE201.
  • the wireless link between the UE201 and the UE241 corresponds to a side link (Sidelink, SL) in this application.
  • the wireless link from the UE 201 to the NR Node B is an uplink.
  • the wireless link from the NR Node B to the UE 201 is the downlink.
  • the UE201 supports V2X transmission.
  • the UE241 supports V2X transmission.
  • the gNB 203 is a macro cellular (MarcoCellular) base station.
  • the gNB 203 is a Micro Cell base station.
  • the gNB 203 is a PicoCell base station.
  • the gNB 203 is a home base station (Femtocell).
  • the gNB 203 is a base station device that supports a large delay difference.
  • the gNB 203 is an RSU (Road Side Unit).
  • the gNB 203 includes satellite equipment.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300.
  • Figure 3 shows with three layers a first node device (UE or RSU in V2X, a vehicle-mounted device or a vehicle-mounted communication module). ) and the second node device (gNB, UE or RSU in V2X, vehicle-mounted device or vehicle-mounted communication module), or the radio protocol architecture of the control plane 300 between the two UEs: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first node device and the second node device and the two UEs through the PHY 301.
  • L2 layer 305 includes MAC (Medium Access Control, media access control) sublayer 302, RLC (Radio Link Control, wireless link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304, these sub-layers terminate at the second node device.
  • the PDCP sublayer 304 provides data encryption and integrity protection, and the PDCP sublayer 304 also provides hand-off support for the first node device to the second node device.
  • the RLC sublayer 303 provides segmentation and reassembly of data packets, and realizes retransmission of lost data packets through ARQ.
  • the RLC sublayer 303 also provides duplicate data packet detection and protocol error detection.
  • the MAC sublayer 302 provides mapping between logical and transport channels and multiplexing of logical channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among first node devices.
  • the MAC sublayer 302 is also responsible for HARQ (Hybrid Automatic Repeat reQuest, Hybrid Automatic Repeat Request) operations.
  • HARQ Hybrid Automatic Repeat reQuest, Hybrid Automatic Repeat Request
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the link between the second node device and the first node device. RRC signaling to configure lower layers.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer). Radio protocol architecture for the first node device and the second node device in the user plane 350.
  • the L2 layer 355 For the physical layer 351, the L2 layer 355 The PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are generally the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides Header compression of upper layer data packets to reduce wireless transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes an SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for QoS flow and data radio bearer (DRB, Data Radio Bearer). mapping to support business diversity.
  • DRB Data Radio Bearer
  • the first node device may have several upper layers above the L2 layer 355, including a network layer (eg, IP layer) terminating at the P-GW on the network side and terminating at the other end of the connection (e.g., remote UE, server, etc.) application layer.
  • a network layer eg, IP layer
  • the connection e.g., remote UE, server, etc.
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • the first wireless signal in this application is generated by the PHY301.
  • the measurement of the first wireless signal in this application includes layer 3 filtering performed on the RRC sublayer 306 .
  • the measurement of the first wireless signal in this application is performed on the PHY301.
  • Embodiment 4 shows a schematic diagram of a hardware module of a communication node according to an embodiment of the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in the access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a receive processor 470, a transmit processor 416, a multi-antenna receive processor 472, a multi-antenna transmit processor 471, a transmitter/receiver 418 and an antenna 420.
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and radio resource allocation to the first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer). Transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 410, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for M-phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for M-phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams. Transmit processor 416 then maps each spatial stream to a subcarrier, multiplexes it with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the first communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial stream that is the destination. The symbols on each spatial stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover upper layer data and control signals transmitted by the second communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media.
  • the controller/processor 459 In transmission from the second communication device 410 to the second node 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, Control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data In transmission from the first communication device 450 to the second communication device 410, at the first communication device 450, a data is used
  • the upper layer data packets are provided to the controller/processor 459 based on the source 467.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements headers based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 In transmission from the first communications device 450 to the second communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Using the at least one processor together, the first communication device 450 means at least: receiving a first signaling; in response to receiving the first signaling, starting a first timer; and only when a first set of conditions is satisfied. Under the condition, a first wireless signal is sent; wherein the first wireless signal includes a first reference signal, and measurement of the first reference signal is used to generate first location information, and the first location information includes a first Time information; the first condition set includes that the first timer has not expired.
  • the first communication device 450 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: receiving a first A signaling; in response to receiving the first signaling, starting a first timer; sending a first wireless signal only under the condition that the first set of conditions is met; wherein the first wireless signal includes a first A reference signal, measurements of which are used to generate first location information, where the first location information includes first time information; and where the first condition set includes that a first timer has not expired.
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the used with at least one of the above processors.
  • the second communication device 410 at least: sends a first signaling, which is used to start a first timer; detects a first wireless signal after the first timer starts; wherein, the first The wireless signal includes a first reference signal, measurements of the first reference signal are used to generate first location information, the first location information includes first time information; the first set of conditions includes a first timer that has not Expired.
  • the second communication device 410 device includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: sending First signaling, the first signaling is used to start a first timer; detect a first wireless signal after the first timer starts; wherein the first wireless signal includes a first reference signal, for the The measurement of the first reference signal is used to generate first position information, the first position information includes first time information; the first set of conditions includes that the first timer has not expired.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a UE.
  • the second communication device 410 is a UE.
  • the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive the first signaling.
  • the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, The controller/processor 459 is used to send a first wireless signal.
  • the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 are used to send the first signaling.
  • the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 are used to receive the first wireless signal.
  • Embodiment 5 illustrates a structural diagram of UE positioning according to an embodiment of the present application, as shown in Figure 5.
  • UE501 communicates with ng-eNB502 or gNB503 through LTE (Long Term Evolution, Long Term Evolution)-Uu interface or NR (New Radio)-Uu new wireless interface;
  • ng-eNB502 and gNB 503 are sometimes called base stations, ng-eNB502 and gNB 503 is also called NG (Next Generation)-RAN (Radio Access Network).
  • ng-eNB502 and gNB 503 are connected to AMF (Authentication Management Field, authentication management field) 504 through NG (Next Generation)-C (Control plane) respectively;
  • AMF504 is connected to LMF (Location Management Function) through NL1 interface , location management function) 505 connection.
  • the AMF 504 receives a location service request associated with a specific UE from another entity, such as a GMLC (Gateway Mobile Location Center) or a UE, or the AMF 504 decides to start location services associated with a specific UE.
  • GMLC Gateway Mobile Location Center
  • UE User Equipment
  • the AMF 504 sends the location service request to an LMF, such as the LMF 505; the LMF then processes the location service request, including sending assistance data to the specific UE to assist UE-based or UE-assisted (UE-assisted) positioning, and includes receiving location information (Location information) reported from the UE; then the LMF returns the location service result to the AMF 504; if the location service is requested by another entity, the AMF 504 returns the results of the location service to that entity.
  • LMF location service request to an LMF, such as the LMF 505
  • the LMF processes the location service request, including sending assistance data to the specific UE to assist UE-based or UE-assisted (UE-assisted) positioning, and includes receiving location information (Location information) reported from the UE; then the LMF returns the location service result to the AMF 504; if the location service is requested by another entity, the AMF 504 returns the results of the location service to that entity.
  • the network device of the present application includes an LMF.
  • the network equipment of this application includes NG-RAN and LMF.
  • the network equipment of this application includes NG-RAN, AMF and LMF.
  • Embodiment 6 illustrates a schematic diagram of transmitting a first wireless signal only under the condition that the first set of conditions is satisfied according to an embodiment of the present application, as shown in FIG. 6 .
  • the first node determines whether the first condition set is satisfied in step S1000, and if so, sends the first wireless signal in step S1001; if not, ends.
  • the step S1000 may be implemented in a variety of ways.
  • the first node uses software or hardware to access the storage unit to determine whether the first set of conditions is satisfied; it may also be triggered by an event, such as when the first event When the set occurs, execution of the first process is stopped, the first process includes sending the first wireless signal, and the first event set includes expiration of the first timer.
  • the step S1001 includes obtaining a first air interface resource through channel sensing (Channel sensing).
  • the first air interface resource belongs to a secondary link resource pool (resource pool).
  • the first wireless signal is in the is sent within the first air interface resource.
  • the first signaling schedules the first PSSCH and the first reference signal; the first signaling indicates the first priority, and the first priority is the first reference priority and the first reference signal.
  • the above method is conducive to obtaining air interface resources according to the priority of the first reference signal and meeting positioning accuracy or delay requirements.
  • the priority of the first reference signal is fixed.
  • the priority of the first reference signal is configurable.
  • the priority of the first reference signal is configured through a NAS message or an RRC message.
  • the priority of the first reference signal is a non-negative integer less than 8.
  • the step S1001 includes performing logical channel prioritization to determine the logical channel included in the first MAC PDU, the logical channel prioritization does not consider the first reference signal the stated priority.
  • the priority of the first reference signal is configured by the second node.
  • the priority of the first reference signal is configured by a network device.
  • Embodiment 7 illustrates a transmission flow chart of a first wireless signal according to an embodiment of the present application, as shown in FIG. 7 .
  • the steps in box F0 are optional.
  • the second node U2 sends the third signaling in step S200, sends the first signaling in step S201, and detects the first wireless signal after the first timer starts in step S202; the first node U1 receives the signal in step S100.
  • Third signaling the first signaling is received in step S101, in step S102 as a response to receiving the first signaling, a first timer is started, and in step S103, only conditions where the first condition set is satisfied Send the first wireless signal;
  • the first wireless signal includes a first reference signal, and measurement of the first reference signal is used to generate first location information, where the first location information includes first time information; A condition set includes that the first timer has not expired; the third signaling is used to indicate the first condition set.
  • step S202 can reduce the power overhead of the second node U2 or reduce the probability of false alarms.
  • the third signaling being used to indicate the first set of conditions means that the third signaling is used to indicate the value of the first timer.
  • the first condition set includes that the movement speed of the first node does not exceed or be less than a first threshold, and the third signaling is used to indicate the first threshold and the first timer. value.
  • the first node U1 in response to sending the first wireless signal, stops the first timer.
  • the second node U2 starts detecting the first wireless signal from the first timer, and the detection duration is equal to the value of the first timer.
  • the second node U2 starts detecting the first wireless signal from the first timer, continues to detect the expiration of the first timer, or detects the first wireless signal, whichever is longer. Early occurrence time.
  • the start of the first timer and the value of the first timer are both known, and the second node U2 can determine the detection of the first wireless signal through a variety of methods.
  • the time window for example, maintains a timer that is equivalent to the first timer, or identifies in advance all time slots included from the start of the first timer to the expiration of the first timer.
  • the third signaling includes a RRCReconfigurationSidelink message.
  • the second signaling is used to generate the first wireless signal; the second signaling is used to schedule the first reference signal; when the second node U2 detects the second During signaling, the second node U2 determines that the first wireless signal is detected.
