WO2021098468A1 - 一种被用于无线通信的方法和设备 - Google Patents

一种被用于无线通信的方法和设备 Download PDF

Info

Publication number
WO2021098468A1
WO2021098468A1 PCT/CN2020/124713 CN2020124713W WO2021098468A1 WO 2021098468 A1 WO2021098468 A1 WO 2021098468A1 CN 2020124713 W CN2020124713 W CN 2020124713W WO 2021098468 A1 WO2021098468 A1 WO 2021098468A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
time offset
offset
wireless signal
residual
Prior art date
Application number
PCT/CN2020/124713
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2021098468A1 publication Critical patent/WO2021098468A1/zh
Priority to US17/744,761 priority Critical patent/US20220278799A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • This application relates to a transmission method and device in a wireless communication system, and in particular to a transmission method and device with a large delay.
  • 3GPP 3rd Generation Partner Project
  • NTN Non-Terrestrial Network
  • 3GPPRAN#80 3rd Generation Partner Project
  • NR New Radio, New Air Interface
  • Timing Advance, TA Timing Advance
  • D2D Device to Device
  • V2X Vehicle-to-Everything, vehicle-to-everything
  • a UE User Equipment
  • the wireless transmission on the secondary link usually needs to be synchronized with the uplink transmission timing.
  • the base station can use, for example, DCI (Downlink Control Information, downlink control information) to adjust any UE's
  • DCI Downlink Control Information, downlink control information
  • the UE in the connected state may not know the actual time slot at which the transmitted uplink radio signal arrives at the base station side (that is, the timing advance used by the UE may not be complete, and some timing advance (Achieved by DCI scheduling).
  • a problem in long-delay communication is that different UEs may have different understandings of the time domain resources configured by the base station for uplink transmission or secondary link transmission. Further, if the UE in an idle state is considered, the problem may be more complicated. Because they have not received TAC (Timing Advance Command) MAC (Media Access Control) CE (Control Element), the wireless transmission on the secondary link usually keeps the timing of the downlink transmission Synchronization, that is, the understanding of the time domain resources configured by the base station is more different from that of the connected UE.
  • TAC Transmission Advance Command
  • MAC Media Access Control
  • this application provides solutions.
  • a large delay scenario such as NTN is used as an example; this application is also applicable to a small delay scenario such as ground transmission, and achieves similar technical effects in a large delay scenario.
  • the use of a unified solution for different scenarios also helps to reduce hardware complexity and cost.
  • This application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first wireless signal is used to indicate synchronization timing of a first time window
  • the first time window includes a plurality of time slots
  • the first information indicates the first time slot from the first time window
  • the second information indicates a first time offset
  • the first target time slot is earlier than the first time slot by a second time offset
  • the second time offset is compared with the first
  • the residual time offset is related, the sum of the first residual time offset plus L1 first time lengths is equal to the first time offset, and the L1 is a positive integer; the first residual time offset
  • the shift amount does not exceed the first time length; the second time offset does not exceed 2 times the first time length.
  • the above method ensures that when the transmission of the second wireless signal reaches the sender of the first wireless signal, the synchronization of the "first time length” level can be achieved, and the interference of the first wireless signal is avoided. The sender is disturbed across the "first length of time”.
  • the above method ensures that the timing advance used by the first node relative to the observed first time window is not too large, and prevents different UEs (regardless of whether they are in a connected state) from responding to the first time window.
  • the understanding of time slots is too different to cause interference.
  • the sum of the second time offset plus L2 first time lengths is equal to the first time offset, the L2 is equal to the L1, or the L2 is greater than the L1 is 1 less.
  • the second time offset is smaller than the first time offset.
  • the first residual time offset when the first residual time offset is less than a first time threshold, the first residual time offset plus the first time length is It is equal to the second time offset; when the first residual time offset is greater than a first time threshold, the first residual time offset is equal to the second time offset.
  • the above aspect can minimize the interference caused by the wireless signal sent by the neighboring UE to the sender of the first wireless signal.
  • the second information indicates a fourth time offset
  • the first time offset is linearly related to the fourth time offset
  • the first time offset is linearly related to the fourth time offset.
  • the linear correlation coefficient from a time offset to the fourth time offset is 1.
  • the first transmitter transmits a third wireless signal in the second target time slot; when the third wireless signal is transmitted in the uplink, the first transmitter An index is used to generate the third wireless signal, and when the third wireless signal is sent in the secondary link, a second index is used to generate the third wireless signal; the second index is subtracted
  • the product of the difference obtained by the first index multiplied by the first time length is equal to the difference of the first time offset minus the second time offset.
  • the third wireless signal is sent in a secondary link, and the third wireless signal indicates the second index.
  • This application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the first wireless signal is used to indicate synchronization timing of a first time window
  • the first time window includes a plurality of time slots
  • the first information indicates the first time slot from the first time window
  • the second information indicates a first time offset
  • the first target time slot is earlier than the first time slot by a second time offset
  • the second time offset is compared with the first
  • the residual time offset is related, the sum of the first residual time offset plus L1 first time lengths is equal to the first time offset, and the L1 is a positive integer; the first residual time offset
  • the shift amount does not exceed the first time length; the second time offset does not exceed 2 times the first time length.
  • the first residual time offset when the first residual time offset is less than a first time threshold, the first residual time offset plus the first time length is It is equal to the second time offset; when the first residual time offset is greater than a first time threshold, the first residual time offset is equal to the second time offset.
  • the second information indicates a fourth time offset
  • the first time offset is linearly related to the fourth time offset
  • the first time offset is linearly related to the fourth time offset.
  • the linear correlation coefficient from a time offset to the fourth time offset is 1.
  • This application discloses a first node used for wireless communication, which is characterized in that it includes:
  • the first receiver receives the first wireless signal, the first information and the second information
  • the first transmitter transmits the second wireless signal in the first target time slot
  • the first wireless signal is used to indicate synchronization timing of a first time window
  • the first time window includes a plurality of time slots
  • the first information indicates the first time slot from the first time window
  • the second information indicates a first time offset
  • the first target time slot is earlier than the first time slot by a second time offset
  • the second time offset is compared with the first
  • the residual time offset is related, the sum of the first residual time offset plus L1 first time lengths is equal to the first time offset, and the L1 is a positive integer; the first residual time offset
  • the shift amount does not exceed the first time length; the second time offset does not exceed 2 times the first time length.
  • This application discloses a second node used for wireless communication, which is characterized in that it includes:
  • the second transmitter sends the first wireless signal, the first information and the second information
  • a second processor which processes interference from a second wireless signal, the second wireless signal being transmitted in the first target time slot
  • the first wireless signal is used to indicate synchronization timing of a first time window
  • the first time window includes a plurality of time slots
  • the first information indicates the first time slot from the first time window
  • the second information indicates a first time offset
  • the first target time slot is earlier than the first time slot by a second time offset
  • the second time offset is compared with the first
  • the residual time offset is related, the sum of the first residual time offset plus L1 first time lengths is equal to the first time offset, and the L1 is a positive integer; the first residual time offset
  • the shift amount does not exceed the first time length; the second time offset does not exceed 2 times the first time length.
  • Fig. 1 shows a flow chart of sending a second wireless signal according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Fig. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of hardware modules of a communication node according to an embodiment of the present application
  • Fig. 5 shows a flow chart of wireless signal transmission according to an embodiment of the present application
  • Fig. 6 shows a schematic diagram of a first time offset, a first time length, and a first residual time offset according to an embodiment of the present application
  • Fig. 7 shows a schematic diagram of a first time offset, a first time window, and a second time offset according to an embodiment of the present application
  • FIG. 8 shows a schematic diagram related to the second time offset and the first residual time offset according to an embodiment of the present application
  • Fig. 9 shows a schematic diagram of a first index and a second index according to an embodiment of the present application.
  • Fig. 10 shows a flowchart of determining a second time offset according to an embodiment of the present application
  • FIG. 11 shows a schematic diagram of communication between an NTN base station and a UE according to an embodiment of the present application
  • Fig. 12 shows a structural block diagram of a processing device used in a first node according to an embodiment of the present application
  • Fig. 13 shows a structural block diagram of a processing device used in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of sending a second wireless signal according to an embodiment of the present application, as shown in FIG. 1.
  • each box represents a step.
  • the first node receives the first wireless signal, the first information, and the second information in step 101; and sends the second wireless signal in the first target time slot in step 102;
  • the first wireless signal is used to indicate the synchronization timing of a first time window
  • the first time window includes a plurality of time slots
  • the first information indicates the first time window from the first time window.
  • a time slot; the second information indicates a first time offset; the first target time slot is earlier than the first time slot by a second time offset; the second time offset Related to the first residual time offset, the sum of the first residual time offset plus L1 first time lengths is equal to the first time offset, and the L1 is a positive integer; the first The residual time offset does not exceed the first time length; the second time offset does not exceed 2 times the first time length.
  • the first node is a UE (User Equipment, User Equipment).
  • the first node is a BS (Base Station, base station).
  • BS Base Station, base station
  • the first time offset is equal to the timing advance when the first node performs uplink transmission.
  • the first time offset is the timing advance when the first node performs uplink transmission when DCI (Downlink Control Information, downlink control information) is not considered.
  • DCI Downlink Control Information, downlink control information
  • the first time offset includes a timing advance when the first node performs uplink transmission configured by higher layer signaling.
  • the sum of the second time offset plus L2 first time lengths is equal to the first time offset, the L2 is equal to the L1, or the L2 is greater than the L1 is 1 less.
  • the second time offset does not exceed the first time offset.
  • the second time offset is equal to the first residual time offset.
  • the second time offset is linearly related to the first residual time offset, and a linear correlation coefficient from the second time offset to the first residual time offset is linear Is 1.
  • the second time offset is equal to the sum of the first residual time offset plus the third time offset.
  • the third time offset is related to the subcarrier interval of the subcarrier occupied by the second wireless signal.
  • the third time offset is configurable.
  • the third time offset is 628 Ts, and the Ts is 30720 times a millisecond.
  • the third time offset is the first time length.
  • the sender of the first wireless signal is a base station
  • the synchronization timing of the first time window is a downlink synchronization timing
  • the first wireless signal includes PSS (Primary Synchronization Signal) and SSS (Secondary Synchronization Signal), and the measurement of the first wireless signal is used to determine the first synchronization signal.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the first wireless signal is sent periodically.
  • the L1 is 1.
  • the L1 is greater than one.
  • the second time offset is equal to the remainder obtained by dividing the first time offset by the first time length.
  • the first time window includes all time slots corresponding to one SFN (System Frame Number) cycle period.
  • the first time offset is greater than the first time length.
  • the first time window includes Q1 consecutive time slots, and the Q1 is a positive integer greater than 1.
  • the duration of any two time slots in the Q1 time slots is the same.
  • the durations of at least two time slots in the Q1 time slots are different.
  • the Q1 is 10240.
  • the duration of any time slot in the Q1 time slots does not exceed 1 millisecond.
  • the duration of each time slot in the Q1 time slots is 1 millisecond.
  • each of the Q1 time slots includes 14 multi-carrier symbols.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol is an SC-FDMA (Single-carrier Frequency-Division Multiple Access, single-carrier frequency division multiple access) symbol.
  • SC-FDMA Single-carrier Frequency-Division Multiple Access, single-carrier frequency division multiple access
  • the multi-carrier symbol is an FBMC (Filterbank Multicarrier) symbol.
  • the synchronization timing of the first time window includes a start time of the first time window and an end time of the first time window.
  • the synchronization timing of the first time window includes the start time of each time slot in the first time window and the end time of each time slot in the first time window.
  • the synchronization timing of the first time window includes the start time of each multi-carrier symbol in the first time window and the end time of each multi-carrier symbol in the first time window.
  • the first information indicates a first time slot group from the first time window; the first time slot group includes a plurality of time slots, and the first time slot is the first time A time slot in a slot group.
  • the first time slot group includes all time slots in a V2X resource pool.
  • the first time length is fixed.
  • the first time length is configurable.
  • the first time length is 1 millisecond.
  • the first time length is the duration of a time slot.
  • the first time length includes and only includes 14 multi-carrier symbols.
  • the first time length is related to the first time offset.
  • the first node is a UE in an RRC (Radio Resource Control, radio resource control) connection state.
  • RRC Radio Resource Control, radio resource control
  • the sender of the first information is a base station (eNB).
  • eNB base station
  • the sender of the first information is an NTN (Non-Terrestrial Network, non-terrestrial network communication) base station.
  • NTN Non-Terrestrial Network, non-terrestrial network communication
  • the NTN base station is a GEO (Geostationary Earth Orbiting, synchronous earth orbit) satellite, MEO (Medium Earth Orbiting, medium earth orbit) satellite, LEO (Low Earth Orbit, low earth orbit) satellite, HEO (Highly Elliptical) Orbiting, one of the highly elliptical orbit satellites and Airborne Platform.
  • GEO Global System for Mobile Communications
  • MEO Medium Earth Orbiting, medium earth orbit
  • LEO Low Earth Orbit, low earth orbit
  • HEO Highly Elliptical Orbiting, one of the highly elliptical orbit satellites and Airborne Platform.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG. 2.
  • Figure 2 illustrates a diagram of a network architecture 200 of 5G NR (New Radio), LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) systems.
  • the 5G NR or LTE network architecture 200 may be referred to as 5GS (5G System)/EPS (Evolved Packet System, evolved packet system) 200 some other suitable terminology.
  • 5GS/EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server)/UDM (Unified Data Management) 220 and Internet Service 230.
  • 5GS/EPS can be interconnected with other access networks, but for simplicity Show these entities/interfaces. As shown in the figure, 5GS/EPS provides packet switching services, but those skilled in the art will easily understand that various concepts presented throughout this application can be extended to networks that provide circuit switching services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an Xn interface (for example, backhaul).
  • the gNB203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive node), or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , Video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine-type communication devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices Video devices
  • digital audio players for example, MP3 players
  • cameras game consoles
  • drones aircraft
  • narrowband IoT devices machine-type communication devices
  • machine-type communication devices land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE201 can also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway)/UPF (User Plane Function, user plane function) 212, and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • MME/AMF/SMF211 is a control node that processes the signaling between UE201 and 5GC/EPC210. In general, MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. P-GW provides UE IP address allocation and other functions.
  • the P-GW/UPF 213 is connected to the Internet service 230.
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and specifically may include the Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching streaming service.
  • the first node in this application is the UE201, and the second node in this application is the gNB203.
  • the second node in this application is the UE201, and the first node in this application is the gNB203.
  • the UE201 corresponds to the first node in this application.
  • the UE 241 corresponds to the receiver of the second wireless signal in this application.
  • the UE 241 is a terminal within the coverage of the second node in this application.
  • the radio link between the UE 201 and the UE 241 corresponds to a side link (Sidelink, SL) in this application.
  • the radio link from the UE 201 to the NR Node B is an uplink.
  • the radio link from the NR Node B to the UE 201 is the downlink.
  • the UE 201 supports transmission on a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • the UE 201 supports transmission in a network with a large delay difference.
  • the UE 201 supports terrestrial network (TN) transmission.
  • TN terrestrial network
  • the UE 241 supports transmission on a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • the UE 241 supports transmission in a network with a large delay difference.
  • the UE 241 supports terrestrial network (TN) transmission.
  • TN terrestrial network
  • the gNB203 corresponds to the second node in this application.
  • the gNB203 supports transmission on a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • the gNB203 supports transmission in a network with a large delay difference.
  • the gNB203 supports terrestrial network (TN) transmission.
  • TN terrestrial network
  • the gNB203 is a MarcoCellular base station.
  • the gNB203 is a micro cell (Micro Cell) base station.
  • the gNB203 is a picocell (PicoCell) base station.
  • the gNB203 is a Femtocell.
  • the gNB203 is a base station device that supports a large delay difference.
  • the gNB203 is a flight platform device.
  • the gNB203 is a satellite device.
  • Fig. 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane and the control plane.
  • Fig. 3 shows the radio protocol architecture for UE and gNB with three layers: layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY301, or physical layer.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between UE and gNB through PHY301.
  • the L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol), packet data Convergence protocol) sublayers 304, which terminate at the gNB on the network side.
  • the UE may have several protocol layers above the L2 layer 305, including a network layer (e.g., IP layer) terminating at the P-GW 213 on the network side and a network layer terminating at the other end of the connection (e.g., Remote UE, server, etc.) at the application layer.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handover support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper-layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception caused by HARQ (Hybrid Automatic Repeat reQuest).
