WO2020063264A1 - 一种被用于无线通信节点中的方法和装置 - Google Patents

一种被用于无线通信节点中的方法和装置 Download PDF

Info

Publication number
WO2020063264A1
WO2020063264A1 PCT/CN2019/104049 CN2019104049W WO2020063264A1 WO 2020063264 A1 WO2020063264 A1 WO 2020063264A1 CN 2019104049 W CN2019104049 W CN 2019104049W WO 2020063264 A1 WO2020063264 A1 WO 2020063264A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
power
type
node
wireless
Prior art date
Application number
PCT/CN2019/104049
Other languages
English (en)
French (fr)
Inventor
蒋琦
张晓博
杨林
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811337331.9A external-priority patent/CN110972110B/zh
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2020063264A1 publication Critical patent/WO2020063264A1/zh
Priority to US17/168,163 priority Critical patent/US12003443B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to a transmission method and device in a wireless communication system, and in particular, to a communication method and device performed on a side link in wireless communication.
  • the 3rd Generation Partnership Project (3GPP) Radio Access Network (RAN) # 72 plenary session decided on the new air interface technology (NR, New Radio (or Fifth Generation, 5G) to conduct research, passed the NR's WI (Work Item) at the 3GPP RAN # 75 plenary meeting, and began to standardize the NR.
  • 3GPP 3rd Generation Partnership Project
  • NR New Radio
  • 5G Fifth Generation
  • V2X Vehicle-to-Everything
  • 3GPP has also started the work of standard formulation and research under the NR framework.
  • 3GPP has completed the requirements for 5G V2X services, and has written them into the standard TS22.886.
  • 3GPP defines 4 major application scenario groups for 5G V2X services, including: Vehicles Platnooning, Support for Extended Sensors, Semi / Fully Driving (Advanced Driving) and Remote Driving ( Remote Driving).
  • RAN # 80 plenary meeting research on NR-based V2X technology has been initiated.
  • the NR V2X system In order to meet the new business requirements, compared with the LTE V2X system, the NR V2X system has higher throughput, higher reliability, lower latency, longer transmission distance, more accurate positioning, more variability in packet size and transmission cycle. And key technical features that coexist more effectively with existing 3GPP and non-3GPP technologies.
  • the working mode of the LTE V2X system is limited to broadcast transmission. According to the consensus reached at the 3GPP RAN # 80 plenary meeting, NR V2X will study technical solutions that support unicast, multicast, and broadcast multiple working modes.
  • the wireless signals sent by the user equipment through the Sidelink are broadcast, and no wireless signals are sent to a specific user equipment.
  • the transmit power on the secondary link is determined according to the path loss between the Uu interface between the sender and the base station.
  • D2D (Device to Device) or V2X communication between two terminals is relatively close, the above-mentioned transmission power determined based on the Uu interface path loss will cause waste of terminal power.
  • the existing method for determining transmission power needs to be redesigned.
  • this application discloses a solution to support unicast transmission. It should be noted that, in the case of no conflict, the embodiments in the user equipment and the features in the embodiments can be applied to a base station, and vice versa. In the case of no conflict, the embodiments of the present application and the features in the embodiments can be arbitrarily combined with each other. Further, although the original intention of this application is directed to a unicast-based transmission mechanism, this application can also be used for broadcast and multicast transmission. Furthermore, although the original intention of this application is for single-carrier communication, this application can also be used for multi-carrier communication.
  • the present application discloses a method used in a first node of wireless communication, which is characterized by including:
  • the first maximum power is related to the measurement result for the first reference signal and has nothing to do with the measurement result for the second reference signal; the first power is related to the measurement for the second reference signal The results are relevant.
  • the above method has the advantage that the measurement result for the first reference signal is used as the upper limit of the transmission power of the first wireless signal, that is, the measurement result on the Uu interface is used to limit the PC-5 interface.
  • the transmission power on the U-interface ensures that the wireless signal transmission on the PC-5 interface will not interfere with the Uu interface.
  • another advantage of the above method is that the first maximum power is only used as an upper limit of the first power, and a measurement result referenced to actually determine the first power comes from the second reference signal, that is,
  • the actual sending function on the PC-5 interface refers to the path loss measured on the PC-5 interface, thereby ensuring that the selected transmit power on the PC-5 interface can ensure the correct reception of wireless signals on the PC-5 interface.
  • the above method is characterized by comprising:
  • the first wireless signal is sent in a first time-frequency resource set, and the first time-frequency resource set belongs to a first time-frequency resource pool; the first information is used to determine the first time-frequency resource. Resource pool; or the first information is used to determine K1 first-type time-frequency resource pools, and the first time-frequency resource pool is one of the K1 first-type time-frequency resource pools Frequency resource pool; the first information is transmitted through an air interface.
  • the advantage of the above method is that the first maximum power is only valid for the wireless signals of the PC-5 interface sent in the first time-frequency resource pool; when the K1 first-type time-frequency resource pools When corresponding to K1 uplink receiving beams of the base station, the first maximum power is designed to be Beam-specific (beam-specific); because different beamforming vectors will bring different beam gains, the above-mentioned beam-specific The power control scheme will be more accurate and effective.
  • the above method is characterized by comprising:
  • the second information is used to indicate a first power difference, and the first power difference is equal to a difference between the first maximum power and the first power; a receiver of the second information includes the first information.
  • a sender of a reference signal; the second information is transmitted through an air interface.
  • the advantage of the above method is that, through the second information, the sending end of the V2X or D2D sends the power space on the PC-5 interface that can still be improved to the base station, thereby indirectly helping the base station to learn the PC-5 chain Channel quality on the road.
  • another advantage of the above method is that the transmission quality of the PC-5 interface is indirectly reflected by the second information.
  • the first power difference indicated by the second information is small, and the PC-5
  • the performance on the interface is not good, it means that the V2X sender cannot improve the performance on the PC-5 interface by increasing the power; further, the base station will improve the PC-5 interface by adjusting the time-frequency resource pool used to transmit the first wireless signal Performance on the transmission.
  • the above method is characterized by comprising:
  • the K1 first-type wireless signals are respectively used to determine K1 first-type maximum powers, and the K1 first-type maximum powers are respectively associated with the K1 first-type time-frequency resource pools;
  • the first maximum power is the first type of maximum power corresponding to the first time-frequency resource pool among the K1 first type of maximum powers;
  • the first reference signal is among the K1 first type wireless signals.
  • the above method has the advantage that when the K1 first-type time-frequency resource pools correspond to the K1 uplink receive beams of the base station, different first-type maximum powers are configured for different uplink receive beams, and further
  • the gain of the beamforming is further embodied to improve the reliability and effectiveness of the scheme proposed in this application.
  • the above method is characterized by comprising:
  • the second reference signal is a second type wireless signal among the M1 second type wireless signals.
  • the advantage of the above method is that multiple beams are also maintained on the PC-5 interface, and the second reference signal is only one beam among the multiple beams, which further reflects the gain brought by beamforming to Improve the reliability and effectiveness of the scheme proposed in this application.
  • the present application discloses a method used in a second node for wireless communication, which is characterized by including:
  • the receiver of the first reference signal includes a first node, and the first node receives a second reference signal; the first maximum power is related to a measurement result for the first reference signal, and is related to the measurement result for the first reference signal.
  • the measurement results of the two reference signals are irrelevant; the first power is related to the measurement results for the second reference signal; the first node determines the first power within a range not exceeding the first maximum power, and the first power
  • a node sends a first wireless signal at the first power; a receiver of the first wireless signal includes a sender of the second reference signal.
  • the above method is characterized by comprising:
  • the first wireless signal is sent in a first time-frequency resource set, and the first time-frequency resource set belongs to a first time-frequency resource pool; the first information is used to determine the first time-frequency resource. Resource pool; or the first information is used to determine K1 first-type time-frequency resource pools, and the first time-frequency resource pool is one of the K1 first-type time-frequency resource pools Frequency resource pool; the first information is transmitted through an air interface.
  • the above method is characterized by comprising:
  • the second information is used to indicate a first power difference, and the first power difference is equal to a difference between the first maximum power and the first power; and the second information is transmitted through an air interface.
  • the above method is characterized by comprising:
  • the K1 first-type wireless signals are respectively used to determine K1 first-type maximum powers, and the K1 first-type maximum powers are respectively associated with the K1 first-type time-frequency resource pools;
  • the first maximum power is the first type of maximum power corresponding to the first time-frequency resource pool among the K1 first type of maximum powers;
  • the first reference signal is among the K1 first type wireless signals.
  • This application discloses a method used in a third node for wireless communication, which is characterized by including:
  • the sender of the first wireless signal receives the first reference signal and the second reference signal, and the first maximum power is related to a measurement result for the first reference signal, and is related to the second reference signal.
  • the measurement result of is unrelated; the first power is related to the measurement result for the second reference signal; the sender of the first wireless signal determines the first power within a range not exceeding the first maximum power, and The first wireless signal is transmitted using the first power; the sender of the first reference signal and the third node are non-co-located.
  • the above method is characterized by comprising:
  • the second reference signal is a second type wireless signal among the M1 second type wireless signals.
  • the present application discloses a first node device used for wireless communication, which is characterized by including:
  • a first receiver receiving a first reference signal and a second reference signal
  • a first processor determining a first power within a range not exceeding a first maximum power
  • a first transmitter sending a first wireless signal at the first power
  • the first maximum power is related to the measurement result for the first reference signal and has nothing to do with the measurement result for the second reference signal; the first power is related to the measurement for the second reference signal The results are relevant.
  • This application discloses a second node device used for wireless communication, which is characterized by including:
  • a second transmitter sending a first reference signal
  • the receiver of the first reference signal includes a first node, and the first node receives a second reference signal; the first maximum power is related to a measurement result for the first reference signal, and is related to the measurement result for the first reference signal.
  • the measurement results of the two reference signals are irrelevant; the first power is related to the measurement results for the second reference signal; the first node determines the first power within a range not exceeding the first maximum power, and the first power
  • a node sends a first wireless signal at the first power; a receiver of the first wireless signal includes a sender of the second reference signal.
  • This application discloses a second node device used for wireless communication, which is characterized by including:
  • a third transmitter that sends a second reference signal
  • a third receiver receiving a first wireless signal
  • the sender of the first wireless signal receives the first reference signal and the second reference signal, and the first maximum power is related to a measurement result for the first reference signal, and is related to the second reference signal.
  • the measurement result of is unrelated; the first power is related to the measurement result for the second reference signal; the sender of the first wireless signal determines the first power within a range not exceeding the first maximum power, and The first wireless signal is transmitted using the first power; the sender of the first reference signal and the third node are non-co-located.
  • this application has the following advantages:
  • the measurement result for the first reference signal is used as the upper limit of the transmission power of the first wireless signal, that is, the measurement result on the Uu interface is used to limit the transmission power on the PC-5 interface, thereby ensuring the PC-5 interface
  • the transmission of wireless signals on the Uu will not interfere with Uu; meanwhile, the measurement result referenced to actually determine the first power comes from the second reference signal, that is, the actual transmit power on the PC-5 interface refers to PC-5
  • the path loss measured on the interface further ensures that the selected transmit power on the PC-5 interface can ensure the correct reception of wireless signals on the PC-5 interface.
  • the second information indirectly reflects the transmission quality on the PC-5 interface.
  • the first power difference indicated by the second information is small and the performance on the PC-5 interface is not good, it means that the V2X transmission
  • the end cannot improve the performance on the PC-5 interface by increasing the power; further, the base station will adjust the first time-frequency resource pool to improve the transmission performance on the PC-5 interface.
  • the K1 first-type time-frequency resource pools correspond to the K1 uplink receiving beams of the base station, and different first-type maximum powers are configured for different uplink receiving beams, and then the gain of the beamforming is considered to improve the application Reliability and effectiveness of the proposed scheme; at the same time, when multiple beams are also maintained on the PC-5 interface, the second reference signal is only one of the multiple beams. Further consideration is given to the effects of beamforming. To increase the reliability and effectiveness of the proposed solution.
  • FIG. 1 shows a flowchart of a first reference signal according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of a first communication node and a second communication node according to an embodiment of the present application
  • FIG. 5 shows a flowchart of a first wireless signal according to an embodiment of the present application
  • FIG. 6 shows a flowchart of determining a first power according to an embodiment of the present application
  • FIG. 7 shows a schematic diagram of a first time-frequency resource pool according to an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of K1 first-type time-frequency resource pools according to an embodiment of the present application
  • FIG. 9 shows a schematic diagram of K1 first type wireless signals according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of M1 type 2 wireless signals according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a first reference signal and a second reference signal according to an embodiment of the present application.
  • FIG. 12 shows a schematic diagram of an antenna port and an antenna port group according to an embodiment of the present application
  • FIG. 13 shows a structural block diagram of a processing apparatus used in a first node device according to an embodiment of the present application
  • FIG. 14 shows a structural block diagram of a processing device used in a second node device according to an embodiment of the present application.
  • FIG. 15 shows a structural block diagram of a processing apparatus used in a third node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of a first reference signal, as shown in FIG. 1.
  • the first node in the present application first receives a first reference signal and a second reference signal; then determines the first power within a range that does not exceed the first maximum power; and uses the first power Sending a first wireless signal; the first maximum power is related to a measurement result for the first reference signal and has nothing to do with a measurement result for the second reference signal; the first power is related to the second reference signal
  • the measurement results of the reference signal are relevant.
  • the sender of the first reference signal and the sender of the second reference signal are non-co-located.
  • the first node is a terminal.
  • the first node is a user equipment.
  • the first node is a vehicle.
  • the first node is an RSU (Road Side Unit).
  • the sender of the first reference signal is a base station.
  • a sender of the first reference signal provides a cellular network service service for the first node.
  • the sender of the first reference signal is a base station corresponding to a cell serving the first node.
  • the sender of the second reference signal is a terminal device.
  • the sender of the second reference signal is a user equipment.
  • the sender of the second reference signal is a vehicle.
  • the sender of the second reference signal is an RSU.
  • the sender of the first reference signal is a second node
  • the receiver of the first wireless signal includes a third node
  • the second node and the third node are non-co-located.
  • the phrase that the second node and the third node are non-co-located includes that the second node and the third node are two different communication devices.
  • the phrase that the second node and the third node are non-co-located includes that there is no wired connection between the second node and the third node.
  • the phrase that the second node and the third node are non-co-located includes that the second node and the third node are located at different locations.
  • the phrase that the second node and the third node are non-co-located includes: the second node is a base station, and the third node is a communication device other than the base station .
  • the phrase that the second node and the third node are non-co-located includes that the second node and the third node correspond to different identifiers, respectively.
  • the first reference signal is transmitted on a Uu interface
  • the second reference signal is transmitted on a PC5 port.
  • the first reference signal includes ⁇ PSS (Primary and Synchronization Signal), SSS (Secondary and Synchronization Signal), and CSI-RS (Channel State Information Reference Signal). ), At least one of TRS (Tracking Reference Signal), PTRS (Phase Tracking Reference Signal)).
  • PSS Primary and Synchronization Signal
  • SSS Secondary and Synchronization Signal
  • CSI-RS Channel State Information Reference Signal
  • TRS Track Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the first reference signal includes an SSB (Synchronization Signal Block).
  • SSB Synchronization Signal Block
  • the second reference signal includes ⁇ PSSS (Primary, Sidelink, Synchronization Signal), SSSS (Secondary, Sidelink, Synchronization Signal), and PSDCH (Physical Sidelink Discovery Channel, Physical Secondary Link Discovery Channel), DMRS (Demodulation Reference Signal), DRS (Discovery Reference Signal)) ⁇ .
  • PSSS Primary, Sidelink, Synchronization Signal
  • SSSS Secondary, Sidelink, Synchronization Signal
  • PSDCH Physical Sidelink Discovery Channel, Physical Secondary Link Discovery Channel
  • DMRS Demodulation Reference Signal
  • DRS Discovery Reference Signal
  • the second reference signal includes a CSI-RS for a PC-5 interface.
  • the unit of the first maximum power is watt (W), or the unit of the first maximum power is milliwatt (mW), or the unit of the first maximum power is milli-decibel (dBm) .
  • the unit of the first power is watt, or the unit of the first power is milliwatt, or the unit of the first power is milli-decibel.
  • a physical layer channel occupied by the first wireless signal includes a PSSCH (Physical Sidelink Shared Channel).
  • PSSCH Physical Sidelink Shared Channel
  • the physical layer channel occupied by the first wireless signal includes a PSCCH (Physical Sidelink Control Channel).
  • PSCCH Physical Sidelink Control Channel
  • the physical layer channel occupied by the first wireless signal includes a PSDCH.
  • the transport layer channel occupied by the first wireless signal is a SL-SCH (Sidelink Shared Channel).
  • the first node determines the first power by itself (ie, without standardization).
  • the other conditions include a TBS (Transport Block Size) corresponding to the first wireless signal.
  • TBS Transport Block Size
  • the other conditions include the number and location of REs (Resource Elements) occupied by the first wireless signal.
  • the other conditions include an antenna port used for transmitting the first wireless signal.
  • the measurement result for the first reference signal includes a path loss of the first reference signal.
  • the measurement result for the first reference signal includes the sender of the first reference signal determined by the first node according to the received first reference signal to the first node Path loss.
  • the measurement result for the second reference signal includes a path loss of the second reference signal.
  • the measurement result for the second reference signal includes the sender of the second reference signal determined by the first node according to the received second reference signal to the first node Path loss.
  • the measurement result for the first reference signal includes RSRP (Reference Signal Received Power) of the first reference signal.
  • RSRP Reference Signal Received Power
  • the measurement result for the first reference signal includes ⁇ RSRQ (Reference Signal Received Quality) and RSSI (Received Signal Strength Indicator) of the first reference signal. ), At least one of SNR (Signal, Noise, Rate).
  • the measurement result for the second reference signal includes an RSRP of the second reference signal.
  • the measurement result for the second reference signal includes at least one of ⁇ RSRQ, RSSI, SNR ⁇ of the second reference signal.
  • the first maximum power is linearly related to the measurement result for the first reference signal.
  • the linear correlation between the first maximum power and the measurement result for the first reference signal in the above phrase includes: the first maximum power is determined by the following formula:
  • P MAX is the first maximum power
  • M is related to the occupied bandwidth (Bandwidth) of the first wireless signal according to the number of Resource Blocks
  • P 1, i is related to the first A reference signal's expected power and its unit is dB
  • ⁇ 1, i is a compensation factor related to the first reference signal and is a real number not less than 0 and not more than 1
  • PL 1, i is the The measurement result of the first reference signal.
  • the P 1, i is configured through high-level signaling.
  • the ⁇ 1, i is configured through high-level signaling.
  • the above phrase P 1, i is the expected power related to the first reference signal includes: the second node uses the first antenna port group to send the first reference signal, The first node sends the first wireless signal by using a target antenna port group, and the first antenna port group and the target antenna port group are QCL (Quasi-colocation, quasi co-location), and the P 1, i is the power that the first wireless signal sent by the first node that the second node expects to reach the second node.
  • QCL Quadasi-colocation, quasi co-location
  • the above-mentioned phrase ⁇ 1, i is a compensation factor related to the first reference signal includes: the second node sends the first reference signal by using a first antenna port group, The first node sends the first wireless signal by using a target antenna port group, the first antenna port group and the target antenna port group are QCL, and ⁇ 1 , i are the first nodes transmitting The first wireless signal is compensated for the path loss calculated for the first reference signal.
  • the first maximum power is a smaller value of both the first reference maximum power and the first configured power, and the first configured power is linear with the measurement result for the first reference signal Related.
  • the relationship between the first maximum power, the first reference power, and the first configured power is determined by the following formula:
  • P MAX min ⁇ P CMAX , 10log (M) + P 1, i + ⁇ 1, i ⁇ PL 1, i ⁇
  • P MAX is the first maximum power
  • P CMAX is the first reference maximum power
  • a polynomial 10log (M) + P 1, i + ⁇ 1, i ⁇ PL 1, i corresponds to the first configured power
  • M is related to the occupied bandwidth represented by the first wireless signal according to the number of resource blocks
  • P 1, i is the expected power related to the first reference signal and the unit is dB
  • ⁇ 1, i is related to
  • the compensation factor related to the first reference signal is a real number not less than 0 and not more than 1
  • PL 1, i is the measurement result for the first reference signal.
  • the P 1, i is configured through high-level signaling.
  • the ⁇ 1, i is configured through high-level signaling.
  • the first reference maximum power is fixed (ie, not configurable).
  • the first reference maximum power is explicitly configured by signaling.
  • the first reference maximum power is configurable.
  • the first reference maximum power is 23 dBm.
  • the first maximum power is linearly related to the first target power
  • the first target power is a smaller value between the second reference maximum power and the second configured power
  • the second configured power is related to all
  • the measurement result for the first reference signal is linearly related.
  • the relationship between the first maximum power, the first target power, the second reference maximum power, and the second configured power is determined by the following formula:
  • P MAX is the first maximum power and the polynomial Is the first target power
  • P C is the maximum power of the second reference
  • the M is related to the occupied bandwidth of the first wireless signal according to the number of resource blocks
  • P 1, i is an expected power related to the first reference signal and the unit is dB
  • ⁇ 1, i is a compensation factor related to the first reference signal and is a real number that is not less than 0 and not more than 1
  • PL 1, i is the measurement result for the first reference signal.
  • the P 1, i is configured through high-level signaling.
  • the ⁇ 1, i is configured through high-level signaling.
  • the phrase that the first maximum power is related to the measurement result for the first reference signal includes that the first maximum power and the measurement result for the first reference signal meet the following formula.
  • P MAX is the first maximum power
  • M is related to the occupied bandwidth of the first wireless signal according to the number of resource blocks.
  • the M 1 is equal to 2, or the M 1 is related to scheduling.
  • the bandwidth occupied by the PSCCH of the first wireless signal is related, and the measurement result for the first reference signal is used to determine a polynomial A.
  • the RRC signaling maxTxpower is configured, and the polynomial A is equal to the following formula:
  • P C is P CMAX in TS36.213
  • the P MAX_CBR is configured by the RRC signaling maxTxpower
  • P 1, i is an expected power related to the first reference signal and the unit is dB
  • ⁇ 1, i is a compensation factor related to the first reference signal and is a real number that is not less than 0 and not more than 1
  • PL 1, i is the measurement result for the first reference signal.
  • the RRC signaling maxTxpower is not configured, and the polynomial A is equal to the following formula:
  • P C is P CMAX in TS 36.213
  • P 1, i is the expected power related to the first reference signal and the unit is dB
  • ⁇ 1, i is the compensation related to the first reference signal.
  • the factor is a real number not less than 0 and not more than 1
  • PL 1, i is the measurement result for the first reference signal.
  • the P 1, i is configured through high-level signaling.
  • the ⁇ 1, i is configured through high-level signaling.
  • the first power is a smaller value of both the first maximum power and the second power
  • the second power is linearly related to the measurement result for the second reference signal.
