WO2021103925A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2021103925A1
WO2021103925A1 PCT/CN2020/125045 CN2020125045W WO2021103925A1 WO 2021103925 A1 WO2021103925 A1 WO 2021103925A1 CN 2020125045 W CN2020125045 W CN 2020125045W WO 2021103925 A1 WO2021103925 A1 WO 2021103925A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
signal
length
information
signaling
Prior art date
Application number
PCT/CN2020/125045
Other languages
English (en)
French (fr)
Inventor
刘铮
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2021103925A1 publication Critical patent/WO2021103925A1/zh
Priority to US17/748,012 priority Critical patent/US20220279510A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • This application relates to a transmission method and device in a wireless communication system, and in particular to a transmission scheme and device with a large delay in wireless communication.
  • NTN Non-Terrestrial Networks
  • WI Wireless Fidelity
  • NTN networks or networks similar to NTN with large transmission delays and large transmission delay differences due to the large transmission delay differences and the requirements of uplink and downlink synchronous transmission, the existing (such as NR 5G Release) Version 16) based on traditional terrestrial communications (Terrestrial Networks) design cannot be directly reused, so a new design is needed to support large transmission delays and ensure normal communication.
  • this application discloses a solution. It should be noted that in the description of this application, only the NTN scenario is used as a typical application scenario or example; this application is also applicable to other scenarios (such as other large delay networks) other than NTN that face similar problems. Can achieve similar technical effects in NTN scenes. In addition, different scenarios (including but not limited to NTN scenarios) adopting a unified solution can also help reduce hardware complexity and cost. In the case of no conflict, the embodiment in the first node device of the present application and the features in the embodiment can be applied to the second node device, and vice versa. special,
  • This application discloses a method used in a first node in wireless communication, which is characterized in that it includes:
  • the first characteristic parameter group includes at least one of the type of the sender of the first information, the height of the sender of the first information, and the common time offset;
  • the first time length set is A set of candidate time lengths in the set of X candidate time lengths, where X is a positive integer greater than 1;
  • the first characteristic parameter set is used to determine the set of candidate time lengths from the set of X candidate time lengths.
  • a first time length set; any one of the X candidate time length sets includes a positive integer number of time lengths greater than 1, and the target time length is a time in the first time length set Length; the target time length and the common time offset are used together to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal.
  • the configuration of the first time length set for different delay situations is supported, so that the network can be configured according to the actual delay situation.
  • the delay of the scheduled uplink and downlink conversion under the premise of ensuring scheduling flexibility, supports the scheduling in the large delay network, avoiding the transmission failure caused by the delay between the uplink and the downlink and the large range of transmission delay differences. .
  • the first characteristic parameter group is used to determine the first time length set from the X candidate time length sets, so as to support the delay status of the network or satellite orbit information or
  • the altitude information of the satellite is used to implicitly obtain the set of scheduling or configurable delay parameters, avoiding the introduction of additional signaling overhead, and effectively solving the failure of uplink and downlink conversion caused by large-scale transmission delay differences. The problem of normal work.
  • the first time length set is determined by the first characteristic parameter group instead of a single time length, so that the network can perform scheduling according to the actual transmission delays between different user equipments, The problem of unnecessary scheduling delay caused by always scheduling for the maximum delay difference is avoided.
  • the above method is characterized in that the first signaling is used to determine a first index, the first index is an index of a first configuration group, and the first configuration group is P configurations A configuration group in the group, where P is a positive integer greater than 1; each configuration group in the P configuration groups includes a time interval length, an index of a starting symbol in the time slot to which it belongs, and an occupation
  • the length of at least one time interval in the length of time, the target time length is equal to the length of the time interval included in the first configuration group; the length of the time interval included in any one of the P configuration groups is equal to A time length in the first time length set.
  • each of the P configuration groups includes at least one time interval length among a time interval length, an index of a start symbol in a time slot to which it belongs, and an occupied time length, Therefore, it is supported to jointly indicate the length of the time interval, the index of the start symbol in the time slot to which it belongs, and the length of time occupied, which reduces the overhead of the scheduling signaling header while ensuring scheduling flexibility.
  • the above method is characterized in that it further includes:
  • the second information is used to determine the P configuration groups.
  • the above method is characterized in that the time lengths in the first time length set are sorted in order according to length, and the difference between any two sorted adjacent time lengths in the first time length set is The absolute value of the difference is equal to the length of the first step, the length of the first step is equal to a positive integer multiple of the first time slot length, and the first time slot length is equal to an OFDM occupied by the first signal in the time domain.
  • the absolute value of the difference between any two sequenced adjacent time lengths in the first time length set is equal to the first step length to ensure that the user equipment in different transmission delay regions
  • the maximum scheduling delay overhead is consistent, which ensures the fairness of delays for different user equipment.
  • the above method is characterized in that the subcarrier interval of one subcarrier occupied by the first signal in the frequency domain is used to determine the first signal from the set of X candidate time lengths. Time length collection.
  • the above method is characterized in that the first signal is used for random access, and the subcarrier interval of one subcarrier occupied by the first signal in the frequency domain is used to determine the first time Offset, the first time offset is used to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal.
  • the above method is characterized in that it further includes:
  • the common time offset is used to determine the length of the time interval between the receiving end moment of the second signal and the sending start moment of the third signal, and the third signal carries uplink control information;
  • the second signal is different from the first signaling, and the third signal is different from the first signal.
  • the above method is characterized in that it further includes:
  • the third information is used to determine the common time offset.
  • This application discloses a method used in a second node in wireless communication, which is characterized in that it includes:
  • the first signaling is used to determine the target time length from the first time length set;
  • the first characteristic parameter group includes at least one of the type of the sender of the first information, the height of the sender of the first information, and the common time offset;
  • the first time length set is A set of candidate time lengths in the set of X candidate time lengths, where X is a positive integer greater than 1;
  • the first characteristic parameter set is used to determine the set of candidate time lengths from the set of X candidate time lengths.
  • a first time length set; any one of the X candidate time length sets includes a positive integer number of time lengths greater than 1, and the target time length is a time in the first time length set Length; the target time length and the common time offset are used together to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal.
  • the above method is characterized in that the first signaling is used to determine a first index, the first index is an index of a first configuration group, and the first configuration group is P configurations A configuration group in the group, where P is a positive integer greater than 1; each configuration group in the P configuration groups includes a time interval length, an index of a starting symbol in the time slot to which it belongs, and an occupation
  • the length of at least one time interval in the length of time, the target time length is equal to the length of the time interval included in the first configuration group; the length of the time interval included in any one of the P configuration groups is equal to A time length in the first time length set.
  • the above method is characterized in that it further includes:
  • the second information is used to determine the P configuration groups.
  • the above method is characterized in that the time lengths in the first time length set are sorted in order according to length, and the difference between any two sorted adjacent time lengths in the first time length set is The absolute value of the difference is equal to the length of the first step, the length of the first step is equal to a positive integer multiple of the first time slot length, and the first time slot length is equal to an OFDM occupied by the first signal in the time domain.
  • the above method is characterized in that the subcarrier interval of one subcarrier occupied by the first signal in the frequency domain is used to determine the first signal from the set of X candidate time lengths. Time length collection.
  • the above method is characterized in that the first signal is used for random access, and the subcarrier interval of one subcarrier occupied by the first signal in the frequency domain is used to determine the first time Offset, the first time offset is used to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal.
  • the above method is characterized in that it further includes:
  • the common time offset is used to determine the length of the time interval between the receiving end moment of the second signal and the sending start moment of the third signal, and the third signal carries uplink control information;
  • the second signal is different from the first signaling, and the third signal is different from the first signal.
  • the above method is characterized in that it further includes:
  • the third information is used to determine the common time offset.
  • This application discloses a first node device used in wireless communication, which is characterized in that it includes:
  • a first receiver receiving first information, where the first information is used to determine a first characteristic parameter group
  • a second receiver receiving first signaling, where the first signaling is used to determine the target time length from the first time length set;
  • the first transmitter sends the first signal
  • the first characteristic parameter group includes at least one of the type of the sender of the first information, the height of the sender of the first information, and the common time offset;
  • the first time length set is A set of candidate time lengths in the set of X candidate time lengths, where X is a positive integer greater than 1;
  • the first characteristic parameter set is used to determine the set of candidate time lengths from the set of X candidate time lengths.
  • a first time length set; any one of the X candidate time length sets includes a positive integer number of time lengths greater than 1, and the target time length is a time in the first time length set Length; the target time length and the common time offset are used together to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal.
  • This application discloses a second node device used in wireless communication, which is characterized in that it includes:
  • the second transmitter sends first information, and the first information is used to determine the first characteristic parameter group;
  • the third transmitter sends first signaling, and the first signaling is used to determine the target time length from the first time length set;
  • the third receiver receives the first signal
  • the first characteristic parameter group includes at least one of the type of the sender of the first information, the height of the sender of the first information, and the common time offset;
  • the first time length set is A set of candidate time lengths in the set of X candidate time lengths, where X is a positive integer greater than 1;
  • the first characteristic parameter set is used to determine the set of candidate time lengths from the set of X candidate time lengths.
  • a first time length set; any one of the X candidate time length sets includes a positive integer number of time lengths greater than 1, and the target time length is a time in the first time length set Length; the target time length and the common time offset are used together to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal.
  • the method in this application has the following advantages:
  • Using the method in this application allows the network to configure the schedulable uplink-downlink conversion delay according to the actual delay situation. Under the premise of ensuring the scheduling flexibility, it supports the scheduling in the large delay network, avoiding The delay between the uplink and the downlink cannot support the transmission failure caused by a wide range of transmission delay differences.
  • the method in this application supports implicitly obtaining a set of schedulable or configurable delay parameters according to the delay status of the network or the orbit information of the satellite or the altitude information of the satellite, avoiding the introduction of additional signaling overhead At the same time, it effectively solves the problem that the uplink and downlink conversion may not work normally caused by the large-scale transmission delay difference.
  • the network can be scheduled according to the actual transmission delay between different user equipment, avoiding the problem of unnecessary scheduling delay caused by always scheduling for the maximum delay difference .
  • the method in this application supports joint indication of the length of the time interval, the index of the start symbol in the time slot to which it belongs, and the length of time occupied, which reduces the overhead of the scheduling signaling header while ensuring scheduling flexibility.
  • the method in this application ensures that the maximum scheduling delay overhead of user equipment in different transmission delay regions is consistent, and ensures the fairness of delays for different user equipment.
  • Fig. 1 shows a flow chart of first information, first signaling and first signal according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Fig. 3 shows a schematic diagram of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first node device and a second node device according to an embodiment of the present application
  • Figure 5 shows a wireless signal transmission flow chart according to an embodiment of the present application
  • Fig. 6 shows a wireless signal transmission flow chart according to another embodiment of the present application.
  • Fig. 7 shows a schematic diagram of P configuration groups according to an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of the first step according to an embodiment of the present application.
  • Fig. 9 shows a schematic diagram of X candidate time length sets according to an embodiment of the present application.
  • Fig. 10 shows a schematic diagram of a first time offset according to an embodiment of the present application
  • Fig. 11 shows a schematic diagram of a common time offset according to an embodiment of the present application.
  • Fig. 12 shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application
  • Fig. 13 shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates the flow chart of the first information, the first signaling and the first signal according to an embodiment of the present application, as shown in FIG. 1.
  • each box represents a step, and it should be particularly emphasized that the order of each box in the figure does not represent the time sequence relationship between the steps shown.
  • the first node device in this application receives first information in step 101, and the first information is used to determine the first characteristic parameter group; in step 102, the first signaling is received, said The first signaling is used to determine the target time length from the first time length set; in step 103, the first signal is sent; wherein, the first characteristic parameter group includes the type of the sender of the first information, and At least one of the height of the sender of the first information and the common time offset; the first time length set is one candidate time length set among X candidate time length sets, and X is greater than 1.
  • the first characteristic parameter set is used to determine the first time length set from the X candidate time length sets; any one candidate time length in the X candidate time length sets
  • the set includes a positive integer number of time lengths greater than 1, and the target time length is a time length in the first time length set; the target time length and the common time offset are used together to determine the first time length
  • the first node device is in an RRC (Radio Resource Control, radio resource control) idle state (RRC_IDLE) when sending the first signal.
  • RRC Radio Resource Control, radio resource control
  • the first node device is in an RRC (Radio Resource Control, radio resource control) connected state (RRC_CONNECTED) when sending the first signal.
  • RRC Radio Resource Control, radio resource control
  • the first node device is in an RRC (Radio Resource Control, radio resource control) inactive state (RRC_INACTIVE) when sending the first signal.
  • RRC Radio Resource Control, radio resource control
  • the first information is transmitted through an air interface.
  • the first information is transmitted through a wireless interface.
  • the first information is transmitted through higher layer signaling.
  • the first information is transmitted through physical layer signaling.
  • the first information includes all or part of a high-layer signaling.
  • the first information includes all or part of a physical layer signaling.
  • the first information includes all or part of an IE (Information Element, information element) in an RRC (Radio Resource Control, radio resource control) signaling.
  • IE Information Element, information element
  • RRC Radio Resource Control, radio resource control
  • the first information includes all or part of a field (Field) in an IE (Information Element, information element) in an RRC (Radio Resource Control, radio resource control) signaling.
  • Field Information Element, information element
  • RRC Radio Resource Control, radio resource control
  • the first information includes all or part of a field in a MAC (Medium Access Control) layer signaling.
  • MAC Medium Access Control
  • the first information includes all or part of a master information block (MIB, Master Information Block).
  • MIB Master Information Block
  • the first information includes all or part of a system information block (SIB, System Information Block).
  • SIB system information block
  • the first information includes all or part of a MAC (Medium Access Control) CE (Control Element).
  • MAC Medium Access Control
  • the first information includes all or part of a MAC (Medium Access Control) header.
  • MAC Medium Access Control
  • the first information is transmitted through a DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the first information is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the first information is broadcast.
  • the first information is cell specific (Cell Specific).
  • the first information is UE-specific.
  • the first information is user equipment group-specific (UE group-specific).
  • the first information is specific to the coverage area (Footprint).
  • the first information is beam specific (Beam Specific).
  • the first information is specific to a geographic area.
  • the first information includes all or part of a field of DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the sentence "the first information is used to determine the first characteristic parameter group” includes the following meaning: the first information is used by the first node device in this application to determine the first Characteristic parameter group.
  • the above sentence "the first information is used to determine the first characteristic parameter group” includes the following meaning: the first information is used to directly indicate the first characteristic parameter group.
  • the above sentence "the first information is used to determine the first characteristic parameter group” includes the following meaning: the first information is used to indirectly indicate the first characteristic parameter group.
  • the above sentence "the first information is used to determine the first characteristic parameter group” includes the following meaning: the first information is used to explicitly indicate the first characteristic parameter group.
  • the above sentence "the first information is used to determine the first characteristic parameter group” includes the following meaning: the first information is used to implicitly indicate the first characteristic parameter group.
  • the first signaling is transmitted through an air interface.
  • the first signaling is transmitted through a wireless interface.
  • the first signaling is transmitted through a Uu interface.
  • the first signaling is physical layer signaling.
  • the first signaling is transmitted through PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel, Physical Downlink Control Channel
  • the first signaling includes all or part of fields in DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • the first signaling includes all or part of the fields (Field) in a given DCI (Downlink Control Information) format (Format).
  • Field Downlink Control Information
  • Form Downlink Control Information
  • the first signaling is high-layer signaling.
  • the first signaling is RRC signaling.
  • the first signaling is MAC layer signaling.
  • the first signaling is signaling used to configure SPS (Semi-Persistent Scheduling, semi-persistent scheduling).
  • the first signaling is an uplink grant (Uplink Grant) in RAR (Random Access Response).
  • Uplink Grant Uplink Grant
  • RAR Random Access Response
  • the first signaling is an uplink grant (Uplink Grant) in MsgB (message B).
  • the first signaling is the field "PDSCH-to-HARQ_feedback timing indicator" in MsgB (message B).
  • the first signaling is the field "PDSCH-to-HARQ_feedback timing indicator" in the DCI.
  • the first signaling is DCI for scheduling PDSCH (Physical Downlink Shared Channel, physical downlink shared channel).
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • the first signaling is DCI for scheduling PUSCH (Physical Uplink Shared Channel, Physical Uplink Shared Channel).
  • the first signaling is the field "CSI" in the DCI.
  • the above sentence “the first signaling is used to determine the target time length from the first time length set” includes the following meaning: the first signaling is used by the first node device in this application It is used to determine the target time length from the first time length set.
  • the above sentence “the first signaling is used to determine the target time length from the first time length set” includes the following meaning: the first signaling is used to directly obtain the first time length from the The target time length is indicated in the set.
  • the above sentence “the first signaling is used to determine the target time length from the first time length set” includes the following meaning: the first signaling is used to indirectly obtain the first time length The target time length is indicated in the set.
  • the above sentence "the first signaling is used to determine the target time length from the first time length set” includes the following meaning: the first signaling is used to explicitly obtain the The target time length is indicated in the time length set.
  • the above sentence “the first signaling is used to determine the target time length from the first time length set” includes the following meaning: the first signaling is used to implicitly obtain the target time length from the first time length set. The target time length is indicated in the time length set.
  • the first signal is a baseband signal.
  • the first signal is a radio frequency signal.
  • the first signal is transmitted through an air interface.
  • the first signal is transmitted through a wireless interface.
  • the first signal carries Msg3 (random access information 3).
  • the first signal is used in a random access procedure.
  • the first signal carries a retransmission of Msg3.
  • the first signal carries an initial transmission of Msg3.
  • the first signal carries a retransmission of the uplink transmission scheduled by MsgB.
  • the first signal carries an initial transmission of uplink transmission scheduled by MsgB.
  • the first signal is an uplink transmission later than Msg3.
  • the first signal is uplink transmission of the first node device after completing the random access procedure.
  • the first signal is transmitted through UL-SCH (Uplink Shared Channel, uplink shared channel).
  • UL-SCH Uplink Shared Channel, uplink shared channel
  • the first signal is transmitted through PUSCH (Physical Uplink Shared Channel, Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel, Physical Uplink Shared Channel
  • the first signal is transmitted through PUCCH (Physical Uplink Control Channel, Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel, Physical Uplink Control Channel
  • the first signal is transmitted through SRS (Sounding Reference Signal, sounding reference signal).
  • SRS Sounding Reference Signal, sounding reference signal
  • the first signal is transmitted through UL DMRS (Uplink Demodulation Reference Signal, uplink demodulation reference signal).
  • UL DMRS Uplink Demodulation Reference Signal, uplink demodulation reference signal
  • the first signal occupies a positive integer number of subcarriers in the frequency domain.
  • the first signal occupies more than one subcarrier in the frequency domain, and the subcarrier spacing (SCS, Subcarrier Spacing) of any two subcarriers occupied by the first wireless signal in the frequency domain is equal.
  • SCS Subcarrier Spacing
  • the first signal does not carry uplink control information (UCI, Uplink Control Information).
  • UCI Uplink Control Information
  • the first signal only carries high-level information.
  • TB Transport Block
  • the first signal does not carry physical layer information.
  • the first signal carries uplink control information (UCI, Uplink Control Information) of the physical layer.
  • UCI Uplink Control Information
  • the first signal carries HARQ-ACK (Hybrid Automatic Repeat Request-Acknowledgement, Hybrid Automatic Repeat Request-Acknowledgement).
  • HARQ-ACK Hybrid Automatic Repeat Request-Acknowledgement, Hybrid Automatic Repeat Request-Acknowledgement.
  • the first signal carries CSI (Channel Status Information).
  • all or part of a bit block carrying UCI is used to generate the first signal.
  • UCI Uplink Control Information, uplink control information
  • the waveform adopted by the first signal is OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing).
  • the waveform used by the first signal is DFT-s-OFDM (Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing, Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing).
  • the sentence "the first characteristic parameter group includes at least one of the type of the sender of the first information, the height of the sender of the first information, and the common time offset” includes the following Meaning: the first characteristic parameter group includes the type of the sender of the first information, the height of the sender of the first information, and the common time offset.
  • the sentence "the first characteristic parameter group includes at least one of the type of the sender of the first information, the height of the sender of the first information, and the common time offset” includes the following Meaning:
  • the first characteristic parameter group includes the type of the sender of the first information and the common time offset.
  • the sentence "the first characteristic parameter group includes at least one of the type of the sender of the first information, the height of the sender of the first information, and the common time offset” includes the following Meaning: the first characteristic parameter group includes the height of the sender of the first information and the common time offset.
  • the sentence "the first characteristic parameter group includes at least one of the type of the sender of the first information, the height of the sender of the first information, and the common time offset” includes the following Meaning:
  • the first characteristic parameter group only includes the type of the sender of the first information.
  • the sentence "the first characteristic parameter group includes at least one of the type of the sender of the first information, the height of the sender of the first information, and the common time offset” includes the following Meaning:
  • the first characteristic parameter group only includes the height of the sender of the first information.
  • the sentence "the first characteristic parameter group includes at least one of the type of the sender of the first information, the height of the sender of the first information, and the common time offset” includes the following Meaning: The first characteristic parameter group only includes the common time offset.
  • the type of the sender of the first information indicates whether the sender of the first information is a terrestrial network node (TN, Terrestrial Network) or a non-terrestrial network node (NTN, Non-Terrestrial Network).
  • TN terrestrial network node
  • NTN Non-Terrestrial Network
  • the type of the sender of the first information indicates the type of satellite to which the sender of the first information belongs.
  • the type of the sender of the first information is a Low-Earth (LEO) satellite, a Medium-Earth (MEO) satellite, and a Geostationary (Earth Orbit, GEO) satellite One of the Unmanned Aircraft Systems Platform (UAS) and High Elliptical Orbit (HEO) satellites.
  • LEO Low-Earth
  • MEO Medium-Earth
  • GEO Geostationary Satellite
  • UAS Unmanned Aircraft Systems Platform
  • HEO High Elliptical Orbit
  • the type of the sender of the first information indicates whether the sender of the first information is a satellite or an unmanned aircraft systems platform (UAS).
  • UAS unmanned aircraft systems platform
  • the unit of the altitude (Altitude) of the sender of the first information is meters.
  • the unit of the height of the sender of the first information is kilometers.
  • the height of the sender of the first information is expressed by transmission delay.
  • the height of the sender of the first information refers to the height of the sender of the first information based on a horizontal plane.
  • the height of the sender of the first information refers to the distance from the sender of the first information to the perigee (Nadir).
  • the common time offset is K offset .
  • the common time offset is the additional scheduling delay between the DCI compared to the NTN and the TN to the scheduled PUSCH.
  • the common time offset is the extra time delay between the PDSCH and the associated HARQ-ACK compared to the NTN and the TN.
  • the common time offset is the extra time delay between the DCI compared to the NTN and the TN to the triggered CSI report.
  • the common time offset is the extra time delay between the CSI report and the CSI reference resource compared to NTN and TN.
  • the unit of the common time offset is milliseconds.
  • the unit of the common time offset is seconds.
  • the common time offset is represented by the number of OFDM symbols (Symbol).
  • the common time offset is expressed by the number of OFDM symbols (Symbol) of one subcarrier spacing (SCS, Subcarrier Spacing).
  • the common time offset is related to a transmission delay (Propagation Delay) from the sender of the first information to the first node device.
  • a transmission delay Propagation Delay
  • the public time offset is related to the transmission delay (Propagation Delay) from the sender of the first information to the perigee (Nadir).
  • the common time offset is related to an RTT (Round Trip Time) from the sender of the first information to the first node device.
  • the common time offset is related to the RTT (Round Trip Time) from the sender of the first information to the perigee (Nadir).
  • any two time lengths in the first time length set are not equal.
  • any one time length in the first time length set is represented by the number of OFDM symbols (Symbol).
  • any one time length in the first time length set is represented by the number of OFDM symbols corresponding to a subcarrier interval (SCS) of a subcarrier occupied by the first signal in the frequency domain.
  • SCS subcarrier interval
  • any one time length in the first time length set is represented by the number of time slots (Slot).
