WO2024061249A1 - 一种被用于定位的方法和装置 - Google Patents

一种被用于定位的方法和装置 Download PDF

Info

Publication number
WO2024061249A1
WO2024061249A1 PCT/CN2023/119886 CN2023119886W WO2024061249A1 WO 2024061249 A1 WO2024061249 A1 WO 2024061249A1 CN 2023119886 W CN2023119886 W CN 2023119886W WO 2024061249 A1 WO2024061249 A1 WO 2024061249A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
reference signal
airspace
positioning
information
Prior art date
Application number
PCT/CN2023/119886
Other languages
English (en)
French (fr)
Inventor
刘瑾
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024061249A1 publication Critical patent/WO2024061249A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to transmission methods and devices in wireless communication systems, and in particular to solutions and devices related to positioning in wireless communications.
  • Positioning is an important application in the field of wireless communications; the emergence of new applications such as V2X (Vehicle to everything) or the Industrial Internet of Things has put forward higher requirements for positioning accuracy or delay.
  • V2X Vehicle to everything
  • RAN Radio Access Network
  • NR Rel-18 needs to support the enhanced positioning technology of Sidelink Positioning (SL Positioning).
  • the mainstream sidelink positioning technology includes SL RTT (Round Trip Time) based on ) technology, SL AOA (Angle-of-Arrival, angle of arrival), SL TDOA (Time Difference of Arrival, time difference of arrival) and SL AOD (Angle-of-Departure, angle of departure), etc., and the execution of these technologies depends on Measurement of SL PRS (Sidelink Positioning Reference Signal, secondary link positioning reference signal). Secondary link positioning technology, especially based on SL RTT technology, needs to be further enhanced to improve SL positioning accuracy.
  • this application discloses a positioning solution.
  • the V2X scenario is only used as a typical application scenario or example; this application is also applicable to scenarios other than V2X that face similar problems, such as public safety (Public Safety) and industrial goods. Networking, etc., and achieve technical effects similar to those in NR V2X scenarios.
  • the motivation of this application is to target the scenario where the sender of the wireless signal used for positioning measurement is mobile, this application is still applicable to the scenario where the sender of the wireless signal used for positioning measurement is fixed, such as RSU (Road Side Unit, roadside unit) etc.
  • RSU Raad Side Unit, roadside unit
  • Using a unified solution for different scenarios also helps reduce hardware complexity and cost.
  • the embodiments and features in the embodiments in any node of this application can be applied to any other node.
  • the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily without conflict.
  • This application discloses a method used in a first node of wireless communication, which is characterized by including:
  • the second reference signal occupies a second RS resource
  • the first airspace relationship information indicates the airspace relationship between the first RS resource and the second RS resource; the first RS resource and the first airspace relationship information are jointly used to determine the Second RS resource; measurements on the second reference signal are used to generate first location information.
  • the problem to be solved by this application is: for double-sided RTT technology, how to enable the UE to effectively receive positioning reference signals in the case of multiple beams.
  • the problem to be solved by this application is: for secondary link positioning, how to associate the transmitted positioning reference signal with the received positioning reference signal, thereby reducing the signaling overhead of interaction.
  • the method of the present application is: establishing a relationship between the first RS resource and the second RS resource.
  • the method of this application is to establish an airspace relationship between the first RS resource and the second RS resource through the first airspace relationship information.
  • the method of this application is beneficial to improving the accuracy of secondary link positioning.
  • the method of this application is beneficial to reducing the implementation complexity of the air domain transmission filter.
  • the method of the present application is beneficial to saving signaling overhead for resource configuration.
  • the method of the present application is beneficial to saving the signaling overhead of the first location information.
  • the above method is characterized in that the first RS resource set includes at least one first type RS resource, the second RS resource set includes at least one second type RS resource, and the first airspace relationship information indicates that the The airspace relationship between the first RS resource set and the second RS resource set, the first RS resource is a first type RS resource in the first RS resource set, and the second RS resource is the A second type of RS resource in the second RS resource set.
  • the above method is characterized in that the first RS resource belongs to a first resource pool, the second RS resource belongs to a second resource pool, and the first resource pool and the second resource pool different.
  • the above method is characterized by comprising:
  • the first configuration information is used to configure the first resource pool, and the first configuration information includes the first airspace relationship information.
  • the above method is characterized by comprising:
  • the second airspace relationship information indicates the airspace relationship between a given reference signal and the first reference signal;
  • the given reference signal includes S-SSB, SL CSI-RS, SRS, and SL PRS. at least one of.
  • the above method is characterized by comprising:
  • the first signaling includes the first airspace relationship information.
  • the above method is characterized by comprising:
  • the measurement of the first reference signal is used to generate the first positioning related information
  • the first positioning related information is also used to generate the first position information
  • the above method is characterized in that the first node is user equipment (UE, User Equipment).
  • UE user equipment
  • the above method is characterized in that the first node is a relay node.
  • the above method is characterized in that the first node is a roadside unit (RSU, Road Side Unit).
  • RSU Road Side Unit
  • This application discloses a method used in a second node of wireless communication, which is characterized by including:
  • Receive the first signaling use the second spatial transmission filter to receive the first reference signal, where the first reference signal occupies the first RS resource;
  • the first signaling indicates first airspace relationship information
  • the first airspace relationship information indicates the airspace relationship between the first RS resource and the second RS resource
  • the first RS resource and the The first airspace relationship information is jointly used to determine the second RS resource
  • the measurement of the first reference signal is used to generate first positioning related information.
  • the above method is characterized in that the first RS resource set includes at least one first type RS resource, the second RS resource set includes at least one second type RS resource, and the first airspace relationship information indicates that the The airspace relationship between the first RS resource set and the second RS resource set, the first RS resource is a first type RS resource in the first RS resource set, and the second RS resource is the A second type of RS resource in the second RS resource set.
  • the above method is characterized in that the first RS resource belongs to a first resource pool, the second RS resource belongs to a second resource pool, and the first resource pool and the second resource pool different.
  • the above method is characterized by comprising:
  • the first positioning related information is used to generate first location information.
  • the above method is characterized in that the second node is user equipment.
  • the above method is characterized in that the second node is a relay node.
  • the above method is characterized in that the second node is a roadside device.
  • This application discloses a first node used for wireless communication, which is characterized by including:
  • the first receiver receives the first airspace relationship information
  • the first transmitter uses the first spatial transmission filter to send the first reference signal, where the first reference signal occupies the first RS resource;
  • the second receiver uses the first spatial transmission filter to receive a second reference signal, and the second reference signal occupies a second RS resource;
  • the first airspace relationship information indicates the airspace relationship between the first RS resource and the second RS resource; the first RS resource and the first airspace relationship information are jointly used to determine the Second RS resource; measurements for the second reference signal are used to generate first location information.
  • the present application discloses a second node used for wireless communication, characterized in that it includes:
  • the third receiver receives the first signaling; uses the second spatial transmission filter to receive the first reference signal, where the first reference signal occupies the first RS resource;
  • the second transmitter uses the second spatial transmission filter to send a second reference signal, and the second reference signal occupies a second RS resource;
  • the first signaling indicates first airspace relationship information
  • the first airspace relationship information indicates the airspace relationship between the first RS resource and the second RS resource
  • the first RS resource and the The first airspace relationship information is jointly used to determine the second RS resource
  • the measurement of the first reference signal is used to generate first positioning related information.
  • Figure 1 shows a processing flow chart of a first node according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of the wireless protocol architecture of the user plane and control plane according to one embodiment of the present application
  • Figure 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a structural diagram of UE positioning according to an embodiment of the present application
  • Figure 6 shows a wireless signal transmission flow chart according to an embodiment of the present application
  • Figure 7 shows a schematic diagram of the relationship between the first RS resource set and the second RS resource set according to an embodiment of the present application
  • Figure 8 shows a schematic diagram of the relationship between the first RS resource, the second RS resource and the first resource pool and the second resource pool according to an embodiment of the present application
  • Figure 9 shows a schematic diagram of the relationship between the first reference signal, the second reference signal, the first positioning-related information, and the first location information according to an embodiment of the present application
  • Figure 10 shows a structural block diagram of a processing device used in a first node according to an embodiment of the present application
  • Figure 11 shows a structural block diagram of a processing device used in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flow chart of the first node according to an embodiment of the present application, as shown in Figure 1.
  • each box represents a step.
  • the first node in this application performs step 101 to receive the first airspace relationship information; performs step 102 to send the first reference signal using the first airspace transmission filter, and the first reference signal occupies the first RS resources; perform step 103 to receive a second reference signal with the first airspace transmission filter, and the second reference signal occupies a second RS resource; wherein the first airspace relationship information indicates the first RS resource The airspace relationship with the second RS resource; the first RS resource and the first airspace relationship information are jointly used to determine the second RS resource; the measurement of the second reference signal is used To generate the first location information.
  • the first airspace relationship information is configured from a higher layer of the first node.
  • the first airspace relationship information is configured from gNB.
  • the first airspace relationship information is configured from LMF (Location Management Function).
  • the spatial relationship between the first RS resource and the second RS resource includes the spatial relationship between the first reference signal and the second reference signal.
  • the spatial relationship between the first RS resource and the second RS resource and the spatial relationship between the first reference signal and the second reference signal are interchangeable.
  • the airspace relationship is an airspace relationship between a reference RS and a target RS.
  • the reference RS is at least one of S-SSB, SL CSI-RS, SRS, and SL PRS.
  • the target RS is at least one of S-SSB, SL CSI-RS, SRS, and SL PRS.
  • the reference RS of the first spatial relationship information is the first reference signal.
  • the target RS of the first airspace relationship information is the second reference signal.
  • the reference RS of the first airspace relationship information is the first RS resource.
  • the target RS of the first airspace relationship information is the second RS resource.
  • the first airspace relationship information includes: the receiver of the first RS resource sends the second RS resource using an airspace transmission filter used to receive the first RS resource.
  • the first spatial transmission filter is used to transmit the first reference signal.
  • the first spatial transmission filter is used to receive the second reference signal.
  • the first spatial domain transmission filter is related to the transmission beam of the first reference signal.
  • the first spatial transmission filter is related to the receive beam of the second reference signal.
  • the first spatial transmission filter is used to determine the transmission beam of the first reference signal.
  • the first spatial transmission filter is used to determine the receiving beam of the second reference signal.
  • the first spatial transmission filter is at the first node.
  • the first spatial transmission filter is used for the first node.
  • the second spatial transmission filter is used to receive the first reference signal.
  • the second spatial transmission filter is used to send the second reference signal.
  • the second spatial domain transmission filter is related to the receive beam of the first reference signal.
  • the second spatial transmission filter is related to the transmission beam of the second reference signal.
  • the second spatial transmission filter is used to determine the receive beam of the first reference signal.
  • the second spatial domain transmission filter is used to determine the transmission beam of the second reference signal.
  • the second spatial transmission filter is at the second node.
  • the second spatial transmission filter is used for the second node.
  • the first reference signal is used for positioning.
  • the first reference signal is used for sidelink positioning (Sidelink Positioning).
  • the first reference signal is used for location related measurement.
  • the first reference signal is used for side link positioning measurement (Sidelink positioning measurement).
  • the first reference signal is used to determine propagation delay (Propagation Delay).
  • the first reference signal is used to determine RTT (Round Trip Time).
  • the first reference signal is used to obtain location information (Location Information).
  • the first reference signal is used to obtain the Rx-Tx Time Difference.
  • the first reference signal is used to obtain UE Rx-Tx time difference measurement (UE Rx-Tx time difference measurement).
  • the first reference signal is used to obtain the Sidelink Rx-Tx Time Difference.
  • the first reference signal is used to obtain AoA (Angle-of-Arrival).
  • the first reference signal is used to obtain the reception timing (Rx Timing) of the first reference signal.
  • the first reference signal is used to obtain RSRP (Reference Signal Received Power, reference signal received power).
  • RSRP Reference Signal Received Power, reference signal received power
  • the first reference signal is used to obtain RSRPP (Reference Signal Received Path Power, Reference Signal Received Path Power).
  • RSRPP Reference Signal Received Path Power, Reference Signal Received Path Power
  • the first reference signal is used to obtain RSTD (Reference Signal Time Difference, Reference Signal Time Difference).
  • the first reference signal is used to obtain RTOA (Relative Time of Arrival).
  • the first reference signal is used to obtain SL-RTOA.
  • the first reference signal is used for RTT positioning.
  • the first reference signal is used for Single-sided RTT positioning.
  • the first reference signal is used for Double-sided RTT positioning.
  • the first reference signal is configured by an LMF.
  • the first reference signal is configured by a gNB (g-Node-B).
  • the first reference signal is configured by a UE.
  • the first reference signal includes SL-RS (Sidelink Reference Signal).
  • the first reference signal includes SL-PRS (Sidelink Positioning Reference Signal).
  • the first reference signal includes SRS (Sounding Reference Signal).
  • the first reference signal includes S-PSS (Sidelink Primary Synchronization Signal).
  • the first reference signal includes S-SSS (Sidelink Secondary Synchronization Signal).
  • the first reference signal includes PSBCH DMRS (Physical Sidelink Broadcast Channel Demodulation Reference Signal, Physical Sidelink Broadcast Channel Demodulation Reference Signal).
  • PSBCH DMRS Physical Sidelink Broadcast Channel Demodulation Reference Signal, Physical Sidelink Broadcast Channel Demodulation Reference Signal.
  • the first reference signal includes SL CSI-RS (Sidelink Channel State Information-Reference Signal, Sidelink Channel State Information-Reference Signal).
  • SL CSI-RS Segment Channel State Information-Reference Signal, Sidelink Channel State Information-Reference Signal
  • the first reference signal includes a first sequence.
  • the first sequence is used to generate the first reference signal.
  • the first sequence is a pseudo-random sequence (Pseudo-Random Sequence).
  • the first sequence is a Low-PAPR Sequence, Low-Peak to Average Power Ratio.
  • the first sequence is a Gold sequence.
  • the first sequence is an M sequence.
  • the first sequence is a ZC (Zadeoff-Chu) sequence.
  • the first sequence sequentially undergoes sequence generation (Sequence Generation), discrete Fourier Transform (DFT), modulation (Modulation) and resource element mapping (Resource Element Mapping), and wideband symbol generation ( Generation) to obtain the first reference signal.
  • sequence generation Sequence Generation
  • DFT discrete Fourier Transform
  • Modulation Modulation
  • Resource element mapping Resource Element Mapping
  • Generation wideband symbol generation
  • the first sequence is sequentially subjected to sequence generation, resource unit mapping, and wideband symbol generation to obtain the first reference signal.
  • the first sequence is mapped to multiple REs (Resource Elements, resource units) included in the first RS resource.
  • the first RS resource includes multiple REs.
  • the first RS resource is used for secondary link positioning.
  • the first RS resource is used to carry the first reference signal.
  • the first RS resource is reserved for the first reference signal.
  • the first RS resource includes REs occupied by the first reference signal.
  • the REs occupied by the first reference signal belong to the first RS resource.
  • the first RS resources are REs occupied by the first reference signal.
  • the first RS resource only includes REs occupied by the first reference signal.
  • the first RS resource includes REs occupied by multiple reference signals.
  • the first RS resource occupies at least one multi-carrier symbol (Symbol) in the time domain.
  • the first RS resource occupies at least one time slot (Slot) in the time domain.
  • the time domain resource occupied by the first RS resource belongs to one time slot.
  • the first RS resource occupies at least one subcarrier (Subcarrier) in the frequency domain.
  • the first RS resource occupies at least one PRB (Physical Resource Block, physical resource block) in the frequency domain.
  • PRB Physical Resource Block, physical resource block
  • the first RS resource occupies at least one RB (Resource Block) in the frequency domain.
  • the plurality of REs included in the first RS resource are distributed in a comb shape (Comb) on any multi-carrier symbol.
  • the comb size (Comb Size) of the first RS resource is the frequency domain spacing of the multiple REs included in the first time-frequency resource on any multi-carrier symbol.
  • the comb size (Comb Size) of the first RS resource is the number of subcarriers in the frequency domain spacing of the multiple REs included in the first time-frequency resource on any multi-carrier symbol.
  • the comb size of the first RS resource is represented by Comb-N, where N represents the number of subcarriers.
  • the resource bandwidth (Resource Bandwidth) of the first RS resource is the number of RBs occupied by the first RS resource in the frequency domain.
  • the first RS resource occupies at least one subchannel (Subchannel) in the frequency domain.
  • the frequency domain resource occupied by the first RS resource belongs to a sub-channel.
  • the first RS resource occupies at least one multi-carrier symbol in the time domain, and the first RS resource occupies at least one subcarrier in the frequency domain.
  • the first RS resource occupies at least one multi-carrier symbol in the time domain, and the first RS resource occupies at least one PRB in the frequency domain.
  • the time domain resources occupied by the first RS resources belong to a time slot, and the frequency domain resources occupied by the first RS resources belong to a sub-channel.
  • the distribution of the plurality of REs included in the first RS resource is a fully-staggered pattern.
  • the distribution of the multiple REs included in the first RS resource is a semi-staggered pattern.
  • the distribution of the multiple REs included in the first RS resource is an Unstaggered pattern.
  • the first RS resources include S-SS/PSBCH block (Sidelink Synchronization Signal/Physical Sidelink Broadcast Channel block).
  • the first RS resources include positioning reference signal resources.
  • the first RS resource includes a secondary link positioning reference signal resource.
  • the first RS resource is a secondary link positioning reference signal resource.
  • the time domain resource occupied by the first RS resource is a transmission occasion.
  • the time domain resource occupied by the first RS resource is an SL-PRS transmission opportunity.
  • the time domain resource occupied by the first RS resource is the S-SS/PBSCH block transmission opportunity on a time slot.
  • the time domain resource occupied by the first RS resource is the time domain resource occupied by one SL CSI-RS.
  • the time domain resource occupied by the first RS resource is the time domain resource occupied by one SRS.
  • the second reference signal is used for positioning.
  • the second reference signal is used for secondary link positioning.
  • the second reference signal is used for position-related measurements.
  • the second reference signal is used for secondary link positioning measurement.
  • the second reference signal is used to determine propagation delay.
  • the second reference signal is used to determine RTT.
  • the second reference signal is used to obtain location information.
  • the second reference signal is used to obtain the transmission and reception time difference.
  • the second reference signal is used to obtain the UE transmission and reception time difference measurement.
  • the second reference signal is used to obtain the secondary link transmission and reception time difference.
  • the second reference signal is used to obtain the AoA.
  • the second reference signal is used to obtain the reception timing of the second reference signal.
  • the second reference signal is used to obtain RSRP.
  • the second reference signal is used to obtain RSRPP.
  • the second reference signal is used to obtain RSTD.
  • the second reference signal is used to obtain RTOA.
  • the second reference signal is used to obtain SL-RTOA.
  • the second reference signal is used for RTT positioning.
  • the second reference signal is used for Single-sided RTT positioning.
  • the second reference signal is used for Double-sided RTT positioning.
  • the second reference signal is configured by an LMF.
  • the second reference signal is configured by a gNB.
  • the second reference signal is configured by a UE.
  • the second reference signal includes SL-RS.
  • the second reference signal includes SL-PRS.
  • the second reference signal includes SRS.
  • the second reference signal includes S-PSS.
  • the second reference signal includes S-SSS.
  • the second reference signal includes PSBCH DMRS.
  • the second reference signal includes SL CSI-RS.
  • the second reference signal includes a second sequence.