  • the second power is equal to a polynomial 10log (M 2 ) + P 2, j + ⁇ 2, j ⁇ PL 2, j , and the M 2 and the first wireless signal are in accordance with
  • the occupied bandwidth represented by the number of resource blocks is related
  • P 2, j is the expected power related to the first wireless signal and the unit is dB
  • ⁇ 2, j is a compensation factor related to the second reference signal and is A real number that is not less than 0 and not more than 1
  • PL 2, j is the measurement result for the second reference signal.
  • a spatial receiving parameter for the first reference signal is used to determine a transmit antenna port group of the first wireless signal.
  • a spatial receiving parameter for the second reference signal is used to determine a transmit antenna port group of the first wireless signal.
  • the first node receives the first reference signal and the second reference signal by using the same spatial receiving parameter.
  • the first reference signal and the first wireless signal are QCL.
  • the second reference signal and the first wireless signal are QCL.
  • the first wireless signal is an interference signal to the second node.
  • the second node does not know the time domain resources occupied by the first wireless signal.
  • the second node does not know the frequency domain resources occupied by the first wireless signal.
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG. 2.
  • FIG. 2 illustrates a network architecture 200 of a 5G NR, Long-Term Evolution (LTE) and LTE-A (Long-Term Evolution Advanced) system.
  • the 5G NR or LTE network architecture 200 may be referred to as EPS (Evolved Packet System, evolved packet system) 200, or some other suitable term.
  • EPS 200 may include one or more UE (User Equipment) 201, a UE 241 that performs secondary link communication with UE 201, NG-RAN (Next Generation Radio Access Network) 202, and EPC (Evolved Packet Core). Core) / 5G-CN (5G-Core Network, 5G Core Network) 210, HSS (Home Subscriber Server, Home Subscriber Server) 220 and Internet Service 230.
  • UE User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core
  • EPS can be interconnected with other access networks, but these entities / interfaces are not shown for simplicity. As shown in the figure, EPS provides packet switching services, however, those skilled in the art will readily understand that the various concepts presented throughout this application can be extended to networks providing circuit switched services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 may be connected to other gNB204 via an Xn interface (eg, backhaul).
  • the gNB203 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), a TRP (transmitting and receiving node), or some other suitable term.
  • gNB203 provides UE201 with access point to EPC / 5G-CN 210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , Video device, digital audio player (e.g., MP3 player), camera, game console, drone, aircraft, narrowband IoT device, machine type communication device, land vehicle, car, wearable device, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices Video device
  • digital audio player e.g., MP3 player
  • camera game console
  • drone narrowband IoT device
  • machine type communication device land vehicle, car, wearable device, or any Other similar functional devices.
  • UE201 may also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to EPC / 5G-CN 210 via S1 / NG interface.
  • EPC / 5G-CN 210 includes MME (Mobility Management Entity) / AMF (Authentication Management Field) / UPF (User Plane Function) 211, other MME / AMF / UPF 214, S-GW (Service Gateway), 212 and P-GW (Packet Data Network Gateway) 213.
  • MME Mobility Management Entity
  • AMF Authentication Management Field
  • UPF User Plane Function
  • S-GW Service Gateway
  • P-GW Packet Data Network Gateway
  • MME / AMF / UPF211 is a control node that processes signaling between UE201 and EPC / 5G-CN210.
  • MME / AMF / UPF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW212, and S-GW212 itself is connected to P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • P-GW213 is connected to Internet service 230.
  • the Internet service 230 includes an operator's corresponding Internet protocol service. Specifically, the Internet service 230 may include the Internet, an intranet, an IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and a packet switching streaming service.
  • IMS IP Multimedia Subsystem
  • IP Multimedia Subsystem IP Multimedia Subsystem
  • the UE 201 corresponds to the first node in this application.
  • the gNB203 corresponds to the second node in this application.
  • the UE 241 corresponds to the third node in this application.
  • the air interface between the UE201 and the gNB203 is a Uu interface.
  • the air interface between the UE201 and the UE241 is a PC-5 interface.
  • the wireless link between the UE201 and the gNB203 is a cellular network link.
  • the wireless link between the UE 201 and the UE 241 is a secondary link.
  • the first node in the present application is the UE 201
  • the third node in the present application is a terminal covered by the gNB203.
  • the first node in this application is the UE 201
  • the third node in this application is a terminal outside the coverage of the gNB203.
  • both the first node and the third node in this application are served by the gNB203.
  • the UE 201 supports beamforming-based transmission.
  • the UE 241 supports beamforming-based transmission.
  • the gNB203 supports beamforming-based transmission.
  • the UE201 and the UE241 support unicast transmission.
  • the UE 201 and the UE 241 support non-broadcast (Broadcast) transmission.
  • the UE201 and the UE241 support non-multicast (Groupcast) transmission.
  • Groupcast non-multicast
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • FIG 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane and control plane.
  • Figure 3 shows the radio protocol architecture for the user equipment (UE) and base station equipment (gNB or eNB) in three layers: layer 1.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY301.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between UE and gNB through PHY301.
  • the L2 layer 305 includes a MAC (Medium Access Control, Media Access Control) sublayer 302, a RLC (Radio Link Control, Radio Link Control Protocol) sublayer 303, and a PDCP (Packet Data Convergence Protocol) packet data (Aggregation protocol) sublayers 304, which terminate at the gNB on the network side.
  • the UE may have several upper layers above the L2 layer 305, including the network layer (e.g., IP layer) terminating at the P-GW on the network side and the other end (e.g., Remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handover support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of the upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception caused by HARQ (Hybrid Automatic Repeat Request).
  • HARQ Hybrid Automatic Repeat Request
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell between UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and using RRC signaling between the gNB and the UE to configure the lower layers.
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the third node in this application.
  • the first reference signal in the present application is generated in the PHY301.
  • the second reference signal in the present application is generated in the PHY301.
  • the first wireless signal in the present application is generated in the PHY301.
  • the first wireless signal in the present application is generated in the MAC sublayer 302.
  • the first information in this application is generated in the MAC sublayer 302.
  • the first information in this application is generated in the RRC sublayer 306.
  • the second information in this application is generated in the MAC sublayer 302.
  • the second information in this application is generated in the RRC sublayer 306.
  • any one of the K1 first-type wireless signals in the present application is generated in the MAC sublayer 302.
  • any one of the K1 first-type wireless signals in the present application is generated from the PHY301.
  • any one of the M1 second-type wireless signals in the present application is generated in the MAC sublayer 302.
  • any one of the M1 second-type wireless signals in the present application is generated from the PHY301.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4.
  • FIG. 4 is a block diagram of a first communication device 410 and a second communication device 450 that communicate with each other in an access network.
  • the first communication device 450 includes a controller / processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, and a transmitter / receiver 454 And antenna 452.
  • the second communication device 410 includes a controller / processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter / receiver 418, and an antenna 420.
  • an upper layer data packet from a core network is provided to the controller / processor 475.
  • the controller / processor 475 implements the functionality of the L2 layer.
  • the controller / processor 475 provides header compression, encryption, packet segmentation and reordering, multiple paths between logic and transport channels. Multiplexing, and radio resource allocation to the first communication device 450 based on various priority metrics.
  • the controller / processor 475 is also responsible for retransmission of lost packets and signaling to the second communication device 450.
  • the transmission processor 416 and the multi-antenna transmission processor 471 implement various signal processing functions for the L1 layer (ie, the physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the first communication device 450, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Key clustering (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Key clustering
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmission processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes with a reference signal (e.g., a pilot) in the time and / or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a multi-carrier symbol stream in the time domain.
  • the multi-antenna transmission processor 471 then performs a transmission analog precoding / beamforming operation on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmission processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated onto the RF carrier, and converts the RF stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs a receive analog precoding / beamforming operation on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a fast Fourier transform (FFT) to convert the baseband multi-carrier symbol stream after receiving the analog precoding / beamforming operation from the time domain to the frequency domain.
  • FFT fast Fourier transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered by the multi-antenna receiving processor 458 after multi-antenna detection.
  • the first communication device 450 is any spatial stream destined for. The symbols on each spatial stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the second communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller / processor 459.
  • the controller / processor 459 implements the functions of the L2 layer.
  • the controller / processor 459 may be associated with a memory 460 that stores program code and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller / processor 459 provides demultiplexing between transmission and logical channels, packet reassembly, decryption, and header decompression. Control signal processing to recover upper layer data packets from the core network.
  • the upper layer packets are then provided to all protocol layers above the L2 layer.
  • Various control signals can also be provided to L3 for L3 processing.
  • a data source 467 is used to provide an upper layer data packet to the controller / processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller / processor 459 implements a header based on the wireless resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels implement L2 layer functions for the user and control planes.
  • the controller / processor 459 is also responsible for retransmission of lost packets and signaling to the second communication device 410.
  • the transmit processor 468 performs modulation mapping and channel encoding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier / single-carrier symbol stream, and after the analog precoding / beam forming operation is performed in the multi-antenna transmission processor 457, it is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the function at the second communication device 410 is similar to that at the second communication device 410 to the first communication device 450
  • Each receiver 418 receives a radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the multi-antenna receiving processor 472 and the receiving processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • the controller / processor 475 implements L2 layer functions.
  • the controller / processor 475 may be associated with a memory 476 that stores program code and data.
  • the memory 476 may be referred to as a computer-readable medium.
  • the controller / processor 475 In the transmission from the first communication device 450 to the second communication device 410, the controller / processor 475 provides demultiplexing between transmission and logical channels, packet reassembly, decryption, and header decompression Control signal processing to recover upper layer data packets from UE450. Upper layer data packets from the controller / processor 475 may be provided to the core network.
  • the first communication device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with all Said at least one processor is used together, said first communication device 450 means at least: first receiving a first reference signal and a second reference signal, and then determining the first power within a range not exceeding a first maximum power, and using said The first power sends a first wireless signal; the first maximum power is related to a measurement result for the first reference signal, and has nothing to do with the measurement result for the second reference signal; the first power is related to The measurement results of the second reference signal are related.
  • the first communication device 450 includes: a memory storing a computer-readable instruction program, where the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: first receiving The first reference signal and the second reference signal, and then determine the first power within a range not exceeding the first maximum power, and send the first wireless signal at the first power;
  • the measurement result of a reference signal is related to the measurement result of the second reference signal; the first power is related to the measurement result of the second reference signal.
  • the second communication device 410 apparatus includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with all Said at least one processor is used together.
  • the second communication device 410 device sends at least: a first reference signal; a receiver of the first reference signal includes a first node, and the first node receives a second reference signal;
  • the measurement result of a reference signal is related to the measurement result of the second reference signal;
  • the first power is related to the measurement result of the second reference signal; the first node does not exceed the first
  • a first power is determined within a range of the maximum power, and the first node sends a first wireless signal with the first power;
  • a receiver of the first wireless signal includes a sender of the second reference signal.
  • the second communication device 410 apparatus includes: a memory storing a computer-readable instruction program, where the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending A first reference signal; a receiver of the first reference signal includes a first node, and the first node receives a second reference signal; the first maximum power is related to a measurement result for the first reference signal, and The measurement result of the second reference signal is irrelevant; the first power is related to the measurement result for the second reference signal; the first node determines the first power within a range not exceeding the first maximum power, and The first node sends a first wireless signal at the first power; a receiver of the first wireless signal includes a sender of the second reference signal.
  • the second communication device 410 apparatus includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with all Said at least one processor is used together.
  • the second communication device 410 device at least: sends a second reference signal and receives a first wireless signal; a sender of the first wireless signal receives the first reference signal and the second reference signal, and a first maximum power and The measurement result for the first reference signal is related to the measurement result for the second reference signal; the first power is related to the measurement result for the second reference signal; the transmission of the first wireless signal Determine the first power within a range not exceeding the first maximum power, and use the first power to send the first wireless signal; the sender of the first reference signal and the third node It is not co-located.
  • the second communication device 410 apparatus includes: a memory storing a computer-readable instruction program, where the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending A second reference signal, and receiving a first wireless signal; a sender of the first wireless signal receives the first reference signal and the second reference signal, and a first maximum power is related to a measurement result for the first reference signal , And has nothing to do with the measurement result for the second reference signal; the first power is related to the measurement result for the second reference signal; the sender of the first wireless signal does not exceed the first maximum power.
  • the first power is determined within the range, and the first wireless signal is transmitted using the first power; the sender of the first reference signal and the third node are non-co-located.
  • the first communication device 450 corresponds to a first node in this application.
  • the second communication device 410 corresponds to a second node in this application.
  • the second communication device 410 corresponds to a third node in this application.
  • At least one of ⁇ the antenna 452, the receiver 454, the multi-antenna reception processor 458, and the reception processor 456 ⁇ is used to receive the first The reference signal and the second reference signal; at least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, and the transmission processor 416 ⁇ is used to send in this application The first reference signal and the second reference signal.
  • At least one of ⁇ the transmitter 454, the transmission processor 468, and the controller / processor 459 ⁇ is used at a level not exceeding the first maximum power in the present application.
  • the first power in this application is determined within the range.
  • At least one of ⁇ the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, and the transmission processor 468 ⁇ is used for the first Transmit at least one of the first wireless signal in the present application; ⁇ the antenna 420, the receiver 418, the multi-antenna reception processor 472, and the reception processor 470 ⁇ for receiving The first wireless signal in the present application.
  • At least one of ⁇ the antenna 452, the receiver 454, the multi-antenna reception processor 458, and the reception processor 456 ⁇ is used to receive the first Information; at least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, and the transmission processor 416 ⁇ is used to send the first information in this application.
  • At least one of ⁇ the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, and the transmission processor 468 ⁇ is used to send the second in this application Information; at least one of ⁇ the antenna 420, the receiver 418, the multi-antenna reception processor 472, and the reception processor 470 ⁇ is used to receive the second information in this application.
  • At least one of ⁇ the antenna 452, the receiver 454, the multi-antenna reception processor 458, and the reception processor 456 ⁇ is used to receive the K1 in this application
  • the first type of wireless signal; at least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, and the transmission processor 416 ⁇ is used to send the K1 in this application Wireless signals of the first type.
  • At least one of ⁇ the antenna 452, the receiver 454, the multi-antenna reception processor 458, and the reception processor 456 ⁇ is used to receive the M1 in this application.
  • the second type of wireless signal; at least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, and the transmission processor 416 ⁇ is used to send the M1 in this application Wireless signals of the second type.
  • Embodiment 5 illustrates a flowchart of a first wireless signal, as shown in FIG. 5.
  • the first node U1 and the second node U2 communicate through a secondary link
  • the first node U1 and the third node N3 communicate through a Uu interface.
  • the steps labeled F0, F1 and F2 in the figure are optional.
  • the first information For the first node U1, received in step S10, the first information; receiving (K1-1) of first type of wireless signal K1 of first type of wireless signal in step S11; second receiving M1 in step S12 (M1-1) wireless signals of the second type among the similar wireless signals; receiving the first reference signal and the second reference signal in step S13; determining the first power within a range not exceeding the first maximum power in step S14 Sending a first wireless signal with the first power in step S15; sending second information in step S16.
  • step S20 transmitting a first message; transmitting (K1-1) of first type of wireless signal K1 of first type of wireless signal in step S21; transmitting a first reference signal in Step S22 ; Receive the second information in step S23.
  • the transmission (M1-1) a second type of radio signal M1 a second type of wireless signal; a second reference signal is transmitted in step S31; receiving a first radio in step S32 signal.
  • the first maximum power is related to the measurement result for the first reference signal and has nothing to do with the measurement result for the second reference signal; the first power is related to the second reference signal.
  • the measurement results of the signals are related; the first wireless signal is sent in a first time-frequency resource set, and the first time-frequency resource set belongs to a first time-frequency resource pool; the first information is used to determine the A first time-frequency resource pool; or the first information is used to determine K1 first-type time-frequency resource pools, and the first time-frequency resource pool is one of the K1 first-type time-frequency resource pools.
  • the first type of time-frequency resource pool; the first information is transmitted through an air interface; the second information is used to indicate a first power difference, the first power difference is equal to the first maximum power and the first Power difference; the second information is transmitted through the air interface; the K1 first type wireless signals are used to determine the K1 first type maximum power, and the K1 first type maximum power is respectively different from the K1 Associated with a first type of time-frequency resource pool
  • the first information is used to indicate time domain resources occupied by the first time-frequency resource pool.
  • the first information is used to indicate a frequency domain resource occupied by the first time-frequency resource pool.
  • the first information is used to indicate time domain resources occupied by any first type time-frequency resource pool in the K1 first type time-frequency resource pools.
  • the first information is used to indicate a frequency domain resource occupied by any one of the K1 first-type time-frequency resource pools.
  • the time domain resources occupied by any two of the K1 first-type time-frequency resource pools are orthogonal.
  • the K1 first-type time-frequency resource pools correspond to K1 CRIs (CSI-RS Resoure Index, channel state information reference signal resource index).
  • the K1 first-type time-frequency resource pools correspond to K1 SRI (SRS Resource Indicator).
  • the air interface in this application corresponds to the interface between the UE 201 and the NR Node B 203 in Embodiment 2.
  • the air interface in this application corresponds to the interface between UE201 and UE241 in Embodiment 2.
  • the air interface in this application is carried through a wireless channel.
  • the physical layer channel used for transmitting the second information includes transmission on a PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • a physical layer channel used for transmitting the second information includes transmission on a PUCCH (Physical Uplink Control Channel, physical uplink control channel).
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • a transport layer channel used to transmit the second information includes UL-SCH (Uplink, Shared Channel, uplink shared channel) transmission.
  • UL-SCH Uplink, Shared Channel, uplink shared channel
  • the first node U1 determines whether to send the second information according to a channel quality of the first wireless signal fed back by the third node U3.
  • a first bit block is used to generate the first wireless signal, and the first bit block is sent Q times by the first node U1, where Q is a positive integer, and for None of the Q transmissions of the first bit block has been correctly received by the third node U3, and the first node U1 sends the second information.
  • the Q is configured through high-level signaling, or the Q is fixed.
  • the second information is sent periodically.
  • the second information includes a PHR (Power Headroom Report) for a secondary link.
  • PHR Power Headroom Report
  • the first power difference is PH (Power Headroom, power headroom) for the secondary link.
  • the K1 first-type wireless signals are respectively associated with K1 first-type reference signal resources.
  • the first node U1 sends the first wireless signal in the first time-frequency resource pool of the K1 first-type time-frequency resource pools, and the first node U1 uses the The first type of maximum power corresponding to the first time-frequency resource pool is used as the first maximum power.
  • any one of the K1 first-type wireless signals includes a CSI-RS.
  • the K1 first-type wireless signals correspond to K1 CRIs, respectively.
  • the K1 first-type wireless signals described in the above phrases are used to determine K1 first-type maximum power, respectively, including: the K1 first-type wireless signals are used to determine K1 first-type measurements, respectively. As a result, the K1 first-class measurement results are used to determine the K1 first-class maximum power, respectively.
  • any one of the K1 first-type wireless signals includes at least one of a PSS or an SSS.
  • any one of the K1 first-type wireless signals includes SSB.
  • the K1 first-type measurement results are K1 first-type path losses obtained according to the K1 first-type wireless signals, respectively.
  • the K1 first-class road losses are respectively used to determine the K1 first-class maximum power, including: given a first-class road loss is the K1 first-class road Any one of the first-class path losses among the losses, the given first-class maximum power is the first-class maximum power corresponding to the given first-class path loss among the K1 first-class maximum powers, and the given The predetermined first-type path loss is obtained by using a given first-type wireless signal among the K1 first-type wireless signals.
  • the relationship between the given first-type path loss and the given first-class maximum power refers to the following formula:
  • the M is related to the occupied bandwidth of the first wireless signal in terms of the number of resource blocks
  • P 1, n is related to the given first type of wireless signal Expected power and unit is dB
  • ⁇ 1, n is a compensation factor related to the given first type of wireless signal and is a real number not less than 0 and not more than 1
  • PL 1, n is the given first type Road loss
  • the subscript n is a positive integer greater than 0 and not greater than K1.
  • the relationship between the given first-type path loss and the given first-class maximum power refers to the following formula:
  • P CMAX is the first reference maximum power in this application
  • M is related to the occupied bandwidth represented by the first wireless signal according to the number of resource blocks
  • P 1 , n is the expected power related to the given first type of wireless signal and the unit is dB
  • ⁇ 1, n is a compensation factor related to the given first type of wireless signal and is not less than 0 and not more than 1
  • the real number, PL 1, n is the given first type of road loss
  • the subscript n is a positive integer greater than 0 and not greater than K1.
  • the relationship between the given first-type path loss and the given first-class maximum power refers to the following formula:
  • the first type is to set the maximum power
  • P C is the second reference in the present application the maximum power
  • the M in accordance with the first wireless signal related to the bandwidth occupied resource blocks represented by, P 1 , n is the expected power related to the given first type of wireless signal and the unit is dB
  • ⁇ 1, n is a compensation factor related to the given first type of wireless signal and is not less than 0 and not more than 1
  • the real number, PL 1, n is the given first type of road loss
  • the subscript n is a positive integer greater than 0 and not greater than K1.
  • the relationship between the given first-type path loss and the given first-class maximum power refers to the following formula:
  • I the given first type of maximum power
  • M is related to the occupied bandwidth represented by the first wireless signal according to the number of resource blocks.
  • the RRC signaling maxTxpower is configured, and the polynomial A is equal to the following formula:
  • P C is P CMAX in TS36.213
  • the P MAX_CBR is configured by the RRC signaling maxTxpower
  • P 1, n is the expected power related to the given first type of wireless signal and the unit is dB
  • ⁇ 1, n is a compensation factor related to the given first type of wireless signal and is a real number not less than 0 and not more than