  • the above method can reduce the probability of false alarms.
  • the second signaling is a SCI.
  • the second time information is transmitted on one PSSCH, and the second signaling is used to schedule the one PSSCH.
  • the second signaling is non-unicast.
  • the second signaling is broadcast or multicast.
  • the third signaling indicates Q1 parameter groups, and Q1 is a positive integer greater than 1; each of the Q1 parameter groups includes a time length; the first timer The value is the one length of time indicated by the first parameter set, the movement speed of the first node being used to determine the first parameter set from the Q1 parameter sets.
  • the unit of a time length is a time slot.
  • the unit of a time length is a subframe.
  • each of the Q1 parameter groups corresponds to a moving speed range
  • the first parameter group is that the corresponding moving speed range of the Q1 parameter groups includes the moving speed of the first node. a parameter group.
  • each of the Q1 parameter groups is used to determine the corresponding moving speed range.
  • the moving speed ranges corresponding to any two parameter groups among the Q1 parameter groups do not overlap, and the third information Let indicate Q1-1 movement speed thresholds that are used to divide the Q1 parameter groups.
  • the moving speed ranges corresponding to at least two of the Q1 parameter groups overlap.
  • each of the Q1 parameter groups explicitly indicates the corresponding moving speed range.
  • Embodiment 8 illustrates a transmission flow chart of the second reference signal according to an embodiment of the present application, as shown in FIG. 8 .
  • the steps in box F1 are optional.
  • the second node U2 sends a second reference signal in step S301; the first node U1 receives the second reference signal in step S401, and sends second location information in step S402, where the second location information includes second time information;
  • the measurement of the second reference signal is used to generate the second location information; the time resource occupied by the second reference signal is temporally associated with the first timer for starting the behavior. .
  • the second node U2 receives the second location information in step S302.
  • the above method transmits the second location information through the secondary link, which can reduce the delay required for positioning.
  • the second location information is sent by the first node U1 to a location service center, such as LMF.
  • the sentence that the time resource occupied by the second reference signal is temporally associated with the first timer for starting the behavior means: the first signaling is used to schedule the second reference signal.
  • the sentence that the time resource occupied by the second reference signal is temporally associated with the first timer for starting the behavior means: the time slot occupied by the first signaling is used for Determine the time resource occupied by the second reference signal and the time when the behavior starts a first timer.
  • the sentence that the time resource occupied by the second reference signal is temporally associated with the first timer for starting the behavior includes: the time resource occupied by the second reference signal is related to the first timer for starting the behavior. The time interval between the start of the behavior and the first timer does not exceed the value of the first timer.
  • the sentence that the time resource occupied by the second reference signal is temporally associated with the first timer for starting the behavior includes: the first timer is occupied by the first wireless signal. There is no expiration between the time resource and the time resource occupied by the second reference signal.
  • the sentence that the time resource occupied by the second reference signal is temporally associated with the first timer for starting the behavior includes: the first timer is occupied by the first wireless signal. is in a running state between the time resource and the time resource occupied by the second reference signal.
  • the action of sending the second location information is executed only if the first condition set is satisfied.
  • the second reference signal is sent after the first reference signal.
  • the first set of conditions includes: the behavior is executed by receiving the second reference signal.
  • the second reference signal is sent before the first reference signal.
  • the first set of conditions includes: the action of sending the second location information is executed.
  • the second reference signal is sent before the first reference signal.
  • the first time information includes the reception and transmission (Rx-Tx) time difference (time difference), and the second time information includes the reception and transmission time difference.
  • the advantage of the above sub-embodiment is to ensure that the first time information and the second time information are measured within adjacent times, which can effectively avoid positioning inaccuracies caused by high-speed movement.
  • the first signaling is used to schedule the second reference signal.
  • Embodiment 9 illustrates a schematic diagram of the start of the first timer and the expiration of the first timer according to an embodiment of the present application, as shown in FIG. 9 .
  • arrows O1 and arrows O2 respectively represent the time when the first timer starts and (assuming it is not stopped in advance) the time when the first timer expires; the first time resource and the second time resource are both located between arrows O1 and arrows On the time domain resources between O2.
  • the first reference signal and the second reference signal are within the first time resource and the second time resource respectively, the first time information includes the reception and transmission time difference, and the second time information includes the reception time difference. Sending time difference.
  • the first reference signal and the second reference signal are within the second time resource and the first time resource respectively, the first time information includes the reception and transmission time difference, and the second time information includes the reception time difference. Sending time difference.
  • the above two embodiments ensure that the first reference signal and the second reference signal are not too far apart in the time domain; even if the first node and the second node are moving at high speed, the above method can Can ensure positioning accuracy.
  • the first time resource and the second time resource are each a time slot.
  • the number of time slots between the start of the first timer and the expiration of the first timer is the value of the first timer.
  • the following uses the Rx-T lower time difference as an example to introduce a non-limiting positioning method.
  • the two Rx-Tx time differences obtained by measuring the first reference signal and the second reference signal respectively can be used to calculate the first
  • Embodiment 10 illustrates a schematic diagram in which the second node sends the first location information to the network device and the first node sends the second location information to the network device according to an embodiment of the present application, as shown in FIG. 10 .
  • the second node U2 sends the first location information to the network device U3 in step S601.
  • the first node U1 sends the second location information to the network device U3 in step S501.
  • the network device U3 receives the first location information in step S701. location information and the second location information.
  • the first location information and the second location information each include an IE (Information Element), and the name of the IE includes RxTxTimeDiff.
  • Embodiment 10 can maintain good compatibility with existing UE functions and reduce the complexity of the UE.
  • the network device U3 includes LMF.
  • the network device U3 is a core network device.
  • the network device U3 includes NG-RAN.
  • the first position information and the second position information each include an Rx-Tx time difference measurement result.
  • the name of an IE includes sidelink or sl.
  • the name of an IE includes nr-sidelink-RxTxTimeDiff.
  • the name of an IE includes nr-sl-RxTxTimeDiff.
  • the name of the IE is nr-sidelink-RxTxTimeDiff-r18.
  • the name of an IE is nr-sl-RxTxTimeDiff-r18.
  • the first location information and the second location information are respectively an NR-Multi-RTT-SignalMeasurementInformationsidelink IE.
  • Embodiment 11 illustrates a schematic diagram of a first node sending first location information and second location information to a network device according to an embodiment of the present application, as shown in FIG. 11 .
  • the second node U2 sends the first location information to the first node U1 in step S2601.
  • the first node U1 receives the first location information in step S2501, and sends the first location information and the second location in step S2502. information to network device U3, the The network device U3 receives the first location information and the second location information in step S2701.
  • the first location information and the second location information each include an IE (Information Element), and the name of the IE includes RxTxTimeDiff.
  • Embodiment 11 can reduce the uplink overhead, or is suitable for the scenario where the second node U2 is outside the cell coverage.
  • the second node U2 is a UE to be positioned
  • the first node U1 is one of multiple UEs assisting the second node U2 in positioning.
  • the first node U1 is a UE to be positioned
  • the second node U2 is one of multiple UEs that assist the first node U1 in positioning.
  • the network device U3, the first location information and the second location information in Embodiment 11 share the above-described embodiment in Embodiment 10.
  • Embodiment 12 illustrates a schematic diagram of a second node sending first location information and second location information to a network device according to an embodiment of the present application, as shown in FIG. 12 .
  • the first node U1 sends the second location information to the second node U2 in step S1501.
  • the second node U2 receives the second location information in step S1601 and sends the second location information and the first location in step S1602.
  • the network device U3 receives the first location information and the second location information in step S1701.
  • the first location information and the second location information each include an IE (Information Element), and the name of the IE includes RxTxTimeDiff.
  • Embodiment 12 can reduce the uplink overhead, or is suitable for the scenario where the second node U1 is outside the cell coverage.
  • the second node U2 is a UE to be positioned
  • the first node U1 is one of multiple UEs assisting the second node U2 in positioning.
  • the above embodiment avoids the inconvenience caused by multiple UEs sending location information to the network device respectively.
  • the first node U1 is a UE to be positioned
  • the second node U2 is one of multiple UEs that assist the first node U1 in positioning.
  • the network device U3, the first location information and the second location information in Embodiment 12 share the above-described embodiment in Embodiment 10.
  • the second location information and the first location information each include a timestamp.
  • the second location information and the first location information sent in step S1602 belong to the same IE, the same IE includes a first timestamp, and the first timestamp is applied to the first location information and the second location information.
  • the time unit indicated by the first timestamp is the same as the time length indicated by the value of the first timer.
  • the first timestamp indicates the time slot in which the first timer starts.
  • the first timestamp includes SFN (System Frame Number, system frame number) and timeslot number.
  • Embodiment 13 illustrates a schematic diagram of first time information and second time information according to an embodiment of the present application, as shown in FIG. 13 .
  • Figure 13 is used to describe time information and does not limit the relative time relationship between the first subframe and the second subframe, nor the relative time relationship between the first reference subframe and the second reference subframe.
  • the second time information includes the difference between the second receiving time and the second sending time - as shown by the two-way arrow t1 in Figure 13;
  • the second receiving time is the time the first node receives The time of the second subframe (or subframe i)
  • the second sending time is the time when the first node sends the second reference subframe (or subframe j);
  • the second reference subframe (or subframe j) Frame j) is a subframe closest to the received second subframe (or subframe i) according to the sending time of the first node; at least part of the second reference signal is included in the second in the subframe.
  • the first time information includes the difference between the first receiving time and the first sending time - as shown in the two-way arrow t2 in Figure 13 As shown; the first receiving time is the time when the second node receives the first subframe (or subframe n), and the first sending time is when the second node sends the first reference subframe (or subframe m ) time; the first reference subframe (or subframe m) is the subframe closest to the received first subframe (or subframe n) according to the sending time of the second node; the At least part of the first reference signal is included in the first subframe.
  • the location service center or the UE to be located can obtain the propagation delay between the first node and the second node based on t1 and t2, that is, (t1+t2)/2.
  • the second reference signal is received in part of the multi-carrier symbols of the second subframe
  • the first reference signal is received in part of the multi-carrier symbols of the first subframe
  • the first subframe, the second subframe, the first reference subframe and the second reference subframe are all in the time when the first timer is running.
  • Embodiment 13 does not exclude other positioning methods, such as based on arrival time or RSRP, etc.
  • Embodiment 14 illustrates a structural block diagram of a processing device used in a first node according to an embodiment of the present application; as shown in FIG. 14 .
  • the processing device 1600 in the first node includes a first receiver 1601 and a first transmitter 1602.
  • the first receiver 1601 receives the first signaling; the first transmitter 1602, in response to receiving the first signaling, starts a first timer; and only when the first set of conditions is satisfied, sends the first a wireless signal;
  • the first wireless signal includes a first reference signal, and measurement of the first reference signal is used to generate first location information, where the first location information includes first time information; A set of conditions includes a first timer that has not expired.