  • HARQ Hybrid Automatic Repeat reQuest.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and using RRC signaling between the gNB and the UE to configure the lower layer.
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the L2 layer 305 belongs to a higher layer.
  • the RRC sublayer 306 in the L3 layer belongs to a higher layer.
  • the first information in this application is generated in the RRC306.
  • the second information in this application is generated in the MAC302.
  • the second information in this application is generated in the RRC306 and the MAC302.
  • the first wireless signal in this application is generated in the
  • the first wireless signal in this application is generated in the PHY301.
  • the first wireless signal in this application is generated in the MAC302.
  • the first wireless signal in this application is generated in the RRC306.
  • Embodiment 4 shows a schematic diagram of hardware modules of a communication node according to an embodiment of the present application, as shown in FIG. 4.
  • FIG. 4 is a block diagram of a first communication device 450 and a second communication device 410 that communicate with each other in an access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmitting processor 468, a receiving processor 456, a multi-antenna transmitting processor 457, a multi-antenna receiving processor 458, and a transmitter/receiver 454 And antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter/receiver 418, and an antenna 420.
  • the upper layer data packet from the core network is provided to the controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels. Multiplexing, and allocation of radio resources to the first communication device 450 based on various priority measures.
  • the controller/processor 475 is also responsible for retransmission of lost packets and signaling to the first communication device 450.
  • the transmission processor 416 and the multi-antenna transmission processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 410, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for keying (QPSK), M-phase shift keying (M-PSK), and M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmission processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes it with a reference signal (e.g., pilot) in the time domain and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate The physical channel that carries the multi-carrier symbol stream in the time domain.
  • IFFT inverse fast Fourier transform
  • the multi-antenna transmission processor 471 performs a transmission simulation precoding/beamforming operation on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmission processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated on the radio frequency carrier, and converts the radio frequency stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receiving processor 458 performs reception analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a Fast Fourier Transform (FFT) to convert the baseband multi-carrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the physical layer data signal and reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after the multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial flow of the destination. The symbols on each spatial stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decision to recover the upper layer data and control signals transmitted by the second communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, Control signal processing to recover upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals can also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements the header based on the radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels, implement L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets and signaling to the second communication device 410.
  • the transmission processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmission processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is subjected to an analog precoding/beamforming operation in the multi-antenna transmission processor 457 and then provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then supplies it to the antenna 452.
  • the function at the second communication device 410 is similar to that in the transmission from the second communication device 410 to the first communication device 450.
  • Each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to the multi-antenna receiving processor 472 and the receiving processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • the memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 In the transmission from the first communication device 450 to the second communication device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, and header decompression. , Control signal processing to recover upper layer data packets from UE450.
  • the upper layer data packet from the controller/processor 475 may be provided to the core network.
  • the first communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to The at least one processor is used together, and the first communication device 450 means at least: receiving a first wireless signal, first information, and second information; sending a second wireless signal in a first target time slot; wherein, the first communication device A wireless signal is used to indicate the synchronization timing of a first time window, the first time window includes a plurality of time slots, the first information indicates the first time slot from the first time window; the second time window The information indicates a first time offset; the first target time slot is earlier than the first time slot by a second time offset; the second time offset is compared with the first residual time offset In relation, the sum of the first residual time offset plus L1 first time lengths is equal to the first time offset, and the L1 is a positive integer; the first residual time offset does not exceed all The first time length; the second time offset does not exceed 2 times the first time length.
  • the first communication device 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: receiving the first A wireless signal, first information and second information; a second wireless signal is sent in the first target time slot; wherein, the first wireless signal is used to indicate the synchronization timing of the first time window, and the first time
  • the window includes a plurality of time slots, the first information indicates a first time slot from the first time window; the second information indicates a first time offset; the first target time slot and the first time slot A time slot is earlier than the second time offset; the second time offset is related to the first residual time offset, the first residual time offset plus L1 of the first time length And is equal to the first time offset, the L1 is a positive integer; the first residual time offset does not exceed the first time length; the second time offset does not exceed two times the The first length of time.
  • the second communication device 410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to Use at least one processor together.
  • the second communication device 410 means at least: sending a first wireless signal, first information and second information; processing interference from a second wireless signal, the second wireless signal being transmitted in the first target time slot; wherein, The first wireless signal is used to indicate the synchronization timing of a first time window, the first time window includes a plurality of time slots, and the first information indicates the first time slot from the first time window; so
  • the second information indicates a first time offset; the first target time slot is earlier than the first time slot by a second time offset; the second time offset is compared with the first residual time
  • the offset is related, and the sum of the first residual time offset plus L1 first time lengths is equal to the first time offset, and the L1 is a positive integer; the first residual time offset Does not exceed the first time length; the second time offset does not exceed 2 times
  • the second communication device 410 device includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending The first wireless signal, the first information and the second information; the interference from the second wireless signal is processed, and the second wireless signal is transmitted in the first target time slot; wherein, the first wireless signal is used to indicate the first Synchronization timing of a time window, the first time window includes multiple time slots, the first information indicates the first time slot from the first time window; the second information indicates the first time offset The first target time slot is earlier than the first time slot by a second time offset; the second time offset is related to the first residual time offset, and the first residual time The sum of the offset plus L1 first time lengths is equal to the first time offset, where L1 is a positive integer; the first residual time offset does not exceed the first time length; The second time offset does not exceed 2 times the first time length.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the second communication device 410 corresponds to the receiver of the second wireless signal in this application.
  • the first communication device 450 is a UE.
  • the second communication device 410 is a base station.
  • the second communication device 410 is a UE.
  • the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive the first wireless signal.
  • One information and second information; the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 are used to transmit the first wireless signal , The first information and the second information.
  • the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 are used to transmit the second wireless signal; the The antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 are used to receive the second wireless signal.
  • At least one of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 is used to transmit the third Wireless signal; the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 are used to receive the third wireless signal.
  • Embodiment 5 illustrates a wireless signal transmission flowchart according to an embodiment of the present application, as shown in FIG. 5.
  • the second node N2 is the maintenance base station of the serving cell of the first node U1; the second node N2 and the first node U1 communicate through a Uu port link; the first node U1 and the third node U3 communicate through a secondary link Communicate; it is specifically stated that the order in this example does not limit the order of signal transmission and the order of implementation in this application.
  • step S101 For the first node U1, received in step S101 the first wireless signal; receiving the first information and second information in step S102; step S103 in the wireless signal is transmitted in a second time slot of the first target;
  • step S201 transmits a first radio signal; transmitting first information and second information in step S202; interference from the second radio signal processing in step S203.
  • the first wireless signal is used to indicate the synchronization timing of a first time window, the first time window includes a plurality of time slots, and the first information indicates the first time window from the first time window.
  • the phrase processing the interference from the second wireless signal includes: instructing the terminal (outside the first node U1) to increase the transmission power to increase the SINR of the useful signal received in the interfered time slot ( Signal to Interference and Noise Ratio, signal to interference and noise ratio).
  • the phrase processing the interference from the second wireless signal includes: instructing the first node U1 to reduce the transmission power of the second signal to increase the SINR of the useful signal received in the interfered time slot.
  • the phrase processing interference from the second wireless signal includes: avoiding receiving useful signals in the interfered time slot through scheduling.
  • the phrase processing the interference from the second wireless signal includes: adjusting the space receiving parameter in the interfered time slot to receive the useful signal, and the space receiving parameter in the interfered time slot suppresses the second wireless signal. signal.
  • the spatial reception parameter includes an analog (Analog) reception beam, and the first node U1 is outside the coverage of the spatial reception parameter of the interfered time slot.
  • the spatial reception parameter includes a digital (Digital) reception beam
  • the first node U1 is outside the coverage of the spatial reception parameter of the interfered time slot.
  • the interfered time slot is a time slot after the first target time slot is delayed by the first time offset.
  • the time slot corresponding to the interfered time slot in the first time window is L2 time slots of the first time length before the first time slot, and the second time offset is added to The sum of the upper L2 first time lengths is equal to the first time offset.
  • the L2 is equal to the L1, or the L2 is one less than the L1.
  • the second information indicates a fourth time offset
  • the first time offset is linearly related to the fourth time offset
  • the first time offset reaches the first time offset.
  • the linear correlation coefficient of the four time offsets is 1.
  • the fourth time offset is related to the subcarrier bandwidth of the subcarrier occupied by the second wireless signal.
  • the second information includes TAC (Timing Advance Command) included in RAR (Random Access Response), and the fourth time offset is the second The time adjustment amount indicated by the information; the first time offset is equal to the fourth time offset.
  • TAC Transmission Advance Command
  • RAR Random Access Response
  • the second information indicates L3, the L3 is a non-negative integer, the fourth time offset is L3 time units, and each of the L3 time units
  • the time unit is the reciprocal of the sub-carrier bandwidth of the sub-carrier occupied by the second wireless signal divided by 128, the unit of each time unit in the L3 time units is seconds, and the second wireless signal occupied
  • the unit of the sub-carrier bandwidth of the sub-carrier is Hz (Hertz).
  • the second information includes first sub-information
  • the first sub-information indicates a first time adjustment amount
  • the fourth time offset is linearly related to the first time adjustment amount
  • the first sub-information is broadcast.
  • the first sub-information belongs to SIB (System Information Block, system information block).
  • SIB System Information Block, system information block.
  • the first sub-information is adopted by a first UE group, and the first node is a UE in the first UE group.
  • the first time adjustment amount is related to the geographic location of the first node.
  • the first time adjustment is related to the distance between the sender of the first wireless signal and a first reference point, and the first reference point is in the ground area to which the first node belongs A location closest to the sender of the first wireless signal.
  • the first time adjustment is equal to the quotient obtained by dividing the distance between the sender of the first wireless signal and the first reference point by the speed of light.
  • the L3 is not greater than 3846.
  • the second information includes TAC outside of the RAR (that is, not belonging to the RAR), the fourth time offset is linearly related to the time adjustment indicated by the second information, and the first node The sum of the timing advance used for uplink transmission before applying the second information plus the fourth time offset is equal to the first time offset.
  • the second information indicates L4, where L4 is a non-negative integer, and the fourth time offset is L4-31 time units, among the L4 time units
  • Each time unit is the reciprocal of the sub-carrier bandwidth of the sub-carrier occupied by the second wireless signal divided by 128, the unit of each time unit in the L3 time units is seconds, and the second wireless signal
  • the unit of the sub-carrier bandwidth of the occupied sub-carrier is Hz (Hertz).
  • the L4 is not greater than 63.
  • the sub-carrier bandwidth of the sub-carrier occupied by the second wireless signal is FF times 15 kHz (kilohertz), and the FF is a positive integer power of two.
  • the first time offset is TA+K offset ⁇ T 1 , where TA, K offset , and T 1 are respectively the timing advance, the number of delay time slots, and the second wireless signal The duration of the occupied time slot; the second information indicates TA and K offset .
  • the first node U1 is in an RRC connected state.
  • the first time offset is K offset ⁇ T 1 , where K offset is as defined above as T 1.
  • the first node U1 is in an RRC idle state.
  • the K offset is common to the cell.
  • the K offset is specific to a terminal group, the terminal group includes a positive integer number of terminals, and the first node U1 belongs to the terminal group.
  • the TA is indicated by a timing advance command.
  • the first residual time offset is mod (first time offset, T 1 ), where mod (A, B) represents the remainder obtained by dividing A by B.
  • the second time offset is the first residual time offset.
  • the second time offset is (T 1 + the first residual time offset).
  • TAC TAC
  • the fourth time offset is ta I +K offset ⁇ T 1 .
  • the second node N2 is a base station (eNB).
  • eNB base station
  • the second node N2 is an NTN (Non-Terrestrial Network, non-terrestrial network communication) base station.
  • NTN Non-Terrestrial Network, non-terrestrial network communication
  • the NTN base station is a GEO (Geostationary Earth Orbiting, synchronous earth orbit) satellite, MEO (Medium Earth Orbiting, medium earth orbit) satellite, LEO (Low Earth Orbit, low earth orbit) satellite, HEO (Highly Elliptical) Orbiting, one of the highly elliptical orbit satellites and Airborne Platform.
  • GEO Global System for Mobile Communications
  • MEO Medium Earth Orbiting, medium earth orbit
  • LEO Low Earth Orbit, low earth orbit
  • HEO Highly Elliptical Orbiting, one of the highly elliptical orbit satellites and Airborne Platform.
  • the first node U1 is a user equipment (UE).
  • UE user equipment
  • the third node U3 is a device used for sidelink communication.
  • the second node N2 is the reference synchronization source of the first node U1.
  • the first node U1 is the reference synchronization source of the third node U3.
  • the reference synchronization source refers to a node to which a user equipment (UE) synchronization timing refers.
  • UE user equipment
  • the first wireless signal indicates a system frame number (SystemFrameNumber, SFN).
  • the first information is all or part of MAC (Media Access Control) layer signaling.
  • MAC Media Access Control
  • the first information includes all or part of MAC (Media Access Control) RAR (Radom Access Response, random access response).
  • MAC Media Access Control
  • RAR Random Access Response, random access response
  • the first information includes TAC (Timing Advance Command, Timing Advance Command) MAC (Media Access Control) CE (Control Element).
  • the first information includes MIB (Master Information Block, master information block) and TAC (Timing Advance Command, timing advance command).
  • MIB Master Information Block, master information block
  • TAC Timing Advance Command, timing advance command
  • the first time window is determined according to the reception synchronization timing of the first receiver N1.
  • the first time window is a cycle (cycle) of a system frame number (SystemFrameNumber, SFN).
  • the first time window occurs periodically, the period of the first time window is Q1 time slots, and the P is a positive integer.
  • the Q1 is 1024, and the Q1 time slots are continuous.
  • the Q1 is less than 1024, there is at least one time slot interval, and one time slot before the time slot interval and one time slot after the time slot interval respectively belong to the first time window.
  • the Q1 is 10240, and the Q1 time slots are continuous.
  • the Q1 is less than 10240, there is at least one time slot interval, and one time slot before the time slot interval and after the time slot interval respectively belong to the first time window.
  • the second wireless signal includes a part of MasterInformationBlock-SL.
  • the second wireless signal includes a part of MasterInformationBlock-SL-V2X.
  • the second wireless signal is used to determine the synchronization timing of the secondary link.
  • the second wireless signal is used to indicate a frame number for transmitting SLSS (Sidelink synchronizing signal, secondary link synchronization signal) and SL-BCH (Sidelink Broadcast Channel).
  • SLSS Segment synchronizing signal, secondary link synchronization signal
  • SL-BCH Seglink Broadcast Channel
  • the second wireless signal includes a direct frame number (DirectFrameNumber, DFN), the direct frame number occupies X bits, and the X is a positive integer.
  • DFN direct frame number
  • the X is equal to 10.
  • the second wireless signal includes a direct subframe number (DirectSubframeNumber), and the direct subframe number is a positive integer.
  • DirectSubframeNumber direct subframe number
  • the range of the direct subframe number is an integer from 0 to 9.
  • Embodiment 6 illustrates a schematic diagram of the first time offset, the first time length, and the first residual time offset according to an embodiment of the present application, as shown in FIG. 6.
  • the first time offset includes L1 first time lengths and a first residual time offset, wherein the first residual time offset is not greater than the first time length.
  • the L1 is an integer not greater than 16 and not less than 0.
  • the first time length is fixed.
  • the first time length is configurable.
  • the first time length is 1 millisecond.
  • the first time length is the duration of a time slot.
  • the first time length includes and only includes 14 multi-carrier symbols.
  • the first time length is related to the first time offset.
  • Embodiment 7 illustrates a schematic diagram of the first time offset, the first time window, and the second time offset according to an embodiment of the present application, as shown in FIG. 7.