  • any one time length in the first time length set is represented by the number of slots (Slot) corresponding to a subcarrier interval (SCS) of a subcarrier occupied by the first signal in the frequency domain .
  • each time length in the first time length set is greater than zero.
  • each time length in the first time length set is not less than 0, and there is a time length equal to 0 in the first time length set.
  • each time length in the first time length set is a possible value of k2 in PUSCH time domain resource allocation (PUSCH time domain resource allocation).
  • each time length in the first time length set is equal to k0 in PUSCH time domain resource allocation (PUSCH time domain resource allocation) and k0 of PDSCH-to-HARQ feedback timing (PDSCH-to-HARQ_feedback timing) The possible values of the sum.
  • each time length in the first time length set is a possible value of the scheduling time offset between the PDCCH that triggers the CSI report and the CSI report.
  • the time interval lengths included in the first time length set are 1 time slot, 2 time slots, 3 time slots, 4 time slots, 5 time slots, 6 time slots, and 7 time slots. Time slots and 8 time slots.
  • any two candidate time length sets in the X candidate time length sets are not the same.
  • two candidate time length sets in the X candidate time length sets are different.
  • any one time length included in any one candidate time length set in the X candidate time length sets is greater than zero.
  • any time length included in any one of the X candidate time length sets is represented by the number of OFDM symbols.
  • any time length included in any one of the X candidate time length sets passes through a subcarrier corresponding to a subcarrier occupied by the first signal in the frequency domain Represents the number of OFDM symbols of the interval (SCS).
  • any one time length included in any one candidate time length set in the X candidate time length sets is represented by the number of slots (Slot).
  • any time length included in any one of the X candidate time length sets passes through a subcarrier corresponding to a subcarrier occupied by the first signal in the frequency domain
  • the number of slots (Slot) of the interval (SCS) is expressed.
  • the X is equal to 2.
  • the X is equal to the number of satellite types supported by the network plus one.
  • the X is configurable.
  • the X is greater than 2.
  • the set of X candidate time lengths is predefined.
  • the set of X candidate time lengths is configurable.
  • the set of X candidate time lengths is version specific (Release Specific).
  • the set of X candidate time lengths are visible.
  • the set of X candidate time lengths is fixed.
  • the X candidate time length sets are respectively for X possible types of senders of the first information.
  • the X candidate time length sets are respectively for X possible heights of senders of the first information.
  • the X candidate time length sets are respectively for X possible common time offsets.
  • the above sentence "the first characteristic parameter set is used to determine the first time length set from the X candidate time length sets” includes the following meaning: the first characteristic parameter set is The first node device in this application is used to determine the first time length set from the X candidate time length sets.
  • the above sentence "the first feature parameter set is used to determine the first time length set from the X candidate time length sets” includes the following meaning: for a given first time length set The subcarrier spacing (SCS, Subcarrier Spacing) of a subcarrier occupied by the signal in the frequency domain, the first characteristic parameter set is used to determine the first time length set from the X candidate time length sets .
  • SCS subcarrier spacing
  • the above sentence "the first characteristic parameter set is used to determine the first time length set from the X candidate time length sets” includes the following meaning: the X candidate time lengths
  • the sets respectively correspond to X candidate feature parameter groups
  • the first feature parameter group is one candidate feature parameter group in the X candidate feature parameter groups
  • the first time length set is the X backup feature parameter groups.
  • the above sentence "the first characteristic parameter set is used to determine the first time length set from the X candidate time length sets” includes the following meaning: the first characteristic parameter set is based on The mapping relationship is used to determine the first time length set from the X candidate time length sets.
  • the above sentence "the first characteristic parameter set is used to determine the first time length set from the X candidate time length sets” includes the following meaning: the first characteristic parameter set is based on The table correspondence is used to determine the first time length set from the X candidate time length sets.
  • the receiving time of the first signaling refers to: the receiving end time of the first signaling.
  • the receiving moment of the first signaling refers to the starting moment of receiving the first signaling.
  • the receiving moment of the first signaling refers to: the latest boundary (Slot) of the latest OFDM symbol (Symbol) occupied by the first signaling in the time domain ( Boundary) Receiving time.
  • the receiving time of the first signaling refers to the receiving cutoff time of the slot to which the latest OFDM symbol (Symbol) belongs in the time domain occupied by the first signaling.
  • the receiving moment of the first signaling refers to: the subcarrier interval of one subcarrier occupied by the first signaling in the frequency domain is equal to the first subcarrier interval, and the first signaling is at The reception cut-off time of the time slot (Slot) using the first subcarrier interval to which the latest OFDM symbol (Symbol) occupied by the time domain belongs.
  • the receiving moment of the first signaling refers to: the subcarrier interval of one subcarrier occupied by the first signal in the frequency domain is equal to the second subcarrier interval, and the first signaling is at time The receiving end time of the slot (Slot) that uses the second subcarrier interval to which the latest OFDM symbol (Symbol) occupied by the domain belongs.
  • the sending time of the first signal refers to: the sending start time of the first signal.
  • the sending time of the first signal refers to: the sending end time of the first signal.
  • the transmission time of the first signal refers to the transmission start time of the earliest OFDM symbol occupied by the first signal in the time domain.
  • the transmission time of the first signal refers to the transmission start time of the earliest OFDM symbol (including a cyclic prefix (CP, Cyclic Prefix)) occupied by the first signal in the time domain.
  • CP cyclic prefix
  • the transmission time of the first signal refers to the transmission start time of the slot to which the earliest OFDM symbol occupied by the first signal in the time domain belongs.
  • the sending moment of the first signal refers to: the subcarrier interval of one subcarrier occupied by the first signaling in the frequency domain is equal to the first subcarrier interval, and the first signal is in the time domain The transmission start time of the time slot (Slot) using the first subcarrier interval to which the earliest occupied OFDM symbol (Symbol) belongs.
  • the transmission moment of the first signal refers to: the subcarrier interval of one subcarrier occupied by the first signal in the frequency domain is equal to the second subcarrier interval, and the first signal is in the time domain.
  • the receiving time of the first signaling is earlier than the sending time of the first signal.
  • the receiving time of the first signaling is no later than the sending time of the first signal.
  • the above sentence “the target time length and the common time offset are used together to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal” It includes the following meanings: the target time length and the common time offset are jointly used by the first node device in this application to determine one of the receiving moment of the first signaling and the sending moment of the first signal The length of the time interval between.
  • the above sentence “the target time length and the common time offset are used together to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal” It includes the following meaning: the sum of the target time length and the common time offset is used to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal.
  • the above sentence “the target time length and the common time offset are used together to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal” It includes the following meanings: the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal is linearly related to the target time length, and the receiving moment of the first signaling is linearly related to the first signaling moment. The length of the time interval between the sending moments of a signal is linearly related to the common time offset.
  • the above sentence "the target time length and the common time offset are used together to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal” It includes the following meanings: the sum of the target time length and the common time offset is used to determine the index of the downlink slot to which the latest OFDM symbol occupied by the first signaling in the time domain belongs and the first The difference between the index of the uplink time slot to which the earliest OFDM symbol occupied by the signal in the time domain belongs.
  • the above sentence “the target time length and the common time offset are used together to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal” It includes the following meanings: the target time length, the common time offset, and the timing advance (TA, Timing Advance) when sending the first signal are jointly used to determine the receiving time of the first signaling and the The length of the time interval between the sending moments of the first signal.
  • the target time length, the common time offset, and the timing advance (TA, Timing Advance) when sending the first signal are jointly used to determine the receiving time of the first signaling and the The length of the time interval between the sending moments of the first signal.
  • it further includes:
  • the first signaling is used to determine the time-frequency resource occupied by the fourth signal; the sentence "the target time length and the common time offset are used together to determine the first signaling
  • the length of the time interval between the receiving time and the sending time of the first signal includes the following meaning: the target time length and the common time offset are used together to determine the receiving time and the time of the fourth signal.
  • the length of the time interval between the sending moments of the first signal, and the length of the time interval between the receiving moment of the fourth signal and the sending moment of the first signal is used to determine the receiving moment of the first signal And the length of the time interval between the sending moment of the first signal.
  • the above sentence "the target time length and the common time offset are used together to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal" It includes the following meanings: the sum of the target time length and the common time offset minus the timing advance (TA, Timing Advance) when sending the first signal is used to determine the reception of the first signaling The length of the time interval between the time and the sending time of the first signal.
  • TA Timing Advance
  • the above sentence "the target time length and the common time offset are used together to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal" It includes the following meaning: the sum of the target time length and the common time offset minus the time length of the integer number of time slots included in the timing advance (TA, Timing Advance) when transmitting the first signal is equal to The length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal.
  • TA Timing Advance
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2.
  • Fig. 2 illustrates a diagram of a network architecture 200 of 5G NR, LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) systems.
  • the 5G NR or LTE network architecture 200 may be referred to as 5GS (5G System)/EPS (Evolved Packet System, evolved packet system) 200 some other suitable terminology.
  • 5GS/EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server)/UDM (Unified Data Management) 220 and Internet Service 230.
  • 5GS/EPS can be interconnected with other access networks, but for simplicity Show these entities/interfaces. As shown in the figure, 5GS/EPS provides packet switching services, but those skilled in the art will easily understand that various concepts presented throughout this application can be extended to networks that provide circuit switching services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an Xn interface (for example, backhaul).
  • the gNB203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmitting and receiving node), or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , Video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine-type communication devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices Video devices
  • digital audio players for example, MP3 players
  • cameras game consoles
  • drones aircraft
  • narrowband IoT devices machine-type communication devices
  • machine-type communication devices land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE201 can also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway)/UPF (User Plane Function, user plane function) 212, and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • MME/AMF/SMF211 is a control node that processes the signaling between UE201 and 5GC/EPC210. In general, MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. The P-GW provides UE IP address allocation and other functions.
  • the P-GW/UPF 213 is connected to the Internet service 230.
  • the Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching streaming service.
  • IMS IP Multimedia Subsystem
  • IP Multimedia Subsystem IP Multi
  • the UE201 corresponds to the first node device in this application.
  • the UE 201 supports transmission in a network with a large transmission delay.
  • the UE 201 supports transmission in a large-scale transmission delay difference network.
  • the UE201 supports an NTN network.
  • the gNB201 corresponds to the second node device in this application.
  • the gNB201 supports transmission in a network with a large transmission delay.
  • the gNB201 supports transmission in a large-scale transmission delay difference network.
  • the gNB201 supports NTN network.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • FIG. 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture used for the user plane 350 and the control plane 300.
  • FIG. 3 shows three layers for the first node device (UE, terminal device in the gNB or NTN network) and the second node device.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first node device and the second node device through PHY301.
  • L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers terminate at the second node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides cross-zone movement support between the second node device and the first node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logic and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among the first node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the communication between the second node device and the first node device. RRC signaling to configure the lower layer.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture for the first node device and the second node device in the user plane 350 is for the physical layer 351 and the L2 layer 355.
  • the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are basically the same as the corresponding layers and sublayers in the control plane 300.
  • the header of the upper layer data packet is compressed to reduce the radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol) sublayer 356.
  • SDAP Service Data Adaptation Protocol
  • the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer). To support business diversity.
  • the first node device may have several upper layers above the L2 layer 355, including a network layer (for example, an IP layer) terminating at the P-GW on the network side and terminating at the other end of the connection (For example, remote UE, server, etc.) at the application layer.
  • the wireless protocol architecture in FIG. 3 is applicable to the first node device in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node device in this application.
  • the first information in this application is generated in the RRC306.
  • the first information in this application is generated in the MAC302 or MAC352.
  • the first information in this application is generated in the PHY301 or PHY351.
  • the first signaling in this application is generated in the RRC306.
  • the first signaling in this application is generated in the MAC302 or MAC352.
  • the first signaling in this application is generated in the PHY301 or PHY351.
  • the first signal in this application is generated in the RRC306.
  • the first signal in this application is generated in the MAC302 or MAC352.
  • the first signal in this application is generated in the PHY301 or PHY351.
  • the second information in this application is generated in the RRC306.
  • the second information in this application is generated in the MAC302 or MAC352.
  • the second information in this application is generated in the PHY301 or PHY351.
  • the second signal in this application is generated in the RRC306.
  • the second signal in this application is generated in the MAC302 or MAC352.
  • the second signal in this application is generated in the PHY301 or PHY351.
  • the third signal in this application is generated in the RRC306.
  • the third signal in this application is generated in the MAC302 or MAC352.
  • the third signal in this application is generated in the PHY301 or PHY351.
  • the third information in this application is generated in the RRC306.
  • the third information in this application is generated in the MAC302 or MAC352.
  • the third information in this application is generated in the PHY301 or PHY351.
  • Embodiment 4 shows a schematic diagram of a first node device and a second node device according to the present application, as shown in FIG. 4.
  • the first node device (450) may include a controller/processor 490, a data source/buffer 480, a receiving processor 452, a transmitter/receiver 456, and a transmitting processor 455.
  • the transmitter/receiver 456 includes an antenna. 460.
  • the second node device (410) may include a controller/processor 440, a data source/buffer 430, a receiving processor 412, a transmitter/receiver 416 and a transmitting processor 415, the transmitter/receiver 416 includes an antenna 420.
  • DL Downlink, downlink
  • upper layer packets such as the first information in this application, the first signaling (if the first signaling includes high-level information), the second information, the second signal, and the third information
  • the included high-level information is provided to the controller/processor 440.
  • the controller/processor 440 implements the functions of the L2 layer and above.
  • the controller/processor 440 provides header compression, encryption, packet segmentation and reordering, multiplexing between logic and transport channels, and multiplexing of the radio of the first node device 450 based on various priority measures. Resource allocation.
  • the controller/processor 440 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the first node device 450, such as the first information and first signaling in this application (if the first signaling includes high-level Information), the second information, the second signal, and the third information are all generated in the controller/processor 440.
  • the transmit processor 415 implements various signal processing functions for the L1 layer (ie, the physical layer), including coding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer control signaling generation, etc. This application The first information, the first signaling, the second information, the second signal, and the third information in the physical layer signal are generated in the transmitting processor 415.
  • the generated modulation symbols are divided into parallel streams and each stream is mapped to the corresponding
  • the multi-carrier sub-carriers and/or multi-carrier symbols are then mapped to the antenna 420 by the transmitting processor 415 via the transmitter 416 and transmitted in the form of radio frequency signals.
  • each receiver 456 receives the radio frequency signal through its corresponding antenna 460, and each receiver 456 recovers the baseband information modulated onto the radio frequency carrier, and provides the baseband information to the receiving processor 452.
  • the reception processor 452 implements various signal reception processing functions of the L1 layer.
  • the signal reception processing function includes the reception of the physical layer signals of the first information, the first signaling, the second information, the second signal, and the third information in this application, etc., based on the multi-carrier symbols in the multi-carrier symbol stream.
  • a modulation scheme for example, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK)
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • the controller/processor 490 is responsible for the first information, the first signaling (if the first signaling includes high-level information), the second information, and the second signal in this application. Interpretation with the third information.
  • the controller/processor may be associated with a memory 480 that stores program codes and data.
  • the memory 480 may be referred to as a computer-readable medium.
  • the data source/buffer 480 is used to provide high-level data to the controller/processor 490.
  • the data source/buffer 480 represents the L2 layer and all protocol layers above the L2 layer.
  • the first signal and the third signal in this application are generated in the data source/buffer 480.
  • the controller/processor 490 is implemented for user plane and control by providing header compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels based on the radio resource allocation of the second node 410 Flat L2 layer protocol.
  • the controller/processor 490 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the second node 410.
  • the transmission processor 455 implements various signal transmission processing functions for the L1 layer (ie, the physical layer), the physical layer signals of the first signal and the third signal in this application, and the uplink control information carried by the third signal in this application Generated in the emission processor 455.
  • Signal transmission processing functions include coding and interleaving to facilitate forward error correction (FEC) at the UE450 and pair based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK))
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • the baseband signal is modulated, the modulation symbols are divided into parallel streams and each stream is mapped to the corresponding multi-carrier sub-carrier and/or multi-carrier symbol, and then the transmit processor 455 is mapped to the antenna 460 via the transmitter 456 to transmit in the form of radio frequency signal Get out.
  • the receivers 416 receive radio frequency signals through its corresponding antenna 420, and each receiver 416 recovers the baseband information modulated onto the radio frequency carrier, and provides the baseband information to the receiving processor 412.
  • the receiving processor 412 implements various signal receiving and processing functions for the L1 layer (ie, the physical layer), including receiving and processing the physical layer signals of the first signal and the third signal in this application, and processing the uplink control carried by the third signal Information, signal reception processing functions include acquiring multi-carrier symbol streams, and then performing multi-carrier symbols in the multi-carrier symbol streams based on various modulation schemes (for example, binary phase shift keying (BPSK), quadrature phase shift keying ( QPSK)), followed by decoding and deinterleaving to recover the data and/or control signals originally transmitted by the first node device 450 on the physical channel.
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • the data and/or control signals are then provided to the controller/processor 440.
  • the functions of the L2 layer are implemented in the controller/processor 440.
  • the controller/processor may be associated with a buffer 430 that stores program codes and data.
  • the buffer 430 may be a computer-readable medium.
  • the first node device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to The at least one processor is used together, and the first node device 450 means at least: receiving first information, the first information being used to determine a first characteristic parameter group; receiving first signaling, the first signaling Is used to determine the target time length from the first time length set; send a first signal; wherein, the first characteristic parameter group includes the type of the sender of the first information, and the sender of the first information At least one of the height and the common time offset; the first time length set is one candidate time length set among X candidate time length sets, and the X is a positive integer greater than 1; the first The characteristic parameter set is used to determine the first time length set from the X candidate time length sets; any one of the X candidate time length sets includes a positive integer greater than 1. Time length, the target time length is a time length in the first time length set; the target time length and the
  • the first node device 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving The first information, the first information is used to determine the first characteristic parameter group; the first signaling is received, and the first signaling is used to determine the target time length from the first time length set; and the first signal is sent
  • the first characteristic parameter group includes at least one of the type of the sender of the first information, the height of the sender of the first information, and the common time offset
  • the first time length set Is a set of candidate time lengths in the set of X candidate time lengths, where X is a positive integer greater than 1
  • the first characteristic parameter set is used to determine the set of candidate time lengths from the set of X candidate time lengths.
  • the first time length set any one of the X candidate time length sets includes a positive integer number of time lengths greater than 1, and the target time length is one of the first time length set Time length; the target time length and the common time offset are used together to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal.
  • the second node device 410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to Use at least one processor together.
  • the second node device 410 means at least: sending first information, the first information is used to determine the first characteristic parameter group; sending first signaling, the first signaling is used to start from the first time length The target time length is determined in the set; the first signal is received; wherein, the first characteristic parameter group includes the type of the sender of the first information, the height of the sender of the first information, and the common time offset At least one of; the first time length set is a candidate time length set in X candidate time length sets, and the X is a positive integer greater than 1; the first characteristic parameter set is used to The first time length set is determined from the X candidate time length sets; any candidate time length set in the X candidate time length sets includes a positive integer number of time lengths greater than 1, and the target time length Is a time length in the first time
  • the second node device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending a first Information, the first information is used to determine the first characteristic parameter group; sending first signaling, the first signaling is used to determine the target time length from the first time length set; receiving the first signal;
  • the first characteristic parameter group includes at least one of the type of the sender of the first information, the height of the sender of the first information, and the common time offset;
  • the first time length set is A set of candidate time lengths in the set of X candidate time lengths, where X is a positive integer greater than 1;
  • the first characteristic parameter set is used to determine the set of X candidate time lengths A first time length set; any one of the X candidate time length sets includes a positive integer number of time lengths greater than 1, and the target time length is a time in the first time length set Length; the target time length and the common time offset are used together to determine the
  • the first node device 450 is a user equipment (UE).
  • UE user equipment
  • the first node device 450 is a user equipment that supports long-delay transmission.
  • the first node device 450 is a user equipment that supports a wide range of transmission delay differences.
  • the first node device 450 is a user equipment supporting an NTN network.
  • the second node device 410 is a base station device (gNB/eNB).
  • the second node device 410 is a base station device that supports a large transmission delay.
  • the second node device 410 is a base station device that supports a wide range of transmission delay differences.
  • the second node device 410 is a base station device supporting an NTN network.
  • the second node device 410 is a satellite device.
  • the second node device 410 is a flight platform device.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used in this application to receive the first information.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used in this application to receive the first signaling.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used in this application to receive the second information.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used in this application to receive the second signal.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used in this application to receive the third information.
  • the transmitter 456 (including the antenna 460), the transmission processor 455 and the controller/processor 490 are used to transmit the first signal in this application.
  • the transmitter 456 (including the antenna 460), the transmission processor 455 and the controller/processor 490 are used to transmit the third signal in this application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415, and the controller/processor 440 are used to transmit the first information in this application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415, and the controller/processor 440 are used to send the first signaling in this application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415 and the controller/processor 440 are used to transmit the second information in this application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415, and the controller/processor 440 are used to transmit the second signal in this application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415, and the controller/processor 440 are used to transmit the third information in this application.
  • the receiver 416 (including the antenna 420), the receiving processor 412 and the controller/processor 440 are used to receive the first signal in this application.
  • the receiver 416 (including the antenna 420), the receiving processor 412 and the controller/processor 440 are used to receive the third signal in this application.
  • Embodiment 5 illustrates a wireless signal transmission flowchart according to an embodiment of the present application, as shown in FIG. 5.
  • the second node device N1 is the maintenance base station of the serving cell of the first node device U2, and the steps in the dashed box are optional. It is particularly noted that the sequence in this example does not limit the signal transmission sequence and implementation sequence in this application.
  • a first transmission information in step S11, the information transmitted in the third step S12, the second information transmitting step S13, the first signaling transmitted in step S14, in step S15 receives the first One signal, the second signal is sent in step S16, and the third signal is received in step S17.
  • a first received information in step S21 receives the third information in step S22, the second information received in step S23, the received first signaling step S24, in step S25, the transmission section One signal, the second signal is received in step S26, and the third signal is sent in step S27.
  • the first information in this application is used to determine the first characteristic parameter group; the first signaling in this application is used to determine the target time length from the first time length set;
  • the first characteristic parameter group includes at least one of the type of the sender of the first information, the height of the sender of the first information, and a common time offset;
  • the first time length set is X A set of candidate time lengths in the set of candidate time lengths, where X is a positive integer greater than 1; the first characteristic parameter set is used to determine the first set of time lengths from the set of X candidate time lengths.
  • any one of the X candidate time length sets includes a positive integer number of time lengths greater than 1, and the target time length is a time length in the first time length set;
  • the target time length and the common time offset are used together to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal in this application;
  • the first The signaling is used to determine a first index, the first index is an index of a first configuration group, the first configuration group is one of P configuration groups, and the P is a positive integer greater than 1.
  • Each of the P configuration groups includes at least one of a time interval length, an index of a start symbol in the time slot to which it belongs, and an occupied time length, and the target time length is equal to The length of the time interval included in the first configuration group; the length of the time interval included in any one of the P configuration groups is equal to a time length in the first time length set;
  • the second information is used to determine the P configuration groups; the common time offset is used to determine the end time of the reception of the second signal in this application and the time of the third signal in this application
  • the length of the time interval between the sending start moments, the third signal carries uplink control information; the second signal is different from the first signaling, and the third signal is different from the first signal;
  • the third information in this application is used to determine the common time offset.
  • the third information is transmitted through an air interface.
  • the third information is transmitted through a wireless interface.
  • the third information is transmitted through higher layer signaling.
  • the third information is transmitted through physical layer signaling.
  • the third information includes all or part of a high-level signaling.
  • the third information includes all or part of a physical layer signaling.
  • the third information includes all or part of an IE (Information Element, information element) in an RRC (Radio Resource Control, radio resource control) signaling.
  • IE Information Element, information element
  • RRC Radio Resource Control, radio resource control
  • the third information includes all or part of a field (Field) in an IE (Information Element, information element) in an RRC (Radio Resource Control, radio resource control) signaling.
  • Field Information Element, information element
  • RRC Radio Resource Control, radio resource control
  • the third information includes all or part of a field in a MAC (Medium Access Control) layer signaling.