  • the second sequence is used to generate the second reference signal.
  • the second sequence is a pseudo-random sequence.
  • the second sequence is a low peak-to-average ratio sequence.
  • the second sequence is a Gold sequence.
  • the second sequence is an M sequence.
  • the second sequence is a ZC sequence.
  • the second sequence is sequentially subjected to sequence generation, discrete Fourier transform, modulation and resource unit mapping, and the second reference signal is obtained after wideband symbol generation.
  • the second sequence is sequentially subjected to sequence generation, resource unit mapping, and wideband symbol generation to obtain the second reference signal.
  • the second sequence is mapped to multiple REs included in the second RS resource.
  • the second RS resource includes multiple REs.
  • the second RS resource is used for secondary link positioning.
  • the second RS resource is used to carry the second reference signal.
  • the second RS resource is reserved for the second reference signal.
  • the second RS resource includes REs occupied by the second reference signal.
  • the REs occupied by the second reference signal belong to the second RS resource.
  • the second RS resources are REs occupied by the second reference signal.
  • the second RS resource only includes REs occupied by the second reference signal.
  • the second RS resource includes REs occupied by multiple reference signals.
  • the second RS resource occupies at least one multi-carrier symbol in the time domain.
  • the second RS resource occupies at least one time slot in the time domain.
  • the time domain resource occupied by the second RS resource belongs to one time slot.
  • the second RS resource occupies at least one subcarrier in the frequency domain.
  • the second RS resource occupies at least one PRB in the frequency domain.
  • the second RS resource occupies at least one RB in the frequency domain.
  • the plurality of REs included in the second RS resource are distributed in a comb shape on any multi-carrier symbol.
  • the comb size of the second RS resource is the frequency domain spacing of the multiple REs included in the first time-frequency resource on any multi-carrier symbol.
  • the comb size of the second RS resource is the number of subcarriers in the frequency domain spacing of the multiple REs included in the first time-frequency resource on any multi-carrier symbol.
  • the comb size of the second RS resource is represented by Comb-N, where N represents the number of subcarriers.
  • the resource bandwidth of the second RS resource is the number of RBs occupied by the second RS resource in the frequency domain.
  • the second RS resource occupies at least one sub-channel in the frequency domain.
  • the frequency domain resource occupied by the second RS resource belongs to a sub-channel.
  • the second RS resource occupies at least one multi-carrier symbol in the time domain, and the second RS resource occupies at least one subcarrier in the frequency domain.
  • the second RS resource occupies at least one multi-carrier symbol in the time domain, and the second RS resource occupies at least one PRB in the frequency domain.
  • the time domain resource occupied by the second RS resource belongs to a time slot, and the frequency domain resource occupied by the second RS resource belongs to a subchannel.
  • the distribution of the plurality of REs included in the second RS resource is a fully interleaved map.
  • the distribution of the plurality of REs included in the second RS resource is a semi-interleaved map.
  • the distribution of the plurality of REs included in the second RS resource is a non-interleaved map.
  • the second RS resource includes an S-SS/PSBCH block.
  • the second RS resource includes a positioning reference signal resource.
  • the second RS resource includes a secondary link positioning reference signal resource.
  • the second RS resource is a secondary link positioning reference signal resource.
  • the time domain resource occupied by the second RS resource is a transmission opportunity.
  • the time domain resource occupied by the second RS resource is an SL-PRS sending opportunity.
  • the time domain resource occupied by the second RS resource is the S-SS/PBSCH block transmission opportunity on a time slot.
  • the time domain resource occupied by the second RS resource is the time domain resource occupied by one SL CSI-RS.
  • the time domain resource occupied by the second RS resource is the time domain resource occupied by one SRS.
  • the multi-carrier symbols are OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols.
  • the multi-carrier symbols are SC-FDMA (Single-Carrier Frequency Division Multiple Access, single-carrier frequency division multiple access) symbols.
  • the multi-carrier symbols are DFT-S-OFDM (Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing, Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing) symbols.
  • DFT-S-OFDM Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing, Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing
  • the multi-carrier symbols are IFDMA (Interleaved Frequency Division Multiple Access) symbols.
  • measurements on the second reference signal are used to generate the first position information.
  • the measurement of the first reference signal and the measurement of the second reference signal are jointly used to generate the first position information.
  • the first location information includes a sending and receiving time difference.
  • the first location information includes the secondary link sending and receiving time difference.
  • the first location information includes location related measurements.
  • the first location information includes a location estimate.
  • the first location information includes positioning assistance data (Assistance Data).
  • the first location information includes timing quality (TimingQuality).
  • the first location information includes a receive beam index (RxBeamIndex).
  • RxBeamIndex receive beam index
  • the first location information includes received power information.
  • the first location information is used to transfer NAS (Non-Access-Stratum). Specific information.
  • the first location information is used to transfer timing information of a clock.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in Figure 2.
  • Figure 2 illustrates the V2X communication architecture under 5G NR (New Radio), LTE (Long-Term Evolution, Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) system architecture.
  • the 5G NR or LTE network architecture can be called 5GS (5G System)/EPS (Evolved Packet System) or some other suitable term.
  • the V2X communication architecture of Embodiment 2 includes UE201, UE241, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS ( Home Subscriber Server/UDM (Unified Data Management) 220, ProSe function 250 and ProSe application server 230.
  • the V2X communication architecture may interconnect with other access networks, but these entities/interfaces are not shown for simplicity.
  • the V2X communications architecture provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks that provide circuit-switched services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201.
  • gNB 203 may connect to other gNBs 204 via the Xn interface (eg, backhaul).
  • gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), transmitting and receiving node (TRP), or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radio, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radio non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management field)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management field
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway)/UPF (User Plane Function) 212 and P-GW (Packet Data Network Gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles signaling between UE201 and 5GC/EPC210. Basically, MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 is connected to Internet service 230.
  • Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching streaming services.
  • the ProSe function 250 is a logical function for network-related behaviors required by ProSe (Proximity-based Service); including DPF (Direct Provisioning Function), Direct Discovery Name Management Function (Direct Discovery Name) Management Function), EPC-level Discovery ProSe Function (EPC-level Discovery ProSe Function), etc.
  • the ProSe application server 230 has functions such as storing EPC ProSe user identifications, mapping between application layer user identifications and EPC ProSe user identifications, and allocating ProSe restricted code suffix pools.
  • the UE201 and the UE241 are connected through a PC5 reference point.
  • the ProSe function 250 is connected to the UE201 and the UE241 through the PC3 reference point respectively.
  • the ProSe function 250 is connected to the ProSe application server 230 through the PC2 reference point.
  • the ProSe application server 230 is connected to the ProSe application of the UE201 and the ProSe application of the UE241 through the PC1 reference point respectively.
  • the first node in this application is the UE201, and the second node in this application is the UE241.
  • the first node in this application is the UE241
  • the second node in this application is the UE201.
  • the wireless link between the UE201 and the UE241 corresponds to the secondary link in this application.
  • the wireless link from the UE 201 to the NR Node B is an uplink.
  • the wireless link from the NR Node B to the UE 201 is the downlink.
  • the UE 201 supports SL transmission.
  • the UE241 supports SL transmission.
  • the UE201 supports PC5 interface.
  • the UE241 supports PC5 interface.
  • the gNB 203 is a macro cellular (Marco Cellular) base station.
  • the gNB 203 is a Micro Cell base station.
  • the gNB 203 is a PicoCell base station.
  • the gNB 203 is a home base station (Femtocell).
  • the gNB 203 is a base station device that supports a large delay difference.
  • the gNB 203 is an RSU.
  • the gNB 203 includes satellite equipment.
  • the sender of the first reference signal in this application includes the UE201.
  • the receiver of the second reference signal in the present application includes the UE201.
  • the recipient of the first airspace relationship information in this application includes the UE201.
  • the recipient of the second airspace relationship information in this application includes the UE201.
  • the recipient of the first configuration information in this application includes the UE201.
  • the sender of the first signaling in this application includes the UE201.
  • the recipient of the first positioning-related information in this application includes the UE201.
  • the receiver of the first reference signal in this application includes the UE241.
  • the sender of the second reference signal in this application includes the UE241.
  • the sender of the first positioning-related information in this application includes the UE241.
  • the recipient of the first signaling in this application includes the UE241.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300.
  • Figure 3 shows in three layers the protocol used for a first node device (UE or RSU in V2X, a vehicle-mounted device or a vehicle-mounted device). Communication module) and the second node device (gNB, UE or RSU in V2X, vehicle-mounted device or vehicle-mounted communication module), or the radio protocol architecture of the control plane 300 between two UEs: Layer 1, Layer 2 and Layer 3.
  • Layer 1 is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first node device and the second node device and the two UEs through the PHY 301.
  • L2 layer 305 includes MAC (Medium Access Control, media access control) sublayer 302, RLC (Radio Link Control, wireless link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304, these sub-layers terminate at the second node device.
  • MAC Medium Access Control, media access control
  • RLC Radio Link Control, wireless link layer control protocol
  • PDCP Packet Data Convergence Protocol, packet data convergence protocol
  • the PDCP sublayer 304 provides data encryption and integrity protection, and the PDCP sublayer 304 also provides hand-off support for the first node device to the second node device.
  • the RLC sublayer 303 provides segmentation and reassembly of data packets, and realizes retransmission of lost data packets through ARQ.
  • the RLC sublayer 303 also provides duplicate data packet detection and protocol error detection.
  • the MAC sublayer 302 provides mapping between logical and transport channels and multiplexing of logical channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among first node devices.
  • MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, Radio Resource Control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the link between the second node device and the first node device. RRC signaling to configure lower layers.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer). Radio protocol architecture for the first node device and the second node device in the user plane 350.
  • the L2 layer 355 For the physical layer 351, the L2 layer 355
  • the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are related to the control level.
  • the corresponding layers and sublayers in plane 300 are generally the same, but PDCP sublayer 354 also provides header compression for upper layer packets to reduce wireless transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes an SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • the first node device may have several upper layers above the L2 layer 355, including a network layer (eg, IP layer) terminating at the P-GW on the network side and terminating at the other end of the connection (e.g., remote UE, server, etc.) application layer.
  • a network layer eg, IP layer
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • the first reference signal in this application is generated by the PHY301.
  • the first reference signal in this application is generated in the MAC sublayer 302.
  • the second reference signal in this application is generated by the PHY301.
  • the second reference signal in this application is generated in the MAC sublayer 302.
  • the first configuration information in this application is generated in the RRC sublayer 306.
  • the first signaling in this application is generated in the PHY301.
  • the first signaling in the present application is generated in the MAC sublayer 302.
  • the first signaling in the present application is generated in the RRC sublayer 306.
  • the first signaling in this application is transmitted to the PHY 301 via the MAC sublayer 302.
  • the first positioning related information in the present application is generated in the PHY301.
  • the first positioning-related information in this application is generated in the RRC sublayer 306.
  • the first positioning-related information in this application is generated in the application layer.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in Figure 4.
  • Figure 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475, a memory 476, a receive processor 470, a transmit processor 416, a multi-antenna receive processor 472, a multi-antenna transmit processor 471, a transmitter/receiver 418 and an antenna 420.
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and radio resource allocation to the second communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the second communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer). Transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 450, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for M phase shift keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for M phase shift keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams. Transmit processor 416 then maps each spatial stream to a subcarrier, multiplexes it with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated onto the RF carrier and converts the RF stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receiving processor 458 performs a receiving analog precoding/beamforming operation on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a fast Fourier transform (FFT) to convert the baseband multi-carrier symbol stream after the receiving analog precoding/beamforming operation into a baseband multi-carrier symbol stream. Convert from time domain to frequency domain. In the frequency domain, the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458 to any spatial stream destined for the second communication device 450. The symbols on each spatial stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • FFT fast Fourier transform
  • the receiving processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 storing program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides multiplexing between the transport and logical channels, packet reassembly, decryption, header decompression, and control signal processing to recover the upper layer data packets from the core network.
  • the upper layer data packet is then provided to all protocol layers above the L2 layer.
  • Various control signals may also be provided to the L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements headers based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the first communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the function at the first communication device 410 is similar to the reception function at the second communication device 450 described in the transmission from the first communication device 410 to the second communication device 450.
  • Each receiver 418 receives a radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the multi-antenna reception processor 472 and the reception processor 470.
  • the reception processor 470 and the multi-antenna reception processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements the L2 layer functions.
  • the controller/processor 475 can be associated with a memory 476 storing program codes and data.
  • the memory 476 can be referred to as a computer-readable medium.
  • the controller/processor 475 In the transmission from the second communication device 450 to the first communication device 410, the controller/processor 475 provides multiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover the upper layer data packets from the UE 450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the second communication device 450 at least: receives the first airspace relationship information; sends a first reference signal using a first airspace transmission filter, where the first reference signal occupies a first RS resource; uses the first airspace transmission filter
  • the device receives a second reference signal, and the second reference signal occupies a second RS resource; wherein the first airspace relationship information indicates the airspace relationship between the first RS resource and the second RS resource;
  • the first RS resource and the first airspace relationship information are jointly used to determine the second RS resource; the measurement of the second reference signal is used to generate the first location information.
  • the second communication device 450 includes: a memory storing a computer-readable instruction program, wherein the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: receiving the first spatial relationship information; sending a first reference signal with a first spatial transmission filter, and the first reference signal occupies a first RS resource; receiving a second reference signal with the first spatial transmission filter, and the second reference signal occupies a second RS resource; wherein the first spatial relationship information indicates the spatial relationship between the first RS resource and the second RS resource; the first RS resource and the first spatial relationship information are used together to determine the second RS resource; and measurement of the second reference signal is used to generate first position information.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the first communication device 410 at least: receives first signaling; receives a first reference signal using a second airspace transmission filter, where the first reference signal occupies a first RS resource; uses the second airspace transmission filter Send a second reference signal, the second reference signal occupies a second RS resource; wherein the first signaling indicates the first airspace relationship information, and the first airspace relationship information indicates that the first RS resource and The airspace relationship between the second RS resources; the first RS resource and the first airspace relationship information are jointly used to determine The second RS resource is determined; the measurement of the first reference signal is used to generate first positioning related information.
  • the first communication device 410 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: receiving The first signaling; receiving a first reference signal using a second spatial transmission filter, the first reference signal occupying a first RS resource; sending a second reference signal using the second spatial transmission filter, the second The reference signal occupies the second RS resource; wherein the first signaling indicates the first airspace relationship information, and the first airspace relationship information indicates the airspace between the first RS resource and the second RS resource. relationship; the first RS resource and the first airspace relationship information are jointly used to determine the second RS resource; the measurement of the first reference signal is used to generate the first positioning related information.
  • the second communication device 450 corresponds to the first node in this application.
  • the first communication device 410 corresponds to the second node in this application.
  • the second communication device 450 is a UE.
  • the first communication device 410 is a UE.
  • the antenna 452 the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used in this application to transmit the first reference signal on the first RS resource.
  • the antenna 452 the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used in this application to send the first signaling.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used in this application to receive the second reference signal on the second RS resource.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used in this application to receive the first positioning related information.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 ⁇ One is used in this application to receive the first reference signal on the first RS resource.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna reception processor 472, the reception processor 470, the controller/processor 475, and the memory 476 ⁇ One is used in this application to receive the first signaling.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 ⁇ One of them is used for transmitting the second reference signal on the second RS resource in this application.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 ⁇ One is used in this application to send the first positioning related information.
  • Embodiment 5 illustrates a structural diagram of UE positioning according to an embodiment of the present application, as shown in Figure 5.
  • UE501 communicates with UE502 through the PC5 interface; UE502 communicates with ng-eNB503 or gNB504 through the LTE-Uu interface or NR-Uu new wireless interface; ng-eNB503 and gNB504 are sometimes called base stations, and ng-eNB503 and gNB504 are also called NG (Next Generation, next generation)-RAN (Radio Access Network, wireless access network). ng-eNB503 and gNB 504 are connected to AMF505 through NG (Next Generation, next generation)-C (Control plane, control plane) respectively; AMF505 is connected to LMF506 through NL1 interface.
  • NG Next Generation, next generation
  • C Control plane, control plane
  • the AMF 505 receives a location service request associated with a specific UE from another entity, such as a GMLC (Gateway Mobile Location Centre) or a UE, or the AMF 505 itself decides to activate location services associated with a specific UE.
  • GMLC Gateway Mobile Location Centre
  • UE User Equipment
  • the AMF 505 sends the location service request to an LMF, such as the LMF 506; then this LMF processes the location service request, including sending assistance data to the specific UE to assist UE-based (UE-based) or UE-assisted (UE-assisted) positioning, and includes receiving location information (Location information) reported from the UE; then this LMF will The location service result is returned to the AMF 505; if the location service is requested by another entity, the AMF 505 returns the location service result to that entity.
  • LMF location service request to an LMF, such as the LMF 506
  • this LMF processes the location service request, including sending assistance data to the specific UE to assist UE-based (UE-based) or UE-assisted (UE-assisted) positioning, and includes receiving location information (Location information) reported from the UE; then this LMF will The location service result is returned to the AMF 505; if the location service is requested by another entity, the AMF 505 returns the location service result
  • the network device of the present application includes an LMF.
  • the network equipment of this application includes NG-RAN and LMF.
  • the network equipment of the present application includes NG-RAN, AMF and LMF.
  • Embodiment 6 illustrates a wireless signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 6 .
  • the first node U1 and the second node U2 communicate through the air interface.
  • the steps in the dotted box F0 and the dotted box F1 are respectively optional.