  • the squares filled with cross lines, the squares filled with diagonal lines, the squares filled with horizontal lines and the squares filled with dots represent the first reference time slot, the first time slot, the first target time slot and The second reference time slot.
  • the second node maintains the first reference time window
  • the first wireless signal sent by the second node reaches the first node side after the first propagation delay
  • the first node is based on the received first wireless signal Determine a first time window, where the first time window is a peer on the first node side after the first reference time window has passed the first propagation delay.
  • the second node sends first information and second information to the first node, where the first information indicates the first reference time slot in the first reference time window, that is, the first time slot in the first time window
  • the second information indicates the first time offset; as a response to the second information, the first node sends a second wireless signal in the first target time slot.
  • the first target time slot is earlier than the first time slot by a second time offset, instead of the first time offset.
  • the first time offset may not fully compensate the uplink timing advance (the deviation is indicated by DCI); compared to the second reference time slot (that is, the second time offset is sent ahead of the first time offset) Wireless signal), the first target time slot is closer to the first time slot; because the first time slot is the synchronization timing determined according to the signal sent by the second node, the synchronization timing difference between the neighboring UEs to the first time slot is not the same. Therefore, the first target time slot selected by neighboring UEs has little difference, which avoids the interference caused by neighboring UEs' different understanding of the first target time slot.
  • Embodiment 8 illustrates a schematic diagram of the relationship between the second time offset and the first residual time offset according to an embodiment of the present application, as shown in FIG. 8.
  • the squares filled with diagonal lines, the squares filled with horizontal lines, the squares filled with cross lines, and the squares identified by the thick-line frame respectively represent the first time slot, the first configuration time slot, and the second configuration time. Slot and the third configuration slot.
  • the first node determines the first time slot according to the received first information, determines the first residual time offset according to the received second information, and then transmits the second wireless time slot in the first target time slot.
  • the first target time slot is earlier than the first time slot by a second time offset; when the first residual time offset is less than a first time threshold, the first residual time The sum of the offset plus the first time length is equal to the second time offset; when the first residual time offset is greater than the first time threshold, the first residual time offset is equal to the second time offset The offsets are equal.
  • the first time offset indicated by the second information is the first configuration offset
  • the corresponding first residual time offset t2 is less than the first time threshold
  • the second time offset is the first residual time offset.
  • the sum of the time offset plus the first time length, namely t1; that is, the first target time slot is the first configuration time slot.
  • the first time offset indicated by the second information is the second configuration offset
  • the corresponding first residual time offset t3 is less than the first time threshold
  • the second time offset is the first residual time offset.
  • the time offset is t3; that is, the first target time slot is the second configuration time slot.
  • the first residual time offset when the first residual time offset is equal to the first time threshold, the first residual time offset plus the sum of the first time length and the second time offset equal.
  • the first residual time offset is equal to the first time threshold
  • the first residual time offset is equal to the second time offset
  • the first time threshold is linearly related to the first time length.
  • the first time threshold is half of the first time length.
  • the first time threshold is 1/3 of the first time length.
  • the first time threshold is configurable.
  • the first configuration offset and the second configuration offset are respectively the uplink timing advances of two adjacent UEs. If the second time offset is fixed to the first With the residual time offset, the two UEs respectively select the first configuration time slot and the third configuration time slot as the corresponding transmission time slots of the first time slot, which causes greater interference.
  • An advantage of Embodiment 8 is that the time slot occupied by the second wireless signal is flexibly selected according to the first residual time offset, so as to maximize the overlap time of the first target time slot selected by adjacent UEs and reduce interference.
  • the first time length is one of the first candidate length and the second candidate length.
  • the first time length is the first time interval.
  • the first time length is the second candidate length.
  • the foregoing embodiment can avoid the first time length of the adjacent UE's understanding of the first target time slot caused by the first residual time offset being too close to the first time threshold.
  • the first time interval is half of the second candidate length.
  • the first time interval is one third of the second candidate length.
  • the first candidate length is the duration of one time slot.
  • the second candidate length is half of the first candidate length.
  • the second candidate length is less than the first candidate length
  • the first candidate length includes 14 multi-carrier symbols, and the sub-carrier interval of the 14 multi-carrier symbols is the same as the sub-carrier interval of the sub-carrier occupied by the second wireless signal.
  • Embodiment 9 illustrates a schematic diagram of the first index and the second index according to an embodiment of the present application, as shown in FIG. 9.
  • the square filled with diagonal lines is the second target time slot.
  • the first transmitter in the first node transmits the third wireless signal in the second target time slot; when the third wireless signal is transmitted in the uplink, the first index is used to generate the third wireless signal Signal, when the third wireless signal is sent in the secondary link, the second index is used to generate the third wireless signal; the difference obtained by subtracting the first index from the second index is multiplied by The product obtained by the first time length is equal to the difference of the first time offset minus the second time offset.
  • the second node is the target receiver of the third wireless signal.
  • the third wireless signal when the third wireless signal is sent in the uplink, the third wireless signal is scheduled by the DCI sent by the second node.
  • the first index is the index of the second target time slot in the first time window.
  • the second index is an index of the second target time slot in a second time window, and the time length of the second time window ahead of the first time window is equal to that of the second time window.
  • the product of the difference obtained by subtracting the first index from the index multiplied by the first time length is equal.
  • the third wireless signal indicates the first index.
  • the third wireless signal indicates the difference between the second index and the first index.
  • the first time window is an SFN period
  • the first index is s 1 + f 1 ⁇ 10
  • s 1 and f 1 are respectively the second target time slot in the first The time slot number in the radio frame to which the second target time slot belongs in the first time window and the frame number in the first time window of the radio frame to which the second target time slot belongs in the time window, where s 1 is not It is greater than 9 and not less than 0, and f 1 is not greater than 1023 and not less than 0.
  • the first time window is a DFN (Direct Frame Number, Direct Frame Number) period
  • the first index is s 2 + f 2 ⁇ 10, where s 2 and f 2 are respectively the first 2.
  • the time slot number of the radio frame to which the target time slot belongs in the second time window and the radio frame to which the second target time slot belongs in the second time window is in the first time window
  • the first time window is an SFN period
  • the first index is that the radio frame to which the second target time slot belongs in the first time window is in the first time window
  • the first index is not greater than 1023 and not less than 0.
  • the first time window is a DFN (Direct Frame Number) period
  • the first index is the radio to which the second target time slot belongs in the second time window.
  • the frame number of the frame in the first time window, and the first index is not greater than 1023 and not less than 0.
  • the first index is used to generate an initial value of a first scrambling code sequence
  • the first scrambling code sequence is used to scramble a first bit block
  • the third wireless signal carries the The first bit block.
  • the initial value of the first scrambling code sequence is linearly related to the first index.
  • the linear correlation coefficient from the initial value of the first scrambling code sequence to the first index is 512.
  • the first index is used to generate a CRC (Cyclic Redundance Check) of a first bit block
  • the third wireless signal carries the first bit block
  • the first index is used to generate the initial value of the CRC (Cyclic Redundance Check, cyclic redundancy check) of the first bit block.
  • CRC Cyclic Redundance Check, cyclic redundancy check
  • the third wireless signal is obtained after the first bit block sequentially undergoes channel coding, scrambling, modulation, layer mapping, precoding, and resource mapping to generate OFDM symbols.
  • the third wireless signal is obtained after the first bit block undergoes scrambling, CRC encoding, channel encoding, re-scrambling, modulation, resource mapping, and OFDM signal generation.
  • the first index is used to generate the initial value of the CRC of the first bit block.
  • the second index includes a direct frame number (SFN).
  • SFN direct frame number
  • the second index is used to generate an initial value of a second scrambling code sequence
  • the second scrambling code sequence is used to scramble a second bit block
  • the third wireless signal carries the The second bit block.
  • the initial value of the second scrambling code sequence is linearly related to the second index.
  • the linear correlation coefficient from the initial value of the second scrambling code sequence to the second index is 512.
  • the second index is used to generate a CRC (Cyclic Redundance Check, cyclic redundancy check) of a second bit block, and the third wireless signal carries the second bit block.
  • CRC Cyclic Redundance Check, cyclic redundancy check
  • the second index is used to generate the initial value of the CRC (Cyclic Redundance Check, cyclic redundancy check) of the second bit block.
  • the second index is used to generate the initial value of the CRC of the second bit block.
  • the third wireless signal is obtained after the second bit block sequentially undergoes channel coding, scrambling, modulation, layer mapping, precoding, and resource mapping to generate OFDM symbols.
  • Embodiment 10 illustrates a flowchart of determining the second time offset according to an embodiment of the present application, as shown in FIG. 10.
  • step S1001 the first node determines whether the first residual time offset is less than the first time threshold; if so, in step S1002, the first node sets the second time offset to the first The residual time offset plus the sum of the first time length; if so, in step S1003, the first node sets the second time offset as the first residual time offset.
  • the first time threshold is half of the first time length.
  • the step S1001, the step S1002, and the step S1003 are executed by the first transmitter in the first node.
  • the first time length is one of the first candidate length and the second candidate length.
  • the first time length is the first time interval.
  • the first time length is the second candidate length.
  • the foregoing embodiment can avoid the first time length of the adjacent UE's understanding of the first target time slot caused by the first residual time offset being too close to the first time threshold.
  • the first time interval is half of the second candidate length.
  • the first time interval is one third of the second candidate length.
  • the first candidate length is the duration of one time slot.
  • the second candidate length is half of the first candidate length.
  • the second candidate length is less than the first candidate length
  • the first candidate length includes 14 multi-carrier symbols, and the sub-carrier interval of the 14 multi-carrier symbols is the same as the sub-carrier interval of the sub-carrier occupied by the second wireless signal.
  • Embodiment 11 illustrates a schematic diagram of communication between an NTN base station and a UE according to an embodiment of the present application, as shown in FIG. 11.
  • base station N2 maintains the serving cells of UE0, UE2 and UE3; the links between base station N2 and UE0, UE2 and UE3 are respectively identified by dashed lines A1, A2 and A5.
  • UE3 and base station N2 are the first node and the second node, respectively, UE3 transmits the second wireless signal in the first target time slot, and base station N2 receives the second wireless signal from the time-frequency resource occupied by the second wireless signal.
  • the base station N2 ensures the reception quality of the useful signal by configuring the transmission power of the second wireless signal and the transmission power of the useful signal.
  • the base station N2 forms a receive beam for the useful signal through receive beamforming processing, and makes the UE3 out of the receive beam, thereby reducing interference from the second wireless signal.
  • the base station N2 is the second node, and UE0 and UE2 are two adjacent UEs; the first residual time offset determined by UE0 as the first node is less than the first time threshold, and the determined second time offset The amount is the sum of the first residual time offset plus the first time length; the first residual time offset determined by UE2 as the first node is greater than the first time threshold, and the determined second time offset is the first residual time offset Time offset.
  • the above method can ensure that UE0 and UE2 have the greatest overlap in the selection of the first target time slot, avoiding interference caused by UE0 and UE2's incomprehension of the first time slot; in addition, the above method also helps UE1 to select the first time slot from UE0 and UE2. Select the synchronization reference source in UE2 (to avoid confusion caused by excessive DFN desynchronization between UE0 and UE).
  • Embodiment 12 illustrates a structural block diagram of a processing device used in the first node according to an embodiment of the present application; as shown in FIG. 12.
  • the processing device 1200 in the first node includes a first receiver 1201 and a first transmitter 1202.
  • the first receiver 1201 receives the first wireless signal, the first information and the second information; the first transmitter 1202 transmits the second wireless signal in the first target time slot; wherein, the first wireless signal is used to indicate the first wireless signal Synchronization timing of a time window, the first time window includes multiple time slots, the first information indicates the first time slot from the first time window; the second information indicates the first time offset
  • the first target time slot is earlier than the first time slot by a second time offset; the second time offset is related to the first residual time offset, and the first residual time
  • the sum of the offset plus L1 first time lengths is equal to the first time offset, where L1 is a positive integer; the first residual time offset does not exceed the first time length; The second time offset does not exceed 2 times the first time length.
  • the first residual time offset when the first residual time offset is less than the first time threshold, the first residual time offset plus the sum of the first time length and the second time offset Equal; when the first residual time offset is greater than the first time threshold, the first residual time offset is equal to the second time offset.
  • the second information indicates a fourth time offset
  • the first time offset is linearly related to the fourth time offset
  • the first time offset reaches the first time offset.
  • the linear correlation coefficient of the four time offsets is 1.
  • the first transmitter transmits the third wireless signal in the second target time slot; when the third wireless signal is transmitted in the uplink, the first index is used to generate the first index Three wireless signals, when the third wireless signal is sent in the secondary link, the second index is used to generate the third wireless signal; the difference obtained by subtracting the first index from the second index The product obtained by multiplying the first time length is equal to the difference between the first time offset minus the second time offset.
  • the third wireless signal is sent in a secondary link, and the third wireless signal indicates the second index.
  • the first node 1200 is a user equipment.
  • the first node 1200 is a user equipment that supports a large delay difference.
  • the first node 1200 is a user equipment supporting NTN.
  • the first node 1200 is an aircraft device.
  • the first transmitter 1202 includes the antenna 452 in Figure 4 of the present application, a transmitter/receiver 454, a multi-antenna transmitter processor 457, a transmission processor 468, and a controller/processor 459, At least one of the storage 460 and the data source 467.
  • the first transmitter 1202 includes the antenna 452 in Figure 4 of the present application, a transmitter/receiver 454, a multi-antenna transmitter processor 457, a transmission processor 468, and a controller/processor 459, Storage 460 and data source 467.
  • the first receiver 1401 includes the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and the data shown in FIG. 4 of the present application. At least the top five in source 467.
  • the first receiver 1401 includes the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and the data shown in FIG. 4 of the present application.
  • Source 467 at least the first four.
  • the first receiver 1401 includes the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and the data shown in FIG. At least the first three of Source 467.
  • Embodiment 13 illustrates a structural block diagram of a processing device used in the second node according to an embodiment of the present application; as shown in FIG. 13.
  • the processing device 1300 in the second node includes a second transmitter 1301 and a second processor 1302.
  • the second transmitter 1301 transmits the first wireless signal, the first information and the second information; the second processor 1302 processes the interference from the second wireless signal, and the second wireless signal is transmitted in the first target time slot; wherein, The first wireless signal is used to indicate the synchronization timing of a first time window, the first time window includes a plurality of time slots, and the first information indicates the first time slot from the first time window; so The second information indicates a first time offset; the first target time slot is earlier than the first time slot by a second time offset; the second time offset is compared with the first residual time The offset is related, and the sum of the first residual time offset plus L1 first time lengths is equal to the first time offset, and the L1 is a positive integer; the first residual time offset Does not exceed the first time length; the second time offset does not exceed 2 times the first time length.
  • the first residual time offset when the first residual time offset is less than the first time threshold, the first residual time offset plus the sum of the first time length and the second time offset Equal; when the first residual time offset is greater than the first time threshold, the first residual time offset is equal to the second time offset.
  • the second information indicates a fourth time offset
  • the first time offset is linearly related to the fourth time offset
  • the first time offset reaches the first time offset.
  • the linear correlation coefficient of the four time offsets is 1.
  • the second node 1300 is a base station device.
  • the second node 1300 is a base station device supporting a large delay difference.
  • the second node 1300 is a base station device supporting NTN.
  • the second node 1300 is an aircraft device.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, the transmission processor 416, and the controller/processor 475.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475.
  • the second processor 1302 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475.
  • the second processor 1302 includes the controller/processor 475.
  • User equipment, terminals and UE in this application include, but are not limited to, drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication devices, wireless sensors, network cards, Internet of Things terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminal, eMTC (enhanced MTC) terminal, data card, internet card, in-vehicle communication equipment, low-cost mobile phone, low cost Cost of wireless communication equipment such as tablets.
  • MTC Machine Type Communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes, but is not limited to, macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B), NR Node B, TRP (Transmitter Receiver Point) and other wireless communications equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种用于无线通信中的方法和设备。第一节点接收第一无线信号,第一信息和第二信息;在第一目标时隙中发送第二无线信号;其中,所述第一无线信号被用于指示第一时间窗的同步定时,所述第一信息从所述第一时间窗中指示第一时隙;所述第二信息指示第一时间偏移量;所述第一目标时隙与所述第一时隙相比提前了第二时间偏移量;所述第二时间偏移量与第一残余时间偏移量有关,所述第一残余时间偏移量加上L1个第一时间长度的和与所述第一时间偏移量相等,所述L1是正整数;所述第一残余时间偏移量不超过所述第一时间长度;所述第二时间偏移量不超过2倍的所述第一时间长度。本申请能够避免由于对时域资源的理解不一致而产生的干扰。