  • MAC Medium Access Control
  • the third information includes all or part of a master information block (MIB, Master Information Block).
  • MIB Master Information Block
  • the third information includes all or part of a system information block (SIB, System Information Block).
  • SIB system information block
  • the third information includes all or part of a MAC (Medium Access Control) CE (Control Element, control element).
  • MAC Medium Access Control
  • CE Control Element, control element
  • the third information includes all or part of a MAC (Medium Access Control) header.
  • MAC Medium Access Control
  • the third information is transmitted through a DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the third information is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the third information is broadcast.
  • the third information is cell specific (Cell Specific).
  • the third information is UE-specific.
  • the third information is user equipment group-specific (UE group-specific).
  • the third information is specific to the coverage area (Footprint).
  • the third information is beam specific (Beam Specific).
  • the third information is geographic area specific.
  • the third information includes all or part of a field of DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the third information and the second information are transmitted through two different signalings.
  • the third information and the second information are transmitted through the same signaling.
  • the third information and the second information are two different IEs (Information Element) of the same signaling.
  • the third information and the second information are two different fields (Field) in the same IE (Information Element) of the same signaling.
  • the above sentence "the third information is used to determine the common time offset” includes the following meaning: the third information is used by the first node device in this application to determine the common time offset Time offset.
  • the above sentence "the third information is used to determine the common time offset” includes the following meaning: the third information is used to directly indicate the common time offset.
  • the above sentence "the third information is used to determine the common time offset” includes the following meaning: the third information is used to indirectly indicate the common time offset.
  • the above sentence “the third information is used to determine the common time offset” includes the following meaning: the third information is used to explicitly indicate the common time offset.
  • the above sentence “the third information is used to determine the common time offset” includes the following meaning: the third information is used to implicitly indicate the common time offset.
  • Embodiment 6 illustrates a wireless signal transmission flowchart according to another embodiment of the present application, as shown in FIG. 6.
  • the second node device N3 is the maintenance base station of the serving cell of the first node device U4, and the steps in the dashed box are optional. It is particularly noted that the sequence in this example does not limit the signal transmission sequence and implementation sequence in this application.
  • the first information For the first node device U4, received at step S41, the first information, third information received in step S42, receives the second information in step S43, the received first signaling in step S44, in step S45 receives the first Four signals, the first signal is sent in step S46, the second signal is received in step S47, and the third signal is sent in step S48.
  • the first information in this application is used to determine the first characteristic parameter group; the first signaling in this application is used to determine the target time length from the first time length set;
  • the first characteristic parameter group includes at least one of the type of the sender of the first information, the height of the sender of the first information, and a common time offset;
  • the first time length set is X A set of candidate time lengths in the set of candidate time lengths, where X is a positive integer greater than 1; the first characteristic parameter set is used to determine the first set of time lengths from the set of X candidate time lengths.
  • any one of the X candidate time length sets includes a positive integer number of time lengths greater than 1, and the target time length is a time length in the first time length set;
  • the target time length and the common time offset are used together to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal in this application;
  • the first The signaling is used to determine a first index, the first index is an index of a first configuration group, the first configuration group is one of P configuration groups, and the P is a positive integer greater than 1.
  • Each of the P configuration groups includes at least one of a time interval length, an index of a start symbol in the time slot to which it belongs, and an occupied time length, and the target time length is equal to The length of the time interval included in the first configuration group; the length of the time interval included in any one of the P configuration groups is equal to a time length in the first time length set;
  • the second information is used to determine the P configuration groups; the common time offset is used to determine the end time of the reception of the second signal in this application and the time of the third signal in this application
  • the length of the time interval between the sending start moments, the third signal carries uplink control information; the second signal is different from the first signaling, and the third signal is different from the first signal;
  • the third information in this application is used to determine the common time offset; the first signaling is used to determine the common time offset Time-frequency resources occupied by the fourth signal.
  • the target time length and the common time offset are used together to determine the length of the time interval between the receiving moment of the fourth signal and the sending moment of the first signal.
  • the length of the time interval between the receiving moment of the signal and the sending moment of the first signal is used to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal.
  • the fourth signal is transmitted through PDSCH.
  • the first signal is used to indicate whether the fourth signal is received correctly.
  • the first signal is used to indicate whether the fourth signal is correctly decoded.
  • the fourth signal is a CSI-RS.
  • the fourth signal is a reference of CSI carried by the first signal.
  • the second information is transmitted through an air interface.
  • the second information is transmitted through a wireless interface.
  • the second information is transmitted through higher layer signaling.
  • the second information is transmitted through physical layer signaling.
  • the second information includes all or part of a high-level signaling.
  • the second information includes all or part of a physical layer signaling.
  • the second information includes all or part of an IE (Information Element, information element) in an RRC (Radio Resource Control, radio resource control) signaling.
  • IE Information Element, information element
  • RRC Radio Resource Control, radio resource control
  • the second information includes all or part of a field (Field) in an IE (Information Element, information element) in an RRC (Radio Resource Control, radio resource control) signaling.
  • Field Information Element, information element
  • RRC Radio Resource Control, radio resource control
  • the second information includes all or part of a field in a MAC (Medium Access Control) layer signaling.
  • MAC Medium Access Control
  • the second information includes all or part of a system information block (SIB, System Information Block).
  • SIB system information block
  • the second information includes all or part of a MAC (Medium Access Control) CE (Control Element).
  • MAC Medium Access Control
  • the second information includes all or part of a MAC (Medium Access Control) header.
  • MAC Medium Access Control
  • the second information is transmitted through a DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the second information is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the second information is broadcast.
  • the second information is cell specific (Cell Specific).
  • the second information is UE-specific.
  • the second information is user equipment group-specific (UE group-specific).
  • the second information is specific to the coverage area (Footprint).
  • the second information is beam specific (Beam Specific).
  • the second information is geographic area specific.
  • the second information includes all or part of a field of a DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the second information includes all or part of "pusch-TimeDomainAllocationList”.
  • the second information includes all or part of "pusch-ConfigCommon".
  • the second information includes all or part of "pusch-Config".
  • the second information includes all or part of "dl-DataToUL-ACK".
  • the second information includes all or part of "CSI-AperiodicTriggerStateList”.
  • the above sentence "the second information is used to determine the P configuration groups” includes the following meaning: the second information is used by the first node device in this application to determine the P Configuration groups.
  • the above sentence "the second information is used to determine the P configuration groups” includes the following meaning: the second information is used to directly indicate the P configuration groups.
  • the above sentence "the second information is used to determine the P configuration groups” includes the following meaning: the second information is used to indirectly indicate the P configuration groups.
  • the above sentence "the second information is used to determine the P configuration groups” includes the following meaning: the second information is used to explicitly indicate the P configuration groups.
  • the above sentence "the second information is used to determine the P configuration groups” includes the following meaning: the second information is used to implicitly indicate the P configuration groups.
  • Embodiment 7 illustrates a schematic diagram of P configuration groups according to an embodiment of the present application, as shown in FIG. 7.
  • the first column from the left represents the index of the configuration group
  • the second column from the left represents the length of a time interval included in each of the P configuration groups
  • the third column from the left represents P configurations
  • the fourth column from the left represents the length of time occupied by each configuration group in the P configuration groups, blacked out
  • the row of represents the first index and the first configuration group, where j is a parameter related to the sub-carrier spacing of the sub-carriers occupied by the first signal in the frequency domain.
  • the first signaling in this application is used to determine a first index, where the first index is the index of the first configuration group, and the first configuration group is one of the P configuration groups.
  • At least one time interval length in, the target time length in this application is equal to the time interval length included in the first configuration group; the time interval length included in any one of the P configuration groups It is equal to a time length in the first time length set.
  • the above sentence "the first signaling is used to determine the first index” includes the following meaning: the first signaling is used by the first node in this application to determine the first index .
  • the above sentence "the first signaling is used to determine the first index” includes the following meaning: the first signaling is used to directly indicate the first index.
  • the above sentence "the first signaling is used to determine the first index” includes the following meaning: the first signaling is used to indirectly indicate the first index.
  • the above sentence "the first signaling is used to determine the first index” includes the following meaning: the first signaling is used to explicitly indicate the first index.
  • the above sentence "the first signaling is used to determine the first index” includes the following meaning: the first signaling is used to implicitly indicate the first index.
  • the sentence "the first signaling is used to determine the target time length from the first time length set” in this application indicates that the first signaling is used to determine the first index.
  • the first index is an index of a row in a mapping table.
  • the first index is an index of the first configuration group in the P configuration groups.
  • the first index is a non-negative integer.
  • the first index is a positive integer.
  • the P configuration groups respectively correspond to P rows in a configuration table
  • the first index is an index of the row of the row in the configuration table corresponding to the first configuration group.
  • each configuration group in the P configuration groups includes at least one time interval among the length of a time interval, an index of a start symbol in the time slot to which it belongs, and an occupied time length.
  • “Length” includes the following meanings: each of the P configuration groups includes a time interval length, an index of a start symbol in a time slot to which it belongs, and an occupied time length.
  • each configuration group in the P configuration groups includes at least one time interval among the length of a time interval, an index of a start symbol in the time slot to which it belongs, and an occupied time length.
  • “Length” includes the following meaning: each of the P configuration groups includes a time interval length and an index of a starting symbol in the time slot to which it belongs.
  • each configuration group in the P configuration groups includes at least one time interval among the length of a time interval, an index of a start symbol in the time slot to which it belongs, and an occupied time length.
  • “Length” includes the following meaning: each of the P configuration groups includes a time interval length and an occupied time length.
  • each configuration group in the P configuration groups includes at least one time interval among the length of a time interval, an index of a start symbol in the time slot to which it belongs, and an occupied time length.
  • “Length” includes the following meaning: each of the P configuration groups includes a time interval length.
  • each configuration group in the P configuration groups includes at least one time interval among the length of a time interval, an index of a start symbol in the time slot to which it belongs, and an occupied time length.
  • “Length” includes the following meaning: each of the P configuration groups includes a time interval length and an SLIV (Start Length Indicator Value).
  • the index of the start symbol included in each of the P configuration groups in the time slot to which it belongs is a non-negative integer.
  • the OFDM symbols of the start symbols included in each of the P configuration groups in the time slot to which they belong are sequentially indexed according to a time domain sequence.
  • the starting symbol included in each of the P configuration groups is an OFDM symbol.
  • the unit of the length of time occupied in each of the P configuration groups is milliseconds.
  • the unit of the length of time occupied in each of the P configuration groups is seconds.
  • the length of time occupied in each of the P configuration groups is represented by the number of OFDM symbols.
  • the length of time occupied in each of the P configuration groups is determined by using the subcarrier spacing (SCS, Subcarrier Spacing) of one subcarrier occupied by the first signal in the frequency domain.
  • SCS subcarrier spacing
  • the number of OFDM symbols is represented.
  • each of the P configuration groups further includes a resource mapping type (mapping type), and the resource mapping type used by the first signal is the resource mapping included in the first configuration group Types of.
  • any two configuration groups in the P configuration groups are different.
  • the P is not less than the number of time lengths included in the first time length set.
  • the P is equal to the number of time lengths included in the first time length set.
  • the P is greater than the number of time lengths included in the first time length set.
  • the P configuration groups are predetermined.
  • the P configuration groups are configurable.
  • the P configuration groups are fixed.
  • the P configuration groups are configured through the second information in this application.
  • each configuration group in the P configuration groups corresponds to a row in the default PUSCH time domain resource allocation (Default PUSCH time domain resource allocation) table.
  • each configuration group in the P configuration groups corresponds to a row in the Default PUSCH time domain resource allocation B (Default PUSCH time domain resource allocation B) table, or each configuration group in the P configuration groups Corresponding to a row in the default PUSCH time domain resource allocation C (Default PUSCH time domain resource allocation C) table, or each configuration group in the P configuration groups corresponds to the default PUSCH time domain resource allocation D (Default PUSCH time domain resource allocation D ) A row in the table.
  • Embodiment 8 shows a first long schematic diagram according to an embodiment of the present application, as shown in FIG. 8.
  • the horizontal axis represents the length of time
  • the length of each grid represents the first step length
  • time length #1, time length #2,..., time length #X are all time lengths in the first time length set .
  • the time lengths in the first time length set in the present application are sorted in order of length, and the difference between any two sorted adjacent time lengths in the first time length set is equal to
  • the absolute value is equal to the length of the first step
  • the length of the first step is equal to the length of the first time slot that is a positive integer multiple
  • the length of the first time slot is equal to one occupied by the first signal in the application
  • the first step length is a step size by which the time length in the first time length set can be adjusted (Stepsize).
  • the first step length is equal to the minimum absolute value of the difference between any two time lengths in the first time length set.
  • the first step length is a granularity (Granularity) at which the time length in the first time length set can be adjusted.
  • the first step length is greater than zero.
  • the first step length is predefined.
  • the first step length is fixed.
  • the first step length is configurable.
  • the first step length is equal to the first time slot length.
  • the length of the first step is equal to or greater than 1 times the length of the first time slot.
  • the unit of the first step length is milliseconds.
  • the unit of the first step length is seconds.
  • the first step length is expressed by the number of slots.
  • the first step length is expressed by the number of OFDM symbols (Symbol).
  • the aforementioned "slot to which one OFDM symbol occupied by the first signal in the time domain belongs" corresponds to the subcarrier spacing (SCS, Subcarrier Spacing) of a subcarrier occupied by the first signal in the frequency domain. ).
  • the above-mentioned "slot to which one OFDM symbol occupied by the first signal in the time domain belongs" corresponds to the subcarrier interval (SCS, Subcarrier Interval) of a subcarrier occupied by the first signaling in the frequency domain. Spacing).
  • the length of the first time slot is equal to the time length of one time slot corresponding to the subcarrier spacing (SCS, Subcarrier Spacing) of one subcarrier occupied by the first signal in the frequency domain.
  • SCS subcarrier Spacing
  • Embodiment 9 illustrates a schematic diagram of X candidate time length sets according to an embodiment of the present application, as shown in FIG. 9.
  • the first column from the left represents the first characteristic parameter group
  • the second column from the left represents the subcarrier spacing
  • the third column from the left represents an alternative time length set among X alternative time length sets.
  • the set of candidate time lengths in the blacked line represents the first time length set.
  • the subcarrier interval of one subcarrier occupied by the first signal in the frequency domain in this application is used to determine from the X candidate time length sets in this application The first time length set.
  • the sub-carrier interval of one sub-carrier occupied by the first signal in the frequency domain is equal to one of 15 kHz, 30 kHz, 60 kHz, 120 kHz, and 240 kHz.
  • the subcarrier interval of one subcarrier occupied by the first signal in the frequency domain is equal to the subcarrier interval of one subcarrier occupied by the first signaling in the frequency domain.
  • the subcarrier interval of one subcarrier occupied by the first signal in the frequency domain is not equal to the subcarrier interval of one subcarrier occupied by the first first signaling in the frequency domain.
  • the first signal occupies more than one subcarrier in the frequency domain, and any two subcarriers occupied by the first signal in the frequency domain have the same subcarrier spacing.
  • the first signaling occupies more than one subcarrier in the frequency domain, and the subcarrier spacing of any two subcarriers occupied by the first signal in the frequency domain are equal.
  • the above sentence "The subcarrier interval of one subcarrier occupied by the first signal in the frequency domain is used to determine the first time length set from the X candidate time length sets" includes The following meaning: the subcarrier interval of one subcarrier occupied by the first signal in the frequency domain is used by the first node device in this application to determine the first from the set of X candidate time lengths Time length collection.
  • the above sentence "The subcarrier interval of one subcarrier occupied by the first signal in the frequency domain is used to determine the first time length set from the X candidate time length sets" includes The following meaning: the subcarrier interval of one subcarrier occupied by the first signal in the frequency domain is used to determine the first time length set from the X candidate time length sets according to a given mapping relationship.
  • the above sentence "The subcarrier interval of one subcarrier occupied by the first signal in the frequency domain is used to determine the first time length set from the X candidate time length sets" includes The following meaning: the subcarrier interval of one subcarrier occupied by the first signal in the frequency domain is used to determine the first time length set from the X candidate time length sets according to a given table correspondence relationship .
  • the above sentence "The subcarrier interval of one subcarrier occupied by the first signal in the frequency domain is used to determine the first time length set from the X candidate time length sets" includes The following meaning: the sub-carrier interval of one sub-carrier occupied by the first signal in the frequency domain and the first characteristic parameter group are used together according to a given mapping relationship from the set of X candidate time lengths Determine the first time length set.
  • the above sentence “The subcarrier interval of one subcarrier occupied by the first signal in the frequency domain is used to determine the first time length set from the X candidate time length sets" includes The following meaning: the first question feature parameter group includes the subcarrier interval of one subcarrier occupied by the first signal in the frequency domain.
  • the characteristic identifier carried by the first signal is also used to determine the first time length set in this application from the X candidate time length sets in this application.
  • the RNTI Radio Network Tempory Identity, Radio Network Temporary Identity
  • the RNTI Radio Network Tempory Identity, Radio Network Temporary Identity
  • the first time length set.
  • the search space (Search Space) type to which the first signaling belongs is also used to determine the first time length in this application from the X candidate time length sets in this application set.
  • Embodiment 10 illustrates a schematic diagram of the first time offset according to an embodiment of the present application, as shown in FIG. 10.
  • the first column from the left represents the subcarrier spacing
  • the second column from the left represents the time offset
  • the blacked line represents the subcarrier spacing and the first time of the subcarrier occupied by the first signal in the frequency domain. Offset.
  • the first signal in this application is used for random access, and the subcarrier interval of one subcarrier occupied by the first signal in the frequency domain is used to determine the first time offset,
  • the first time offset is used to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal in this application.
  • the above sentence "the first signal is used for random access” includes the following meaning: the first signal is used for 4-step random access (4-step Random Access).
  • the above sentence "the first signal is used for random access” includes the following meaning: the first signal is used for 2-step random access (2-step Random Access).
  • the above sentence "the first signal is used for random access” includes the following meaning: the first signal carries Msg3 (message 3).
  • the above sentence "the first signal is used for random access” includes the following meaning: the first signal carries the uplink transmission scheduled by MsgB (message B).
  • the above sentence "the first signal is used for random access” includes the following meaning: the first signal carries a retransmission of Msg3 (message 3).
  • the above sentence "the first signal is used for random access” includes the following meaning: the first signal carries the retransmission of the uplink transmission scheduled by MsgB (message B).
  • the above sentence "the first signal is used for random access” includes the following meaning: the first signal is the earliest uplink transmission after Msg3 (message 3).
  • the above sentence "the first signal is used for random access” includes the following meaning: the first signal is the earliest uplink transmission after MsgB (message B).
  • the above sentence "the first signal is used for random access” includes the following meaning: the first signal carries Msg5 (message 5).
  • the unit of the first time offset is milliseconds.
  • the unit of the first time offset is seconds.
  • the first time offset is expressed by the number of OFDM symbols (Symbol).
  • the first time offset is represented by the number of slots (Slot).
  • the first time offset is equal to the length of a positive integer number of timeslots (Slots) corresponding to the subcarrier interval of one subcarrier occupied by the first signal in the frequency domain.
  • the first time offset is a scheduling delay outside the target time length.
  • the first time offset is an additional time offset during PUSCH transmission scheduled by RAR (Random Access Response).
  • the first time offset is an additional time offset during PUSCH transmission scheduled by MsgB (message B).
  • the first time offset is a scheduling delay ⁇ outside the target time length.
  • the above sentence “the sub-carrier interval of a sub-carrier occupied by the first signal in the frequency domain is used to determine the first time offset” includes the following meaning: the first signal is occupied in the frequency domain The subcarrier interval of one subcarrier of is used by the first node device in this application to determine the first time offset.
  • the above sentence "the subcarrier interval of a subcarrier occupied by the first signal in the frequency domain is used to determine the first time offset" includes the following meaning: the first time offset is a subcarrier Subcarrier spacing specific.
  • the above sentence “the sub-carrier interval of a sub-carrier occupied by the first signal in the frequency domain is used to determine the first time offset” includes the following meaning: the first signal is occupied in the frequency domain The sub-carrier spacing of one sub-carrier is used to determine the first time offset according to a given mapping relationship.
  • the above sentence “the sub-carrier interval of a sub-carrier occupied by the first signal in the frequency domain is used to determine the first time offset” includes the following meaning: the first signal is occupied in the frequency domain The sub-carrier interval of one sub-carrier is used to determine the first time offset according to a given table correspondence.
  • the first time offset is related to the processing capability of the first node device.
  • the above sentence “the first time offset is used to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal” includes the following meanings:
  • the first time offset is used by the first node device in this application to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal.
  • the above sentence "the first time offset is used to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal” includes the following meanings:
  • the first time offset is used to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal according to the arithmetic function.
  • the above sentence “the first time offset is used to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal” includes the following meanings: The first time offset, the target time length, and the common time offset are jointly used to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal.
  • the above sentence “the first time offset is used to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal” includes the following meanings: The sum of the first time offset, the target time length, and the common time offset is used to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal.
  • the above sentence “the first time offset is used to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal” includes the following meanings: The length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal is linearly related to the first time offset.
  • the above sentence "the first time offset is used to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal” includes the following meanings: The sum of the first time offset, the target time length, and the common time offset minus the difference in the time length of an integer number of time slots included in the timing advance (TA, Timing Advance) when transmitting the first signal It is equal to the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal.
  • TA Timing Advance
  • Embodiment 11 illustrates a schematic diagram of a common time offset according to an embodiment of the present application, as shown in FIG. 11.
  • the horizontal axis represents time
  • the upper part represents the signal sent or received at the second node
  • the lower part represents the signal sent or received at the first node.
  • the same signal or signaling is between the first node and the second node.
  • the time delay is the propagation delay (Propagation Delay).
  • the common time offset in this application is used to determine the time between the end of reception of the second signal in this application and the start time of transmission of the third signal in this application.
  • the third signal carries uplink control information; the second signal is different from the first signaling in this application, and the third signal is different from the first signal in this application. the same.
  • the second signal is a baseband signal.
  • the second signal is a radio frequency signal.
  • the second signal is transmitted through an air interface.
  • the second signal is transmitted through a wireless interface.
  • the second signal is a downlink transmission of the first node device after completing a random access procedure.
  • the second signal is transmitted through DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the second signal is transmitted through PDSCH (Physical Downlink Shared Channel, Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel, Physical Downlink Shared Channel
  • the second signal is transmitted through PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel, Physical Downlink Control Channel
  • the second signal carries CSI-RS (Channel Status Information Reference Signal, channel state information reference signal).
  • CSI-RS Channel Status Information Reference Signal, channel state information reference signal.
  • the second signal carries all or part of bits in a DCI format (Format).
  • the second signal carries DCI (Downlink Control Information, downlink control information).
  • DCI Downlink Control Information, downlink control information
  • bit block carrying DCI Downlink Control Information, downlink control information
  • DCI Downlink Control Information
  • TB Transport Block
  • all or part of bits in a DCI payload are used to generate the second signal.
  • the second signal carries physical layer signaling.
  • the second signal does not carry physical layer signaling.
  • the second signal only carries high-level signaling.
  • the second signal only carries high-level information.
  • the second signal carries a CSI request (CSI Request).
  • the third signal is a baseband signal.
  • the third signal is a radio frequency signal.
  • the third signal is transmitted through an air interface.
  • the third signal is transmitted through a wireless interface.
  • the third signal is an uplink transmission later than Msg3.
  • the third signal is an uplink transmission later than MsgB.
  • the third signal is uplink transmission of the first node device after completing the random access procedure.
  • the third signal is transmitted through UL-SCH (Uplink Shared Channel, uplink shared channel).
  • UL-SCH Uplink Shared Channel, uplink shared channel
  • the third signal is piggybacked through PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • the third signal is transmitted through PUCCH (Physical Uplink Control Channel, Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel, Physical Uplink Control Channel
  • the third signal is transmitted through SRS (Sounding Reference Signal, sounding reference signal).
  • SRS Sounding Reference Signal, sounding reference signal
  • the third signal is UCI piggybacked to PUSCH.