  • the first receiver 1601 receives the first location information.
  • the first receiver 1601 receives the first location information, and the first transmitter 1602 sends the first location information.
  • the first receiver 1601 receives a second reference signal; the first transmitter 1602 sends second location information, where the second location information includes second time information; wherein, for the The measurement of the second reference signal is used to generate the second location information; the time resource occupied by the second reference signal is temporally associated with the behavior start first timer.
  • the second time information includes the difference between the second receiving time and the second sending time; the second receiving time is the time when the first node receives the second subframe, and the second sending time The time is the time when the first node sends the second reference subframe; the second reference subframe is the subframe closest to the received second subframe according to the sending time of the first node; At least part of the second reference signal is included in the second subframe.
  • the first time information includes the difference between the first receiving time and the first sending time; the first receiving time is the time when the second node receives the first subframe, and the first sending time is The time when the second node sends the first reference subframe; the first reference subframe is the subframe closest to the received first subframe according to the sending time of the second node; the first At least part of the reference signal is included in the first subframe.
  • the first signaling is non-unicast.
  • the second signaling is used to generate the first wireless signal; the second signaling is used to schedule the first reference signal.
  • the first receiver 1601 receives third signaling through a secondary link, and the third signaling is used to indicate the first set of conditions.
  • the third signaling indicates Q1 parameter groups, and Q1 is a positive integer greater than 1; each of the Q1 parameter groups includes a time length; the first timer The value is the one length of time indicated by the first parameter set, the movement speed of the first node being used to determine the first parameter set from the Q1 parameter sets.
  • the above embodiment can flexibly adjust the value of the first timer according to the movement speed, balancing positioning performance and scheduling freedom.
  • the first node 1600 is a user equipment.
  • the first transmitter 1602 includes the antenna 452, transmitter/receiver 454, multi-antenna transmitter processor 457, transmit processor 468, controller/processor 459 in Figure 4 of this application, At least one of memory 460 and data source 467.
  • the first transmitter 1602 includes the antenna 452, transmitter/receiver 454, multi-antenna transmitter processor 457, transmit processor 468, controller/processor 459 in Figure 4 of this application, Memory 460 and data source 467.
  • the first receiver 1601 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data in Figure 4 of this application. At least the first five of source 467.
  • the first receiver 1601 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data in Figure 4 of this application. At least the first four of source 467.
  • the first receiver 1601 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data in Figure 4 of this application. At least the first three of source 467.
  • Embodiment 15 illustrates a structural block diagram of a processing device used in a second node according to an embodiment of the present application; as shown in FIG. 15 .
  • the processing device 1700 in the second node includes a second transmitter 1701 and a second receiver 1702.
  • the second transmitter 1701 sends the first signaling, which is used to start the first timer; the second receiver 1702 detects the first wireless signal after the first timer starts;
  • the first wireless signal includes a first reference signal
  • measurement of the first reference signal is used to generate first location information
  • the first location information includes first time information
  • the second transmitter 1701 sends the first location information; wherein the first wireless signal is detected.
  • the second transmitter 1701 sends a second reference signal
  • the measurement of the second reference signal is used to generate second location information
  • the second location information includes second time information
  • the time resource occupied by the second reference signal is related to the first timing of the start of the behavior.
  • the devices are related in time.
  • the second receiver 1702 receives the second location information.
  • the second transmitter sends third signaling, and the third signaling is used to indicate the first set of conditions.
  • the second time information includes the difference between the second receiving time and the second sending time; the second receiving time is the time when the first node receives the second subframe, and the second sending time The time is the time when the first node sends the second reference subframe; the second reference subframe is the subframe closest to the received second subframe according to the sending time of the first node; At least part of the second reference signal is included in the second subframe.
  • the first time information includes the difference between the first receiving time and the first sending time; the first receiving time is the time when the second node receives the first subframe, and the first sending time is The time when the second node sends the first reference subframe; the first reference subframe is the subframe closest to the received first subframe according to the sending time of the second node; the first At least part of the reference signal is included in the first subframe.
  • the first signaling is non-unicast.
  • the second signaling is used to generate the first wireless signal; the second signaling is used to schedule the first reference signal.
  • the second receiver 1702 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475.