  • the first node U1 For the first node U1 , receive the first airspace relationship information in step S11; receive the second airspace relationship information in step S12; send the first signaling in step S13; send with the first airspace transmission filter in step S14. a first reference signal; receiving first positioning related information in step S15; receiving a second reference signal using the first air domain transmission filter in step S16.
  • step S21 For the second node U2 , receive the first signaling in step S21; receive the first reference signal with a second spatial transmission filter in step S22; send the first positioning-related information in step S23; In step S24, the second reference signal is sent using the second spatial transmission filter.
  • the first reference signal occupies a first RS resource
  • the second reference signal occupies a second RS resource
  • the first airspace relationship information indicates that the first RS resource is the same as the first RS resource.
  • the airspace relationship between two RS resources, the first RS resource and the first airspace relationship information are jointly used to determine the second RS resource;
  • the measurement of the second reference signal is used to generate the first Position information;
  • the measurement of the first reference signal is used to generate the first positioning-related information, and the first positioning-related information is also used to generate the first position information;
  • the second airspace relationship information Indicates the spatial relationship between a given reference signal and the first reference signal;
  • the given reference signal includes at least one of S-SSB, SL CSI-RS, SRS, and SL PRS;
  • the first The signaling includes the first airspace relationship information.
  • the first RS resource set includes at least one first type RS resource
  • the second RS resource set includes at least one second type RS resource
  • the first airspace relationship information indicates that the first RS resource set is related to the first type RS resource.
  • the airspace relationship between the second RS resource set, the first RS resource is a first type RS resource in the first RS resource set
  • the second RS resource is a first type RS resource in the second RS resource set.
  • the second type of RS resources is a first type RS resource in the first RS resource set.
  • the first RS resource belongs to a first resource pool
  • the second RS resource belongs to a second resource pool
  • the first resource pool is different from the second resource pool
  • the second resource pool is the same as the first resource pool.
  • the first node U1 and the second node U2 communicate through a PC5 interface.
  • the second airspace relationship information is configured from a higher layer of the first node.
  • the second airspace relationship information is configured from gNB.
  • the second airspace relationship information is configured from the LMF.
  • the first airspace relationship information includes the second airspace relationship information.
  • the first airspace relationship information includes: the second node U2 sends the second reference signal using a second airspace transmission filter, and the second airspace transmission filter is the second node U2 A spatial transmission filter used to receive the first reference signal.
  • the given reference signal is sent by the second node U2.
  • the given reference signal is received by the first node U1.
  • the reference RS of the second airspace relationship information is the given reference signal.
  • the target RS of the second airspace relationship information is the first reference signal.
  • the second spatial relationship information includes: the receiver of the given reference signal sends the first reference signal using a spatial transmission filter used to receive the given reference signal.
  • the measurement of the first reference signal is performed by the second node U2.
  • measurement of the first reference signal is used to generate the first positioning related information.
  • the first positioning related information is used to determine RTT.
  • the first positioning related information is used by an LMF to determine the RTT.
  • the first positioning related information is used for positioning.
  • the first positioning-related information is used for position-related measurements.
  • the first positioning related information is used for secondary link positioning.
  • the first positioning related information is used to determine the propagation delay.
  • the first positioning related information is used by the LMF to determine the propagation delay.
  • the first positioning related information is used for RTT positioning.
  • the first positioning related information is used for Single-sided RTT positioning.
  • the first positioning related information is used for Double-sided RTT positioning.
  • the first positioning-related information includes sending and receiving time difference.
  • the first positioning-related information includes the secondary link sending and receiving time difference.
  • the first positioning related information includes location related measurements.
  • the first positioning-related information includes position estimation.
  • the first positioning-related information includes positioning assistance data.
  • the first positioning-related information includes time quality.
  • the first positioning-related information includes a receiving beam index.
  • the first positioning-related information includes received power information.
  • the first signaling is a higher layer signaling.
  • the first signaling is used to indicate the first airspace relationship information.
  • the first signaling includes spatialRelationInfoPos.
  • spatialRelationInfoPos refers to Chapter 6.3.2 of 3GPP TS38.331.
  • the first signaling includes one or more fields in an RRC IE (information element).
  • Embodiment 7 illustrates a schematic diagram of the relationship between the first RS resource set and the second RS resource set according to an embodiment of the present application, as shown in FIG. 7 .
  • the first RS resource set includes at least one first type RS resource, and the first RS resource is a first type RS resource in the first RS resource set;
  • the second RS resource The set includes at least one second type RS resource, and the second RS resource is a second type RS resource in the second RS resource set;
  • the first airspace relationship information indicates that the first RS resource set and the The airspace relationship between the second RS resource set.
  • the first RS resource set is used for SL positioning.
  • the first RS resource set is an SL PRS resource set (Resource Set).
  • the first RS resource set includes at least one first type RS resource.
  • the at least one first type RS resource included in the first RS resource set includes a plurality of REs.
  • the first type of RS resources includes multiple REs.
  • the multiple REs included in the first type of RS resources are staggered.
  • the first type of RS resource occupies at least one multi-carrier symbol in the time domain.
  • the first type of RS resources occupies multiple PRBs in the frequency domain.
  • the first type of RS resources occupies multiple RBs in the frequency domain.
  • the plurality of REs included in the first type of RS resource are distributed in a comb shape on any multi-carrier symbol.
  • the comb size of the first type RS resource is the frequency domain spacing of the multiple REs included in the first type RS resource on any multi-carrier symbol.
  • the comb size of the first type RS resource is the number of subcarriers spaced in the frequency domain of the multiple REs included in the first type RS resource on any multi-carrier symbol.
  • the comb size of the first type of RS resource is a positive integer.
  • the comb size of the first type of RS resource is one of ⁇ 1, 2, 4, 6, 12 ⁇ .
  • the resource bandwidth of the first type of RS resource is the number of RBs occupied by the first type of RS resource in the frequency domain.
  • the resource bandwidth of the first type of RS resource is a positive integer.
  • the resource bandwidth of the first type of RS resource is a positive integer from 24 to 272.
  • the comb size of any first type RS resource in the first RS resource set is equal.
  • the resource bandwidth of any first type RS resource in the first RS resource set is equal.
  • any first type of RS resource in the first RS resource set occupies an equal number of multi-carrier symbols in the time domain.
  • the number of REs occupied by any first type RS resource in the first RS resource set is equal.
  • the comb size of any first type RS resource in the first RS resource set is equal, or the resource bandwidth of any first type RS resource in the first RS resource set is equal, or,
  • the number of multi-carrier symbols occupied by any first type RS resource in the first RS resource set in the time domain is equal, or the number of REs occupied by any first type RS resource in the first RS resource set equal.
  • the comb size of any first type RS resource in the first RS resource set is equal, the resource bandwidth of any first type RS resource in the first RS resource set is equal, and the first Any first type RS resource in the RS resource set occupies the same number of multi-carrier symbols in the time domain.
  • the first RS resource is a first type RS resource in the first RS resource set.
  • the comb size of the first RS resource is Comb-2.
  • the second RS resource set is used for SL positioning.
  • the second RS resource set is a SL PRS resource set.
  • the second RS resource set includes at least one second type RS resource.
  • the at least one second type RS resource included in the second RS resource set includes a plurality of REs.
  • the second type of RS resources includes multiple REs.
  • the plurality of REs included in the second type of RS resource are staggeredly distributed.
  • the second type of RS resource occupies at least one multi-carrier symbol in the time domain.
  • the second type of RS resources occupies multiple PRBs in the frequency domain.
  • the second type of RS resources occupies multiple RBs in the frequency domain.
  • the plurality of REs included in the second type of RS resource are distributed in a comb shape on any multi-carrier symbol.
  • the comb size of the second type RS resource is the frequency domain spacing of the multiple REs included in the second type RS resource on any multi-carrier symbol.
  • the comb size of the second type RS resource is the number of subcarriers spaced in the frequency domain of the multiple REs included in the second type RS resource on any multi-carrier symbol.
  • the comb size of the second type of RS resource is a positive integer.
  • the comb size of the second type of RS resource is one of ⁇ 1, 2, 4, 6, 12 ⁇ .
  • the comb size of the second type of RS resources is different from the comb size of the first type of RS resources.
  • the comb size of the second type of RS resources is the same as the comb size of the first type of RS resources.
  • the resource bandwidth of the second type RS resource is the number of RBs occupied by the second type RS resource in the frequency domain.
  • the resource bandwidth of the second type of RS resource is a positive integer.
  • the resource bandwidth of the second type of RS resources is a positive integer from 24 to 272.
  • the resource bandwidth of the second type of RS resources is different from the resource bandwidth of the first type of RS resources.
  • the resource bandwidth of the second type of RS resources is the same as the resource bandwidth of the first type of RS resources.
  • the comb size of any second type RS resource in the second RS resource set is equal.
  • the resource bandwidth of any second type RS resource in the second RS resource set is equal.
  • any second type of RS resource in the second RS resource set occupies an equal number of multi-carrier symbols in the time domain.
  • the number of REs occupied by any second type of RS resource in the second RS resource set is equal.
  • the comb size of any second type RS resource in the second RS resource set is equal, or the resource bandwidth of any second type RS resource in the second RS resource set is equal, or, Any second type RS resource in the second RS resource set is The number of multi-carrier symbols occupied by the domain is equal, or the number of REs occupied by any second type of RS resource in the second RS resource set is equal.
  • the comb sizes of any second type of RS resources in the second RS resource set are equal, the resource bandwidths of any second type of RS resources in the second RS resource set are equal, and the numbers of multi-carrier symbols occupied by any second type of RS resources in the second RS resource set in the time domain are equal.
  • the second RS resource is a second type RS resource in the second RS resource set.
  • the comb size of the second RS resource is Comb-4.
  • Embodiment 8 illustrates a schematic diagram of the relationship between the first RS resource, the second RS resource and the first resource pool and the second resource pool according to an embodiment of the present application, as shown in FIG. 8 .
  • the first RS resource belongs to the first resource pool
  • the second RS resource belongs to the second resource pool
  • the first resource pool is different from the second resource pool.
  • the second resource pool is the same as the first resource pool.
  • the first configuration information is used to configure the first resource pool.
  • the first configuration information includes SL-ResourcePool.
  • the definition of the SL-ResourcePool refers to Chapter 6.3.5 of 3GPP TS38.331.
  • the second configuration information is used to configure the second resource pool.
  • the second configuration information includes SL-ResourcePool.
  • the first resource pool is a secondary link resource pool.
  • the first resource pool is used for SL transmission.
  • the first resource pool is used for SL positioning.
  • the first resource pool is used to transmit SL PRS.
  • the first resource pool includes a plurality of multi-carrier symbols in the time domain.
  • the first resource pool includes at least one time slot in the time domain.
  • the first resource pool includes multiple subcarriers in the frequency domain.
  • the first resource pool includes at least one PRB in the frequency domain.
  • the first resource pool includes at least one sub-channel in the frequency domain.
  • the first resource pool includes the first RS resource set.
  • the first resource pool includes a plurality of first-type RS resources, and the first RS resource is one of the plurality of first-type RS resources.
  • the second resource pool is a secondary link resource pool.
  • the second resource pool is used for SL transmission.
  • the second resource pool is used for SL positioning.
  • the second resource pool is used to transmit SL PRS.
  • the second resource pool includes multiple multi-carrier symbols in the time domain.
  • the second resource pool includes at least one time slot in the time domain.
  • the second resource pool includes multiple subcarriers in the frequency domain.
  • the second resource pool includes at least one PRB in the frequency domain.
  • the second resource pool includes at least one sub-channel in the frequency domain.
  • the second resource pool includes the second RS resource set.
  • the second resource pool includes a plurality of second type RS resources, and the second RS resource is one of the plurality of second type RS resources.
  • Embodiment 9 illustrates a schematic diagram of the relationship between the first reference signal, the second reference signal, the first positioning-related information, and the first location information according to an embodiment of the present application, as shown in FIG. 9 .
  • the first node receives first configuration information; wherein the first configuration information includes first airspace relationship information; and the first node sends a first reference signal with a first airspace transmission filter.
  • the first reference signal occupies a first RS resource;
  • the first node receives a second reference signal using the first airspace transmission filter, and the second reference signal occupies a second RS resource;
  • the first airspace The relationship information indicates the airspace relationship between the first RS resource and the second RS resource; the first RS resource and the first airspace relationship information are jointly used to determine the second RS resource.
  • the first node sends first signaling, where the first signaling includes the first airspace relationship information.
  • the first node receives first positioning-related information, and the first positioning-related information is used to generate the first location information.
  • the measurement of the second reference signal by the first node is used to generate the first location information.
  • the second node receives the first signaling; uses a second spatial transmission filter to receive the first reference signal, and the first reference signal occupies the first RS resource; uses the second spatial transmission filter to receive the first reference signal.
  • the second spatial transmission filter sends a second reference signal, and the second reference signal occupies the second RS resource.
  • the measurement of the first reference signal by the second node is used to generate the first positioning related information.
  • the second node sends the first positioning-related information, where the first positioning-related information is used to generate the first location information.
  • the first configuration information is configured from a higher layer of the first node.
  • the first configuration information is configured from gNB.
  • the first configuration information is configured from LMF.
  • the first positioning related information is used to report to a higher layer of the first node.
  • the first positioning related information is used to report to gNB.
  • the first positioning related information is used to report to the LMF.
  • the first location information is reported to an LMF.
  • the first location information is reported to an LMF via the first node.
  • the first location information is reported to a gNB.
  • the first location information is reported to a gNB via the first node.
  • Embodiment 10 illustrates a structural block diagram of a processing device used in a first node according to an embodiment of the present application, as shown in FIG. 10 .
  • the first node device processing apparatus 1000 mainly consists of a first receiver 1001, a first transmitter 1002, and a second receiver 1003.
  • the first receiver 1001 includes at least one of the antenna 452, transmitter/receiver 454, multi-antenna reception processor 458, reception processor 456, controller/processor 459, memory 460 and data source 467 in FIG. 4 of the present application.
  • the first transmitter 1002 includes the antenna 452, transmitter/receiver 454, multi-antenna transmit processor 457, transmit processor 468, controller/processor 459, memory 460 and At least one of the data sources 467.
  • the second receiver 1003 includes the antenna 452, transmitter/receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and At least one of the data sources 467.
  • the first receiver 1001 receives first spatial relationship information; the first transmitter 1002 sends a first reference signal with a first spatial transmission filter, and the first reference signal occupies a first RS resource; the second receiver 1003 receives a second reference signal with the first spatial transmission filter, and the second reference signal occupies a second RS resource; wherein the first spatial relationship information indicates the spatial relationship between the first RS resource and the second RS resource; the first RS resource and the first spatial relationship information are used together to determine the second RS resource; and measurement of the second reference signal is used to generate first position information.
  • the first RS resource set includes at least one first type RS resource
  • the second RS resource set includes at least one second type RS resource
  • the first airspace relationship information indicates that the first RS resource set is related to the first type RS resource.
  • the airspace relationship between the second RS resource set, the first RS resource is a first type RS resource in the first RS resource set
  • the second RS resource is a first type RS resource in the second RS resource set.
  • the second type of RS resources is a first type RS resource in the first RS resource set.
  • the first RS resource belongs to a first resource pool
  • the second RS resource belongs to a second resource pool
  • the first The resource pool is different from the second resource pool
  • the first receiver 1001 receives first configuration information; wherein the first configuration information is used to configure the first resource pool, and the first configuration information includes the first airspace relationship information.
  • the first receiver 1001 receives second spatial relationship information; wherein the second spatial relationship information indicates the spatial relationship between a given reference signal and the first reference signal; the given The fixed reference signal includes at least one of S-SSB, SL CSI-RS, SRS, and SL PRS.
  • the first transmitter 1002 sends first signaling; wherein the first signaling includes the first airspace relationship information.
  • the second receiver 1003 receives first positioning-related information; wherein the measurement of the first reference signal is used to generate the first positioning-related information, and the first positioning-related information Also used to generate the first location information.
  • the first node 1000 is a user equipment.
  • the first node 1000 is a relay node.
  • the first node 1000 is a roadside device.
  • Embodiment 11 illustrates a structural block diagram of a processing device used in a second node according to an embodiment of the present application, as shown in FIG. 11 .
  • the second node device processing device 1100 mainly consists of a third receiver 1101 and a second transmitter 1102.
  • the third receiver 1101 includes the antenna 420, the transmitter/receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 in Figure 4 of this application. at least one of.
  • the second transmitter 1102 includes at least one of the antenna 420, the transmitter/receiver 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 in FIG. 4 of the present application.
  • the third receiver 1101 receives a first signaling; receives a first reference signal with a second spatial transmission filter, and the first reference signal occupies a first RS resource; the second transmitter 1102 sends a second reference signal with the second spatial transmission filter, and the second reference signal occupies a second RS resource; wherein the first signaling indicates first spatial relationship information, and the first spatial relationship information indicates the spatial relationship between the first RS resource and the second RS resource; the first RS resource and the first spatial relationship information are used together to determine the second RS resource; and the measurement of the first reference signal is used to generate first positioning-related information.
  • the second transmitter 1102 sends the first positioning-related information; wherein the first positioning-related information is used to generate the first location information.
  • the first RS resource set includes at least one first type RS resource
  • the second RS resource set includes at least one second type RS resource
  • the first airspace relationship information indicates that the first RS resource set is related to the first type RS resource.
  • the airspace relationship between the second RS resource set, the first RS resource is a first type RS resource in the first RS resource set
  • the second RS resource is a first type RS resource in the second RS resource set.
  • the second type of RS resources is a first type RS resource in the first RS resource set.
  • the first RS resource belongs to a first resource pool
  • the second RS resource belongs to a second resource pool
  • the first resource pool is different from the second resource pool
  • the second node 1100 is user equipment.
  • the second node 1100 is a relay node.
  • the second node 1100 is a roadside device.
  • the first node devices in this application include but are not limited to mobile phones, tablets, laptops, Internet cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc.
  • Wireless communications equipment The second node devices in this application include but are not limited to mobile phones, tablets, laptops, Internet cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc. Wireless communications equipment.
  • the user equipment or UE or terminal in this application includes but is not limited to mobile phones, Tablets, laptops, Internet cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication equipment, aircraft, aircraft, drones, remote control aircraft and other wireless communication equipment.
  • the base station equipment or base station or network side equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, eNB, gNB, transmission and reception node TRP, GNSS, relay satellite, satellite base station, aerial Base stations and other wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于定位的方法和装置。第一节点接收第一空域关系信息;以第一空域传输滤波器发送第一参考信号,所述第一参考信号占用第一RS资源;以所述第一空域传输滤波器接收第二参考信号,所述第二参考信号占用第二RS资源;其中,所述第一空域关系信息指示所述第一RS资源与所述第二RS资源之间的空域关系;所述第一RS资源和所述第一空域关系信息被共同用于确定所述第二RS资源;针对所述第二参考信号的测量被用于生成第一位置信息。本申请提高了副链路定位的准确度,降低了实现复杂度。

