WO2024051623A1 - 一种用于无线通信的方法和装置 - Google Patents

一种用于无线通信的方法和装置 Download PDF

Info

Publication number
WO2024051623A1
WO2024051623A1 PCT/CN2023/116658 CN2023116658W WO2024051623A1 WO 2024051623 A1 WO2024051623 A1 WO 2024051623A1 CN 2023116658 W CN2023116658 W CN 2023116658W WO 2024051623 A1 WO2024051623 A1 WO 2024051623A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
identity
node
timing
information
Prior art date
Application number
PCT/CN2023/116658
Other languages
English (en)
French (fr)
Inventor
蒋琦
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024051623A1 publication Critical patent/WO2024051623A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present invention relates to methods and devices in wireless communication systems, and in particular to solutions and devices for positioning in wireless communication systems.
  • Positioning is an important application in the field of wireless communications; the emergence of new applications such as V2X (Vehicle to everything) or the Industrial Internet of Things has put forward higher requirements for positioning accuracy or delay.
  • V2X Vehicle to everything
  • RAN Radio Access Network
  • NR Rel-18 needs to support the enhanced positioning technology of Sidelink Positioning (SL Positioning).
  • the mainstream sidelink positioning technology includes SL RTT (Round Trip Time, return time). ) technology, SL AOA (Angle of Arrival, angle of arrival), SL TDOA (Time Difference Of Arrival, time difference of arrival) and SL AOD (Angle of Departure, angle of departure), etc., and the execution of these technologies all rely on SL PRS ( Measurement of Sidelink Positioning Reference Signal, Sidelink Positioning Reference Signal).
  • this application discloses a solution.
  • the V2X scenario is only used as a typical application scenario or example; this application is also applicable to scenarios other than V2X that face similar problems, such as public safety (Public Safety) and industrial goods. Networking, etc., and achieve technical effects similar to those in NR V2X scenarios.
  • the motivation of this application is to target the scenario where the sender of the wireless signal used for positioning measurement is mobile, this application is still applicable to the scenario where the sender of the wireless signal used for positioning measurement is fixed, such as RSU (Road Side Unit, roadside unit), etc.
  • RSU Raad Side Unit, roadside unit
  • This application discloses a method in a first node for wireless communication, including:
  • the first set of information blocks being used to indicate a first identity, the first identity being used to identify the first reference signal;
  • the first reference signal is transmitted through a secondary link, and reception of the first reference signal is used to determine the first location information; the first identity is used to determine at least one of the following:
  • the above method is characterized by indicating the characteristics of the first reference signal through the first identity for secondary link positioning.
  • the second reference signal is transmitted through a secondary link, and the second identity is used to identify the second reference signal; whether the second identity is the same as the first identity is used to determine whether the second reference signal is the same as the first identity. Whether reception of the reference signal can be used to determine the first position information.
  • the above method is characterized in that: a reference signal with the same identity as the first reference signal can be jointly received with the first reference signal to obtain location information, thereby improving positioning performance.
  • the relationship between the first reference signal and the second reference signal satisfies at least one of the following:
  • the first reference signal and the second reference signal use the same synchronization reference
  • the first reference signal and the second reference signal correspond to the same TEG (Timing Error Group).
  • the above method is characterized in that the first reference signal and the second reference signal having the same characteristics as above can jointly estimate position information.
  • the first reference signal and the second reference signal respectively occupy a first reference signal resource and a second reference signal resource; when the first identity is used to identify the When the second reference signal is used, both the first reference signal resource and the second reference signal resource belong to the first reference signal resource set, and the first identity is used to identify the first reference signal resource set.
  • the third reference signal is transmitted through downlink, the first information block set is used to determine the third reference signal; the reception of the third reference signal is used to determine the first position information.
  • the above method is characterized in that the PRS of the secondary link and the PRS of the cellular link are used to obtain location information at the same time, thereby further improving positioning accuracy.
  • reception timing of the third reference signal is used to determine the transmission timing of the fourth reference signal.
  • the above method is characterized in that the PRS sent by the first node refers to the downlink timing of the base station to ensure that no interference is caused to the uplink reception of the base station.
  • the first set of information blocks is used to determine that the first reference signal and the third reference signal are associated.
  • the first identity is associated with at least one of SSID, secondary link MIB or secondary link SIB.
  • the above method is characterized by: improving the forward compatibility of the system and avoiding excessive changes to the standard.
  • This application discloses a method in a second node for wireless communication, including:
  • the first reference signal is transmitted through a secondary link, and reception of the first reference signal is used to determine the first location information; the first identity is used to determine at least one of the following:
  • the second reference signal is transmitted through a secondary link, and the second identity is used to identify the second reference signal; whether the second identity is the same as the first identity is used to determine whether the second reference signal is the same as the first identity. Whether reception of the reference signal can be used to determine the first position information.
  • the relationship between the first reference signal and the second reference signal satisfies at least one of the following:
  • the first reference signal and the second reference signal use the same synchronization reference
  • the first reference signal and the second reference signal correspond to the same TEG.
  • the first reference signal and the second reference signal respectively occupy a first reference signal resource and a second reference signal resource; when the first identity is used to identify the When the second reference signal is used, both the first reference signal resource and the second reference signal resource belong to the first reference signal resource set, and the first identity is used to identify the first reference signal resource set.
  • the third reference signal is transmitted through downlink, the first information block set is used to determine the third reference signal; the reception of the third reference signal is used to determine the first position information.
  • the receiving timing of the third reference signal is used by the first node to determine the sending timing of the fourth reference signal, and the first node sends the fourth reference signal.
  • the first set of information blocks is used to determine that the first reference signal and the third reference signal are associated.
  • the first identity is associated with at least one of SSID, secondary link MIB or secondary link SIB.
  • the first reference signal and the fourth reference signal are jointly used to determine the second position information.
  • This application discloses a method in a third node for wireless communication, including:
  • the second information block set includes a first information block set, the first information block set is used to indicate a first identity, and the first identity is used to identify a first reference signal;
  • the second information The sender of the block set includes a second node, the second node sends the first reference signal through the secondary link, and the receiver of the first reference signal includes a first node, the first node sends the first reference signal.
  • a location information; the reception of the first reference signal by the first node is used to determine the first location information; the first identity is used to determine at least one of the following:
  • the first node receives a second reference signal, and the second node sends the second reference signal; the second reference signal is transmitted through a secondary link, and the second reference signal is transmitted through a secondary link.
  • the identity is used to identify the second reference signal; whether the second identity is the same as the first identity is used to determine whether reception of the second reference signal can be used to determine the first location information. .
  • the relationship between the first reference signal and the second reference signal satisfies at least one of the following:
  • the first reference signal and the second reference signal use the same synchronization reference
  • the first reference signal and the second reference signal correspond to the same TEG.
  • the first reference signal and the second reference signal respectively occupy a first reference signal resource and a second reference signal resource; when the first identity is used to identify the When the second reference signal is used, both the first reference signal resource and the second reference signal resource belong to the first reference signal resource set, and the first identity is used to identify the first reference signal resource set.
  • the third reference signal is transmitted through downlink, the first information block set is used to determine the third reference signal; the reception of the third reference signal by the first node is used to determine the first location information.
  • the first node sends a fourth reference signal
  • the first node receives a third reference signal
  • the reception timing of the third reference signal is used by the first node. to determine the sending timing of the fourth reference signal.
  • the first set of information blocks is used to determine that the first reference signal and the third reference signal are associated.
  • the first identity is associated with at least one of SSID, secondary link MIB or secondary link SIB.
  • the first reference signal and the fourth reference signal are jointly used by the second node to determine the second location information.
  • This application discloses a first node for wireless communication, including:
  • a first receiver receives a first set of information blocks and a first reference signal, the first set of information blocks is used to indicate a first identity, and the first identity is used to identify the first reference signal;
  • the first transmitter sends the first position information
  • the first reference signal is transmitted through a secondary link, and reception of the first reference signal is used to determine the first location information; the first identity is used to determine at least one of the following:
  • This application discloses a second node for wireless communication, including:
  • a second transmitter transmitting a first set of information blocks and a first reference signal, the first set of information blocks being used to indicate a first identity, and the first identity being used to identify the first reference signal;
  • the first reference signal is transmitted through a secondary link, and reception of the first reference signal is used to determine the first location information; the first identity is used to determine at least one of the following:
  • This application discloses a third node for wireless communication, including:
  • a third receiver that receives the second set of information blocks and receives the first location information
  • the second information block set includes a first information block set, and the first information block set is used to indicate the first identity, and the The first identity is used to identify the first reference signal;
  • the sender of the second information block set includes a second node, the second node sends the first reference signal through a secondary link, the first reference signal
  • the recipients include a first node, the first node transmits the first location information; the first node's reception of the first reference signal is used to determine the first location information; the first Identity is used to determine at least one of the following:
  • the benefit of the solution in this application is to improve positioning accuracy.
  • the benefit of the solution in this application is to improve the efficiency of using reference signals for positioning in the system.
  • Figure 1 shows a processing flow chart of a first node according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Figure 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a structural diagram of UE positioning according to an embodiment of the present invention
  • Figure 6 shows a transmission flow chart between a first node and a second node according to an embodiment of the present application
  • Figure 7 shows a transmission flow chart between a first node, a second node and a third node according to an embodiment of the present application
  • Figure 8 shows a transmission flow chart between the second node and the third node according to an embodiment of the present application
  • Figure 9 shows a schematic diagram between the first node, the second node and the third node according to the present application.
  • Figure 10 shows a schematic diagram of a first reference signal and a second reference signal according to the present application
  • Figure 11 shows a schematic diagram of a first time difference according to the present application.
  • Figure 12 shows a schematic diagram of the second time difference and the third time difference according to the present application.
  • Figure 13 shows a schematic diagram of the transmission timing of a given reference signal according to the present application.
  • Figure 14 shows a structural block diagram of a processing device used in a first node according to an embodiment of the present invention
  • Figure 15 shows a structural block diagram of a processing device used in a second node according to an embodiment of the present invention
  • Figure 16 shows a structural block diagram of a processing device used in a third node according to an embodiment of the present invention.
  • Embodiment 1 illustrates a processing flow chart of a first node, as shown in Figure 1.
  • each block represents a step.
  • the first node in this application receives a first information block set and a first reference signal in step 101.
  • the first information block set is used to indicate a first identity, and the first identity is Used to identify the first reference signal; in step 102, the first location information is sent.
  • the first reference signal is transmitted through a secondary link, and reception of the first reference signal is used to determine the first location information; the first identity is used to determine at least one of the following :
  • the first information block set includes RRC (Radio Resource Control, Radio Resource Control) signaling.
  • RRC Radio Resource Control, Radio Resource Control
  • the first information block set is carried through RRC signaling.
  • the first set of information blocks is transmitted to the first node through LMF (Location Management Function).
  • LMF Location Management Function
  • the name of the IE (Information Elements, information unit) carrying the first set of information blocks includes PRS.
  • the name of the IE carrying the first information block set includes SL.
  • the name of the IE carrying the first information block set includes Association.
  • the name of the IE carrying the first set of information blocks includes Info.
  • the name of the IE carrying the first set of information blocks includes V2X.
  • the name of the IE carrying the first set of information blocks includes R18.
  • the name of the IE carrying the first information block set includes DL.
  • the name of the IE carrying the first information block set includes Assistance.
  • the first information block set includes DL-PRS-ID-Info IE.
  • the first information block set includes NR-DL-PRS-Info IE.
  • the first information block set includes SL-PRS-ID-Info IE.
  • the first information block set includes NR-SL-PRS-Info IE.
  • the first information block set includes NR-DL-PRS-ResourceSet IE.
  • the first information block set includes NR-DL-PRS-Resource IE.
  • the first information block set includes NR-SL-PRS-ResourceSet IE.
  • the first information block set includes NR-SL-PRS-Resource IE.
  • the secondary link is a wireless link between terminals.
  • the secondary link is Sidelink.
  • the secondary link is a V2X link.
  • the secondary link is directed to the PC5 interface.
  • the downlink is a Downlink link.
  • the downlink is a link sent by the base station to the terminal.
  • the downlink is a link sent by gNB to the terminal.
  • the first reference signal includes Sidelink PRS.
  • the first reference signal includes Sidelink SRS (Sounding Reference Signal).
  • the first reference signal includes Sidelink CSI-RS (Channel State Information Reference Signal).
  • Sidelink CSI-RS Channel State Information Reference Signal
  • the first reference signal occupies one Sidelink PRS resource.
  • the first reference signal occupies one Sidelink SRS resource.
  • the first reference signal occupies one Sidelink CSI-RS resource.
  • the first reference signal corresponds to a Sidelink PRS resource.
  • the first reference signal corresponds to a Sidelink SRS resource.
  • the first reference signal corresponds to a Sidelink CSI-RS resource.
  • the first identity is an Identity.
  • the first identity is a non-negative integer.
  • the first identity is a positive integer.
  • the first identity is associated with the first reference signal.
  • information configuring the first reference signal is used to indicate the first identity.
  • the first identity is used for positioning.
  • the first identity is used to scramble the first reference signal.
  • the first identity is used to generate the first reference signal.
  • the first location information includes location information transmitted from the first node to the base station.
  • the first location information includes location information transmitted from the first node to the LMF.
  • the first location information includes first channel quality.
  • the first channel quality includes RSRP (Reference Signal Received Power) obtained by measuring the first reference signal.
  • RSRP Reference Signal Received Power
  • the first channel quality includes RSRPP (Reference Signal Received Path Power) obtained by measuring the first reference signal.
  • RSRPP Reference Signal Received Path Power
  • the first channel quality includes quality (Quality) measured for the first reference signal.
  • the first location information includes a first identity set.
  • the first identity set includes only one identity.
  • the first identity set only includes a plurality of identities.
  • the first identity set includes the first identity corresponding to the first reference signal.
  • the first identity set includes identities other than the first identity corresponding to the first reference signal.
  • the first identity set includes identities corresponding to reference signal resources occupied by the first reference signal.
  • the first identity set includes identities corresponding to the reference signal resource set to which the reference signal resources occupied by the first reference signal belong.
  • the first location information includes a first set of time values.
  • the first set of time values includes only one time value.
  • the first set of time values only includes a plurality of time values.
  • the first time value set includes a measured time stamp (Time Stamp) for the first reference signal.
  • the first time value set includes a first time difference
  • the first time difference is the time when the first node receives the first reference signal and the time when the third reference signal is received. time difference.
  • the first time value set includes a second time difference
  • the second time difference is the time when the first node receives the first reference signal and sends the fourth reference signal. time difference.
  • the first position information includes an AoD obtained by measuring the first reference signal.
  • the first identity is used to determine a synchronization reference (Synchronization Reference) of the first reference signal.
  • a synchronization reference Synchronization Reference
  • the first identity is used to determine the spatial domain transmission filter (Spatial Domain Transmission Filter) used by the synchronization reference of the first reference signal when transmitting the first reference signal. ).
  • the spatial domain transmission filter Spatial Domain Transmission Filter
  • the first identity is used to determine the QCL (Quasi Co-located) relationship corresponding to the first reference signal.
  • the first identity is used to determine the TCI (Transmission Configuration Indication) used by the first reference signal.
  • TCI Transmission Configuration Indication
  • the first identity is used to determine the synchronization reference used by the second node when sending the first reference signal.
  • the first identity is used to determine the timing advance value of the first reference signal.
  • the first identity is used to determine the node referenced by the second node when acquiring the timing advance value used when sending the first reference signal.
  • the first identity is used to determine the downlink signal referenced when the second node obtains the timing advance value used when transmitting the first reference signal.
  • the first identity is used to determine the timing of the first reference signal.
  • the first identity is used to determine the sending moment when the second node sends the first reference signal.
  • the first identity is used to determine the time slot boundary of the time slot occupied by the first reference signal.
  • the first identity is used to determine the subframe boundary of the subframe occupied by the first reference signal.
  • the first identity is used to determine the frame boundary of the frame occupied by the first reference signal.
  • the first identity is used to determine the node referenced by the second node for sending timing of sending the first reference signal.
  • the first identity is used to determine the downlink signal referenced by the transmission timing of the second node transmitting the first reference signal.
  • the first identity is used to determine the TEG corresponding to the first reference signal.
  • the first identity is used to determine the TEG ID used by the TEG corresponding to the first reference signal.
  • the spatial transmission filtering described in this application includes spatial transmission parameters (sets).
  • the spatial transmission filtering described in this application includes spatial reception parameters (sets).
  • the air domain transmission filtering described in this application includes transmitting a beamforming vector.
  • the air domain transmission filtering described in this application includes receiving beamforming vectors.
  • the spatial transmission filtering described in this application includes beamforming vectors.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in Figure 2.
  • Figure 2 illustrates the V2X communication architecture under 5G NR (New Radio), LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) system architecture.
  • the 5G NR or LTE network architecture can be called 5GS (5G System)/EPS (Evolved Packet System) or some other suitable term.
  • the V2X communication architecture of Embodiment 2 includes UE (User Equipment) 201, UE241, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, Home Subscriber Server)/UDM (Unified Data Management, Unified Data Management) 220, ProSe function 250 and ProSe application server 230.
  • the V2X communication architecture may interconnect with other access networks, but these entities/interfaces are not shown for simplicity.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201.
  • gNB 203 may connect to other gNBs 204 via the Xn interface (eg, backhaul).
  • gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmitting and receiving node) or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radio, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radio non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management domain
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway, service gateway)/UPF (UserPlaneFunction, user plane function) 212 and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles signaling between UE201 and 5GC/EPC210. Basically, MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 is connected to Internet service 230.
  • Internet services 230 includes the operator's corresponding Internet protocol services, which may specifically include the Internet, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching streaming services.
  • the ProSe function 250 is a logical function for network-related behaviors required by ProSe (Proximity-based Service); including DPF (Direct Provisioning Function, Direct Provisioning Function), Direct Discovery Name Management Function (Direct Discovery Name Management Function), EPC-level Discovery ProSe Function (EPC-level Discovery ProSe Function), etc.
  • the ProSe application server 230 has functions such as storing EPC ProSe user IDs, mapping between application layer user IDs and EPC ProSe user IDs, and allocating ProSe restricted code suffix pools.
  • the UE201 and the UE241 are connected through a PC5 reference point.
  • the ProSe function 250 is connected to the UE201 and the UE241 through the PC3 reference point respectively.
  • the ProSe function 250 is connected to the ProSe application server 230 through the PC2 reference point.
  • the ProSe application server 230 is connected to the ProSe application of the UE201 and the ProSe application of the UE241 through the PC1 reference point respectively.
  • the first node in this application is the UE201, and the second node in this application is the UE241.
  • the first node in this application is the UE241
  • the second node in this application is the UE201.
  • the wireless link between the UE201 and the UE241 corresponds to a side link (Sidelink, SL) in this application.
  • the gNB 203 corresponds to the third node in this application.
  • the ProSe function 250 corresponds to the third node in this application.
  • the ProSe application server 230 corresponds to the third node in this application.
  • the third node includes a location service center.
  • the third node includes a base station.
  • the location service center is a NAS (Non-Access-Stratum, non-access layer) device.
  • NAS Non-Access-Stratum, non-access layer
  • the location service center includes LMF.
  • the wireless link from the UE 201 to the NR Node B is an uplink.
  • the wireless link from the NR Node B to the UE 201 is the downlink.
  • the UE201 supports V2X transmission.
  • the UE241 supports V2X transmission.
  • the NR Node B 203 is a macro cellular (MarcoCellular) base station.
  • the NR Node B 203 is a Micro Cell base station.
  • the NR Node B 203 is a PicoCell base station.
  • the NR Node B 203 is a home base station (Femtocell).
  • the NR Node B 203 is a base station device that supports large delay differences.
  • the NR node B 203 is an RSU (Road Side Unit).