Description

一种被用于无线通信的方法和设备 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及大时延的传输方法和装置。
背景技术
面对越来越高的通信需求,3GPP(3rd GenerationPartner Project,第三代合作伙伴项目)开始研究非地面网络通信(Non-Terrestrial Network,NTN),3GPPRAN#80次会议决定开展“NR(NewRadio,新空口)支持非地面网络的解决方案”研究项目,它是对前期“NR支持非地面网络”研究项目的延续(RP-171450),定时提前量(Timing Advance,TA)是一个重要的研究方面。D2D是用户设备之间直接通过副链路(Sidelink,SL)进行通信的方式,对在NTN辅助下的D2D通信进行研究将会成为未来3GPP演进的方向之一。
发明内容
为了避免受到下行传输信号的干扰,D2D(Device to Device)或者V2X(Vehicle-to-Everything,车辆到任意事物)通信通常不能利用下行时频资源。因此,对于处于连接状态的UE(User Equipment,用户设备),在副链路(Sidelink,SL)上的无线发送通常要和上行发送定时保持同步。
发明人通过研究发现,在NTN等大延迟通信中,UE上行发送的定时提前量很大,会显著超过1毫秒;基站可以利用例如DCI(Downlink Control Information,下行控制信息)针对调整任一UE的上行发送所占用的时隙,出于连接状态的UE可能并不知道发送的上行无线信号到达基站侧的实际时隙(即UE采用的定时提前量可能并不完整,还有一部分定时提前量是通过DCI调度所实现的)。
因此,在大延迟通信中的一个问题是:不同UE对于基站配置的用于上行传输或者副链路传输的时域资源的理解可能不同。进一步的,如果考虑到处于空闲状态的UE,问题可能更加复杂。因为它们没有接收到TAC(Timing Advance Command,定时提前命令)MAC(Media Access Control,媒体接入控制)CE(Control Element,控制单元),因此在副链路上的无线发送通常和下行发送定时保持同步,即对于基站配置的时域资源的理解与处于连接状态的UE差别更大。
针对上述问题,本申请提供了解决方案。针对上述问题描述中,采用NTN等大延迟场景作为一个例子;本申请也同样适用于例如地面传输等小延迟的场景,取得类似大延迟场景中的技术效果。此外,不同场景采用统一解决方案还有助于降低硬件复杂度和成本。
需要说明的是,在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一无线信号,第一信息和第二信息;
在第一目标时隙中发送第二无线信号;
其中,所述第一无线信号被用于指示第一时间窗的同步定时,所述第一时间窗包括多个时隙,所述第一信息从所述第一时间窗中指示第一时隙;所述第二信息指示第一时间偏移量;所述第一目标时隙与所述第一时隙相比提前了第二时间偏移量;所述第二时间偏移量与第一残余时间偏移量有关,所述第一残余时间偏移量加上L1个第一时间长度的和与所述第一时间偏移量相等,所述L1是正整数;所述第一残余时间偏移量不超过所述第一时间长度;所述第二时间偏移量不超过2倍的所述第一时间长度。
作为一个实施例,上述方法确保了所述第二无线信号的发送到达所述第一无线信号的发送者时,能实现“第一时间长度”级别的同步,避免了所述第一无线信号的所述发送者受到跨“第一时间长度”的干扰。
作为一个实施例,上述方法确保了所述第一节点相对观测到的所述第一时间窗采用的定时提前量不会太大,避免了不同UE(不论是否处于连接状态)对所述第一时隙的理解相差太大而引起干扰。
作为一个实施例,所述第二时间偏移量加上L2个第一时间长度的和与所述第一时间偏移量相等,所述L2与所述L1相等,或者所述L2比所述L1少1。
作为一个实施例,所述第二时间偏移量小于所述第一时间偏移量。
具体的,根据本申请的一个方面,其特征在于,当所述第一残余时间偏移量小于第一时间阈值时,所述第一残余时间偏移量加上所述第一时间长度的和与所述第二时间偏移量相等;当所述第一残余时间偏移量大于第一时间阈值时,所述第一残余时间偏移量与所述第二时间偏移量相等。
作为一个实施例,上述方面能最小化相邻的UE发送的无线信号对所述第一无线信号的发送者所产生的干扰。
具体的,根据本申请的一个方面,其特征在于,所述第二信息指示第四时间偏移量,所述第一时间偏移量与所述第四时间偏移量线性相关,所述第一时间偏移量到所述第四时间偏移量的线性相关系数为1。
具体的,根据本申请的一个方面,其特征在于,所述第一发送机在第二目标时隙中发送第三无线信号;当所述第三无线信号在上行链路中被发送时,第一索引被用于生成所述第三无线信号,当所述第三无线信号在副链路中被发送时,第二索引被用于生成所述第三无线信号;所述第二索引减去所述第一索引得到的差值乘以所述第一时间长度所得的乘积与所述第一时间偏移量减去所述第二时间偏移量的差值相等。
具体的,根据本申请的一个方面,其特征在于,所述第三无线信号在副链路中被发送,所述第三无线信号指示所述第二索引。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一无线信号,第一信息和第二信息;
处理来自第二无线信号的干扰,所述第二无线信号在第一目标时隙被发送;
其中,所述第一无线信号被用于指示第一时间窗的同步定时,所述第一时间窗包括多个时隙,所述第一信息从所述第一时间窗中指示第一时隙;所述第二信息指示第一时间偏移量;所述第一目标时隙与所述第一时隙相比提前了第二时间偏移量;所述第二时间偏移量与第一残余时间偏移量有关,所述第一残余时间偏移量加上L1个第一时间长度的和与所述第一时间偏移量相等,所述L1是正整数;所述第一残余时间偏移量不超过所述第一时间长度;所述第二时间偏移量不超过2倍的所述第一时间长度。
具体的,根据本申请的一个方面,其特征在于,当所述第一残余时间偏移量小于第一时间阈值时,所述第一残余时间偏移量加上所述第一时间长度的和与所述第二时间偏移量相等;当所述第一残余时间偏移量大于第一时间阈值时,所述第一残余时间偏移量与所述第二时间偏移量相等。
具体的,根据本申请的一个方面,其特征在于,所述第二信息指示第四时间偏移量,所述第一时间偏移量与所述第四时间偏移量线性相关,所述第一时间偏移量到所述第四时间偏移量的线性相关系数为1。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一接收机,接收第一无线信号,第一信息和第二信息;
第一发送机,在第一目标时隙中发送第二无线信号;
其中,所述第一无线信号被用于指示第一时间窗的同步定时,所述第一时间窗包括多个时隙,所述第一信息从所述第一时间窗中指示第一时隙;所述第二信息指示第一时间偏移量;所述第一目标时隙与所述第一时隙相比提前了第二时间偏移量;所述第二时间偏移量与第一残余时间偏移量有关,所述第一残余时间偏移量加上L1个第一时间长度的和与所述第一时间偏移量相等,所述L1是正整数;所述第一残余时间偏移量不超过所述第一时间长度;所述第二时间偏移量不超过2倍的所述第一时间长度。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二发送机,发送第一无线信号,第一信息和第二信息;
第二处理机,处理来自第二无线信号的干扰,所述第二无线信号在第一目标时隙被发送;
其中,所述第一无线信号被用于指示第一时间窗的同步定时,所述第一时间窗包括多个时隙,所述第一信息从所述第一时间窗中指示第一时隙;所述第二信息指示第一时间偏移量;所述第一目标时隙与所述第一时隙相比提前了第二时间偏移量;所述第二时间偏移量与第一残余时间偏移量有关,所述第一残余时间偏移量加上L1个第一时间长度的和与所述第一时间偏移量相等,所述L1是正整数;所述第一残余时间偏移量不超过所述第一时间长度;所述第二时间偏移量不超过2倍的所述第一时间长度。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的发送第二无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的通信节点的硬件模块示意图;
图5示出了根据本申请的一个实施例的无线信号传输的流程图;
图6示出了根据本申请的一个实施例的第一时间偏移量、第一时间长度和第一残余时间偏移量的示意图;
图7示出了根据本申请的一个实施例的第一时间偏移量、第一时间窗和第二时间偏移量的示意图;
图8示出了根据本申请的一个实施例的第二时间偏移量与第一残余时间偏移量有关的示意图;
图9示出了根据本申请的一个实施例的第一索引和第二索引的示意图;
图10示出了根据本申请的一个实施例的确定第二时间偏移量的流程图;
图11示出了根据本申请的一个实施例的NTN基站和UE通信的示意图;
图12示出了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;
图13示出了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的发送第二无线信号的流程图,如附图1所示。附图1中,每个方框代表一个步骤。
在实施例1中,第一节点在步骤101中接收第一无线信号,第一信息和第二信息;在步骤102中在第一目标时隙中发送第二无线信号;
实施例1中,所述第一无线信号被用于指示第一时间窗的同步定时,所述第一时间窗包括多个时隙,所述第一信息从所述第一时间窗中指示第一时隙;所述第二信息指示第一时间偏移量;所述第一目标时隙与所述第一时隙相比提前了第二时间偏移量;所述第二时间偏移量与第一残余时间偏移量有关,所述第一残余时间偏移量加上L1个第一时间长度的和与所述第一时间偏移量相等,所述L1是正整数;所述第一残余时间偏移量不超过所述第一时间长度;所述第二时间偏移量不超过2倍的所述第一时间长度。
作为一个实施例,所述第一节点是一个UE(User Equipement,用户设备)。
作为一个实施例,所述第一节点是一个BS(Base Station,基站)。
作为一个实施例,所述第一时间偏移量等于所述第一节点进行上行发送时的定时提前量。
作为一个实施例,所述第一时间偏移量是不考虑DCI(Downlink Control Information,下行控制信息)时的所述第一节点进行上行发送时的定时提前量。
作为一个实施例,所述第一时间偏移量包括更高层信令配置的所述第一节点进行上行发送时的定时提前量。
作为一个实施例,所述第二时间偏移量加上L2个第一时间长度的和与所述第一时间偏移量相等,所述L2与所述L1相等,或者所述L2比所述L1少1。
作为一个实施例,所述第二时间偏移量不超过所述第一时间偏移量。
作为一个实施例,所述第二时间偏移量与所述第一残余时间偏移量相等。
作为一个实施例,所述第二时间偏移量与所述第一残余时间偏移量线性相关,且所述第二时间偏移量到所述第一残余时间偏移量线性的线性相关系数为1。
作为一个实施例,所述第二时间偏移量与所述第一残余时间偏移量加上第三时间偏移量的和相等。
作为一个实施例,所述第三时间偏移量与所述第二无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,所述第三时间偏移量是可配置的。
作为一个实施例,所述第三时间偏移量为628Ts,所述Ts为30720分之一毫秒。
作为一个实施例,所述第三时间偏移量是所述第一时间长度。
作为一个实施例,所述第一无线无线信号的发送者是基站,所述第一时间窗的所述同步定时是下行同步定时。
作为一个实施例,所述第一无线信号包括PSS(Primary Synchronization Signal,主同步信号)和SSS(Secondary Synchronization Signal,辅同步信号),针对所述第一无线信号的测量被用于确定所述第一时间窗中多载波符号的起始时刻。
作为一个实施例,所述第一无线信号是被周期性发送的。
作为一个实施例,所述L1为1。
作为一个实施例,所述L1大于1。
作为一个实施例,所述第二时间偏移量与所述第一时间偏移量除以所述第一时间长度得到的余数相等。
作为一个实施例,所述第一时间窗包括一个SFN(System Frame Number,系统帧号)循环周期对应的所有时隙。
作为一个实施例,所述第一时间偏移量大于所述第一时间长度。
作为一个实施例,所述第一时间窗包括Q1个连续时隙,所述Q1是大于1的正整数。
作为一个实施例,所述Q1个时隙中任意两个时隙的持续时间是相同的。
作为一个实施例,所述Q1个时隙中至少存在两个时隙的持续时间是不同。
作为一个实施例,所述Q1为10240。
作为一个实施例,所述Q1个时隙中任一时隙的持续时间不超过1毫秒。
作为一个实施例,所述Q1个时隙中每个时隙的持续时间为1毫秒。
作为一个实施例,所述Q1个时隙中每个时隙包括14个多载波符号。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single-carrier Frequency-Division Multiple Access,单载波频分多址)符号。
作为一个实施例,所述多载波符号是FBMC(Filterbank Multicarrier,滤波器组多载波)符号。
作为一个实施例,所述第一时间窗的所述同步定时包括所述第一时间窗的起始时刻和所述第一时间窗的截止时刻。
作为一个实施例,所述第一时间窗的所述同步定时包括所述第一时间窗中每个时隙的起始时刻和所述第一时间窗中每个时隙的截止时刻。
作为一个实施例,所述第一时间窗的所述同步定时包括所述第一时间窗中每个多载波符号的起始时刻和所述第一时间窗中每个多载波符号的截止时刻。
作为一个实施例,所述第一信息从所述第一时间窗中指示第一时隙组;所述第一时隙组包括多个时隙,所述第一时隙是所述第一时隙组中的一个时隙。
作为一个实施例,所述第一时隙组包括一个V2X资源池中的所有时隙。
作为一个实施例,所述第一时间长度是固定的。
作为一个实施例,所述第一时间长度是可配置的。
作为一个实施例,所述第一时间长度是1毫秒。
作为一个实施例,所述第一时间长度是一个时隙的持续时间。
作为一个实施例,所述第一时间长度包括且仅包括14个多载波符号。
作为一个实施例,所述第一时间长度与所述第一时间偏移量有关。
作为一个实施例,所述第一节点是一个处于RRC(Radio Resource Control,无线资源控制)连接状态的UE。
作为一个实施例,所述第一信息的发送者是一个基站(eNB)。
作为一个实施例,所述第一信息的发送者是NTN(Non-Terrestrial Network,非地面网络通信)基站。