  • PL 1, n is the given first type of path loss
  • subscript n is a positive integer greater than 0 and not greater than K1.
  • the RRC signaling maxTxpower is not configured, and the polynomial A is equal to the following formula:
  • P C is P CMAX in TS36.213
  • P 1, n is the expected power related to the given first type of wireless signal and the unit is dB
  • ⁇ 1, n is the same as the given first
  • a type of wireless signal related compensation factor is a real number not less than 0 and not more than 1
  • PL 1, n is the given first type of path loss
  • the subscript n is a positive integer greater than 0 and not greater than K1.
  • the associating the K1 first-class maximum power with the K1 first-class time-frequency resource pool in the above phrase includes: given the first-class maximum power is the K1 first-class maximum power Any one of the first type of maximum power, the given first type of maximum power is related to a given first type of time-frequency resource pool in the K1 first type of time-frequency resource pool; the first node U1 The transmission power of the wireless signal for the secondary link in the given first-type time-frequency resource pool is not greater than the given first-type maximum power.
  • the K1 first-type wireless signals are respectively associated with the K1 first-type time-frequency resource pools.
  • the K1 first-type wireless signals described in the above phrases are respectively associated with the K1 first-type time-frequency resource pools.
  • the given first-type wireless signals are the K1 Any one of the first-type wireless signals, the given first-type wireless signal is associated with a given first-type time-frequency resource pool of the K1 first-type time-frequency resource pools;
  • the second node N2 receives a wireless signal by using a given spatial receiving parameter in the given first-type time-frequency resource pool, and the second node N2 sends the given signal by using a given first-type antenna port group.
  • First type wireless signal; the given first type antenna port group is used to determine the given spatial reception parameter, or the given space reception parameter is used to determine the given first type antenna port group .
  • the K1 first-type wireless signals described in the above phrases are respectively associated with the K1 first-type time-frequency resource pools.
  • the given first-type wireless signals are the K1 Any one of the first-type wireless signals, the given first-type wireless signal is associated with a given first-type time-frequency resource pool of the K1 first-type time-frequency resource pools;
  • the wireless signal received by the second node N2 in the given first-type time-frequency resource pool and the given first-type wireless signal are QCL.
  • the two wireless signals in this application are quasi-co-located, and include: all or part of a large-scale (large-scale) signal from one of the two wireless signals Properties) to infer all or part of the large-scale characteristics of the other wireless signal of the two wireless signals;
  • the large-scale characteristics include: Delay Spread, Doppler Spread One or more of Doppler shift, path loss, average gain and average gain.
  • the M1 second-type wireless signals are respectively associated with M1 second-type reference signal resources.
  • a physical layer channel occupied by any one of the M1 second type wireless signals includes a PSDCH.
  • any of the M1 second-type wireless signals includes at least one of PSSS and SSSS.
  • any of the second type of wireless signals of the M1 type 2 wireless signals includes DRS (Discovery Reference Signal).
  • the M1 second type wireless signals are all transmitted on a secondary link.
  • Embodiment 6 illustrates a flowchart for determining a first power, as shown in FIG. 6.
  • the first node U4 performs the following steps to determine the first power in the present application within a range not exceeding the first maximum power in the present application.
  • step S400 the first maximum power is determined according to a measurement result of the first reference signal
  • step S401 a target power is determined according to a measurement result of the second reference signal
  • step S402 it is determined whether the target power is greater than the first maximum power
  • step S4020 If the target power is greater than the first maximum power, it is determined in step S4020 that the first power is equal to the first maximum power; or if the target power is not greater than the first maximum power, determine all the powers in step S4021. The first power is equal to the target power.
  • the target power is the second power in the present application.
  • Embodiment 7 illustrates a schematic diagram of a first time-frequency resource pool, as shown in FIG. 7.
  • the first time-frequency resource pool includes P1 time-frequency resource sets, and P1 is a positive integer; the first time-frequency resource set in the present application is the P1 time-frequency resource set.
  • any one of the time-frequency resource sets in the P1 time-frequency resource set occupies one time slot in the time domain.
  • any one of the time-frequency resource sets in the P1 time-frequency resource set occupies a bandwidth corresponding to a positive integer RB (Resource Block) in the frequency domain.
  • the first time-frequency resource set occupies a positive integer RE (Resource Element).
  • the first set of time-frequency resources is indicated by dynamic signaling.
  • the dynamic signaling is SCI (Sidelink Control Information).
  • the first wireless signal in this application occupies all REs in the first time-frequency resource set.
  • the first wireless signal in this application occupies part of the REs in the first time-frequency resource set.
  • Embodiment 8 illustrates a schematic diagram of K1 first-type time-frequency resource pools, as shown in FIG. 8.
  • the first time-frequency resource pool in the present application is a first-type time-frequency resource pool among the K1 first-type time-frequency resource pools.
  • any one of the K1 first-type time-frequency resource pools includes a positive integer number of RBs.
  • the K1 first-type time-frequency resource pools are periodically distributed in the time domain.
  • the K1 first-type time-frequency resource pools are all configured for transmission on a secondary link.
  • the time domain resources occupied by any two of the K1 first-type time-frequency resource pools are orthogonal.
  • the multi-carrier symbol described in this application is a SC-FDMA (Single-Carrier Frequency Division Multiple Access) symbol.
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • the multi-carrier symbol described in this application is a Filter Bank Multi-Carrier (FBMC) symbol.
  • FBMC Filter Bank Multi-Carrier
  • the multi-carrier symbol described in this application is an OFDM symbol including CP (Cyclic Prefix, Cyclic Prefix).
  • the multi-carrier symbol described in this application is a DFT-s-OFDM (Discrete Fourier Transform Spreading Orthogonal Frequency Division Multiplexing) symbol including a CP.
  • DFT-s-OFDM Discrete Fourier Transform Spreading Orthogonal Frequency Division Multiplexing
  • the multi-carrier symbol described in this application is a DFT-S-FDMA (Discrete, Fourier, Transform, Spreading, Frequency, Multiple Access, Discrete Fourier Transform Spread Spectrum Frequency Division Multiple Access) symbol.
  • DFT-S-FDMA Discrete, Fourier, Transform, Spreading, Frequency, Multiple Access, Discrete Fourier Transform Spread Spectrum Frequency Division Multiple Access
  • Embodiment 9 illustrates a schematic diagram of K1 first-type wireless signals, as shown in FIG. 9.
  • the K1 first-type wireless signals are respectively transmitted by K1 first-type antenna port groups, and the K1 first-type antenna port groups correspond to K1 spatial receiving parameters, respectively.
  • K1 first-type beams correspond to K1 transmit beamforming vectors corresponding to K1 first-type antenna port groups, or K1 first-type beams shown in the figure correspond to K1 spatial reception parameters, respectively.
  • K1 receive beamforming vector; the K1 first type wireless signals correspond to the K1 first type time-frequency resource pools in the present application; the first wireless signals in the present application are in the target antenna port group Be sent.
  • a transmission beamforming vector corresponding to at least one first-type antenna port group in the K1 first-type antenna port groups is related to a transmission beamforming vector corresponding to the target antenna port group of.
  • a receiving beamforming vector corresponding to at least one of the K1 spatial receiving parameters and a transmitting beamforming vector corresponding to the target antenna port group are related.
  • the transmission beamforming vector corresponding to any one of the K1 first-type antenna port groups corresponding to the first-type antenna port group is related to the transmission beamforming vector corresponding to the target antenna port group.
  • a receiving beamforming vector corresponding to any one of the K1 spatial receiving parameters is related to a transmitting beamforming vector corresponding to the target antenna port group.
  • a receiving beamforming vector corresponding to at least one of the K1 spatial receiving parameters and a transmitting beamforming vector corresponding to the target antenna port group are related.
  • the spatial range covered by the transmit beamforming vector corresponding to any one of the K1 first-type antenna port groups corresponds to the spatial range covered by the transmit beam-formation corresponding to the target antenna port group.
  • the range of space covered by shape vectors is overlapping.
  • At least one of the K1 first-type antenna port groups includes a spatial range covered by a transmit beamforming vector corresponding to the first-type antenna port group and a transmit beam corresponding to the target antenna port group The range of space covered by the shape vector overlaps.
  • a spatial range covered by a receiving beamforming vector corresponding to any one of the K1 spatial receiving parameters and a space covered by a transmitting beamforming vector corresponding to the target antenna port group Ranges overlap.
  • At least one of the K1 spatial receiving parameters includes a spatial range covered by a receiving beamforming vector corresponding to the spatial receiving parameter and a space covered by a transmitting beamforming vector corresponding to the target antenna port group.
  • the spatial extents overlap.
  • the beamforming vector in the present application includes at least one of ⁇ analog beamforming vector, digital beamforming vector, analog beamforming matrix, and digital beamforming matrix ⁇ .
  • Embodiment 10 illustrates a schematic diagram of M1 second type wireless signals, as shown in FIG. 10.
  • the M1 second-type wireless signals are respectively transmitted using M1 second-type antenna port groups, and the M1 second-type antenna port groups correspond to M1 spatial receiving parameters, respectively;
  • M1 second-type beams correspond to M1 transmit beamforming vectors corresponding to M1 second-type antenna port groups, respectively, or
  • M1 second-type beams shown in the figure correspond to M1 spatial reception parameters, respectively.
  • M1 receive beamforming vector M1 receive beamforming vector.
  • the M1 second-type wireless signals correspond to M1 second-type time-frequency resource pools, respectively.
  • any two of the M1 second-type time-frequency resource pools are orthogonal in the time domain.
  • the second reference signal in this application is a second type of wireless signal among the M1 second type of wireless signals, and the third node sends the second type of the second reference signal.
  • the antenna port group is used to generate a spatial receiving parameter for receiving the first wireless signal described in this application.
  • Embodiment 11 illustrates a schematic diagram of a first reference signal and a second reference signal, as shown in FIG. 11.
  • the base station sends the first reference signal
  • the terminal # 2 sends the second reference signal
  • the terminal # 1 uses the target space reception parameter to receive the first reference signal and the second reference signal, and Sending the first wireless signal in the present application by using a target antenna port group corresponding to the target space receiving parameter.
  • the terminal # 1 uses the same antenna port group to receive the first reference signal and the second reference signal.
  • the target space reception parameter is used to determine the target antenna port group.
  • the transmission beamforming vector corresponding to the first reference signal is related to the transmission beamforming vector corresponding to the first wireless signal.
  • the transmission beamforming vector corresponding to the second reference signal is related to the transmission beamforming vector corresponding to the first wireless signal.
  • the spatial range covered by the transmission beamforming vector corresponding to the first reference signal overlaps with the spatial range covered by the transmission beamforming vector corresponding to the first wireless signal.
  • the spatial range covered by the transmission beamforming vector corresponding to the second reference signal overlaps with the spatial range covered by the transmission beamforming vector corresponding to the first wireless signal.
  • the spatial range covered by the receiving beamforming vector corresponding to the target spatial receiving parameter overlaps with the spatial range covered by the transmitting beamforming vector corresponding to the first wireless signal.
  • the beamforming vector in the present application includes at least one of ⁇ analog beamforming vector, digital beamforming vector, analog beamforming matrix, and digital beamforming matrix ⁇ .
  • Embodiment 12 illustrates a schematic diagram of an antenna port and an antenna port group, as shown in FIG. 12.
  • one antenna port group includes positive integer antenna ports; one antenna port is formed by stacking antennas of the positive integer antenna group through antenna virtualization; and one antenna group includes positive integer antennas.
  • An antenna group is connected to the baseband processor through an RF (Radio Frequency) chain, and different antenna groups correspond to different RF chains.
  • the mapping coefficients of all antennas in a positive integer antenna group included in a given antenna port to the given antenna port form a beamforming vector corresponding to the given antenna port.
  • the mapping coefficients of the multiple antennas included in any given antenna group within the given integer antenna group included in the given antenna port to the given antenna port constitute an analog beamforming vector for the given antenna group.
  • the analog beamforming vectors corresponding to the positive integer antenna groups are arranged diagonally to form an analog beamforming matrix corresponding to the given antenna port.
  • a mapping coefficient of the positive integer antenna group to the given antenna port constitutes a digital beamforming vector corresponding to the given antenna port.
  • the beamforming vector corresponding to the given antenna port is obtained by a product of an analog beamforming matrix and a digital beamforming vector corresponding to the given antenna port.
  • Different antenna ports in an antenna port group are composed of the same antenna group, and different antenna ports in the same antenna port group correspond to different beamforming vectors.
  • antenna port group # 0 and antenna port group # 1 are shown in FIG. 12: antenna port group # 0 and antenna port group # 1.
  • the antenna port group # 0 is composed of an antenna group # 0
  • the antenna port group # 1 is composed of an antenna group # 1 and an antenna group # 2.
  • the mapping coefficients of multiple antennas in the antenna group # 0 to the antenna port group # 0 constitute an analog beamforming vector # 0
  • the mapping coefficients of the antenna group # 0 to the antenna port group # 0 constitute a number Beamforming vector # 0.
  • Multiple antennas in the antenna group # 1 and multiple antennas in the antenna group # 2 to the antenna port group # 1 mapping coefficients constitute an analog beam forming vector # 1 and an analog beam forming vector #, respectively. 2.
  • the mapping coefficients of the antenna group # 1 and the antenna group # 2 to the antenna port group # 1 constitute a digital beam forming vector # 1.
  • the beamforming vector corresponding to any antenna port in the antenna port group # 0 is obtained by a product of the analog beamforming vector # 0 and the digital beamforming vector # 0.
  • the beamforming vector corresponding to any antenna port in the antenna port group # 1 is an analog beamforming matrix formed by diagonally arranging the analog beamforming vector # 1 and the analog beamforming vector # 2. And a product of the digital beamforming vector # 1.
  • an antenna port group includes one antenna port.
  • the antenna port group # 0 in FIG. 12 includes one antenna port.
  • the analog beamforming matrix corresponding to the one antenna port is reduced to an analog beamforming vector
  • the digital beamforming vector corresponding to the one antenna port is reduced to a scalar.
  • the beamforming vector corresponding to one antenna port is equal to the analog beamforming vector corresponding to the one antenna port.
  • the digital beamforming vector # 0 in FIG. 13 is reduced to a scalar
  • the beamforming vector corresponding to the antenna port in the antenna port group # 0 is the analog beamforming vector # 0.
  • one antenna port group includes multiple antenna ports.
  • the antenna port group # 1 in FIG. 12 includes a plurality of antenna ports.
  • the multiple antenna ports correspond to the same analog beamforming matrix and different digital beamforming vectors.
  • the antenna ports in different antenna port groups correspond to different analog beamforming matrices.
  • any two antenna ports in an antenna port group are QCL.
  • the two antenna ports are QCL and include: all or part of a large-scale (Scale-scale) characteristic of a wireless signal that can be transmitted from one of the two antenna ports ) Inferring all or part of the large-scale characteristics of the wireless signal sent by the other antenna port of the two antenna ports; the large-scale characteristics include: Delay Spread, Doppler Spread One or more of Doppler shift, path loss, average gain and average gain.
  • any two antenna ports in an antenna port group are spatial QCL.
  • the K1 first-type wireless signals respectively correspond to K1 first-type identifiers, and each of the K1 first-type identifiers is used to determine an antenna port group.
  • the K1 first-type wireless signals correspond to K1 first-type identifiers
  • the K1 first-type wireless signals correspond to K1 first-type reference signal resources
  • the K1 first Each first-type identifier in the class identifier is used to determine a first-type reference signal resource.
  • the M1 second-type wireless signals respectively correspond to M1 second-type identifiers, and each of the M1 second-type identifiers is used to determine an antenna port group.
  • the M1 second-type wireless signals correspond to M1 second-type identities
  • the M1 second-type wireless signals correspond to M1 second-type reference signal resources
  • the M1 second Each second-type identifier in the class identifier is used to determine a second-type reference signal resource.
  • any one of the K1 first-type reference signal resources is used for channel measurement on a cellular link.
  • any one of the M1 second-type reference signal resources is used for channel measurement on a secondary link.
  • the pattern used by any one of the K1 first-type wireless signals is the same as that of the CSI-RS.
  • the pattern used in any one of the M1 second type wireless signals is the same as the CSI-RS.
  • the pattern used in any one of the M1 second-type wireless signals is the same as the SRS (Sounding Reference Signal).
  • any one of the K1 first-type wireless signals includes a DMRS.
  • any one of the M1 second-type wireless signals includes a DMRS.
  • the pattern used in any one of the K1 first-type wireless signals is the same as the DMRS.
  • the pattern used in any one of the M1 second type wireless signals is the same as the DMRS.
  • each of the K first-type identifiers used to determine an antenna port group includes: each of the K first-type identifiers includes: It is indicated by TCI (Transmission Configuration Indication).
  • the TCI is a field in the SCI.
  • the K1 first-type wireless signals correspond to K1 first-type identifiers, respectively, and each of the K first-type identifiers is used to determine an antenna port group including: Each of the K first-type identifiers is indicated through the SRI.
  • the SRI is a domain in the SCI.
  • the antenna port group in this application includes a positive integer number of antenna ports.
  • the antenna port group in this application corresponds to a group of RS resources.
  • the RS is used for channel measurement on a secondary link.
  • the RS is used for channel measurement of a wireless signal between a terminal and a terminal.
  • the RS is used for channel measurement on a cellular link.
  • the RS is used for channel measurement of a wireless signal between a base station and a terminal.
  • the RS includes a CSI-RS.
  • the RS includes a DMRS.
  • the RS includes an SRS.
  • Embodiment 13 illustrates a structural block diagram of a processing device in a first node, as shown in FIG. 13.
  • the first node processing device 1300 is mainly composed of a first receiver 1301, a first processor 1302, and a first transmitter 1303.
  • the first processor 1302 determines the first power within a range not exceeding the first maximum power
  • the first maximum power is related to the measurement result for the first reference signal, and is not related to the measurement result for the second reference signal; the first power is related to the second reference signal. Signal measurement results are relevant.
  • the first receiver 1301 further receives first information; the first wireless signal is sent in a first time-frequency resource set, and the first time-frequency resource set belongs to a first time-frequency resource pool ; The first information is used to determine the first time-frequency resource pool; or the first information is used to determine K1 first-type time-frequency resource pools, and the first time-frequency resource pool is the One of the first type of time-frequency resource pools among the K1 first-type time-frequency resource pools; the first information is transmitted through an air interface.
  • the first transmitter 1303 further sends second information; the second information is used to indicate a first power difference, where the first power difference is equal to the first maximum power and the first power A difference in power; a receiver of the second information includes a sender of the first reference signal; and the second information is transmitted through an air interface.
  • the first receiver 1301 further receives (K1-1) first-type wireless signals from K1 first-type wireless signals; the K1 first-type wireless signals are used to determine K1, respectively.
  • K1 first-class maximum powers are respectively associated with the K1 first-class time-frequency resource pools; the first maximum power is the same as the K1 first-class maximum powers.
  • the first type of maximum power corresponding to the first time-frequency resource pool; the first reference signal is a first type of wireless signal corresponding to the first maximum power among the K1 first type of wireless signals.
  • the first receiver 1301 further receives (M1-1) second type wireless signals among M1 second type wireless signals; the second reference signal is the M1 second type wireless signals. A second type of wireless signal.
  • the first receiver 1301 includes at least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller / processor 459 in Embodiment 4.
  • the first processor 1302 includes at least one of the multi-antenna transmission processor 457, the transmission processor 468, and the controller / processor 459 in Embodiment 4.
  • the first transmitter 1303 includes at least the first four of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller / processor 459 in Embodiment 4.
  • Embodiment 14 illustrates a structural block diagram of a processing device in a second node device, as shown in FIG. 14.
  • the second node device processing apparatus 1400 mainly includes a second transmitter 1401 and a second receiver 1402.
  • the second receiver 1402 is optional.
  • the receiver of the first reference signal includes a first node, and the first node receives a second reference signal; the first maximum power is related to a measurement result for the first reference signal, and is related to a measurement result for the first reference signal.
  • the measurement result of the second reference signal is irrelevant; the first power is related to the measurement result for the second reference signal; the first node determines the first power within a range not exceeding the first maximum power, and The first node sends a first wireless signal at the first power; a receiver of the first wireless signal includes a sender of the second reference signal; and the second information is used to indicate a first power difference
  • the first power difference is equal to a difference between the first maximum power and the first power; and the second information is transmitted through an air interface.
  • the second transmitter 1401 further sends first information; the first wireless signal is sent in a first time-frequency resource set, and the first time-frequency resource set belongs to the first time-frequency resource pool ; The first information is used to determine the first time-frequency resource pool; or the first information is used to determine K1 first-type time-frequency resource pools, and the first time-frequency resource pool is the One of the first type of time-frequency resource pools among the K1 first-type time-frequency resource pools; the first information is transmitted through an air interface.
  • the second transmitter 1401 also sends (K1-1) first-type wireless signals out of K1 first-type wireless signals; the K1 first-type wireless signals are respectively used to determine K1 K1 first-class maximum powers are respectively associated with the K1 first-class time-frequency resource pools; the first maximum power is the same as the K1 first-class maximum powers.
  • the first type of maximum power corresponding to the first time-frequency resource pool; the first reference signal is a first type of wireless signal corresponding to the first maximum power among the K1 first type of wireless signals.
  • the second transmitter 1401 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller / processor 475 in Embodiment 4.
  • the second receiver 1402 includes at least the first four of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller / processor 475 in the fourth embodiment.
  • Embodiment 15 illustrates a structural block diagram of a processing device in a third node device, as shown in FIG. 15.
  • the third node device processing apparatus 1500 mainly includes a third transmitter 1501 and a third receiver 1502.
  • the third transmitter 1501 sends a second reference signal
  • a third receiver 1502 receiving a first wireless signal
  • the sender of the first wireless signal receives the first reference signal and the second reference signal, and the first maximum power is related to a measurement result for the first reference signal, and is related to the measurement result for the first reference signal.
  • the measurement results of the two reference signals are irrelevant; the first power is related to the measurement results for the second reference signal; the sender of the first wireless signal determines the first wireless signal within a range not exceeding the first maximum power.
  • the first wireless signal is transmitted using the first power; the sender of the first reference signal and the third node are non-co-located.
  • the third transmitter 1501 also sends (M1-1) second-type wireless signals out of M1 second-type wireless signals; the second reference signal is the M1 second-type wireless signals. A second type of wireless signal.
  • the third transmitter 1501 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller / processor 475 in the fourth embodiment.
  • the third receiver 1502 includes at least the first four of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller / processor 475 in the fourth embodiment.
  • the first node device in this application includes, but is not limited to, a mobile phone, a tablet computer, a notebook, a network card, a low power consumption device, an eMTC device, a NB-IoT device, a vehicle communication device, an aircraft, an aircraft, a drone, a remotely controlled aircraft, etc.
  • Wireless communication equipment includes, but is not limited to, a mobile phone, a tablet computer, a notebook, a network card, a low power consumption device, an eMTC device, a NB-IoT device, a vehicle communication device, an aircraft, an aircraft, a drone, a remotely controlled aircraft, etc.
  • Wireless communication equipment includes, but is not limited to, a mobile phone, a tablet computer, a notebook, a network card, a low power consumption device, an eMTC device, a NB-IoT device, a vehicle communication device, an aircraft, an aircraft, a drone, a remotely controlled aircraft, etc.
  • the user equipment or UE or terminal in this application includes, but is not limited to, mobile phones, tablets, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, aircraft, aircraft, drones, remote controls Aircraft and other wireless communication equipment.
  • the base station equipment or base station or network side equipment in this application includes, but is not limited to, macrocell base stations, microcell base stations, home base stations, relay base stations, eNB, gNB, transmitting and receiving nodes TRP, GNSS, relay satellites, satellite base stations, and air Wireless communication equipment such as base stations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点首先接收第一参考信号和第二参考信号,随后在不超过第一最大功率的范围内确定第一功率,并以所述第一功率发送第一无线信号;所述第一最大功率与针对所述第一参考信号的测量结果有关,并且与针对所述第二参考信号的测量结果无关;所述第一功率与针对所述第二参考信号的测量结果有关。本申请通过设计将蜂窝网链路上的测量结果用于确定副链路上发送功率的上限,以实现在保证副链路性能的前提下降低对蜂窝网的干扰,且优化副链路上的发送功率以降低终端功耗,进而提升系统整体性能。