  • the NR Node B 203 includes satellite equipment.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for user plane 350 and control plane 300
  • Figure 3 shows with three layers for a first communication node device (UE, gNB or RSU in V2X) and a second Radio protocol architecture for the control plane 300 between communicating node devices (gNB, UE or RSU in V2X): Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions. The L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first communication node device and the second communication node device through the PHY 301.
  • L2 layer 305 includes MAC (Medium Access Control, media access control) sublayer 302, RLC (Radio Link Control, wireless link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sub-layers terminate at the second communication node device.
  • PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and the PDCP sublayer 304 also provides handoff support from a first communication node device to a second communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • MAC sublayer 302 provides multiplexing between logical and transport channels. The MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among first communication node devices. MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, Radio Resource Control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the connection between the second communication node device and the first communication node device. Inter-RRC signaling is used to configure the lower layers.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are generally the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 is also Provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes an SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • DRB Data Radio Bearer
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (eg, IP layer) terminating at the P-GW on the network side and another terminating at the connection.
  • the application layer at one end (e.g., remote UE, server, etc.).
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • the PDCP 304 of the second communication node device is used to generate a schedule of the first communication node device.
  • the PDCP 354 of the second communication node device is used to generate a schedule of the first communication node device.
  • the first information block set is generated in the RRC306.
  • the first information block set is generated on the RRC306.
  • the first information block set is generated at the NAS layer.
  • the second information block set is generated in the RRC306.
  • the second information block set is generated on the RRC306.
  • the second information block set is generated at the NAS layer.
  • the first reference signal is generated from the PHY301 or the PHY351.
  • the second reference signal is generated from the PHY301 or the PHY351.
  • the third reference signal is generated from the PHY301 or the PHY351.
  • the fourth reference signal is generated from the PHY301 or the PHY351.
  • the measurement of the first reference signal in this application includes layer 3 filtering performed on the RRC sub-layer 306 .
  • the measurement of the first reference signal in this application is performed on the PHY301 or the PHY351.
  • the measurement of the second reference signal in this application includes layer 3 filtering performed on the RRC sub-layer 306 .
  • the measurement of the second reference signal in this application is performed on the PHY301 or the PHY351.
  • the measurement of the third reference signal in this application includes layer 3 filtering performed on the RRC sub-layer 306 .
  • the measurement of the third reference signal in this application is performed on the PHY301 or the PHY351.
  • the measurement for the fourth reference signal in this application includes layer 3 filtering performed on the RRC sub-layer 306 .
  • the measurement of the fourth reference signal in this application is performed on the PHY301 or the PHY351.
  • the first location information is generated in the RRC306.
  • the first location information is generated at the NAS layer.
  • the second location information is generated in the RRC306.
  • the second location information is generated at the NAS layer.
  • the first node is a terminal.
  • the first node is a relay.
  • the first node is a vehicle.
  • the second node is a terminal.
  • the second node is a relay.
  • the second node is a vehicle.
  • the second node is an RSU.
  • the third node is a gNB.
  • the third node includes a TRP (Transmitter Receiver Point, Transmitter Receiver Point).
  • TRP Transmitter Receiver Point, Transmitter Receiver Point
  • the third node is used to manage multiple TRPs.
  • the third node includes a node for managing multiple cells.
  • the third node includes a node for managing multiple serving cells.
  • the third node includes LMF.
  • the third node includes a location service center.
  • the third node corresponds to the network device in this application.
  • the third node includes a gNB and an LMF at the same time.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in the access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a receive processor 470, a transmit processor 416, a multi-antenna receive processor 472, a multi-antenna transmit processor 471, a transmitter/receiver 418 and an antenna 420.
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and radio resource allocation to the first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer). Transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 410, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for M-phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for M-phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams. Transmit processor 416 then maps each spatial stream to a subcarrier, multiplexes it with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the first communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial stream that is the destination. The symbols on each spatial stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover upper layer data and control signals transmitted by the second communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 can be called as computer-readable media. In transmission from the second communication device 410 to the second communication device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements headers based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 In transmission from the first communications device 450 to the second communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Using the at least one processor together, the first communication device 450 at least: first receives a first set of information blocks and a first reference signal, the first set of information blocks is used to indicate a first identity, the first Identity is used to identify the first reference signal; first location information is then transmitted; the first reference signal is transmitted through a secondary link, and reception of the first reference signal is used to determine the first location information ; The first identity is used to determine at least one of the following:
  • the first communication device 450 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: first receiving A first set of information blocks and a first reference signal, the first set of information blocks is used to indicate a first identity, the first identity is used to identify the first reference signal; then the first location information is sent; The first reference signal is transmitted through the secondary link, and reception of the first reference signal is used to determine the first location information; the first identity is used to determine at least one of the following:
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the used with at least one of the above processors.
  • the second communication device 410 at least: sends a first set of information blocks and a first reference signal, the first set of information blocks is used to indicate a first identity, and the first identity is used to identify the first reference signal; the first reference signal passes For secondary link transmission, reception of the first reference signal is used to determine first location information; the first identity is used to determine at least one of the following:
  • the second communication device 410 device includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: sending A first information block set and a first reference signal, the first information block set is used to indicate a first identity, the first identity is used to identify the first reference signal; the first reference signal passes through Link transmission, for reception of the first reference signal is used to determine first location information; the first identity is used to determine at least one of the following:
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the used with at least one of the above processors.
  • the second communication device 410 device at least: receives a second set of information blocks, and receives first location information; the second set of information blocks includes a first set of information blocks, and the first set of information blocks is used to indicate the first location information.
  • the first identity is used to identify the first reference signal;
  • the sender of the second information block set includes a second node, and the second node sends the first reference signal through a secondary link, so
  • the receiver of the first reference signal includes a first node, the first node sends the first location information; the reception of the first reference signal by the first node is used to determine the first location information ;
  • the first identity is used to determine at least one of the following:
  • the second communication device 410 device includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: receiving a second set of information blocks, and receiving the first location information; the second set of information blocks includes a first set of information blocks, the first set of information blocks is used to indicate a first identity, and the first identity is used to Identify the first reference signal; the sender of the second information block set includes a second node, the second node sends the first reference signal through a secondary link, and the receiver of the first reference signal includes the first Node, the first node sends the first location information; the reception of the first reference signal by the first node is used to determine the first location information; the first identity is used to determine the following At least one of:
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the first node in this application.
  • the first communication device 450 corresponds to the second node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the second communication device 410 corresponds to the third node in this application.
  • the first communication device 450 is a UE.
  • the first communication device 450 is a terminal.
  • the first communication device 450 is a relay.
  • the first communication device 450 is a terminal with positioning capabilities.
  • the first communication device 450 is an RSU.
  • the second communication device 410 is a UE.
  • the second communication device 410 is a terminal.
  • the second communication device 410 is a relay.
  • the second communication device 410 is a terminal with positioning capabilities.
  • the second communication device 410 is a base station.
  • the second communication device 410 is a relay.
  • the second communication device 410 is a network device.
  • the second communication device 410 is a serving cell.
  • the second communication device 410 is a TRP.
  • the second communication device 410 is a base station with positioning capabilities.
  • the second communication device 410 is an LMF.
  • the second communication device 410 is a location service center.
  • the second communication device 410 is an RSU.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive A first set of information blocks; at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 are used Send the first set of information chunks.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive First reference signal; at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 are used to transmit first reference signal.
  • At least the first four of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 are used to transmit the third A position information; at least the first four of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 are used to receive the third a location information.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive Second reference signal; at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 are used to transmit second reference signal.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive The third reference signal; at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 are used to transmit third reference signal.
  • At least the first four of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 are used to transmit the third Four reference signals; at least the first four of the antenna 420, the receiver 418, the multi-antenna reception processor 472, the reception processor 470, and the controller/processor 475 are used to receive the third Four reference signals.
  • At least the first four of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 are used to transmit the third Two position information; at least the first four of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 are used to receive the second 2. Location information.
  • At least the first four of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 are used to transmit the third Two information block sets; at least the first four of the antenna 420, the receiver 418, the multi-antenna receive processor 472, the receive processor 470, and the controller/processor 475 is used to receive a second set of information chunks.
  • Embodiment 5 illustrates a structural diagram of UE positioning according to an embodiment of the present application, as shown in Figure 5.
  • UE501 communicates with ng-eNB502 or gNB503 through LTE (Long Term Evolution, Long Term Evolution)-Uu interface or NR (New Radio)-Uu new wireless interface;
  • ng-eNB502 and gNB 503 are sometimes called base stations, ng-eNB502 and gNB 503 is also called NG (Next Generation)-RAN (Radio Access Network).
  • ng-eNB502 and gNB 503 are connected to AMF (Authentication Management Field, authentication management field) 504 through NG (Next Generation)-C (Control plane) respectively;
  • AMF504 is connected to LMF (Location Management Function) through NL1 interface , location management function) 505 connection.
  • the AMF 504 receives a location service request associated with a specific UE from another entity, such as a GMLC (Gateway Mobile Location Center) or a UE, or the AMF 504 decides to start location services associated with a specific UE.
  • GMLC Gateway Mobile Location Center
  • UE User Equipment
  • the AMF 504 sends the location service request to an LMF, such as the LMF 505; the LMF then processes the location service request, including sending assistance data to the specific UE to assist UE-based or UE-assisted (UE-assisted) positioning, and includes receiving location information (Location information) reported from the UE; then the LMF returns the location service result to the AMF 504; if the location service is requested by another entity, the AMF 504 returns the results of the location service to that entity.
  • LMF location service request to an LMF, such as the LMF 505
  • the LMF processes the location service request, including sending assistance data to the specific UE to assist UE-based or UE-assisted (UE-assisted) positioning, and includes receiving location information (Location information) reported from the UE; then the LMF returns the location service result to the AMF 504; if the location service is requested by another entity, the AMF 504 returns the results of the location service to that entity.
  • the network device of the present application includes an LMF.
  • the network equipment of this application includes NG-RAN and LMF.
  • the network equipment of this application includes NG-RAN, AMF and LMF.
  • Embodiment 6 illustrates a transmission flow chart between the first node and the second node in an embodiment, as shown in FIG. 6 .
  • the first node U1 and the second node U2 communicate through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 6 can be applied to the embodiments, sub-embodiments and subsidiary embodiments in Embodiments 7 and 8 of this application; vice versa; , without conflict, the embodiments, sub-embodiments and subsidiary embodiments in Embodiments 7 and 8 of this application can be applied to Embodiment 6.
  • the first information block set is received in step S10; the first reference signal is received in step S11; the second reference signal is received in step S12; and the first location information is sent in step S13.
  • the first information block set is sent in step S20; the first reference signal is sent in step S21; the second reference signal is sent in step S22; and the first location information is received in step S23.
  • the first information block set is used to indicate a first identity, and the first identity is used to identify the first reference signal; the first reference signal is transmitted through a secondary link, and for the The reception of the first reference signal is used to determine the first location information; the first identity is used to determine the synchronization reference of the first reference signal, the timing advance value of the first reference signal, the At least one of the timing of the first reference signal or the timing error group corresponding to the first reference signal; the second reference signal is transmitted through the secondary link, and the second identity is used to identify the second reference signal ; Whether the second identity is the same as the first identity is used to determine whether reception of the second reference signal can be used to determine the first location information.
  • the second reference signal includes Sidelink PRS.
  • the second reference signal includes Sidelink SRS.
  • the second reference signal includes Sidelink CSI-RS.
  • the second reference signal occupies one Sidelink PRS resource.
  • the second reference signal occupies one Sidelink SRS resource.
  • the second reference signal occupies one Sidelink CSI-RS resource.
  • the second reference signal corresponds to a Sidelink PRS resource.
  • the second reference signal corresponds to a Sidelink SRS resource.
  • the second reference signal corresponds to a Sidelink CSI-RS resource.
  • the second identity is an Identity
  • the second identity is a non-negative integer.
  • the second identity is a positive integer.
  • the second identity is associated with the second reference signal.
  • information configuring the second reference signal is used to indicate the second identity.
  • the second identity is used for positioning.
  • the second identity is used to scramble the second reference signal.
  • the second identity is used to generate the second reference signal.
  • the second identity is the same as the first identity, and reception of the second reference signal is used to determine the first location information.
  • reception of the first reference signal and reception of the second reference signal are jointly used to determine the first position information.
  • the reception of the first reference signal and the reception of the second reference signal are jointly used to determine the first position information.
  • the first channel quality includes RSRP obtained by measuring the second reference signal.
  • the first channel quality includes RSRPP obtained by measuring the second reference signal.
  • the first channel quality includes quality (Quality) measured for the second reference signal.
  • the first set of time values includes a measured time stamp (Time Stamp) for the second reference signal.
  • the first location information includes an AoD obtained by measuring the second reference signal.
  • the first channel quality includes an average RSRP obtained for the first reference signal measurement and for the second reference signal measurement.
  • the first channel quality includes an average RSRPP obtained for the first reference signal measurement and for the second reference signal measurement.
  • the first channel quality includes an average quality obtained for the first reference signal measurement and the second reference signal measurement.
  • the second identity is different from the first identity, and reception of the second reference signal is not used to determine the first location information.
  • the relationship between the first reference signal and the second reference signal satisfies at least one of the following:
  • the first reference signal and the second reference signal use the same synchronization reference
  • the first reference signal and the second reference signal correspond to the same TEG.
  • the relationship between the first reference signal and the second reference signal satisfies the relationship between the first reference signal and the second reference signal.
  • the second reference signal uses the same synchronization reference.
  • the second node uses the same spatial domain transmission filtering to send the first reference signal and the second reference signal.
  • the first reference signal and the second reference signal are QCL.
  • the first reference signal and the second reference signal use the same TCI.
  • the relationship between the first reference signal and the second reference signal satisfies the use of the same timing advance value.
  • the node referenced by the timing advance value used when transmitting the first reference signal is the same as the node referenced by the timing advance value used when transmitting the second reference signal.
  • the downlink signal referenced by the timing advance value used when transmitting the first reference signal is the same as the downlink signal referenced by the timing advance value used when transmitting the second reference signal.
  • the first reference signal and the third reference signal are the same.
  • the time slot boundary of the time slot occupied by the first reference signal and the time slot boundary of the time slot occupied by the second reference signal are aligned at the second node.
  • the subframe boundary of the subframe occupied by the first reference signal and the subframe boundary of the subframe occupied by the second reference signal are aligned at the second node.
  • the frame boundary of the frame occupied by the first reference signal and the frame boundary of the frame occupied by the second reference signal are aligned at the second node.
  • the relationship between the first reference signal and the second reference signal satisfies the relationship between the first reference signal and the second reference signal.
  • the second reference signal corresponds to the same TEG.
  • the relationship between the first reference signal and the second reference signal satisfies the relationship corresponding to the first reference signal.
  • the TEG ID of the TEG is the same as the TEG ID of the TEG corresponding to the second reference signal.
  • the first reference signal and the second reference signal occupy first reference signal resources and second reference signal resources respectively; when the first identity is used to identify the second reference signal, the Both the first reference signal resource and the second reference signal resource belong to the first reference signal resource set, and the first identity is used to identify the first reference signal resource set.
  • the first reference signal resource set corresponds to an SL PRS Resource Set.
  • the first reference signal resource set corresponds to an SL PRS Resource Group.
  • the first reference signal resource set corresponds to a SL PRS Resource Pool.
  • the first reference signal resource set corresponds to an SL CSI-RS Resource Set.
  • the first reference signal resource set corresponds to an SL CSI-RS Resource Group.
  • the first reference signal resource set corresponds to an SL CSI-RS Resource Pool.
  • the first reference signal resource set corresponds to an SL SRS Resource Set.
  • the first reference signal resource set corresponds to an SL SRS Resource Group.
  • the first reference signal resource set corresponds to an SL SRS Resource Pool.
  • the first reference signal resource corresponds to SL PRS Resource.
  • the first reference signal resource corresponds to SL CSI-RS Resource.
  • the first reference signal resource corresponds to SL SRS Resource.
  • the second reference signal resource corresponds to SL PRS Resource.
  • the second reference signal resource corresponds to SL CSI-RS Resource.
  • the second reference signal resource corresponds to SL SRS Resource.
  • the first reference signal resource set includes K1 reference signal resources, and the K1 reference signal resources are all identified by the first identity.
  • the first identity is related to at least one of SSID (Synchronization Signal Identity, synchronization signal identity), secondary link MIB (Master Information Block, main information block) or secondary link SIB (System Information Block, system information block). one is related.
  • SSID Synchronization Signal Identity
  • MIB Master Information Block, main information block
  • SIB System Information Block, system information block
  • the SSID is used to generate the first identity.
  • the first identity is associated with the SSID.
  • the SSID is SLSSID (Sidelink Synchronization Signal Identity, secondary link synchronization signal identity).
  • the SSID is the SSID corresponding to the second node.
  • the SSID is the SLSSID corresponding to the second node.
  • the SSID is the SSID corresponding to the first node.
  • the SSID is the SLSSID corresponding to the first node.
  • the first identity is associated with the secondary link MIB.
  • the time domain resources occupied by the secondary link MIB are used to determine the first identity.
  • the frequency domain resources occupied by the secondary link MIB are used to determine the first identity.
  • the secondary link MIB is used to indicate the first identity.
  • the first identity is associated with the secondary link SIB.
  • the time domain resources occupied by the secondary link SIB are used to determine the first identity.
  • the frequency domain resources occupied by the secondary link SIB are used to determine the first identity.
  • the secondary link SIB is used to indicate the first identity.
  • the recipient of the first location information includes the third node in this application.
  • Embodiment 7 illustrates a transmission flow chart of the first node, the second node, and the third node in an embodiment, as shown in FIG. 7 .
  • the first node U3, the second node U4 and the third node N5 communicate with each other through wireless links. It is particularly noted that the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • Embodiment 7 can be applied to the embodiments, sub-embodiments and subsidiary embodiments in Embodiments 6 and 8 of this application; vice versa; , without conflict, the embodiments, sub-embodiments and subsidiary embodiments in Embodiments 6 and 8 of this application can be applied to Embodiment 7.
  • the third reference signal is received in step S30; the fourth reference signal is sent in step S31.
  • the third reference signal is received in step S40; the fourth reference signal is received in step S41.
  • a third reference signal is sent in step S50.
  • the third reference signal is transmitted through downlink, and the first information block set is used to determine the third reference signal; reception of the third reference signal is used to determine the The first position information; the reception timing of the third reference signal is used to determine the transmission timing of the fourth reference signal.
  • the third reference signal includes PRS.
  • the third reference signal includes CSI-RS.
  • the third reference signal includes SSB.
  • the third reference signal occupies one DL PRS resource.
  • the third reference signal occupies one CSI-RS resource.