  • the third signal is transmitted through UL DMRS (Uplink Demodulation Reference Signal, uplink demodulation reference signal).
  • UL DMRS Uplink Demodulation Reference Signal, uplink demodulation reference signal
  • the subcarrier interval of the subcarrier occupied by the third signal in the frequency domain is equal to the subcarrier interval of the subcarrier occupied by the first signal in the frequency domain.
  • the subcarrier interval of the subcarrier occupied by the third signal in the frequency domain is not equal to the subcarrier interval of the subcarrier occupied by the first signal in the frequency domain.
  • the third signal and the first signal belong to the same UL BWP (Uplink Bandwidth Part).
  • the third signal and the first signal belong to different UL BWP (Uplink Bandwidth Part, uplink bandwidth part).
  • UL BWP Uplink Bandwidth Part, uplink bandwidth part
  • the uplink control information carried by the third signal includes HARQ-ACK (Hybrid Automatic Repeat Request-Acknowledgement, Hybrid Automatic Repeat Request-Acknowledgement).
  • HARQ-ACK Hybrid Automatic Repeat Request-Acknowledgement, Hybrid Automatic Repeat Request-Acknowledgement.
  • the uplink control information carried by the third signal includes CSI (Channel Status Information).
  • Transport Block (TB) is used to generate the third signal.
  • the uplink control information carried by the third signal is physical layer information.
  • all or part of a bit block carrying UCI is used to generate the third signal.
  • UCI Uplink Control Information, uplink control information
  • the waveform adopted by the third signal is OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing).
  • the waveform adopted by the third signal is DFT-s-OFDM (Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing).
  • the waveform used by the third signal is the same as the waveform (Waveform) used by the first signal.
  • the waveform used by the third signal is different from the waveform (Waveform) used by the first signal.
  • the second signal is used to schedule the third signal.
  • the second signal is used to trigger the third signal to carry CSI.
  • the second signal is used to determine the uplink control information carried by the third signal.
  • the time-frequency resources occupied by the second signal include CSI reference resources (Reference Resources) as uplink control information carried by the third signal.
  • CSI reference resources Reference Resources
  • the third signal is used to indicate whether the second signal is received correctly.
  • the third signal is used to indicate whether the second signal is correctly decoded.
  • the third signal is used to indicate whether the CRC check of the second signal passes.
  • the third signal carries the HARQ-ACK of the second signal.
  • the receiving end time of the second signal refers to the receiving end time of the latest OFDM symbol (Symbol) occupied by the second signal in the time domain.
  • the receiving end time of the second signal refers to the receiving end time of the slot to which the latest OFDM symbol (Symbol) belongs in the time domain occupied by the second signal.
  • the receiving end time of the second signal refers to: the latest OFDM symbol (Symbol) occupied by the second signal in the time domain belongs using the second signal occupied in the frequency domain The reception end time of the slot of the sub-carrier interval of the sub-carrier.
  • the receiving end time of the second signal indicates: the latest OFDM symbol (Symbol) occupied by the second signal in the time domain belongs to which the third signal is occupied in the frequency domain
  • the reception end time of the slot of the sub-carrier interval of the sub-carrier is occupied in the frequency domain.
  • the sending start time of the third signal refers to the sending start time of the earliest OFDM symbol (Symbol) occupied by the third signal in the time domain.
  • the sending start time of the third signal refers to the sending start time of the CP (Cyclic Prefix) of the earliest OFDM symbol (Symbol) occupied by the third signal in the time domain.
  • the sending start time of the third signal refers to the sending start time of the slot to which the earliest OFDM symbol (Symbol) belongs in the time domain occupied by the third signal.
  • the sending start time of the third signal refers to: the earliest OFDM symbol (Symbol) occupied by the third signal in the time domain belongs to the sub-group occupied by the third signal in the frequency domain.
  • the transmission start time of the slot of the sub-carrier interval of the carrier refers to: the earliest OFDM symbol (Symbol) occupied by the third signal in the time domain belongs to the sub-group occupied by the third signal in the frequency domain.
  • the transmission start time of the third signal refers to: the earliest OFDM symbol (Symbol) occupied by the third signal in the time domain belongs to the sub-group occupied by the second signal in the frequency domain.
  • the transmission start time of the slot of the sub-carrier interval of the carrier refers to: the earliest OFDM symbol (Symbol) occupied by the third signal in the time domain belongs to the sub-group occupied by the second signal in the frequency domain.
  • the above sentence “the common time offset is used to determine the length of the time interval between the end of the reception of the second signal and the start of the transmission of the third signal” includes the following meanings:
  • the common time offset is used by the first node device in this application to determine the length of the time interval between the receiving end moment of the second signal and the sending start moment of the third signal.
  • the above sentence "the common time offset is used to determine the length of the time interval between the end of the reception of the second signal and the start of the transmission of the third signal” includes the following meanings:
  • the common time offset is used to determine the length of the time interval between the receiving end time of the second signal and the sending start time of the third signal according to a given arithmetic function.
  • the above sentence “the common time offset is used to determine the length of the time interval between the end of the reception of the second signal and the start of the transmission of the third signal” includes the following meanings: The length of the time interval between the receiving end time of the second signal and the sending start time of the third signal is linearly related to the common time offset.
  • the above sentence “the common time offset is used to determine the length of the time interval between the end of the reception of the second signal and the start of the transmission of the third signal” includes the following meanings: The sum of the common time offset and another time length is used to determine the length of the time interval between the receiving end time of the second signal and the sending start time of the third signal.
  • the above sentence "the second signal and the first signaling are not the same” includes the following meaning: the time-frequency resources occupied by the second signal and the first signaling are not the same.
  • the above sentence “the second signal and the first signaling are not the same” includes the following meaning: the second signal and the first signaling are independent of each other.
  • the above sentence “the second signal and the first signaling are not the same” includes the following meaning: the second signal and the first signaling are irrelevant.
  • the sentence "the second signal and the first signaling are not the same” includes the following meaning: the information carried by the second signal and the first signaling is not the same.
  • the above sentence "the second signal is not the same as the first signaling" includes the following meaning: one transport block (TB, Transport Block) is used to generate the second signal, and one carries the DCI load. All or part of the bit block in (payload) is used to generate the first signaling.
  • the above sentence "the second signal and the first signaling are not the same” includes the following meaning: the second signal is transmitted through the PDSCH, and the first signaling is transmitted through the PDCCH.
  • the above sentence "the second signal is not the same as the first signaling" includes the following meaning: a characteristic sequence is used to generate the second signal, and one carries all of the DCI payload (payload) Or a partial bit block is used to generate the first signaling.
  • the above sentence "the second signal and the first signaling are not the same” includes the following meanings: the second signal is transmitted through CSI-RS, and the first signaling is transmitted through PDCCH .
  • the above sentence "the second signal and the first signaling are not the same” includes the following meaning: the DCI format (Format) of the DCI carried by the second signal and the first signaling
  • the DCI format (Format) of the carried DCI is different.
  • the above sentence "the second signal and the first signaling are not the same” includes the following meanings: the CSI request (Request) carried by the second signal, and the first signaling carries the scheduling of PUSCH information.
  • the above sentence "the third signal and the first signal are not the same” includes the following meaning: the time-frequency resources occupied by the three signals are different from the time-frequency resources occupied by the first signal .
  • the above sentence "the third signal and the first signal are not the same” includes the following meaning: the three signals and the first signal are independent of each other.
  • the above sentence "the third signal and the first signal are not the same” includes the following meaning: the three signals and the first signal are irrelevant.
  • the above sentence "the third signal is not the same as the first signal” includes the following meaning: the three signals carry uplink control information, and the first signal does not carry uplink control information.
  • the above sentence "the third signal is not the same as the first signal” includes the following meaning: the first signal also carries uplink control information, and the three signals carry uplink control information and the first signal.
  • the types of uplink control information carried by a signal are different.
  • the above sentence "the third signal is not the same as the first signal” includes the following meaning: the first signal also carries uplink control information, and the uplink control information carried by the three signals includes HARQ-ACK , The uplink control information carried by the first signal does not include HARQ-ACK.
  • the above sentence "the third signal is not the same as the first signal” includes the following meaning: the first signal also carries uplink control information, the uplink control information carried by the three signals includes CSI, so The uplink control information carried by the first signal does not include CSI.
  • the above sentence "the third signal is not the same as the first signal” includes the following meaning: a bit block carrying part or all of the uplink control information (UCI) is used to generate the three signals, one All or part of bits in a transport block (TB, Transport Block) are used for the first signal.
  • UCI uplink control information
  • the above sentence "the third signal is not the same as the first signal” includes the following meaning: the three-signal (Piggyback) uplink control information (UCI), and the first signal is not burdened (Piggyback). ) Uplink control information.
  • the above sentence "the third signal and the first signal are not the same” includes the following meaning: the three signals are transmitted through PUCCH, and the first signal is transmitted through PUSCH.
  • the above sentence "the third signal is not the same as the first signal” includes the following meaning: a bit block carrying part or all of the uplink control information (UCI) and a transmission block are used to generate the In the three signals, only all or part of the bits in one Transport Block (TB) are used for the first signal.
  • UCI uplink control information
  • TB Transport Block
  • Embodiment 12 illustrates a structural block diagram of the processing device in the first node device of an embodiment, as shown in FIG. 12.
  • the first node device processing apparatus 1200 includes a first receiver 1201, a second receiver 1202, and a first transmitter 1203.
  • the first receiver 1201 includes the transmitter/receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 in Figure 4 of the present application;
  • the second receiver 1202 includes the transmitter/receiver 490 in Figure 4 of the present application.
  • the transmitter/receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490; the first transmitter 1203 includes the transmitter/receiver 456 (including the antenna 460) in Figure 4 of the present application, and transmitting The processor 455 and the controller/processor 490.
  • the first receiver 1201 receives first information, and the first information is used to determine the first characteristic parameter group; the second receiver 1202 receives the first signaling, and the first signaling is used
  • the target time length is determined from the first time length set; the first transmitter 1203 sends the first signal; wherein, the first characteristic parameter group includes the type of the sender of the first information, the type of the first information At least one of the height of the sender and the common time offset; the first time length set is one candidate time length set among X candidate time length sets, and the X is a positive integer greater than 1; so
  • the first characteristic parameter set is used to determine the first time length set from the X candidate time length sets; any candidate time length set in the X candidate time length sets includes those greater than 1
  • a positive integer number of time lengths, the target time length is a time length in the first time length set; the target time length and the common time offset are used together to determine the reception of the first signaling
  • the first signaling is used to determine a first index, the first index is an index of a first configuration group, and the first configuration group is a configuration group among P configuration groups, so
  • the P is a positive integer greater than 1; each of the P configuration groups includes at least one of a time interval length, an index of a starting symbol in the time slot to which it belongs, and an occupied time length
  • the length of the interval, the target time length is equal to the length of the time interval included in the first configuration group; the length of the time interval included in any one of the P configuration groups is equal to the length of the first time length set A length of time.
  • the second receiver 1202 receives the second information
  • the first signaling is used to determine the first index
  • the first index is the index of the first configuration group