Description

一种被用于定位的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中的与定位相关的方案和装置。
背景技术
定位是无线通信领域的一个重要应用;V2X(Vehicle to everything,车对外界)或者工业物联网等新应用的出现,对定位的精度或者延迟提出了更高的要求。在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#94e会议中,关于定位增强的研究课题被立项。
发明内容
根据RP-213588中的工作计划,NR Rel-18需要支持副链路定位(Sidelink Positioning,SL Positioning)的增强定位技术,其中主流的副链路定位技术包括基于SL RTT(Round Trip Time,往返时间)技术、SL AOA(Angle-of-Arrival,到达角)、SL TDOA(Time Difference of Arrival,到达时差)和SL AOD(Angle-of-Departure,偏离角)等,而这些技术的执行都需要依赖对SL PRS(Sidelink Positioning Reference Signal,副链路定位参考信号)的测量。对于副链路定位技术,尤其是基于SL RTT技术,需要做进一步的增强,进而提高SL定位准确度。
针对上述问题,本申请公开了一种定位解决方案。需要说明的是,在本申请的描述中,只是采用V2X场景作为一个典型应用场景或者例子;本申请也同样适用于面临相似问题的V2X之外的场景,例如公共安全(Public Safety)、工业物联网等等,并取得类似NR V2X场景中的技术效果。此外,虽然本申请的动机是针对用于定位测量的无线信号的发送者是移动的这一场景,本申请依然适用于用于定位测量的无线信号的发送者是固定的这一场景,例如RSU(Road Side Unit,路边单元)等。不同场景采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
在需要的情况下,可以参考3GPP标准TS38.211,TS38.212,TS38.213,TS38.214,TS38.215,TS38.321,TS38.331,TS38.305,TS37.355以辅助对本申请的理解。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一空域关系信息;
以第一空域传输滤波器发送第一参考信号,所述第一参考信号占用第一RS资源;
以所述第一空域传输滤波器接收第二参考信号,所述第二参考信号占用第二RS资源;
其中,所述第一空域关系信息指示所述第一RS资源与所述第二RS资源之间的空域关系;所述第一RS资源和所述第一空域关系信息被共同用于确定所述第二RS资源;针对所述第二参考信号的测量被用于生成第一位置信息。
作为一个实施例,本申请要解决的问题是:对于双边(double-sided)RTT技术,在多波束的情况下,如何使UE有效地接收定位参考信号。
作为一个实施例,本申请要解决的问题是:对于副链路定位,如何使发送的定位参考信号与接收的定位参考信号相关联,从而减少交互的信令开销。
作为一个实施例,本申请的方法是:将第一RS资源与第二RS资源建立关系。
作为一个实施例,本申请的方法是:通过第一空域关系信息将第一RS资源与第二RS资源建立空域关系。
作为一个实施例,本申请的方法有利于提高副链路定位的准确度。
作为一个实施例,本申请的方法有利于降低空域传输滤波器的实现复杂度。
作为一个实施例,本申请的方法有利于节省用于资源配置的信令开销。
作为一个实施例,本申请的方法有利于节省第一位置信息的信令开销。
根据本申请的一个方面,上述方法的特征在于,第一RS资源集包括至少一个第一类RS资源,第二RS资源集包括至少一个第二类RS资源,所述第一空域关系信息指示所述第一RS资源集与所述第二RS资源集之间的空域关系,所述第一RS资源是所述第一RS资源集中的一个第一类RS资源,所述第二RS资源是所述第二RS资源集中的一个第二类RS资源。
根据本申请的一个方面,上述方法的特征在于,所述第一RS资源属于第一资源池,所述第二RS资源属于第二资源池,所述第一资源池与所述第二资源池不同。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第一配置信息;
其中,所述第一配置信息被用于配置所述第一资源池,所述第一配置信息包括所述第一空域关系信息。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第二空域关系信息;
其中,所述第二空域关系信息指示给定参考信号与所述第一参考信号之间的空域关系;所述给定参考信号包括S-SSB,SL CSI-RS,SRS,SL PRS四者中的至少之一。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第一信令;
其中,所述第一信令包括所述第一空域关系信息。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第一定位相关信息;
其中,针对所述第一参考信号的测量被用于生成所述第一定位相关信息,所述第一定位相关信息也被用于生成所述第一位置信息。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是用户设备(UE,User Equipment)。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是中继节点。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是路侧设备(RSU,Road Side Unit)。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
接收第一信令;以第二空域传输滤波器接收第一参考信号,所述第一参考信号占用第一RS资源;
以所述第二空域传输滤波器发送第二参考信号,所述第二参考信号占用第二RS资源;
其中,所述第一信令指示第一空域关系信息,所述第一空域关系信息指示所述第一RS资源与所述第二RS资源之间的空域关系;所述第一RS资源和所述第一空域关系信息被共同用于确定所述第二RS资源;针对所述第一参考信号的测量被用于生成第一定位相关信息。
根据本申请的一个方面,上述方法的特征在于,第一RS资源集包括至少一个第一类RS资源,第二RS资源集包括至少一个第二类RS资源,所述第一空域关系信息指示所述第一RS资源集与所述第二RS资源集之间的空域关系,所述第一RS资源是所述第一RS资源集中的一个第一类RS资源,所述第二RS资源是所述第二RS资源集中的一个第二类RS资源。
根据本申请的一个方面,上述方法的特征在于,所述第一RS资源属于第一资源池,所述第二RS资源属于第二资源池,所述第一资源池与所述第二资源池不同。
根据本申请的一个方面,上述方法的特征在于,包括:
发送所述第一定位相关信息;
其中,所述第一定位相关信息被用于生成第一位置信息。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是用户设备。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是中继节点。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是路侧设备。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一接收机,接收第一空域关系信息;
第一发射机,以第一空域传输滤波器发送第一参考信号,所述第一参考信号占用第一RS资源;
第二接收机,以所述第一空域传输滤波器接收第二参考信号,所述第二参考信号占用第二RS资源;
其中,所述第一空域关系信息指示所述第一RS资源与所述第二RS资源之间的空域关系;所述第一RS资源和所述第一空域关系信息被共同用于确定所述第二RS资源;针对所述第二参考信号的测量被用于生成第一位置信息。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第三接收机,接收第一信令;以第二空域传输滤波器接收第一参考信号,所述第一参考信号占用第一RS资源;
第二发射机,以所述第二空域传输滤波器发送第二参考信号,所述第二参考信号占用第二RS资源;
其中,所述第一信令指示第一空域关系信息,所述第一空域关系信息指示所述第一RS资源与所述第二RS资源之间的空域关系;所述第一RS资源和所述第一空域关系信息被共同用于确定所述第二RS资源;针对所述第一参考信号的测量被用于生成第一定位相关信息。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其他特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的UE定位的结构图;
图6示出了根据本申请的一个实施例的无线信号传输流程图;
图7示出了根据本申请的一个实施例的第一RS资源集与第二RS资源集之间关系的示意图;
图8示出了根据本申请的一个实施例的第一RS资源、第二RS资源与第一资源池和第二资源池之间关系的示意图;
图9示出了根据本申请的一个实施例的第一参考信号、第二参考信号、第一定位相关信息、第一位置信息之间关系的示意图;
图10示出了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;
图11示出了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了本申请的一个实施例的第一节点的处理流程图,如附图1所示。在附图1中,每个方框代表一个步骤。
在实施例1中,本申请中的第一节点执行步骤101,接收第一空域关系信息;执行步骤102,以第一空域传输滤波器发送第一参考信号,所述第一参考信号占用第一RS资源;执行步骤103,以所述第一空域传输滤波器接收第二参考信号,所述第二参考信号占用第二RS资源;其中,所述第一空域关系信息指示所述第一RS资源与所述第二RS资源之间的空域关系;所述第一RS资源和所述第一空域关系信息被共同用于确定所述第二RS资源;针对所述第二参考信号的测量被用于生成第一位置信息。
作为一个实施例,所述第一空域关系信息是从所述第一节点的更高层配置的。
作为一个实施例,所述第一空域关系信息是从gNB配置的。
作为一个实施例,所述第一空域关系信息是从LMF(Location Management Function,位置管理功能)配置的。
作为一个实施例,所述第一RS资源与所述第二RS资源之间的空域关系包括所述第一参考信号与所述第二参考信号之间的空域关系。
作为一个实施例,所述第一RS资源与所述第二RS资源之间的空域关系与所述第一参考信号与所述第二参考信号之间的空域关系互为替换。
作为一个实施例,所述空域关系是一个参考RS和一个目标RS之间的空域关系。
作为一个实施例,所述参考RS是S-SSB,SL CSI-RS,SRS,SL PRS中的至少之一。
作为一个实施例,所述目标RS是S-SSB,SL CSI-RS,SRS,SL PRS中的至少之一。
作为一个实施例,所述第一空域关系信息的参考RS是所述第一参考信号。
作为一个实施例,所述第一空域关系信息的目标RS是所述第二参考信号。
作为一个实施例,所述第一空域关系信息的参考RS是所述第一RS资源。
作为一个实施例,所述第一空域关系信息的目标RS是所述第二RS资源。
作为一个实施例,所述第一空域关系信息包括:所述第一RS资源的接收者以接收所述第一RS资源所使用的空域传输滤波器来发送所述第二RS资源。
作为一个实施例,所述第一空域传输滤波器被用于发送所述第一参考信号。
作为一个实施例,所述第一空域传输滤波器被用于接收所述第二参考信号。
作为一个实施例,所述第一空域传输滤波器与所述第一参考信号的发送波束有关。
作为一个实施例,所述第一空域传输滤波器与所述第二参考信号的接收波束有关。
作为一个实施例,所述第一空域传输滤波器被用于确定所述第一参考信号的发送波束。
作为一个实施例,所述第一空域传输滤波器被用于确定所述第二参考信号的接收波束。
作为一个实施例,所述第一空域传输滤波器在所述第一节点处。
作为一个实施例,所述第一空域传输滤波器被用于所述第一节点。
作为一个实施例,所述第二空域传输滤波器被用于接收所述第一参考信号。
作为一个实施例,所述第二空域传输滤波器被用于发送所述第二参考信号。
作为一个实施例,所述第二空域传输滤波器与所述第一参考信号的接收波束有关。
作为一个实施例,所述第二空域传输滤波器与所述第二参考信号的发送波束有关。
作为一个实施例,所述第二空域传输滤波器被用于确定所述第一参考信号的接收波束。
作为一个实施例,所述第二空域传输滤波器被用于确定所述第二参考信号的发送波束。
作为一个实施例,所述第二空域传输滤波器在所述第二节点处。
作为一个实施例,所述第二空域传输滤波器被用于所述第二节点。
作为一个实施例,所述第一参考信号被用于定位(Positioning)。
作为一个实施例,所述第一参考信号被用于副链路定位(Sidelink Positioning)。
作为一个实施例,所述第一参考信号被用于位置有关的测量(Location related measurement)。
作为一个实施例,所述第一参考信号被用于副链路定位测量(Sidelink positioning measurement)。
作为一个实施例,所述第一参考信号被用于确定传播延迟(Propagation Delay)。
作为一个实施例,所述第一参考信号被用于确定RTT(Round Trip Time,往返时间)。
作为一个实施例,所述第一参考信号被用于得到位置信息(Location Information)。
作为一个实施例,所述第一参考信号被用于得到收发时差(Rx-Tx Time Difference)。
作为一个实施例,所述第一参考信号被用于得到UE收发时差测量(UE Rx-Tx time difference measurement)。
作为一个实施例,所述第一参考信号被用于得到副链路收发时差(Sidelink Rx-Tx Time Difference)。
作为一个实施例,所述第一参考信号被用于得到AoA(Angle-of-Arrival,到达角)。
作为一个实施例,所述第一参考信号被用于得到所述第一参考信号的接收定时(Rx Timing)。
作为一个实施例,所述第一参考信号被用于得到RSRP(Reference Signal Received Power,参考信号接收功率)。
作为一个实施例,所述第一参考信号被用于得到RSRPP(Reference Signal Received Path Power,参考信号接收路径功率)。
作为一个实施例,所述第一参考信号被用于得到RSTD(Reference Signal Time Difference,参考信号时间差)。
作为一个实施例,所述第一参考信号被用于得到RTOA(Relative Time ofArrival,相对到达时间)。
作为一个实施例,所述第一参考信号被用于得到SL-RTOA。
作为一个实施例,所述第一参考信号被用于RTT定位。
作为一个实施例,所述第一参考信号被用于Single-sided(单边)RTT定位。
作为一个实施例,所述第一参考信号被用于Double-sided(双边)RTT定位。
作为一个实施例,所述第一参考信号是一个LMF配置的。
作为一个实施例,所述第一参考信号是一个gNB(g-Node-B)配置的。
作为一个实施例,所述第一参考信号是一个UE配置的。
作为一个实施例,所述第一参考信号包括SL-RS(Sidelink Reference Signal,副链路参考信号)。
作为一个实施例,所述第一参考信号包括SL-PRS(Sidelink Positioning Reference Signal,副链路定位参考信号)。
作为一个实施例,所述第一参考信号包括SRS(Sounding Reference Signal,探测参考信号)。
作为一个实施例,所述第一参考信号包括S-PSS(Sidelink Primary Synchronization Signal,副链路主同步信号)。
作为一个实施例,所述第一参考信号包括S-SSS(Sidelink Secondary Synchronization Signal,副链路辅同步信号)。
作为一个实施例,所述第一参考信号包括PSBCH DMRS(Physical Sidelink Broadcast Channel Demodulation Reference Signal,物理副链路广播信道解调参考信号)。
作为一个实施例,所述第一参考信号包括SL CSI-RS(Sidelink Channel State Information-Reference Signal,副链路信道状态信息-参考信号)。
作为一个实施例,所述第一参考信号包括第一序列。
作为一个实施例,所述第一序列被用于生成所述第一参考信号。
作为一个实施例,所述第一序列是伪随机序列(Pseudo-Random Sequence)。
作为一个实施例,所述第一序列是低峰均比序列(Low-PAPR Sequence,Low-Peak to Average Power Ratio)。
作为一个实施例,所述第一序列是Gold序列。
作为一个实施例,所述第一序列是M序列。
作为一个实施例,所述第一序列是ZC(Zadeoff-Chu)序列。