Description

一种被用于无线通信节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中副链路(Sidelink)上进行的通信方法和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或Fifth Generation,5G)进行研究,在3GPP RAN#75次全会上通过了NR的WI(Work Item,工作项目),开始对NR进行标准化工作。
针对迅猛发展的车联网(Vehicle-to-Everything,V2X)业务,3GPP也开始启动了在NR框架下的标准制定和研究工作。目前3GPP已经完成了面向5G V2X业务的需求制定工作,并写入标准TS22.886中。3GPP为5G V2X业务定义了4大应用场景组(Use Case Groups),包括:自动排队驾驶(Vehicles Platnooning),支持扩展传感(Extended Sensors),半/全自动驾驶(Advanced Driving)和远程驾驶(Remote Driving)。在3GPP RAN#80次全会上已启动基于NR的V2X技术研究。
发明内容
为了满足新的业务需求,相比LTE V2X系统,NR V2X系统具有更高吞吐量,更高可靠性,更低延时,更远传输距离,更精准定位,数据包大小和发送周期可变性更强,以及与现有3GPP技术和非3GPP技术更有效共存的关键技术特征。当前LTE V2X系统的工作模式仅限于广播(Broadcast)传输。根据在3GPP RAN#80次全会上达成的共识,NR V2X将研究支持单播(Unicast),组播(Groupcast)和广播多种工作模式的技术方案。
在当前LTE D2D(Device to Device,设备到设备)/V2X的工作模式下,用户设备通过Sidelink发送的无线信号是广播的,不会针对某一特定用户设备发送无线信号。为保证不会对Uu接口上蜂窝网的上行传输产生干扰,副链路上的发送功率是按照发送端与基站之间的Uu接口之间的路损确定的。然而当进行D2D(Device to Device,设备间通信)或V2X之间通信的两个终端距离较近时,上述基于Uu接口路损确定的发送功率会导致终端功率的浪费。于此同时,当基站和终端之间存在多个波束时,现有的发送功率确定的方法需要被重新设计。
针对上述问题,本申请公开了一种解决方案用以支持单播传输。需要说明的是,在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。进一步的,虽然本申请的初衷是针对基于单播的传输机制,但本申请也能被用于广播和组播传输。更进一步的,虽然本申请的初衷是针对单载波通信,但本申请也能被用于多载波通信。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于包括:
接收第一参考信号和第二参考信号;
在不超过第一最大功率的范围内确定第一功率;
以所述第一功率发送第一无线信号;
其中,所述第一最大功率与针对所述第一参考信号的测量结果有关,并且与针对所述第二参考信号的测量结果无关;所述第一功率与针对所述第二参考信号的测量结果有关。
作为一个实施例,上述方法的好处在于:将针对第一参考信号的测量结果作为所述第一无线信号的发送功率的上限,即将Uu接口(Interface)上的测量结果用于限制PC-5接口上的发送功率,进而保证了PC-5接口上的无线信号的传输不会对Uu接口产生干扰。
作为一个实施例,上述方法的另一个好处在于:所述第一最大功率仅作为第一功率的上限,而实际确定所述第一功率所参考的测量结果来自于所述第二参考信号,即PC-5接口上的实际发送功能参考PC-5接口上测量的路损,进而保证PC-5接口上所选择的发送功率能够保证PC-5接口上无线信号的正确接收。
根据本申请的一个方面,上述方法的特征在于包括:
接收第一信息;
其中,所述第一无线信号在第一时频资源集合中被发送,所述第一时频资源集合属于第一时频资源池;所述第一信息被用于确定所述第一时频资源池;或者所述第一信息被用于确定K1个第一类时频资源池,所述第一时频资源池是所述K1个第一类时频资源池中的一个第一类时频资源池;所述第一信息通过空中接口传输。
作为一个实施例,上述方法的好处在于:所述第一最大功率仅对在第一时频资源池中发送的PC-5接口的无线信号生效;当所述K1个第一类时频资源池分别对应基站的K1个上行接收波束时,上述方案将所述第一最大功率设计成为Beam-specific(波束专属的);因为不同的波束赋形向量会带来不同的波束增益,上述波束专属的功率控制的方案将会更为精确和有效。
根据本申请的一个方面,上述方法的特征在于包括:
发送第二信息;
其中,所述第二信息被用于指示第一功率差,所述第一功率差等于所述第一最大功率与所述第一功率的差;所述第二信息的接收者包括所述第一参考信号的发送者;所述第二信息通过空中接口传输。
作为一个实施例,上述方法的好处在于:通过所述第二信息,V2X或者D2D的发送端将还能够提高的PC-5接口上的功率空间发送给基站,进而间接帮助基站获知PC-5链路上的信道质量。
作为一个实施例,上述方法的另一个好处在于:通过所述第二信息间接体现PC-5接口的传输质量,当所述第二信息指示的所述第一功率差较小,且PC-5接口上性能不好时,说明V2X发送端无法通过提升功率来改进PC-5接口上的性能;进而基站将通过调整用于传输所述第一无线信号的时频资源池以提高PC-5接口上传输的性能。
根据本申请的一个方面,上述方法的特征在于包括:
接收K1个第一类无线信号中的(K1-1)个第一类无线信号;
其中,所述K1个第一类无线信号分别被用于确定K1个第一类最大功率,所述K1个第一类最大功率分别与所述K1个第一类时频资源池相关联;所述第一最大功率是所述K1个第一类最大功率中与所述第一时频资源池对应的第一类最大功率;所述第一参考信号是所述K1个第一类无线信号中与所述第一最大功率对应的第一类无线信号。
作为一个实施例,上述方法的好处在于:当所述K1个第一类时频资源池分别对应基站的K1个上行接收波束时,为不同的上行接收波束配置不同的第一类最大功率,进而进一步体现波束赋形的增益,以提高本申请提出的方案的可靠性和有效性。
根据本申请的一个方面,上述方法的特征在于包括:
接收M1个第二类无线信号中的(M1-1)个第二类无线信号;
其中,所述第二参考信号是所述M1个第二类无线信号中的一个第二类无线信号。
作为一个实施例,上述方法的好处在于:PC-5接口上也维持多个波束,所述第二参考信号仅是多个波束中的一个波束,进一步体现波束赋形所带来的增益,以提高本申请提出的方案的可靠性和有效性。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于包括:
发送第一参考信号;
其中,所述第一参考信号的接收者包括第一节点,所述第一节点接收第二参考信号;第 一最大功率与针对所述第一参考信号的测量结果有关,并且与针对所述第二参考信号的测量结果无关;第一功率与针对所述第二参考信号的测量结果有关;所述第一节点在不超过所述第一最大功率的范围内确定第一功率,且所述第一节点以所述第一功率发送第一无线信号;所述第一无线信号的接收者包括所述第二参考信号的发送者。
根据本申请的一个方面,上述方法的特征在于包括:
发送第一信息;
其中,所述第一无线信号在第一时频资源集合中被发送,所述第一时频资源集合属于第一时频资源池;所述第一信息被用于确定所述第一时频资源池;或者所述第一信息被用于确定K1个第一类时频资源池,所述第一时频资源池是所述K1个第一类时频资源池中的一个第一类时频资源池;所述第一信息通过空中接口传输。
根据本申请的一个方面,上述方法的特征在于包括:
接收第二信息;
其中,所述第二信息被用于指示第一功率差,所述第一功率差等于所述第一最大功率与所述第一功率的差;所述第二信息通过空中接口传输。
根据本申请的一个方面,上述方法的特征在于包括:
发送K1个第一类无线信号中的(K1-1)个第一类无线信号;
其中,所述K1个第一类无线信号分别被用于确定K1个第一类最大功率,所述K1个第一类最大功率分别与所述K1个第一类时频资源池相关联;所述第一最大功率是所述K1个第一类最大功率中与所述第一时频资源池对应的第一类最大功率;所述第一参考信号是所述K1个第一类无线信号中与所述第一最大功率对应的第一类无线信号。
本申请公开了一种被用于无线通信的第三节点中的方法,其特征在于包括:
发送第二参考信号;
接收第一无线信号;
其中,所述第一无线信号的发送者接收第一参考信号和所述第二参考信号,第一最大功率与针对所述第一参考信号的测量结果有关,并且与针对所述第二参考信号的测量结果无关;第一功率与针对所述第二参考信号的测量结果有关;所述第一无线信号的发送者在不超过所述第一最大功率的范围内确定所述第一功率,并采用所述第一功率发送所述第一无线信号;所述第一参考信号的发送者和所述第三节点是非共址的。
根据本申请的一个方面,上述方法的特征在于包括:
发送M1个第二类无线信号中的(M1-1)个第二类无线信号;
其中,所述第二参考信号是所述M1个第二类无线信号中的一个第二类无线信号。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于包括:
第一接收机,接收第一参考信号和第二参考信号;
第一处理机,在不超过第一最大功率的范围内确定第一功率;
第一发射机,以所述第一功率发送第一无线信号;
其中,所述第一最大功率与针对所述第一参考信号的测量结果有关,并且与针对所述第二参考信号的测量结果无关;所述第一功率与针对所述第二参考信号的测量结果有关。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于包括:
第二发射机,发送第一参考信号;
其中,所述第一参考信号的接收者包括第一节点,所述第一节点接收第二参考信号;第一最大功率与针对所述第一参考信号的测量结果有关,并且与针对所述第二参考信号的测量结果无关;第一功率与针对所述第二参考信号的测量结果有关;所述第一节点在 不超过所述第一最大功率的范围内确定第一功率,且所述第一节点以所述第一功率发送第一无线信号;所述第一无线信号的接收者包括所述第二参考信号的发送者。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于包括:
第三发射机,发送第二参考信号;
第三接收机,接收第一无线信号;
其中,所述第一无线信号的发送者接收第一参考信号和所述第二参考信号,第一最大功率与针对所述第一参考信号的测量结果有关,并且与针对所述第二参考信号的测量结果无关;第一功率与针对所述第二参考信号的测量结果有关;所述第一无线信号的发送者在不超过所述第一最大功率的范围内确定所述第一功率,并采用所述第一功率发送所述第一无线信号;所述第一参考信号的发送者和所述第三节点是非共址的。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.将针对第一参考信号的测量结果作为所述第一无线信号的发送功率的上限,即将Uu接口上的测量结果用于限制PC-5接口上的发送功率,进而保证了PC-5接口上的无线信号的传输不会对Uu产生干扰;同时,实际确定所述第一功率所参考的测量结果来自于所述第二参考信号,即PC-5接口上的实际发送功率参考PC-5接口上测量的路损,进而保证PC-5接口上所选择的发送功率能够保证PC-5接口上无线信号的正确接收。
-.通过所述第二信息间接体现PC-5接口上的传输质量,当所述第二信息指示的所述第一功率差较小,且PC-5接口上性能不好时,说明V2X发送端无法通过提升功率来改进PC-5接口上的性能;进而基站将通过调整第一时频资源池以提高PC-5接口上传输的性能。
-.所述K1个第一类时频资源池分别对应基站的K1个上行接收波束,为不同的上行接收波束配置不同的第一类最大功率,进而考虑波束赋形的增益,以提高本申请提出的方案的可靠性和有效性;与此同时,当PC-5接口上也维持多个波束时,所述第二参考信号仅是多个波束中的一个波束,进一步考虑波束赋形所带来的增益,以提高本申请提出的方案的可靠性和有效性。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一参考信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信节点和第二通信节点的示意图;
图5示出了根据本申请的一个实施例的第一无线信号的流程图;
图6示出了根据本申请的一个实施例的确定第一功率的流程图;
图7示出了根据本申请的一个实施例的第一时频资源池的示意图;
图8示出了根据本申请的一个实施例的K1个第一类时频资源池的示意图;
图9示出了根据本申请的一个实施例的K1个第一类无线信号的示意图;
图10示出了根据本申请的一个实施例的M1个第二类无线信号的示意图;
图11示出了根据本申请的一个实施例的第一参考信号和第二参考信号的示意图;
图12示出了根据本申请的一个实施例的天线端口和天线端口组的示意图,
图13示出了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;
图14示出了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框 图;
图15示出了根据本申请的一个实施例的用于第三节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了第一参考信号的流程图,如附图1所示。
在实施例1中,本申请中的所述第一节点首先接收第一参考信号和第二参考信号;随后在不超过第一最大功率的范围内确定第一功率;并以所述第一功率发送第一无线信号;所述第一最大功率与针对所述第一参考信号的测量结果有关,并且与针对所述第二参考信号的测量结果无关;所述第一功率与针对所述第二参考信号的测量结果有关。
作为一个实施例,所述第一参考信号的发送者和所述第二参考信号的发送者是非共址的(Non Co-Located)。
作为一个实施例,所述第一节点是一个终端。
作为一个实施例,所述第一节点是一个用户设备。
作为一个实施例,所述第一节点是一辆交通工具(Vehicle)。
作为一个实施例,所述第一节点是一个RSU(Road Side Unit,路边单元)。
作为一个实施例,所述第一参考信号的发送者是一个基站。
作为一个实施例,所述第一参考信号的发送者为所述第一节点提供蜂窝网业务服务。
作为一个实施例,所述第一参考信号的发送者是为所述第一节点提供服务的小区对应的基站。
作为一个实施例,所述第二参考信号的发送者是一个终端设备。
作为一个实施例,所述第二参考信号的发送者是一个用户设备。
作为一个实施例,所述第二参考信号的发送者是一辆交通工具。
作为一个实施例,所述第二参考信号的发送者是一个RSU。
作为一个实施例,所述第一参考信号的发送者是第二节点,所述第一无线信号的接收者包括第三节点,所述第二节点和所述第三节点是非共址的。
作为该实施例的一个子实施例,上述短语所述第二节点和所述第三节点是非共址的包括:所述第二节点和所述第三节点是两个不同的通信设备。
作为该实施例的一个子实施例,上述短语所述第二节点和所述第三节点是非共址的包括:所述第二节点和所述第三节点之间不存在有线连接。
作为该实施例的一个子实施例,上述短语所述第二节点和所述第三节点是非共址的包括:所述第二节点和所述第三节点位于不同的地点。
作为该实施例的一个子实施例,上述短语所述第二节点和所述第三节点是非共址的包括:所述第二节点是一个基站,所述第三节点是基站之外的通信设备。
作为该实施例的一个子实施例,上述短语所述第二节点和所述第三节点是非共址的包括:所述第二节点和所述第三节点分别对应不同的标识。
作为一个实施例,所述第一参考信号在Uu接口上传输,所述第二参考信号在PC5口上传输。
作为一个实施例,所述第一参考信号包括{PSS(Primary Synchronization Signal,主同步信号)、SSS(Secondary Synchronization Signal,辅同步信号)、CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号)、TRS(Tracking Reference Signal,跟踪参考信号)、PTRS(Phase Tracking Reference Signal,相位跟踪参考信号)}中的至少之一。
作为一个实施例,所述第一参考信号包括SSB(Synchronization Signal Block,同步信 号块)
作为一个实施例,所述第二参考信号包括{PSSS(Primary Sidelink Synchronization Signal,主副链路同步信号)、SSSS(Secondary Sidelink Synchronization Signal,辅副链路同步信号)、PSDCH(Physical Sidelink Discovery Channel,物理副链路发现信道)、DMRS(Demodulation Reference Signal,解调参考信号)、DRS(Discovery Reference Signal,发现参考信号)}中的至少之一。
作为一个实施例,所述第二参考信号包括针对PC-5接口的CSI-RS。
作为一个实施例,所述第一最大功率的单位是瓦(W),或者所述第一最大功率的单位是毫瓦(mW),或者所述第一最大功率的单位是毫分贝(dBm)。
作为一个实施例,所述第一功率的单位是瓦,或者所述第一功率的单位是毫瓦,或者所述第一功率的单位是毫分贝。
作为一个实施例,所述第一无线信号所占用的物理层信道包括PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)。
作为一个实施例,所述第一无线信号所占用的物理层信道包括PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)。
作为一个实施例,所述第一无线信号所占用的物理层信道包括PSDCH。
作为一个实施例,所述第一无线信号所占用的传输层信道是SL-SCH(Sidelink Shared Channel,副链路共享信道)。
作为一个实施例,在不超过第一最大功率的范围内,所述第一节点自行(即不需要标准化)确定第一功率。
作为一个实施例,在其他条件相同的情况下且在不超过第一最大功率的范围内,所述第二参考信号的接收质量越差,所述第一功率越大。
作为该实施例的一个子实施例,所述其他条件包括所述第一无线信号对应的TBS(Transport Block Size,传输块尺寸)。
作为该实施例的一个子实施例,所述其他条件包括所述第一无线信号所占用的RE(Resource Element,资源粒子)的数量和位置。
作为该实施例的一个子实施例,所述其他条件包括发送所述第一无线信号所采用的天线端口。
作为一个实施例,所述针对所述第一参考信号的测量结果包括所述第一参考信号的路径损耗(Pathloss)。
作为一个实施例,所述针对所述第一参考信号的测量结果包括所述第一节点根据接收到的所述第一参考信号确定的所述第一参考信号的发送者到所述第一节点的路径损耗。
作为一个实施例,所述针对所述第二参考信号的测量结果包括所述第二参考信号的路径损耗。
作为一个实施例,所述针对所述第二参考信号的测量结果包括所述第一节点根据接收到的所述第二参考信号确定的所述第二参考信号的发送者到所述第一节点的路径损耗。