作为一个实施例,所述NTN基站是GEO(Geostationary Earth Orbiting,同步地球轨道)卫星、MEO(Medium Earth Orbiting,中地球轨道)卫星、LEO(Low Earth Orbit,低地球轨道)卫星、HEO(Highly Elliptical Orbiting,高椭圆轨道)卫星、Airborne Platform(空中平台)中的之一。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。附图2说明了5G NR(NewRadio,新空口),LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为5GS(5GSystem)/EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其 它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(UserPlaneFunction,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,本申请中的所述第一节点是所述UE201,本申请中的所述第二节点是所述gNB203。
作为一个实施例,本申请中的所述第二节点是所述UE201,本申请中的所述第一节点是所述gNB203。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE241对应本申请中的所述第二无线信号的接收者。
作为一个实施例,所述UE241是本申请中的所述第二节点覆盖内的一个终端。
作为一个实施例,所述UE201和所述UE241之间的无线链路对应本申请中的副链路(Sidelink,SL)。
作为一个实施例,从所述UE201到NR节点B的无线链路是上行链路。
作为一个实施例,从NR节点B到UE201的无线链路是下行链路。
作为一个实施例,所述UE201支持在非地面网络(NTN)的传输。
作为一个实施例,所述UE201支持大时延差网络中的传输。
作为一个实施例,所述UE201支持地面网络(TN)的传输。
作为一个实施例,所述UE241支持在非地面网络(NTN)的传输。
作为一个实施例,所述UE241支持大时延差网络中的传输。
作为一个实施例,所述UE241支持地面网络(TN)的传输。
作为一个实施例,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述gNB203支持在非地面网络(NTN)的传输。
作为一个实施例,所述gNB203支持在大时延差网络中的传输。
作为一个实施例,所述gNB203支持地面网络(TN)的传输。
作为一个实施例,所述gNB203是宏蜂窝(MarcoCellular)基站。
作为一个实施例,所述gNB203是微小区(Micro Cell)基站。
作为一个实施例,所述gNB203是微微小区(PicoCell)基站。
作为一个实施例,所述gNB203是家庭基站(Femtocell)。
作为一个实施例,所述gNB203是支持大时延差的基站设备。
作为一个实施例,所述gNB203是一个飞行平台设备。
作为一个实施例,所述gNB203是卫星设备。
实施例3
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,附图3用三个层展示用于UE和gNB的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301,或者物理层。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干协议层,包括终止于网络侧上的P-GW213处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的第二节点。
作为一个实施例,所述L2层305属于更高层。
作为一个实施例,所述L3层中的RRC子层306属于更高层。
作为一个实施例,本申请中的所述第一信息生成于所述RRC306。
作为一个实施例,本申请中的所述第二信息生成于所述MAC302。
作为一个实施例,本申请中的所述第二信息生成于所述RRC306以及所述MAC302。
作为一个实施例,本申请中的所述第一无线信号生成于所述
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一无线信号生成于所述MAC302。
作为一个实施例,本申请中的所述第一无线信号生成于所述RRC306。
实施例4
实施例4示出了根据本申请的一个实施例的通信节点的硬件模块示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二节点450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接 收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:接收第一无线信号,第一信息和第二信息;在第一目标时隙中发送第二无线信号;其中,所述第一无线信号被用于指示第一时间窗的同步定时,所述第一时间窗包括多个时隙,所述第一信息从所述第一时间窗中指示第一时隙;所述第二信息指示第一时间偏移量;所述第一目标时隙与所述第一时隙相比提前了第二时间偏移量;所述第二时间偏移量与第一残余时间偏移量有关,所述第一残余时间偏移量加上L1个第一时间长度的和与所述第一时间偏移量相等,所述L1是正整数;所述第一残余时间偏移量不超过所述第一时间长度;所述第二时间偏移量不超过2倍的所述第一时间长度。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一无线信号,第一信息和第二信息;在第一目标时隙中发送第二无线信号;其中,所述第一无线信号被用于指示第一时间窗的同步定时,所述第一时间窗包括多个时隙,所述第一信息从所述第一时间窗中指示第一时隙;所述第二信息指示第一时间偏移量;所述第一目标时隙与所述第一时隙相比提前了第二时间偏移量;所述第二时间偏移量与第一残余时间偏移量有关,所述第一残余时间偏移量加上L1个第一时间长度的和与所述第一时间偏移量相等,所述L1是正整数;所述第一残余时间偏移量不超过所述第一时间长度;所述第二时间偏移量不超过2倍的所述第一时间长度。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:发送第一无线信号,第一信息和第二信息;处理来自第二无线信号的干扰,所述第二无线信号在第一目标时隙被发送;其中,所述第一无线信号被用于指示第一时间窗的同步定时,所述第一时间窗包括多个时隙,所述第一信息从所述第一时间窗中指示第一时隙;所述第二信息指示第一时间偏移量;所述第一目标时隙与所述第一时隙相比提前了第二时间偏移量;所述第二时间偏移量与第一残余时间偏移量有关,所述第一残余时间偏移量加上L1个第一时间长度的和与所述第一时间偏移量相等,所述L1是正整数;所述第一残余时间偏移量不超过所述第一时间长度;所述第二时间偏移量不超过2倍的所述第一时间长度。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一无线信号,第一信息和第二信息;处理来自第二无线信号的干扰,所述第二无线信号在第一目标时隙被发送;其中,所述第一无线信号被用于指示第一时间窗的同步定时,所述第一时间窗包括多个时隙,所述第一信息从所述第一时间窗中指示第一时隙;所述第二信息指示第一时间偏移量;所述第一目标时隙与所述第一时隙相比提前了第二时间偏移量;所述第二时间偏移量与第一残余时间偏移量有关,所述第一残余时间偏移量加上L1个第一时间长度的和与所述第一时间偏移量相等,所述L1是正整数;所述第一残余时间偏移量不超过所述第一时间长度;所述第二时间偏移量不超过2倍的所述第一时间长度。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二无线信号的接收者。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,所述第二通信设备410是一个UE。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459被用于接收第一无线信号,第一信息和第二信息;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475被用于发送第一无线信号,第一信息和第二信息。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459被用于发送第二无线信号;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475被用于接收第二无线信号。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少之一被用于发送第三无线信号;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475被用于接收第三无线信号。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。第二节点N2是第一节点U1的服务小区的维持基站;第二节点N2和第一节点U1之间通过Uu口链路进行通信;第一节点U1与第三节点U3之间通过副链路进行通信;特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于 第一节点U1,在步骤S101中接收第一无线信号;在步骤S102中接收第一信息和第二信息;在步骤S103中在第一目标时隙中发送第二无线信号;
对于 第二节点N2,在步骤S201中发送第一无线信号;在步骤S202中发送第一信息和第二信息;在步骤S203中处理来自第二无线信号的干扰。
实施例5中,所述第一无线信号被用于指示第一时间窗的同步定时,所述第一时间窗包括多个时隙,所述第一信息从所述第一时间窗中指示第一时隙;所述第二信息指示第一时间偏移量;所述第一目标时隙与所述第一时隙相比提前了第二时间偏移量;所述第二时间偏移量与第一残余时间偏移量有关,所述第一残余时间偏移量加上L1个第一时间长度的和与所述第一时间偏移量相等,所述L1是正整数;所述第一残余时间偏移量不超过所述第一时间长度;所述第二时间偏移量不超过2倍的所述第一时间长度。
作为一个实施例,所述短语处理来自第二无线信号的干扰包括:指示(所述第一节点U1之外的)终端提高发射功率,以提高在被干扰时隙接收到的有用信号的SINR(Signal to Interference and Noise Ratio,信干噪比)。
作为一个实施例,所述短语处理来自第二无线信号的干扰包括:指示所述第一节点U1降低所述第二信号的发射功率,以提高在被干扰时隙接收到的有用信号的SINR。
作为一个实施例,所述短语处理来自第二无线信号的干扰包括:通过调度避免在被干扰时隙接收有用信号。
作为一个实施例,所述短语处理来自第二无线信号的干扰包括:调整在被干扰时隙的空间接收参数以接收有用信号,所述在被干扰时隙的空间接收参数抑制所述第二无线信号。
作为一个实施例,所述空间接收参数包括模拟的(Analog)接收波束,所述第一节点U1在所述被干扰时隙的所述空间接收参数覆盖之外。
作为一个实施例,所述空间接收参数包括数字的(Digital)接收波束,所述第一节点U1在所述被干扰时隙的所述空间接收参数覆盖之外。
作为一个实施例,所述被干扰时隙是所述第一目标时隙延迟所述第一时间偏移量之后的一个时隙。
作为一个实施例,所述被干扰时隙在所述第一时间窗中对应的时隙是所述第一时隙之前L2个第一时间长度的时隙,所述第二时间偏移量加上L2个第一时间长度的和与所述第一时间偏移量相等。
作为一个实施例,所述L2与所述L1相等,或者所述L2比所述L1少1。
作为一个实施例,所述第二信息指示第四时间偏移量,所述第一时间偏移量与所述第四时间偏移量线性相关,所述第一时间偏移量到所述第四时间偏移量的线性相关系数为1。
作为一个实施例,所述第四时间偏移量与所述第二无线信号所占用的子载波的子载波带宽有关。
作为一个实施例,所述第二信息包括被RAR(Random Access Response,随机接入响应)所包括的TAC(Timing Advance Command,定时提前命令),所述第四时间偏移量是所述第二信息指示的时间调整量;所述第一时间偏移量与所述第四时间偏移量相等。
作为上述实施例的一个子实施例,所述第二信息指示L3,所述L3是一个非负整数,所述第四时间偏移量为L3个时间单元,所述L3个时间单元中每个时间单元为所述第二无线信号所占用的子载波的子载波带宽的倒数再除以128,所述L3个时间单元中每个时间单元的单位是秒,所述第二无线信号所占用的子载波的所述子载波带宽的单位是Hz(赫兹)。
作为一个实施例,所述第二信息包括第一子信息,所述第一子信息指示第一时间调整量,所述第四时间偏移量与所述第一时间调整量线性相关。
作为一个实施例,所述第一子信息是广播的。
作为一个实施例,所述第一子信息属于SIB(System Information Block,系统信息块)。
作为一个实施例,所述第一子信息被第一UE组采用,所述第一节点是所述第一UE组中的一个UE。
作为一个实施例,所述第一时间调整量与所述第一节点的地理位置有关。
作为一个实施例,所述第一时间调整量与所述第一无线信号的发送者与第一参考点之间的距离有关,所述第一参考点是所述第一节点所属的地面区域中距离所述第一无线信号的所述发送者最近的地点。
作为一个实施例,所述第一时间调整量等于所述第一无线信号的发送者与所述第一参考点之间的所述距离除以光速所得的商。
作为一个实施例,所述L3不大于3846。
作为一个实施例,所述第二信息包括RAR之外(即不属于RAR)的TAC,所述第四时间偏移量与所述第二信息指示的时间调整量线性相关,所述第一节点在应用所述第二信息之前进行上行发送所采用的定时提前量加上所述第四时间偏移量的和与所述第一时间偏移量相等。
作为上述实施例的一个子实施例,所述第二信息指示L4,所述L4是一个非负整数,所述第四时间偏移量为L4-31个时间单元,所述L4个时间单元中每个时间单元为所述第二无线信号所占用的子载波的子载波带宽的倒数再除以128,所述L3个时间单元中每个时间单元的单位是秒,所述第二无线信号所占用的子载波的所述子载波带宽的单位是Hz(赫兹)。
作为一个实施例,所述L4不大于63。
作为一个实施例,所述第二无线信号所占用的子载波的子载波带宽为15kHz(千赫 兹)的FF倍,所述FF是2的正整数次幂。