  • the second receiver 1702 includes the controller/processor 475.
  • the second transmitter 1701 sends the first wireless signal, and the second transmitter 1701 includes the antenna 420, the transmitter 418, the transmission processor 416, the controller /processor475.
  • the second transmitter 1701 transmits the first wireless signal.
  • the second transmitter 1701 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, and the Launch processor 416, the controller/processor 475.
  • the second transmitter 1701 sends the first wireless signal, and the second transmitter 1701 includes the antenna 420, the transmitter 418, the transmission processor 416, the controller /processor475.
  • the second transmitter 1701 transmits the first wireless signal.
  • the second transmitter 1701 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, and the Transmit processor 416, the controller/processor Device 475.
  • User equipment, terminals and UEs in this application include but are not limited to drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC, enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost Cost-effective tablet computers and other wireless communication devices.
  • MTC Machine Type Communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point, transmitting and receiving node) and other wireless communications equipment.
  • gNB NR Node B
  • TRP Transmitter Receiver Point

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了用于定位的方法和装置。第一节点接收第一信令;作为接收所述第一信令的响应,开始第一计时器;仅在第一条件集合被满足的条件下,发送第一无线信号;其中,所述第一无线信号包括第一参考信号,针对所述第一参考信号的测量被用于生成第一位置信息,所述第一位置信息包括第一时间信息;所述第一条件集合包括第一计时器未过期。本申请能提高定位性能。

Description

用于定位的方法和装置 技术领域
本发明涉及无线通信系统中的方法和装置,尤其涉及无线通信系统中的用于定位的方案和装置。
背景技术
定位是无线通信领域的一个重要应用;V2X(Vehicle to everything,车对外界)或者工业物联网等新应用的出现,对定位的精度或者延迟提出了更高的要求。在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#94e会议中,关于定位增强的研究课题被立项。
发明内容
涉及副链路的定位中,用于定位测量的无线信号的发送者可能是移动的,这就使得传统的用于定位的流程或者位置信息反馈方案需要进一步增强。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在本申请的描述中,只是采用V2X场景作为一个典型应用场景或者例子;本申请也同样适用于面临相似问题的V2X之外的场景,例如公共安全(Public Safety)、工业物联网等等,并取得类似NR V2X场景中的技术效果。此外,虽然本申请的动机是针对用于定位测量的无线信号的发送者是移动的这一场景,本申请依然适用于用于定位测量的无线信号的发送者是固定的这一场景,例如RSU(Road Side Unit,路边单元)等。不同场景采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
在需要的情况下,可以参考3GPP标准TS38.211,TS38.212,TS38.213,TS38.214,TS38.215,TS38.321,TS38.331,TS38.305,TS37.355以辅助对本申请的理解。
本申请公开了被用于无线通信的第一节点中的方法,其中,包括:
接收第一信令;
作为接收所述第一信令的响应,开始第一计时器;仅在第一条件集合被满足的条件下,发送第一无线信号;
其中,所述第一无线信号包括第一参考信号,针对所述第一参考信号的测量被用于生成第一位置信息,所述第一位置信息包括第一时间信息;所述第一条件集合包括第一计时器未过期。
作为一个实施例,上述方法能确保第一无线信号的及时发送,进而确保第一位置信息的有效性。
具体的,根据本申请的一个方面,上述方法的特征在于,包括:
接收第二参考信号;
发送第二位置信息,所述第二位置信息包括第二时间信息;
其中,针对所述第二参考信号的测量被用于生成所述第二位置信息;所述第二参考信号占用的时间资源与所述行为开始第一计时器在时间上是关联的。
上述方法限制了所述第二参考信号和所述第一参考信号之间的时间间隔,能有效防止由于运动导致的定位不准确。
作为一个实施例,所述第一时间信息包括接收发送(Rx-Tx)时间差(time difference),所述第二时间信息包括接收发送时间差。
上述实施例利用一对接收发送时间差进行定位,能获得较高的定位精度,同时对所述第一节点的复杂度要求不高。
具体的,根据本申请的一个方面,上述方法的特征在于,所述第一时间信息包括第一接收时间 和第一发送时间的差值;所述第一接收时间是第二节点接收第一子帧的时间,所述第一发送时间是所述第二节点发送第一参考子帧的时间;所述第一参考子帧是根据所述第二节点的发送时间与接收的所述第一子帧最近的一个子帧;所述第一参考信号的至少部分被包括在所述第一子帧中。
具体的,根据本申请的一个方面,上述方法的特征在于,所述第二时间信息包括第二接收时间和第二发送时间的差值;所述第二接收时间是所述第一节点接收第二子帧的时间,所述第二发送时间是所述第一节点发送第二参考子帧的时间;所述第二参考子帧是根据所述第一节点的发送时间与接收的所述第二子帧最近的一个子帧;所述第二参考信号的至少部分被包括在所述第二子帧中。
具体的,根据本申请的一个方面,上述方法的特征在于,所述第一信令是非单播的。
具体的,根据本申请的一个方面,上述方法的特征在于,第二信令被用于生成所述第一无线信号;所述第二信令被用于调度所述第一参考信号。
具体的,根据本申请的一个方面,上述方法的特征在于,包括:
接收第三信令,所述第三信令被用于指示所述第一条件集合。
具体的,根据本申请的一个方面,上述方法的特征在于,所述第三信令指示Q1个参数组,所述Q1是大于1的正整数;所述Q1个参数组中每个参数组包括一个时间长度;所述第一计时器的所述值是第一参数组指示的所述一个时间长度,所述第一节点的移动速度被用于从所述Q1个参数组中确定所述第一参数组。
本申请公开了一种被用于无线通信的第二节点中的方法,其中,包括:
发送第一信令,所述第一信令被用于开始第一计时器;
在第一计时器开始之后检测第一无线信号;
其中,所述第一无线信号包括第一参考信号,针对所述第一参考信号的测量被用于生成第一位置信息,所述第一位置信息包括第一时间信息;所述第一条件集合包括第一计时器未过期。
具体的,根据本申请的一个方面,上述方法的特征在于,包括:
发送所述第一位置信息;
其中,所述第一无线信号被检测出。
具体的,根据本申请的一个方面,上述方法的特征在于,包括:
发送第二参考信号;
其中,针对所述第二参考信号的测量被用于生成第二位置信息,所述第二位置信息包括第二时间信息;所述第二参考信号占用的时间资源与所述行为开始第一计时器在时间上是关联的。
本申请公开了一种被用于无线通信的第一节点,其中,包括:
第一接收机,接收第一信令;
第一发送机,作为接收所述第一信令的响应,开始第一计时器;仅在第一条件集合被满足的条件下,发送第一无线信号;
其中,所述第一无线信号包括第一参考信号,针对所述第一参考信号的测量被用于生成第一位置信息,所述第一位置信息包括第一时间信息;所述第一条件集合包括第一计时器未过期。
作为一个实施例,上述方法的特征包括:
所述第一发送机,作为发送所述第一无线信号的响应,停止所述第一计时器。
本申请公开了一种被用于无线通信的第二节点,其中,包括:
第二发送机,发送第一信令,所述第一信令被用于开始第一计时器;
第二接收机,在第一计时器开始之后检测第一无线信号;
其中,所述第一无线信号包括第一参考信号,针对所述第一参考信号的测量被用于生成第一位置信息,所述第一位置信息包括第一时间信息;所述第一条件集合包括第一计时器未过期。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更加明显:
图1示出了根据本发明的一个实施例的第一无线信号传输的流程图;
图2示出了根据本发明的一个实施例的网络架构的示意图;
图3示出了根据本发明的一个实施例的用户平面和控制平面的无线电协议架构的实施例的示意图;
图4示出了根据本发明的一个实施例的通信节点的硬件模块示意图;
图5示出了根据本发明的一个实施例的UE定位的结构图;
图6示出了根据本发明的一个实施例的仅在第一条件集合被满足的条件下发送第一无线信号的示意图;
图7示出了根据本发明的一个实施例的第一无线信号的传输流程图;
图8示出了根据本发明的一个实施例的第二参考信号的传输流程图;
图9示出了根据本发明的一个实施例的第一计时器开始和第一计时器过期的示意图;
图10示出了根据本发明的一个实施例的第二节点发送第一位置信息给网络设备以及第一节点发送第二位置信息给网络设备的示意图;
图11示出了根据本发明的一个实施例的第一节点发送第一位置信息和第二位置信息给网络设备的示意图;
图12示出了根据本发明的一个实施例的第二节点发送第一位置信息和第二位置信息给网络设备的示意图;
图13示出了根据本发明的一个实施例的第一时间信息和第二时间信息的示意图;
图14示出了根据本发明的一个实施例的用于第一节点中的处理装置的结构框图;
图15示出了根据本发明的一个实施例的用于第二节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一无线信号传输的流程图,如附图1所示。
在实施例1中,第一节点100在步骤101中接收第一信令;在步骤102中作为接收所述第一信令的响应,开始第一计时器;在步骤102中仅在第一条件集合被满足的条件下,发送第一无线信号;
实施例1中,所述第一无线信号包括第一参考信号,针对所述第一参考信号的测量被用于生成第一位置信息(Location Information),所述第一位置信息包括第一时间信息;所述第一条件集合包括第一计时器未过期。
典型的,所述第一信令和所述第一无线信号都在副链路上发送。
上述方法允许UE(User Equipment,用户设备)之间的直接通信,减少通过基站中转所带来的空口冗余和延迟。
作为一个实施例,所述短语第一计时器未过期即第一计时器正在运行。
作为一个实施例,所述短语第一计时器未过期是指在所述行为开始第一计时器之后,所述第一计时器未过期。
作为一个实施例,所述第一信令是RRC(Radio Resource Control,无线资源控制)层之下的协议层的信令。
作为一个实施例,所述第一信令包括SCI(Sidelink control information,副链路控制信息)。
作为一个实施例,所述第一信令包括第二阶段(2nd-stage)SCI。
作为一个实施例,所述第二阶段SCI中的第一域被用于请求第一类参考信号,所述第一参考信号是所述第一类参考信号。
作为一个实施例,所述第一信令包括SCI所调度的MAC PDU(Protocol Data Unit,协议数据单元),所述SCI调度的所述MAC PDU中的SL-SCH子头被用于确定所述第一信令的目的地包括所述第 一节点。
作为一个实施例,所述第一信令包括MAC(Medium Access Control,媒介接入控制)CE(Control Element,控制单元)。
作为一个实施例,所述MAC CE中的第二域被用于请求第一类参考信号,所述第一参考信号是所述第一类参考信号。
作为一个实施例,所述第一类参考信号被用于定位(Positioning)。
作为一个实施例,所述第一类参考信号包括SL(SideLink,副链路)-PRS(Positioning Reference Signal,定位参考信号)资源。
作为一个实施例,所述第一类参考信号包括SL-SRS(Sounding Reference Signal,侦听参考信号)资源。
作为一个实施例,所述第一类参考信号包括PSBCH(Physical Sidelink Broadcast Channel,物理副链路广播信道),S-PSS(Sidelink primary synchronization signal,副链路主同步信号),S-SSS(Sidelink secondary synchronization signal,副链路辅同步信号)。
作为一个实施例,所述第一位置信息包括时间质量(TimingQuality)。
作为一个实施例,所述第一位置信息包括接收波束索引(RxBeamIndex)。
作为一个实施例,所述第一位置信息包括第一接收功率信息。