作为一个实施例,所述第一序列依次经过序列生成(Sequence Generation),离散傅里叶变换(Discrete Fourier Transform,DFT),调制(Modulation)和资源单元映射(Resource Element Mapping),宽带符号生成(Generation)之后得到所述第一参考信号。
作为一个实施例,所述第一序列依次经过序列生成,资源单元映射,宽带符号生成之后得到所述第一参考信号。
作为一个实施例,所述第一序列被映射到所述第一RS资源包括的多个REs(Resource Elements,资源单元)上。
作为一个实施例,所述第一RS资源包括多个REs。
作为一个实施例,所述第一RS资源被用于副链路定位。
作为一个实施例,所述第一RS资源被用于承载所述第一参考信号。
作为一个实施例,所述第一RS资源被预留给所述第一参考信号。
作为一个实施例,所述第一RS资源包括所述第一参考信号所占用的REs。
作为一个实施例,所述第一参考信号所占用的REs属于所述第一RS资源。
作为一个实施例,所述第一RS资源是所述第一参考信号所占用的REs。
作为一个实施例,所述第一RS资源仅包括所述第一参考信号所占用的REs。
作为一个实施例,所述第一RS资源包括多个参考信号所占用的REs。
作为一个实施例,所述第一RS资源在时域占用至少一个多载波符号(Symbol)。
作为一个实施例,所述第一RS资源在时域占用至少一个时隙(Slot)。
作为一个实施例,所述第一RS资源占用的时域资源属于一个时隙。
作为一个实施例,所述第一RS资源在频域占用至少一个子载波(Subcarrier)。
作为一个实施例,所述第一RS资源在频域占用至少一个PRB(Physical Resource Block,物理资源块)。
作为一个实施例,所述第一RS资源在频域占用至少一个RB(Resource Block,资源块)。
作为一个实施例,所述第一RS资源包括的所述多个REs在任一多载波符号上呈梳状(Comb)分布。
作为一个实施例,所述第一RS资源的梳状尺寸(Comb Size)是所述第一时频资源包括的所述多个REs在任一多载波符号上的频域间隔。
作为一个实施例,所述第一RS资源的梳状尺寸(Comb Size)是所述第一时频资源包括的所述多个REs在任一多载波符号上的频域间隔的子载波个数。
作为一个实施例,所述第一RS资源的梳状尺寸用Comb-N表示,所述N代表子载波个数。
作为一个实施例,所述第一RS资源的资源带宽(Resource Bandwidth)是所述第一RS资源在频域占用的RBs的个数。
作为一个实施例,所述第一RS资源在频域占用至少一个子信道(Subchannel)。
作为一个实施例,所述第一RS资源占用的频域资源属于一个子信道。
作为一个实施例,所述第一RS资源在时域占用至少一个多载波符号,所述第一RS资源在频域占用包括至少一个子载波。
作为一个实施例,所述第一RS资源在时域占用至少一个多载波符号,所述第一RS资源在频域占用至少一个PRB。
作为一个实施例,所述第一RS资源所占用的时域资源属于一个时隙,所述第一RS资源所占用的频域资源属于一个子信道。
作为一个实施例,所述第一RS资源包括的所述多个REs的分布是全交错图谱(Full-staggered pattern)。
作为一个实施例,所述第一RS资源包括的所述多个REs的分布是半交错图谱(Partial-staggered pattern)。
作为一个实施例,所述第一RS资源包括的所述多个REs的分布是非交错图谱(Unstaggered pattern)。
作为一个实施例,所述第一RS资源包括S-SS/PSBCH block(Sidelink Synchronization Signal/Physical Sidelink Broadcast Channel block,副链路同步信号/物理副链路广播信道块)。
作为一个实施例,所述第一RS资源包括定位参考信号资源。
作为一个实施例,所述第一RS资源包括副链路定位参考信号资源。
作为一个实施例,所述第一RS资源是副链路定位参考信号资源。
作为一个实施例,所述第一RS资源所占用的时域资源是一个发送时机(transmission occasion)。
作为一个实施例,所述第一RS资源所占用的时域资源是一个SL-PRS发送时机。
作为一个实施例,所述第一RS资源所占用的时域资源是一个时隙上的S-SS/PBSCH block发送时机。
作为一个实施例,所述第一RS资源所占用的时域资源是一个SL CSI-RS所占用的时域资源。
作为一个实施例,所述第一RS资源所占用的时域资源是一个SRS所占用的时域资源。
作为一个实施例,所述第二参考信号被用于定位。
作为一个实施例,所述第二参考信号被用于副链路定位。
作为一个实施例,所述第二参考信号被用于位置有关的测量。
作为一个实施例,所述第二参考信号被用于副链路定位测量。
作为一个实施例,所述第二参考信号被用于确定传播延迟。
作为一个实施例,所述第二参考信号被用于确定RTT。
作为一个实施例,所述第二参考信号被用于得到位置信息。
作为一个实施例,所述第二参考信号被用于得到收发时差。
作为一个实施例,所述第二参考信号被用于得到UE收发时差测量。
作为一个实施例,所述第二参考信号被用于得到副链路收发时差。
作为一个实施例,所述第二参考信号被用于得到AoA。
作为一个实施例,所述第二参考信号被用于得到所述第二参考信号的接收定时。
作为一个实施例,所述第二参考信号被用于得到RSRP。
作为一个实施例,所述第二参考信号被用于得到RSRPP。
作为一个实施例,所述第二参考信号被用于得到RSTD。
作为一个实施例,所述第二参考信号被用于得到RTOA。
作为一个实施例,所述第二参考信号被用于得到SL-RTOA。
作为一个实施例,所述第二参考信号被用于RTT定位。
作为一个实施例,所述第二参考信号被用于Single-sided RTT定位。
作为一个实施例,所述第二参考信号被用于Double-sided RTT定位。
作为一个实施例,所述第二参考信号是一个LMF配置的。
作为一个实施例,所述第二参考信号是一个gNB配置的。
作为一个实施例,所述第二参考信号是一个UE配置的。
作为一个实施例,所述第二参考信号包括SL-RS。
作为一个实施例,所述第二参考信号包括SL-PRS。
作为一个实施例,所述第二参考信号包括SRS。
作为一个实施例,所述第二参考信号包括S-PSS。
作为一个实施例,所述第二参考信号包括S-SSS。
作为一个实施例,所述第二参考信号包括PSBCH DMRS。
作为一个实施例,所述第二参考信号包括SL CSI-RS。
作为一个实施例,所述第二参考信号包括第二序列。
作为一个实施例,所述第二序列被用于生成所述第二参考信号。
作为一个实施例,所述第二序列是伪随机序列。
作为一个实施例,所述第二序列是低峰均比序列。
作为一个实施例,所述第二序列是Gold序列。
作为一个实施例,所述第二序列是M序列。
作为一个实施例,所述第二序列是ZC序列。
作为一个实施例,所述第二序列依次经过序列生成,离散傅里叶变换,调制和资源单元映射,宽带符号生成之后得到所述第二参考信号。
作为一个实施例,所述第二序列依次经过序列生成,资源单元映射,宽带符号生成之后得到所述第二参考信号。
作为一个实施例,所述第二序列被映射到所述第二RS资源包括的多个REs上。
作为一个实施例,所述第二RS资源包括多个REs。
作为一个实施例,所述第二RS资源被用于副链路定位。
作为一个实施例,所述第二RS资源被用于承载所述第二参考信号。
作为一个实施例,所述第二RS资源被预留给所述第二参考信号。
作为一个实施例,所述第二RS资源包括所述第二参考信号所占用的REs。
作为一个实施例,所述第二参考信号所占用的REs属于所述第二RS资源。
作为一个实施例,所述第二RS资源是所述第二参考信号所占用的REs。
作为一个实施例,所述第二RS资源仅包括所述第二参考信号所占用的REs。
作为一个实施例,所述第二RS资源包括多个参考信号所占用的REs。
作为一个实施例,所述第二RS资源在时域占用至少一个多载波符号。
作为一个实施例,所述第二RS资源在时域占用至少一个时隙。
作为一个实施例,所述第二RS资源占用的时域资源属于一个时隙。
作为一个实施例,所述第二RS资源在频域占用至少一个子载波。
作为一个实施例,所述第二RS资源在频域占用至少一个PRB。
作为一个实施例,所述第二RS资源在频域占用至少一个RB。
作为一个实施例,所述第二RS资源包括的所述多个REs在任一多载波符号上呈梳状分布。
作为一个实施例,所述第二RS资源的梳状尺寸是所述第一时频资源包括的所述多个REs在任一多载波符号上的频域间隔。
作为一个实施例,所述第二RS资源的梳状尺寸是所述第一时频资源包括的所述多个REs在任一多载波符号上的频域间隔的子载波个数。
作为一个实施例,所述第二RS资源的梳状尺寸用Comb-N表示,所述N代表子载波个数。
作为一个实施例,所述第二RS资源的资源带宽是所述第二RS资源在频域占用的RBs的个数。
作为一个实施例,所述第二RS资源在频域占用至少一个子信道。
作为一个实施例,所述第二RS资源占用的频域资源属于一个子信道。
作为一个实施例,所述第二RS资源在时域占用至少一个多载波符号,所述第二RS资源在频域占用包括至少一个子载波。
作为一个实施例,所述第二RS资源在时域占用至少一个多载波符号,所述第二RS资源在频域占用至少一个PRB。
作为一个实施例,所述第二RS资源所占用的时域资源属于一个时隙,所述第二RS资源所占用的频域资源属于一个子信道。
作为一个实施例,所述第二RS资源包括的所述多个REs的分布是全交错图谱。
作为一个实施例,所述第二RS资源包括的所述多个REs的分布是半交错图谱。
作为一个实施例,所述第二RS资源包括的所述多个REs的分布是非交错图谱。
作为一个实施例,所述第二RS资源包括S-SS/PSBCH block。
作为一个实施例,所述第二RS资源包括定位参考信号资源。
作为一个实施例,所述第二RS资源包括副链路定位参考信号资源。
作为一个实施例,所述第二RS资源是副链路定位参考信号资源。
作为一个实施例,所述第二RS资源所占用的时域资源是一个发送时机。
作为一个实施例,所述第二RS资源所占用的时域资源是一个SL-PRS发送时机。
作为一个实施例,所述第二RS资源所占用的时域资源是一个时隙上的S-SS/PBSCH block发送时机。
作为一个实施例,所述第二RS资源所占用的时域资源是一个SL CSI-RS所占用的时域资源。
作为一个实施例,所述第二RS资源所占用的时域资源是一个SRS所占用的时域资源。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single-Carrier Frequency Division Multiple Access,单载波-频分多址)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩频正交频分复用)符号。
作为一个实施例,所述多载波符号是IFDMA(Interleaved Frequency Division Multiple Access,交织频分多址)符号。
作为一个实施例,针对所述第二参考信号的测量被用于生成所述第一位置信息。
作为一个实施例,针对所述第一参考信号的测量和所述第二参考信号的测量被共同用于生成所述第一位置信息。
作为一个实施例,所述第一位置信息包括收发时差。
作为一个实施例,所述第一位置信息包括副链路收发时差。
作为一个实施例,所述第一位置信息包括位置有关的测量(Location related measurements)。
作为一个实施例,所述第一位置信息包括位置估计(Location estimate)。
作为一个实施例,所述第一位置信息包括定位辅助数据(Assistance Data)。
作为一个实施例,所述第一位置信息包括时间质量(TimingQuality)。
作为一个实施例,所述第一位置信息包括接收波束索引(RxBeamIndex)。
作为一个实施例,所述第一位置信息包括接收功率信息。
作为一个实施例,所述第一位置信息被用于转让(Transfer)NAS(Non-Access-Stratum,非接入层) 特定信息。
作为一个实施例,所述第一位置信息被用于转让时钟的定时信息。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。附图2说明了5G NR(New Radio,新空口),LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统架构下的V2X通信架构。5G NR或LTE网络架构可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)或某种其它合适术语。
实施例2的V2X通信架构包括UE201,UE241,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220,ProSe功能250和ProSe应用服务器230。所述V2X通信架构可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,所述V2X通信架构提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其他蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、发送接收节点(TRP)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其他合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Data Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。所述ProSe功能250是用于适地服务(ProSe,Proximity-based Service)所需的网络相关行为的逻辑功能;包括DPF(Direct Provisioning Function,直接供应功能),直接发现名称管理功能(Direct Discovery Name Management Function),EPC水平发现ProSe功能(EPC-level Discovery ProSe Function)等。所述ProSe应用服务器230具备存储EPC ProSe用户标识,在应用层用户标识和EPC ProSe用户标识之间映射,分配ProSe限制的码后缀池等功能。
作为一个实施例,所述UE201和所述UE241之间通过PC5参考点(Reference Point)连接。
作为一个实施例,所述ProSe功能250分别通过PC3参考点与所述UE201和所述UE241连接。
作为一个实施例,所述ProSe功能250通过PC2参考点与所述ProSe应用服务器230连接。
作为一个实施例,所述ProSe应用服务器230连接分别通过PC1参考点与所述UE201的ProSe应用和所述UE241的ProSe应用连接。
作为一个实施例,本申请中的所述第一节点是所述UE201,本申请中的所述第二节点是所述UE241。
作为一个实施例,本申请中的所述第一节点是所述UE241,本申请中的所述第二节点是所述UE201。
作为一个实施例,所述UE201和所述UE241之间的无线链路对应本申请中的副链路。
作为一个实施例,从所述UE201到NR节点B的无线链路是上行链路。
作为一个实施例,从NR节点B到UE201的无线链路是下行链路。
作为一个实施例,所述UE201支持SL传输。
作为一个实施例,所述UE241支持SL传输。
作为一个实施例,所述UE201支持PC5接口。
作为一个实施例,所述UE241支持PC5接口。
作为一个实施例,所述gNB203是宏蜂窝(Marco Cellular)基站。
作为一个实施例,所述gNB203是微小区(Micro Cell)基站。
作为一个实施例,所述gNB203是微微小区(PicoCell)基站。
作为一个实施例,所述gNB203是家庭基站(Femtocell)。
作为一个实施例,所述gNB203是支持大时延差的基站设备。
作为一个实施例,所述gNB203是一个RSU。
作为一个实施例,所述gNB203包括卫星设备。
作为一个实施例,本申请中的所述第一参考信号的发送者包括所述UE201。
作为一个实施例,本申请中的所述第二参考信号的接收者包括所述UE201。
作为一个实施例,本申请中的所述第一空域关系信息的接收者包括所述UE201。
作为一个实施例,本申请中的所述第二空域关系信息的接收者包括所述UE201。
作为一个实施例,本申请中的所述第一配置信息的接收者包括所述UE201。
作为一个实施例,本申请中的所述第一信令的发送者包括所述UE201。
作为一个实施例,本申请中的所述第一定位相关信息的接收者包括所述UE201。
作为一个实施例,本申请中的所述第一参考信号的接收者包括所述UE241。
作为一个实施例,本申请中的所述第二参考信号的发送者包括所述UE241。
作为一个实施例,本申请中的所述第一定位相关信息的发送者包括所述UE241。