作为一个实施例,所述第一时间偏移量为TA+K offset·T 1,其中TA,K offset,和T 1分别是定时提前量,延迟时隙的数量,所述第二无线信号所占用的时隙的持续时间;所述第二信息指示TA和K offset
作为上述实施例的一个子实施例,所述第一节点U1处于RRC连接状态。
作为一个实施例,所述第一时间偏移量为K offset·T 1,其中K offset,和T 1的定义同上。
作为上述实施例的一个子实施例,所述第一节点U1处于RRC空闲状态。
作为一个实施例,所述K offset是小区公共的。作为一个实施例,所述K offset是终端组特定的,所述终端组包括正整数个终端,所述第一节点U1属于所述终端组。
作为一个实施例,所述TA是由定时提前命令指示的。
作为一个实施例,所述第一残余时间偏移量为mod(第一时间偏移量,T 1),其中mod(A,B)表示A除以B所得的余数。
作为一个实施例,所述第二时间偏移量为所述第一残余时间偏移量。
作为一个实施例,所述第二时间偏移量为(T 1+所述第一残余时间偏移量)。
作为一个实施例,所述第一时间偏移量为
Figure PCTCN2020124713-appb-000001
其中所述第二信息指示ta I和K offset,ta i是所述第一节点U1在当前的RRC连接中第i(i=1,...,I-1)次接收到的TAC(Timing Advance Commant,定时提前命令),ta i在所述第二信息之前被所述第一节点U1接收到。
作为上述实施例的一个子实施例,所述第四时间偏移量为ta I+K offset·T 1
作为一个实施例,所述第二节点N2是一个基站(eNB)。
作为一个实施例,所述第二节点N2是NTN(Non-Terrestrial Network,非地面网络通信)基站。
作为一个实施例,所述NTN基站是GEO(Geostationary Earth Orbiting,同步地球轨道)卫星、MEO(Medium Earth Orbiting,中地球轨道)卫星、LEO(Low Earth Orbit,低地球轨道)卫星、HEO(Highly Elliptical Orbiting,高椭圆轨道)卫星、Airborne Platform(空中平台)中的之一。
作为一个实施例,所述第一节点U1是一个用户设备(UE)。
作为一个实施例,所述第三节点U3是一个被用于副链路(sidelink)通信的设备。
作为一个实施例,所述第二节点N2是所述第一节点U1的参考同步源。
作为一个实施例,所述第一节点U1是所述第三节点U3的参考同步源。
作为一个实施例,所述参考同步源是指用户设备(UE)同步定时所参考的节点。
作为一个实施例,所述第一无线信号指示系统帧号(SystemFrameNumber,SFN)。
作为一个实施例,所述第一信息是MAC(Media Access Control)层信令的全部或部分。
作为一个实施例,所述第一信息包括MAC(Media Access Control)RAR(RadomAccessResponse,随机接入响应)的全部或部分。
作为一个实施例,所述第一信息包括TAC(TimingAdvanceCommand,定时提前命令)MAC(Media Access Control)CE(ControlElement)。
作为一个实施例,所述第一信息包括MIB(MasterInformationBlock,主信息块)与TAC(Timing Advance Command,定时提前命令)。
作为一个实施例,所述第一时间窗是根据所述第一接收机N1的接收同步定时确定的。
作为一个实施例,所述第一时间窗是系统帧号(SystemFrameNumber,SFN)的一个周期(cycle)。
作为一个实施例,所述第一时间窗是周期性出现的,所述第一时间窗的周期是Q1个时隙,所述P是正整数。
作为一个实施例,所述Q1为1024,所述Q1个时隙是连续的。
作为一个实施例,所述Q1小于1024,至少存在一个时隙间隔,所述时隙间隔之前和所述时隙间隔之后分别存在一个时隙属于所述第一时间窗。
作为一个实施例,所述Q1为10240,所述Q1个时隙是连续的。
作为一个实施例,所述Q1小于10240,至少存在一个时隙间隔,所述时隙间隔之前和所述时隙间隔之后分别存在一个时隙属于所述第一时间窗。
作为一个实施例,所述第二无线信号包括MasterInformationBlock-SL的部分。
作为一个实施例,所述第二无线信号包括MasterInformationBlock-SL-V2X的部分。
作为一个实施例,所述第二无线信号被用于确定副链路同步定时。
作为一个实施例,所述第二无线信号被用于指示传输SLSS(Sidelinksynchronizing signal,副链路同步信号)和SL-BCH(Sidelink Broadcast Channel副链路广播信号)的帧号。
作为一个实施例,所述第二无线信号包括直接帧号(DirectFrameNumber,DFN),所述直接帧号占用X个比特,所述X是正整数。
作为一个实施例,所述X等于10。
作为一个实施例,所述第二无线信号包括直接子帧号(DirectSubframeNumber),所述直接子帧号是正整数。
作为一个实施例,所述直接子帧号的范围是0到9的整数。
实施例6
实施例6示例了根据本申请的一个实施例的第一时间偏移量、第一时间长度和第一残余时间偏移量的示意图,如附图6所示。
实施例6中,第一时间偏移量包括L1个第一时间长度以及第一残余时间偏移量,其中所述第一残余时间偏移量不大于所述第一时间长度。
作为一个实施例,所述L1是不大于16且不小于0的整数。
作为一个实施例,所述第一时间长度是固定的。
作为一个实施例,所述第一时间长度是可配置的。
作为一个实施例,所述第一时间长度是1毫秒。
作为一个实施例,所述第一时间长度是一个时隙的持续时间。
作为一个实施例,所述第一时间长度包括且仅包括14个多载波符号。
作为一个实施例,所述第一时间长度与所述第一时间偏移量有关。
实施例7
实施例7示例了根据本申请的一个实施例的第一时间偏移量、第一时间窗和第二时间偏移量的示意图,如附图7所示。附图7中,交叉线填充的方格,斜线填充的方格,横线 填充的方格和点填充的方格分别代表第一参考时隙,第一时隙,第一目标时隙和第二参考时隙。
在实施例7中,第二节点维持第一参考时间窗,第二节点发送的第一无线信号经过第一传播延时到达第一节点侧,所述第一节点根据接收到的第一无线信号确定第一时间窗,所述第一时间窗是所述第一参考时间窗经过所述第一传播延时后在所述第一节点侧的对等物。
所述第二节点发送第一信息和第二信息给所述第一节点,所述第一信息指示第一参考时间窗中的第一参考时隙,即第一时间窗中的第一时隙;所述第二信息指示第一时间偏移量;作为对所述第二信息的响应,所述第一节点在在第一目标时隙中发送第二无线信号。
实施例7中,所述第一目标时隙与所述第一时隙相比提前了第二时间偏移量,而不是第一时间偏移量。
作为一个实施例,所述第一时间偏移量可能并没有完全补偿上行定时提前量(偏差部分由DCI指示);相比于第二参考时隙(即提前第一时间偏移量发送第二无线信号),第一目标时隙距离第一时隙更近;由于第一时隙是根据第二节点的发送信号确定的同步定时,相邻UE观测的到第一时隙的同步定时差别不大,因此相邻UE选择的第一目标时隙差别不大,避免了相邻UE对第一目标时隙的理解不同而导致的干扰。
实施例8
实施例8示例了根据本申请的一个实施例的第二时间偏移量与第一残余时间偏移量有关的示意图,如附图8所示。附图8中,斜线填充的方格,横线填充的方格、交叉线填充的方格和粗线框标识的方格分别代表第一时隙、第一配置时隙、第二配置时隙和第三配置时隙。
在实施例8中,第一节点根据接收到的第一信息确定第一时隙,根据接收到的第二信息确定第一残余时间偏移量,然后在第一目标时隙中发送第二无线信号,所述第一目标时隙与所述第一时隙相比提前了第二时间偏移量;当所述第一残余时间偏移量小于第一时间阈值时,所述第一残余时间偏移量加上第一时间长度的和与第二时间偏移量相等;当所述第一残余时间偏移量大于第一时间阈值时,所述第一残余时间偏移量与第二时间偏移量相等。
作为一个实施例,第二信息指示的第一时间偏移量是第一配置偏移量,相应的第一残余时间偏移量t2小于第一时间阈值,第二时间偏移量是第一残余时间偏移量加上第一时间长度的和,即t1;即第一目标时隙是第一配置时隙。
作为一个实施例,第二信息指示的第一时间偏移量是第二配置偏移量,相应的第一残余时间偏移量t3小于第一时间阈值,第二时间偏移量是第一残余时间偏移量,即t3;即第一目标时隙是第二配置时隙。
作为一个实施例,当第一残余时间偏移量等于所述第一时间阈值时,所述第一残余时间偏移量加上所述第一时间长度的和与所述第二时间偏移量相等。
作为一个实施例,当第一残余时间偏移量等于所述第一时间阈值时,所述第一残余时间偏移量与所述第二时间偏移量相等。
作为一个实施例,所述第一时间阈值与所述第一时间长度线性相关。
作为一个实施例,所述第一时间阈值为所述第一时间长度的一半。
作为一个实施例,所述第一时间阈值为所述第一时间长度的1/3。
作为一个实施例,所述第一时间阈值是可配置的。
作为一个实施例,所述第一配置偏移量和所述第二配置偏移量分别是相邻的两个UE的上行定时提前量,如果将所述第二时间偏移量固定为第一残余时间偏移量,则所述两个UE分别选择第一配置时隙和第三配置时隙作为第一时隙的对应发送时隙,产生了较大 的干扰。而实施例8的一个优点在于,根据第一残余时间偏移量灵活选择第二无线信号所占用的时隙,以最大化相邻UE选择的第一目标时隙的重叠时间,降低干扰。
作为一个实施例,所述第一时间长度是第一候选长度和第二候选长度二者中之一。
作为一个实施例,当按照第一候选长度计算出的第一残余时间偏移量与所述第一时间阈值的差值的绝对值大于第一时间间隔时,所述第一时间长度是第一候选长度;否则所述第一时间长度是第二候选长度。
上述实施例能避免第一残余时间偏移量过于接近第一时间阈值导致的相邻的UE对第一目标时隙的理解误差第一时间长度。
作为一个实施例,所述第一时间间隔为所述第二候选长度的一半。
作为一个实施例,所述第一时间间隔为所述第二候选长度的三分之一。
作为一个实施例,所述第一候选长度是一个时隙的持续时间。
作为一个实施例,所述第二候选长度是所述第一候选长度的一半。
作为一个实施例,所述第二候选长度小于所述第一候选长度
作为一个实施例,所述第一候选长度包括14个多载波符号,所述14个多载波符号的子载波间隔与第二无线信号占用的子载波的子载波间隔相同。
实施例9
实施例9示例了根据本申请的一个实施例的第一索引和第二索引的示意图,如附图9所示。附图9中,斜线填充的方格是第二目标时隙。
第一节点中的第一发送机在第二目标时隙中发送第三无线信号;当所述第三无线信号在上行链路中被发送时,第一索引被用于生成所述第三无线信号,当所述第三无线信号在副链路中被发送时,第二索引被用于生成所述第三无线信号;所述第二索引减去所述第一索引得到的差值乘以所述第一时间长度所得的乘积与所述第一时间偏移量减去所述第二时间偏移量的差值相等。
作为一个实施例,当所述第三无线信号在上行链路中被发送时,第二节点是所述第三无线信号的目标接收者。
作为一个实施例,当所述第三无线信号在上行链路中被发送时,所述第三无线信号是被第二节点发送的DCI所调度的。
作为一个实施例,所述第一索引是所述第二目标时隙在第一时间窗中的索引。
作为一个实施例,所述第二索引是所述第二目标时隙在第二时间窗中的索引,所述第二时间窗相比所述第一时间窗提前的时间长度与所述第二索引减去所述第一索引得到的差值乘以所述第一时间长度所得的乘积相等。
作为一个实施例,所述第三无线信号指示所述第一索引。
作为一个实施例,所述第三无线信号指示所述第二索引与所述第一索引之间的差值。
作为一个实施例,所述第一时间窗是一个SFN周期,所述第一索引为s 1+f 1·10,其中s 1,f 1分别是所述第二目标时隙在所述第一时间窗中的所属的无线帧中的时隙号以及所述第二目标时隙在所述第一时间窗中的所属的无线帧在所述第一时间窗中的帧号,其中s 1不大于9且不小于0,f 1不大于1023且不小于0。
作为一个实施例,所述第一时间窗是一个DFN(Direct Frame Number,直接帧号)周期,所述第一索引为s 2+f 2·10,其中s 2,f 2分别是所述第二目标时隙在所述第二时间窗中的所属的无线帧中的时隙号以及所述第二目标时隙在所述第二时间窗中的所属的无线帧在所述第一时间窗中的帧号,其中s 2不大于9且不小于0,f 2不大于1023且不小于 0。
作为一个实施例,所述第一时间窗是一个SFN周期,所述第一索引为所述第二目标时隙在所述第一时间窗中的所属的无线帧在所述第一时间窗中的帧号,所述第一索引不大于1023且不小于0。
作为一个实施例,所述第一时间窗是一个DFN(Direct Frame Number,直接帧号)周期,所述第一索引为所述第二目标时隙在所述第二时间窗中的所属的无线帧在所述第一时间窗中的帧号,所述第一索引不大于1023且不小于0。
作为一个实施例,所述第一索引被用于生成第一扰码序列的初始值,所述第一扰码序列被用于对第一比特块加扰,所述第三无线信号携带所述第一比特块。
作为一个实施例,所述第一扰码序列的所述初始值与所述第一索引线性相关。
作为一个实施例,所述第一扰码序列的所述初始值到所述第一索引的线性相关系数是512。
作为一个实施例,所述第一索引被用于生成第一比特块的CRC(Cyclic Redundance Check,循环冗余校验),所述第三无线信号携带所述第一比特块。
作为一个实施例,所述第一索引被用于生成第一比特块的所述CRC(Cyclic Redundance Check,循环冗余校验)的初始值。
作为一个实施例,所述第三无线信号是所述第一比特块依次经过信道编码,加扰,调制,层映射,预编码,资源映射,生成OFDM符号之后得到的。
作为一个实施例,所述第三无线信号是所述第一比特块经过加扰,CRC编码,信道编码,再次加扰,调制,资源映射,OFDM信号生成之后得到的。
作为一个实施例,所述第一索引被用于生成第一比特块的的所述CRC的初始值。
作为一个实施例,所述第二索引包括直接帧号(Direct Frame Number,SFN)。
作为一个实施例,所述第二索引被用于生成第二扰码序列的初始值,所述第二扰码序列被用于对第二比特块加扰,所述第三无线信号携带所述第二比特块。
作为一个实施例,所述第二扰码序列的所述初始值与所述第二索引线性相关。
作为一个实施例,所述第二扰码序列的所述初始值到所述第二索引的线性相关系数是512。
作为一个实施例,所述第二索引被用于生成第二比特块的CRC(Cyclic Redundance Check,循环冗余校验),所述第三无线信号携带所述第二比特块。