作为一个实施例,所述第一接收功率信息包括所述第一参考信号的RSRP(Reference Signal Received Power,参考信号接收功率)。
作为一个实施例,所述第一接收功率信息包括所述第一参考信号的RSRPP(Reference Signal Received Path Power,参考信号接收路径功率)。
作为一个实施例,所述第一接收功率信息包括RSRP结果差(RSRP-ResultDiff)。
作为一个实施例,所述第一时间信息的解析度(resolution)是Ts,其中Ts为1/(15000*2048)秒。
作为一个实施例,所述第一时间信息的解析度是4×Ts,其中Ts为1/(15000*2048)秒。
作为一个实施例,所述第一时间信息的解析度是Ts的正整数倍,其中Ts为1/(15000*2048)秒。
作为一个实施例,所述第一接收功率信息的单位是dBm(分贝毫)。
作为一个实施例,所述第一接收功率信息的单位是dB(分贝)。
作为一个实施例,所述第一时间信息的名字包括RSTD(Reference Signal Time Difference,参考信号时间功率)。
作为一个实施例,所述第一时间信息的名字包括RxTxTimeDiff(接收发送时间差)。
作为一个实施例,所述第一时间信息的名字包括SL-RxTxTimeDiff。
作为一个实施例,所述第一时间信息的名字包括RTOA(Relative Time of Arrival,相对到达时间)。
作为一个实施例,所述第一时间信息的名字包括SL-RTOA。
作为一个实施例,所述第一计时器在所述第一节点的MAC层被维护。
上述实施例有利于所述第一节点的实现,且和现有协议保持良好兼容性。
作为一个实施例,所述行为作为接收所述第一信令的响应,开始第一计时器包括:当接收所述第一信令且所述第一计时器不在运行时,开始所述第一计时器。
作为一个实施例,所述第一计时器最近的一次启动在所述行为发送第一无线信号之前。
作为一个实施例,所述第一条件集合包括所述第一节点的运动速度不超过或者小于第一阈值。
上述实施例避免了利用运动速度过快的UE进行定位,提高了定位精度。
作为一个实施例,所述第一阈值是可配置的。
作为一个实施例,所述第一阈值是250公里每小时。
作为一个实施例,所述第一阈值是300公里每小时。
作为一个实施例,所述第一计时器的值是可配置的。
作为一个实施例,所述第一计时器的值是由更高层信令配置的。
作为一个实施例,所述第一计时器的值是由RRCReconfigurationSidelink消息配置的。
作为一个实施例,所述第一时间信息包括相对第一参考时间,第二节点接收的第一子帧的起始时刻,所述第一参考信号的至少部分被包括在所述第一子帧中;所述第一参考时间是可配置的。
上述方法避免了采用Rx-Tx时间差所带来的复杂度或者延迟增加,然而需要配置第一参考时间以确保第一参考时间的同步。
作为一个实施例,所述第一参考时间是显式配置的。
作为一个实施例,所述第一参考时间是第一分量与第二分量的和,所述第一分量是相对于SFN(System Frame Number,系统帧号)0的名义起始时间(nominal beginningtime)的第三子帧的起始时间,所述SFN 0的名义起始时间被SFN初始化时间提供,所述第三子帧是与所述第一子帧最近的下行接收子帧;所述第二分量是可配置的。
作为一个实施例,所述第二分量是可配置的。
作为一个实施例,所述第一时间信息包括接收发送(Rx-Tx)时间差(time difference)。
作为一个实施例,所述第一信令是非单播的。
作为上述实施例的一个子实施例,所述第一计时器的值被应用于所述第一信令的任一目的地。
作为一个实施例,如果一个UE的一个目的地layer-2 ID与所述第一信令指示的目的地Layer-2 ID(层2身份)相同,所述一个UE是所述第一信令的目的地;所述第一节点是所述第一信令的一个目的地。
上述方法使得所述第一信令能触发多个UE(如果存在)发送用于定位的参考信号,所述多个UE中的每个UE都维持所述第一信令指示的目的地(Destination)层2身份;这样节省了空口资源并且降低了延迟;进一步的,所述第一计时器的值被所述多个UE共享能确保多个UE在同一个时间段(time period)中发送用于定位的参考信号,避免了UE运动带来的定位误差。
作为一个实施例,所述第一信令是组播的或者广播的。
作为一个实施例,所述第一信令包括一个SCI,所述一个SCI中的播放类型指示(Casttype indicator)域是00,01和11三者中之一。
作为一个实施例,所述第一参考信号所占用RE与所述第一节点的身份有关,所述第一节点的所述身份是更高层指示的。
作为一个实施例,所述第一节点的所述身份被用于确定所述第一参考信号在一个时频资源块内的图案(Pattern),所述一个时频资源块在时域上占用一个时隙,在频域上占用一个RB(Resource Block,资源块)。
作为一个实施例,所述第一参考信号在一个时频资源块内的所述图案与下行PRS在一个时频资源块内的图案相同。
作为一个实施例,所述第一参考信号在一个时频资源块内的所述图案与SRS在一个时频资源块内的图案相同。
作为一个实施例,所述第一参考信号在一个时频资源块内的所述图案与CSI-RS(信道状态信息参考信号)在一个时频资源块内的图案相同。
作为一个实施例,所述第一节点的所述身份是被网络设备配置的。
上述方法能避免或者减少多个UE发送的参考信号之间的干扰。
作为一个实施例,第二信令被用于生成所述第一无线信号;所述第二信令被用于调度所述第一参考信号。
作为一个实施例,所述第一无线信号占用的资源包括一个PSCCH(Physical sidelink control channel,物理副链路控制信道),所述第二信令在所述一个PSCCH中被发送。
作为一个实施例,所述第二信令被用于调度所述一个PSSCH(Physical sidelink shared channel,物理副链路共享信道),所述第一节点在所述一个PSSCH上发送第二位置信息。
作为一个实施例,所述第一参考信号在所述一个PSSCH的发送(within a transmission of the one PSSCH)内被发送。
作为一个实施例,所述第二信令是单播的,所述第二信令的目的地是第二节点。
作为一个实施例,所述第一节点是一个UE(User Equipment,用户设备)。
作为一个实施例,所述第一节点是一个中继设备。
作为一个实施例,所述第一计时器的值的单位是时隙。
作为一个实施例,所述第一计时器的值的单位是多载波符号。
作为一个实施例里,所述网络设备包括位置服务中心。
作为一个实施例里,所述网络设备包括基站。
作为一个实施例里,所述位置服务中心是NAS(Non-Access-Stratum,非接入层)设备。
作为一个实施例,所述位置服务中心包括LMF(Location Management Function,位置管理功能)。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single-carrier Frequency-Division Multiple Access,单载波频分多址)符号。
作为一个实施例,所述多载波符号是FBMC(Filterbank Multicarrier,滤波器组多载波)符号。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。附图2说明了5G NR(NewRadio,新空口),LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统架构下的V2X通信架构。5G NR或LTE网络架构可称为5GS(5GSystem)/EPS(Evolved Packet System,演进分组系统)某种其它合适术语。
实施例2的V2X通信架构包括UE(User Equipment,用户设备)201,UE241,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220,ProSe功能250和ProSe应用服务器230。所述V2X通信架构可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,所述V2X通信架构提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(UserPlaneFunction,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。所述ProSe功能250是用于适地服务(ProSe,Proximity-based Service)所需的网络相关行为的逻辑功能;包括DPF(Direct Provisioning Function,直接供应功能),直 接发现名称管理功能(Direct Discovery Name Management Function),EPC水平发现ProSe功能(EPC-level Discovery ProSe Function)等。所述ProSe应用服务器230具备存储EPC ProSe用户标识,在应用层用户标识和EPC ProSe用户标识之间映射,分配ProSe限制的码后缀池等功能。
作为一个实施例,所述UE201和所述UE241之间通过PC5参考点(Reference Point)连接。
作为一个实施例,所述ProSe功能250分别通过PC3参考点与所述UE201和所述UE241连接。
作为一个实施例,所述ProSe功能250通过PC2参考点与所述ProSe应用服务器230连接。
作为一个实施例,所述ProSe应用服务器230连接分别通过PC1参考点与所述UE201的ProSe应用和所述UE241的ProSe应用连接。
作为一个实施例,本申请中的所述第一节点是所述UE201,本申请中的所述第二节点是所述UE241。
作为一个实施例,本申请中的所述第一节点是所述UE241,本申请中的所述第二节点是所述UE201。
作为一个实施例,所述UE201和所述UE241之间的无线链路对应本申请中的副链路(Sidelink,SL)。
作为一个实施例,从所述UE201到NR节点B的无线链路是上行链路。
作为一个实施例,从NR节点B到UE201的无线链路是下行链路。
作为一个实施例,所述UE201支持V2X传输。
作为一个实施例,所述UE241支持V2X传输。
作为一个实施例,所述gNB203是宏蜂窝(MarcoCellular)基站。
作为一个实施例,所述gNB203是微小区(Micro Cell)基站。
作为一个实施例,所述gNB203是微微小区(PicoCell)基站。
作为一个实施例,所述gNB203是家庭基站(Femtocell)。
作为一个实施例,所述gNB203是支持大时延差的基站设备。
作为一个实施例,所述gNB203是一个RSU(Road Side Unit,路边单元)。
作为一个实施例,所述gNB203包括卫星设备。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一节点设备(UE或V2X中的RSU,车载设备或车载通信模块)和第二节点设备(gNB,UE或V2X中的RSU,车载设备或车载通信模块),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,通过PHY301负责在第一节点设备与第二节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点设备处。PDCP子层304提供数据加密和完整性保护,PDCP子层304还提供第一节点设备对第二节点设备的越区移动支持。RLC子层303提供数据包的分段和重组,通过ARQ实现丢失数据包的重传,RLC子层303还提供重复数据包检测和协议错误检测。MAC子层302提供逻辑与传输信道之间的映射和逻辑信道的复用。MAC子层302还负责在第一节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点设备与第一节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点设备和第二节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的包头压缩以减少无线发送开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之 间的映射,以支持业务的多样性。虽然未图示,但第一节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的针对所述第一无线信号的测量包括在所述RRC子层306执行的层3滤波。
作为一个实施例,本申请中的针对所述第一无线信号的测量是在所述PHY301被执行的。
实施例4
实施例4示出了根据本申请的一个实施例的通信节点的硬件模块示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二节点450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数 据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:接收第一信令;作为接收所述第一信令的响应,开始第一计时器;仅在第一条件集合被满足的条件下,发送第一无线信号;其中,所述第一无线信号包括第一参考信号,针对所述第一参考信号的测量被用于生成第一位置信息,所述第一位置信息包括第一时间信息;所述第一条件集合包括第一计时器未过期。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令;作为接收所述第一信令的响应,开始第一计时器;仅在第一条件集合被满足的条件下,发送第一无线信号;其中,所述第一无线信号包括第一参考信号,针对所述第一参考信号的测量被用于生成第一位置信息,所述第一位置信息包括第一时间信息;所述第一条件集合包括第一计时器未过期。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:发送第一信令,所述第一信令被用于开始第一计时器;在第一计时器开始之后检测第一无线信号;其中,所述第一无线信号包括第一参考信号,针对所述第一参考信号的测量被用于生成第一位置信息,所述第一位置信息包括第一时间信息;所述第一条件集合包括第一计时器未过期。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信令,所述第一信令被用于开始第一计时器;在第一计时器开始之后检测第一无线信号;其中,所述第一无线信号包括第一参考信号,针对所述第一参考信号的测量被用于生成第一位置信息,所述第一位置信息包括第一时间信息;所述第一条件集合包括第一计时器未过期。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第二通信设备410是一个UE。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459被用于接收第一信令。