作为一个实施例,所述针对所述第一参考信号的测量结果包括所述第一参考信号的RSRP(Reference Signal Received Power,参考信号接收质量)。
作为一个实施例,所述针对所述第一参考信号的测量结果包括所述第一参考信号的{RSRQ(Reference Signal Received Quality,参考信号接收质量),RSSI(Received Signal Strength Indicator,接收信号强度指示),SNR(Signal to Noise Rate,信噪比)}中的至少之一。
作为一个实施例,所述针对所述第二参考信号的测量结果包括所述第二参考信号的RSRP。
作为一个实施例,所述针对所述第二参考信号的测量结果包括所述第二参考信号的{RSRQ,RSSI,SNR}中的至少之一。
作为一个实施例,所述第一最大功率与所述针对所述第一参考信号的测量结果线性相关。
作为该实施例的一个子实施例,上述短语所述第一最大功率与所述针对所述第一参考信号的测量结果线性相关包括:所述第一最大功率由以下公式确定:
P MAX=10log(M)+P 1,i1,i·PL 1,i
其中,P MAX是所述第一最大功率,所述M与所述第一无线信号按照资源块(Resource Block)数表示的所占用的带宽(Bandwidth)有关,P 1,i是与所述第一参考信号相关的期望功率且单位是dB,α 1,i是与所述第一参考信号相关的补偿因子且是不小于0且不大于1的实数,PL 1,i是所述针对所述第一参考信号的所述测量结果。
作为该子实施例的一个附属实施例,所述P 1,i是通过高层信令配置的。
作为该子实施例的一个附属实施例,所述α 1,i是通过高层信令配置的。
作为该子实施例的一个附属实施例,上述短语P 1,i是与所述第一参考信号相关的期望功率包括:所述第二节点采用第一天线端口组发送所述第一参考信号,所述第一节点采用目标天线端口组发送所述第一无线信号,所述第一天线端口组和所述目标天线端口组是QCL(Quasi-colocation,准共址)的,所述P 1,i是所述第二节点期望的所述第一节点发送的所述第一无线信号到达所述第二节点的功率。
作为该子实施例的一个附属实施例,上述短语α 1,i是与所述第一参考信号相关的补偿因子包括:所述第二节点采用第一天线端口组发送所述第一参考信号,所述第一节点采用目标天线端口组发送所述第一无线信号,所述第一天线端口组和所述目标天线端口组是QCL的,所述α 1,i是所述第一节点在发送所述第一无线信号时针对所述第一参考信号计算的路损的补偿。
作为一个实施例,所述第一最大功率是第一参考最大功率和第一配置功率二者中的较小值,所述第一配置功率与所述针对所述第一参考信号的测量结果线性相关。
作为该实施例的一个子实施例,所述第一最大功率,所述第一参考功率和所述第一配置功率的关系由以下公式确定:
P MAX=min{P CMAX,10log(M)+P 1,i1,i·PL 1,i}
其中,P MAX是所述第一最大功率,P CMAX是所述第一参考最大功率,多项式10log(M)+P 1,i1,i·PL 1,i对应所述第一配置功率,所述M与所述第一无线信号按照资源块数表示的所占用的带宽有关,P 1,i是与所述第一参考信号相关的期望功率且单位是dB,α 1,i是与所述第一参考信号相关的补偿因子且是不小于0且不大于1的实数,PL 1,i是所述针对所述第一参考信号的所述测量结果。
作为该实施例的一个子实施例,所述P 1,i是通过高层信令配置的。
作为该实施例的一个子实施例,所述α 1,i是通过高层信令配置的。
作为该实施例的一个子实施例,所述第一参考最大功率是固定的(即不可配置的)。
作为该实施例的一个子实施例,所述第一参考最大功率是由信令显式配置的。
作为该实施例的一个子实施例,所述第一参考最大功率是可配置的。
作为该实施例的一个子实施例,所述第一参考最大功率是23dBm。
作为一个实施例,所述第一最大功率与第一目标功率线性相关,所述第一目标功率是第二参考最大功率和第二配置功率中的较小值,所述第二配置功率与所述针对所述第一参考信号的测量结果线性相关。
作为该实施例的一个子实施例,所述第一最大功率,所述第一目标功率,所述第二参考最大功率和所述第二配置功率的关系由以下公式确定:
Figure PCTCN2019104049-appb-000001
其中,P MAX是所述第一最大功率,多项式
Figure PCTCN2019104049-appb-000002
是所述第一目标功率,P C是所述第二参考最大功率,多项式
Figure PCTCN2019104049-appb-000003
对应所述第二配置功率,所述M与所述第一无线信号按照资源块数表示的所占用的带宽有关,P 1,i是与所述第一参考信号相关的期望功率且单位是dB,α 1,i是与所述第一参考信号相关的补偿因子且是不小于0且不大于1的实数,PL 1,i是所述针对所述第一参考信号的所述测量结果。
作为该实施例的一个子实施例,所述P 1,i是通过高层信令配置的。
作为该实施例的一个子实施例,所述α 1,i是通过高层信令配置的。
作为一个实施例,上述短语所述第一最大功率与针对所述第一参考信号的测量结果有关包括:所述第一最大功率与针对所述第一参考信号的测量结果符合以下公式。
Figure PCTCN2019104049-appb-000004
其中,P MAX是所述第一最大功率,所述M与所述第一无线信号按照资源块数表示的所占用的带宽有关,所述M 1等于2,或者所述M 1与调度所述第一无线信号的PSCCH所占用的带宽有关,所述针对所述第一参考信号的测量结果被用于确定多项式A。
作为该实施例的一个子实施例,RRC信令maxTxpower被配置,所述多项式A等于如下公式:
Figure PCTCN2019104049-appb-000005
其中,所述P C是TS36.213中的P CMAX,所述P MAX_CBR通过所述RRC信令maxTxpower配置,P 1,i是与所述第一参考信号相关的期望功率且单位是dB,α 1,i是与所述第一参考信号相关的补偿因子且是不小于0且不大于1的实数,PL 1,i是所述针对所述第一参考信号的所述测量结果。
作为该实施例的一个子实施例,RRC信令maxTxpower没有被配置,所述多项式A等于如下公式:
Figure PCTCN2019104049-appb-000006
其中,所述P C是TS 36.213中的P CMAX,P 1,i是与所述第一参考信号相关的期望功率且单位是dB,α 1,i是与所述第一参考信号相关的补偿因子且是不小于0且不大于1的实数,PL 1,i是所述针对所述第一参考信号的所述测量结果。
作为上述两个子实施例的一个附属实施例,所述P 1,i是通过高层信令配置的。
作为上述两个子实施例的一个附属实施例,所述α 1,i是通过高层信令配置的。
作为一个实施例,所述第一功率是第一最大功率和第二功率二者中的较小值,所述第二功率与所述针对所述第二参考信号的测量结果线性相关。
作为该实施例的一个子实施例,所述第二功率等于多项式10log(M 2)+P 2,j2,j·PL 2,j,所述M 2与所述第一无线信号按照资源块数表示的所占用的带宽有关,P 2,j是与所述第一无线信号相关的期望功率且单位是dB,α 2,j是与所述第二参考信号相关的补偿因子且是不小于0且不大于1的实数,PL 2,j是所述针对所述第二参考信号的所述测量结果。
作为一个实施例,针对所述第一参考信号的空间接收参数被用于确定所述第一无线信号的发送天线端口组。
作为一个实施例,针对所述第二参考信号的空间接收参数被用于确定所述第一无线信号的发送天线端口组。
作为一个实施例,所述第一节点采用相同的空间接收参数接收所述第一参考信号和所述第二参考信号。
作为一个实施例,所述第一参考信号和所述第一无线信号是QCL的。
作为一个实施例,所述第二参考信号和所述第一无线信号是QCL的。
作为一个实施例,所述第一无线信号对所述第二节点是干扰信号。
作为一个实施例,所述第二节点不知道所述第一无线信号所占用的时域资源。
作为一个实施例,所述第二节点不知道所述第一无线信号所占用的频域资源。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路通信的UE241,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。 NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述UE241对应本申请中的所述第三节点。
作为一个实施例,所述UE201与所述gNB203之间的空中接口是Uu接口。
作为一个实施例,所述UE201与所述UE241之间的空中接口是PC-5接口。
作为一个实施例,所述UE201与所述gNB203之间的无线链路是蜂窝网链路。
作为一个实施例,所述UE201与所述UE241之间的无线链路是副链路。
作为一个实施例,本申请中的所述第一节点是所述UE201,本申请中的所述第三节点是所述gNB203覆盖内的一个终端。
作为一个实施例,本申请中的所述第一节点是所述UE201,本申请中的所述第三节点是所述gNB203覆盖外的一个终端。
作为一个实施例,本申请中的所述第一节点和第三节点均被所述gNB203服务。
作为一个实施例,所述UE201支持基于波束赋形的传输。
作为一个实施例,所述UE241支持基于波束赋形的传输。
作为一个实施例,所述gNB203支持基于波束赋形的传输。
作为一个实施例,所述UE201和所述UE241之间支持单播(Unicast)传输。
作为一个实施例,所述UE201和所述UE241之间支持非广播(Broadcast)传输。
作为一个实施例,所述UE201和所述UE241之间支持非组播(Groupcast)传输。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于用户设备(UE)和基站设备(gNB或eNB)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。 层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第三节点。
作为一个实施例,本申请中的所述第一参考信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二参考信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一无线信号生成于MAC子层302。
作为一个实施例,本申请中的所述第一信息生成于MAC子层302。
作为一个实施例,本申请中的所述第一信息生成于RRC子层306。
作为一个实施例,本申请中的所述第二信息生成于MAC子层302。
作为一个实施例,本申请中的所述第二信息生成于RRC子层306。
作为一个实施例,本申请中的所述K1个第一类无线信号中的任意一个第一类无线信号生成于所述MAC子层302。
作为一个实施例,本申请中的所述K1个第一类无线信号中的任意一个第一类无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述M1个第二类无线信号中的任意一个第二类无线信号生成于所述MAC子层302。
作为一个实施例,本申请中的所述M1个第二类无线信号中的任意一个第二类无线信号生成于所述PHY301。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理 器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第一通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器 476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:首先接收第一参考信号和第二参考信号,随后在不超过第一最大功率的范围内确定第一功率,并以所述第一功率发送第一无线信号;所述第一最大功率与针对所述第一参考信号的测量结果有关,并且与针对所述第二参考信号的测量结果无关;所述第一功率与针对所述第二参考信号的测量结果有关。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先接收第一参考信号和第二参考信号,随后在不超过第一最大功率的范围内确定第一功率,并以所述第一功率发送第一无线信号;所述第一最大功率与针对所述第一参考信号的测量结果有关,并且与针对所述第二参考信号的测量结果无关;所述第一功率与针对所述第二参考信号的测量结果有关。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:发送第一参考信号;所述第一参考信号的接收者包括第一节点,所述第一节点接收第二参考信号;第一最大功率与针对所述第一参考信号的测量结果有关,并且与针对所述第二参考信号的测量结果无关;第一功率与针对所述第二参考信号的测量结果有关;所述第一节点在不超过所述第一最大功率的范围内确定第一功率,且所述第一节点以所述第一功率发送第一无线信号;所述第一无线信号的接收者包括所述第二参考信号的发送者。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一参考信号;所述第一参考信号的接收者包括第一节点,所述第一节点接收第二参考信号;第一最大功率与针对所述第一参考信号的测量结果有关,并且与针对所述第二参考信号的测量结果无关;第一功率与针对所述第二参考信号的测量结果有关;所述第一节点在不超过所述第一最大功率的范围内确定第一功率,且所述第一节点以所述第一功率发送第一无线信号;所述第一无线信号的接收者包括所述第二参考信号的发送者。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:发送第二参考信号,以及接收第一无线信号;所述第一无线信号的发送者接收第一参考信号和所述第二参考信号,第一最大功率与针对所述第一参考信号的测量结果有关,并且与针对所述第二参考信号的测量结果无关;第一功率与针对所述第二参考信号的测量结果有关;所述第一无线信号的发送者在不超过所述第一最大功率的范围内确定所述第一功率,并采用所述第一功率发送所述第一无线信号;所述第一参考信号的发送者和所述第三节点是非共址的。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第二参考信号,以及接收第一无线信号;所述第一无线信号的发送者接收第一参考信号和所述第二参考信号,第一最大功率与针对所述第一参考信号的测量结果有关,并且与针对所述第二参考信号的测量结果无关;第一功率与针对所述第二参考信号的测量结果有关;所述第一无线信号的发送者在不超过所述第一最大功率的范围内确定所述第一功率,并采用所述第 一功率发送所述第一无线信号;所述第一参考信号的发送者和所述第三节点是非共址的。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第二通信设备410对应本申请中的第三节点。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456}中的至少之一被用于接收本申请中的所述第一参考信号和所述第二参考信号;{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416}中的至少之一被用于发送本申请中的所述第一参考信号和所述第二参考信号。
作为一个实施例,{所述发射器454,所述发射处理器468,所述控制器/处理器459}中的至少之一被用于在不超过本申请中的所述第一最大功率的范围内确定本申请中的所述第一功率。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468}中的至少之一被用于以本申请中的所述第一功率发送本申请中的所述第一无线信号;{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470}中的至少之一被用于接收本申请中的所述第一无线信号。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456}中的至少之一被用于接收本申请中的所述第一信息;{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416}中的至少之一被用于发送本申请中的所述第一信息。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468}中的至少之一被用于发送本申请中的所述第二信息;{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470}中的至少之一被用于接收本申请中的所述第二信息。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456}中的至少之一被用于接收本申请中的所述K1个第一类无线信号;{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416}中的至少之一被用于发送本申请中的所述K1个第一类无线信号。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456}中的至少之一被用于接收本申请中的所述M1个第二类无线信号;{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416}中的至少之一被用于发送本申请中的所述M1个第二类无线信号。
实施例5
实施例5示例了一个第一无线信号的流程图,如附图5所示。在附图5中,第一节点U1与第二节点U2之间通过副链路进行通信,且第一节点U1和第三节点N3通过Uu接口通信。图中标注为F0,F1和F2的步骤分别是可选的。
对于 第一节点U1,在步骤S10中接收第一信息;在步骤S11中接收K1个第一类无线信号中的(K1-1)个第一类无线信号;在步骤S12中接收M1个第二类无线信号中的(M1-1)个第二类无线信号;在步骤S13中接收第一参考信号和第二参考信号;在步骤S14中在不超过第一最大功率的范围内确定第一功率;在步骤S15中以所述第一功率发送第一无线信号;在步骤S16中发送第二信息。
对于 第二节点N2,在步骤S20中发送第一信息;在步骤S21中发送K1个第一类无线信号中的(K1-1)个第一类无线信号;在步骤S22中发送第一参考信号;在步骤S23中接收第二信息。
对于 第三节点U3,在步骤S30中发送M1个第二类无线信号中的(M1-1)个第二类无线信号;在步骤S31中发送第二参考信号;在步骤S32中接收第一无线信号。
实施例5中,所述第一最大功率与针对所述第一参考信号的测量结果有关,并且与针对 所述第二参考信号的测量结果无关;所述第一功率与针对所述第二参考信号的测量结果有关;所述第一无线信号在第一时频资源集合中被发送,所述第一时频资源集合属于第一时频资源池;所述第一信息被用于确定所述第一时频资源池;或者所述第一信息被用于确定K1个第一类时频资源池,所述第一时频资源池是所述K1个第一类时频资源池中的一个第一类时频资源池;所述第一信息通过空中接口传输;所述第二信息被用于指示第一功率差,所述第一功率差等于所述第一最大功率与所述第一功率的差;所述第二信息通过空中接口传输;所述K1个第一类无线信号分别被用于确定K1个第一类最大功率,所述K1个第一类最大功率分别与所述K1个第一类时频资源池相关联;所述第一最大功率是所述K1个第一类最大功率中与所述第一时频资源池对应的第一类最大功率;所述第一参考信号是所述K1个第一类无线信号中与所述第一最大功率对应的第一类无线信号;所述第二参考信号是所述M1个第二类无线信号中的一个第二类无线信号。