作为一个实施例,所述第二索引被用于生成第二比特块的所述CRC(Cyclic Redundance Check,循环冗余校验)的初始值。
作为一个实施例,所述第二索引被用于生成第二比特块的的所述CRC的初始值。
作为一个实施例,所述第三无线信号是所述第二比特块依次经过信道编码,加扰,调制,层映射,预编码,资源映射,生成OFDM符号之后得到的。
实施例10
实施例10示例了根据本申请的一个实施例的确定第二时间偏移量的流程图,如附图10所示。
在步骤S1001中,第一节点判断第一残余时间偏移量是否小于第一时间阈值;如果是,在步骤S1002中,所述第一节点设置所述第二时间偏移量为所述第一残余时间偏移量加上第一时间长度的和;如果是,在步骤S1003中,所述第一节点设置所述第二时间偏移量为所述第一残余时间偏移量。
作为一个实施例,所述第一时间阈值为第一时间长度的一半。
作为一个实施例,所述步骤S1001,所述步骤S1002,所述步骤S1003是由所述第一节点中的第一发送机执行的。
作为一个实施例,所述第一时间长度是第一候选长度和第二候选长度二者中之一。
作为一个实施例,当按照第一候选长度计算出的第一残余时间偏移量与所述第一时间阈值的差值的绝对值大于第一时间间隔时,所述第一时间长度是第一候选长度;否则所述第一时间长度是第二候选长度。
上述实施例能避免第一残余时间偏移量过于接近第一时间阈值导致的相邻的UE对第一目标时隙的理解误差第一时间长度。
作为一个实施例,所述第一时间间隔为所述第二候选长度的一半。
作为一个实施例,所述第一时间间隔为所述第二候选长度的三分之一。
作为一个实施例,所述第一候选长度是一个时隙的持续时间。
作为一个实施例,所述第二候选长度是所述第一候选长度的一半。
作为一个实施例,所述第二候选长度小于所述第一候选长度
作为一个实施例,所述第一候选长度包括14个多载波符号,所述14个多载波符号的子载波间隔与第二无线信号占用的子载波的子载波间隔相同。
实施例11
实施例11示例了根据本申请的一个实施例的NTN基站和UE通信的示意图,如附图11所示。
在实施例11中,基站N2维持UE0,UE2和UE3的服务小区;基站N2和UE0,UE2和UE3之间的链路分别用虚线A1,A2和A5标识。
作为一个实施例,UE3和基站N2分别是第一节点和第二节点,UE3在第一目标时隙中发送第二无线信号,基站N2在所述第二无线信号占用的时频资源上接收来自UE0或者UE2的有用信号。
作为上述实施例的一个子实施例,基站N2通过配置所述第二无线信号的发送功率和所述有用信号的发送功率来确保所述有用信号的接收质量。
作为上述实施例的一个子实施例,基站N2通过接收波束赋形处理形成针对所述有用信号的接收波束,并使得UE3在接收波束之外,以此降低来自第二无线信号的干扰。
作为一个实施例,基站N2为第二节点,UE0和UE2为相邻的两个UE;UE0作为第一节点确定的第一残余时间偏移量小于第一时间阈值,确定的第二时间偏移量为第一残余时间偏移量加上第一时间长度的和;UE2作为第一节点确定的第一残余时间偏移量大于第一时间阈值,确定的第二时间偏移量为第一残余时间偏移量。
上述方法能确保UE0和UE2对第一目标时隙的选择有最大的交叠,避免了UE0和UE2对第一时隙的不理解而导致的干扰;另外,上述方法也有助于UE1从UE0和UE2中选择同步参考源(避免了UE0和UE的DFN失步过大而带来的混淆)。
实施例12
实施例12示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;如附图12所示。在附图12中,第一节点中的处理装置1200包括第一接收机1201,第一发送机1202。
第一接收机1201接收第一无线信号,第一信息和第二信息;第一发送机1202在第一目标时隙中发送第二无线信号;其中,所述第一无线信号被用于指示第一时间窗的同步定时,所述第一时间窗包括多个时隙,所述第一信息从所述第一时间窗中指示第一时隙;所述第二信息指示第一时间偏移量;所述第一目标时隙与所述第一时隙相比提前了第二时间偏移量;所述第二时间偏移量与第一残余时间偏移量有关,所述第一残余时间偏移量加上L1个第一时间长度的和与所述第一时间偏移量相等,所述L1是正整数;所述第一残余时间偏移量不超过所述第一时间长度;所述第二时间偏移量不超过2倍的所述第一时间长度。
作为一个实施例,当所述第一残余时间偏移量小于第一时间阈值时,所述第一残余 时间偏移量加上所述第一时间长度的和与所述第二时间偏移量相等;当所述第一残余时间偏移量大于第一时间阈值时,所述第一残余时间偏移量与所述第二时间偏移量相等。
作为一个实施例,所述第二信息指示第四时间偏移量,所述第一时间偏移量与所述第四时间偏移量线性相关,所述第一时间偏移量到所述第四时间偏移量的线性相关系数为1。
作为一个实施例,所述第一发送机在第二目标时隙中发送第三无线信号;当所述第三无线信号在上行链路中被发送时,第一索引被用于生成所述第三无线信号,当所述第三无线信号在副链路中被发送时,第二索引被用于生成所述第三无线信号;所述第二索引减去所述第一索引得到的差值乘以所述第一时间长度所得的乘积与所述第一时间偏移量减去所述第二时间偏移量的差值相等。
作为一个实施例,所述第三无线信号在副链路中被发送,所述第三无线信号指示所述第二索引。
作为一个实施例,所述第一节点1200是一个用户设备。
作为一个实施例,所述第一节点1200是一个支持大时延差的用户设备。
作为一个实施例,所述第一节点1200是一个支持NTN的用户设备。
作为一个实施例,所述第一节点1200是一个飞行器设备。
作为一个实施例,所述第一发送机1202包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一发送机1202包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467。
作为一个实施例,所述第一接收机1401包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一接收机1401包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一接收机1401包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前三者。
实施例13
实施例13示例了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;如附图13所示。在附图13中,第二节点中的处理装置1300包括第二发送机1301和第二处理机1302。
第二发送机1301发送第一无线信号,第一信息和第二信息;第二处理机1302处理来自第二无线信号的干扰,所述第二无线信号在第一目标时隙被发送;其中,所述第一无线信号被用于指示第一时间窗的同步定时,所述第一时间窗包括多个时隙,所述第一信息从所述第一时间窗中指示第一时隙;所述第二信息指示第一时间偏移量;所述第一目标时隙与所述第一时隙相比提前了第二时间偏移量;所述第二时间偏移量与第一残余时间偏移量有关,所述第一残余时间偏移量加上L1个第一时间长度的和与所述第一时间偏移量相等,所述L1是正整数;所述第一残余时间偏移量不超过所述第一时间长度;所述第二时间偏移量不超过2倍的所述第一时间长度。
作为一个实施例,当所述第一残余时间偏移量小于第一时间阈值时,所述第一残余时间偏移量加上所述第一时间长度的和与所述第二时间偏移量相等;当所述第一残余时间 偏移量大于第一时间阈值时,所述第一残余时间偏移量与所述第二时间偏移量相等。
作为一个实施例,所述第二信息指示第四时间偏移量,所述第一时间偏移量与所述第四时间偏移量线性相关,所述第一时间偏移量到所述第四时间偏移量的线性相关系数为1。
作为一个实施例,所述第二节点1300是一个基站设备。
作为一个实施例,所述第二节点1300是一个支持大时延差的基站设备。
作为一个实施例,所述第二节点1300是一个支持NTN的基站设备。
作为一个实施例,所述第二节点1300是一个飞行器设备。
作为一个实施例,所述第二发送机1301包括所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475。
作为一个实施例,所述第二发送机1301包括所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475。
作为一个实施例,所述第二处理机1302包括所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475。
作为一个实施例,所述第二处理机1302包括所述控制器/处理器475。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一接收机,接收第一无线信号,第一信息和第二信息;
    第一发送机,在第一目标时隙中发送第二无线信号;
    其中,所述第一无线信号被用于指示第一时间窗的同步定时,所述第一时间窗包括多个时隙,所述第一信息从所述第一时间窗中指示第一时隙;所述第二信息指示第一时间偏移量;所述第一目标时隙与所述第一时隙相比提前了第二时间偏移量;所述第二时间偏移量与第一残余时间偏移量有关,所述第一残余时间偏移量加上L1个第一时间长度的和与所述第一时间偏移量相等,所述L1是正整数;所述第一残余时间偏移量不超过所述第一时间长度;所述第二时间偏移量不超过2倍的所述第一时间长度。
  2. 根据权利要求1所述的第一节点,其特征在于,当所述第一残余时间偏移量小于第一时间阈值时,所述第一残余时间偏移量加上所述第一时间长度的和与所述第二时间偏移量相等;当所述第一残余时间偏移量大于第一时间阈值时,所述第一残余时间偏移量与所述第二时间偏移量相等。
  3. 根据权利要求1或2所述的第一节点,其特征在于,所述第二信息指示第四时间偏移量,所述第一时间偏移量与所述第四时间偏移量线性相关,所述第一时间偏移量到所述第四时间偏移量的线性相关系数为1。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,所述第一发送机在第二目标时隙中发送第三无线信号;当所述第三无线信号在上行链路中被发送时,第一索引被用于生成所述第三无线信号,当所述第三无线信号在副链路中被发送时,第二索引被用于生成所述第三无线信号;所述第二索引减去所述第一索引得到的差值乘以所述第一时间长度所得的乘积与所述第一时间偏移量减去所述第二时间偏移量的差值相等。
  5. 根据权利要求4所述的第一节点,其特征在于,所述第三无线信号在副链路中被发送,所述第三无线信号指示所述第二索引。
  6. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二发送机,发送第一无线信号,第一信息和第二信息;
    第二处理机,处理来自第二无线信号的干扰,所述第二无线信号在第一目标时隙被发送;
    其中,所述第一无线信号被用于指示第一时间窗的同步定时,所述第一时间窗包括多个时隙,所述第一信息从所述第一时间窗中指示第一时隙;所述第二信息指示第一时间偏移量;所述第一目标时隙与所述第一时隙相比提前了第二时间偏移量;所述第二时间偏移量与第一残余时间偏移量有关,所述第一残余时间偏移量加上L1个第一时间长度的和与所述第一时间偏移量相等,所述L1是正整数;所述第一残余时间偏移量不超过所述第一时间长度;所述第二时间偏移量不超过2倍的所述第一时间长度。
  7. 根据权利要求6所述的第二节点,其特征在于,当所述第一残余时间偏移量小于第一时间阈值时,所述第一残余时间偏移量加上所述第一时间长度的和与所述第二时间偏移量相等;当所述第一残余时间偏移量大于第一时间阈值时,所述第一残余时间偏移量与所述第二时间偏移量相等。
  8. 根据权利要求6或7所述的第二节点,其特征在于,所述第二信息指示第四时间偏移量,所述第一时间偏移量与所述第四时间偏移量线性相关,所述第一时间偏移量到所述第四时间偏移量的线性相关系数为1。
  9. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一无线信号,第一信息和第二信息;
    在第一目标时隙中发送第二无线信号;
    其中,所述第一无线信号被用于指示第一时间窗的同步定时,所述第一时间窗包括多个时隙,所述第一信息从所述第一时间窗中指示第一时隙;所述第二信息指示第一时 间偏移量;所述第一目标时隙与所述第一时隙相比提前了第二时间偏移量;所述第二时间偏移量与第一残余时间偏移量有关,所述第一残余时间偏移量加上L1个第一时间长度的和与所述第一时间偏移量相等,所述L1是正整数;所述第一残余时间偏移量不超过所述第一时间长度;所述第二时间偏移量不超过2倍的所述第一时间长度。
  10. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一无线信号,第一信息和第二信息;
    处理来自第二无线信号的干扰,所述第二无线信号在第一目标时隙被发送;
    其中,所述第一无线信号被用于指示第一时间窗的同步定时,所述第一时间窗包括多个时隙,所述第一信息从所述第一时间窗中指示第一时隙;所述第二信息指示第一时间偏移量;所述第一目标时隙与所述第一时隙相比提前了第二时间偏移量;所述第二时间偏移量与第一残余时间偏移量有关,所述第一残余时间偏移量加上L1个第一时间长度的和与所述第一时间偏移量相等,所述L1是正整数;所述第一残余时间偏移量不超过所述第一时间长度;所述第二时间偏移量不超过2倍的所述第一时间长度。
PCT/CN2020/124713 2019-11-19 2020-10-29 一种被用于无线通信的方法和设备 WO2021098468A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/744,761 US20220278799A1 (en) 2019-11-19 2022-05-16 Method and device for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911136306.9A CN112911539B (zh) 2019-11-19 2019-11-19 一种被用于无线通信的方法和设备
CN201911136306.9 2019-11-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/744,761 Continuation US20220278799A1 (en) 2019-11-19 2022-05-16 Method and device for wireless communication