  • the third reference signal occupies one SSB.
  • the third reference signal corresponds to one DL PRS resource.
  • the third reference signal corresponds to one CSI-RS resource.
  • the third reference signal corresponds to an SSB.
  • the first set of information blocks is used to indicate the third reference signal.
  • the first information block set is used to determine reference signal resources occupied by the third reference signal.
  • the first information block set is used to indicate reference signal resources occupied by the third reference signal.
  • the first information block set is used to indicate a PRS resource
  • the PRS resource includes a reference signal resource occupied by the third reference signal.
  • the first information block set is used to indicate a PRS resource set
  • the PRS resource set includes reference signal resources occupied by the third reference signal.
  • the first location information includes second channel quality.
  • the second channel quality includes RSRP obtained by measuring the third reference signal.
  • the second channel quality includes RSRPP obtained by measuring the third reference signal.
  • the second channel quality includes quality measured for the third reference signal.
  • the first position information includes an AoD obtained by measuring the third reference signal.
  • the fourth reference signal includes Sidelink PRS.
  • the fourth reference signal includes Sidelink SRS.
  • the fourth reference signal includes Sidelink CSI-RS.
  • the fourth reference signal occupies one Sidelink PRS resource.
  • the fourth reference signal occupies one Sidelink SRS resource.
  • the fourth reference signal occupies one Sidelink CSI-RS resource.
  • the fourth reference signal corresponds to a Sidelink PRS resource.
  • the fourth reference signal corresponds to a Sidelink SRS resource.
  • the fourth reference signal corresponds to a Sidelink CSI-RS resource.
  • the meaning of the above phrase that the reception timing of the third reference signal is used to determine the transmission timing of the fourth reference signal includes: the reception timing of the third reference signal corresponds to the downlink of the first node. Timing, the sending timing of the fourth reference signal corresponds to the uplink timing of the first node.
  • the meaning of the above phrase that the reception timing of the third reference signal is used to determine the transmission timing of the fourth reference signal includes: the reception timing of the third reference signal is used to determine the first The downlink timing of the node, the downlink timing of the first node is used to determine the sending timing of the fourth reference signal.
  • the fourth reference signal is located in the i-th uplink frame of the first node, and the start (Start) of the i-th uplink frame is compared with the start (Start) of the i-th downlink frame of the first node.
  • the start is advanced by T TA , and the T TA corresponds to the timing advance of the first node when sending to the fourth node in this application.
  • the first set of information blocks is used to determine that the first reference signal and the third reference signal are associated.
  • the first set of information blocks is used to indicate that the first reference signal and the third reference signal are associated.
  • the first information block set includes configuration information of the first reference signal, and the configuration information of the first reference signal includes the identity of the third reference signal.
  • the first information block set includes configuration information of the third reference signal, and the configuration information of the third reference signal includes the identity of the first reference signal.
  • the first information block set is used to indicate that the first reference signal and the third reference signal are associated with the same identity.
  • the first information block set is used to indicate that the first reference signal and the third reference signal are associated to the same QCL relationship.
  • the QCL relationship includes TCI-StateId.
  • the reception timing of a signal in this application includes the boundaries of the time slot occupied by the signal determined when the signal is received.
  • the reception timing of a signal in this application includes the boundary of the subframe occupied by the signal determined when the signal is received.
  • the reception timing of a signal in this application includes the boundary of the frame occupied by the signal determined when the signal is received.
  • the reception timing of the signal in this application includes the time slot timing of receiving the signal.
  • the reception timing of the signal in this application includes the subframe timing of receiving the signal.
  • the reception timing of a signal in this application includes the frame timing of receiving the signal.
  • the transmission timing of a signal in this application includes the boundaries of the time slot occupied by the signal determined when the signal is transmitted.
  • the transmission timing of a signal in this application includes the boundary of the subframe occupied by the signal determined when the signal is transmitted.
  • the sending timing of a signal in this application includes the boundary of the frame occupied by the signal determined when the signal is sent.
  • the transmission timing of the signal in this application includes the time slot timing of transmitting the signal.
  • the transmission timing of the signal in this application includes the subframe timing of transmitting the signal.
  • the sending timing of the signal in this application includes the frame timing of sending the signal.
  • the step S30 is located after step S10 and before step S11 in embodiment 5.
  • the step S30 is located after step S11 and before step S12 in Embodiment 5.
  • the step S31 is located after step S11 and before step S12 in Embodiment 5.
  • step S31 is located after step S12 and before step S13 in Embodiment 5.
  • step S40 is located after step S20 and before step S21 in Embodiment 5.
  • step S40 is located after step S21 and before step S22 in Embodiment 5.
  • step S41 is located after step S21 and before step S22 in Embodiment 5.
  • step S41 is located after step S22 and before step S23 in Embodiment 5.
  • Embodiment 8 illustrates the transmission flow chart of the second node and the third node of an embodiment, as shown in FIG. 8 .
  • the second node U6 and the third node N7 communicate through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 8 can be applied to the embodiments, sub-embodiments and subsidiary embodiments in Embodiments 6 and 7 of this application; vice versa; , without conflict, the embodiments, sub-embodiments and subsidiary embodiments in Embodiments 6 and 7 of this application can be applied to Embodiment 8.
  • the second information block set is sent in step S60; the second location information is sent in step S61.
  • the second information block set is received in step S70; the second location information is received in step S71.
  • the second information block set includes the first information block set in this application, and the second location information includes the first location information in this application.
  • the second information block set includes RRC signaling.
  • the second information block set is carried through RRC signaling.
  • the second set of information blocks is transmitted to the first node through LMF.
  • the name of the IE (Information Elements, information unit) carrying the second information block set includes PRS.
  • the name of the IE carrying the second information block set includes SL.
  • the name of the IE carrying the second information block set includes Association.
  • the name of the IE carrying the second information block set includes Info.
  • the name of the IE carrying the second information block set includes V2X.
  • the name of the IE carrying the second information block set includes R18.
  • the name of the IE carrying the second information block set includes DL.
  • the name of the IE carrying the second information block set includes Assistance.
  • the second information block set includes SL-PRS-ID-Info IE.
  • the second information block set includes NR-SL-PRS-Info IE.
  • the second information block set includes NR-SL-PRS-ResourceSet IE.
  • the second information block set includes NR-SL-PRS-Resource IE.
  • step S60 is located after step S20 and before step S21 in Embodiment 5.
  • step S60 is located before step S20 in embodiment 5.
  • step S61 is located after step S40 in embodiment 6.
  • step S61 is located after step S41 in Embodiment 6.
  • step S70 is before step S50 in embodiment 6.
  • step S71 is followed by step S50 in Embodiment 6.
  • Embodiment 9 illustrates a schematic diagram between the first node, the second node and the third node according to an embodiment of the present application, as shown in FIG. 9 .
  • both the third node and the second node participate in determining the positioning of the first node; the third node sends a third reference signal, and both the first node and the second node Receive the third reference signal; the second node sends a first reference signal and a second reference signal, and the first node receives the first reference signal and the second reference signal; the first node A fourth reference signal is sent and the second node receives the fourth reference signal.
  • the first information block set is used to configure the first reference signal and the second reference signal.
  • the second information block set is used to notify the third node about the configuration of the first reference signal and the second reference signal.
  • the second node sends K1 reference signals
  • the first reference signal is one of the K1 reference signals. one of.
  • the second node sends K1 reference signals, and the second reference signal is one of the K1 reference signals.
  • the third node sends K2 reference signals, and the third reference signal is one of the K2 reference signals.
  • Embodiment 10 illustrates a schematic diagram of a first reference signal and a second reference signal according to an embodiment of the present application, as shown in FIG. 10 .
  • the first reference signal and the second reference signal are both sent by the second node in this application.
  • the first reference signal The relationship with the second reference signal satisfies ⁇ the first reference signal and the second reference signal use the same synchronization reference, the first reference signal and the second reference signal use the same timing advance value,
  • the timing of the first reference signal and the timing of the second reference signal are the same or the first reference signal and the second reference signal correspond to at least one of the same TEG ⁇ .
  • the first reference signal and the second reference signal are QCL.
  • the first reference signal and the second reference signal correspond to the same TCI state.
  • the first reference signal and the second reference signal correspond to the same TCI state ID.
  • the first reference signal and the second reference signal both correspond to the same SSB QCL.
  • the first reference signal and the second reference signal both correspond to the same CSI-RS QCL.
  • the first reference signal and the second reference signal occupy orthogonal time domain resources.
  • the first reference signal and the second reference signal occupy orthogonal frequency domain resources.
  • Embodiment 11 illustrates a schematic diagram of the first time difference according to an embodiment of the present application, as shown in FIG. 11 .
  • the first time difference is the time difference between the time when the first node receives the first reference signal and the time when it receives the third reference signal.
  • the first time unit shown in the figure corresponds to the time when the first node receives the first reference signal.
  • the time unit where the first reference signal is located, the second time unit shown in the figure corresponds to the time unit where the received third reference signal is located; the starting time of the first time unit to The time difference between the starting moments of the second time unit is the first time difference.
  • the first time unit and the second time unit are both a subframe.
  • the first time unit and the second time unit are both a time slot.
  • the first time unit and the second time unit are both one frame.
  • the first time unit is one or more consecutive OFDM symbols.
  • the second time unit is one or more consecutive OFDM symbols.
  • the unit of the first time difference is seconds.
  • the unit of the first time difference is milliseconds.
  • the unit of the first time difference is microseconds.
  • Embodiment 12 illustrates a schematic diagram of the second time difference and the third time difference according to an embodiment of the present application, as shown in FIG. 12 .
  • the second time difference is the time difference between the time when the first node receives the first reference signal and the time when the fourth reference signal is sent;
  • Figure 12 also includes a third time difference.
  • the three time differences are the time differences between the time when the second node receives the fourth reference signal and the time when the first reference signal is sent; T1 in the figure corresponds to the time when the second node sends the first reference signal, as shown in the figure T2 in the figure corresponds to the time when the first node receives the first reference signal, T3 in the figure corresponds to the time when the first node sends the fourth reference signal, and T4 in the figure corresponds to the second node receiving the third reference signal.
  • the time of the four reference signals it can be seen from the figure that the RTT (Round Trip Time, return time) between the first node and the second node is equal to (T4-T1) minus (T3-T2), Half of the RTT value corresponds to the transmission delay from the second node to the first node, and the value of RTT/2 can determine the distance from the second node to the first node; T4 in the figure minus The difference from T1 corresponds to the fourth time difference, and the difference from T3 minus T2 in the figure corresponds to the second time difference.
  • RTT Red Trip Time, return time
  • T1 corresponds to the starting time of the time slot occupied by transmitting the first reference signal.
  • T1 corresponds to the starting time of the subframe occupied by sending the first reference signal.
  • T1 corresponds to the starting time of the frame occupied by sending the first reference signal.
  • T1 corresponds to the starting time of one or more OFDM symbols occupied by transmitting the first reference signal.
  • T2 corresponds to the starting time of the time slot occupied by the received first reference signal.
  • T2 corresponds to the starting time of the subframe occupied by the received first reference signal.
  • T2 corresponds to the starting time of the frame occupied by the received first reference signal.
  • T2 corresponds to the starting time of one or more OFDM symbols occupied by the received first reference signal.
  • T3 corresponds to the starting time of the time slot occupied by transmitting the fourth reference signal.
  • T3 corresponds to the starting time of the subframe occupied by sending the fourth reference signal.
  • T3 corresponds to the starting time of the frame occupied by sending the fourth reference signal.
  • T3 corresponds to the starting time of one or more OFDM symbols occupied by transmitting the fourth reference signal.
  • T4 corresponds to the starting time of the time slot occupied by the received fourth reference signal.
  • T4 corresponds to the starting time of the subframe occupied by the received fourth reference signal.
  • T4 corresponds to the starting time of the frame occupied by the received fourth reference signal.
  • T4 corresponds to the starting time of one or more OFDM symbols occupied by the received fourth reference signal.
  • the unit of the second time difference is seconds.
  • the unit of the second time difference is milliseconds.
  • the unit of the second time difference is microseconds.
  • the unit of the third time difference is seconds.
  • the unit of the third time difference is milliseconds.
  • the unit of the third time difference is microseconds.
  • the second location information in this application includes the third time difference.
  • Embodiment 13 illustrates a schematic diagram of the transmission timing of a given reference signal according to an embodiment of the present application, as shown in FIG. 13 .
  • the transmission timing of the given reference signal is determined by the uplink timing of the base station corresponding to the serving cell of the given node, that is, the given reference signal is sent one TA in advance to ensure that it will not cause any damage to the base station. Upstream interference occurs.
  • the given reference signal corresponds to the first reference signal in this application.
  • the given reference signal corresponds to the second reference signal in this application.
  • the given reference signal corresponds to the fourth reference signal in this application.
  • the given node corresponds to the first node in this application.
  • the given node corresponds to the second node in this application.
  • the downlink timing of the serving cell is used to determine the sending timing of the given reference signal.
  • the TA shown in the figure is equal to the RTT/2 between the given node and the base station.
  • Embodiment 14 illustrates a structural block diagram in a first node, as shown in Figure 14.
  • the first node 1400 includes a first receiver 1401 and a first transmitter 1402.
  • the first receiver 1401 receives a first set of information blocks and a first reference signal, the first set of information blocks is used to indicate a first identity, and the first identity is used to identify the first reference signal;
  • the first transmitter 1402 sends the first location information
  • the first reference signal is transmitted through a secondary link, and reception of the first reference signal is used to determine the first location information; the first identity is used to determine at least one of the following :
  • the first receiver 1401 receives the second reference signal
  • the second reference signal is transmitted through a secondary link, and the second identity is used to identify the second reference signal; whether the second identity is the same as the first identity is used to determine whether the second reference signal is the same as the first identity. Whether reception of the reference signal can be used to determine the first position information.
  • the relationship between the first reference signal and the second reference signal satisfies at least one of the following:
  • the first reference signal and the second reference signal use the same synchronization reference
  • the first reference signal and the second reference signal correspond to the same TEG.
  • the first reference signal and the second reference signal occupy first reference signal resources and second reference signal resources respectively; when the first identity is used to identify the second reference signal,
  • the first reference signal resource and the second reference signal resource both belong to a first reference signal resource set, and the first identity is used to identify the first reference signal resource set.
  • the first receiver 1401 receives the third reference signal
  • the third reference signal is transmitted through downlink, the first information block set is used to determine the third reference signal; the reception of the third reference signal is used to determine the first position information.
  • the first transmitter 1402 sends a fourth reference signal
  • reception timing of the third reference signal is used to determine the transmission timing of the fourth reference signal.
  • the first set of information blocks is used to determine that the first reference signal and the third reference signal are associated.
  • the first identity is associated with at least one of SSID, secondary link MIB or secondary link SIB.
  • the first receiver 1401 includes at least the first four of the antenna 452, receiver 454, multi-antenna reception processor 458, reception processor 456, and controller/processor 459 in Embodiment 4.
  • the first transmitter 1402 includes at least the first four of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 in Embodiment 4.
  • Embodiment 15 illustrates a structural block diagram in the second node, as shown in Figure 15.
  • the second node 1500 includes a second transmitter 1501.
  • the second transmitter 1501 sends a first set of information blocks and a first reference signal, the first set of information blocks is used to indicate a first identity, and the first identity is used to identify the first reference signal;
  • the first reference signal is transmitted through a secondary link, and reception of the first reference signal is used to determine the first location information; the first identity is used to determine at least one of the following:
  • the second receiver 1502 receives the first location information.
  • the second transmitter 1501 sends a second reference signal
  • the second reference signal is transmitted through a secondary link, and the second identity is used to identify the second reference signal; whether the second identity is the same as the first identity is used to determine whether the second reference signal is the same as the first identity. Whether reception of the reference signal can be used to determine the first position information.
  • the relationship between the first reference signal and the second reference signal satisfies at least one of the following:
  • the first reference signal and the second reference signal use the same synchronization reference
  • the first reference signal and the second reference signal correspond to the same TEG.
  • the first reference signal and the second reference signal occupy first reference signal resources and second reference signal resources respectively; when the first identity is used to identify the second reference signal,
  • the first reference signal resource and the second reference signal resource both belong to a first reference signal resource set, and the first identity is used to identify the first reference signal resource set.
  • the second receiver 1502 receives the third reference signal
  • the third reference signal is transmitted through downlink, the first information block set is used to determine the third reference signal; the reception of the third reference signal is used to determine the first position information.
  • the second receiver 1502 receives the fourth reference signal
  • the receiving timing of the third reference signal is used by the first node to determine the sending timing of the fourth reference signal, and the first node sends the fourth reference signal.
  • the first set of information blocks is used to determine that the first reference signal and the third reference signal are associated.
  • the first identity is associated with at least one of SSID, secondary link MIB or secondary link SIB.
  • the second transmitter 1501 sends second location information
  • the first reference signal and the fourth reference signal are jointly used to determine the second position information.
  • the second transmitter 1501 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 in Embodiment 4.
  • the second receiver 1502 includes at least the first four of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 in Embodiment 4.
  • Embodiment 16 illustrates a structural block diagram in a third node, as shown in Figure 16.
  • the third node 1600 includes a third receiver 1602.
  • the third receiver 1602 receives the second set of information blocks and receives the first location information
  • the second information block set includes a first information block set, the first information block set is used to indicate a first identity, and the first identity is used to identify a first reference signal;
  • the sender of the second information block set includes a second node, the second node sends the first reference signal through a secondary link, and the receiver of the first reference signal includes a first node, the first node sends The first location information; the first node's reception of the first reference signal is used to determine the first location information; the first identity is used to determine at least one of the following:
  • the first node receives a second reference signal, and the second node sends the second reference signal; the second reference signal is transmitted through a secondary link, and the second identity is used to identify the second reference signal.
  • the second reference signal; whether the second identity is the same as the first identity is used to determine whether reception of the second reference signal can be used to determine the first location information.
  • the relationship between the first reference signal and the second reference signal satisfies at least one of the following:
  • the first reference signal and the second reference signal use the same synchronization reference
  • the first reference signal and the second reference signal correspond to the same TEG.
  • the first reference signal and the second reference signal occupy first reference signal resources and second reference signal resources respectively; when the first identity is used to identify the second reference signal,
  • the first reference signal resource and the second reference signal resource both belong to a first reference signal resource set, and the first identity is used to identify the first reference signal resource set.
  • the third transmitter 1601 sends the third reference signal
  • the third reference signal is transmitted through downlink, the first information block set is used to determine the third reference signal; the reception of the third reference signal by the first node is used to determine the first location information.
  • the first node sends a fourth reference signal
  • the first node receives a third reference signal
  • the reception timing of the third reference signal is used by the first node to determine the fourth reference signal.
  • Reference signal transmission timing is used by the first node to determine the fourth reference signal.
  • the first set of information blocks is used to determine that the first reference signal and the third reference signal are associated.
  • the first identity is associated with at least one of SSID, secondary link MIB or secondary link SIB.
  • the third receiver 1602 receives the second location information
  • the first reference signal and the fourth reference signal are jointly used by the second node to determine the second location information.
  • the third transmitter 1601 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 in Embodiment 4.
  • the third receiver 1602 includes at least the first four of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 in Embodiment 4.
  • the first node in this application includes but is not limited to mobile phones, tablets, laptops, Internet cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, transportation vehicles, vehicles, RSUs, aircraft, aircraft, none Human-machine, remote control aircraft and other wireless communication equipment.
  • the second node in this application includes but is not limited to macro cell base station, micro cell base station, small cell base station, home base station, relay base station, eNB, gNB, transmission and reception node TRP, GNSS, relay satellite, satellite base station, air base station , RSU, UAV, test equipment, such as transceiver device or signaling tester that simulates some functions of the base station, and other wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种用于无线通信的方法和装置。节点首先接收第一信息块集合和第一参考信号,所述第一信息块集合被用于指示第一身份,所述第一身份被用于标识所述第一参考信号;随后发送第一位置信息;所述第一参考信号通过副链路传输,针对所述第一参考信号的接收被用于确定所述第一位置信息;所述第一身份被用于确定所述第一参考信号的同步参考、所述第一参考信号的定时提前值、所述第一参考信号的定时或所述第一参考信号对应的定时误差组中的至少之一。本申请针对副链路上的定位需求,改进副链路上的定位参考信号的配置以及传输方式,进而改进定位精度,提升系统整体性能。