  • the first configuration group is P A configuration group in the configuration groups, where P is a positive integer greater than 1, and each configuration group in the P configuration groups includes a time interval length, an index of a starting symbol in the time slot to which it belongs, At least one time interval length in an occupied time length, the target time length is equal to the time interval length included in the first configuration group; the time interval included in any one of the P configuration groups The length is equal to one time length in the first time length set, and the second information is used to determine the P configuration groups.
  • the time lengths in the first time length set are sorted according to length, and the absolute value of the difference between any two sorted adjacent time lengths in the first time length set is
  • the subcarrier interval of one subcarrier occupied by the first signal in the frequency domain is used to determine the first time length set from the X candidate time length sets.
  • the first signal is used for random access
  • the subcarrier interval of one subcarrier occupied by the first signal in the frequency domain is used to determine the first time offset
  • the first time The offset is used to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal.
  • the second receiver 1202 receives the second signal, and the first transmitter 1203 transmits the third signal; wherein, the common time offset is used to determine the end time of receiving the second signal and the first signal.
  • the length of the time interval between the transmission start moments of the three signals, the third signal carries uplink control information; the second signal is different from the first signaling, and the third signal is different from the first signal Are not the same.
  • the first receiver 1201 when the first characteristic parameter group does not include the common time offset, the first receiver 1201 receives third information; wherein, the third information is used to determine the common time offset .
  • Embodiment 13 illustrates a structural block diagram of a processing device in a second node device of an embodiment, as shown in FIG. 13.
  • the second node device processing apparatus 1300 includes a second transmitter 1301, a third transmitter 1302, and a third receiver 1303.
  • the second transmitter 1301 includes the transmitter/receiver 416 (including the antenna 460) and the transmission processor 415 and the controller/processor 440 in Figure 4 of the present application;
  • the third transmitter 1302 includes the transmitter/receiver 416 in Figure 4 of the present application.
  • the transmitter/receiver 416 (including the antenna 460), the transmitting processor 415 and the controller/processor 440; the third receiver 1303 includes the transmitter/receiver 416 (including the antenna 420) in Figure 4 of the present application, and receiving The processor 412, and the controller/processor 440.
  • the second transmitter 1301 sends first information, and the first information is used to determine the first characteristic parameter group; the third transmitter 1302 sends first signaling, and the first signaling is used
  • the target time length is determined from the first time length set; the third receiver 1303 receives the first signal; the first characteristic parameter group includes the type of the sender of the first information, and the sending of the first information At least one of the height of the person and the common time offset; the first time length set is one candidate time length set among X candidate time length sets, and the X is a positive integer greater than 1;
  • the first characteristic parameter group is used to determine the first time length set from the X candidate time length sets; any one of the X candidate time length sets includes a positive value greater than 1.
  • An integer number of time lengths, the target time length is a time length in the first time length set; the target time length and the common time offset are used together to determine the receiving moment of the first signaling And the length of the time interval between the sending moment of the first signal.
  • the first signaling is used to determine a first index, the first index is an index of a first configuration group, and the first configuration group is a configuration group among P configuration groups, so
  • the P is a positive integer greater than 1; each of the P configuration groups includes at least one of a time interval length, an index of a starting symbol in the time slot to which it belongs, and an occupied time length
  • the length of the interval, the target time length is equal to the length of the time interval included in the first configuration group; the length of the time interval included in any one of the P configuration groups is equal to the length of the first time length set A length of time.
  • the second transmitter 1301 sends second information; the first signaling is used to determine the first index, the first index is the index of the first configuration group, and the first configuration group is P A configuration group in the configuration groups, where P is a positive integer greater than 1, and each configuration group in the P configuration groups includes a time interval length, an index of a starting symbol in the time slot to which it belongs, At least one time interval length in an occupied time length, the target time length is equal to the time interval length included in the first configuration group; the time interval included in any one of the P configuration groups The length is equal to one time length in the first time length set, and the second information is used to determine the P configuration groups.
  • the time lengths in the first time length set are sorted in order according to length, and the absolute value of the difference between any two sorted adjacent time lengths in the first time length set is equal to the first time length set.
  • One step length the length of the first step is equal to the length of the first time slot that is a positive integer multiple, and the length of the first time slot is equal to the time length of the time slot of an OFDM symbol occupied by the first signal in the time domain .
  • the subcarrier interval of one subcarrier occupied by the first signal in the frequency domain is used to determine the first time length set from the X candidate time length sets.
  • the first signal is used for random access
  • the subcarrier interval of one subcarrier occupied by the first signal in the frequency domain is used to determine the first time offset
  • the first time The offset is used to determine the length of the time interval between the receiving moment of the first signaling and the sending moment of the first signal.
  • the third transmitter 1302 sends the second signal; the third receiver 1303 receives the third signal; the common time offset is used to determine the end time of the reception of the second signal and the third signal.
  • the length of the time interval between the start moments of the transmission, the third signal carries uplink control information; the second signal is different from the first signaling, and the third signal is different from the first signal .
  • the second transmitter 1301 when the first characteristic parameter group does not include the common time offset, the second transmitter 1301 sends third information; wherein, the third information is used to determine the common time offset .
  • the first node device or second node device or UE or terminal in this application includes, but is not limited to, mobile phones, tablets, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, aircraft, Airplanes, drones, remote control aircraft and other wireless communication equipment.
  • the base station equipment or base station or network side equipment in this application includes but not limited to macro cell base station, micro cell base station, home base station, relay base station, eNB, gNB, transmission and receiving node TRP, relay satellite, satellite base station, air base station, etc. Wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种用于无线通信的节点中的方法和装置。节点接收第一信息;接收第一信令;发送第一信号;所述第一信息被用于确定第一特征参数组,所述第一信令被用于从第一时间长度集合中确定目标时间长度,所述第一特征参数组包括所述第一信息的发送者的类型、所述第一信息的发送者的高度、公共时间偏移中的至少之一;所述第一时间长度集合是X个备选时间长度集合中的一个备选时间长度集合;所述第一特征参数组被用于从所述X个备选时间长度集合中确定所述第一时间长度集合;所述目标时间长度和所述公共时间偏移被共同用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。本申请保证上行成功传输。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中的大延时的传输方案和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或5G)进行研究,在3GPP RAN#75次全会上通过了新空口技术(NR,New Radio)的WI(Work Item,工作项目),开始对NR进行标准化工作。
为了能够适应多样的应用场景和满足不同的需求,在3GPP RAN#75次全会上还通过了NR下的非地面网络(NTN,Non-Terrestrial Networks)的研究项目,该研究项目在R15版本开始。在3GPP RAN#79次全会上决定开始研究NTN网络中的解决方案,然后在R16或R17版本中启动WI对相关技术进行标准化。
发明内容
在NTN网络或者类似于NTN具有很大的传输延时和很大的传输延时差异的网络中,由于大的传输延时差异和上下行同步传输的要求可能导致现有的(比如NR 5G Release 16版本)的基于传统地面通信(Terrestrial Networks)的设计无法直接重用,因而需要新的设计来支持大的传输延,保证通信正常工作。
针对大延时网络中的由于大延时和大延时差所造成的现有设计无法工作或者无法有效地工作的问题,本申请公开了一种解决方案。需要说明的是,在本申请的的描述中,只是NTN场景作为一个典型应用场景或者例子;本申请也同样适用于面临相似问题的NTN之外的其它场景(比如其它大延时网络),也可以取得类似NTN场景中的技术效果。此外,不同场景(包括但不限于NTN的场景)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的第一节点设备中的实施例和实施例中的特征可以应用到第二节点设备中,反之亦然。特别的,
对本申请中的术语(Terminology)、名词、函数、变量的解释(如果未加特别说明)可以参考3GPP的规范协议TS36系列、TS38系列、TS37系列中的定义。
本申请公开了一种用于无线通信中的第一节点中的方法,其特征在于,包括:
接收第一信息,所述第一信息被用于确定第一特征参数组;
接收第一信令,所述第一信令被用于从第一时间长度集合中确定目标时间长度;
发送第一信号;
其中,所述第一特征参数组包括所述第一信息的发送者的类型、所述第一信息的发送者的高度、公共时间偏移中的至少之一;所述第一时间长度集合是X个备选时间长度集合中的一个备选时间长度集合,所述X是大于1的正整数;所述第一特征参数组被用于从所述X个备选时间长度集合中确定所述第一时间长度集合;所述X个备选时间长度集合中任意一个备选时间长度集合包括大于1的正整数个时间长度,所述目标时间长度是所述第一时间长度集合中的一个时间长度;所述目标时间长度和所述公共时间偏移被共同用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
作为一个实施例,通过引入所述X个备选时间长度集合,支持针对不同的延时情况下的所述第一时间长度集合的配置,从而可以使得网络根据实际的延时情况来配置可供调度的上 下行转换的延时,在保证调度灵活性的前提下,支持大延时网络中的调度,避免了上下行之间的延时无法支持大范围的传输延时差异所导致的传输失败。
作为一个实施例,通过所述第一特征参数组被用于从所述X个备选时间长度集合中确定所述第一时间长度集合,从而支持根据网络的延时状况或者卫星的轨道信息或者卫星的高度信息来隐式获得可供调度或者可供配置的延时参数的集合,避免引入额外的信令开销的同时有效地解决了大范围传输延时差异所可能导致的上下行转换时无法正常工作的问题。
作为一个实施例,通过所述第一特征参数组来确定所述第一时间长度集合而不是确定单一的时间长度,从而使得网络可以根据不同的用户设备之间的实际的传输延时进行调度,避免了总是针对最大延时差异进行调度所导致的不必要的调度延时的问题。
根据本申请的一个方面,上述方法的特征在于,所述第一信令被用于确定第一索引,所述第一索引是第一配置组的索引,所述第一配置组是P个配置组中的一个配置组,所述P是大于1的正整数;所述P个配置组中的每个配置组包括一个时间间隔长度、一个起始符号在所属的时隙中的索引、一个占用的时间长度中的至少一个时间间隔长度,所述目标时间长度等于所述第一配置组中所包括的时间间隔长度;所述P个配置组中的任意一个配置组所包括的时间间隔长度等于所述第一时间长度集合中的一个时间长度。
作为一个实施例,通过所述P个配置组中的每个配置组包括一个时间间隔长度、一个起始符号在所属的时隙中的索引、一个占用的时间长度中的至少一个时间间隔长度,从而支持将时间间隔长度,起始符号在所属时隙中的索引,占用的时间长度进行联合指示,在保证调度灵活性的同时降低调度信令头开销。
根据本申请的一个方面,上述方法的特征在于,还包括:
接收第二信息;
其中,所述第二信息被用于确定所述P个配置组。
根据本申请的一个方面,上述方法的特征在于,所述第一时间长度集合中的时间长度按照长短进行依次排序,所述第一时间长度集合中任意两个排序相邻的时间长度之间的差值的绝对值都等于第一步长,所述第一步长等于正整数倍的第一时隙长度,所述第一时隙长度等于所述第一信号在时域所占用的一个OFDM符号所属的时隙的时间长度。
作为一个实施例,通过所述第一时间长度集合中任意两个排序相邻的时间长度之间的差值的绝对值都等于第一步长,保证处于不同的传输延时区域的用户设备的最大调度延时开销一致,保证了针对不同用户设备的延时的公平性。
根据本申请的一个方面,上述方法的特征在于,所述第一信号在频域所占用的一个子载波的子载波间隔被用于从所述X个备选时间长度集合中确定所述第一时间长度集合。
根据本申请的一个方面,上述方法的特征在于,所述第一信号被用于随机接入,所述第一信号在频域所占用的一个子载波的子载波间隔被用于确定第一时间偏移,所述第一时间偏移被用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
根据本申请的一个方面,上述方法的特征在于,还包括:
接收第二信号;
发送第三信号;
其中,所述公共时间偏移被用于确定所述第二信号的接收结束时刻和所述第三信号的发送起始时刻之间的时间间隔长度,所述第三信号携带上行控制信息;所述第二信号和所述第一信令不相同,所述第三信号和所述第一信号不相同。
根据本申请的一个方面,上述方法的特征在于,还包括:
当所述第一特征参数组不包括所述公共时间偏移时,接收第三信息;
其中,所述第三信息被用于确定所述公共时间偏移。
本申请公开了一种用于无线通信中的第二节点中的方法,其特征在于,包括:
发送第一信息,所述第一信息被用于确定第一特征参数组;
发送第一信令,所述第一信令被用于从第一时间长度集合中确定目标时间长度;
接收第一信号;
其中,所述第一特征参数组包括所述第一信息的发送者的类型、所述第一信息的发送者的高度、公共时间偏移中的至少之一;所述第一时间长度集合是X个备选时间长度集合中的一个备选时间长度集合,所述X是大于1的正整数;所述第一特征参数组被用于从所述X个备选时间长度集合中确定所述第一时间长度集合;所述X个备选时间长度集合中任意一个备选时间长度集合包括大于1的正整数个时间长度,所述目标时间长度是所述第一时间长度集合中的一个时间长度;所述目标时间长度和所述公共时间偏移被共同用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
根据本申请的一个方面,上述方法的特征在于,所述第一信令被用于确定第一索引,所述第一索引是第一配置组的索引,所述第一配置组是P个配置组中的一个配置组,所述P是大于1的正整数;所述P个配置组中的每个配置组包括一个时间间隔长度、一个起始符号在所属的时隙中的索引、一个占用的时间长度中的至少一个时间间隔长度,所述目标时间长度等于所述第一配置组中所包括的时间间隔长度;所述P个配置组中的任意一个配置组所包括的时间间隔长度等于所述第一时间长度集合中的一个时间长度。
根据本申请的一个方面,上述方法的特征在于,还包括:
发送第二信息;
其中,所述第二信息被用于确定所述P个配置组。
根据本申请的一个方面,上述方法的特征在于,所述第一时间长度集合中的时间长度按照长短进行依次排序,所述第一时间长度集合中任意两个排序相邻的时间长度之间的差值的绝对值都等于第一步长,所述第一步长等于正整数倍的第一时隙长度,所述第一时隙长度等于所述第一信号在时域所占用的一个OFDM符号所属的时隙的时间长度。
根据本申请的一个方面,上述方法的特征在于,所述第一信号在频域所占用的一个子载波的子载波间隔被用于从所述X个备选时间长度集合中确定所述第一时间长度集合。
根据本申请的一个方面,上述方法的特征在于,所述第一信号被用于随机接入,所述第一信号在频域所占用的一个子载波的子载波间隔被用于确定第一时间偏移,所述第一时间偏移被用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
根据本申请的一个方面,上述方法的特征在于,还包括:
发送第二信号;
接收第三信号;
其中,所述公共时间偏移被用于确定所述第二信号的接收结束时刻和所述第三信号的发送起始时刻之间的时间间隔长度,所述第三信号携带上行控制信息;所述第二信号和所述第一信令不相同,所述第三信号和所述第一信号不相同。
根据本申请的一个方面,上述方法的特征在于,还包括:
当所述第一特征参数组不包括所述公共时间偏移时,发送第三信息;
其中,所述第三信息被用于确定所述公共时间偏移。
本申请公开了一种用于无线通信中的第一节点设备,其特征在于,包括:
第一接收机,接收第一信息,所述第一信息被用于确定第一特征参数组;
第二接收机,接收第一信令,所述第一信令被用于从第一时间长度集合中确定目标时间长度;
第一发射机,发送第一信号;
其中,所述第一特征参数组包括所述第一信息的发送者的类型、所述第一信息的发送者的高度、公共时间偏移中的至少之一;所述第一时间长度集合是X个备选时间长度集合中的一个备选时间长度集合,所述X是大于1的正整数;所述第一特征参数组被用于从所述X个备选时间长度集合中确定所述第一时间长度集合;所述X个备选时间长度集合中任意一个备 选时间长度集合包括大于1的正整数个时间长度,所述目标时间长度是所述第一时间长度集合中的一个时间长度;所述目标时间长度和所述公共时间偏移被共同用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
本申请公开了一种用于无线通信中的第二节点设备,其特征在于,包括:
第二发射机,发送第一信息,所述第一信息被用于确定第一特征参数组;
第三发射机,发送第一信令,所述第一信令被用于从第一时间长度集合中确定目标时间长度;
第三接收机,接收第一信号;
其中,所述第一特征参数组包括所述第一信息的发送者的类型、所述第一信息的发送者的高度、公共时间偏移中的至少之一;所述第一时间长度集合是X个备选时间长度集合中的一个备选时间长度集合,所述X是大于1的正整数;所述第一特征参数组被用于从所述X个备选时间长度集合中确定所述第一时间长度集合;所述X个备选时间长度集合中任意一个备选时间长度集合包括大于1的正整数个时间长度,所述目标时间长度是所述第一时间长度集合中的一个时间长度;所述目标时间长度和所述公共时间偏移被共同用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
作为一个实施例,本申请中的方法具备如下优势:
-.采用本申请中的方法可以使得网络根据实际的延时情况来配置可供调度的上下行转换的延时,在保证调度灵活性的前提下,支持大延时网络中的调度,避免了上下行之间的延时无法支持大范围的传输延时差异所导致的传输失败。
-.本申请中的方法支持根据网络的延时状况或者卫星的轨道信息或者卫星的高度信息来隐式获得可供调度或者可供配置的延时参数的集合,避免引入额外的信令开销的同时有效地解决了大范围传输延时差异所可能导致的上下行转换时无法正常工作的问题。
-.采用本申请中的方法,使得网络可以根据不同的用户设备之间的实际的传输延时进行调度,避免了总是针对最大延时差异进行调度所导致的不必要的调度延时的问题。
-.本申请中的方法支持将时间间隔长度,起始符号在所属时隙中的索引,占用的时间长度进行联合指示,在保证调度灵活性的同时降低调度信令头开销。
-.本申请中的方法保证处于不同的传输延时区域的用户设备的最大调度延时开销一致,保证了针对不同用户设备的延时的公平性。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信息,第一信令和第一信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一节点设备和第二节点设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的另一个实施例的无线信号传输流程图;
图7示出了根据本申请的一个实施例的P个配置组的示意图;
图8示出了根据本申请的一个实施例的第一步长的示意图;
图9示出了根据本申请的一个实施例的X个备选时间长度集合的示意图;
图10示出了根据本申请的一个实施例的第一时间偏移的示意图;
图11示出了根据本申请的一个实施例的公共时间偏移的示意图;
图12示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图13示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信息,第一信令和第一信号的流程图,如附图1所示。在附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序并不代表所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的第一节点设备在步骤101中接收第一信息,所述第一信息被用于确定第一特征参数组;在步骤102中接收第一信令,所述第一信令被用于从第一时间长度集合中确定目标时间长度;在步骤103中发送第一信号;其中,所述第一特征参数组包括所述第一信息的发送者的类型、所述第一信息的发送者的高度、公共时间偏移中的至少之一;所述第一时间长度集合是X个备选时间长度集合中的一个备选时间长度集合,所述X是大于1的正整数;所述第一特征参数组被用于从所述X个备选时间长度集合中确定所述第一时间长度集合;所述X个备选时间长度集合中任意一个备选时间长度集合包括大于1的正整数个时间长度,所述目标时间长度是所述第一时间长度集合中的一个时间长度;所述目标时间长度和所述公共时间偏移被共同用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
作为一个实施例,所述第一节点设备在发送所述第一信号时处于RRC(Radio Resource Control,无线资源控制)空闲状态(RRC_IDLE)。
作为一个实施例,所述第一节点设备在发送所述第一信号时处于RRC(Radio Resource Control,无线资源控制)连接状态(RRC_CONNECTED)。
作为一个实施例,所述第一节点设备在发送所述第一信号时处于RRC(Radio Resource Control,无线资源控制)非活跃状态(RRC_INACTIVE)。
作为一个实施例,所述第一信息通过空中接口传输。
作为一个实施例,所述第一信息通过无线接口传输。
作为一个实施例,所述第一信息通过高层信令传输。
作为一个实施例,所述第一信息通过物理层信令传输。
作为一个实施例,所述第一信息包括了一个高层信令中的全部或部分。
作为一个实施例,所述第一信息包括了一个物理层信令中的全部或部分。
作为一个实施例,所述第一信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的全部或部分IE(Information Element,信息单元)。
作为一个实施例,所述第一信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的一个IE(Information Element,信息单元)中的全部或部分域(Field)。
作为一个实施例,所述第一信息包括了一个MAC(Medium Access Control,媒体接入控制)层信令中的全部或部分域(Field)。
作为一个实施例,所述第一信息包括主信息块(MIB,Master Information Block)中的全部或部分。
作为一个实施例,所述第一信息包括了一个系统信息块(SIB,System Information Block)中的全部或部分。