作为一个实施例,所述第一信息被用于指示所述第一时频资源池所占用的时域资源。
作为一个实施例,所述第一信息被用于指示所述第一时频资源池所占用的频域资源。
作为一个实施例,所述第一信息被用于指示所述K1个第一类时频资源池中任一第一类时频资源池所占用的时域资源。
作为一个实施例,所述第一信息被用于指示所述K1个第一类时频资源池中任一第一类时频资源池所占用的频域资源。
作为一个实施例,所述K1个第一类时频资源池中任意两个第一类时频资源池所占用的时域资源是正交的。
作为一个实施例,所述K1个第一类时频资源池分别对应K1个CRI(CSI-RS Resoure Index,信道状态信息参考信号资源索引)。
作为一个实施例,所述K1个第一类时频资源池分别对应K1个SRI(SRS Resource Indicator,探测参考信号资源指示)。
作为一个子实施例,本申请中的所述空中接口对应实施例2中的UE201和NR节点B203之间的接口。
作为一个子实施例,本申请中的所述空中接口对应实施例2中的UE201和UE241之间的接口。
作为一个子实施例,本申请中的所述空中接口通过无线信道承载。
作为一个实施例,用于传输所述第二信息的物理层信道包括PUSCH(Physical Uplink Shared Channel,物理上行共享信道)上传输。
作为一个实施例,用于传输所述第二信息的物理层信道包括PUCCH(Physical Uplink Control Channel,物理上行控制信道)上传输。
作为一个实施例,用于传输所述第二信息的传输层信道包括UL-SCH(Uplink Shared Channel,上行共享信道)上传输。
作为一个实施例,所述第一节点U1根据所述第三节点U3反馈的所述第一无线信号的信道质量确定是否发送所述第二信息。
作为该实施例的一个子实施例,第一比特块被用于生成所述第一无线信号,所述第一比特块被所述第一节点U1发送Q次,所述Q是正整数,且针对所述第一比特块的Q次发送均未被所述第三节点U3正确接收,所述第一节点U1发送所述第二信息。
作为该子实施例的一个附属实施例,所述Q是通过高层信令的配置,或者所述Q是固定的。
作为一个实施例,所述第二信息是周期发送的。
作为一个实施例,所述第二信息包括针对副链路的PHR(Power Headroom Report,功率头空间汇报)。
作为一个实施例,所述第一功率差是针对副链路的PH(Power Headroom,功率头空间)。
作为一个实施例,所述K1个第一类无线信号分别与K1个第一类参考信号资源相关联。
作为一个实施例,所述第一节点U1在所述K1个第一类时频资源池中的所述第一时频资源池中发送所述第一无线信号,所述第一节点U1采用所述第一时频资源池所对应的第一类最大功率作为所述第一最大功率。
作为一个实施例,所述K1个第一类无线信号中的任意一个第一类无线信号包括CSI-RS。
作为一个实施例,所述K1个第一类无线信号分别对应K1个CRI。
作为一个实施例,上述短语所述K1个第一类无线信号分别被用于确定K1个第一类最大功率包括:所述K1个第一类无线信号分别被用于确定K1个第一类测量结果,所述K1个第一类测量结果分别被用于确定所述K1个第一类最大功率。
作为该实施例的一个子实施例,所述K1个第一类无线信号中的任意一个第一类无线信号包括PSS或SSS中的至少之一。
作为该实施例的一个子实施例,所述K1个第一类无线信号中的任意一个第一类无线信号包括SSB。
作为该实施例的一个子实施例,所述K1个第一类测量结果分别是根据所述K1个第一类无线信号获得的K1个第一类路损。
作为该子实施例的一个附属实施例,所述K1个第一类路损分别被用于确定K1个第一类最大功率包括:给定第一类路损是所述K1个第一类路损中的任意一个第一类路损,给定第一类最大功率是所述K1个第一类最大功率中与所述给定第一类路损对应的第一类最大功率,所述给定第一类路损通过所述K1个第一类无线信号中的给定第一类无线信号获得。
作为该附属实施例的一个范例,所述给定第一类路损和所述给定第一类最大功率的关系参考以下公式:
Figure PCTCN2019104049-appb-000007
其中,
Figure PCTCN2019104049-appb-000008
是所述给定第一类最大功率,所述M与所述第一无线信号按照资源块数表示的所占用的带宽有关,P 1,n是与所述给定第一类无线信号相关的期望功率且单位是dB,α 1,n是与所述给定第一类无线信号相关的补偿因子且是不小于0且不大于1的实数,PL 1,n是所述给定第一类路损,下标n是大于0且不大于K1的正整数。
作为该附属实施例的一个范例,所述给定第一类路损和所述给定第一类最大功率的关系参考以下公式:
Figure PCTCN2019104049-appb-000009
其中,
Figure PCTCN2019104049-appb-000010
是所述给定第一类最大功率,P CMAX是本申请中的所述第一参考最大功率,所述M与所述第一无线信号按照资源块数表示的所占用的带宽有关,P 1,n是与所述给定第一类无线信号相关的期望功率且单位是dB,α 1,n是与所述给定第一类无线信号相关的补偿因子且是不小于0且不大于1的实数,PL 1,n是所述给定第一类路损,下标n是大于0且不大于K1的正整数。
作为该附属实施例的一个范例,所述给定第一类路损和所述给定第一类最大功率的关系参考以下公式:
Figure PCTCN2019104049-appb-000011
其中,
Figure PCTCN2019104049-appb-000012
是所述给定第一类最大功率,P C是本申请中的所述第二参考最大功率,所述 M与所述第一无线信号按照资源块数表示的所占用的带宽有关,P 1,n是与所述给定第一类无线信号相关的期望功率且单位是dB,α 1,n是与所述给定第一类无线信号相关的补偿因子且是不小于0且不大于1的实数,PL 1,n是所述给定第一类路损,下标n是大于0且不大于K1的正整数。
作为该附属实施例的一个范例,所述给定第一类路损和所述给定第一类最大功率的关系参考以下公式:
Figure PCTCN2019104049-appb-000013
其中,
Figure PCTCN2019104049-appb-000014
是所述给定第一类最大功率,所述M与所述第一无线信号按照资源块数表示的所占用的带宽有关。
作为该范例的一个特例,RRC信令maxTxpower被配置,所述多项式A等于如下公式:
Figure PCTCN2019104049-appb-000015
其中,所述P C是TS36.213中的P CMAX,所述P MAX_CBR通过所述RRC信令maxTxpower配置,P 1,n是与所述给定第一类无线信号相关的期望功率且单位是dB,α 1,n是与所述给定第一类无线信号相关的补偿因子且是不小于0且不大于1的实数,PL 1,n是所述给定第一类路损,下标n是大于0且不大于K1的正整数。
作为该范例的一个特例,RRC信令maxTxpower没有被配置,所述多项式A等于如下公式:
Figure PCTCN2019104049-appb-000016
其中,所述P C是TS36.213中的P CMAX,P 1,n是与所述给定第一类无线信号相关的期望功率且单位是dB,α 1,n是与所述给定第一类无线信号相关的补偿因子且是不小于0且不大于1的实数,PL 1,n是所述给定第一类路损,下标n是大于0且不大于K1的正整数。
作为一个实施例,上述短语所述K1个第一类最大功率分别与所述K1个第一类时频资源池相关联包括:给定第一类最大功率是所述K1个第一类最大功率中的任一第一类最大功率,所述给定第一类最大功率与所述K1个第一类时频资源池中的给定第一类时频资源池相关;所述第一节点U1在所述给定第一类时频资源池中发送针对副链路的无线信号的发送功率不大于所述给定第一类最大功率。
作为一个实施例,所述K1个第一类无线信号分别被关联到所述K1个第一类时频资源池。
作为该实施例的一个子实施例,上述短语所述K1个第一类无线信号分别被关联到所述K1个第一类时频资源池包括:给定第一类无线信号是所述K1个第一类无线信号中的任一第一类无线信号,所述给定第一类无线信号被关联到所述K1个第一类时频资源池中的给定第一类时 频资源池;所述第二节点N2在所述给定第一类时频资源池中采用给定空间接收参数接收无线信号,且所述第二节点N2采用给定第一类天线端口组发送所述给定第一类无线信号;所述给定第一类天线端口组被用于确定所述给定空间接收参数,或者所述给定空间接收参数被用于确定所述给定第一类天线端口组。
作为该实施例的一个子实施例,上述短语所述K1个第一类无线信号分别被关联到所述K1个第一类时频资源池包括:给定第一类无线信号是所述K1个第一类无线信号中的任一第一类无线信号,所述给定第一类无线信号被关联到所述K1个第一类时频资源池中的给定第一类时频资源池;所述第二节点N2在所述给定第一类时频资源池接收的无线信号和所述给定第一类无线信号是QCL的。
作为该实施例的一个子实施例,本申请中的所述两个无线信号是准共址的包括:能够从所述两个无线信号中的一个无线信号的全部或者部分大尺度(large-scale)特性(properties)推断出所述两个无线信号中的另一个无线信号的全部或者部分大尺度特性;所述大尺度特性包括:延时扩展(Delay Spread)、多普勒扩展(Doppler Spread)、多普勒移位(Doppler Shift),路径损耗(Path Loss)、平均增益(Average Gain)中的一种或多种。
作为一个实施例,所述M1个第二类无线信号分别与M1个第二类参考信号资源相关联。
作为一个实施例,所述M1个第二类无线信号中的任一第二类无线信号所占用的物理层信道包括PSDCH。
作为一个实施例,所述M1个第二类无线信号中的任一第二类无线信号包括PSSS和SSSS中的至少之一。
作为一个实施例,所述M1个第二类无线信号中的任一第二类无线信号包括DRS(Discovery Reference Signal,发现参考信号)。
作为一个实施例,所述M1个第二类无线信号均在副链路上传输。
实施例6
实施例6示例了一个确定第一功率的流程图,如附图6所示。在附图6中,第一节点U4执行以下步骤以实现在不超过本申请中的所述第一最大功率的范围内确定本申请中的所述第一功率。
在步骤S400中,根据所述第一参考信号的测量结果确定所述第一最大功率;
在步骤S401中,根据所述第二参考信号的测量结果确定目标功率;
在步骤S402中,判断所述目标功率是否大于所述第一最大功率;
所述目标功率大于所述第一最大功率,在步骤S4020中确定所述第一功率等于所述第一最大功率;或者所述目标功率不大于所述第一最大功率,在步骤S4021中确定所述第一功率等于所述目标功率。
作为一个实施例,实施例6中的所有步骤对应实施例5中的步骤S14。
作为一个实施例,所述目标功率是本申请中的所述第二功率。
实施例7
实施例7示例了一个第一时频资源池的示意图,如附图7所示。在附图7中,所述第一时频资源池包括P1个时频资源集合,所述P1是正整数;本申请中的所述第一时频资源集合是所述P1个时频资源集合中的一个时频资源集合。
作为一个实施例,P1个时频资源集合中的任意一个时频资源集合在时域占用一个时隙。
作为一个实施例,P1个时频资源集合中的任意一个时频资源集合在频域占用正整数个RB(Resource Block,资源块)所对应的带宽。
作为一个实施例,所述第一时频资源集合占用正整数个RE(Resource Element,资源颗粒)。
作为一个实施例,所述第一时频资源集合是被动态信令指示。
作为该实施例的一个子实施例,所述动态信令是SCI(Sidelink Control Information, 副链路控制信息)。
作为一个实施例,本申请中的所述第一无线信号占用所述第一时频资源集合中的全部RE。
作为一个实施例,本申请中的所述第一无线信号占用所述第一时频资源集合中的部分RE。
实施例8
实施例8示例了一个K1个第一类时频资源池的示意图,如附图8所示。在附图8中,本申请中的第一时频资源池是所述K1个第一类时频资源池中的一个第一类时频资源池。
作为一个实施例,所述K1个第一类时频资源池中的任意一个第一类时频资源池包括正整数个RB。
作为一个实施例,所述K1个第一类时频资源池在时域是周期分布的。
作为一个实施例,所述K1个第一类时频资源池均被配置用于副链路的传输。
作为一个实施例,所述K1个第一类时频资源池中的任意两个第一类时频资源池所占用的时域资源是正交的。
作为一个实施例,不存在一个多载波符号所占用的时域资源同时属于所述K1个第一类时频资源池中的两个第一类时频资源池。
作为一个实施例,本申请中所述多载波符号是SC-FDMA(Single-Carrier Frequency Division Multiple Access,单载波频分复用接入)符号。
作为一个实施例,本申请中所述多载波符号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个实施例,本申请中所述多载波符号是包含CP(Cyclic Prefix,循环前缀)的OFDM符号。
作为一个实施例,本申请中所述多载波符号是包含CP的DFT-s-OFDM(Discrete Fourier Transform Spreading Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩频的正交频分复用)符号。
作为一个实施例,本申请中所述多载波符号是DFT-S-FDMA(Discrete Fourier Transform Spreading Frequency Division Multiple Access,离散傅里叶变换扩频的频分复用接入)符号。
实施例9
实施例9示例了一个K1个第一类无线信号的示意图,如附图9所示。在附图9中,所述K1个第一类无线信号分别采用K1个第一类天线端口组发送,所述K1个第一类天线端口组分别对应K1个空间接收参数;图中所示的K1个第一类波束分别对应K1个第一类天线端口组所分别对应的K1个发送波束赋形向量,或者图中所示的K1个第一类波束分别对应K1个空间接收参数所分别形成的K1接收波束赋形向量;所述K1个第一类无线信号分别对应本申请中的所述K1个第一类时频资源池;本申请中的所述第一无线信号在目标天线端口组被发送。
作为一个实施例,所述K1个第一类天线端口组中至少存在一个第一类天线端口组所对应的发送波束赋形向量与所述目标天线端口组所对应的发送波束赋形向量是相关的。
作为一个实施例,所述K1个空间接收参数中至少存在一个空间接收参数所对应的接收波束赋形向量与所述目标天线端口组所对应的发送波束赋形向量是相关的。
作为一个实施例,所述K1个第一类天线端口组中任意一个第一类天线端口组所对应的发送波束赋形向量与所述目标天线端口组所对应的发送波束赋形向量是相关的。
作为一个实施例,所述K1个空间接收参数中任意一个空间接收参数所对应的接收波束赋形向量与所述目标天线端口组所对应的发送波束赋形向量是相关的。
作为一个实施例,所述K1个空间接收参数中至少存在一个空间接收参数所对应的接收波束赋形向量与所述目标天线端口组所对应的发送波束赋形向量是相关的。
作为一个实施例,所述K1个第一类天线端口组中任意一个第一类天线端口组所对应的发送波束赋形向量所覆盖的空间范围与所述目标天线端口组所对应的发送波束赋形向量所覆盖的空间范围是存在交叠的。
作为一个实施例,所述K1个第一类天线端口组中至少存在一个第一类天线端口组所对应的发送波束赋形向量所覆盖的空间范围与所述目标天线端口组所对应的发送波束赋形向量所覆盖的空间范围是存在交叠的。
作为一个实施例,所述K1个空间接收参数中任意一个空间接收参数所对应的接收波束赋形向量所覆盖的空间范围与所述目标天线端口组所对应的发送波束赋形向量所覆盖的空间范围是存在交叠的。
作为一个实施例,所述K1个空间接收参数中至少存在一个空间接收参数所对应的接收波束赋形向量所覆盖的空间范围与所述目标天线端口组所对应的发送波束赋形向量所覆盖的空间范围是存在交叠的。
作为一个实施例,本申请中的所述波束赋形向量包括{模拟波束赋形向量,数字波束赋形向量,模拟波束赋形矩阵,数字波束赋形矩阵}中的至少之一。
实施例10
实施例10示例了M1个第二类无线信号的示意图,如附图10所示。在附图10中,所述M1个第二类无线信号分别采用M1个第二类天线端口组发送,所述M1个第二类天线端口组分别对应M1个空间接收参数;图中所示的M1个第二类波束分别对应M1个第二类天线端口组所分别对应的M1个发送波束赋形向量,或者图中所示的M1个第二类波束分别对应M1个空间接收参数所分别形成的M1接收波束赋形向量。
作为一个实施例,所述M1个第二类无线信号分别对应M1个第二类时频资源池。
作为该实施例的一个子实施例,所述M1个第二类时频资源池中的任意两个第二类时频资源池在时域是正交的。
作为一个实施例,本申请中的所述第二参考信号是所述M1个第二类无线信号中的一个第二类无线信号,所述第三节点发送所述第二参考信号的第二类天线端口组被用于生成接收本申请中所述第一无线信号的空间接收参数。
实施例11
实施例11示例了第一参考信号和第二参考信号的示意图,如附图11所示。在附图11中,基站发送所述第一参考信号,终端#2发送所述第二参考信号,终端#1采用目标空间接收参数接收所述第一参考信号和所述第二参考信号,并采用所述目标空间接收参数所对应的目标天线端口组发送本申请中的所述第一无线信号。
作为一个实施例,所述终端#1采用相同的天线端口组接收所述第一参考信号和所述第二参考信号。
作为一个实施例,所述目标空间接收参数被用于确定所述目标天线端口组。
作为一个实施例,所述第一参考信号所对应的发送波束赋形向量与所述第一无线信号对应的发送波束赋形向量是相关的。
作为一个实施例,所述第二参考信号所对应的发送波束赋形向量与所述第一无线信号对应的发送波束赋形向量是相关的。
作为一个实施例,所述第一参考信号所对应的发送波束赋形向量所覆盖的空间范围与所述第一无线信号所对应的发送波束赋形向量所覆盖的空间范围是存在交叠的。
作为一个实施例,所述第二参考信号所对应的发送波束赋形向量所覆盖的空间范围与所述第一无线信号所对应的发送波束赋形向量所覆盖的空间范围是存在交叠的。
作为一个实施例,所述目标空间接收参数所对应的接收波束赋形向量所覆盖的空间范围与所述第一无线信号所对应的发送波束赋形向量所覆盖的空间范围是存在交叠的。
作为一个实施例,本申请中的所述波束赋形向量包括{模拟波束赋形向量,数字波束赋形向量,模拟波束赋形矩阵,数字波束赋形矩阵}中的至少之一。
实施例12
实施例12示例了天线端口和天线端口组的示意图,如附图12所示。