作为一个实施例,本申请中的所述第一信令的接收者包括所述UE241。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。附图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,附图3用三个层展示用于第一节点设备(UE或V2X中的RSU,车载设备或车载通信模块)和第二节点设备(gNB,UE或V2X中的RSU,车载设备或车载通信模块),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,通过PHY301负责在第一节点设备与第二节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点设备处。PDCP子层304提供数据加密和完整性保护,PDCP子层304还提供第一节点设备对第二节点设备的越区移动支持。RLC子层303提供数据包的分段和重组,通过ARQ实现丢失数据包的重传,RLC子层303还提供重复数据包检测和协议错误检测。MAC子层302提供逻辑与传输信道之间的映射和逻辑信道的复用。MAC子层302还负责在第一节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点设备与第一节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点设备和第二节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平 面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的包头压缩以减少无线发送开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一参考信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一参考信号生成于所述MAC子层302。
作为一个实施例,本申请中的所述第二参考信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二参考信号生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一配置信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信令生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信令经由所述MAC子层302传输到所述PHY301。
作为一个实施例,本申请中的所述第一定位相关信息生成于所述PHY301。
作为一个实施例,本申请中的所述第一定位相关信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一定位相关信息生成于应用层(application layer)。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。附图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第一通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第二通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流 从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第二通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第一通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述所述第一通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第二通信设备450到所述第一通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收第一空域关系信息;以第一空域传输滤波器发送第一参考信号,所述第一参考信号占用第一RS资源;以所述第一空域传输滤波器接收第二参考信号,所述第二参考信号占用第二RS资源;其中,所述第一空域关系信息指示所述第一RS资源与所述第二RS资源之间的空域关系;所述第一RS资源和所述第一空域关系信息被共同用于确定所述第二RS资源;针对所述第二参考信号的测量被用于生成第一位置信息。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收所述第一空域关系信息;以第一空域传输滤波器发送第一参考信号,所述第一参考信号占用第一RS资源;以所述第一空域传输滤波器接收第二参考信号,所述第二参考信号占用第二RS资源;其中,所述第一空域关系信息指示所述第一RS资源与所述第二RS资源之间的空域关系;所述第一RS资源和所述第一空域关系信息被共同用于确定所述第二RS资源;针对所述第二参考信号的测量被用于生成第一位置信息。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:接收第一信令;以第二空域传输滤波器接收第一参考信号,所述第一参考信号占用第一RS资源;以所述第二空域传输滤波器发送第二参考信号,所述第二参考信号占用第二RS资源;其中,所述第一信令指示所述第一空域关系信息,所述第一空域关系信息指示所述第一RS资源与所述第二RS资源之间的空域关系;所述第一RS资源和所述第一空域关系信息被共同用于确 定所述第二RS资源;针对所述第一参考信号的测量被用于生成第一定位相关信息。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收所述第一信令;以第二空域传输滤波器接收第一参考信号,所述第一参考信号占用第一RS资源;以所述第二空域传输滤波器发送第二参考信号,所述第二参考信号占用第二RS资源;其中,所述第一信令指示所述第一空域关系信息,所述第一空域关系信息指示所述第一RS资源与所述第二RS资源之间的空域关系;所述第一RS资源和所述第一空域关系信息被共同用于确定所述第二RS资源;针对所述第一参考信号的测量被用于生成所述第一定位相关信息。
作为一个实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,所述第二通信设备450是一个UE。
作为一个实施例,所述第一通信设备410是一个UE。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的在所述第一RS资源上发送所述第一参考信号。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的发送所述第一信令。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的在所述第二RS资源上接收所述第二参考信号。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的接收所述第一定位相关信息。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中的在所述第一RS资源上接收第一参考信号。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中的接收第一信令。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中的在所述第二RS资源上的发送所述第二参考信号。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中的发送所述第一定位相关信息。
实施例5
实施例5示例了根据本申请的一个实施例的UE定位的结构图,如附图5所示。
UE501通过PC5接口与UE502通信;UE502通过LTE-Uu接口或NR-Uu新无线接口与ng-eNB503或gNB504通信;ng-eNB503和gNB 504有时被称为基站,ng-eNB503和gNB504也被称为NG(Next Generation,下一代)-RAN(Radio Access Network,无线接入网)。ng-eNB503和gNB 504分别通过NG(Next Generation,下一代)-C(Control plane,控制面)与AMF505连接;AMF505通过NL1接口与LMF506连接。
所述AMF505从另外一个实体,例如GMLC(Gateway Mobile Location Centre,网关移动位置中心)或者UE,接收到与特定UE关联的位置服务请求,或者所述AMF505自己决定启动被关联到特定UE的位置服务;然后所述AMF505发送位置服务请求到一个LMF,例如所述LMF506;然后这个LMF处理所述位置服务请求,包括发送辅助数据到所述特定UE以辅助基于UE(UE-based)的或者UE辅助的(UE-assisted)定位,以及包括接收来自UE上报的位置信息(Location information);接着这个LMF将 位置服务的结果返回给所述AMF505;如果所述位置服务是另外一个实体请求的,所述AMF505将所述位置服务的结果返回给那个实体。
作为一个实施例,本申请的网络设备包括LMF。
作为一个实施例,本申请的网络设备包括NG-RAN和LMF。
作为一个实施例,本申请的网络设备包括NG-RAN、AMF和LMF。
实施例6
实施例6示例了根据本申请的一个实施例的无线信号传输流程图,如附图6所示。在附图6中,第一节点U1与第二节点U2之间是通过空中接口进行通信的。在附图6中,虚线方框F0和虚线方框F1中的步骤分别是可选的。
对于第一节点U1,在步骤S11中接收第一空域关系信息;在步骤S12中接收第二空域关系信息;在步骤S13中发送第一信令;在步骤S14中以第一空域传输滤波器发送第一参考信号;在步骤S15中接收第一定位相关信息;在步骤S16中以所述第一空域传输滤波器接收第二参考信号。
对于第二节点U2,在步骤S21中接收所述第一信令;在步骤S22中以第二空域传输滤波器接收所述第一参考信号;在步骤S23中发送所述第一定位相关信息;在步骤S24中以所述第二空域传输滤波器发送所述第二参考信号。
在实施例6中,所述第一参考信号占用第一RS资源,所述第二参考信号占用第二RS资源,其中,所述第一空域关系信息指示所述第一RS资源与所述第二RS资源之间的空域关系,所述第一RS资源和所述第一空域关系信息被共同用于确定所述第二RS资源;针对所述第二参考信号的测量被用于生成第一位置信息;针对所述第一参考信号的测量被用于生成所述第一定位相关信息,所述第一定位相关信息也被用于生成所述第一位置信息;所述第二空域关系信息指示给定参考信号与所述第一参考信号之间的空域关系;所述给定参考信号包括S-SSB,SL CSI-RS,SRS,SL PRS四者中的至少之一;所述第一信令包括所述第一空域关系信息。
作为一个实施例,第一RS资源集包括至少一个第一类RS资源,第二RS资源集包括至少一个第二类RS资源,所述第一空域关系信息指示所述第一RS资源集与所述第二RS资源集之间的空域关系,所述第一RS资源是所述第一RS资源集中的一个第一类RS资源,所述第二RS资源是所述第二RS资源集中的一个第二类RS资源。
作为一个实施例,所述第一RS资源属于第一资源池,所述第二RS资源属于第二资源池,所述第一资源池与所述第二资源池不同。
作为一个实施例,所述第二资源池与所述第一资源池相同。
作为一个实施例,所述第一节点U1和所述第二节点U2之间通过PC5接口进行通信。
作为一个实施例,所述第二空域关系信息是从所述第一节点的更高层配置的。
作为一个实施例,所述第二空域关系信息是从gNB配置的。
作为一个实施例,所述第二空域关系信息是从LMF配置的。
作为一个实施例,所述第一空域关系信息包括所述第二空域关系信息。
作为一个实施例,所述第一空域关系信息包括:所述第二节点U2以第二空域传输滤波器发送所述第二参考信号,所述第二空域传输滤波器是所述第二节点U2接收所述第一参考信号所使用的空域传输滤波器。
作为一个实施例,所述给定参考信号是所述第二节点U2发送的。
作为一个实施例,所述给定参考信号是所述第一节点U1接收的。
作为一个实施例,所述第二空域关系信息的参考RS是所述给定参考信号。
作为一个实施例,所述第二空域关系信息的目标RS是所述第一参考信号。
作为一个实施例,所述第二空域关系信息包括:所述给定参考信号的接收者以接收所述给定参考信号所使用的空域传输滤波器来发送所述第一参考信号。
作为一个实施例,针对所述第一参考信号的测量是所述第二节点U2执行的。
作为一个实施例,针对所述第一参考信号的测量被用于生成所述第一定位相关信息。
作为一个实施例,所述第一定位相关信息被用于确定RTT。
作为一个实施例,所述第一定位相关信息被一个LMF用于确定RTT。
作为一个实施例,所述第一定位相关信息被用于定位。
作为一个实施例,所述第一定位相关信息被用于位置有关的测量。
作为一个实施例,所述第一定位相关信息被用于副链路定位。
作为一个实施例,所述第一定位相关信息被用于确定传播延迟。
作为一个实施例,所述第一定位相关信息被所述LMF用于确定传播延迟。
作为一个实施例,所述第一定位相关信息被用于RTT定位。
作为一个实施例,所述第一定位相关信息被用于Single-sided(单边)RTT定位。
作为一个实施例,所述第一定位相关信息被用于Double-sided(双边)RTT定位。
作为一个实施例,所述第一定位相关信息包括收发时差。
作为一个实施例,所述第一定位相关信息包括副链路收发时差。
作为一个实施例,所述第一定位相关信息包括位置有关的测量。
作为一个实施例,所述第一定位相关信息包括位置估计。
作为一个实施例,所述第一定位相关信息包括定位辅助数据。
作为一个实施例,所述第一定位相关信息包括时间质量。
作为一个实施例,所述第一定位相关信息包括接收波束索引。
作为一个实施例,所述第一定位相关信息包括接收功率信息。
作为一个实施例,所述第一信令是一个更高层信令。
作为一个实施例,所述第一信令被用于指示所述第一空域关系信息。
作为一个实施例,所述第一信令包括spatialRelationInfoPos。
作为一个实施例,所述spatialRelationInfoPos的定义参考3GPP TS38.331的6.3.2章节。
作为一个实施例,所述第一信令包括一个RRC IE(information element,信息单元)中的一个或多个域。
实施例7
实施例7示例了根据本申请的一个实施例的第一RS资源集与第二RS资源集之间关系的示意图,如附图7所示。
在实施例7中,所述第一RS资源集包括至少一个第一类RS资源,所述第一RS资源是所述第一RS资源集中的一个第一类RS资源;所述第二RS资源集包括至少一个第二类RS资源,所述第二RS资源是所述第二RS资源集中的一个第二类RS资源;所述第一空域关系信息指示所述第一RS资源集与所述第二RS资源集之间的空域关系。
作为一个实施例,所述第一RS资源集被用于SL定位。
作为一个实施例,所述第一RS资源集是SL PRS资源集(Resource Set)。
作为一个实施例,所述第一RS资源集包括至少一个第一类RS资源。
作为一个实施例,所述第一RS资源集包括的所述至少一个第一类RS资源包括多个REs。
作为一个实施例,所述第一类RS资源包括多个REs。
作为一个实施例,所述第一类RS资源包括的所述多个REs是交错分布的。
作为一个实施例,所述第一类RS资源在时域占用至少一个多载波符号。
作为一个实施例,所述第一类RS资源在频域占用多个PRBs。
作为一个实施例,所述第一类RS资源在频域占用多个RBs。
作为一个实施例,所述第一类RS资源包括的所述多个REs在任一多载波符号上呈梳状分布。
作为一个实施例,所述第一类RS资源的梳状尺寸是所述第一类RS资源包括的所述多个REs在任一多载波符号上的频域间隔。
作为一个实施例,所述第一类RS资源的梳状尺寸是所述第一类RS资源包括的所述多个REs在任一多载波符号上的频域间隔的子载波个数。
作为一个实施例,所述第一类RS资源的梳状尺寸是一个正整数。
作为一个实施例,所述第一类RS资源的梳状尺寸是{1,2,4,6,12}中的之一。
作为一个实施例,所述第一类RS资源的资源带宽是所述第一类RS资源在频域占用的RB个数。
作为一个实施例,所述第一类RS资源的资源带宽是一个正整数。
作为一个实施例,所述第一类RS资源的资源带宽是从24到272中的一个正整数。
作为一个实施例,所述第一RS资源集中的任一第一类RS资源的梳状尺寸相等。
作为一个实施例,所述第一RS资源集中的任一第一类RS资源的资源带宽相等。
作为一个实施例,所述第一RS资源集中的任一第一类RS资源在时域所占用的多载波符号数相等。
作为一个实施例,所述第一RS资源集中的任一第一类RS资源所占用的RE个数相等。
作为一个实施例,所述第一RS资源集中的任一第一类RS资源的梳状尺寸相等,或者,所述第一RS资源集中的任一第一类RS资源的资源带宽相等,或者,所述第一RS资源集中的任一第一类RS资源在时域所占用的多载波符号数相等,或者,所述第一RS资源集中的任一第一类RS资源所占用的RE个数相等。
作为一个实施例,所述第一RS资源集中的任一第一类RS资源的梳状尺寸相等,所述第一RS资源集中的任一第一类RS资源的资源带宽相等,所述第一RS资源集中的任一第一类RS资源在时域所占用的多载波符号数相等。
作为一个实施例,所述第一RS资源是所述第一RS资源集中的一个第一类RS资源。
作为一个实施例,所述第一RS资源的梳状尺寸为Comb-2。
作为一个实施例,所述第二RS资源集被用于SL定位。
作为一个实施例,所述第二RS资源集是SL PRS资源集。
作为一个实施例,所述第二RS资源集包括至少一个第二类RS资源。
作为一个实施例,所述第二RS资源集包括的所述至少一个第二类RS资源包括多个REs。