Description

一种用于无线通信的方法和装置 技术领域
本发明涉及无线通信系统中的方法和装置,尤其涉及无线通信系统中的用于定位的方案和装置。
背景技术
定位是无线通信领域的一个重要应用;V2X(Vehicle to everything,车对外界)或者工业物联网等新应用的出现,对定位的精度或者延迟提出了更高的要求。在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#94e会议中,关于定位增强的研究课题被立项。
发明内容
根据RP-213588中的工作计划,NR Rel-18需要支持副链路定位(Sidelink Positioning,SL Positioning)的增强定位技术,其中主流的副链路定位技术包括基于SL RTT(Round Trip Time,回程时间)技术、SL AOA(Angle of Arrival,到达角)、SL TDOA(Time Difference Of Arrival,到达时间差)和SL AOD(Angle of Departure,离开角)等,而这些技术的执行都需要依赖对SL PRS(Sidelink Positioning Reference Signal,副链路定位参考信号)的测量。由于未来SL PRS的发送者可以支持多个波束方向上的传输,这就使得传统的用于定位的流程或者位置信息反馈方案需要进一步增强,进而副链路上位置信息(Location Information)的测量及获取,也需要被重新考虑,并加以增强。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在本申请的描述中,只是采用V2X场景作为一个典型应用场景或者例子;本申请也同样适用于面临相似问题的V2X之外的场景,例如公共安全(Public Safety)、工业物联网等等,并取得类似NR V2X场景中的技术效果。此外,虽然本申请的动机是针对用于定位测量的无线信号的发送者是移动的这一场景,本申请依然适用于用于定位测量的无线信号的发送者是固定的这一场景,例如RSU(Road Side Unit,路边单元)等。不同场景采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。特别的,对本申请中的术语(Terminology)、名词、函数、变量的解释(如果未加特别说明)可以参考3GPP的规范协议TS36系列、TS38系列、TS37系列中的定义。在需要的情况下,可以参考3GPP标准TS38.211,TS38.212,TS38.213,TS38.214,TS38.215,TS38.321,TS38.331,TS38.305,TS37.355以辅助对本申请的理解。
本申请公开了一种用于无线通信的第一节点中的方法,包括:
接收第一信息块集合和第一参考信号,所述第一信息块集合被用于指示第一身份,所述第一身份被用于标识所述第一参考信号;
发送第一位置信息;
其中,所述第一参考信号通过副链路传输,针对所述第一参考信号的接收被用于确定所述第一位置信息;所述第一身份被用于确定以下至少之一:
-所述第一参考信号的同步参考;
-所述第一参考信号的定时提前值;
-所述第一参考信号的定时;
-所述第一参考信号对应的定时误差组。
作为一个实施例,上述方法的特征在于:通过所述第一身份指示所述第一参考信号的特征以用于副链路定位。
根据本申请的一个方面,其特征在于,包括:
接收第二参考信号;
其中,所述第二参考信号通过副链路传输,第二身份被用于标识所述第二参考信号;所述第二身份是否与所述第一身份相同被用于确定针对所述第二参考信号的接收能否被用于确定所述第一位置信息。
作为一个实施例,上述方法的特征在于:和所述第一参考信号具有相同身份的参考信号能够与所述第一参考信号联合接收以获得位置信息,进而改进定位性能。
根据本申请的一个方面,其特征在于,当所述第二身份和所述第一身份相同时,所述第一参考信号和所述第二参考信号之间的关系满足以下至少之一:
-所述第一参考信号和所述第二参考信号采用相同的同步参考;
-所述第一参考信号和所述第二参考信号采用相同的定时提前值;
-所述第一参考信号的定时和所述第二参考信号的定时相同;
-所述第一参考信号和所述第二参考信号对应相同的TEG(Timing Error Group,定时误差组)。
作为一个实施例,上述方法的特征在于:具有上述相同特性的所述第一参考信号和所述第二参考信号能够联合估计位置信息。
根据本申请的一个方面,其特征在于,所述第一参考信号和所述第二参考信号分别占用第一参考信号资源和第二参考信号资源;当所述第一身份被用于标识所述第二参考信号时,所述第一参考信号资源和所述第二参考信号资源都属于第一参考信号资源集合,所述第一身份被用于标识所述第一参考信号资源集合。
根据本申请的一个方面,其特征在于,包括:
接收第三参考信号;
其中,所述第三参考信号通过下行链路传输,所述第一信息块集合被用于确定所述第三参考信号;针对所述第三参考信号的接收被用于确定所述第一位置信息。
作为一个实施例,上述方法的特征在于:副链路的PRS和蜂窝链路的PRS同时用于位置信息的获得,进一步提高定位精度。
根据本申请的一个方面,其特征在于,包括:
发送第四参考信号;
其中,所述第三参考信号的接收定时被用于确定所述第四参考信号的发送定时。
作为一个实施例,上述方法的特征在于:第一节点发送的PRS参考基站的下行定时,以保证不对基站的上行接收产生干扰。
根据本申请的一个方面,其特征在于,所述第一信息块集合被用于确定所述第一参考信号和所述第三参考信号是相关联的。
根据本申请的一个方面,其特征在于,所述第一身份与SSID、副链路MIB或副链路SIB中的至少之一相关联。
作为一个实施例,上述方法的特征在于:提高系统前向兼容性,避免对标准改动过大。
本申请公开了一种用于无线通信的第二节点中的方法,包括:
发送第一信息块集合和第一参考信号,所述第一信息块集合被用于指示第一身份,所述第一身份被用于标识所述第一参考信号;
其中,所述第一参考信号通过副链路传输,针对所述第一参考信号的接收被用于确定第一位置信息;所述第一身份被用于确定以下至少之一:
-所述第一参考信号的同步参考;
-所述第一参考信号的定时提前值;
-所述第一参考信号的定时;
-所述第一参考信号对应的定时误差组。
根据本申请的一个方面,其特征在于,包括:
接收第一位置信息。
根据本申请的一个方面,其特征在于,包括:
发送第二参考信号;
其中,所述第二参考信号通过副链路传输,第二身份被用于标识所述第二参考信号;所述第二身份是否与所述第一身份相同被用于确定针对所述第二参考信号的接收能否被用于确定所述第一位置信息。
根据本申请的一个方面,其特征在于,当所述第二身份和所述第一身份相同时,所述第一参考信号和所述第二参考信号之间的关系满足以下至少之一:
-所述第一参考信号和所述第二参考信号采用相同的同步参考;
-所述第一参考信号和所述第二参考信号采用相同的定时提前值;
-所述第一参考信号的定时和所述第二参考信号的定时相同;
-所述第一参考信号和所述第二参考信号对应相同的TEG。
根据本申请的一个方面,其特征在于,所述第一参考信号和所述第二参考信号分别占用第一参考信号资源和第二参考信号资源;当所述第一身份被用于标识所述第二参考信号时,所述第一参考信号资源和所述第二参考信号资源都属于第一参考信号资源集合,所述第一身份被用于标识所述第一参考信号资源集合。
根据本申请的一个方面,其特征在于,包括:
接收第三参考信号;
其中,所述第三参考信号通过下行链路传输,所述第一信息块集合被用于确定所述第三参考信号;针对所述第三参考信号的接收被用于确定所述第一位置信息。
根据本申请的一个方面,其特征在于,包括:
接收第四参考信号;
其中,所述第三参考信号的接收定时被第一节点用于确定所述第四参考信号的发送定时,所述第一节点发送所述第四参考信号。
根据本申请的一个方面,其特征在于,所述第一信息块集合被用于确定所述第一参考信号和所述第三参考信号是相关联的。
根据本申请的一个方面,其特征在于,所述第一身份与SSID、副链路MIB或副链路SIB中的至少之一相关联。
根据本申请的一个方面,其特征在于,包括:
发送第二位置信息;
其中,所述第一参考信号和所述第四参考信号被共同用于确定所述第二位置信息。
本申请公开了一种用于无线通信的第三节点中的方法,包括:
接收第二信息块集合,以及接收第一位置信息;
其中,所述第二信息块集合包括第一信息块集合,所述第一信息块集合被用于指示第一身份,所述第一身份被用于标识第一参考信号;所述第二信息块集合的发送者包括第二节点,所述第二节点通过副链路发送所述第一参考信号,所述第一参考信号的接收者包括第一节点,所述第一节点发送所述第一位置信息;所述第一节点针对所述第一参考信号的接收被用于确定所述第一位置信息;所述第一身份被用于确定以下至少之一:
-所述第一参考信号的同步参考;
-所述第一参考信号的定时提前值;
-所述第一参考信号的定时;
-所述第一参考信号对应的定时误差组。
根据本申请的一个方面,其特征在于,所述第一节点接收第二参考信号,且所述第二节点发送所述第二参考信号;所述第二参考信号通过副链路传输,第二身份被用于标识所述第二参考信号;所述第二身份是否与所述第一身份相同被用于确定针对所述第二参考信号的接收能否被用于确定所述第一位置信息。
根据本申请的一个方面,其特征在于,当所述第二身份和所述第一身份相同时,所述第一参考信号和所述第二参考信号之间的关系满足以下至少之一:
-所述第一参考信号和所述第二参考信号采用相同的同步参考;
-所述第一参考信号和所述第二参考信号采用相同的定时提前值;
-所述第一参考信号的定时和所述第二参考信号的定时相同;
-所述第一参考信号和所述第二参考信号对应相同的TEG。
根据本申请的一个方面,其特征在于,所述第一参考信号和所述第二参考信号分别占用第一参考信号资源和第二参考信号资源;当所述第一身份被用于标识所述第二参考信号时,所述第一参考信号资源和所述第二参考信号资源都属于第一参考信号资源集合,所述第一身份被用于标识所述第一参考信号资源集合。
根据本申请的一个方面,其特征在于,包括:
发送第三参考信号;
其中,所述第三参考信号通过下行链路传输,所述第一信息块集合被用于确定所述第三参考信号;所述第一节点针对所述第三参考信号的接收被用于确定所述第一位置信息。
根据本申请的一个方面,其特征在于,所述第一节点发送第四参考信号,且所述第一节点接收第三参考信号,所述第三参考信号的接收定时被所述第一节点用于确定所述第四参考信号的发送定时。
根据本申请的一个方面,其特征在于,所述第一信息块集合被用于确定所述第一参考信号和所述第三参考信号是相关联的。
根据本申请的一个方面,其特征在于,所述第一身份与SSID、副链路MIB或副链路SIB中的至少之一相关联。
根据本申请的一个方面,其特征在于,包括:
接收第二位置信息;
其中,所述第一参考信号和所述第四参考信号被所述第二节点共同用于确定所述第二位置信息。
本申请公开了一种用于无线通信的第一节点,包括:
第一接收机,接收第一信息块集合和第一参考信号,所述第一信息块集合被用于指示第一身份,所述第一身份被用于标识所述第一参考信号;
第一发射机,发送第一位置信息;
其中,所述第一参考信号通过副链路传输,针对所述第一参考信号的接收被用于确定所述第一位置信息;所述第一身份被用于确定以下至少之一:
-所述第一参考信号的同步参考;
-所述第一参考信号的定时提前值;
-所述第一参考信号的定时;
-所述第一参考信号对应的定时误差组。
本申请公开了一种用于无线通信的第二节点,包括:
第二发射机,发送第一信息块集合和第一参考信号,所述第一信息块集合被用于指示第一身份,所述第一身份被用于标识所述第一参考信号;
其中,所述第一参考信号通过副链路传输,针对所述第一参考信号的接收被用于确定第一位置信息;所述第一身份被用于确定以下至少之一:
-所述第一参考信号的同步参考;
-所述第一参考信号的定时提前值;
-所述第一参考信号的定时;
-所述第一参考信号对应的定时误差组。
本申请公开了一种用于无线通信的第三节点,包括:
第三接收机,接收第二信息块集合,以及接收第一位置信息;
其中,所述第二信息块集合包括第一信息块集合,所述第一信息块集合被用于指示第一身份,所述 第一身份被用于标识第一参考信号;所述第二信息块集合的发送者包括第二节点,所述第二节点通过副链路发送所述第一参考信号,所述第一参考信号的接收者包括第一节点,所述第一节点发送所述第一位置信息;所述第一节点针对所述第一参考信号的接收被用于确定所述第一位置信息;所述第一身份被用于确定以下至少之一:
-所述第一参考信号的同步参考;
-所述第一参考信号的定时提前值;
-所述第一参考信号的定时;
-所述第一参考信号对应的定时误差组。
作为一个实施例,本申请中的方案的好处在于:提高定位精度。
作为一个实施例,本申请中的方案的好处在于:提高系统中用于定位的参考信号的使用效率。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本发明的一个实施例的UE定位的结构图;
图6示出了根据本申请的一个实施例的第一节点和第二节点之间的传输流程图;
图7示出了根据本申请的一个实施例的第一节点、第二节点和第三节点之间的传输流程图;
图8示出了根据本申请的一个实施例的第二节点和第三节点之间的传输流程图;
图9示出了根据本申请的第一节点、第二节点和第三节点之间的示意图;
图10示出了根据本申请的第一参考信号和第二参考信号的示意图;
图11示出了根据本申请的第一时间差的示意图;
图12示出了根据本申请的第二时间差和第三时间差的示意图;
图13示出了根据本申请的给定参考信号的发送定时的示意图;
图14示出了根据本发明的一个实施例的用于第一节点中的处理装置的结构框图;
图15示出了根据本发明的一个实施例的用于第二节点中的处理装置的结构框图;
图16示出了根据本发明的一个实施例的用于第三节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了一个第一节点的处理流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。在实施例1中,本申请中的第一节点在步骤101中接收第一信息块集合和第一参考信号,所述第一信息块集合被用于指示第一身份,所述第一身份被用于标识所述第一参考信号;在步骤102中发送第一位置信息。
实施例1中,所述第一参考信号通过副链路传输,针对所述第一参考信号的接收被用于确定所述第一位置信息;所述第一身份被用于确定以下至少之一:
-所述第一参考信号的同步参考;
-所述第一参考信号的定时提前值;
-所述第一参考信号的定时;
-所述第一参考信号对应的定时误差组。
作为一个实施例,所述第一信息块集合包括RRC(Radio Resource Control,无线资源控制)信令。
作为一个实施例,所述第一信息块集合通过RRC信令承载。
作为一个实施例,所述第一信息块集合通过LMF(Location Management Function,位置管理功能)传输给所述第一节点。
作为一个实施例,承载所述第一信息块集合的IE(Information Elements,信息单元)的名字包括PRS。
作为一个实施例,承载所述第一信息块集合的IE的名字包括SL。
作为一个实施例,承载所述第一信息块集合的IE的名字包括Association。
作为一个实施例,承载所述第一信息块集合的IE的名字包括Info。
作为一个实施例,承载所述第一信息块集合的IE的名字包括V2X。
作为一个实施例,承载所述第一信息块集合的IE的名字包括R18。
作为一个实施例,承载所述第一信息块集合的IE的名字包括DL。
作为一个实施例,承载所述第一信息块集合的IE的名字包括Assistance。
作为一个实施例,所述第一信息块集合包括DL-PRS-ID-Info IE。
作为一个实施例,所述第一信息块集合包括NR-DL-PRS-Info IE。
作为一个实施例,所述第一信息块集合包括SL-PRS-ID-Info IE。
作为一个实施例,所述第一信息块集合包括NR-SL-PRS-Info IE。
作为一个实施例,所述第一信息块集合包括NR-DL-PRS-ResourceSet IE。
作为一个实施例,所述第一信息块集合包括NR-DL-PRS-Resource IE。
作为一个实施例,所述第一信息块集合包括NR-SL-PRS-ResourceSet IE。
作为一个实施例,所述第一信息块集合包括NR-SL-PRS-Resource IE。
作为一个实施例,所述副链路是终端和终端之间的无线链路。
作为一个实施例,所述副链路是Sidelink。
作为一个实施例,所述副链路针对V2X链路。
作为一个实施例,所述副链路针对PC5接口。
作为一个实施例,所述下行链路是Downlink链路。
作为一个实施例,所述下行链路是基站向终端发送的链路。
作为一个实施例,所述下行链路是gNB向终端发送的链路。
作为一个实施例,所述第一参考信号包括Sidelink PRS。
作为一个实施例,所述第一参考信号包括Sidelink SRS(Sounding Reference Signal,侦听参考信号)。
作为一个实施例,所述第一参考信号包括Sidelink CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号)。
作为一个实施例,所述第一参考信号占用一个Sidelink PRS资源。
作为一个实施例,所述第一参考信号占用一个Sidelink SRS资源。
作为一个实施例,所述第一参考信号占用一个Sidelink CSI-RS资源。
作为一个实施例,所述第一参考信号对应一个Sidelink PRS资源。
作为一个实施例,所述第一参考信号对应一个Sidelink SRS资源。
作为一个实施例,所述第一参考信号对应一个Sidelink CSI-RS资源。
作为一个实施例,所述第一身份是一个Identity。
作为一个实施例,所述第一身份是个非负整数。
作为一个实施例,所述第一身份是正整数。
作为一个实施例,所述第一身份被关联到所述第一参考信号。
作为一个实施例,配置所述第一参考信号的信息被用于指示所述第一身份。
作为一个实施例,所述第一身份被用于定位。
作为一个实施例,所述第一身份被用于加扰所述第一参考信号。
作为一个实施例,所述第一身份被用于生成所述第一参考信号。
作为一个实施例,所述第一位置信息包括从所述第一节点向基站传输的位置信息。
作为一个实施例,所述第一位置信息包括从所述第一节点向LMF传输的位置信息。
作为一个实施例,所述第一位置信息包括第一信道质量。
作为该实施例的一个子实施例,所述第一信道质量包括针对所述第一参考信号测量获得的RSRP(Reference Signal Received Power,参考信号接收功率)。
作为该实施例的一个子实施例,所述第一信道质量包括针对所述第一参考信号测量获得的RSRPP(Reference Signal Received Path Power,参考信号接收路径功率)。
作为该实施例的一个子实施例,所述第一信道质量包括针对所述第一参考信号测量的质量(Quality)。
作为一个实施例,所述第一位置信息包括第一身份集合。
作为该实施例的一个子实施例,所述第一身份集合仅包括一个身份。
作为该实施例的一个子实施例,所述第一身份集合仅包括多个身份。
作为该实施例的一个子实施例,所述第一身份集合包括所述第一参考信号所对应的所述第一身份。
作为该实施例的一个子实施例,所述第一身份集合包括所述第一参考信号所对应的所述第一身份之外的身份。
作为该实施例的一个子实施例,所述第一身份集合包括所述第一参考信号占用的参考信号资源所对应的身份。
作为该实施例的一个子实施例,所述第一身份集合包括所述第一参考信号占用的参考信号资源所属于的参考信号资源集合所对应的身份。
作为一个实施例,所述第一位置信息包括第一时间值集合。
作为该实施例的一个子实施例,所述第一时间值集合仅包括一个时间值。
作为该实施例的一个子实施例,所述第一时间值集合仅包括多个时间值。
作为该实施例的一个子实施例,所述第一时间值集合包括针对所述第一参考信号的测量的时间戳(Time Stamp)。
作为该实施例的一个子实施例,所述第一时间值集合包括第一时间差,所述第一时间差是所述第一节点接收所述第一参考信号的时间和接收所述第三参考信号的时间的时间差。
作为该实施例的一个子实施例,所述第一时间值集合包括第二时间差,所述第二时间差是所述第一节点接收所述第一参考信号的时间和发送所述第四参考信号的时间的时间差。
作为一个实施例,所述第一位置信息包括针对所述第一参考信号测量获得的AoD。
作为一个实施例,所述第一身份被用于确定所述第一参考信号的同步参考(Synchronization Reference)。
作为该实施例的一个子实施例,所述第一身份被用于确定所述第一参考信号的所述同步参考在发送所述第一参考信号时所采用的空域传输滤波(Spatial Domain Transmission Filter)。
作为该实施例的一个子实施例,所述第一身份被用于确定所述第一参考信号所对应的QCL(Quasi Co-located,准共址)关系。
作为该实施例的一个子实施例,所述第一身份被用于确定所述第一参考信号所采用的TCI(Transmission Configuration Indication,传输配置指示)。
作为该实施例的一个子实施例,所述第一身份被用于确定所述第二节点在发送所述第一参考信号时所采用的同步参考。
作为一个实施例,所述第一身份被用于确定所述第一参考信号的定时提前值。
作为该实施例的一个子实施例,所述第一身份被用于确定所述第二节点获取用于发送所述第一参考信号时所采用的定时提前值时所参考的节点。
作为该实施例的一个子实施例,所述第一身份被用于确定所述第二节点获取用于发送所述第一参考信号时所采用的定时提前值时所参考的下行信号。
作为一个实施例,所述第一身份被用于确定所述第一参考信号的定时。
作为该实施例的一个子实施例,所述第一身份被用于确定所述第二节点发送所述第一参考信号的发送时刻。
作为该实施例的一个子实施例,所述第一身份被用于确定所述第一参考信号所占用的时隙的时隙边界。
作为该实施例的一个子实施例,所述第一身份被用于确定所述第一参考信号所占用的子帧的子帧边界。
作为该实施例的一个子实施例,所述第一身份被用于确定所述第一参考信号所占用的帧的帧边界。
作为该实施例的一个子实施例,所述第一身份被用于确定所述第二节点发送所述第一参考信号的发送定时所参考的节点。
作为该实施例的一个子实施例,所述第一身份被用于确定所述第二节点发送所述第一参考信号的发送定时所参考的下行信号。
作为一个实施例,所述第一身份被用于确定所述第一参考信号对应的所述TEG。
作为一个实施例,所述第一身份被用于确定所述第一参考信号对应的所述TEG所采用的TEG ID。
作为一个实施例,本申请中所述的空域传输滤波包括空间发送参数(组)。
作为一个实施例,本申请中所述的空域传输滤波包括空间接收参数(组)。
作为一个实施例,本申请中所述的空域传输滤波包括发送波束赋形向量。
作为一个实施例,本申请中所述的空域传输滤波包括接收波束赋形向量。
作为一个实施例,本申请中所述的空域传输滤波包括波束赋形向量。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。附图2说明了5G NR(New Radio,新空口),LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统架构下的V2X通信架构。5G NR或LTE网络架构可称为5GS(5GSystem)/EPS(Evolved Packet System,演进分组系统)某种其它合适术语。
实施例2的V2X通信架构包括UE(User Equipment,用户设备)201,UE241,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220,ProSe功能250和ProSe应用服务器230。所述V2X通信架构可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,所述V2X通信架构提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(UserPlaneFunction,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务 230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。所述ProSe功能250是用于适地服务(ProSe,Proximity-based Service)所需的网络相关行为的逻辑功能;包括DPF(Direct Provisioning Function,直接供应功能),直接发现名称管理功能(Direct Discovery Name Management Function),EPC水平发现ProSe功能(EPC-level Discovery ProSe Function)等。所述ProSe应用服务器230具备存储EPC ProSe用户标识,在应用层用户标识和EPC ProSe用户标识之间映射,分配ProSe限制的码后缀池等功能。
作为一个实施例,所述UE201和所述UE241之间通过PC5参考点(Reference Point)连接。
作为一个实施例,所述ProSe功能250分别通过PC3参考点与所述UE201和所述UE241连接。
作为一个实施例,所述ProSe功能250通过PC2参考点与所述ProSe应用服务器230连接。