在实施例12中,一个天线端口组包括正整数个天线端口;一个天线端口由正整数个天线组中的天线通过天线虚拟化(Virtualization)叠加而成;一个天线组包括正整数根天线。一个天线组通过一个RF(Radio Frequency,射频)chain(链)连接到基带处理器,不同天线组对应不同的RF chain。给定天线端口包括的正整数个天线组内的所有天线到所述给定天线端口的映射系数组成所述给定天线端口对应的波束赋型向量。所述给定天线端口包括的正整数个天线组内的任一给定天线组包括的多根天线到所述给定天线端口的映射系数组成所述给定天线组的模拟波束赋型向量。所述正整数个天线组对应的模拟波束赋型向量对角排列构成所述给定天线端口对应的模拟波束赋型矩阵。所述正整数个天线组到所述给定天线端口的映射系数组成所述给定天线端口对应的数字波束赋型向量。所述给定天线端口对应的波束赋型向量是由所述给定天线端口对应的模拟波束赋型矩阵和数字波束赋型向量的乘积得到的。一个天线端口组中的不同天线端口由相同的天线组构成,同一个天线端口组中的不同天线端口对应不同的波束赋型向量。
附图12中示出了两个天线端口组:天线端口组#0和天线端口组#1。其中,所述天线端口组#0由天线组#0构成,所述天线端口组#1由天线组#1和天线组#2构成。所述天线组#0中的多个天线到所述天线端口组#0的映射系数组成模拟波束赋型向量#0,所述天线组#0到所述天线端口组#0的映射系数组成数字波束赋型向量#0。所述天线组#1中的多个天线和所述天线组#2中的多个天线到所述天线端口组#1的映射系数分别组成模拟波束赋型向量#1和模拟波束赋型向量#2,所述天线组#1和所述天线组#2到所述天线端口组#1的映射系数组成数字波束赋型向量#1。所述天线端口组#0中的任一天线端口对应的波束赋型向量是由所述模拟波束赋型向量#0和所述数字波束赋型向量#0的乘积得到的。所述天线端口组#1中的任一天线端口对应的波束赋型向量是由所述模拟波束赋型向量#1和所述模拟波束赋型向量#2对角排列构成的模拟波束赋型矩阵和所述数字波束赋型向量#1的乘积得到的。
作为一个实施例,一个天线端口组包括一个天线端口。例如,附图12中的所述天线端口组#0包括一个天线端口。
作为该实施例的一个子实施例,所述一个天线端口对应的模拟波束赋型矩阵降维成模拟波束赋型向量,所述一个天线端口对应的数字波束赋型向量降维成一个标量,所述一个天线端口对应的波束赋型向量等于所述一个天线端口对应的模拟波束赋型向量。例如,附图13中的所述数字波束赋型向量#0降维成一个标量,所述天线端口组#0中的天线端口对应的波束赋型向量是所述模拟波束赋型向量#0。
作为一个实施例,一个天线端口组包括多个天线端口。例如,附图12中的所述天线端口组#1包括多个天线端口。
作为上述实施例的一个子实施例,所述多个天线端口对应相同的模拟波束赋型矩阵和不同的数字波束赋型向量。
作为一个实施例,不同的天线端口组中的天线端口对应不同的模拟波束赋型矩阵。
作为一个实施例,一个天线端口组中的任意两个天线端口是QCL的。
作为该实施例的一个子实施例,两个天线端口是QCL的包括:能够从所述两个天线端口中的一个天线端口发送的无线信号的全部或者部分大尺度(Large-scale)特性(Properties)推断出所述两个天线端口中的另一个天线端口发送的无线信号的全部或者部分大尺度特性;所述大尺度特性包括:延时扩展(Delay Spread)、多普勒扩展(Doppler Spread)、多普勒移位(Doppler Shift),路径损耗(Path Loss)、平均增益(Average Gain)中的一种或多种。
作为一个实施例,一个天线端口组中的任意两个天线端口是spatial QCL的。
作为一个实施例,所述K1个第一类无线信号分别对应K1个第一类标识,所述K1个第一类标识中的每个第一类标识被用于确定一个天线端口组。
作为一个实施例,所述K1个第一类无线信号分别对应K1个第一类标识,且所述K1个第一类无线信号分别对应K1个第一类参考信号资源,所述K1个第一类标识中的每个第一类标识被用于确定一个第一类参考信号资源。
作为一个实施例,所述M1个第二类无线信号分别对应M1个第二类标识,所述M1个第二类标识中的每个第二类标识被用于确定一个天线端口组。
作为一个实施例,所述M1个第二类无线信号分别对应M1个第二类标识,且所述M1个第二类无线信号分别对应M1个第二类参考信号资源,所述M1个第二类标识中的每个第二类标识被用于确定一个第二类参考信号资源。
作为该实施例的一个子实施例,所述K1个第一类参考信号资源中的任意一个第一类参考信号资源被用于蜂窝链路上的信道测量。
作为该实施例的一个子实施例,所述M1个第二类参考信号资源中的任意一个第二类参考信号资源被用于副链路上的信道测量。
作为一个实施例,所述K1个第一类无线信号中任意一个第一类无线信号所采用的图样和CSI-RS相同。
作为一个实施例,所述M1个第二类无线信号中任意一个第二类无线信号所采用的图样和CSI-RS相同。
作为一个实施例,所述M1个第二类无线信号中任意一个第二类无线信号所采用的图样和SRS(Sounding Reference Signal,探测参考信号)相同。
作为一个实施例,所述K1个第一类无线信号中任意一个第一类无线信号包括DMRS。
作为一个实施例,所述M1个第二类无线信号中任意一个第二类无线信号包括DMRS。
作为一个实施例,所述K1个第一类无线信号中任意一个第一类无线信号所采用的图样和DMRS相同。
作为一个实施例,所述M1个第二类无线信号中任意一个第二类无线信号所采用的图样和DMRS相同。
作为一个实施例,所述所述K个第一类标识中的每个第一类标识被用于确定一个天线端口组包括:所述K个第一类标识中的每个第一类标识都通过TCI(Transmission Configuration Indication,传输配置指示)被指示。
作为该实施例的一个子实施例,所述TCI是SCI中的一个域(Field)。
作为一个实施例,所述K1个第一类无线信号分别对应K1个第一类标识,所述K个第一类标识中的每个第一类标识被用于确定一个天线端口组包括:所述K个第一类标识中的每个第一类标识都通过SRI被指示。
作为该实施例的一个子实施例,所述SRI是SCI中的一个域。
作为一个实施例,本申请中的所述天线端口组包括正整数个天线端口。
作为一个实施例,本申请中的所述天线端口组对应一组RS资源。
作为该实施例的一个子实施例,所述RS被用于副链路上的信道测量。
作为该实施例的一个子实施例,所述RS被用于终端和终端之间的无线信号的信道测量。
作为该实施例的一个子实施例,所述RS被用于蜂窝链路上的信道测量。
作为该实施例的一个子实施例,所述RS被用于基站和终端之间的无线信号的信道测量。
作为该实施例的一个子实施例,所述RS包括CSI-RS。
作为该实施例的一个子实施例,所述RS包括DMRS。
作为该实施例的一个子实施例,所述RS包括SRS。
实施例13
实施例13示例了一个第一节点中的处理装置的结构框图,如附图13所示。附图13中,第一节点处理装置1300主要由第一接收机1301、第一处理机1302和第一发射机1303组成。
第一接收机1301,接收第一参考信号和第二参考信号;
第一处理机1302,在不超过第一最大功率的范围内确定第一功率;
第一发射机1303,以所述第一功率发送第一无线信号;
实施例13中,所述第一最大功率与针对所述第一参考信号的测量结果有关,并且与针对所述第二参考信号的测量结果无关;所述第一功率与针对所述第二参考信号的测量结果有关。
作为一个实施例,所述第一接收机1301还接收第一信息;所述第一无线信号在第一时频资源集合中被发送,所述第一时频资源集合属于第一时频资源池;所述第一信息被用于确定所述第一时频资源池;或者所述第一信息被用于确定K1个第一类时频资源池,所述第一时频资源池是所述K1个第一类时频资源池中的一个第一类时频资源池;所述第一信息通过空中接口传输。
作为一个实施例,所述第一发射机1303还发送第二信息;所述第二信息被用于指示第一功率差,所述第一功率差等于所述第一最大功率与所述第一功率的差;所述第二信息的接收者包括所述第一参考信号的发送者;所述第二信息通过空中接口传输。
作为一个实施例,所述第一接收机1301还接收K1个第一类无线信号中的(K1-1)个第一类无线信号;所述K1个第一类无线信号分别被用于确定K1个第一类最大功率,所述K1个第一类最大功率分别与所述K1个第一类时频资源池相关联;所述第一最大功率是所述K1个第一类最大功率中与所述第一时频资源池对应的第一类最大功率;所述第一参考信号是所述K1个第一类无线信号中与所述第一最大功率对应的第一类无线信号。
作为一个实施例,所述第一接收机1301还接收M1个第二类无线信号中的(M1-1)个第二类无线信号;所述第二参考信号是所述M1个第二类无线信号中的一个第二类无线信号。
作为一个实施例,所述第一接收机1301包括实施例4中的天线452、接收器454、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前4者。
作为一个实施例,所述第一处理机1302包括实施例4中的多天线发射处理器457、发射处理器468、控制器/处理器459中的至少之一。
作为一个实施例,所述第一发射机1303包括实施例4中的天线452、发射器454、多天线发射处理器457、发射处理器468、控制器/处理器459中的至少前4者。
实施例14
实施例14示例了一个第二节点设备中的处理装置的结构框图,如附图14所示。附图14中,第二节点设备处理装置1400主要由第二发射机1401和第二接收机1402组成。其中,所述第二接收机1402是可选的。
第二发射机1401,发送第一参考信号;
第二接收机1402,接收第二信息;
实施例14中,所述第一参考信号的接收者包括第一节点,所述第一节点接收第二参考信号;第一最大功率与针对所述第一参考信号的测量结果有关,并且与针对所述第二参考信号的测量结果无关;第一功率与针对所述第二参考信号的测量结果有关;所述第一节点在不超过所述第一最大功率的范围内确定第一功率,且所述第一节点以所述第一功率发送第一无线信号;所述第一无线信号的接收者包括所述第二参考信号的发送者;所述第二信息被用于指示第一功率差,所述第一功率差等于所述第一最大功率与所述第一功率的差;所述第二信息通过空中接口传输。
作为一个实施例,所述第二发射机1401还发送第一信息;所述第一无线信号在第一时频资源集合中被发送,所述第一时频资源集合属于第一时频资源池;所述第一信息被用于确定所述第一时频资源池;或者所述第一信息被用于确定K1个第一类时频资源池,所述第一时频资源池是所述K1个第一类时频资源池中的一个第一类时频资源池;所述第一信息通过空中接口传输。
作为一个实施例,所述第二发射机1401还发送K1个第一类无线信号中的(K1-1)个第一类无线信号;所述K1个第一类无线信号分别被用于确定K1个第一类最大功率,所述K1个第一类最大功率分别与所述K1个第一类时频资源池相关联;所述第一最大功率是所述K1个第一类最大功率中与所述第一时频资源池对应的第一类最大功率;所述第一 参考信号是所述K1个第一类无线信号中与所述第一最大功率对应的第一类无线信号。
作为一个实施例,所述第二发射机1401包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器416、控制器/处理器475中的至少前4者。
作为一个实施例,所述第二接收机1402包括实施例4中的天线420、接收器418、多天线接收处理器472、接收处理器470、控制器/处理器475中的至少前4者。
实施例15
实施例15示例了一个第三节点设备中的处理装置的结构框图,如附图15所示。附图15中,所述第三节点设备处理装置1500主要由第三发射机1501和第三接收机1502组成。
第三发射机1501,发送第二参考信号;
第三接收机1502,接收第一无线信号;
实施例15中,所述第一无线信号的发送者接收第一参考信号和所述第二参考信号,第一最大功率与针对所述第一参考信号的测量结果有关,并且与针对所述第二参考信号的测量结果无关;第一功率与针对所述第二参考信号的测量结果有关;所述第一无线信号的发送者在不超过所述第一最大功率的范围内确定所述第一功率,并采用所述第一功率发送所述第一无线信号;所述第一参考信号的发送者和所述第三节点是非共址的。
作为一个实施例,所述第三发射机1501还发送M1个第二类无线信号中的(M1-1)个第二类无线信号;所述第二参考信号是所述M1个第二类无线信号中的一个第二类无线信号。
作为一个实施例,所述第三发射机1501包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器416、控制器/处理器475中的至少前4者。
作为一个实施例,所述第三接收机1502包括实施例4中的天线420、接收器418、多天线接收处理器472、接收处理器470、控制器/处理器475中的至少前4者。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的用户设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种被用于无线通信的第一节点中的方法,其特征在于包括:
    接收第一参考信号和第二参考信号;
    在不超过第一最大功率的范围内确定第一功率;
    以所述第一功率发送第一无线信号;
    其中,所述第一最大功率与针对所述第一参考信号的测量结果有关,并且与针对所述第二参考信号的测量结果无关;所述第一功率与针对所述第二参考信号的测量结果有关。
  2. 根据权利要求1所述的方法,其特征在于包括:
    接收第一信息;
    其中,所述第一无线信号在第一时频资源集合中被发送,所述第一时频资源集合属于第一时频资源池;所述第一信息被用于确定所述第一时频资源池;或者所述第一信息被用于确定K1个第一类时频资源池,所述第一时频资源池是所述K1个第一类时频资源池中的一个第一类时频资源池;所述第一信息通过空中接口传输。
  3. 根据权利要求1或2所述的方法,其特征在于包括:
    发送第二信息;
    其中,所述第二信息被用于指示第一功率差,所述第一功率差等于所述第一最大功率与所述第一功率的差;所述第二信息的接收者包括所述第一参考信号的发送者;所述第二信息通过空中接口传输。
  4. 根据权利要求2或3所述的方法,其特征在于包括:
    接收K1个第一类无线信号中的(K1-1)个第一类无线信号;
    其中,所述K1个第一类无线信号分别被用于确定K1个第一类最大功率,所述K1个第一类最大功率分别与所述K1个第一类时频资源池相关联;所述第一最大功率是所述K1个第一类最大功率中与所述第一时频资源池对应的第一类最大功率;所述第一参考信号是所述K1个第一类无线信号中与所述第一最大功率对应的第一类无线信号。
  5. 根据权利要求1至4中任一权利要求所述的方法,其特征在于包括:
    接收M1个第二类无线信号中的(M1-1)个第二类无线信号;
    其中,所述第二参考信号是所述M1个第二类无线信号中的一个第二类无线信号。
  6. 一种被用于无线通信的第二节点中的方法,其特征在于包括:
    发送第一参考信号;
    其中,所述第一参考信号的接收者包括第一节点,所述第一节点接收第二参考信号;第一最大功率与针对所述第一参考信号的测量结果有关,并且与针对所述第二参考信号的测量结果无关;第一功率与针对所述第二参考信号的测量结果有关;所述第一节点在不超过所述第一最大功率的范围内确定第一功率,且所述第一节点以所述第一功率发送第一无线信号;所述第一无线信号的接收者包括所述第二参考信号的发送者。
  7. 根据权利要求6所述的方法,其特征在于包括:
    发送第一信息;
    其中,所述第一无线信号在第一时频资源集合中被发送,所述第一时频资源集合属于第一时频资源池;所述第一信息被用于确定所述第一时频资源池;或者所述第一信息被用于确定K1个第一类时频资源池,所述第一时频资源池是所述K1个第一类时频资源池中的一个第一类时频资源池;所述第一信息通过空中接口传输。
  8. 根据权利要求6或7所述的方法,其特征在于包括:
    接收第二信息;
    其中,所述第二信息被用于指示第一功率差,所述第一功率差等于所述第一最大功率与所述第一功率的差;所述第二信息通过空中接口传输。
  9. 根据权利要求7或8所述的方法,其特征在于包括:
    发送K1个第一类无线信号中的(K1-1)个第一类无线信号;
    其中,所述K1个第一类无线信号分别被用于确定K1个第一类最大功率,所述K1个第一 类最大功率分别与所述K1个第一类时频资源池相关联;所述第一最大功率是所述K1个第一类最大功率中与所述第一时频资源池对应的第一类最大功率;所述第一参考信号是所述K1个第一类无线信号中与所述第一最大功率对应的第一类无线信号。
  10. 一种被用于无线通信的第三节点中的方法,其特征在于包括:
    发送第二参考信号;
    接收第一无线信号;
    其中,所述第一无线信号的发送者接收第一参考信号和所述第二参考信号,第一最大功率与针对所述第一参考信号的测量结果有关,并且与针对所述第二参考信号的测量结果无关;第一功率与针对所述第二参考信号的测量结果有关;所述第一无线信号的发送者在不超过所述第一最大功率的范围内确定所述第一功率,并采用所述第一功率发送所述第一无线信号;所述第一参考信号的发送者和所述第三节点是非共址的。
  11. 根据权利要求10所述的方法,其特征在于包括:
    发送M1个第二类无线信号中的(M1-1)个第二类无线信号;
    其中,所述第二参考信号是所述M1个第二类无线信号中的一个第二类无线信号。
  12. 一种被用于无线通信的第一节点设备,其特征在于包括:
    第一接收机,接收第一参考信号和第二参考信号;
    第一处理机,在不超过第一最大功率的范围内确定第一功率;
    第一发射机,以所述第一功率发送第一无线信号;
    其中,所述第一最大功率与针对所述第一参考信号的测量结果有关,并且与针对所述第二参考信号的测量结果无关;所述第一功率与针对所述第二参考信号的测量结果有关。
  13. 一种被用于无线通信的第二节点设备,其特征在于包括:
    第二发射机,发送第一参考信号;
    其中,所述第一参考信号的接收者包括第一节点,所述第一节点接收第二参考信号;第一最大功率与针对所述第一参考信号的测量结果有关,并且与针对所述第二参考信号的测量结果无关;第一功率与针对所述第二参考信号的测量结果有关;所述第一节点在不超过所述第一最大功率的范围内确定第一功率,且所述第一节点以所述第一功率发送第一无线信号;所述第一无线信号的接收者包括所述第二参考信号的发送者。
  14. 一种被用于无线通信的第三节点设备,其特征在于包括:
    第三发射机,发送第二参考信号;
    第三接收机,接收第一无线信号;
    其中,所述第一无线信号的发送者接收第一参考信号和所述第二参考信号,第一最大功率与针对所述第一参考信号的测量结果有关,并且与针对所述第二参考信号的测量结果无关;第一功率与针对所述第二参考信号的测量结果有关;所述第一无线信号的发送者在不超过所述第一最大功率的范围内确定所述第一功率,并采用所述第一功率发送所述第一无线信号;所述第一参考信号的发送者和所述第三节点是非共址的。
PCT/CN2019/104049 2018-09-29 2019-09-02 一种被用于无线通信节点中的方法和装置 WO2020063264A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/168,163 US12003443B2 (en) 2018-09-29 2021-02-04 Method and device used for node in wireless communication