作为一个实施例,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468, 所述控制器/处理器459被用于发送第一无线信号。
作为一个实施例,所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475被用于发送第一信令。
作为一个实施例,所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475被用于接收第一无线信号。
实施例5
实施例5示例了根据本申请的一个实施例的UE定位的结构图,如附图5所示。
UE501通过LTE(Long Term Evolution,长期演进)-Uu接口或NR(New Radio)-Uu新无线接口与ng-eNB502或gNB503通信;ng-eNB502和gNB 503有时被称为基站,ng-eNB502和gNB 503也被称为NG(Next Generation,下一代)-RAN(Radio Access Network,无线接入网)。ng-eNB502和gNB 503分别通过NG(Next Generation,下一代)-C(Control plane,控制面)与AMF(Authentication Management Field,鉴权管理域)504连接;AMF504通过NL1接口与LMF(Location Management Function,位置管理功能)505连接。
所述AMF504从另外一个实体,例如GMLC(Gateway Mobile Location Centre,网关移动位置中心)或者UE,接收到与特定UE关联的位置服务请求,或者所述AMF504自己决定启动被关联到特定UE的位置服务;然后所述AMF504发送位置服务请求到一个LMF,例如所述LMF505;然后这个LMF处理所述位置服务请求,包括发送辅助数据到所述特定UE以辅助基于UE(UE-based)的或者UE辅助的(UE-assisted)定位,以及包括接收来自UE上报的位置信息(Location information);接着这个LMF将位置服务的结果返回给所述AMF504;如果所述位置服务是另外一个实体请求的,所述AMF504将所述位置服务的结果返回给那个实体。
作为一个实施例,本申请的网络设备包括LMF。
作为一个实施例,本申请的网络设备包括NG-RAN和LMF。
作为一个实施例,本申请的网络设备包括NG-RAN、AMF和LMF。
实施例6
实施例6示例了根据本申请的一个实施例的仅在第一条件集合被满足的条件下发送第一无线信号的示意图,如附图6所示。
第一节点在步骤S1000中判断第一条件集合是否被满足,如果是在步骤S1001中发送第一无线信号,如果否,结束。
所述步骤S1000在具体实施中可能采用多种方式,例如第一节点利用软件或者硬件访问存储单元以确定所述第一条件集合是否被满足;也可能通过事件触发的方式,例如当第一事件集合发生时,停止执行第一过程,所述第一过程包括发送所述第一无线信号,所述第一事件集合包括所述第一计时器过期。
作为一个实施例,所述步骤S1001包括通过信道感知(Channel sensing)获得第一空口资源,所述第一空口资源属于一个副链路资源池(resource pool),所述第一无线信号在所述第一空口资源内被发送。
作为一个实施例,所述第一信令调度第一PSSCH和第一参考信号;所述第一信令指示第一优先级,所述第一优先级是第一参考优先级与第一参考信号的优先级二者中的较高值;所述第一参考优先级是第一MAC PDU所包括的逻辑信道的优先级的最高值;所述第一MAC PDU在所述第一PSSCH中被发送。
上述方法有利于根据所述第一参考信号的所述优先级获得空口资源,满足定位的精度或者延迟要求。
作为一个实施例,所述第一参考信号的所述优先级是固定的。
作为一个实施例,所述第一参考信号的所述优先级是可配置的。
作为一个实施例,所述第一参考信号的所述优先级是通过NAS消息或者RRC消息配置的。
作为一个实施例,所述第一参考信号的所述优先级是小于8的非负整数。
作为一个实施例,所述步骤S1001包括执行逻辑信道优先级排序(logical channel prioritization)以确定所述第一MAC PDU中包括的逻辑信道,所述逻辑信道优先级排序不考虑所述第一参考信号的所述优先级。
上述方法和现有系统保持较好的兼容性。
作为一个实施例,所述第一参考信号的所述优先级是被第二节点配置的。
作为一个实施例,所述第一参考信号的所述优先级是被网络设备配置的。
实施例7
实施例7示例了根据本申请的一个实施例的第一无线信号的传输流程图,如附图7所示。附图7中,方框F0中的步骤是可选的。
第二节点U2在步骤S200中发送第三信令,在步骤S201中发送第一信令,在步骤S202中在第一计时器开始之后检测第一无线信号;第一节点U1在步骤S100中接收第三信令,在步骤S101中接收第一信令,在步骤S102中作为接收所述第一信令的响应,开始第一计时器,在步骤S103中仅在第一条件集合被满足的条件下发送第一无线信号;
实施例7中,所述第一无线信号包括第一参考信号,针对所述第一参考信号的测量被用于生成第一位置信息,所述第一位置信息包括第一时间信息;所述第一条件集合包括第一计时器未过期;所述第三信令被用于指示所述第一条件集合。
作为一个实施例,所述步骤S202能降低所述第二节点U2的功率开销,或者减少虚警概率。
作为一个实施例,所述第三信令被用于指示所述第一条件集合是指:所述第三信令被用于指示所述第一计时器的值。
作为一个实施例,所述第一条件集合包括所述第一节点的运动速度不超过或者小于第一阈值,所述第三信令被用于指示所述第一阈值以及所述第一计时器的值。
作为一个实施例,作为发送所述第一无线信号的响应,所述第一节点U1停止所述第一计时器。
作为一个实施例,所述第二节点U2从所述第一计时器开始检测所述第一无线信号,检测持续时间与所述第一计时器的值相等。
作为一个实施例,所述第二节点U2从所述第一计时器开始检测所述第一无线信号,持续检测到所述第一计时器过期和检测到所述第一无线信号二者中较早发生的时间。
对于第二节点U2,所述第一计时器的开始和所述第一计时器的所述值都是已知的,所述第二节点U2可以通过多种方法确定检测所述第一无线信号的时间窗,例如维持与所述第一计时器对等的一个计时器,或者,提前标识所述第一计时器的开始到所述第一计时器过期所包括的所有时隙。
作为一个实施例,所述第三信令包括RRCReconfigurationSidelink消息。
作为一个实施例,第二信令被用于生成所述第一无线信号;所述第二信令被用于调度所述第一参考信号;当所述第二节点U2检测到所述第二信令时,所述第二节点U2确定所述第一无线信号被检测出。
上述方法能降低虚警概率。
作为一个实施例,所述第二信令是一个SCI。
作为一个实施例,所述第二时间信息在一个PSSCH上传输,所述第二信令被用于调度所述一个PSSCH。
作为一个实施例,所述第二信令是非单播的。
作为一个实施例,所述第二信令是广播的或者组播的。
作为一个实施例,所述第三信令指示Q1个参数组,所述Q1是大于1的正整数;所述Q1个参数组中每个参数组包括一个时间长度;所述第一计时器的所述值是第一参数组指示的所述一个时间长度,所述第一节点的移动速度被用于从所述Q1个参数组中确定所述第一参数组。
作为一个实施例,所述一个时间长度的单位是时隙。
作为一个实施例,所述一个时间长度的单位是子帧。
作为一个实施例,所述Q1个参数组中每个参数组对应一个移动速度范围,所述第一参数组是所述Q1个参数组中对应的移动速度范围包括所述第一节点的移动速度的一个参数组。
作为一个实施例,所述Q1个参数组中每个参数组被用于确定相应的移动速度范围。
作为一个实施例,所述Q1个参数组中任意两个参数组对应的移动速度范围不交叠,所述第三信 令指示Q1-1个移动速度阈值,所述Q1-1个移动速度阈值被用于划分所述Q1个参数组。
作为一个实施例,所述Q1个参数组中至少两个参数组对应的移动速度范围存在交叠。
作为上述实施例的一个子实施例,所述Q1个参数组中每个参数组显式的指示相应的移动速度范围。
实施例8
实施例8示例了根据本申请的一个实施例的第二参考信号的传输流程图,如附图8所示。附图8中,方框F1中的步骤是可选的。
第二节点U2在步骤S301中发送第二参考信号;第一节点U1在步骤S401中接收第二参考信号,在步骤S402中发送第二位置信息,所述第二位置信息包括第二时间信息;
实施例8中,针对所述第二参考信号的测量被用于生成所述第二位置信息;所述第二参考信号占用的时间资源与所述行为开始第一计时器在时间上是关联的。
在不冲突的情况下,实施例1中的针对所述第一位置信息和所述第一时间信息的那些实施例同样适用于所述第二位置信息和所述第二时间信息,这里不再赘述。
作为一个实施例,所述第二节点U2在步骤S302中接收所述第二位置信息。
上述方法通过副链路传递所述第二位置信息,能降低定位所需要的延迟。
作为上述实施例的一个替代实施例,所述第二位置信息被所述第一节点U1发送给位置服务中心,例如LMF。
上述实施例具备较好的兼容性。
作为一个实施例,所述句子所述第二参考信号占用的时间资源与所述行为开始第一计时器在时间上是关联的是指:所述第一信令被用于调度所述第二参考信号。
作为一个实施例,所述句子所述第二参考信号占用的时间资源与所述行为开始第一计时器在时间上是关联的是指:所述第一信令所占用的时隙被用于确定所述第二参考信号占用的所述时间资源以及所述行为开始第一计时器的时间。
作为一个实施例,所述句子所述第二参考信号占用的时间资源与所述行为开始第一计时器在时间上是关联的包括:所述第二参考信号占用的所述时间资源与所述行为开始第一计时器之间的时间间隔不超过所述第一计时器的值。
作为一个实施例,所述句子所述第二参考信号占用的时间资源与所述行为开始第一计时器在时间上是关联的包括:所述第一计时器在所述第一无线信号所占用的时间资源与所述第二参考信号占用的所述时间资源之间没有发生过期。
作为一个实施例,所述句子所述第二参考信号占用的时间资源与所述行为开始第一计时器在时间上是关联的包括:所述第一计时器在所述第一无线信号所占用的时间资源与所述第二参考信号占用的所述时间资源之间处于运行状态。
作为一个实施例,仅在所述第一条件集合被满足的条件下,所述行为发送第二位置信息被执行。
作为上述实施例的一个子实施例,所述第二参考信号在所述第一参考信号之后被发送。
作为一个实施例,所述第一条件集合包括:所述行为接收第二参考信号被执行。
作为上述实施例的一个子实施例,所述第二参考信号在所述第一参考信号之前被发送。
作为一个实施例,所述第一条件集合包括:所述行为发送第二位置信息被执行。
作为上述实施例的一个子实施例,所述第二参考信号在所述第一参考信号之前被发送。
作为上述三个实施例的一个子实施例,所述第一时间信息包括接收发送(Rx-Tx)时间差(time difference),所述第二时间信息包括接收发送时间差。
上述子实施例的优势在于,确保所述第一时间信息和所述第二时间信息在相邻时间内测量得到,能有效避免高速移动带来的定位不准确。
作为一个实施例,所述第一信令被用于调度所述第二参考信号。
实施例9
实施例9示例了根据本申请的一个实施例的第一计时器开始和第一计时器过期的示意图,如附图9所示。
实施例9中,箭头O1和箭头O2分别表示第一计时器开始的时间和(假设未被提前停止)第一计时器过期的时间;第一时间资源和第二时间资源都位于箭头O1和箭头O2之间的时域资源上。
作为一个实施例,第一参考信号和第二参考信号分别在所述第一时间资源和所述第二时间资源内,所述第一时间信息包括接收发送时间差,所述第二时间信息包括接收发送时间差。
作为一个实施例,第一参考信号和第二参考信号分别在所述第二时间资源和所述第一时间资源内,所述第一时间信息包括接收发送时间差,所述第二时间信息包括接收发送时间差。
上述两个实施例确保所述第一参考信号和所述第二参考信号在时域上的间隔不会太远;即使所述第一节点和所述第二节点在高速移动中,上述方法也能确保定位精度。
作为一个实施例,所述第一时间资源和所述第二时间资源分别是一个时隙。
作为一个实施例,所述第一计时器开始和所述第一计时器过期之间间隔的时隙的数量是所述第一计时器的值。
下面以Rx-T下时间差为例介绍一种非限制性的定位方法,分别测量所述第一参考信号和测量所述第二参考信号得到的两个Rx-Tx时间差能够被用于计算第一节点和第二节点之间的传播延时;进一步的,传播延时乘以光速得到第一节点和第二节点之间的距离。如果被定位的是第二节点且第一节点的位置是已知的,所述第二节点到所述第一节点的距离能够(结合其他参数,例如所述第二节点到基站的距离或者所述第二节点到其他UE的距离)辅助计算所述第一节点的位置。
实施例10
实施例10示例了根据本申请的一个实施例的第二节点发送第一位置信息给网络设备以及第一节点发送第二位置信息给网络设备的示意图,如附图10所示。
第二节点U2在步骤S601中发送第一位置信息给网络设备U3,第一节点U1在步骤S501中发送第二位置信息给网络设备U3,所述网络设备U3在步骤S701中接收所述第一位置信息和所述第二位置信息。
实施例10中,所述第一位置信息和所述第二位置信息分别包括一个IE(Information Element,信息单元),所述一个IE的名字包括RxTxTimeDiff。
实施例10能和现有的UE功能保持较好的兼容性,降低UE的复杂度。
作为一个实施例,所述网络设备U3包括LMF。
作为一个实施例,所述网络设备U3是核心网设备。
作为一个实施例,所述网络设备U3包括NG-RAN。
作为一个实施例,所述第一位置信息和所述第二位置信息分别包括一个Rx-Tx时间差测量结果。
作为一个实施例,所述一个IE的名字包括sidelink或者sl。
作为一个实施例,所述一个IE的名字包括nr-sidelink-RxTxTimeDiff。
作为一个实施例,所述一个IE的名字包括nr-sl-RxTxTimeDiff。
作为一个实施例,所述一个IE的名字是nr-sidelink-RxTxTimeDiff-r18。