作为一个实施例,所述第二类RS资源包括多个REs。
作为一个实施例,所述第二类RS资源包括的所述多个REs是交错分布的。
作为一个实施例,所述第二类RS资源在时域占用至少一个多载波符号。
作为一个实施例,所述第二类RS资源在频域占用多个PRBs。
作为一个实施例,所述第二类RS资源在频域占用多个RBs。
作为一个实施例,所述第二类RS资源包括的所述多个REs在任一多载波符号上呈梳状分布。
作为一个实施例,所述第二类RS资源的梳状尺寸是所述第二类RS资源包括的所述多个REs在任一多载波符号上的频域间隔。
作为一个实施例,所述第二类RS资源的梳状尺寸是所述第二类RS资源包括的所述多个REs在任一多载波符号上的频域间隔的子载波个数。
作为一个实施例,所述第二类RS资源的梳状尺寸是一个正整数。
作为一个实施例,所述第二类RS资源的梳状尺寸是{1,2,4,6,12}中的之一。
作为一个实施例,所述第二类RS资源的梳状尺寸与所述第一类RS资源的梳状尺寸不同。
作为一个实施例,所述第二类RS资源的梳状尺寸与所述第一类RS资源的梳状尺寸相同。
作为一个实施例,所述第二类RS资源的资源带宽是所述第二类RS资源在频域占用的RB个数。
作为一个实施例,所述第二类RS资源的资源带宽是一个正整数。
作为一个实施例,所述第二类RS资源的资源带宽是从24到272中的一个正整数。
作为一个实施例,所述第二类RS资源的资源带宽与所述第一类RS资源的资源带宽不同。
作为一个实施例,所述第二类RS资源的资源带宽与所述第一类RS资源的资源带宽相同。
作为一个实施例,所述第二RS资源集中的任一第二类RS资源的梳状尺寸相等。
作为一个实施例,所述第二RS资源集中的任一第二类RS资源的资源带宽相等。
作为一个实施例,所述第二RS资源集中的任一第二类RS资源在时域所占用的多载波符号数相等。
作为一个实施例,所述第二RS资源集中的任一第二类RS资源所占用的RE个数相等。
作为一个实施例,所述第二RS资源集中的任一第二类RS资源的梳状尺寸相等,或者,所述第二RS资源集中的任一第二类RS资源的资源带宽相等,或者,所述第二RS资源集中的任一第二类RS资源在时 域所占用的多载波符号数相等,或者,所述第二RS资源集中的任一第二类RS资源所占用的RE个数相等。
作为一个实施例,所述第二RS资源集中的任一第二类RS资源的梳状尺寸相等,所述第二RS资源集中的任一第二类RS资源的资源带宽相等,所述第二RS资源集中的任一第二类RS资源在时域所占用的多载波符号数相等。
作为一个实施例,所述第二RS资源是所述第二RS资源集中的一个第二类RS资源。
作为一个实施例,所述第二RS资源的梳状尺寸为Comb-4。
实施例8
实施例8示例了根据本申请的一个实施例的第一RS资源、第二RS资源与第一资源池和第二资源池之间关系的示意图,如附图8所示。
在实施例8中,所述第一RS资源属于所述第一资源池,所述第二RS资源属于所述第二资源池,所述第一资源池与所述第二资源池不同。
作为一个实施例,所述第二资源池与所述第一资源池相同。
作为一个实施例,所述第一配置信息被用于配置所述第一资源池。
作为一个实施例,所述第一配置信息包括SL-ResourcePool。
作为一个实施例,所述SL-ResourcePool的定义参考3GPP TS38.331的6.3.5章节。
作为一个实施例,第二配置信息被用于配置所述第二资源池。
作为一个实施例,所述第二配置信息包括SL-ResourcePool。
作为一个实施例,所述第一资源池是一个副链路资源池。
作为一个实施例,所述第一资源池被用于SL传输。
作为一个实施例,所述第一资源池被用于SL定位。
作为一个实施例,所述第一资源池被用于传输SL PRS。
作为一个实施例,所述第一资源池在时域包括多个多载波符号。
作为一个实施例,所述第一资源池在时域包括至少一个时隙。
作为一个实施例,所述第一资源池在频域包括多个子载波。
作为一个实施例,所述第一资源池在频域包括至少一个PRB。
作为一个实施例,所述第一资源池在频域包括至少一个子信道。
作为一个实施例,所述第一资源池包括所述第一RS资源集。
作为一个实施例,所述第一资源池包括多个第一类RS资源,所述第一RS资源是所述多个第一类RS资源中的之一。
作为一个实施例,所述第二资源池是一个副链路资源池。
作为一个实施例,所述第二资源池被用于SL传输。
作为一个实施例,所述第二资源池被用于SL定位。
作为一个实施例,所述第二资源池被用于传输SL PRS。
作为一个实施例,所述第二资源池在时域包括多个多载波符号。
作为一个实施例,所述第二资源池在时域包括至少一个时隙。
作为一个实施例,所述第二资源池在频域包括多个子载波。
作为一个实施例,所述第二资源池在频域包括至少一个PRB。
作为一个实施例,所述第二资源池在频域包括至少一个子信道。
作为一个实施例,所述第二资源池包括所述第二RS资源集。
作为一个实施例,所述第二资源池包括多个第二类RS资源,所述第二RS资源是所述多个第二类RS资源中的之一。
实施例9
实施例9示例了根据本申请的一个实施例的第一参考信号、第二参考信号、第一定位相关信息、第一位置信息之间关系的示意图,如附图9所示。
在实施例9中,所述第一节点,接收第一配置信息;其中,所述第一配置信息包括第一空域关系信息;所述第一节点以第一空域传输滤波器发送第一参考信号,所述第一参考信号占用第一RS资源;所述第一节点以所述第一空域传输滤波器接收第二参考信号,所述第二参考信号占用第二RS资源;所述第一空域关系信息指示所述第一RS资源与所述第二RS资源之间的空域关系;所述第一RS资源和所述第一空域关系信息被共同用于确定所述第二RS资源。
作为一个实施例,所述第一节点发送第一信令,其中,所述第一信令包括所述第一空域关系信息。
作为一个实施例,所述第一节点接收第一定位相关信息,所述第一定位相关信息被用于生成所述第一位置信息。
作为一个实施例,所述第一节点针对所述第二参考信号的测量被用于生成所述第一位置信息。
作为一个实施例,所述第二节点接收所述第一信令;以第二空域传输滤波器接收所述第一参考信号,所述第一参考信号占用所述第一RS资源;以所述第二空域传输滤波器发送第二参考信号,所述第二参考信号占用所述第二RS资源。
作为一个实施例,所述第二节点针对所述第一参考信号的测量被用于生成所述第一定位相关信息。
作为一个实施例,所述第二节点发送所述第一定位相关信息,其中,所述第一定位相关信息被用于生成所述第一位置信息。
作为一个实施例,所述第一配置信息是从所述第一节点的更高层配置的。
作为一个实施例,所述第一配置信息是从gNB配置的。
作为一个实施例,所述第一配置信息是从LMF配置的。
作为一个实施例,所述第一定位相关信息被用于报告给所述第一节点的更高层。
作为一个实施例,所述第一定位相关信息被用于报告给gNB。
作为一个实施例,所述第一定位相关信息被用于报告给LMF。
作为一个实施例,所述第一位置信息被上报给一个LMF。
作为一个实施例,所述第一位置信息经由所述第一节点上报给一个LMF。
作为一个实施例,所述第一位置信息被上报给一个gNB。
作为一个实施例,所述第一位置信息经由所述第一节点上报给一个gNB。
实施例10
实施例10示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图,如附图10所示。在实施例10中,第一节点设备处理装置1000主要由第一接收机1001、第一发射机1002、第二接收机1003组成。
作为一个实施例,第一接收机1001包括本申请附图4中的天线452,发射器/接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,第一发射机1002包括本申请附图4中的天线452,发射器/接收器454,多天线发射处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,第二接收机1003包括本申请附图4中的天线452,发射器/接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
在实施例10中,所述第一接收机1001接收第一空域关系信息;所述第一发射机1002以第一空域传输滤波器发送第一参考信号,所述第一参考信号占用第一RS资源;所述第二接收机1003以所述第一空域传输滤波器接收第二参考信号,所述第二参考信号占用第二RS资源;其中,所述第一空域关系信息指示所述第一RS资源与所述第二RS资源之间的空域关系;所述第一RS资源和所述第一空域关系信息被共同用于确定所述第二RS资源;针对所述第二参考信号的测量被用于生成第一位置信息。
作为一个实施例,第一RS资源集包括至少一个第一类RS资源,第二RS资源集包括至少一个第二类RS资源,所述第一空域关系信息指示所述第一RS资源集与所述第二RS资源集之间的空域关系,所述第一RS资源是所述第一RS资源集中的一个第一类RS资源,所述第二RS资源是所述第二RS资源集中的一个第二类RS资源。
作为一个实施例,所述第一RS资源属于第一资源池,所述第二RS资源属于第二资源池,所述第一 资源池与所述第二资源池不同。
作为一个实施例,所述第一接收机1001,接收第一配置信息;其中,所述第一配置信息被用于配置所述第一资源池,所述第一配置信息包括所述第一空域关系信息。
作为一个实施例,所述第一接收机1001,接收第二空域关系信息;其中,所述第二空域关系信息指示给定参考信号与所述第一参考信号之间的空域关系;所述给定参考信号包括S-SSB,SL CSI-RS,SRS,SL PRS四者中的至少之一。
作为一个实施例,所述第一发射机1002,发送第一信令;其中,所述第一信令包括所述第一空域关系信息。
作为一个实施例,所述第二接收机1003,接收第一定位相关信息;其中,针对所述第一参考信号的测量被用于生成所述第一定位相关信息,所述第一定位相关信息也被用于生成所述第一位置信息。
作为一个实施例,所述第一节点1000是用户设备。
作为一个实施例,所述第一节点1000是中继节点。
作为一个实施例,所述第一节点1000是路侧设备。
实施例11
实施例11示例了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图,如附图11所示。在实施例11中,第二节点设备处理装置1100主要由第三接收机1101、第二发射机1102组成。
作为一个实施例,第三接收机1101包括本申请附图4中的天线420,发射器/接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475,存储器476中的至少之一。
作为一个实施例,第二发射机1102包括本申请附图4中的天线420,发射器/接收器418,多天线发射处理器471,发射处理器416,控制器/处理器475,存储器476中的至少之一。
在实施例11中,所述第三接收机1101,接收第一信令;以第二空域传输滤波器接收第一参考信号,所述第一参考信号占用第一RS资源;所述第二发射机1102,以所述第二空域传输滤波器发送第二参考信号,所述第二参考信号占用第二RS资源;其中,所述第一信令指示第一空域关系信息,所述第一空域关系信息指示所述第一RS资源与所述第二RS资源之间的空域关系;所述第一RS资源和所述第一空域关系信息被共同用于确定所述第二RS资源;针对所述第一参考信号的测量被用于生成第一定位相关信息。
作为一个实施例,所述第二发射机1102,发送所述第一定位相关信息;其中,所述第一定位相关信息被用于生成第一位置信息。
作为一个实施例,第一RS资源集包括至少一个第一类RS资源,第二RS资源集包括至少一个第二类RS资源,所述第一空域关系信息指示所述第一RS资源集与所述第二RS资源集之间的空域关系,所述第一RS资源是所述第一RS资源集中的一个第一类RS资源,所述第二RS资源是所述第二RS资源集中的一个第二类RS资源。
作为一个实施例,所述第一RS资源属于第一资源池,所述第二RS资源属于第二资源池,所述第一资源池与所述第二资源池不同。
作为一个实施例,所述第二节点1100是用户设备。
作为一个实施例,所述第二节点1100是中继节点。
作为一个实施例,所述第二节点1100是路侧设备。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的用户设备或者UE或者终端包括但不限于手机, 平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一接收机,接收第一空域关系信息;
    第一发射机,以第一空域传输滤波器发送第一参考信号,所述第一参考信号占用第一RS资源;
    第二接收机,以所述第一空域传输滤波器接收第二参考信号,所述第二参考信号占用第二RS资源;
    其中,所述第一空域关系信息指示所述第一RS资源与所述第二RS资源之间的空域关系;所述第一RS资源和所述第一空域关系信息被共同用于确定所述第二RS资源;针对所述第二参考信号的测量被用于生成第一位置信息。
  2. 根据权利要求1所述的第一节点,其特征在于,第一RS资源集包括至少一个第一类RS资源,第二RS资源集包括至少一个第二类RS资源,所述第一空域关系信息指示所述第一RS资源集与所述第二RS资源集之间的空域关系,所述第一RS资源是所述第一RS资源集中的一个第一类RS资源,所述第二RS资源是所述第二RS资源集中的一个第二类RS资源。
  3. 根据权利要求1或2所述的第一节点,其特征在于,所述第一RS资源属于第一资源池,所述第二RS资源属于第二资源池,所述第一资源池与所述第二资源池不同。
  4. 根据权利要求3所述的第一节点,其特征在于,包括:
    所述第一接收机,接收第一配置信息;
    其中,所述第一配置信息被用于配置所述第一资源池,所述第一配置信息包括所述第一空域关系信息。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一接收机,接收第二空域关系信息;
    其中,所述第二空域关系信息指示给定参考信号与所述第一参考信号之间的空域关系;所述给定参考信号包括S-SSB,SL CSI-RS,SRS,SL PRS四者中的至少之一。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一发射机,发送第一信令;
    其中,所述第一信令包括所述第一空域关系信息。
  7. 根据权利要求1至6中任一权利要求所述的第一节点,其特征在于,包括:
    所述第二接收机,接收第一定位相关信息;
    其中,针对所述第一参考信号的测量被用于生成所述第一定位相关信息,所述第一定位相关信息也被用于生成所述第一位置信息。
  8. 一种被用于无线通信的第二节点,其特征在于,包括:
    第三接收机,接收第一信令;以第二空域传输滤波器接收第一参考信号,所述第一参考信号占用第一RS资源;
    第二发射机,以所述第二空域传输滤波器发送第二参考信号,所述第二参考信号占用第二RS资源;
    其中,所述第一信令指示第一空域关系信息,所述第一空域关系信息指示所述第一RS资源与所述第二RS资源之间的空域关系;所述第一RS资源和所述第一空域关系信息被共同用于确定所述第二RS资源;针对所述第一参考信号的测量被用于生成第一定位相关信息。
  9. 根据权利要求8所述的第二节点,其特征在于,包括:
    所述第二发射机,发送所述第一定位相关信息;
    其中,所述第一定位相关信息被用于生成第一位置信息。
  10. 根据权利要求8或9所述的第二节点,其特征在于,第一RS资源集包括至少一个第一类RS资源,第二RS资源集包括至少一个第二类RS资源,所述第一空域关系信息指示所述第一RS资源集与所述第二RS资源集之间的空域关系,所述第一RS资源是 所述第一RS资源集中的一个第一类RS资源,所述第二RS资源是所述第二RS资源集中的一个第二类RS资源。
  11. 根据权利要求8至10中任一权利要求所述的第二节点,其特征在于,所述第一RS资源属于第一资源池,所述第二RS资源属于第二资源池,所述第一资源池与所述第二资源池不同。
  12. 一种被用于无线通信的第一节点的方法,其特征在于,包括:
    接收第一空域关系信息;
    以第一空域传输滤波器发送第一参考信号,所述第一参考信号占用第一RS资源;
    以所述第一空域传输滤波器接收第二参考信号,所述第二参考信号占用第二RS资源;
    其中,所述第一空域关系信息指示所述第一RS资源与所述第二RS资源之间的空域关系;所述第一RS资源和所述第一空域关系信息被共同用于确定所述第二RS资源;针对所述第二参考信号的测量被用于生成第一位置信息。
  13. 一种被用于无线通信的第二节点的方法,其特征在于,包括:
    接收第一信令;以第二空域传输滤波器接收第一参考信号,所述第一参考信号占用第一RS资源;
    以所述第二空域传输滤波器发送第二参考信号,所述第二参考信号占用第二RS资源;
    其中,所述第一信令指示第一空域关系信息,所述第一空域关系信息指示所述第一RS资源与所述第二RS资源之间的空域关系;所述第一RS资源和所述第一空域关系信息被共同用于确定所述第二RS资源;针对所述第一参考信号的测量被用于生成第一定位相关信息。
PCT/CN2023/119886 2022-09-24 2023-09-20 一种被用于定位的方法和装置 WO2024061249A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211168769.5 2022-09-24
CN202211168769.5A CN117812528A (zh) 2022-09-24 2022-09-24 一种被用于定位的方法和装置