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811144019.8 2018-09-29
CN201811144019 2018-09-29
CN201811337331.9A CN110972110B (zh) 2018-09-29 2018-11-12 一种被用于无线通信节点中的方法和装置
CN201811337331.9 2018-11-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/168,163 Continuation US12003443B2 (en) 2018-09-29 2021-02-04 Method and device used for node in wireless communication

Publications (1)

Publication Number Publication Date
WO2020063264A1 true WO2020063264A1 (zh) 2020-04-02

Family

ID=69949284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104049 WO2020063264A1 (zh) 2018-09-29 2019-09-02 一种被用于无线通信节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN115175129A (zh)
WO (1) WO2020063264A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404837A (zh) * 2011-12-07 2012-04-04 华为技术有限公司 设备发射功率控制的方法、装置及系统
US20140274196A1 (en) * 2011-11-28 2014-09-18 Huawei Technologies Co., Ltd. Device-to-device (d2d) power control method, user equipment, base station, and communication system
CN104105185A (zh) * 2013-04-03 2014-10-15 电信科学技术研究院 设备到设备通信中的发射功率控制方法、装置及系统
CN107306446A (zh) * 2016-04-23 2017-10-31 上海朗帛通信技术有限公司 一种窄带移动通信的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140274196A1 (en) * 2011-11-28 2014-09-18 Huawei Technologies Co., Ltd. Device-to-device (d2d) power control method, user equipment, base station, and communication system
CN102404837A (zh) * 2011-12-07 2012-04-04 华为技术有限公司 设备发射功率控制的方法、装置及系统
CN104105185A (zh) * 2013-04-03 2014-10-15 电信科学技术研究院 设备到设备通信中的发射功率控制方法、装置及系统
CN107306446A (zh) * 2016-04-23 2017-10-31 上海朗帛通信技术有限公司 一种窄带移动通信的方法和装置

Also Published As

Publication number Publication date
CN115175129A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
CN110972110B (zh) 一种被用于无线通信节点中的方法和装置
WO2018107998A1 (zh) 一种用于功率调整的用户设备、基站中的方法和装置
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020034848A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2018130125A1 (zh) 一种用于功率调整的用户设备、基站中的方法和装置
WO2018103444A1 (zh) 一种用于功率调整的用户设备、基站中的方法和装置
WO2020057362A1 (zh) 一种被用于无线通信节点中的方法和装置
US11284323B2 (en) Method and device in node for wireless communication
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019228145A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020001228A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020038208A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2021031901A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN111526473B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020063264A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2020029862A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2023160463A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023147763A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023138552A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021027538A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024093883A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023071862A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023036040A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024067798A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023005963A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864063

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.07.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19864063

Country of ref document: EP

Kind code of ref document: A1