作为一个实施例,所述ProSe应用服务器230连接分别通过PC1参考点与所述UE201的ProSe应用和所述UE241的ProSe应用连接。
作为一个实施例,本申请中的所述第一节点是所述UE201,本申请中的所述第二节点是所述UE241。
作为一个实施例,本申请中的所述第一节点是所述UE241,本申请中的所述第二节点是所述UE201。
作为一个实施例,所述UE201和所述UE241之间的无线链路对应本申请中的副链路(Sidelink,SL)。
作为一个实施例,所述gNB203对应本申请中的所述第三节点。
作为一个实施例,所述ProSe功能250对应本申请中的所述第三节点。
作为一个实施例,所述ProSe应用服务器230对应本申请中的所述第三节点。
作为一个实施例,所述第三节点包括位置服务中心。
作为一个实施例,所述第三节点包括基站。
作为一个实施例里,所述位置服务中心是NAS(Non-Access-Stratum,非接入层)设备。
作为一个实施例,所述位置服务中心包括LMF。
作为一个实施例,从所述UE201到NR节点B的无线链路是上行链路。
作为一个实施例,从NR节点B到UE201的无线链路是下行链路。
作为一个实施例,所述UE201支持V2X传输。
作为一个实施例,所述UE241支持V2X传输。
作为一个实施例,所述NR节点B 203是宏蜂窝(MarcoCellular)基站。
作为一个实施例,所述NR节点B 203是微小区(Micro Cell)基站。
作为一个实施例,所述NR节点B 203是微微小区(PicoCell)基站。
作为一个实施例,所述NR节点B 203是家庭基站(Femtocell)。
作为一个实施例,所述NR节点B 203是支持大时延差的基站设备。
作为一个实施例,所述NR节点B 203是一个RSU(Road Side Unit,路边单元)。
作为一个实施例,所述NR节点B 203包括卫星设备。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,PDCP子层304还提供第一通信节点设备对第二通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控 制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第二通信节点设备的PDCP304被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述第二通信节点设备的PDCP354被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述第一信息块集合生成于所述RRC306。
作为一个实施例,所述第一信息块集合生成于所述RRC306之上。
作为一个实施例,所述第一信息块集合生成于NAS层。
作为一个实施例,所述第二信息块集合生成于所述RRC306。
作为一个实施例,所述第二信息块集合生成于所述RRC306之上。
作为一个实施例,所述第二信息块集合生成于NAS层。
作为一个实施例,所述第一参考信号生成于所述PHY301或者所述PHY351。
作为一个实施例,所述第二参考信号生成于所述PHY301或者所述PHY351。
作为一个实施例,所述第三参考信号生成于所述PHY301或者所述PHY351。
作为一个实施例,所述第四参考信号生成于所述PHY301或者所述PHY351。
作为一个实施例,本申请中的针对所述第一参考信号的测量包括在所述RRC子层306执行的层3滤波。
作为一个实施例,本申请中的针对所述第一参考信号的测量是在所述PHY301或者所述PHY351被执行的。
作为一个实施例,本申请中的针对所述第二参考信号的测量包括在所述RRC子层306执行的层3滤波。
作为一个实施例,本申请中的针对所述第二参考信号的测量是在所述PHY301或者所述PHY351被执行的。
作为一个实施例,本申请中的针对所述第三参考信号的测量包括在所述RRC子层306执行的层3滤波。
作为一个实施例,本申请中的针对所述第三参考信号的测量是在所述PHY301或者所述PHY351被执行的。
作为一个实施例,本申请中的针对所述第四参考信号的测量包括在所述RRC子层306执行的层3滤波。
作为一个实施例,本申请中的针对所述第四参考信号的测量是在所述PHY301或者所述PHY351被执行的。
作为一个实施例,所述第一位置信息生成于所述RRC306。
作为一个实施例,所述第一位置信息生成于NAS层。
作为一个实施例,所述第二位置信息生成于所述RRC306。
作为一个实施例,所述第二位置信息生成于NAS层。
作为一个实施例,所述第一节点是一个终端。
作为一个实施例,所述第一节点是一个中继。
作为一个实施例,所述第一节点是一个交通工具。
作为一个实施例,所述第二节点是一个终端。
作为一个实施例,所述第二节点是一个中继。
作为一个实施例,所述第二节点是一个交通工具。
作为一个实施例,所述第二节点是一个RSU。
作为一个实施例,所述第三节点是一个gNB。
作为一个实施例,所述第三节点包括一个TRP(Transmitter Receiver Point,发送接收点)。
作为一个实施例,所述第三节点被用于管理多个TRP。
作为一个实施例,所述第三节点包括用于管理多个小区的节点。
作为一个实施例,所述第三节点包括用于管理多个服务小区的节点。
作为一个实施例,所述第三节点包括LMF。
作为一个实施例,所述第三节点包括位置服务中心。
作为一个实施例,所述第三节点对应本申请中的所述网络设备。
作为一个实施例,所述第三节点同时包括一个gNB和LMF。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称 为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:首先接收第一信息块集合和第一参考信号,所述第一信息块集合被用于指示第一身份,所述第一身份被用于标识所述第一参考信号;随后发送第一位置信息;所述第一参考信号通过副链路传输,针对所述第一参考信号的接收被用于确定所述第一位置信息;所述第一身份被用于确定以下至少之一:
-所述第一参考信号的同步参考;
-所述第一参考信号的定时提前值;
-所述第一参考信号的定时;
-所述第一参考信号对应的定时误差组。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先接收第一信息块集合和第一参考信号,所述第一信息块集合被用于指示第一身份,所述第一身份被用于标识所述第一参考信号;随后发送第一位置信息;所述第一参考信号通过副链路传输,针对所述第一参考信号的接收被用于确定所述第一位置信息;所述第一身份被用于确定以下至少之一:
-所述第一参考信号的同步参考;
-所述第一参考信号的定时提前值;
-所述第一参考信号的定时;
-所述第一参考信号对应的定时误差组。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:发送第一信息块集合和第一参考信号,所述第一信息块集合被用于指示第一身份,所述第一身份被用于标识所述第一参考信号;所述第一参考信号通过 副链路传输,针对所述第一参考信号的接收被用于确定第一位置信息;所述第一身份被用于确定以下至少之一:
-所述第一参考信号的同步参考;
-所述第一参考信号的定时提前值;
-所述第一参考信号的定时;
-所述第一参考信号对应的定时误差组。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信息块集合和第一参考信号,所述第一信息块集合被用于指示第一身份,所述第一身份被用于标识所述第一参考信号;所述第一参考信号通过副链路传输,针对所述第一参考信号的接收被用于确定第一位置信息;所述第一身份被用于确定以下至少之一:
-所述第一参考信号的同步参考;
-所述第一参考信号的定时提前值;
-所述第一参考信号的定时;
-所述第一参考信号对应的定时误差组。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:接收第二信息块集合,以及接收第一位置信息;所述第二信息块集合包括第一信息块集合,所述第一信息块集合被用于指示第一身份,所述第一身份被用于标识第一参考信号;所述第二信息块集合的发送者包括第二节点,所述第二节点通过副链路发送所述第一参考信号,所述第一参考信号的接收者包括第一节点,所述第一节点发送所述第一位置信息;所述第一节点针对所述第一参考信号的接收被用于确定所述第一位置信息;所述第一身份被用于确定以下至少之一:
-所述第一参考信号的同步参考;
-所述第一参考信号的定时提前值;
-所述第一参考信号的定时;
-所述第一参考信号对应的定时误差组。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第二信息块集合,以及接收第一位置信息;所述第二信息块集合包括第一信息块集合,所述第一信息块集合被用于指示第一身份,所述第一身份被用于标识第一参考信号;所述第二信息块集合的发送者包括第二节点,所述第二节点通过副链路发送所述第一参考信号,所述第一参考信号的接收者包括第一节点,所述第一节点发送所述第一位置信息;所述第一节点针对所述第一参考信号的接收被用于确定所述第一位置信息;所述第一身份被用于确定以下至少之一:
-所述第一参考信号的同步参考;
-所述第一参考信号的定时提前值;
-所述第一参考信号的定时;
-所述第一参考信号对应的定时误差组。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第一节点。
作为一个实施例,所述第一通信设备450对应本申请中的第二节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第二通信设备410对应本申请中的第三节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第一通信设备450是一个终端。
作为一个实施例,所述第一通信设备450是一个中继。
作为一个实施例,所述第一通信设备450是一个具有定位能力的终端。
作为一个实施例,所述第一通信设备450是一个RSU。
作为一个实施例,所述第二通信设备410是一个UE。
作为一个实施例,所述第二通信设备410是一个终端。
作为一个实施例,所述第二通信设备410是一个中继。
作为一个实施例,所述第二通信设备410是一个具有定位能力的终端。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,所述第二通信设备410是一个中继。
作为一个实施例,所述第二通信设备410是一个网络设备。
作为一个实施例,所述第二通信设备410是一个服务小区。
作为一个实施例,所述第二通信设备410是一个TRP。
作为一个实施例,所述第二通信设备410是一个具有定位能力的基站。
作为一个实施例,所述第二通信设备410是LMF。
作为一个实施例,所述第二通信设备410是位置服务中心。
作为一个实施例,所述第二通信设备410是一个RSU。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第一信息块集合;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第一信息块集合。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第一参考信号;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第一参考信号。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于发送第一位置信息;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于接收第一位置信息。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第二参考信号;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第二参考信号。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第三参考信号;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第三参考信号。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于发送第四参考信号;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于接收第四参考信号。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于发送第二位置信息;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于接收第二位置信息。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于发送第二信息块集合;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者 被用于接收第二信息块集合。
实施例5
实施例5示例了根据本申请的一个实施例的UE定位的结构图,如附图5所示。
UE501通过LTE(Long Term Evolution,长期演进)-Uu接口或NR(New Radio)-Uu新无线接口与ng-eNB502或gNB503通信;ng-eNB502和gNB 503有时被称为基站,ng-eNB502和gNB 503也被称为NG(Next Generation,下一代)-RAN(Radio Access Network,无线接入网)。ng-eNB502和gNB 503分别通过NG(Next Generation,下一代)-C(Control plane,控制面)与AMF(Authentication Management Field,鉴权管理域)504连接;AMF504通过NL1接口与LMF(Location Management Function,位置管理功能)505连接。
所述AMF504从另外一个实体,例如GMLC(Gateway Mobile Location Centre,网关移动位置中心)或者UE,接收到与特定UE关联的位置服务请求,或者所述AMF504自己决定启动被关联到特定UE的位置服务;然后所述AMF504发送位置服务请求到一个LMF,例如所述LMF505;然后这个LMF处理所述位置服务请求,包括发送辅助数据到所述特定UE以辅助基于UE(UE-based)的或者UE辅助的(UE-assisted)定位,以及包括接收来自UE上报的位置信息(Location information);接着这个LMF将位置服务的结果返回给所述AMF504;如果所述位置服务是另外一个实体请求的,所述AMF504将所述位置服务的结果返回给那个实体。
作为一个实施例,本申请的网络设备包括LMF。
作为一个实施例,本申请的网络设备包括NG-RAN和LMF。
作为一个实施例,本申请的网络设备包括NG-RAN、AMF和LMF。
实施例6
实施例6示例了一个实施例的第一节点和第二节点之间的传输流程图,如附图6所示。在附图6中,第一节点U1和第二节点U2之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例6中的实施例、子实施例和附属实施例能够被应用到本申请中的实施例7、8中的实施例、子实施例和附属实施例中;反之,在不冲突的情况下,本申请中的实施例7、8中的实施例、子实施例和附属实施例能够被应用到实施例6中。
对于第一节点U1,在步骤S10中接收第一信息块集合;在步骤S11中接收第一参考信号;在步骤S12中接收第二参考信号;在步骤S13中发送第一位置信息。
对于第二节点U2,在步骤S20中发送第一信息块集合;在步骤S21中发送第一参考信号;在步骤S22中发送第二参考信号;在步骤S23中接收第一位置信息。
实施例6中,所述第一信息块集合被用于指示第一身份,所述第一身份被用于标识所述第一参考信号;所述第一参考信号通过副链路传输,针对所述第一参考信号的接收被用于确定所述第一位置信息;所述第一身份被用于确定所述第一参考信号的同步参考、所述第一参考信号的定时提前值、所述第一参考信号的定时、或所述第一参考信号对应的定时误差组中的至少之一;所述第二参考信号通过副链路传输,第二身份被用于标识所述第二参考信号;所述第二身份是否与所述第一身份相同被用于确定针对所述第二参考信号的接收能否被用于确定所述第一位置信息。
作为一个实施例,所述第二参考信号包括Sidelink PRS。
作为一个实施例,所述第二参考信号包括Sidelink SRS。
作为一个实施例,所述第二参考信号包括Sidelink CSI-RS。
作为一个实施例,所述第二参考信号占用一个Sidelink PRS资源。
作为一个实施例,所述第二参考信号占用一个Sidelink SRS资源。
作为一个实施例,所述第二参考信号占用一个Sidelink CSI-RS资源。
作为一个实施例,所述第二参考信号对应一个Sidelink PRS资源。
作为一个实施例,所述第二参考信号对应一个Sidelink SRS资源。
作为一个实施例,所述第二参考信号对应一个Sidelink CSI-RS资源。
作为一个实施例,所述第二身份是一个Identity。
作为一个实施例,所述第二身份是个非负整数。
作为一个实施例,所述第二身份是正整数。
作为一个实施例,所述第二身份被关联到所述第二参考信号。
作为一个实施例,配置所述第二参考信号的信息被用于指示所述第二身份。
作为一个实施例,所述第二身份被用于定位。
作为一个实施例,所述第二身份被用于加扰所述第二参考信号。
作为一个实施例,所述第二身份被用于生成所述第二参考信号。
作为一个实施例,所述第二身份与所述第一身份相同,针对所述第二参考信号的接收被用于确定所述第一位置信息。
作为该实施例的一个子实施例,针对所述第一参考信号的接收和针对所述第二参考信号的接收被联合用于确定所述第一位置信息。
作为该实施例的一个子实施例,针对所述第一参考信号的接收和针对所述第二参考信号的接收被共同用于确定所述第一位置信息。
作为该实施例的一个子实施例,所述第一信道质量包括针对所述第二参考信号测量获得的RSRP。
作为该实施例的一个子实施例,所述第一信道质量包括针对所述第二参考信号测量获得的RSRPP。
作为该实施例的一个子实施例,所述第一信道质量包括针对所述第二参考信号测量的质量(Quality)。
作为该实施例的一个子实施例,所述第一时间值集合包括针对所述第二参考信号的测量的时间戳(Time Stamp)。
作为该实施例的一个子实施例,所述第一位置信息包括针对所述第二参考信号测量获得的AoD。
作为该实施例的一个子实施例,所述第一信道质量包括针对所述第一参考信号测量和针对所述第二参考信号测量获得的平均的RSRP。
作为该实施例的一个子实施例,所述第一信道质量包括针对所述第一参考信号测量和针对所述第二参考信号测量获得的平均的RSRPP。
作为该实施例的一个子实施例,所述第一信道质量包括针对所述第一参考信号测量和针对所述第二参考信号测量获得的平均的质量。
作为一个实施例,所述第二身份与所述第一身份不同,针对所述第二参考信号的接收不被用于确定所述第一位置信息。
典型的,当所述第二身份与所述第一身份相同时,所述第一参考信号和所述第二参考信号之间的关系满足以下至少之一:
-所述第一参考信号和所述第二参考信号采用相同的同步参考;
-所述第一参考信号和所述第二参考信号采用相同的定时提前值;
-所述第一参考信号的定时和所述第二参考信号的定时相同;
-所述第一参考信号和所述第二参考信号对应相同的TEG。
作为一个实施例,当所述第一身份被用于标识所述第二参考信号时,所述第一参考信号和所述第二参考信号之间的关系满足所述第一参考信号和所述第二参考信号采用相同的同步参考。
作为该实施例的一个子实施例,所述第二节点采用相同的空域传输滤波发送所述第一参考信号和所述第二参考信号。
作为该实施例的一个子实施例,所述第一参考信号和所述第二参考信号是QCL的。
作为该实施例的一个子实施例,所述第一参考信号和所述第二参考信号采用相同的TCI。
作为一个实施例,当所述第一身份被用于标识所述第二参考信号时,所述第一参考信号和所述第二参考信号之间的关系满足采用相同的定时提前值。
作为该实施例的一个子实施例,发送所述第一参考信号时所采用的定时提前值所参考的节点和发送所述第二参考信号时所采用的定时提前值所参考的节点相同。
作为该实施例的一个子实施例,发送所述第一参考信号时所采用的定时提前值所参考的下行信号和发送所述第二参考信号时所采用的定时提前值所参考的下行信号相同。
作为一个实施例,当所述第一身份被用于标识所述第二参考信号时,所述第一参考信号和所述第 二参考信号之间的关系满足所述第一参考信号的定时和所述第二参考信号的定时相同。
作为该实施例的一个子实施例,所述第一参考信号所占用的时隙的时隙边界和所述第二参考信号所占用的时隙的时隙边界在所述第二节点是对齐的。
作为该实施例的一个子实施例,所述第一参考信号所占用的子帧的子帧边界和所述第二参考信号所占用的子帧的子帧边界在所述第二节点是对齐的。
作为该实施例的一个子实施例,所述第一参考信号所占用的帧的帧边界和所述第二参考信号所占用的帧的帧边界在所述第二节点是对齐的。
作为一个实施例,当所述第一身份被用于标识所述第二参考信号时,所述第一参考信号和所述第二参考信号之间的关系满足所述第一参考信号和所述第二参考信号对应相同的TEG。
作为一个实施例,当所述第一身份被用于标识所述第二参考信号时,所述第一参考信号和所述第二参考信号之间的关系满足所述第一参考信号所对应的TEG的TEG ID和所述第二参考信号所对应的TEG的TEG ID相同。
典型的,所述第一参考信号和所述第二参考信号分别占用第一参考信号资源和第二参考信号资源;当所述第一身份被用于标识所述第二参考信号时,所述第一参考信号资源和所述第二参考信号资源都属于第一参考信号资源集合,所述第一身份被用于标识所述第一参考信号资源集合。
作为一个实施例,所述第一参考信号资源集合对应一个SL PRS Resource Set。
作为一个实施例,所述第一参考信号资源集合对应一个SL PRS Resource Group。
作为一个实施例,所述第一参考信号资源集合对应一个SL PRS Resource Pool。
作为一个实施例,所述第一参考信号资源集合对应一个SL CSI-RS Resource Set。
作为一个实施例,所述第一参考信号资源集合对应一个SL CSI-RS Resource Group。
作为一个实施例,所述第一参考信号资源集合对应一个SL CSI-RS Resource Pool。
作为一个实施例,所述第一参考信号资源集合对应一个SL SRS Resource Set。
作为一个实施例,所述第一参考信号资源集合对应一个SL SRS Resource Group。
作为一个实施例,所述第一参考信号资源集合对应一个SL SRS Resource Pool。
作为一个实施例,所述第一参考信号资源对应SL PRS Resource。
作为一个实施例,所述第一参考信号资源对应SL CSI-RS Resource。
作为一个实施例,所述第一参考信号资源对应SL SRS Resource。
作为一个实施例,所述第二参考信号资源对应SL PRS Resource。
作为一个实施例,所述第二参考信号资源对应SL CSI-RS Resource。
作为一个实施例,所述第二参考信号资源对应SL SRS Resource。
作为一个实施例,所述第一参考信号资源集合包括K1个参考信号资源,所述K1个参考信号资源都被所述第一身份标识。
典型的,所述第一身份与SSID(Synchronization Signal Identity,同步信号身份)、副链路MIB(Master Information Block,主信息块)或副链路SIB(System Information Block,系统信息块)中的至少之一相关联。
作为一个实施例,所述SSID被用于生成所述第一身份。
作为一个实施例,所述第一身份与所述SSID相关联。
作为一个实施例,所述SSID是SLSSID(Sidelink Synchronization Signal Identity,副链路同步信号身份)。
作为一个实施例,所述SSID是所述第二节点对应的SSID。
作为一个实施例,所述SSID是所述第二节点对应的SLSSID。
作为一个实施例,所述SSID是所述第一节点对应的SSID。
作为一个实施例,所述SSID是所述第一节点对应的SLSSID。
作为一个实施例,所述第一身份与所述副链路MIB相关联。
作为一个实施例,所述副链路MIB所占用的时域资源被用于确定所述第一身份。
作为一个实施例,所述副链路MIB所占用的频域资源被用于确定所述第一身份。
作为一个实施例,所述副链路MIB被用于指示所述第一身份。
作为一个实施例,所述第一身份与所述副链路SIB相关联。
作为一个实施例,所述副链路SIB所占用的时域资源被用于确定所述第一身份。
作为一个实施例,所述副链路SIB所占用的频域资源被用于确定所述第一身份。
作为一个实施例,所述副链路SIB被用于指示所述第一身份。
作为一个实施例,所述第一位置信息的接收者包括本申请中的所述第三节点。
实施例7