作为一个实施例,所述第一信息包括了一个MAC(Medium Access Control,媒体接入控制)CE(Control Element,控制单元)中的全部或部分。
作为一个实施例,所述第一信息包括了一个MAC(Medium Access Control,媒体接入控 制)头(Header)中的全部或部分。
作为一个实施例,所述第一信息通过一个DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第一信息通过一个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第一信息是广播的。
作为一个实施例,所述第一信息是小区特定的(Cell Specific)。
作为一个实施例,所述第一信息是用户设备特定的(UE-specific)。
作为一个实施例,所述第一信息是用户设备组特定的(UE group-specific)。
作为一个实施例,所述第一信息是覆盖区域(Footprint)特定的。
作为一个实施例,所述第一信息是波束特定的(Beam Specific)。
作为一个实施例,所述第一信息是地理区域特定的。
作为一个实施例,所述第一信息包括一个DCI(Downlink Control Information)信令的全部或部分域(Field)。
作为一个实施例,上述句子“所述第一信息被用于确定第一特征参数组”包括以下含义:所述第一信息被本申请中的所述第一节点设备用于确定所述第一特征参数组。
作为一个实施例,上述句子“所述第一信息被用于确定第一特征参数组”包括以下含义:所述第一信息被用于直接指示所述第一特征参数组。
作为一个实施例,上述句子“所述第一信息被用于确定第一特征参数组”包括以下含义:所述第一信息被用于间接指示所述第一特征参数组。
作为一个实施例,上述句子“所述第一信息被用于确定第一特征参数组”包括以下含义:所述第一信息被用于显式地指示所述第一特征参数组。
作为一个实施例,上述句子“所述第一信息被用于确定第一特征参数组”包括以下含义:所述第一信息被用于隐式地指示所述第一特征参数组。
作为一个实施例,所述第一信令是通过空中接口传输的。
作为一个实施例,所述第一信令是通过无线接口传输的。
作为一个实施例,所述第一信令是通过Uu接口传输的。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是通过PDCCH(Physical Downlink Control Channel,物理下行控制信道)传输的。
作为一个实施例,所述第一信令包括DCI(Downlink Control Information,下行控制信息)中的全部或部分域(Field)。
作为一个实施例,所述第一信令包括一个给定的DCI(Downlink Control Information,下行控制信息)格式(Format)的DCI中的全部或部分域(Field)。
作为一个实施例,所述第一信令是高层信令。
作为一个实施例,所述第一信令是RRC信令。
作为一个实施例,所述第一信令是MAC层信令。
作为一个实施例,所述第一信令是被用于配置SPS(Semi-Persistent Scheduling,半静态调度)的信令。
作为一个实施例,所述第一信令是RAR(Random Access Response,随机接入响应)中的上行授予(Uplink Grant)。
作为一个实施例,所述第一信令是MsgB(消息B)中的上行授予(Uplink Grant)。
作为一个实施例,所述第一信令是MsgB(消息B)中的域(Field)“PDSCH-to-HARQ_feedback timing indicator”。
作为一个实施例,所述第一信令是DCI中的域(Field)“PDSCH-to-HARQ_feedback timing indicator”。
作为一个实施例,所述第一信令是调度PDSCH(Physical Downlink Shared Channel,物理下行共享信道)的DCI。
作为一个实施例,所述第一信令是调度PUSCH(Physical Uplink Shared Channel,物理上行共享信道)的DCI。
作为一个实施例,所述第一信令是DCI中的域(Field)“CSI”。
作为一个实施例,上述句子“所述第一信令被用于从第一时间长度集合中确定目标时间长度”包括以下含义:所述第一信令被本申请中的所述第一节点设备用于从所述第一时间长度集合中确定所述目标时间长度。
作为一个实施例,上述句子“所述第一信令被用于从第一时间长度集合中确定目标时间长度”包括以下含义:所述第一信令被用于直接从所述第一时间长度集合中指示所述目标时间长度。
作为一个实施例,上述句子“所述第一信令被用于从第一时间长度集合中确定目标时间长度”包括以下含义:所述第一信令被用于间接从所述第一时间长度集合中指示所述目标时间长度。
作为一个实施例,上述句子“所述第一信令被用于从第一时间长度集合中确定目标时间长度”包括以下含义:所述第一信令被用于显式地从所述第一时间长度集合中指示所述目标时间长度。
作为一个实施例,上述句子“所述第一信令被用于从第一时间长度集合中确定目标时间长度”包括以下含义:所述第一信令被用于隐式地从所述第一时间长度集合中指示所述目标时间长度。
作为一个实施例,所述第一信号是基带信号。
作为一个实施例,所述第一信号是射频信号。
作为一个实施例,所述第一信号通过空中接口传输。
作为一个实施例,所述第一信号通过无线接口传输。
作为一个实施例,所述第一信号携带Msg3(随机接入信息3)。
作为一个实施例,所述第一信号被用于随机接入过程。
作为一个实施例,所述第一信号携带一个Msg3的重传。
作为一个实施例,所述第一信号携带一个Msg3的初传。
作为一个实施例,所述第一信号携带一个MsgB所调度的上行传输的重传。
作为一个实施例,所述第一信号携带一个MsgB所调度的上行传输的初传。
作为一个实施例,所述第一信号是晚于Msg3的一次上行传输。
作为一个实施例,所述第一信号是所述第一节点设备在完成随机接入过程之后的上行传输。
作为一个实施例,所述第一信号通过UL-SCH(Uplink Shared Channel,上行共享信道)传输的。
作为一个实施例,所述第一信号通过PUSCH(Physical Uplink Shared Channel,物理上行共享信道)传输的。
作为一个实施例,所述第一信号通过PUCCH(Physical Uplink Control Channel,物理上行控制信道)传输的。
作为一个实施例,所述第一信号通过SRS(Sounding Reference Signal,探测参考信号)传输。
作为一个实施例,所述第一信号通过UL DMRS(Uplink Demodulation Reference Signal,上行解调参考信号)传输。
作为一个实施例,所述第一信号在频域占用正整数个子载波(subcarrier)。
作为一个实施例,所述第一信号在频域所占用多于1个子载波,所述第一无线信号在频域所占用的任意两个子载波的子载波间隔(SCS,Subcarrier Spacing)相等。
作为一个实施例,所述第一信号不携带上行控制信息(UCI,Uplink Control Information)。
作为一个实施例,所述第一信号只携带高层信息。
作为一个实施例,一个传输块(TB,Transport Block)中的全部或部分比特被用于生成所述第一信号。
作为一个实施例,所述第一信号不携带物理层信息。
作为一个实施例,所述第一信号携带物理层的上行控制信息(UCI,Uplink Control Information)。
作为一个实施例,所述第一信号携带HARQ-ACK(Hybrid Automatic Repeat Request-Acknowledgement,混合自动重传请求-确认)。
作为一个实施例,所述第一信号携带CSI(Channel Status Information)。
作为一个实施例,携带UCI(Uplink Control Information,上行控制信息)的比特块的全部或部分被用于生成所述第一信号。
作为一个实施例,所述第一信号所采用的波形是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)。
作为一个实施例,所述第一信号所采用的波形是DFT-s-OFDM(Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩展正交频分复用)。
作为一个实施例,上述句子“所述第一特征参数组包括所述第一信息的发送者的类型、所述第一信息的发送者的高度、公共时间偏移中的至少之一”包括以下含义:所述第一特征参数组包括所述第一信息的发送者的类型、所述第一信息的发送者的高度和所述公共时间偏移。
作为一个实施例,上述句子“所述第一特征参数组包括所述第一信息的发送者的类型、所述第一信息的发送者的高度、公共时间偏移中的至少之一”包括以下含义:所述第一特征参数组包括所述第一信息的发送者的类型和所述公共时间偏移。
作为一个实施例,上述句子“所述第一特征参数组包括所述第一信息的发送者的类型、所述第一信息的发送者的高度、公共时间偏移中的至少之一”包括以下含义:所述第一特征参数组包括所述第一信息的发送者的高度和所述公共时间偏移。
作为一个实施例,上述句子“所述第一特征参数组包括所述第一信息的发送者的类型、所述第一信息的发送者的高度、公共时间偏移中的至少之一”包括以下含义:所述第一特征参数组只包括所述第一信息的发送者的类型。
作为一个实施例,上述句子“所述第一特征参数组包括所述第一信息的发送者的类型、所述第一信息的发送者的高度、公共时间偏移中的至少之一”包括以下含义:所述第一特征参数组只包括所述第一信息的发送者的高度。
作为一个实施例,上述句子“所述第一特征参数组包括所述第一信息的发送者的类型、所述第一信息的发送者的高度、公共时间偏移中的至少之一”包括以下含义:所述第一特征参数组只包括所述公共时间偏移。
作为一个实施例,所述第一信息的发送者的类型是指示所述第一信息的发送者是地面网络节点(TN,Terrestrial Network)还是非地面网络节点(NTN,Non-Terrestrial Network)。
作为一个实施例,所述第一信息的发送者的类型是指示所述第一信息的发送者所属的卫星的类型。
作为一个实施例,所述第一信息的发送者的类型是低轨(Low-Earth Orbit,LEO)卫星、中轨(Medium-Earth Orbit,MEO)卫星、地球同步(Geostationary Earth Orbit,GEO)卫星、无人控制飞行系统平台(Unmanned Aircraft Systems Platform,UAS)、高轨(High Elliptical Orbit,HEO)卫星中之一。
作为一个实施例,所述第一信息的发送者的类型是指示所述第一信息的发送者是卫星还是无人控制飞行系统平台(Unmanned Aircraft Systems Platform,UAS)。
作为一个实施例,所述第一信息的发送者的高度(Altitude)的单位是米。
作为一个实施例,所述第一信息的发送者的高度的单位是千米。
作为一个实施例,所述第一信息的发送者的高度是通过传输时延表示的。
作为一个实施例,所述第一信息的发送者的高度是指以水平面为基准的所述第一信息的发送者的高度。
作为一个实施例,所述第一信息的发送者的高度是指所述第一信息的发送者到近地点(Nadir)的距离。
作为一个实施例,所述公共时间偏移是K offset
作为一个实施例,所述公共时间偏移是NTN和TN相比的DCI到被调度的PUSCH之间的额外的调度时延。
作为一个实施例,所述公共时间偏移是NTN和TN相比的PDSCH到相关联的HARQ-ACK之间的额外的时延。
作为一个实施例,所述公共时间偏移是NTN和TN相比的DCI到被触发的CSI汇报之间的额外的时延。
作为一个实施例,所述公共时间偏移是NTN和TN相比的CSI汇报和CSI参考资源之间的额外的时延。
作为一个实施例,所述公共时间偏移的单位是毫秒。
作为一个实施例,所述公共时间偏移的单位是秒。
作为一个实施例,所述公共时间偏移是以OFDM符号(Symbol)的数量表示的。
作为一个实施例,所述公共时间偏移是以一个子载波间隔(SCS,Subcarrier Spacing)的OFDM符号(Symbol)的数量表示的。
作为一个实施例,所述公共时间偏移和所述第一信息的发送者到所述第一节点设备的传输时延(Propagation Delay)有关。
作为一个实施例,所述公共时间偏移和所述第一信息的发送者到近地点(Nadir)的传输时延(Propagation Delay)有关。
作为一个实施例,所述公共时间偏移和所述第一信息的发送者到所述第一节点设备的RTT(Round Trip Time,往返时间)有关。
作为一个实施例,所述公共时间偏移和所述第一信息的发送者到近地点(Nadir)的RTT(Round Trip Time,往返时间)有关。
作为一个实施例,所述第一时间长度集合中的任意两个时间长度不相等。
作为一个实施例,所述第一时间长度集合中存在两个时间长度相等。
作为一个实施例,所述第一时间长度集合中的任意一个时间长度通过OFDM符号(Symbol)的数量表示。
作为一个实施例,所述第一时间长度集合中的任意一个时间长度通过对应所述第一信号在频域所占用的一个子载波的子载波间隔(SCS)的OFDM符号的数量表示。
作为一个实施例,所述第一时间长度集合中的任意一个时间长度通过时隙(Slot)的数量表示。
作为一个实施例,所述第一时间长度集合中的任意一个时间长度通过对应所述第一信号在频域所占用的一个子载波的子载波间隔(SCS)的时隙(Slot)的数量表示。
作为一个实施例,所述第一时间长度集合中的任意一个时间长度通过Tc的数量表示,其中Tc=1/(480000*4096)秒。
作为一个实施例,所述第一时间长度集合中的每个时间长度大于0。
作为一个实施例,所述第一时间长度集合中的每个时间长度不小于0,所述第一时间长度集合中存在一个时间长度等于0。
作为一个实施例,所述第一时间长度集合中的每个时间长度是PUSCH时域资源分配(PUSCH time domain resource allocation)中k2的可能值。
作为一个实施例,所述第一时间长度集合中的每个时间长度等于PUSCH时域资源分配(PUSCH time domain resource allocation)中k0和PDSCH到HARQ反馈定时(PDSCH-to-HARQ_feedback timing)的k的和的可能值。
作为一个实施例,所述第一时间长度集合中的每个时间长度是触发CSI报告的PDCCH和CSI报告之间的调度时间偏移的可能值。
作为一个实施例,所述第一时间长度集合包括的时间间隔长度分别是1个时隙、2个时隙、3个时隙、4个时隙、5个时隙、6个时隙、7个时隙和8个时隙。
作为一个实施例,所述X个备选时间长度集合中的任意两个备选时间长度集合之间不相同。
作为一个实施例,所述X个备选时间长度集合中存在两个备选时间长度集合相同。
作为一个实施例,所述X个备选时间长度集合中存在两个备选时间长度集合不相同。
作为一个实施例,所述X个备选时间长度集合中的任意一个备选时间长度集合中所包括的任意一个时间长度大于0。
作为一个实施例,所述X个备选时间长度集合中存在一个备选时间长度集合中存在一个时间长度等于0。
作为一个实施例,所述X个备选时间长度集合中的任意一个备选时间长度集合中所包括的任意一个时间长度通过OFDM符号的数量表示。
作为一个实施例,所述X个备选时间长度集合中的任意一个备选时间长度集合中所包括的任意一个时间长度通过对应所述第一信号在频域所占用的一个子载波的子载波间隔(SCS)的OFDM符号的数量表示。
作为一个实施例,所述X个备选时间长度集合中的任意一个备选时间长度集合中所包括的任意一个时间长度通过时隙(Slot)的数量表示。
作为一个实施例,所述X个备选时间长度集合中的任意一个备选时间长度集合中所包括的任意一个时间长度通过对应所述第一信号在频域所占用的一个子载波的子载波间隔(SCS)的时隙(Slot)的数量表示。
作为一个实施例,所述X个备选时间长度集合中的任意一个备选时间长度集合中所包括的任意一个时间长度通过Tc的数量表示,其中Tc=1/(480000*4096)秒。
作为一个实施例,所述X等于2。
作为一个实施例,所述X等于网络所支持的卫星类型的数量加1。
作为一个实施例,所述X是可配置的。
作为一个实施例,所述X大于2。
作为一个实施例,所述X个备选时间长度集合是预定义的。
作为一个实施例,所述X个备选时间长度集合是可配置的。
作为一个实施例,所述X个备选时间长度集合是版本特定的(Release Specific)。
作为一个实施例,对于R17(Release 17)版本和R17版本之后的用户设备,所述X个备选时间长度集合是可见的(visible)。
作为一个实施例,所述X个备选时间长度集合是固定的。
作为一个实施例,所述X个备选时间长度集合分别针对X种可能的所述第一信息的发送者的类型。
作为一个实施例,所述X个备选时间长度集合分别针对X个可能的所述第一信息的发送者的高度。
作为一个实施例,所述X个备选时间长度集合分别针对X个可能的所述公共时间偏移。
作为一个实施例,上述句子“所述第一特征参数组被用于从所述X个备选时间长度集合中确定所述第一时间长度集合”包括以下含义:所述第一特征参数组被本申请中的所述第一节点设备用于从所述X个备选时间长度集合中确定所述第一时间长度集合。
作为一个实施例,上述句子“所述第一特征参数组被用于从所述X个备选时间长度集合 中确定所述第一时间长度集合”包括以下含义:对于给定的所述第一信号在频域所占用的一个子载波的子载波间隔(SCS,Subcarrier Spacing),所述第一特征参数组被用于从所述X个备选时间长度集合中确定所述第一时间长度集合。
作为一个实施例,上述句子“所述第一特征参数组被用于从所述X个备选时间长度集合中确定所述第一时间长度集合”包括以下含义:所述X个备选时间长度集合分别对应X个备选特征参数组,所述第一特征参数组是所述X个备选特征参数组中的一个备选特征参数组,所述第一时间长度集合是所述X个备选时间长度集合中和所述第一特征参数组相对应的备选时间长度集合。
作为一个实施例,上述句子“所述第一特征参数组被用于从所述X个备选时间长度集合中确定所述第一时间长度集合”包括以下含义:所述第一特征参数组根据映射关系被用于从所述X个备选时间长度集合中确定所述第一时间长度集合。
作为一个实施例,上述句子“所述第一特征参数组被用于从所述X个备选时间长度集合中确定所述第一时间长度集合”包括以下含义:所述第一特征参数组根据表格对应关系被用于从所述X个备选时间长度集合中确定所述第一时间长度集合。
作为一个实施例,所述第一信令的接收时刻是指:所述第一信令的接收截止时刻。
作为一个实施例,所述第一信令的接收时刻是指:所述第一信令的接收起始时刻。
作为一个实施例,所述第一信令的接收时刻是指:所述第一信令在时域所占用的最晚的OFDM符号(Symbol)所属的时隙(Slot)的最晚的边界(Boundary)接收时刻。
作为一个实施例,所述第一信令的接收时刻是指:所述第一信令在时域所占用的最晚的OFDM符号(Symbol)所属的时隙(Slot)的接收截止时刻。
作为一个实施例,所述第一信令的接收时刻是指:所述第一信令在频域所占用的一个子载波的子载波间隔等于第一子载波间隔,所述第一信令在时域所占用的最晚的OFDM符号(Symbol)所属的采用所述第一子载波间隔的时隙(Slot)的接收截止时刻。
作为一个实施例,所述第一信令的接收时刻是指:所述第一信号在频域所占用的一个子载波的子载波间隔等于第二子载波间隔,所述第一信令在时域所占用的最晚的OFDM符号(Symbol)所属的采用所述第二子载波间隔的时隙(Slot)的接收截止时刻。
作为一个实施例,所述第一信号的发送时刻是指:所述第一信号的发送起始时刻。
作为一个实施例,所述第一信号的发送时刻是指:所述第一信号的发送截止时刻。
作为一个实施例,所述第一信号的发送时刻是指:所述第一信号在时域所占用的最早的OFDM符号的发送起始时刻。
作为一个实施例,所述第一信号的发送时刻是指:所述第一信号在时域所占用的最早的OFDM符号(包括循环前缀(CP,Cyclic Prefix))的发送起始时刻。
作为一个实施例,所述第一信号的发送时刻是指:所述第一信号在时域所占用的最早的OFDM符号所属的时隙(Slot)的发送起始时刻。
作为一个实施例,所述第一信号的发送时刻是指:所述第一信令在频域所占用的一个子载波的子载波间隔等于第一子载波间隔,所述第一信号在时域所占用的最早的OFDM符号(Symbol)所属的采用所述第一子载波间隔的时隙(Slot)的发送起始时刻。
作为一个实施例,所述第一信号的发送时刻是指:所述第一信号在频域所占用的一个子载波的子载波间隔等于第二子载波间隔,所述第一信号在时域所占用的最早的OFDM符号(Symbol)所属的采用所述第二子载波间隔的时隙(Slot)的发送起始时刻。
作为一个实施例,所述第一信令的接收时刻早于所述第一信号的发送时刻。
作为一个实施例,所述第一信令的接收时刻不晚于所述第一信号的发送时刻。
作为一个实施例,上述句子“所述目标时间长度和所述公共时间偏移被共同用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度”包括以下含义:所述目标时间长度和所述公共时间偏移被本申请中的所述第一节点设备共同用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
作为一个实施例,上述句子“所述目标时间长度和所述公共时间偏移被共同用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度”包括以下含义:所述目标时间长度和所述公共时间偏移的和被用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
作为一个实施例,上述句子“所述目标时间长度和所述公共时间偏移被共同用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度”包括以下含义:所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度和所述目标时间长度线性相关,所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度和所述公共时间偏移线性相关。
作为一个实施例,上述句子“所述目标时间长度和所述公共时间偏移被共同用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度”包括以下含义:所述目标时间长度和所述公共时间偏移的和被用于确定所述第一信令在时域所占用的最晚OFDM符号所属的下行时隙的索引和所述第一信号在时域所占用的最早的OFDM符号所属的上行时隙的索引之间的差值。
作为一个实施例,上述句子“所述目标时间长度和所述公共时间偏移被共同用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度”包括以下含义:所述目标时间长度和所述公共时间偏移以及发送所述第一信号时的定时提前(TA,Timing Advance)被共同用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
作为一个实施例,还包括:
接收第四信号;
其中,所述第一信令被用于确定所述第四信号所占用的时频资源;上述句子“所述目标时间长度和所述公共时间偏移被共同用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度”包括以下含义:所述目标时间长度和所述公共时间偏移被共同用于确定所述第四信号的接收时刻和所述第一信号的发送时刻之间的时间间隔长度,所述第四信号的接收时刻和所述第一信号的发送时刻之间的时间间隔长度被用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
作为一个实施例,上述句子“所述目标时间长度和所述公共时间偏移被共同用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度”包括以下含义:所述目标时间长度和所述公共时间偏移的和减去发送所述第一信号时的定时提前(TA,Timing Advance)的差被用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
作为一个实施例,上述句子“所述目标时间长度和所述公共时间偏移被共同用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度”包括以下含义:所述目标时间长度和所述公共时间偏移的和减去发送所述第一信号时的定时提前(TA,Timing Advance)所包括的整数个时隙的时间长度的差等于所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统 一数据管理)220和因特网服务230。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点设备。
作为一个实施例,所述UE201支持在大传输时延网络中的传输。
作为一个实施例,所述UE201支持在大范围传输时延差异网络中的传输。
作为一个实施例,所述UE201支持NTN网络。
作为一个实施例,所述gNB201对应本申请中的所述第二节点设备。
作为一个实施例,所述gNB201支持大传输时延网络中的传输。
作为一个实施例,所述gNB201支持大范围传输时延差异网络中的传输。
作为一个实施例,所述gNB201支持NTN网络。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一节点设备(UE,gNB或NTN网络中的终端设备)和第二节点设备(gNB,UE或NTN网络中的卫星设备或飞行器平台设备)的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一节点设备与第二节点设备之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通 过加密数据包而提供安全性,以及提供第二节点设备之间的对第一节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点设备与第一节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点设备和第二节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点设备。
作为一个实施例,本申请中的所述第一信息生成于所述RRC306。
作为一个实施例,本申请中的所述第一信息生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一信息生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一信令生成于所述RRC306。
作为一个实施例,本申请中的所述第一信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一信号生成于所述RRC306。
作为一个实施例,本申请中的所述第一信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二信息生成于所述RRC306。
作为一个实施例,本申请中的所述第二信息生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第二信息生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二信号生成于所述RRC306。
作为一个实施例,本申请中的所述第二信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第二信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第三信号生成于所述RRC306。
作为一个实施例,本申请中的所述第三信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第三信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第三信息生成于所述RRC306。
作为一个实施例,本申请中的所述第三信息生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第三信息生成于所述PHY301或者PHY351。
实施例4
实施例4示出了根据本申请的一个第一节点设备和第二节点设备的示意图,如附图4所示。
在第一节点设备(450)中可以包括控制器/处理器490,数据源/缓存器480,接收处理器452,发射器/接收器456和发射处理器455,发射器/接收器456包括天线460。
在第二节点设备(410)中可以包括控制器/处理器440,数据源/缓存器430,接收处理 器412,发射器/接收器416和发射处理器415,发射器/接收器416包括天线420。
在DL(Downlink,下行)中,上层包,比如本申请中的第一信息、第一信令(如果第一信令中包括高层信息)、第二信息、第二信号和第三信息中所包括的高层信息提供到控制器/处理器440。控制器/处理器440实施L2层及以上层的功能。在DL中,控制器/处理器440提供包头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对第一节点设备450的无线电资源分配。控制器/处理器440还负责HARQ操作、丢失包的重新发射,和到第一节点设备450的信令,比如本申请中的第一信息、第一信令(如果第一信令中包括高层信息)、第二信息、第二信号和第三信息均在控制器/处理器440中生成。发射处理器415实施用于L1层(即,物理层)的各种信号处理功能,包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等,本申请中的第一信息、第一信令、第二信息、第二信号和第三信息的物理层信号的生成在发射处理器415完成,生成的调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号,然后由发射处理器415经由发射器416映射到天线420以射频信号的形式发射出去。在接收端,每一接收器456通过其相应天线460接收射频信号,每一接收器456恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器452。接收处理器452实施L1层的各种信号接收处理功能。信号接收处理功能包括对本申请中的第一信息、第一信令、第二信息、第二信号和第三信息的物理层信号的接收等,通过多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解扰,解码和解交织以恢复在物理信道上由第二节点设备410发射的数据或者控制,随后将数据和控制信号提供到控制器/处理器490。控制器/处理器490负责L2层及以上层,控制器/处理器490对本申请中的第一信息、第一信令(如果第一信令中包括高层信息)、第二信息、第二信号和第三信息进行解读。控制器/处理器可与存储程序代码和数据的存储器480相关联。存储器480可称为计算机可读媒体。
在上行(UL)传输中,数据源/缓存器480用来提供高层数据到控制器/处理器490。数据源/缓存器480表示L2层和L2层之上的所有协议层,本申请中的第一信号和第三信号在数据源/缓存器480生成。控制器/处理器490通过基于第二节点410的无线电资源分配提供标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,来实施用于用户平面和控制平面的L2层协议。控制器/处理器490还负责HARQ操作、丢失包的重新发射,和到第二节点410的信令。发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能,本申请中第一信号和第三信号的物理层信号以及本申请中的第三信号所携带上行控制信息在发射处理器455生成。信号发射处理功能包括编码和交织以促进UE450处的前向错误校正(FEC)以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))对基带信号进行调制,将调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号,然后由发射处理器455经由发射器456映射到天线460以射频信号的形式发射出去。接收器416通过其相应天线420接收射频信号,每一接收器416恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器412。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能,包括接收处理本申请中的第一信号和第三信号的物理层信号以及处理第三信号所携带上行控制信息,信号接收处理功能包括获取多载波符号流,接着对多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解码和解交织以恢复在物理信道上由第一节点设备450原始发射的数据和/或控制信号。随后将数据和/或控制信号提供到控制器/处理器440。在控制器/处理器440实施L2层的功能。控制器/处理器可与存储程序代码和数据的缓存器430相关联。缓存器430可以为计算机可读媒体。
作为一个实施例,所述第一节点设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一节点设备450装置至少:接收第一信息, 所述第一信息被用于确定第一特征参数组;接收第一信令,所述第一信令被用于从第一时间长度集合中确定目标时间长度;发送第一信号;其中,所述第一特征参数组包括所述第一信息的发送者的类型、所述第一信息的发送者的高度、公共时间偏移中的至少之一;所述第一时间长度集合是X个备选时间长度集合中的一个备选时间长度集合,所述X是大于1的正整数;所述第一特征参数组被用于从所述X个备选时间长度集合中确定所述第一时间长度集合;所述X个备选时间长度集合中任意一个备选时间长度集合包括大于1的正整数个时间长度,所述目标时间长度是所述第一时间长度集合中的一个时间长度;所述目标时间长度和所述公共时间偏移被共同用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
作为一个实施例,所述第一节点设备450装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信息,所述第一信息被用于确定第一特征参数组;接收第一信令,所述第一信令被用于从第一时间长度集合中确定目标时间长度;发送第一信号;其中,所述第一特征参数组包括所述第一信息的发送者的类型、所述第一信息的发送者的高度、公共时间偏移中的至少之一;所述第一时间长度集合是X个备选时间长度集合中的一个备选时间长度集合,所述X是大于1的正整数;所述第一特征参数组被用于从所述X个备选时间长度集合中确定所述第一时间长度集合;所述X个备选时间长度集合中任意一个备选时间长度集合包括大于1的正整数个时间长度,所述目标时间长度是所述第一时间长度集合中的一个时间长度;所述目标时间长度和所述公共时间偏移被共同用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