Publications (1)

Publication Number Publication Date
WO2021098468A1 true WO2021098468A1 (zh) 2021-05-27

Family

ID=75981204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124713 WO2021098468A1 (zh) 2019-11-19 2020-10-29 一种被用于无线通信的方法和设备

Country Status (3)

Country Link
US (1) US20220278799A1 (zh)
CN (1) CN112911539B (zh)
WO (1) WO2021098468A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023717A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 一种参考信号的测量方法和装置
CN109474396A (zh) * 2017-09-07 2019-03-15 上海朗帛通信技术有限公司 一种用于无线通信的用户设备、基站中的方法和装置
US20190223224A1 (en) * 2018-01-12 2019-07-18 Innovative Technology Lab Co., Ltd. Apparatus and method for performing random access in wireless communication system
CN110169186A (zh) * 2017-01-05 2019-08-23 瑞典爱立信有限公司 用于无线通信系统中的随机接入的方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI19992718A (fi) * 1999-12-17 2001-06-18 Nokia Multimedia Terminals Oy Menetelmä ja laite ylössuuntaisen lähetyksen oikea-aikaiseksi liipaisemiseksi
CN102196479B (zh) * 2010-03-10 2014-01-08 华为技术有限公司 定时提前值的共享检测方法、用户设备、基站及系统
CN103517398B (zh) * 2012-06-20 2017-04-26 华为技术有限公司 终端到终端的通信方法及终端
CN109005585A (zh) * 2017-06-06 2018-12-14 华为技术有限公司 发送上行信息的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023717A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 一种参考信号的测量方法和装置
CN110169186A (zh) * 2017-01-05 2019-08-23 瑞典爱立信有限公司 用于无线通信系统中的随机接入的方法及装置
CN109474396A (zh) * 2017-09-07 2019-03-15 上海朗帛通信技术有限公司 一种用于无线通信的用户设备、基站中的方法和装置
US20190223224A1 (en) * 2018-01-12 2019-07-18 Innovative Technology Lab Co., Ltd. Apparatus and method for performing random access in wireless communication system

Also Published As

Publication number Publication date
CN112911539B (zh) 2022-07-29
CN112911539A (zh) 2021-06-04
US20220278799A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
WO2020011092A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018059185A1 (zh) 一种用于随机接入的用户设备、基站中的方法和装置
WO2018103444A1 (zh) 一种用于功率调整的用户设备、基站中的方法和装置
WO2020233406A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2020034848A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019109270A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2019228410A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2021129250A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020216019A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2021088618A1 (zh) 一种被用于无线通信的方法和装置
WO2021088609A1 (zh) 一种被用于无线通信的方法和设备
WO2021103926A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020244385A1 (zh) 一种用于无线通信的通信节点中的方法和装置
US12063634B2 (en) Method and device in nodes used for wireless communication
WO2022188749A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019113914A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2021103925A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021031901A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN112911697B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021098468A1 (zh) 一种被用于无线通信的方法和设备
WO2023061352A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021129248A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20230156666A1 (en) Method and device in nodes used for wireless communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889408

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20889408

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/11/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20889408

Country of ref document: EP

Kind code of ref document: A1