实施例7示例了一个实施例的第一节点、第二节点和第三节点的传输流程图,如附图7所示。在附图7中,第一节点U3、第二节点U4和第三节点N5两两之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例7中的实施例、子实施例和附属实施例能够被应用到本申请中的实施例6、8中的实施例、子实施例和附属实施例中;反之,在不冲突的情况下,本申请中的实施例6、8中的实施例、子实施例和附属实施例能够被应用到实施例7中。
对于第一节点U3,在步骤S30中接收第三参考信号;在步骤S31中发送第四参考信号。
对于第二节点U4,在步骤S40中接收第三参考信号;在步骤S41中接收第四参考信号。
对于第三节点N5,在步骤S50中发送第三参考信号。
实施例7中,所述第三参考信号通过下行链路传输,所述第一信息块集合被用于确定所述第三参考信号;针对所述第三参考信号的接收被用于确定所述第一位置信息;所述第三参考信号的接收定时被用于确定所述第四参考信号的发送定时。
作为一个实施例,所述第三参考信号包括PRS。
作为一个实施例,所述第三参考信号包括CSI-RS。
作为一个实施例,所述第三参考信号包括SSB。
作为一个实施例,所述第三参考信号占用一个DL PRS资源。
作为一个实施例,所述第三参考信号占用一个CSI-RS资源。
作为一个实施例,所述第三参考信号占用一个SSB。
作为一个实施例,所述第三参考信号对应一个DL PRS资源。
作为一个实施例,所述第三参考信号对应一个CSI-RS资源。
作为一个实施例,所述第三参考信号对应一个SSB。
作为一个实施例,所述第一信息块集合被用于指示所述第三参考信号。
作为一个实施例,所述第一信息块集合被用于确定所述第三参考信号所占用的参考信号资源。
作为一个实施例,所述第一信息块集合被用于指示所述第三参考信号所占用的参考信号资源。
作为一个实施例,所述第一信息块集合被用于指示一个PRS资源,所述PRS资源包括所述第三参考信号所占用的参考信号资源。
作为一个实施例,所述第一信息块集合被用于指示一个PRS资源集合,所述PRS资源集合包括所述第三参考信号所占用的参考信号资源。
作为一个实施例,所述第一位置信息包括第二信道质量。
作为该实施例的一个子实施例,所述第二信道质量包括针对所述第三参考信号测量获得的RSRP。
作为该实施例的一个子实施例,所述第二信道质量包括针对所述第三参考信号测量获得的RSRPP。
作为该实施例的一个子实施例,所述第二信道质量包括针对所述第三参考信号测量的质量。
作为一个实施例,所述第一位置信息包括针对所述第三参考信号测量获得的AoD。
作为一个实施例,所述第四参考信号包括Sidelink PRS。
作为一个实施例,所述第四参考信号包括Sidelink SRS。
作为一个实施例,所述第四参考信号包括Sidelink CSI-RS。
作为一个实施例,所述第四参考信号占用一个Sidelink PRS资源。
作为一个实施例,所述第四参考信号占用一个Sidelink SRS资源。
作为一个实施例,所述第四参考信号占用一个Sidelink CSI-RS资源。
作为一个实施例,所述第四参考信号对应一个Sidelink PRS资源。
作为一个实施例,所述第四参考信号对应一个Sidelink SRS资源。
作为一个实施例,所述第四参考信号对应一个Sidelink CSI-RS资源。
作为一个实施例,上述短语所述第三参考信号的接收定时被用于确定所述第四参考信号的发送定时的意思包括:所述第三参考信号的接收定时对应所述第一节点的下行定时,所述第四参考信号的发送定时对应所述第一节点的上行定时。
作为一个实施例,上述短语所述第三参考信号的接收定时被用于确定所述第四参考信号的发送定时的意思包括:所述第三参考信号的接收定时被用于确定所述第一节点的下行定时,所述第一节点的下行定时被用于确定所述第四参考信号的发送定时。
作为一个实施例,所述第四参考信号位于的所述第一节点的上行第i帧,所述上行第i帧的起始(Start)相较所述第一节点的下行第i帧的起始提前了TTA,所述TTA对应所述第一节点在向本申请中的所述第四节点发送时的定时提前。
典型的,所述第一信息块集合被用于确定所述第一参考信号和所述第三参考信号是相关联的。
作为一个实施例,所述第一信息块集合被用于指示所述第一参考信号和所述第三参考信号是相关联的。
作为一个实施例,所述第一信息块集合包括所述第一参考信号的配置信息,所述第一参考信号的所述配置信息包括所述第三参考信号的身份。
作为一个实施例,所述第一信息块集合包括所述第三参考信号的配置信息,所述第三参考信号的所述配置信息包括所述第一参考信号的身份。
作为一个实施例,所述第一信息块集合被用于指示所述第一参考信号和所述第三参考信号被关联到同一个身份。
作为一个实施例,所述第一信息块集合被用于指示所述第一参考信号和所述第三参考信号被关联到同一个QCL关系。
作为该实施例的一个子实施例,所述QCL关系包括TCI-StateId。
作为一个实施例,本申请中的信号的接收定时包括接收所述信号时确定的所述信号所占用的时隙的边界。
作为一个实施例,本申请中的信号的接收定时包括接收所述信号时确定的所述信号所占用的子帧的边界。
作为一个实施例,本申请中的信号的接收定时包括接收所述信号时确定的所述信号所占用的帧的边界。
作为一个实施例,本申请中的信号的接收定时包括接收所述信号的时隙定时。
作为一个实施例,本申请中的信号的接收定时包括接收所述信号的子帧定时。
作为一个实施例,本申请中的信号的接收定时包括接收所述信号的帧定时。
作为一个实施例,本申请中的信号的发送定时包括发送所述信号时确定的所述信号所占用的时隙的边界。
作为一个实施例,本申请中的信号的发送定时包括发送所述信号时确定的所述信号所占用的子帧的边界。
作为一个实施例,本申请中的信号的发送定时包括发送所述信号时确定的所述信号所占用的帧的边界。
作为一个实施例,本申请中的信号的发送定时包括发送所述信号的时隙定时。
作为一个实施例,本申请中的信号的发送定时包括发送所述信号的子帧定时。
作为一个实施例,本申请中的信号的发送定时包括发送所述信号的帧定时。
作为一个实施例,所述步骤S30位于实施例5中的步骤S 10之后且步骤S 11之前。
作为一个实施例,所述步骤S30位于实施例5中的步骤S 11之后且步骤S 12之前。
作为一个实施例,所述步骤S31位于实施例5中的步骤S 11之后且步骤S 12之前。
作为一个实施例,所述步骤S31位于实施例5中的步骤S 12之后且步骤S 13之前。
作为一个实施例,所述步骤S40位于实施例5中的步骤S20之后且步骤S21之前。
作为一个实施例,所述步骤S40位于实施例5中的步骤S21之后且步骤S22之前。
作为一个实施例,所述步骤S41位于实施例5中的步骤S21之后且步骤S22之前。
作为一个实施例,所述步骤S41位于实施例5中的步骤S22之后且步骤S23之前。
实施例8
实施例8示例了一个实施例的第二节点和第三节点的传输流程图,如附图8所示。在附图8中,第二节点U6与第三节点N7之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例8中的实施例、子实施例和附属实施例能够被应用到本申请中的实施例6、7中的实施例、子实施例和附属实施例中;反之,在不冲突的情况下,本申请中的实施例6、7中的实施例、子实施例和附属实施例能够被应用到实施例8中。
对于第二节点U6,在步骤S60中发送第二信息块集合;在步骤S61中发送第二位置信息。
对于第三节点N7,在步骤S70中接收第二信息块集合;在步骤S71中接收第二位置信息。
实施例8中,所述第二信息块集合包括本申请中的所述第一信息块集合,所述第二位置信息包括本申请中的所述第一位置信息。
作为一个实施例,所述第二信息块集合包括RRC信令。
作为一个实施例,所述第二信息块集合通过RRC信令承载。
作为一个实施例,所述第二信息块集合通过LMF传输给所述第一节点。
作为一个实施例,承载所述第二信息块集合的IE(Information Elements,信息单元)的名字包括PRS。
作为一个实施例,承载所述第二信息块集合的IE的名字包括SL。
作为一个实施例,承载所述第二信息块集合的IE的名字包括Association。
作为一个实施例,承载所述第二信息块集合的IE的名字包括Info。
作为一个实施例,承载所述第二信息块集合的IE的名字包括V2X。
作为一个实施例,承载所述第二信息块集合的IE的名字包括R18。
作为一个实施例,承载所述第二信息块集合的IE的名字包括DL。
作为一个实施例,承载所述第二信息块集合的IE的名字包括Assistance。
作为一个实施例,所述第二信息块集合包括SL-PRS-ID-Info IE。
作为一个实施例,所述第二信息块集合包括NR-SL-PRS-Info IE。
作为一个实施例,所述第二信息块集合包括NR-SL-PRS-ResourceSet IE。
作为一个实施例,所述第二信息块集合包括NR-SL-PRS-Resource IE。
作为一个实施例,所述步骤S60位于实施例5中的步骤S20之后且步骤S21之前。
作为一个实施例,所述步骤S60位于实施例5中的步骤S20之前。
作为一个实施例,所述步骤S61位于实施例6中的步骤S40之后。
作为一个实施例,所述步骤S61位于实施例6中的步骤S41之后。
作为一个实施例,所述步骤S70与实施例6中的步骤S50之前。
作为一个实施例,所述步骤S71与实施例6中的步骤S50之后。
实施例9
实施例9示例了根据本申请的一个实施例的第一节点、第二节点和第三节点之间的示意图,如附图9所示。附图9中,所述第三节点和所述第二节点均参与确定所述第一节点的定位;所述第三节点发送第三参考信号,所述第一节点和所述第二节点均接收所述第三参考信号;所述第二节点发送第一参考信号和第二参考信号,且所述第一节点接收所述第一参考信号和所述第二参考信号;所述第一节点发送第四参考信号且所述第二节点接收所述第四参考信号。
作为一个实施例,所述第一信息块集合被用于配置所述第一参考信号和所述第二参考信号。
作为一个实施例,所述第二信息块集合被用于通知所述第三节点关于所述第一参考信号和所述第二参考信号的配置。
作为一个实施例,所述第二节点发送K1个参考信号,所述第一参考信号是所述K1个参考信号中 的之一。
作为一个实施例,所述第二节点发送K1个参考信号,所述第二参考信号是所述K1个参考信号中的之一。
作为一个实施例,所述第三节点发送K2个参考信号,所述第三参考信号是所述K2个参考信号中的之一。
实施例10
实施例10示例了根据本申请的一个实施例的第一参考信号和第二参考信号的示意图,如附图10所示。附图10中,所述第一参考信号和所述第二参考信号均被本申请中的第二节点发送,当所述第二身份和所述第一身份相同时,所述第一参考信号和所述第二参考信号的关系满足{所述第一参考信号和所述第二参考信号采用相同的同步参考、所述第一参考信号和所述第二参考信号采用相同的定时提前值、所述第一参考信号的定时和所述第二参考信号的定时相同或所述第一参考信号和所述第二参考信号对应相同的TEG}中的至少之一。
作为一个实施例,所述第一参考信号和所述第二参考信号是QCL的。
作为一个实施例,所述第一参考信号和所述第二参考信号对应相同的TCI状态。
作为一个实施例,所述第一参考信号和所述第二参考信号对应相同的TCI状态ID。
作为一个实施例,所述第一参考信号和所述第二参考信号均和同一个SSB QCL。
作为一个实施例,所述第一参考信号和所述第二参考信号均和同一个CSI-RS QCL。
作为一个实施例,所述第一参考信号和所述第二参考信号占用正交的时域资源。
作为一个实施例,所述第一参考信号和所述第二参考信号占用正交的频域资源。
实施例11
实施例11示例了根据本申请的一个实施例的第一时间差的示意图,如附图11所示。附图11中,所述第一时间差是所述第一节点接收所述第一参考信号的时间和接收所述第三参考信号的时间的时间差,图中所示的第一时间单元对应接收到的所述第一参考信号所位于的时间单元,图中所示的第二时间单元对应接收到的所述第三参考信号所位于的时间单元;所述第一时间单元的起始时刻到所述第二时间单元的起始时刻之间的时间差是所述第一时间差。
作为一个实施例,所述第一时间单元和所述第二时间单元都是一个子帧。
作为一个实施例,所述第一时间单元和所述第二时间单元都是一个时隙。
作为一个实施例,所述第一时间单元和所述第二时间单元都是一个帧。
作为一个实施例,所述第一时间单元是一个或多个连续的OFDM符号。
作为一个实施例,所述第二时间单元是一个或多个连续的OFDM符号。
作为一个实施例,所述第一时间差的单位是秒。
作为一个实施例,所述第一时间差的单位是毫秒。
作为一个实施例,所述第一时间差的单位是微秒。
实施例12
实施例12示例了根据本申请的一个实施例的第二时间差和第三时间差的示意图,如附图12所示。附图12中,所述第二时间差是所述第一节点接收所述第一参考信号的时间和发送所述第四参考信号的时间的时间差;图12中还包括第三时间差,所述第三时间差是所述第二节点接收所述第四参考信号的时间和发送所述第一参考信号的时间的时间差;图中T1对应所述第二节点发送所述第一参考信号的时刻,图中T2对应所述第一节点接收所述第一参考信号的时刻,图中T3对应所述第一节点发送所述第四参考信号的时刻,图中T4对应所述第二节点接收所述第四参考信号的时刻;由图中可以看到,所述第一节点和所述第二节点之间的RTT(Round Trip Time,回程时间)等于(T4-T1)减去(T3-T2),所述RTT值的一半即对应所述第二节点到所述第一节点的传输延迟,进而RTT/2的值可以得出所述第二节点到所述第一节点的距离;图中T4减去T1的差对应所述第四时间差,图中T3减去T2的差对应所述第二时间差。
作为一个实施例,T1对应发送所述第一参考信号所占用的时隙的起始时刻。
作为一个实施例,T1对应发送所述第一参考信号所占用的子帧的起始时刻。
作为一个实施例,T1对应发送所述第一参考信号所占用的帧的起始时刻。
作为一个实施例,T1对应发送所述第一参考信号所占用的一个或多个OFDM符号的起始时刻。
作为一个实施例,T2对应接收到的所述第一参考信号所占用的时隙的起始时刻。
作为一个实施例,T2对应接收到的所述第一参考信号所占用的子帧的起始时刻。
作为一个实施例,T2对应接收到的所述第一参考信号所占用的帧的起始时刻。
作为一个实施例,T2对应接收到的所述第一参考信号所占用的一个或多个OFDM符号的起始时刻。
作为一个实施例,T3对应发送所述第四参考信号所占用的时隙的起始时刻。
作为一个实施例,T3对应发送所述第四参考信号所占用的子帧的起始时刻。
作为一个实施例,T3对应发送所述第四参考信号所占用的帧的起始时刻。
作为一个实施例,T3对应发送所述第四参考信号所占用的一个或多个OFDM符号的起始时刻。
作为一个实施例,T4对应接收到的所述第四参考信号所占用的时隙的起始时刻。
作为一个实施例,T4对应接收到的所述第四参考信号所占用的子帧的起始时刻。
作为一个实施例,T4对应接收到的所述第四参考信号所占用的帧的起始时刻。
作为一个实施例,T4对应接收到的所述第四参考信号所占用的一个或多个OFDM符号的起始时刻。
作为一个实施例,所述第二时间差的单位是秒。
作为一个实施例,所述第二时间差的单位是毫秒。
作为一个实施例,所述第二时间差的单位是微秒。
作为一个实施例,所述第三时间差的单位是秒。
作为一个实施例,所述第三时间差的单位是毫秒。
作为一个实施例,所述第三时间差的单位是微秒。
作为一个实施例,本申请中的所述第二位置信息包括所述第三时间差。
实施例13
实施例13示例了根据本申请的一个实施例的给定参考信号的发送定时的示意图,如附图13所示。在附图13中,所述给定参考信号的发送定时由给定节点的服务小区对应的基站的上行定时确定,即所述给定参考信号在发送时提前一个TA以保证不会对基站的上行产生干扰。
作为一个实施例,所述给定参考信号对应本申请中的所述第一参考信号。
作为一个实施例,所述给定参考信号对应本申请中的所述第二参考信号。
作为一个实施例,所述给定参考信号对应本申请中的所述第四参考信号。
作为一个实施例,所述给定节点对应本申请中的所述第一节点。
作为一个实施例,所述给定节点对应本申请中的所述第二节点。
作为一个实施例,所述服务小区的下行定时被用于确定所述给定参考信号的发送定时。
作为一个实施例,图中所示的TA等于所述给定节点到基站之间的RTT/2。
实施例14
实施例14示例了一个第一节点中的结构框图,如附图14所示。附图14中,第一节点1400包括第一接收机1401和第一发射机1402。
第一接收机1401,接收第一信息块集合和第一参考信号,所述第一信息块集合被用于指示第一身份,所述第一身份被用于标识所述第一参考信号;
第一发射机1402,发送第一位置信息;
实施例14中,所述第一参考信号通过副链路传输,针对所述第一参考信号的接收被用于确定所述第一位置信息;所述第一身份被用于确定以下至少之一:
-所述第一参考信号的同步参考;
-所述第一参考信号的定时提前值;
-所述第一参考信号的定时;
-所述第一参考信号对应的定时误差组。
作为一个实施例,包括:
所述第一接收机1401,接收第二参考信号;
其中,所述第二参考信号通过副链路传输,第二身份被用于标识所述第二参考信号;所述第二身份是否与所述第一身份相同被用于确定针对所述第二参考信号的接收能否被用于确定所述第一位置信息。
作为一个实施例,当所述第二身份和所述第一身份相同时,所述第一参考信号和所述第二参考信号之间的关系满足以下至少之一:
-所述第一参考信号和所述第二参考信号采用相同的同步参考;
-所述第一参考信号和所述第二参考信号采用相同的定时提前值;
-所述第一参考信号的定时和所述第二参考信号的定时相同;
-所述第一参考信号和所述第二参考信号对应相同的TEG。
作为一个实施例,所述第一参考信号和所述第二参考信号分别占用第一参考信号资源和第二参考信号资源;当所述第一身份被用于标识所述第二参考信号时,所述第一参考信号资源和所述第二参考信号资源都属于第一参考信号资源集合,所述第一身份被用于标识所述第一参考信号资源集合。
作为一个实施例,包括:
所述第一接收机1401,接收第三参考信号;
其中,所述第三参考信号通过下行链路传输,所述第一信息块集合被用于确定所述第三参考信号;针对所述第三参考信号的接收被用于确定所述第一位置信息。
作为一个实施例,包括:
所述第一发射机1402,发送第四参考信号;
其中,所述第三参考信号的接收定时被用于确定所述第四参考信号的发送定时。
作为一个实施例,所述第一信息块集合被用于确定所述第一参考信号和所述第三参考信号是相关联的。
作为一个实施例,所述第一身份与SSID、副链路MIB或副链路SIB中的至少之一相关联。
作为一个实施例,所述第一接收机1401包括实施例4中的天线452、接收器454、多天线接收处理器458、收处理器456、控制器/处理器459中的至少前4者。
作为一个实施例,所述第一发射机1402包括实施例4中的天线452、发射器454、多天线发射处理器457、发射处理器468、控制器/处理器459中的至少前4者。
实施例15
实施例15示例了一个第二节点中的结构框图,如附图15所示。附图15中,第二节点1500包括第二发射机1501。
第二发射机1501,发送第一信息块集合和第一参考信号,所述第一信息块集合被用于指示第一身份,所述第一身份被用于标识所述第一参考信号;
其中,所述第一参考信号通过副链路传输,针对所述第一参考信号的接收被用于确定第一位置信息;所述第一身份被用于确定以下至少之一:
-所述第一参考信号的同步参考;
-所述第一参考信号的定时提前值;
-所述第一参考信号的定时;
-所述第一参考信号对应的定时误差组。
作为一个实施例,包括:
第二接收机1502,接收第一位置信息。
作为一个实施例,包括:
所述第二发射机1501,发送第二参考信号;
其中,所述第二参考信号通过副链路传输,第二身份被用于标识所述第二参考信号;所述第二身份是否与所述第一身份相同被用于确定针对所述第二参考信号的接收能否被用于确定所述第一位置信息。
作为一个实施例,当所述第二身份和所述第一身份相同时,所述第一参考信号和所述第二参考信号之间的关系满足以下至少之一:
-所述第一参考信号和所述第二参考信号采用相同的同步参考;
-所述第一参考信号和所述第二参考信号采用相同的定时提前值;
-所述第一参考信号的定时和所述第二参考信号的定时相同;
-所述第一参考信号和所述第二参考信号对应相同的TEG。
作为一个实施例,所述第一参考信号和所述第二参考信号分别占用第一参考信号资源和第二参考信号资源;当所述第一身份被用于标识所述第二参考信号时,所述第一参考信号资源和所述第二参考信号资源都属于第一参考信号资源集合,所述第一身份被用于标识所述第一参考信号资源集合。
作为一个实施例,包括:
所述第二接收机1502,接收第三参考信号;
其中,所述第三参考信号通过下行链路传输,所述第一信息块集合被用于确定所述第三参考信号;针对所述第三参考信号的接收被用于确定所述第一位置信息。
作为一个实施例,包括:
所述第二接收机1502,接收第四参考信号;
其中,所述第三参考信号的接收定时被第一节点用于确定所述第四参考信号的发送定时,所述第一节点发送所述第四参考信号。
作为一个实施例,所述第一信息块集合被用于确定所述第一参考信号和所述第三参考信号是相关联的。
作为一个实施例,所述第一身份与SSID、副链路MIB或副链路SIB中的至少之一相关联。
作为一个实施例,包括:
所述第二发射机1501,发送第二位置信息;
其中,所述第一参考信号和所述第四参考信号被共同用于确定所述第二位置信息。
作为一个实施例,所述第二发射机1501包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器416、控制器/处理器475中的至少前4者。
作为一个实施例,所述第二接收机1502包括实施例4中的天线420、接收器418、多天线接收处理器472、接收处理器470、控制器/处理器475中的至少前4者。
实施例16
实施例16示例了一个第三节点中的结构框图,如附图16所示。附图16中,第三节点1600包括第三接收机1602。
第三接收机1602,接收第二信息块集合,以及接收第一位置信息;
实施例16中,所述第二信息块集合包括第一信息块集合,所述第一信息块集合被用于指示第一身份,所述第一身份被用于标识第一参考信号;所述第二信息块集合的发送者包括第二节点,所述第二节点通过副链路发送所述第一参考信号,所述第一参考信号的接收者包括第一节点,所述第一节点发送所述第一位置信息;所述第一节点针对所述第一参考信号的接收被用于确定所述第一位置信息;所述第一身份被用于确定以下至少之一:
-所述第一参考信号的同步参考;
-所述第一参考信号的定时提前值;
-所述第一参考信号的定时;
-所述第一参考信号对应的定时误差组。
作为一个实施例,所述第一节点接收第二参考信号,且所述第二节点发送所述第二参考信号;所述第二参考信号通过副链路传输,第二身份被用于标识所述第二参考信号;所述第二身份是否与所述第一身份相同被用于确定针对所述第二参考信号的接收能否被用于确定所述第一位置信息。
作为一个实施例,当所述第二身份和所述第一身份相同时,所述第一参考信号和所述第二参考信号之间的关系满足以下至少之一:
-所述第一参考信号和所述第二参考信号采用相同的同步参考;
-所述第一参考信号和所述第二参考信号采用相同的定时提前值;
-所述第一参考信号的定时和所述第二参考信号的定时相同;
-所述第一参考信号和所述第二参考信号对应相同的TEG。
作为一个实施例,所述第一参考信号和所述第二参考信号分别占用第一参考信号资源和第二参考信号资源;当所述第一身份被用于标识所述第二参考信号时,所述第一参考信号资源和所述第二参考信号资源都属于第一参考信号资源集合,所述第一身份被用于标识所述第一参考信号资源集合。
作为一个实施例,包括:
第三发射机1601,发送第三参考信号;
其中,所述第三参考信号通过下行链路传输,所述第一信息块集合被用于确定所述第三参考信号;所述第一节点针对所述第三参考信号的接收被用于确定所述第一位置信息。
作为一个实施例,所述第一节点发送第四参考信号,且所述第一节点接收第三参考信号,所述第三参考信号的接收定时被所述第一节点用于确定所述第四参考信号的发送定时。
作为一个实施例,所述第一信息块集合被用于确定所述第一参考信号和所述第三参考信号是相关联的。
作为一个实施例,所述第一身份与SSID、副链路MIB或副链路SIB中的至少之一相关联。
作为一个实施例,包括:
所述第三接收机1602,接收第二位置信息;
其中,所述第一参考信号和所述第四参考信号被所述第二节点共同用于确定所述第二位置信息。
作为一个实施例,所述第三发射机1601包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器416、控制器/处理器475中的至少前4者。
作为一个实施例,所述第三接收机1602包括实施例4中的天线420、接收器418、多天线接收处理器472、接收处理器470、控制器/处理器475中的至少前4者。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,交通工具,车辆,RSU,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点包括但不限于宏蜂窝基站,微蜂窝基站,小蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站,RSU,无人机,测试设备、例如模拟基站部分功能的收发装置或信令测试仪,等无线通信设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (11)