作为一个实施例,所述第二节点设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二节点设备410装置至少:发送第一信息,所述第一信息被用于确定第一特征参数组;发送第一信令,所述第一信令被用于从第一时间长度集合中确定目标时间长度;接收第一信号;其中,所述第一特征参数组包括所述第一信息的发送者的类型、所述第一信息的发送者的高度、公共时间偏移中的至少之一;所述第一时间长度集合是X个备选时间长度集合中的一个备选时间长度集合,所述X是大于1的正整数;所述第一特征参数组被用于从所述X个备选时间长度集合中确定所述第一时间长度集合;所述X个备选时间长度集合中任意一个备选时间长度集合包括大于1的正整数个时间长度,所述目标时间长度是所述第一时间长度集合中的一个时间长度;所述目标时间长度和所述公共时间偏移被共同用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
作为一个实施例,所述第二节点设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信息,所述第一信息被用于确定第一特征参数组;发送第一信令,所述第一信令被用于从第一时间长度集合中确定目标时间长度;接收第一信号;其中,所述第一特征参数组包括所述第一信息的发送者的类型、所述第一信息的发送者的高度、公共时间偏移中的至少之一;所述第一时间长度集合是X个备选时间长度集合中的一个备选时间长度集合,所述X是大于1的正整数;所述第一特征参数组被用于从所述X个备选时间长度集合中确定所述第一时间长度集合;所述X个备选时间长度集合中任意一个备选时间长度集合包括大于1的正整数个时间长度,所述目标时间长度是所述第一时间长度集合中的一个时间长度;所述目标时间长度和所述公共时间偏移被共同用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
作为一个实施例,所述第一节点设备450是一个用户设备(UE)。
作为一个实施例,所述第一节点设备450是一个支持大延时传输的用户设备。
作为一个实施例,所述第一节点设备450是一个支持大范围传输延时差异的用户设备。
作为一个实施例,所述第一节点设备450是一个支持NTN网络的用户设备。
作为一个实施例,所述第二节点设备410是一个基站设备(gNB/eNB)。
作为一个实施例,所述第二节点设备410是一个支持大传输延时的基站设备。
作为一个实施例,所述第二节点设备410是一个支持大范围传输延时差异的基站设备。
作为一个实施例,所述第二节点设备410是一个支持NTN网络的基站设备。
作为一个实施例,所述第二节点设备410是一个卫星设备。
作为一个实施例,所述第二节点设备410是一个飞行平台设备。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一信息。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一信令。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第二信息。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第二信号。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第三信息。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送所述第一信号。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送所述第三信号。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第一信息。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第一信令。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第二信息。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第二信号。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第三信息。
作为一个实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于接收本申请中的所述第一信号。
作为一个实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于接收本申请中的所述第三信号。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。在附图5中,第二节点设备N1是第一节点设备U2的服务小区的维持基站,虚线框中的步骤是可选的。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于 第二节点设备N1,在步骤S11中发送第一信息,在步骤S12中发送第三信息,在步骤S13中发送第二信息,在步骤S14中发送第一信令,在步骤S15中接收第一信号,在步骤S16中发送第二信号,在步骤S17中接收第三信号。
对于 第一节点设备U2,在步骤S21中接收第一信息,在步骤S22中接收第三信息,在步骤S23中接收第二信息,在步骤S24中接收第一信令,在步骤S25中发送第一信号,在步骤S26中接收第二信号,在步骤S27中发送第三信号。
在实施例5中,本申请中的所述第一信息被用于确定第一特征参数组;本申请中的所述第一信令被用于从第一时间长度集合中确定目标时间长度;所述第一特征参数组包括所述第一信息的发送者的类型、所述第一信息的发送者的高度、公共时间偏移中的至少之一;所述第一时间长度集合是X个备选时间长度集合中的一个备选时间长度集合,所述X是大于1的正整数;所述第一特征参数组被用于从所述X个备选时间长度集合中确定所述第一时间长度集合;所述X个备选时间长度集合中任意一个备选时间长度集合包括大于1的正整数个时间长度,所述目标时间长度是所述第一时间长度集合中的一个时间长度;所述目标时间长度和所述公共时间偏移被共同用于确定所述第一信令的接收时刻和本申请中的所述第一信号的发送时刻之间的时间间隔长度;所述第一信令被用于确定第一索引,所述第一索引是第一配置组的索引,所述第一配置组是P个配置组中的一个配置组,所述P是大于1的正整数;所述P个配置组中的每个配置组包括一个时间间隔长度、一个起始符号在所属的时隙中的索引、一个占用的时间长度中的至少一个时间间隔长度,所述目标时间长度等于所述第一配置组中所包括的时间间隔长度;所述P个配置组中的任意一个配置组所包括的时间间隔长度等于所述第一时间长度集合中的一个时间长度;本申请中的所述第二信息被用于确定所述P个配置组;所述公共时间偏移被用于确定本申请中的所述第二信号的接收结束时刻和本申请中的所述第三信号的发送起始时刻之间的时间间隔长度,所述第三信号携带上行控制信息;所述第二信号和所述第一信令不相同,所述第三信号和所述第一信号不相同;当所述第一特征参数组不包括所述公共时间偏移时,本申请中的所述第三信息被用于确定所述公共时间偏移。
作为一个实施例,所述第三信息通过空中接口传输。
作为一个实施例,所述第三信息通过无线接口传输。
作为一个实施例,所述第三信息通过高层信令传输。
作为一个实施例,所述第三信息通过物理层信令传输。
作为一个实施例,所述第三信息包括了一个高层信令中的全部或部分。
作为一个实施例,所述第三信息包括了一个物理层信令中的全部或部分。
作为一个实施例,所述第三信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的全部或部分IE(Information Element,信息单元)。
作为一个实施例,所述第三信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的一个IE(Information Element,信息单元)中的全部或部分域(Field)。
作为一个实施例,所述第三信息包括了一个MAC(Medium Access Control,媒体接入控制)层信令中的全部或部分域(Field)。
作为一个实施例,所述第三信息包括主信息块(MIB,Master Information Block)中的全部或部分。
作为一个实施例,所述第三信息包括了一个系统信息块(SIB,System Information Block)中的全部或部分。
作为一个实施例,所述第三信息包括了一个MAC(Medium Access Control,媒体接入控制)CE(Control Element,控制单元)中的全部或部分。
作为一个实施例,所述第三信息包括了一个MAC(Medium Access Control,媒体接入控制)头(Header)中的全部或部分。
作为一个实施例,所述第三信息通过一个DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第三信息通过一个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第三信息是广播的。
作为一个实施例,所述第三信息是小区特定的(Cell Specific)。
作为一个实施例,所述第三信息是用户设备特定的(UE-specific)。
作为一个实施例,所述第三信息是用户设备组特定的(UE group-specific)。
作为一个实施例,所述第三信息是覆盖区域(Footprint)特定的。
作为一个实施例,所述第三信息是波束特定的(Beam Specific)。
作为一个实施例,所述第三信息是地理区域特定的。
作为一个实施例,所述第三信息包括一个DCI(Downlink Control Information)信令的全部或部分域(Field)。
作为一个实施例,所述第三信息和所述第二信息通过两个不同的信令传输。
作为一个实施例,所述第三信息和所述第二信息通过相同的信令传输。
作为一个实施例,所述第三信息和所述第二信息是同一个信令的两个不同的IE(Information Element,信息单元)。
作为一个实施例,所述第三信息和所述第二信息是同一个信令的同一个IE(Information Element,信息单元)中的两个不同的域(Field)。
作为一个实施例,上述句子“所述第三信息被用于确定所述公共时间偏移”包括以下含义:所述第三信息被本申请中的所述第一节点设备用于确定所述公共时间偏移。
作为一个实施例,上述句子“所述第三信息被用于确定所述公共时间偏移”包括以下含义:所述第三信息被用于直接指示所述公共时间偏移。
作为一个实施例,上述句子“所述第三信息被用于确定所述公共时间偏移”包括以下含义:所述第三信息被用于间接指示所述公共时间偏移。
作为一个实施例,上述句子“所述第三信息被用于确定所述公共时间偏移”包括以下含义:所述第三信息被用于显式地指示所述公共时间偏移。
作为一个实施例,上述句子“所述第三信息被用于确定所述公共时间偏移”包括以下含义:所述第三信息被用于隐式地指示所述公共时间偏移。
实施例6
实施例6示例了根据本申请的另一个实施例的无线信号传输流程图,如附图6所示。在附图6中,第二节点设备N3是第一节点设备U4的服务小区的维持基站,虚线框中的步骤是可选的。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于 第二节点设备N3,在步骤S31中发送第一信息,在步骤S32中发送第三信息,在步骤S33中发送第二信息,在步骤S34中发送第一信令,在步骤S35中发送第四信号,在步骤S36中接收第一信号,在步骤S37中发送第二信号,在步骤S38中接收第三信号。
对于 第一节点设备U4,在步骤S41中接收第一信息,在步骤S42中接收第三信息,在步骤S43中接收第二信息,在步骤S44中接收第一信令,在步骤S45中接收第四信号,在步骤S46中发送第一信号,在步骤S47中接收第二信号,在步骤S48中发送第三信号。
在实施例6中,本申请中的所述第一信息被用于确定第一特征参数组;本申请中的所述第一信令被用于从第一时间长度集合中确定目标时间长度;所述第一特征参数组包括所述第一信息的发送者的类型、所述第一信息的发送者的高度、公共时间偏移中的至少之一;所述第一时间长度集合是X个备选时间长度集合中的一个备选时间长度集合,所述X是大于1的正整数;所述第一特征参数组被用于从所述X个备选时间长度集合中确定所述第一时间长度集合;所述X个备选时间长度集合中任意一个备选时间长度集合包括大于1的正整数个时间长度,所述目标时间长度是所述第一时间长度集合中的一个时间长度;所述目标时间长度和所述公共时间偏移被共同用于确定所述第一信令的接收时刻和本申请中的所述第一信号的发送时刻之间的时间间隔长度;所述第一信令被用于确定第一索引,所述第一索引是第一配置组的索引,所述第一配置组是P个配置组中的一个配置组,所述P是大于1的正整数;所述P个配置组中的每个配置组包括一个时间间隔长度、一个起始符号在所属的时隙中的索引、一个占用的时间长度中的至少一个时间间隔长度,所述目标时间长度等于所述第一配置组中所包括的时间间隔长度;所述P个配置组中的任意一个配置组所包括的时间间隔长度等于所述第一时间长度集合中的一个时间长度;本申请中的所述第二信息被用于确定所述P个配置 组;所述公共时间偏移被用于确定本申请中的所述第二信号的接收结束时刻和本申请中的所述第三信号的发送起始时刻之间的时间间隔长度,所述第三信号携带上行控制信息;所述第二信号和所述第一信令不相同,所述第三信号和所述第一信号不相同;当所述第一特征参数组不包括所述公共时间偏移时,本申请中的所述第三信息被用于确定所述公共时间偏移;所述第一信令被用于确定所述第四信号所占用的时频资源。
作为一个实施例,所述目标时间长度和所述公共时间偏移被共同用于确定所述第四信号的接收时刻和所述第一信号的发送时刻之间的时间间隔长度,所述第四信号的接收时刻和所述第一信号的发送时刻之间的时间间隔长度被用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
作为一个实施例,所述第四信号是通过PDSCH传输的。
作为一个实施例,所述第一信号被用于指示所述第四信号是否被正确接收。
作为一个实施例,所述第一信号被用于指示所述第四信号是否被正确译码。
作为一个实施例,所述第四信号是CSI-RS。
作为一个实施例,所述第四信号是所述第一信号所携带的CSI的参考。
作为一个实施例,所述第二信息通过空中接口传输。
作为一个实施例,所述第二信息通过无线接口传输。
作为一个实施例,所述第二信息通过高层信令传输。
作为一个实施例,所述第二信息通过物理层信令传输。
作为一个实施例,所述第二信息包括了一个高层信令中的全部或部分。
作为一个实施例,所述第二信息包括了一个物理层信令中的全部或部分。
作为一个实施例,所述第二信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的全部或部分IE(Information Element,信息单元)。
作为一个实施例,所述第二信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的一个IE(Information Element,信息单元)中的全部或部分域(Field)。
作为一个实施例,所述第二信息包括了一个MAC(Medium Access Control,媒体接入控制)层信令中的全部或部分域(Field)。
作为一个实施例,所述第二信息包括了一个系统信息块(SIB,System Information Block)中的全部或部分。
作为一个实施例,所述第二信息包括了一个MAC(Medium Access Control,媒体接入控制)CE(Control Element,控制单元)中的全部或部分。
作为一个实施例,所述第二信息包括了一个MAC(Medium Access Control,媒体接入控制)头(Header)中的全部或部分。
作为一个实施例,所述第二信息通过一个DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第二信息通过一个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第二信息是广播的。
作为一个实施例,所述第二信息是小区特定的(Cell Specific)。
作为一个实施例,所述第二信息是用户设备特定的(UE-specific)。
作为一个实施例,所述第二信息是用户设备组特定的(UE group-specific)。
作为一个实施例,所述第二信息是覆盖区域(Footprint)特定的。
作为一个实施例,所述第二信息是波束特定的(Beam Specific)。
作为一个实施例,所述第二信息是地理区域特定的。
作为一个实施例,所述第二信息包括一个DCI(Downlink Control Information)信令的全部或部分域(Field)。
作为一个实施例,所述第二信息包括“pusch-TimeDomainAllocationList”中的全部或部分。
作为一个实施例,所述第二信息包括“pusch-ConfigCommon”中的全部或部分。
作为一个实施例,所述第二信息包括“pusch-Config”中的全部或部分。
作为一个实施例,所述第二信息包括“dl-DataToUL-ACK”中的全部或部分。
作为一个实施例,所述第二信息包括“CSI-AperiodicTriggerStateList”中的全部或部分。
作为一个实施例,上述句子“所述第二信息被用于确定所述P个配置组”包括以下含义:所述第二信息被本申请中的所述第一节点设备用于确定所述P个配置组。
作为一个实施例,上述句子“所述第二信息被用于确定所述P个配置组”包括以下含义:所述第二信息被用于直接指示所述P个配置组。
作为一个实施例,上述句子“所述第二信息被用于确定所述P个配置组”包括以下含义:所述第二信息被用于间接指示所述P个配置组。
作为一个实施例,上述句子“所述第二信息被用于确定所述P个配置组”包括以下含义:所述第二信息被用于显式地指示所述P个配置组。
作为一个实施例,上述句子“所述第二信息被用于确定所述P个配置组”包括以下含义:所述第二信息被用于隐式地指示所述P个配置组。
实施例7
实施例7示例了根据本申请的一个实施例的P个配置组的示意图,如附图7所示。在附图7中,左数第一列代表配置组的索引,左数第二列代表P个配置组中的每个配置组所包括的一个时间间隔长度,左数第三列代表P个配置组中的每个配置组所包括的一个起始符号在所属的时隙中的索引、左数第四列代表P个配置组中的每个配置组所包括的一个占用的时间长度,加黑的一行代表第一索引和第一配置组,其中j是一个和第一信号在频域所占用的子载波的子载波间隔有关的参数。
在实施例7中,本申请中的所述第一信令被用于确定第一索引,所述第一索引是第一配置组的索引,所述第一配置组是P个配置组中的一个配置组,所述P是大于1的正整数;所述P个配置组中的每个配置组包括一个时间间隔长度、一个起始符号在所属的时隙中的索引、一个占用的时间长度中的至少一个时间间隔长度,本申请中的所述目标时间长度等于所述第一配置组中所包括的时间间隔长度;所述P个配置组中的任意一个配置组所包括的时间间隔长度等于所述第一时间长度集合中的一个时间长度。
作为一个实施例,上述句子“所述第一信令被用于确定第一索引”包括以下含义:所述第一信令被本申请中的所述第一节点用于确定所述第一索引。
作为一个实施例,上述句子“所述第一信令被用于确定第一索引”包括以下含义:所述第一信令被用于直接指示所述第一索引。
作为一个实施例,上述句子“所述第一信令被用于确定第一索引”包括以下含义:所述第一信令被用于间接指示所述第一索引。
作为一个实施例,上述句子“所述第一信令被用于确定第一索引”包括以下含义:所述第一信令被用于显式地指示所述第一索引。
作为一个实施例,上述句子“所述第一信令被用于确定第一索引”包括以下含义:所述第一信令被用于隐式地指示所述第一索引。
作为一个实施例,本申请中的句子“所述第一信令被用于从第一时间长度集合中确定目标时间长度”指示:所述第一信令被用于确定所述第一索引。
作为一个实施例,所述第一索引是一个映射表格中的行的索引。
作为一个实施例,所述第一索引是所述第一配置组在所述P个配置组中的索引。
作为一个实施例,所述第一索引是一个非负的整数。
作为一个实施例,所述第一索引是一个正整数。
作为一个实施例,所述P个配置组分别对应一个配置表格中的P行,所述第一索引是所述第一配置组在所述配置表格中所对应的行的行的索引。
作为一个实施例,上述句子“所述P个配置组中的每个配置组包括一个时间间隔长度、一个起始符号在所属的时隙中的索引、一个占用的时间长度中的至少一个时间间隔长度”包括以下含义:所述P个配置组中的每个配置组包括一个时间间隔长度、一个起始符号在所属的时隙中的索引和一个占用的时间长度。
作为一个实施例,上述句子“所述P个配置组中的每个配置组包括一个时间间隔长度、一个起始符号在所属的时隙中的索引、一个占用的时间长度中的至少一个时间间隔长度”包括以下含义:所述P个配置组中的每个配置组包括一个时间间隔长度和一个起始符号在所属的时隙中的索引。
作为一个实施例,上述句子“所述P个配置组中的每个配置组包括一个时间间隔长度、一个起始符号在所属的时隙中的索引、一个占用的时间长度中的至少一个时间间隔长度”包括以下含义:所述P个配置组中的每个配置组包括一个时间间隔长度和一个占用的时间长度。
作为一个实施例,上述句子“所述P个配置组中的每个配置组包括一个时间间隔长度、一个起始符号在所属的时隙中的索引、一个占用的时间长度中的至少一个时间间隔长度”包括以下含义:所述P个配置组中的每个配置组包括一个时间间隔长度。
作为一个实施例,上述句子“所述P个配置组中的每个配置组包括一个时间间隔长度、一个起始符号在所属的时隙中的索引、一个占用的时间长度中的至少一个时间间隔长度”包括以下含义:所述P个配置组中的每个配置组包括一个时间间隔长度和一个SLIV(Start Length Indicator Value,起始长度指示值)。
作为一个实施例,所述P个配置组中的每个配置组中所包括的起始符号在所属的时隙中的索引是非负整数。
作为一个实施例,所述P个配置组中的每个配置组中所包括的起始符号在所属的时隙中的OFDM符号按照时域先后顺序依次索引。
作为一个实施例,所述P个配置组中的每个配置组中所包括的起始符号是OFDM符号。
作为一个实施例,所述P个配置组中的每个配置组中的占用的时间长度的单位是毫秒。
作为一个实施例,所述P个配置组中的每个配置组中的占用的时间长度的单位是秒。
作为一个实施例,所述P个配置组中的每个配置组中的占用的时间长度是通过OFDM符号的数量表示的。
作为一个实施例,所述P个配置组中的每个配置组中的占用的时间长度是通过采用所述第一信号在频域所占用的一个子载波的子载波间隔(SCS,Subcarrier Spacing)的OFDM符号的数量表示的。
作为一个实施例,所述P个配置组中的每个配置组还包括一个资源映射类型(mapping type),所述第一信号所采用的资源映射类型是第一配置组中所包括的资源映射类型。
作为一个实施例,所述P个配置组中的任意两个配置组不相同。
作为一个实施例,所述P不小于所述第一时间长度集合中所包括的时间长度的数量。
作为一个实施例,所述P等于所述第一时间长度集合中所包括的时间长度的数量。
作为一个实施例,所述P大于所述第一时间长度集合中所包括的时间长度的数量。
作为一个实施例,所述P个配置组是预定的。
作为一个实施例,所述P个配置组是可配置的。
作为一个实施例,所述P个配置组是固定的。
作为一个实施例,所述P个配置组是通过本申请中的所述第二信息配置的。
作为一个实施例,所述P个配置组中每个配置组对应默认PUSCH时域资源分配(Default PUSCH time domain resource allocation)表格中的一行。
作为一个实施例,所述P个配置组中每个配置组对应默认PUSCH时域资源分配B(Default PUSCH time domain resource allocation B)表格中的一行,或者所述P个配置组中每个配置组对应默认PUSCH时域资源分配C(Default PUSCH time domain resource allocation C)表格中的一行,或者所述P个配置组中每个配置组对应默认PUSCH时域资源分配D(Default PUSCH  time domain resource allocation D)表格中的一行。
实施例8
实施例8示出了根据本申请的一个实施例的第一步长的示意图,附图8所示。在附图8中,横轴代表时间长度,每一格的长度代表第一步长,时间长度#1,时间长度#2,…,时间长度#X都是第一时间长度集合中的时间长度。
在实施例8中,本申请中的所述第一时间长度集合中的时间长度按照长短进行依次排序,所述第一时间长度集合中任意两个排序相邻的时间长度之间的差值的绝对值都等于第一步长,所述第一步长等于正整数倍的第一时隙长度,所述第一时隙长度等于本申请中的所述第一信号在时域所占用的一个OFDM符号所属的时隙的时间长度。
作为一个实施例,所述第一步长是所述第一时间长度集合中的时间长度可以被调整的步长(Stepsize)。
作为一个实施例,所述第一步长等于所述第一时间长度集合中的任意两个时间长度之间的差值的绝对值的最小值。
作为一个实施例,所述第一步长是所述第一时间长度集合中的时间长度可以被调整的颗粒度(Granularity)。
作为一个实施例,所述第一步长大于0。
作为一个实施例,所述第一步长是预定义的。
作为一个实施例,所述第一步长是固定的。
作为一个实施例,所述第一步长是可配置的。
作为一个实施例,所述第一步长等于所述第一时隙长度。
作为一个实施例,所述第一步长等于大于1倍的所述第一时隙长度。
作为一个实施例,所述第一步长的单位是毫秒。
作为一个实施例,所述第一步长的单位是秒。
作为一个实施例,所述第一步长是通过时隙(Slot)的数量表示的。
作为一个实施例,所述第一步长是通过OFDM符号(Symbol)的数量表示的。
作为一个实施例,上述“所述第一信号在时域所占用的一个OFDM符号所属的时隙”对应所述第一信号在频域所占用的一个子载波的子载波间隔(SCS,Subcarrier Spacing)。
作为一个实施例,上述“所述第一信号在时域所占用的一个OFDM符号所属的时隙”对应所述第一信令在频域所占用的一个子载波的子载波间隔(SCS,Subcarrier Spacing)。
作为一个实施例,所述第一时隙长度等于对应所述第一信号在频域所占用的一个子载波的子载波间隔(SCS,Subcarrier Spacing)的一个时隙的时间长度。
实施例9
实施例9示例了根据本申请的一个实施例的X个备选时间长度集合的示意图,如附图9所示。在附图9中,左数第一列代表第一特征参数组,左数第二列代表子载波间隔,左数第三列代表X个备选时间长度集合中的一个备选时间长度集合,加黑的一行的备选时间长度集合代表第一时间长度集合。
在实施例9中,本申请中的所述第一信号在频域所占用的一个子载波的子载波间隔被用于从本申请中的所述X个备选时间长度集合中确定本申请中的所述第一时间长度集合。
作为一个实施例,所述第一信号在频域所占用的一个子载波的子载波间隔等于15kHz、30kHz、60kHz、120kHz、240kHz中之一。
作为一个实施例,所述第一信号在频域所占用的一个子载波的子载波间隔等于所述第一信令在频域所占用的一个子载波的子载波间隔。
作为一个实施例,所述第一信号在频域所占用的一个子载波的子载波间隔和所述第一第一信令在频域所占用的一个子载波的子载波间隔不相等。
作为一个实施例,所述第一信号在频域占用多于1个子载波,所述第一信号在频域所占用的任意两个子载波的子载波间隔都相等。
作为一个实施例,所述第一信令在频域占用多于1个子载波,所述第一信号在频域所占用的任意两个子载波的子载波间隔都相等。
作为一个实施例,上述句子“所述第一信号在频域所占用的一个子载波的子载波间隔被用于从所述X个备选时间长度集合中确定所述第一时间长度集合”包括以下含义:所述第一信号在频域所占用的一个子载波的子载波间隔被本申请中的所述第一节点设备用于从所述X个备选时间长度集合中确定所述第一时间长度集合。
作为一个实施例,上述句子“所述第一信号在频域所占用的一个子载波的子载波间隔被用于从所述X个备选时间长度集合中确定所述第一时间长度集合”包括以下含义:所述第一信号在频域所占用的一个子载波的子载波间隔按照给定的映射关系被用于从所述X个备选时间长度集合中确定所述第一时间长度集合。
作为一个实施例,上述句子“所述第一信号在频域所占用的一个子载波的子载波间隔被用于从所述X个备选时间长度集合中确定所述第一时间长度集合”包括以下含义:所述第一信号在频域所占用的一个子载波的子载波间隔按照给定的表格对应关系被用于从所述X个备选时间长度集合中确定所述第一时间长度集合。
作为一个实施例,上述句子“所述第一信号在频域所占用的一个子载波的子载波间隔被用于从所述X个备选时间长度集合中确定所述第一时间长度集合”包括以下含义:所述第一信号在频域所占用的一个子载波的子载波间隔和所述第一特征参数组一起按照给定的映射关系被用于从所述X个备选时间长度集合中确定所述第一时间长度集合。
作为一个实施例,上述句子“所述第一信号在频域所占用的一个子载波的子载波间隔被用于从所述X个备选时间长度集合中确定所述第一时间长度集合”包括以下含义:所述第一题特征参数组包括所述第一信号在频域所占用的一个子载波的子载波间隔。
作为一个实施例,所述第一信号所携带的特征标识也被用于从本申请中的所述X个备选时间长度集合中确定本申请中的所述第一时间长度集合。
作为一个实施例,所述第一信号所携带的RNTI(Radio Network Tempory Identity,无线网络临时标识)也被用于从本申请中的所述X个备选时间长度集合中确定本申请中的所述第一时间长度集合。
作为一个实施例,所述第一信令所属的搜索空间(Search Space)类型也被用于从本申请中的所述X个备选时间长度集合中确定本申请中的所述第一时间长度集合。
实施例10
实施例10示例了根据本申请的一个实施例的第一时间偏移的示意图,如附图10所示。在附图10中,左数第一列代表子载波间隔,左数第二列代表时间偏移,加黑的一行代表第一信号在频域所占用的子载波的子载波间隔和第一时间偏移。
在实施例10中,本申请中的所述第一信号被用于随机接入,所述第一信号在频域所占用的一个子载波的子载波间隔被用于确定第一时间偏移,所述第一时间偏移被用于确定本申请中的所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
作为一个实施例,上述句子“所述第一信号被用于随机接入”包括以下含义:所述第一信号被用于4步随机接入(4-step Random Access)。
作为一个实施例,上述句子“所述第一信号被用于随机接入”包括以下含义:所述第一信号被用于2步随机接入(2-step Random Access)。
为一个实施例,上述句子“所述第一信号被用于随机接入”包括以下含义:所述第一信号携带Msg3(消息3)。
为一个实施例,上述句子“所述第一信号被用于随机接入”包括以下含义:所述第一信号携带MsgB(消息B)所调度的上行传输。
为一个实施例,上述句子“所述第一信号被用于随机接入”包括以下含义:所述第一信号携带Msg3(消息3)的重传。
为一个实施例,上述句子“所述第一信号被用于随机接入”包括以下含义:所述第一信号携带MsgB(消息B)所调度的上行传输的重传。
作为一个实施例,上述句子“所述第一信号被用于随机接入”包括以下含义:所述第一信号是在Msg3(消息3)之后的最早的上行传输。
作为一个实施例,上述句子“所述第一信号被用于随机接入”包括以下含义:所述第一信号是在MsgB(消息B)之后的最早的上行传输。
作为一个实施例,上述句子“所述第一信号被用于随机接入”包括以下含义:所述第一信号携带Msg5(消息5)。
作为一个实施例,所述第一时间偏移的单位是毫秒。
作为一个实施例,所述第一时间偏移的单位是秒。
作为一个实施例,所述第一时间偏移是通过OFDM符号(Symbol)的数量表示的。
作为一个实施例,所述第一时间偏移是通过时隙(Slot)的数量表示的。
作为一个实施例,所述第一时间偏移等于正整数个对应所述第一信号在频域所占用的一个子载波的子载波间隔的时隙(Slot)的时间长度。
作为一个实施例,所述第一时间偏移是所述目标时间长度之外的调度时延。
作为一个实施例,所述第一时间偏移是RAR(Random Access Response,随机接入响应)调度的PUSCH传输时的额外的时间偏移。
作为一个实施例,所述第一时间偏移是MsgB(消息B)调度的PUSCH传输时的额外的时间偏移。
作为一个实施例,所述第一时间偏移是在所述目标时间长度之外的调度时延Δ。
作为一个实施例,上述句子“所述第一信号在频域所占用的一个子载波的子载波间隔被用于确定第一时间偏移”包括以下含义:所述第一信号在频域所占用的一个子载波的子载波间隔被本申请中的所述第一节点设备用于确定所述第一时间偏移。
作为一个实施例,上述句子“所述第一信号在频域所占用的一个子载波的子载波间隔被用于确定第一时间偏移”包括以下含义:所述第一时间偏移是子载波间隔特定的(subcarrier spacing specific)。
作为一个实施例,上述句子“所述第一信号在频域所占用的一个子载波的子载波间隔被用于确定第一时间偏移”包括以下含义:所述第一信号在频域所占用的一个子载波的子载波间隔根据给定的映射关系被用于确定所述第一时间偏移。
作为一个实施例,上述句子“所述第一信号在频域所占用的一个子载波的子载波间隔被用于确定第一时间偏移”包括以下含义:所述第一信号在频域所占用的一个子载波的子载波间隔根据给定的表格对应关系被用于确定所述第一时间偏移。
作为一个实施例,所述第一时间偏移和所述第一节点设备的处理能力有关。
作为一个实施例,上述句子“所述第一时间偏移被用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度”包括以下含义:所述第一时间偏移被本申请中的所述第一节点设备用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
作为一个实施例,上述句子“所述第一时间偏移被用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度”包括以下含义:所述第一时间偏移根据运算函数被用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
作为一个实施例,上述句子“所述第一时间偏移被用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度”包括以下含义:所述第一时间偏移和所述目标时间长度以及所述公共时间偏移被共同用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
作为一个实施例,上述句子“所述第一时间偏移被用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度”包括以下含义:所述第一时间偏移和所述目标时间长度以及所述公共时间偏移的和被用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
作为一个实施例,上述句子“所述第一时间偏移被用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度”包括以下含义:所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度和所述第一时间偏移是线性相关的。
作为一个实施例,上述句子“所述第一时间偏移被用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度”包括以下含义:所述第一时间偏移和所述目标时间长度以及所述公共时间偏移的和减去发送所述第一信号时的定时提前(TA,Timing Advance)所包括的整数个时隙的时间长度的差等于所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
实施例11
实施例11示例了根据本申请的一个实施例的公共时间偏移的示意图,如附图11所示。在附图11中,横轴代表时间,上面代表第二节点处发送或者接收的信号,下面代表第一节点处发送或者接收的信号,同一个信号或者信令在第一节点和第二节点之间的时延是传播时延(Propagation Delay)。