作为一个实施例,所述一个IE的名字是nr-sl-RxTxTimeDiff-r18。
为一个实施例,所述第一位置信息和所述第二位置信息分别是一个NR-Multi-RTT-SignalMeasurementInformationsidelink IE。
实施例11
实施例11示例了根据本申请的一个实施例的第一节点发送第一位置信息和第二位置信息给网络设备的示意图,如附图11所示。
第二节点U2在步骤S2601中发送第一位置信息给第一节点U1,第一节点U1在步骤S2501中接收所述第一位置信息,在步骤S2502中发送所述第一位置信息和第二位置信息给网络设备U3,所述 网络设备U3在步骤S2701中接收所述第一位置信息和所述第二位置信息。
实施例11中,所述第一位置信息和所述第二位置信息分别包括一个IE(Information Element,信息单元),所述一个IE的名字包括RxTxTimeDiff。
实施例11能降低上行链路的开销,或者,适合第二节点U2处于小区覆盖外的场景。
作为一个实施例,所述第二节点U2是待定位的UE,所述第一节点U1是辅助所述第二节点U2进行定位的多个UE中的一个。
作为一个实施例,所述第一节点U1是待定位的UE,所述第二节点U2是辅助所述第一节点U1进行定位的多个UE中的一个。
在不冲突的情况下,实施例11中的所述网络设备U3、所述第一位置信息和所述第二位置信息共享上述实施例10中的实施例。
实施例12
实施例12示例了根据本申请的一个实施例的第二节点发送第一位置信息和第二位置信息给网络设备的示意图,如附图12所示。
第一节点U1在步骤S1501中发送第二位置信息给第二节点U2,第二节点U2在步骤S1601中接收所述第二位置信息,在步骤S1602中发送所述第二位置信息和第一位置信息给网络设备U3,所述网络设备U3在步骤S1701中接收所述第一位置信息和所述第二位置信息。
实施例12中,所述第一位置信息和所述第二位置信息分别包括一个IE(Information Element,信息单元),所述一个IE的名字包括RxTxTimeDiff。
实施例12能降低上行链路的开销,或者,适合第二节点U1处于小区覆盖外的场景。
作为一个实施例,所述第二节点U2是待定位的UE,所述第一节点U1是辅助所述第二节点U2进行定位的多个UE中的一个。
上述实施例避免了多个UE将位置信息分别发给网络设备所带来的不便。
作为一个实施例,所述第一节点U1是待定位的UE,所述第二节点U2是辅助所述第一节点U1进行定位的多个UE中的一个。
在不冲突的情况下,实施例12中的所述网络设备U3、所述第一位置信息和所述第二位置信息共享上述实施例10中的实施例。
作为一个实施例,所述第二位置信息和所述第一位置信息分别包括一个时间戳(timestamp)。
作为一个实施例,在步骤S1602中被发送的所述第二位置信息和所述第一位置信息属于同一个IE,所述同一个IE包括第一时间戳,所述第一时间戳被应用于所述第一位置信息和所述第二位置信息。
作为一个实施例,所述第一时间戳指示的时间单位是与所述第一计时器的值指示的时间长度相同。
作为一个实施例,所述第一时间戳指示第一计时器开始的时隙。
作为一个实施例,所述第一时间戳包括SFN(System Frame Number,系统帧号)和时隙号。
实施例13
实施例13示例了根据本申请的一个实施例的第一时间信息和第二时间信息的示意图,如附图13所示。附图13用于描述时间信息,并不限制第一子帧和第二子帧的相对时间关系,也不限制第一参考子帧和第二参考子帧的相对时间关系。
实施例13中,所述第二时间信息包括第二接收时间和第二发送时间的差值–如附图13中的双向箭头t1所示;所述第二接收时间是所述第一节点接收第二子帧(或者子帧i)的时间,所述第二发送时间是所述第一节点发送第二参考子帧(或者子帧j)的时间;所述第二参考子帧(或者子帧j)是根据所述第一节点的发送时间与接收的所述第二子帧(或者子帧i)最近的一个子帧;所述第二参考信号的至少部分被包括在所述第二子帧中。
实施例13中第一时间信息包括第一接收时间和第一发送时间的差值-如附图13中的双向箭头t2 所示;所述第一接收时间是第二节点接收第一子帧(或者子帧n)的时间,所述第一发送时间是所述第二节点发送第一参考子帧(或者子帧m)的时间;所述第一参考子帧(或者子帧m)是根据所述第二节点的发送时间与接收的所述第一子帧(或者子帧n)最近的一个子帧;所述第一参考信号的至少部分被包括在所述第一子帧中。
位置服务中心或者待定位的UE根据t1和t2可以得到第一节点和第二节点之间的传播延时,即(t1+t2)/2。
作为一个实施例,所述第二参考信号在所述第二子帧的部分多载波符号中被接收,所述第一参考信号在所述第一子帧的部分多载波符号中被接收。
作为一个实施例,第一子帧、第二子帧、第一参考子帧和第二参考子帧都处于第一计时器在运行的时间中。
需要说明的是,实施例13并未排除其他的定位方法,例如基于到达时间或者RSRP等等。
实施例14
实施例14示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;如附图14所示。在附图14中,第一节点中的处理装置1600包括第一接收机1601和第一发送机1602。
所述第一接收机1601接收第一信令;第一发送机1602,作为接收所述第一信令的响应,开始第一计时器;仅在第一条件集合被满足的条件下,发送第一无线信号;
实施例14中,所述第一无线信号包括第一参考信号,针对所述第一参考信号的测量被用于生成第一位置信息,所述第一位置信息包括第一时间信息;所述第一条件集合包括第一计时器未过期。
作为一个实施例,所述第一接收机1601接收所述第一位置信息。
作为一个实施例,所述第一接收机1601接收所述第一位置信息,所述第一发送机1602发送所述第一位置信息。
作为一个实施例,所述第一接收机1601,接收第二参考信号;所述第一发送机1602,发送第二位置信息,所述第二位置信息包括第二时间信息;其中,针对所述第二参考信号的测量被用于生成所述第二位置信息;所述第二参考信号占用的时间资源与所述行为开始第一计时器在时间上是关联的。
作为一个实施例,所述第二时间信息包括第二接收时间和第二发送时间的差值;所述第二接收时间是所述第一节点接收第二子帧的时间,所述第二发送时间是所述第一节点发送第二参考子帧的时间;所述第二参考子帧是根据所述第一节点的发送时间与接收的所述第二子帧最近的一个子帧;所述第二参考信号的至少部分被包括在所述第二子帧中。
作为一个实施例,所述第一时间信息包括第一接收时间和第一发送时间的差值;所述第一接收时间是第二节点接收第一子帧的时间,所述第一发送时间是所述第二节点发送第一参考子帧的时间;所述第一参考子帧是根据所述第二节点的发送时间与接收的所述第一子帧最近的一个子帧;所述第一参考信号的至少部分被包括在所述第一子帧中。
作为一个实施例,所述第一信令是非单播的。
作为一个实施例,第二信令被用于生成所述第一无线信号;所述第二信令被用于调度所述第一参考信号。
作为一个实施例,所述第一接收机1601通过副链路接收第三信令,所述第三信令被用于指示所述第一条件集合。
作为一个实施例,所述第三信令指示Q1个参数组,所述Q1是大于1的正整数;所述Q1个参数组中每个参数组包括一个时间长度;所述第一计时器的所述值是第一参数组指示的所述一个时间长度,所述第一节点的移动速度被用于从所述Q1个参数组中确定所述第一参数组。
上述实施例能根据运动速度灵活调整第一计时器的值,平衡了定位性能和调度自由度。
作为一个实施例,所述第一节点1600是一个用户设备。
作为一个实施例,所述第一发送机1602包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一发送机1602包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467。
作为一个实施例,所述第一接收机1601包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一接收机1601包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一接收机1601包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前三者。
实施例15
实施例15示例了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;如附图15所示。在附图15中,第二节点中的处理装置1700包括第二发送机1701和第二接收机1702。
第二发送机1701,发送第一信令,所述第一信令被用于开始第一计时器;第二接收机1702,在第一计时器开始之后检测第一无线信号;
实施例15中,所述第一无线信号包括第一参考信号,针对所述第一参考信号的测量被用于生成第一位置信息,所述第一位置信息包括第一时间信息。
作为一个实施例,所述第二发送机1701,发送所述第一位置信息;其中,所述第一无线信号被检测出。
作为一个实施例,所述第二发送机1701,发送第二参考信号;
其中,针对所述第二参考信号的测量被用于生成第二位置信息,所述第二位置信息包括第二时间信息;所述第二参考信号占用的时间资源与所述行为开始第一计时器在时间上是关联的。
作为一个实施例,所述第二接收机1702接收所述第二位置信息。
作为一个实施例,所述第二发送机,发送第三信令,所述第三信令被用于指示所述第一条件集合。
作为一个实施例,所述第二时间信息包括第二接收时间和第二发送时间的差值;所述第二接收时间是所述第一节点接收第二子帧的时间,所述第二发送时间是所述第一节点发送第二参考子帧的时间;所述第二参考子帧是根据所述第一节点的发送时间与接收的所述第二子帧最近的一个子帧;所述第二参考信号的至少部分被包括在所述第二子帧中。
作为一个实施例,所述第一时间信息包括第一接收时间和第一发送时间的差值;所述第一接收时间是第二节点接收第一子帧的时间,所述第一发送时间是所述第二节点发送第一参考子帧的时间;所述第一参考子帧是根据所述第二节点的发送时间与接收的所述第一子帧最近的一个子帧;所述第一参考信号的至少部分被包括在所述第一子帧中。
作为一个实施例,所述第一信令是非单播的。
作为一个实施例,第二信令被用于生成所述第一无线信号;所述第二信令被用于调度所述第一参考信号。
作为一个实施例,所述第二接收机1702包括所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475。
作为一个实施例,所述第二接收机1702包括所述控制器/处理器475。
作为一个实施例,所述第二发送机1701发送所述第一无线信号,所述第二发射机1701包括所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475。
作为一个实施例,所述第二发送机1701发送所述第一无线信号,所述第二发送机1701包括所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475。
作为一个实施例,所述第二发送机1701发送所述第一无线信号,所述第二发送机1701包括所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475。
作为一个实施例,所述第二发送机1701发送所述第一无线信号,所述第二发送机1701包括所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理 器475。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (36)

  1. 一种被用于无线通信的第一节点,其中,包括:
    第一接收机,接收第一信令;
    第一发送机,作为接收所述第一信令的响应,开始第一计时器;仅在第一条件集合被满足的条件下,发送第一无线信号;
    其中,所述第一无线信号包括第一参考信号,针对所述第一参考信号的测量被用于生成第一位置信息,所述第一位置信息包括第一时间信息;所述第一条件集合包括第一计时器未过期。
  2. 根据权利要求1所述的第一节点,其特征在于,包括:
    所述第一接收机,接收第二参考信号;
    所述第一发送机,发送第二位置信息,所述第二位置信息包括第二时间信息;
    其中,针对所述第二参考信号的测量被用于生成所述第二位置信息;所述第二参考信号占用的时间资源与所述行为开始第一计时器在时间上是关联的。
  3. 根据权利要求2所述的第一节点,其特征在于,所述第二时间信息包括第二接收时间和第二发送时间的差值;所述第二接收时间是所述第一节点接收第二子帧的时间,所述第二发送时间是所述第一节点发送第二参考子帧的时间;所述第二参考子帧是根据所述第一节点的发送时间与接收的所述第二子帧最近的一个子帧;所述第二参考信号的至少部分被包括在所述第二子帧中。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,所述第一时间信息包括第一接收时间和第一发送时间的差值;所述第一接收时间是第二节点接收第一子帧的时间,所述第一发送时间是所述第二节点发送第一参考子帧的时间;所述第一参考子帧是根据所述第二节点的发送时间与接收的所述第一子帧最近的一个子帧;所述第一参考信号的至少部分被包括在所述第一子帧中。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,所述第一信令是非单播的。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,第二信令被用于生成所述第一无线信号;所述第二信令被用于调度所述第一参考信号。
  7. 根据权利要求1至6中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一接收机,接收第三信令,所述第三信令被用于指示所述第一条件集合。
  8. 根据权利要求7所述的第一节点,其特征在于,所述第三信令指示Q1个参数组,所述Q1是大于1的正整数;所述Q1个参数组中每个参数组包括一个时间长度;所述第一计时器的所述值是第一参数组指示的所述一个时间长度,所述第一节点的移动速度被用于从所述Q1个参数组中确定所述第一参数组。
  9. 一种被用于无线通信的第二节点,其中,包括:
    第二发送机,发送第一信令,所述第一信令被用于开始第一计时器;
    第二接收机,在第一计时器开始之后检测第一无线信号;