  1. 一种用于无线通信中的第一节点,其特征在于,包括:
    第一接收机,接收第一信息块集合和第一参考信号,所述第一信息块集合被用于指示第一身份,所述第一身份被用于标识所述第一参考信号;
    第一发射机,发送第一位置信息;
    其中,所述第一参考信号通过副链路传输,针对所述第一参考信号的接收被用于确定所述第一位置信息;所述第一身份被用于确定以下至少之一:
    -所述第一参考信号的同步参考;
    -所述第一参考信号的定时提前值;
    -所述第一参考信号的定时;
    -所述第一参考信号对应的定时误差组。
  2. 根据权利要求1所述的第一节点,其特征在于包括:
    所述第一接收机,接收第二参考信号;
    其中,所述第二参考信号通过副链路传输,第二身份被用于标识所述第二参考信号;所述第二身份是否与所述第一身份相同被用于确定针对所述第二参考信号的接收能否被用于确定所述第一位置信息。
  3. 根据权利要求2所述的第一节点,其特征在于,当所述第二身份和所述第一身份相同时,所述第一参考信号和所述第二参考信号之间的关系满足以下至少之一:
    -所述第一参考信号和所述第二参考信号采用相同的同步参考;
    -所述第一参考信号和所述第二参考信号采用相同的定时提前值;
    -所述第一参考信号的定时和所述第二参考信号的定时相同;
    -所述第一参考信号和所述第二参考信号对应相同的TEG。
  4. 根据权利要求2或3所述的第一节点,其特征在于,所述第一参考信号和所述第二参考信号分别占用第一参考信号资源和第二参考信号资源;当所述第一身份被用于标识所述第二参考信号时,所述第一参考信号资源和所述第二参考信号资源都属于第一参考信号资源集合,所述第一身份被用于标识所述第一参考信号资源集合。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于包括:
    所述第一接收机,接收第三参考信号;
    其中,所述第三参考信号通过下行链路传输,所述第一信息块集合被用于确定所述第三参考信号;针对所述第三参考信号的接收被用于确定所述第一位置信息。
  6. 根据权利要求5所述的第一节点,其特征在于包括:
    所述第一发射机,发送第四参考信号;
    其中,所述第三参考信号的接收定时被用于确定所述第四参考信号的发送定时。
  7. 根据权利要求5或6所述的第一节点,其特征在于,所述第一信息块集合被用于确定所述第一参考信号和所述第三参考信号是相关联的。
  8. 根据权利要求1至7中任一权利要求所述的第一节点,其特征在于,所述第一身份与SSID、副链路MIB或副链路SIB中的至少之一相关联。
  9. 一种用于无线通信中的第二节点,其特征在于,包括:
    第二发射机,发送第一信息块集合和第一参考信号,所述第一信息块集合被用于指示第一身份,所述第一身份被用于标识所述第一参考信号;
    其中,所述第一参考信号通过副链路传输,针对所述第一参考信号的接收被用于确定第一位置信息;所述第一身份被用于确定以下至少之一:
    -所述第一参考信号的同步参考;
    -所述第一参考信号的定时提前值;
    -所述第一参考信号的定时;
    -所述第一参考信号对应的定时误差组。
  10. 一种用于无线通信中的第一节点中的方法,其特征在于,包括:
    接收第一信息块集合和第一参考信号,所述第一信息块集合被用于指示第一身份,所述第一身 份被用于标识所述第一参考信号;
    发送第一位置信息;
    其中,所述第一参考信号通过副链路传输,针对所述第一参考信号的接收被用于确定所述第一位置信息;所述第一身份被用于确定以下至少之一:
    -所述第一参考信号的同步参考;
    -所述第一参考信号的定时提前值;
    -所述第一参考信号的定时;
    -所述第一参考信号对应的定时误差组。
  11. 一种用于无线通信中的第二节点中的方法,其特征在于,包括:
    发送第一信息块集合和第一参考信号,所述第一信息块集合被用于指示第一身份,所述第一身份被用于标识所述第一参考信号;
    其中,所述第一参考信号通过副链路传输,针对所述第一参考信号的接收被用于确定第一位置信息;所述第一身份被用于确定以下至少之一:
    -所述第一参考信号的同步参考;
    -所述第一参考信号的定时提前值;
    -所述第一参考信号的定时;
    -所述第一参考信号对应的定时误差组。
PCT/CN2023/116658 2022-09-08 2023-09-04 一种用于无线通信的方法和装置 WO2024051623A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211100216.6 2022-09-08
CN202211100216.6A CN117714971A (zh) 2022-09-08 2022-09-08 一种用于无线通信的方法和装置