在实施例11中,本申请中的所述公共时间偏移被用于确定本申请中的所述第二信号的接收结束时刻和本申请中的所述第三信号的发送起始时刻之间的时间间隔长度,所述第三信号携带上行控制信息;所述第二信号和本申请中的所述第一信令不相同,所述第三信号和本申请中的所述第一信号不相同。
作为一个实施例,所述第二信号是基带信号。
作为一个实施例,所述第二信号是射频信号。
作为一个实施例,所述第二信号通过空中接口传输。
作为一个实施例,所述第二信号通过无线接口传输。
作为一个实施例,所述第二信号是所述第一节点设备在完成随机接入过程之后的下行传输。
作为一个实施例,所述第二信号通过DL-SCH(Downlink Shared Channel,下行共享信道)传输的。
作为一个实施例,所述第二信号通过PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输的。
作为一个实施例,所述第二信号通过PDCCH(Physical Downlink Control Channel,物理下行控制信道)传输的。
作为一个实施例,所述第二信号携带CSI-RS(Channel Status Information Reference Signal,信道状态信息参考信号)。
作为一个实施例,所述第二信号携带一个DCI格式(Format)中的全部或部分比特。
作为一个实施例,所述第二信号携带DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,携带DCI(Downlink Control Information,下行控制信息)的比特块的全部或部分被用于生成所述第二信号。
作为一个实施例,一个传输块(TB,Transport Block)中的全部或部分比特被用于生成所述第二信号。
作为一个实施例,一个DCI负载(Payload)中的全部或部分比特被用于生成所述第二信号。
作为一个实施例,所述第二信号携带物理层信令。
作为一个实施例,所述第二信号不携带物理层信令。
作为一个实施例,所述第二信号只携带高层信令。
作为一个实施例,所述第二信号只携带高层信息。
作为一个实施例,所述第二信号携带CSI请求(CSI Request)。
作为一个实施例,所述第三信号是基带信号。
作为一个实施例,所述第三信号是射频信号。
作为一个实施例,所述第三信号通过空中接口传输。
作为一个实施例,所述第三信号通过无线接口传输。
作为一个实施例,所述第三信号是晚于Msg3的一次上行传输。
作为一个实施例,所述第三信号是晚于MsgB的一次上行传输。
作为一个实施例,所述第三信号是所述第一节点设备在完成随机接入过程之后的上行传输。
作为一个实施例,所述第三信号通过UL-SCH(Uplink Shared Channel,上行共享信道)传输的。
作为一个实施例,所述第三信号通过PUSCH(Physical Uplink Shared Channel,物理上行共享信道)背负(Piggyback)传输的。
作为一个实施例,所述第三信号通过PUCCH(Physical Uplink Control Channel,物理上行控制信道)传输的。
作为一个实施例,所述第三信号通过SRS(Sounding Reference Signal,探测参考信号)传输。
作为一个实施例,所述第三信号是背负(Piggyback)到PUSCH中的UCI。
作为一个实施例,所述第三信号通过UL DMRS(Uplink Demodulation Reference Signal,上行解调参考信号)传输。
作为一个实施例,所述第三信号在频域所占用的子载波的子载波间隔和所述第一信号在频域所占用的子载波的子载波间隔相等。
作为一个实施例,所述第三信号在频域所占用的子载波的子载波间隔和所述第一信号在频域所占用的子载波的子载波间隔不相等。
作为一个实施例,所述第三信号和所述第一信号属于同一个UL BWP(Uplink Bandwidth Part,上行带宽部分)。
作为一个实施例,所述第三信号和所述第一信号分别属于不同的UL BWP(Uplink Bandwidth Part,上行带宽部分)。
作为一个实施例,所述第三信号所携带的上行控制信息包括HARQ-ACK(Hybrid Automatic Repeat Request-Acknowledgement,混合自动重传请求-确认)。
作为一个实施例,所述第三信号所携带的上行控制信息包括CSI(Channel Status Information)。
作为一个实施例,一个传输块(TB,Transport Block)的全部或部分被用于生成所述第三信号。
作为一个实施例,所述第三信号所携带的上行控制信息是物理层信息。
作为一个实施例,携带UCI(Uplink Control Information,上行控制信息)的比特块的全部或部分被用于生成所述第三信号。
作为一个实施例,所述第三信号所采用的波形是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)。
作为一个实施例,所述第三信号所采用的波形是DFT-s-OFDM(Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩展正交频分复用)。
作为一个实施例,所述第三信号所采用的波形和所述第一信号所采用的波形(Waveform) 相同。
作为一个实施例,所述第三信号所采用的波形和所述第一信号所采用的波形(Waveform)不相同。
作为一个实施例,所述第二信号被用于调度所述第三信号。
作为一个实施例,所述第二信号被用于触发所述第三信号携带CSI。
作为一个实施例,所述第二信号被用于确定所述第三信号所携带的上行控制信息。
作为一个实施例,所述第二信号所占用的时频资源包括作为所述第三信号所携带的上行控制信息的CSI参考资源(Reference Resources)。
作为一个实施例,所述第三信号被用于指示所述第二信号是否被正确接收。
作为一个实施例,所述第三信号被用于指示所述第二信号是否被正确译码。
作为一个实施例,所述第三信号被用于指示所述第二信号的CRC校验是否通过。
作为一个实施例,所述第三信号携带所述第二信号的HARQ-ACK。
作为一个实施例,所述第二信号的接收结束时刻是指:所述第二信号在时域所占用的最晚的OFDM符号(Symbol)的接收结束时刻。
作为一个实施例,所述第二信号的接收结束时刻是指:所述第二信号在时域所占用的最晚的OFDM符号(Symbol)所属的时隙(Slot)的接收结束时刻。
作为一个实施例,所述第二信号的接收结束时刻是指:所述第二信号在时域所占用的最晚的OFDM符号(Symbol)所属的采用所述第二信号在频域所占用的子载波的子载波间隔的时隙(Slot)的接收结束时刻。
作为一个实施例,所述第二信号的接收结束时刻是指示:所述第二信号在时域所占用的最晚的OFDM符号(Symbol)所属的采用所述第三信号在频域所占用的子载波的子载波间隔的时隙(Slot)的接收结束时刻。
作为一个实施例,所述第三信号的发送起始时刻是指:所述第三信号在时域所占用的最早的OFDM符号(Symbol)的发送起始时刻。
作为一个实施例,所述第三信号的发送起始时刻是指:所述第三信号在时域所占用的最早的OFDM符号(Symbol)的CP(Cyclic Prefix,循环前缀)发送起始时刻。
作为一个实施例,所述第三信号的发送起始时刻是指:所述第三信号在时域所占用的最早的OFDM符号(Symbol)所属的时隙(Slot)的发送起始时刻。
作为一个实施例,所述第三信号的发送起始时刻是指:所述第三信号在时域所占用的最早的OFDM符号(Symbol)所属采用所述第三信号在频域所占用的子载波的子载波间隔的时隙(Slot)的发送起始时刻。
作为一个实施例,所述第三信号的发送起始时刻是指:所述第三信号在时域所占用的最早的OFDM符号(Symbol)所属采用所述第二信号在频域所占用的子载波的子载波间隔的时隙(Slot)的发送起始时刻。
作为一个实施例,上述句子“所述公共时间偏移被用于确定所述第二信号的接收结束时刻和所述第三信号的发送起始时刻之间的时间间隔长度”包括以下含义:所述公共时间偏移被本申请中的所述第一节点设备用于确定所述第二信号的接收结束时刻和所述第三信号的发送起始时刻之间的时间间隔长度。
作为一个实施例,上述句子“所述公共时间偏移被用于确定所述第二信号的接收结束时刻和所述第三信号的发送起始时刻之间的时间间隔长度”包括以下含义:所述公共时间偏移按照给定的运算函数被用于确定所述第二信号的接收结束时刻和所述第三信号的发送起始时刻之间的时间间隔长度。
作为一个实施例,上述句子“所述公共时间偏移被用于确定所述第二信号的接收结束时刻和所述第三信号的发送起始时刻之间的时间间隔长度”包括以下含义:所述第二信号的接收结束时刻和所述第三信号的发送起始时刻之间的时间间隔长度和所述公共时间偏移线性相关。
作为一个实施例,上述句子“所述公共时间偏移被用于确定所述第二信号的接收结束时刻和所述第三信号的发送起始时刻之间的时间间隔长度”包括以下含义:所述公共时间偏移和另一个时间长度的和被用于确定所述第二信号的接收结束时刻和所述第三信号的发送起始时刻之间的时间间隔长度。
作为一个实施例,上述句子“所述第二信号和所述第一信令不相同”包括以下含义:所述第二信号和所述第一信令所占用的时频资源不相同。
作为一个实施例,上述句子“所述第二信号和所述第一信令不相同”包括以下含义:所述第二信号和所述第一信令是相互独立的。
作为一个实施例,上述句子“所述第二信号和所述第一信令不相同”包括以下含义:所述第二信号和所述第一信令是无关的。
作为一个实施例,上述句子“所述第二信号和所述第一信令不相同”包括以下含义:所述第二信号和所述第一信令所携带的信息不相同。
作为一个实施例,上述句子“所述第二信号和所述第一信令不相同”包括以下含义:一个传输块(TB,Transport Block)被用于生成所述第二信号,一个携带DCI负载(payload)中的全部或部分比特的比特块被用于生成所述第一信令。
作为一个实施例,上述句子“所述第二信号和所述第一信令不相同”包括以下含义:所述第二信号是通过PDSCH传输的,所述第一信令是通过PDCCH传输。
作为一个实施例,上述句子“所述第二信号和所述第一信令不相同”包括以下含义:一个特征序列被用于生成所述第二信号,一个携带DCI负载(payload)中的全部或部分比特的比特块被用于生成所述第一信令。
作为一个实施例,上述句子“所述第二信号和所述第一信令不相同”包括以下含义:所述第二信号是通过CSI-RS传输的,所述第一信令是通过PDCCH传输。
作为一个实施例,上述句子“所述第二信号和所述第一信令不相同”包括以下含义:所述第二信号所携带的DCI的DCI格式(Format)和所述第一信令所携带的DCI的DCI格式(Format)不相同。
作为一个实施例,上述句子“所述第二信号和所述第一信令不相同”包括以下含义:所述第二信号携带的CSI请求(Request),所述第一信令携带PUSCH的调度信息。
作为一个实施例,上述句子“所述第三信号和所述第一信号不相同”包括以下含义:所述三信号所占用的时频资源和所述第一信号所占用的时频资源不相同。
作为一个实施例,上述句子“所述第三信号和所述第一信号不相同”包括以下含义:所述三信号和所述第一信号是相互独立的。
作为一个实施例,上述句子“所述第三信号和所述第一信号不相同”包括以下含义:所述三信号和所述第一信号是无关的。
作为一个实施例,上述句子“所述第三信号和所述第一信号不相同”包括以下含义:所述三信号携带上行控制信息,所述第一信号不携带上行控制信息。
作为一个实施例,上述句子“所述第三信号和所述第一信号不相同”包括以下含义:所述第一信号也携带上行控制信息,所述三信号所携带上行控制信息和所述第一信号携带的上行控制信息的类型不相同。
作为一个实施例,上述句子“所述第三信号和所述第一信号不相同”包括以下含义:所述第一信号也携带上行控制信息,所述三信号所携带上行控制信息包括HARQ-ACK,所述第一信号所携带的上行控制信息不包括HARQ-ACK。
作为一个实施例,上述句子“所述第三信号和所述第一信号不相同”包括以下含义:所述第一信号也携带上行控制信息,所述三信号所携带上行控制信息包括CSI,所述第一信号所携带的上行控制信息不包括CSI。
作为一个实施例,上述句子“所述第三信号和所述第一信号不相同”包括以下含义:携带了部分或全部上行控制信息(UCI)的比特块被用于生成所述三信号,一个传输块(TB, Transport Block)中的全部或部分比特被用于所述第一信号。
作为一个实施例,上述句子“所述第三信号和所述第一信号不相同”包括以下含义:所述三信号背负(Piggyback)上行控制信息(UCI),所述第一信号不背负(Piggyback)上行控制信息。
作为一个实施例,上述句子“所述第三信号和所述第一信号不相同”包括以下含义:所述三信号是通过PUCCH传输的,所述第一信号是通过PUSCH传输的。
作为一个实施例,上述句子“所述第三信号和所述第一信号不相同”包括以下含义:携带了部分或全部上行控制信息(UCI)的比特块和一个传输块一起被用于生成所述三信号,只有一个传输块(TB,Transport Block)中的全部或部分比特被用于所述第一信号。
实施例12
实施例12示例了一个实施例的第一节点设备中的处理装置的结构框图,如附图12所示。在附图12中,第一节点设备处理装置1200包括第一接收机1201,第二接收机1202和第一发射机1203。第一接收机1201包括本申请附图4中的发射器/接收器456(包括天线460),接收处理器452和控制器/处理器490;第二接收机1202包括本申请附图4中的发射器/接收器456(包括天线460),接收处理器452和控制器/处理器490;第一发射机1203包括本申请附图4中的发射器/接收器456(包括天线460),发射处理器455和控制器/处理器490。
在实施例12中,第一接收机1201接收第一信息,所述第一信息被用于确定第一特征参数组;第二接收机1202接收第一信令,所述第一信令被用于从第一时间长度集合中确定目标时间长度;第一发射机1203发送第一信号;其中,所述第一特征参数组包括所述第一信息的发送者的类型、所述第一信息的发送者的高度、公共时间偏移中的至少之一;所述第一时间长度集合是X个备选时间长度集合中的一个备选时间长度集合,所述X是大于1的正整数;所述第一特征参数组被用于从所述X个备选时间长度集合中确定所述第一时间长度集合;所述X个备选时间长度集合中任意一个备选时间长度集合包括大于1的正整数个时间长度,所述目标时间长度是所述第一时间长度集合中的一个时间长度;所述目标时间长度和所述公共时间偏移被共同用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
作为一个实施例,所述第一信令被用于确定第一索引,所述第一索引是第一配置组的索引,所述第一配置组是P个配置组中的一个配置组,所述P是大于1的正整数;所述P个配置组中的每个配置组包括一个时间间隔长度、一个起始符号在所属的时隙中的索引、一个占用的时间长度中的至少一个时间间隔长度,所述目标时间长度等于所述第一配置组中所包括的时间间隔长度;所述P个配置组中的任意一个配置组所包括的时间间隔长度等于所述第一时间长度集合中的一个时间长度。
作为一个实施例,第二接收机1202接收第二信息,所述第一信令被用于确定第一索引,所述第一索引是第一配置组的索引,所述第一配置组是P个配置组中的一个配置组,所述P是大于1的正整数;所述P个配置组中的每个配置组包括一个时间间隔长度、一个起始符号在所属的时隙中的索引、一个占用的时间长度中的至少一个时间间隔长度,所述目标时间长度等于所述第一配置组中所包括的时间间隔长度;所述P个配置组中的任意一个配置组所包括的时间间隔长度等于所述第一时间长度集合中的一个时间长度,所述第二信息被用于确定所述P个配置组。
作为一个实施例,所述第一时间长度集合中的时间长度按照长短进行依次排序,所述第一时间长度集合中任意两个排序相邻的时间长度之间的差值的绝对值都
作为一个实施例,所述第一信号在频域所占用的一个子载波的子载波间隔被用于从所述X个备选时间长度集合中确定所述第一时间长度集合。
作为一个实施例,所述第一信号被用于随机接入,所述第一信号在频域所占用的一 个子载波的子载波间隔被用于确定第一时间偏移,所述第一时间偏移被用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
作为一个实施例,第二接收机1202接收第二信号,第一发射机1203发送第三信号;其中,所述公共时间偏移被用于确定所述第二信号的接收结束时刻和所述第三信号的发送起始时刻之间的时间间隔长度,所述第三信号携带上行控制信息;所述第二信号和所述第一信令不相同,所述第三信号和所述第一信号不相同。
作为一个实施例,当所述第一特征参数组不包括所述公共时间偏移时,第一接收机1201接收第三信息;其中,所述第三信息被用于确定所述公共时间偏移。
实施例13
实施例13示例了一个实施例的第二节点设备中的处理装置的结构框图,如附图13所示。在附图13中,第二节点设备处理装置1300包括第二发射机1301,第三发射机1302和第三接收机1303。第二发射机1301包括本申请附图4中的发射器/接收器416(包括天线460)和发射处理器415和控制器/处理器440;第三发射机1302包括本申请附图4中的发射器/接收器416(包括天线460)和发射处理器415和控制器/处理器440;第三接收机1303包括本申请附图4中的发射器/接收器416(包括天线420),接收处理器412,和控制器/处理器440。
在实施例13中,第二发射机1301发送第一信息,所述第一信息被用于确定第一特征参数组;第三发射机1302发送第一信令,所述第一信令被用于从第一时间长度集合中确定目标时间长度;第三接收机1303,接收第一信号;所述第一特征参数组包括所述第一信息的发送者的类型、所述第一信息的发送者的高度、公共时间偏移中的至少之一;所述第一时间长度集合是X个备选时间长度集合中的一个备选时间长度集合,所述X是大于1的正整数;所述第一特征参数组被用于从所述X个备选时间长度集合中确定所述第一时间长度集合;所述X个备选时间长度集合中任意一个备选时间长度集合包括大于1的正整数个时间长度,所述目标时间长度是所述第一时间长度集合中的一个时间长度;所述目标时间长度和所述公共时间偏移被共同用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
作为一个实施例,所述第一信令被用于确定第一索引,所述第一索引是第一配置组的索引,所述第一配置组是P个配置组中的一个配置组,所述P是大于1的正整数;所述P个配置组中的每个配置组包括一个时间间隔长度、一个起始符号在所属的时隙中的索引、一个占用的时间长度中的至少一个时间间隔长度,所述目标时间长度等于所述第一配置组中所包括的时间间隔长度;所述P个配置组中的任意一个配置组所包括的时间间隔长度等于所述第一时间长度集合中的一个时间长度。
作为一个实施例,第二发射机1301发送第二信息;所述第一信令被用于确定第一索引,所述第一索引是第一配置组的索引,所述第一配置组是P个配置组中的一个配置组,所述P是大于1的正整数;所述P个配置组中的每个配置组包括一个时间间隔长度、一个起始符号在所属的时隙中的索引、一个占用的时间长度中的至少一个时间间隔长度,所述目标时间长度等于所述第一配置组中所包括的时间间隔长度;所述P个配置组中的任意一个配置组所包括的时间间隔长度等于所述第一时间长度集合中的一个时间长度,所述第二信息被用于确定所述P个配置组。
作为一个实施例,所述第一时间长度集合中的时间长度按照长短进行依次排序,所述第一时间长度集合中任意两个排序相邻的时间长度之间的差值的绝对值都等于第一步长,所述第一步长等于正整数倍的第一时隙长度,所述第一时隙长度等于所述第一信号在时域所占用的一个OFDM符号所属的时隙的时间长度。
作为一个实施例,所述第一信号在频域所占用的一个子载波的子载波间隔被用于从所述X个备选时间长度集合中确定所述第一时间长度集合。
作为一个实施例,所述第一信号被用于随机接入,所述第一信号在频域所占用的一个子载波的子载波间隔被用于确定第一时间偏移,所述第一时间偏移被用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
作为一个实施例,第三发射机1302发送第二信号;第三接收机1303接收第三信号;所述公共时间偏移被用于确定所述第二信号的接收结束时刻和所述第三信号的发送起始时刻之间的时间间隔长度,所述第三信号携带上行控制信息;所述第二信号和所述第一信令不相同,所述第三信号和所述第一信号不相同。
作为一个实施例,当所述第一特征参数组不包括所述公共时间偏移时,第二发射机1301发送第三信息;其中,所述第三信息被用于确定所述公共时间偏移。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备或者第二节点设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种用于无线通信中的第一节点设备,其特征在于,包括:
    第一接收机,接收第一信息,所述第一信息被用于确定第一特征参数组;
    第二接收机,接收第一信令,所述第一信令被用于从第一时间长度集合中确定目标时间长度;
    第一发射机,发送第一信号;
    其中,所述第一特征参数组包括所述第一信息的发送者的类型、所述第一信息的发送者的高度、公共时间偏移中的至少之一;所述第一时间长度集合是X个备选时间长度集合中的一个备选时间长度集合,所述X是大于1的正整数;所述第一特征参数组被用于从所述X个备选时间长度集合中确定所述第一时间长度集合;所述X个备选时间长度集合中任意一个备选时间长度集合包括大于1的正整数个时间长度,所述目标时间长度是所述第一时间长度集合中的一个时间长度;所述目标时间长度和所述公共时间偏移被共同用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
  2. 根据权利要求1中所述的第一节点设备,其特征在于,所述第一信令被用于确定第一索引,所述第一索引是第一配置组的索引,所述第一配置组是P个配置组中的一个配置组,所述P是大于1的正整数;所述P个配置组中的每个配置组包括一个时间间隔长度、一个起始符号在所属的时隙中的索引、一个占用的时间长度中的至少一个时间间隔长度,所述目标时间长度等于所述第一配置组中所包括的时间间隔长度;所述P个配置组中的任意一个配置组所包括的时间间隔长度等于所述第一时间长度集合中的一个时间长度。
  3. 根据权利要求2中所述的第一节点设备,其特征在于,所述第二接收机接收第二信息;其中,所述第二信息被用于确定所述P个配置组。
  4. 根据权利要求1至3中任一权利要求所述的第一节点设备,其特征在于,所述第一时间长度集合中的时间长度按照长短进行依次排序,所述第一时间长度集合中任意两个排序相邻的时间长度之间的差值的绝对值都
  5. 根据权利要求1至4中任一权利要求所述的第一节点设备,其特征在于,所述第一信号在频域所占用的一个子载波的子载波间隔被用于从所述X个备选时间长度集合中确定所述第一时间长度集合。
  6. 根据权利要求1至5中任一权利要求所述的第一节点设备,其特征在于,所述第一信号被用于随机接入,所述第一信号在频域所占用的一个子载波的子载波间隔被用于确定第一时间偏移,所述第一时间偏移被用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
  7. 根据权利要求1至6中任一权利要求所述的第一节点设备,其特征在于,所述第二接收机接收第二信号,所述第一发射机发送第三信号;其中,所述公共时间偏移被用于确定所述第二信号的接收结束时刻和所述第三信号的发送起始时刻之间的时间间隔长度,所述第三信号携带上行控制信息;所述第二信号和所述第一信令不相同,所述第三信号和所述第一信号不相同。
  8. 根据权利要求1至7中任一权利要求所述的第一节点设备,其特征在于,当所述第一特征参数组不包括所述公共时间偏移时,所述第一接收机接收第三信息;其中,所述第三信息被用于确定所述公共时间偏移。
  9. 一种用于无线通信中的第二节点设备,其特征在于,包括:
    第二发射机,发送第一信息,所述第一信息被用于确定第一特征参数组;
    第三发射机,发送第一信令,所述第一信令被用于从第一时间长度集合中确定目标时间长度;
    第三接收机,接收第一信号;
    其中,所述第一特征参数组包括所述第一信息的发送者的类型、所述第一信息的发送者的高度、公共时间偏移中的至少之一;所述第一时间长度集合是X个备选时间长度 集合中的一个备选时间长度集合,所述X是大于1的正整数;所述第一特征参数组被用于从所述X个备选时间长度集合中确定所述第一时间长度集合;所述X个备选时间长度集合中任意一个备选时间长度集合包括大于1的正整数个时间长度,所述目标时间长度是所述第一时间长度集合中的一个时间长度;所述目标时间长度和所述公共时间偏移被共同用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
  10. 一种用于无线通信中的第一节点中的方法,其特征在于,包括:
    接收第一信息,所述第一信息被用于确定第一特征参数组;
    接收第一信令,所述第一信令被用于从第一时间长度集合中确定目标时间长度;
    发送第一信号;
    其中,所述第一特征参数组包括所述第一信息的发送者的类型、所述第一信息的发送者的高度、公共时间偏移中的至少之一;所述第一时间长度集合是X个备选时间长度集合中的一个备选时间长度集合,所述X是大于1的正整数;所述第一特征参数组被用于从所述X个备选时间长度集合中确定所述第一时间长度集合;所述X个备选时间长度集合中任意一个备选时间长度集合包括大于1的正整数个时间长度,所述目标时间长度是所述第一时间长度集合中的一个时间长度;所述目标时间长度和所述公共时间偏移被共同用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
  11. 一种用于无线通信中的第二节点中的方法,其特征在于,包括:
    发送第一信息,所述第一信息被用于确定第一特征参数组;
    发送第一信令,所述第一信令被用于从第一时间长度集合中确定目标时间长度;
    接收第一信号;
    其中,所述第一特征参数组包括所述第一信息的发送者的类型、所述第一信息的发送者的高度、公共时间偏移中的至少之一;所述第一时间长度集合是X个备选时间长度集合中的一个备选时间长度集合,所述X是大于1的正整数;所述第一特征参数组被用于从所述X个备选时间长度集合中确定所述第一时间长度集合;所述X个备选时间长度集合中任意一个备选时间长度集合包括大于1的正整数个时间长度,所述目标时间长度是所述第一时间长度集合中的一个时间长度;所述目标时间长度和所述公共时间偏移被共同用于确定所述第一信令的接收时刻和所述第一信号的发送时刻之间的时间间隔长度。
PCT/CN2020/125045 2019-11-25 2020-10-30 一种被用于无线通信的节点中的方法和装置 WO2021103925A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/748,012 US20220279510A1 (en) 2019-11-25 2022-05-18 Method and device in nodes used for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911166414.0A CN112839384B (zh) 2019-11-25 2019-11-25 一种被用于无线通信的节点中的方法和装置
CN201911166414.0 2019-11-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/748,012 Continuation US20220279510A1 (en) 2019-11-25 2022-05-18 Method and device in nodes used for wireless communication

Publications (1)

Publication Number Publication Date
WO2021103925A1 true WO2021103925A1 (zh) 2021-06-03

Family

ID=75922274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125045 WO2021103925A1 (zh) 2019-11-25 2020-10-30 一种被用于无线通信的节点中的方法和装置

Country Status (3)

Country Link
US (1) US20220279510A1 (zh)
CN (2) CN115190637A (zh)
WO (1) WO2021103925A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117395731A (zh) * 2022-06-29 2024-01-12 上海朗帛通信技术有限公司 一种用于无线通信的节点中的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923793A (zh) * 2016-09-29 2019-06-21 At&T知识产权一部有限合伙公司 用于5g多输入多输出传输的信道状态信息框架设计
CN110098892A (zh) * 2018-01-30 2019-08-06 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
CN110167186A (zh) * 2018-02-13 2019-08-23 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111082915B (zh) * 2016-08-14 2022-05-31 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN114980221A (zh) * 2016-12-30 2022-08-30 英特尔公司 用于无线电通信的方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923793A (zh) * 2016-09-29 2019-06-21 At&T知识产权一部有限合伙公司 用于5g多输入多输出传输的信道状态信息框架设计
CN110098892A (zh) * 2018-01-30 2019-08-06 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
CN110167186A (zh) * 2018-02-13 2019-08-23 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Solutions for NR to support non-terrestrial networks (NTN) (Release 16)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 38.821, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. V0.9.0, 18 November 2019 (2019-11-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 114, XP051840615 *

Also Published As

Publication number Publication date
CN112839384A (zh) 2021-05-25
CN112839384B (zh) 2022-08-05
US20220279510A1 (en) 2022-09-01
CN115190637A (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
WO2019119411A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2019109270A1 (zh) 一种用于无线通信的通信节点中的方法和装置
CN113498021B (zh) 一种非连续无线通信的方法和装置
CN111918379B (zh) 一种用于无线通信的通信节点中的方法和装置
US20210329732A1 (en) Method and device used for drx in wireless communication
WO2021082932A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019228410A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2020233406A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2021103926A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020253529A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2021129250A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20210227506A1 (en) Method and device used for wireless communication with discontinuous reception
US20230412318A1 (en) Method and device in nodes used for wireless communication
WO2021103925A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020103742A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020244385A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2020156247A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2021143539A1 (en) Method and device used for wireless communication with discontinuous reception
WO2021057594A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113259898B (zh) 一种用于不连续接收的无线通信的方法和装置
CN113645006A (zh) 一种副链路无线通信的方法和装置
CN113708901A (zh) 一种被用于无线通信的节点中的方法和装置
WO2021139551A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113709803B (zh) 一种副链路无线通信的方法和装置
WO2023202414A1 (zh) 用于无线通信的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20893217

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20893217

Country of ref document: EP

Kind code of ref document: A1