    其中,所述第一无线信号包括第一参考信号,针对所述第一参考信号的测量被用于生成第一位置信息,所述第一位置信息包括第一时间信息。
  10. 根据权利要求9所述的第二节点,其特征在于,包括:
    所述第二发送机,发送所述第一位置信息;
    其中,所述第一无线信号被检测出。
  11. 根据权利要求9或10所述的第二节点,其特征在于,包括:
    所述第二发送机,发送第二参考信号;
    其中,针对所述第二参考信号的测量被用于生成第二位置信息,所述第二位置信息包括第二时间信息;所述第二参考信号占用的时间资源与所述行为开始第一计时器在时间上是关联的。
  12. 根据权利要求11所述的第二节点,其特征在于,包括:
    所述第二接收机,接收所述第二位置信息。
  13. 根据权利要求11或12所述的第二节点,其特征在于,所述第二时间信息包括第二接收时间和第二发送时间的差值;所述第二接收时间是所述第一节点接收第二子帧的时间,所述第二发送 时间是所述第一节点发送第二参考子帧的时间;所述第二参考子帧是根据所述第二位置信息的发送者的发送时间与接收的所述第二子帧最近的一个子帧;所述第二参考信号的至少部分被包括在所述第二子帧中。
  14. 根据权利要求9至13中任一权利要求所述的第二节点,其特征在于,所述第一时间信息包括第一接收时间和第一发送时间的差值;所述第一接收时间是所述第二节点接收第一子帧的时间,所述第一发送时间是所述第二节点发送第一参考子帧的时间;所述第一参考子帧是根据所述第二节点的发送时间与接收的所述第一子帧最近的一个子帧;所述第一参考信号的至少部分被包括在所述第一子帧中。
  15. 根据权利要求9至14中任一权利要求所述的第二节点,其特征在于,所述第一信令是非单播的。
  16. 根据权利要求9至15中任一权利要求所述的第二节点,其特征在于,第二信令被用于生成所述第一无线信号;所述第二信令被用于调度所述第一参考信号。
  17. 根据权利要求9至14中任一权利要求所述的第二节点,其特征在于,包括:
    所述第二发送机,发送第三信令,所述第三信令被用于指示所述第一条件集合。
  18. 根据权利要求17所述的第一节点,其特征在于,所述第三信令指示Q1个参数组,所述Q1是大于1的正整数;所述Q1个参数组中每个参数组包括一个时间长度;所述第一计时器的所述值是第一参数组指示的所述一个时间长度,所述第二位置信息的发送者的移动速度被用于从所述Q1个参数组中确定所述第一参数组。
  19. 一种被用于无线通信的第一节点中的方法,其中,包括:
    接收第一信令;
    作为接收所述第一信令的响应,开始第一计时器;仅在第一条件集合被满足的条件下,发送第一无线信号;
    其中,所述第一无线信号包括第一参考信号,针对所述第一参考信号的测量被用于生成第一位置信息,所述第一位置信息包括第一时间信息;所述第一条件集合包括第一计时器未过期。
  20. 根据权利要求19所述的第一节点,其特征在于,包括:
    接收第二参考信号;
    发送第二位置信息,所述第二位置信息包括第二时间信息;
    其中,针对所述第二参考信号的测量被用于生成所述第二位置信息;所述第二参考信号占用的时间资源与所述行为开始第一计时器在时间上是关联的。
  21. 根据权利要求20所述的第一节点中的方法,其特征在于,所述第二时间信息包括第二接收时间和第二发送时间的差值;所述第二接收时间是所述第一节点接收第二子帧的时间,所述第二发送时间是所述第一节点发送第二参考子帧的时间;所述第二参考子帧是根据所述第一节点的发送时间与接收的所述第二子帧最近的一个子帧;所述第二参考信号的至少部分被包括在所述第二子帧中。
  22. 根据权利要求19至21中任一权利要求所述的第一节点中的方法,其特征在于,所述第一时间信息包括第一接收时间和第一发送时间的差值;所述第一接收时间是第二节点接收第一子帧的时间,所述第一发送时间是所述第二节点发送第一参考子帧的时间;所述第一参考子帧是根据所述第二节点的发送时间与接收的所述第一子帧最近的一个子帧;所述第一参考信号的至少部分被包括在所述第一子帧中。
  23. 根据权利要求19至22中任一权利要求所述的第一节点中的方法,其特征在于,所述第一信令是非单播的。
  24. 根据权利要求19至23中任一权利要求所述的第一节点中的方法,其特征在于,第二信令被用于生成所述第一无线信号;所述第二信令被用于调度所述第一参考信号。
  25. 根据权利要求19至24中任一权利要求所述的第一节点中的方法,其特征在于,包括:
    接收第三信令,所述第三信令被用于指示所述第一条件集合。
  26. 根据权利要求25所述的第一节点中的方法,其特征在于,所述第三信令指示Q1个参数组,所述Q1是大于1的正整数;所述Q1个参数组中每个参数组包括一个时间长度;所述第一计时器的 所述值是第一参数组指示的所述一个时间长度,所述第一节点的移动速度被用于从所述Q1个参数组中确定所述第一参数组。
  27. 一种被用于无线通信的第二节点中的方法,其中,包括:
    发送第一信令,所述第一信令被用于开始第一计时器;
    在第一计时器开始之后检测第一无线信号;
    其中,所述第一无线信号包括第一参考信号,针对所述第一参考信号的测量被用于生成第一位置信息,所述第一位置信息包括第一时间信息;所述第一条件集合包括第一计时器未过期。
  28. 根据权利要求27所述的第二节点中的方法,其特征在于,包括:
    发送所述第一位置信息;
    其中,所述第一无线信号被检测出。
  29. 根据权利要求27或28所述的第二节点中的方法,其特征在于,包括:
    发送第二参考信号;
    其中,针对所述第二参考信号的测量被用于生成第二位置信息,所述第二位置信息包括第二时间信息;所述第二参考信号占用的时间资源与所述行为开始第一计时器在时间上是关联的。
  30. 根据权利要求29所述的第二节点中的方法,其特征在于,包括:
    接收所述第二位置信息。
  31. 根据权利要求29或30所述的第二节点中的方法,其特征在于,所述第二时间信息包括第二接收时间和第二发送时间的差值;所述第二接收时间是所述第一节点接收第二子帧的时间,所述第二发送时间是所述第一节点发送第二参考子帧的时间;所述第二参考子帧是根据所述第二位置信息的发送者的发送时间与接收的所述第二子帧最近的一个子帧;所述第二参考信号的至少部分被包括在所述第二子帧中。
  32. 根据权利要求27至31中任一权利要求所述的第二节点中的方法,其特征在于,所述第一时间信息包括第一接收时间和第一发送时间的差值;所述第一接收时间是所述第二节点接收第一子帧的时间,所述第一发送时间是所述第二节点发送第一参考子帧的时间;所述第一参考子帧是根据所述第二节点的发送时间与接收的所述第一子帧最近的一个子帧;所述第一参考信号的至少部分被包括在所述第一子帧中。
  33. 根据权利要求27至32中任一权利要求所述的第二节点中的方法,其特征在于,所述第一信令是非单播的。
  34. 根据权利要求27至33中任一权利要求所述的第二节点中的方法,其特征在于,第二信令被用于生成所述第一无线信号;所述第二信令被用于调度所述第一参考信号。
  35. 根据权利要求27至32中任一权利要求所述的第二节点中的方法,其特征在于,包括:
    发送第三信令,所述第三信令被用于指示所述第一条件集合。
  36. 根据权利要求35所述的第一节点中的方法,其特征在于,所述第三信令指示Q1个参数组,所述Q1是大于1的正整数;所述Q1个参数组中每个参数组包括一个时间长度;所述第一计时器的所述值是第一参数组指示的所述一个时间长度,所述第二位置信息的发送者的移动速度被用于从所述Q1个参数组中确定所述第一参数组。
PCT/CN2023/094100 2022-05-19 2023-05-15 用于定位的方法和装置 WO2023221903A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210552847.5 2022-05-19
CN202210552847.5A CN117135560A (zh) 2022-05-19 2022-05-19 用于定位的方法和装置

Publications (1)

Publication Number Publication Date
WO2023221903A1 true WO2023221903A1 (zh) 2023-11-23

Family

ID=88834608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094100 WO2023221903A1 (zh) 2022-05-19 2023-05-15 用于定位的方法和装置

Country Status (2)

Country Link
CN (1) CN117135560A (zh)
WO (1) WO2023221903A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109392078A (zh) * 2017-08-11 2019-02-26 中兴通讯股份有限公司 信号检测、发送方法及装置、远端用户设备
CN113475124A (zh) * 2019-02-15 2021-10-01 苹果公司 用于用户装备(ue)功率节省的参考信号(rs)监测的自适应的系统和方法
CN114070542A (zh) * 2018-08-10 2022-02-18 北京小米移动软件有限公司 发送、接收参考信号的方法、装置、车载设备及终端
CN114205735A (zh) * 2020-09-03 2022-03-18 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114258130A (zh) * 2020-09-23 2022-03-29 上海诺基亚贝尔股份有限公司 由探测参考信号触发的定位参考信号传输
CN114257276A (zh) * 2020-09-25 2022-03-29 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109392078A (zh) * 2017-08-11 2019-02-26 中兴通讯股份有限公司 信号检测、发送方法及装置、远端用户设备
CN114070542A (zh) * 2018-08-10 2022-02-18 北京小米移动软件有限公司 发送、接收参考信号的方法、装置、车载设备及终端
CN113475124A (zh) * 2019-02-15 2021-10-01 苹果公司 用于用户装备(ue)功率节省的参考信号(rs)监测的自适应的系统和方法
CN114205735A (zh) * 2020-09-03 2022-03-18 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114258130A (zh) * 2020-09-23 2022-03-29 上海诺基亚贝尔股份有限公司 由探测参考信号触发的定位参考信号传输
CN114257276A (zh) * 2020-09-25 2022-03-29 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN117135560A (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
WO2020034848A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2020052446A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20230328700A1 (en) Method and device for wireless communication
US20220368479A1 (en) Method and device in nodes used for wireless communication
WO2020001228A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20230328836A1 (en) Method and device used in communication node for wireless communication
US20230300936A1 (en) Method and device for wireless communication
WO2020038208A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2023221903A1 (zh) 用于定位的方法和装置
WO2023216896A1 (zh) 用于定位的方法和装置
WO2024037414A1 (zh) 一种被用于定位的方法和装置
WO2024046154A1 (zh) 一种用于无线通信的方法和装置
WO2023226926A1 (zh) 一种被用于定位的方法和装置
WO2024046249A1 (zh) 一种被用于定位的方法和装置
WO2024061249A1 (zh) 一种被用于定位的方法和装置
WO2024051623A1 (zh) 一种用于无线通信的方法和装置
WO2022194113A1 (zh) 一种被用于无线通信的方法和设备
WO2024061247A1 (zh) 一种被用于无线通信的方法和设备
WO2024017078A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2022135297A1 (zh) 一种被用于无线通信的方法和设备
US20230371114A1 (en) Method and device for wireless communication
WO2023179468A1 (zh) 一种被用于无线通信的方法和设备
WO2024051625A1 (zh) 一种被用于定位的方法和装置
WO2021129248A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023221902A1 (zh) 一种用于定位的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806855

Country of ref document: EP

Kind code of ref document: A1