Publications (1)

Publication Number Publication Date
WO2024061249A1 true WO2024061249A1 (zh) 2024-03-28

Family

ID=90430604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/119886 WO2024061249A1 (zh) 2022-09-24 2023-09-20 一种被用于定位的方法和装置

Country Status (2)

Country Link
CN (1) CN117812528A (zh)
WO (1) WO2024061249A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022063145A1 (zh) * 2020-09-25 2022-03-31 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114513289A (zh) * 2020-11-16 2022-05-17 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2022126496A1 (en) * 2020-12-17 2022-06-23 Nokia Shanghai Bell Co., Ltd. Retransmission of sidelink positioning reference signal
US20220279313A1 (en) * 2019-11-18 2022-09-01 Huawei Technologies Co., Ltd. Sidelink Positioning Method and Apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220279313A1 (en) * 2019-11-18 2022-09-01 Huawei Technologies Co., Ltd. Sidelink Positioning Method and Apparatus
WO2022063145A1 (zh) * 2020-09-25 2022-03-31 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114513289A (zh) * 2020-11-16 2022-05-17 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2022126496A1 (en) * 2020-12-17 2022-06-23 Nokia Shanghai Bell Co., Ltd. Retransmission of sidelink positioning reference signal

Also Published As

Publication number Publication date
CN117812528A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
CN113114437B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020034848A1 (zh) 一种被用于无线通信节点中的方法和装置
CN114080020A (zh) 一种被用于无线通信的节点中的方法和装置
WO2020001228A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019228145A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20230300936A1 (en) Method and device for wireless communication
WO2019222935A1 (zh) 被用于无线通信中的定位的方法和装置
WO2018040815A1 (zh) 一种支持广播信号的无线通信系统中的方法和装置
WO2021031901A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024061249A1 (zh) 一种被用于定位的方法和装置
WO2024051625A1 (zh) 一种被用于定位的方法和装置
WO2024046249A1 (zh) 一种被用于定位的方法和装置
WO2024037414A1 (zh) 一种被用于定位的方法和装置
CN113133124A (zh) 一种被用于无线通信的节点中的方法和装置
WO2024046154A1 (zh) 一种用于无线通信的方法和装置
WO2023216896A1 (zh) 用于定位的方法和装置
WO2024051623A1 (zh) 一种用于无线通信的方法和装置
WO2024078432A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024067537A1 (zh) 一种被用于定位的方法和装置
WO2024093837A1 (zh) 一种被用于定位的方法和装置
US20240163853A1 (en) Method and device used for positioning
US20240178968A1 (en) Method and device used for positioning
WO2024032480A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20240163056A1 (en) Method and device used for positioning
WO2023279981A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867536

Country of ref document: EP

Kind code of ref document: A1