Publications (1)

Publication Number Publication Date
WO2024051623A1 true WO2024051623A1 (zh) 2024-03-14

Family

ID=90148528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116658 WO2024051623A1 (zh) 2022-09-08 2023-09-04 一种用于无线通信的方法和装置

Country Status (2)

Country Link
CN (1) CN117714971A (zh)
WO (1) WO2024051623A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021052166A1 (zh) * 2019-09-19 2021-03-25 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114189881A (zh) * 2020-09-14 2022-03-15 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114205735A (zh) * 2020-09-03 2022-03-18 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114697903A (zh) * 2020-12-30 2022-07-01 维沃移动通信有限公司 副链路sl上的定位方法、终端及网络侧设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021052166A1 (zh) * 2019-09-19 2021-03-25 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114205735A (zh) * 2020-09-03 2022-03-18 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114189881A (zh) * 2020-09-14 2022-03-15 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114697903A (zh) * 2020-12-30 2022-07-01 维沃移动通信有限公司 副链路sl上的定位方法、终端及网络侧设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUTUREWEI: "Considerations on scenarios and target requirements for sidelink positioning", 3GPP TSG RAN WG1 MEETING #109-E, R1-2203057, 29 April 2022 (2022-04-29), XP052152845 *

Also Published As

Publication number Publication date
CN117714971A (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
CN114189881A (zh) 一种被用于无线通信的节点中的方法和装置
US20220368479A1 (en) Method and device in nodes used for wireless communication
WO2020001228A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019228145A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20230300936A1 (en) Method and device for wireless communication
WO2024051623A1 (zh) 一种用于无线通信的方法和装置
WO2024046154A1 (zh) 一种用于无线通信的方法和装置
WO2024061249A1 (zh) 一种被用于定位的方法和装置
WO2023216896A1 (zh) 用于定位的方法和装置
WO2024037414A1 (zh) 一种被用于定位的方法和装置
WO2023226926A1 (zh) 一种被用于定位的方法和装置
WO2024051625A1 (zh) 一种被用于定位的方法和装置
WO2023221902A1 (zh) 一种用于定位的方法和装置
WO2024046249A1 (zh) 一种被用于定位的方法和装置
WO2023179471A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023221903A1 (zh) 用于定位的方法和装置
WO2024078432A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023174376A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023246671A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024037474A1 (zh) 一种用于无线通信的方法和装置
WO2024032424A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024027612A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023197921A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022194113A1 (zh) 一种被用于无线通信的方法和设备
WO2023179468A1 (zh) 一种被用于无线通信的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862317

Country of ref document: EP

Kind code of ref document: A1