WO2024051560A1 - 一种被用于无线通信的通信节点中的方法和装置 - Google Patents

一种被用于无线通信的通信节点中的方法和装置 Download PDF

Info

Publication number
WO2024051560A1
WO2024051560A1 PCT/CN2023/115994 CN2023115994W WO2024051560A1 WO 2024051560 A1 WO2024051560 A1 WO 2024051560A1 CN 2023115994 W CN2023115994 W CN 2023115994W WO 2024051560 A1 WO2024051560 A1 WO 2024051560A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
access resource
resource group
parameter value
preamble
Prior art date
Application number
PCT/CN2023/115994
Other languages
English (en)
French (fr)
Inventor
于巧玲
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024051560A1 publication Critical patent/WO2024051560A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present application relates to transmission methods and devices in wireless communication systems, and in particular to transmission methods and devices for coverage enhancement.
  • the cell overload (overload) problem is solved through the random access (RandomAccess, RA) backoff mechanism based on the backoff time.
  • RA Random Access
  • UE User Equipment
  • BI Backoff Indicator
  • PREAMBLE_BACKOFF is set to a Backoff Parameter value determined by looking up the table and a value configured by the RRC (Radio Resource Control, Radio Resource Control) message.
  • the product of the backoff factor (SCALING_FACTOR_BI) if the random access process is not completed, a backoff time is determined based on PREAMBLE_BACKOFF, and the random access resource selection process is executed after this backoff time.
  • the random access fallback mechanism not only solves the cell overload problem, but also increases the delay of the current random access process.
  • Performing PRACH repetition (Repetition) during the random access (Random Access) process is an effective means to enhance the uplink coverage of PRACH. Since PRACH repetition will cause an increase in the time and frequency resources occupied by a PRACH attempt, when a large number of user equipment initiates During random access, the overload condition of the cell and the random access resource configuration for PRACH repetition will change compared with the traditional network.
  • the existing random access fallback mechanism based on the backoff time cannot work well. Solve the cell load balancing problem of PRACH duplication. Therefore, to address the cell load balancing problem of PRACH duplication, the random access fallback mechanism needs to be enhanced.
  • this application provides a random access solution.
  • the NR system is used as an example; this application is also applicable to scenarios such as LTE (Long Term Evolution, Long Term Evolution) system; further, although the original intention of this application is for the Uu air interface, this application also Can be used for PC5 port.
  • the original intention of this application is for the terminal and base station scenario, this application is also applicable to the V2X (Vehicle-to-Everything, Internet of Vehicles) scenario, the communication scenario between the terminal and the relay, and the relay and the base station. , achieving similar technical effects in terminal and base station scenarios.
  • V2X Vehicle-to-Everything, Internet of Vehicles
  • the original intention of this application is for the terminal and base station scenario
  • this application is also applicable to the IAB (Integrated Access and Backhaul, integrated access and backhaul) communication scenario, and obtains similar technologies in the terminal and base station scenario. Effect.
  • the original intention of this application is for terrestrial network (Terrestrial Network, terrestrial network) scenarios
  • this application is also applicable to non-terrestrial network (Non-Terrestrial Network, NTN) communication scenarios, achieving similar TN scenarios. technical effects.
  • using a unified solution for different scenarios can also help reduce hardware complexity and cost.
  • This application discloses a method used in a first node of wireless communication, which is characterized by including:
  • a first MAC (Medium Access Control, Media Access Control) sub-PDU (subPDU) is received, and the first MAC sub-PDU indicates a first fallback parameter value ;
  • whether the execution time of the behavior selection of the second random access resource group depends on the first backoff parameter value is related to the second random access resource group; the first random access resource group and The second random access resource group is allocated to four-step random access (4-step RA).
  • whether the execution time of the behavior selection of the second random access resource group depends on the first backoff parameter value is related to the second random access resource group; the first random access resource group and The second random access resource group is allocated to two-step random access (2-step RA).
  • the problems to be solved by this application include: how to solve the cell overload problem of PRACH duplication.
  • the problems to be solved by this application include: how to shorten the random access delay.
  • the problems to be solved by this application include: how to determine the execution time of selecting the second random access resource group.
  • the characteristics of the above method include: whether the execution time of the behavior selection of the second random access resource group depends on the first backoff parameter value and is related to the second random access resource group.
  • the characteristics of the above method include: the execution time of the behavior of selecting the second random access resource group depends on the first backoff parameter value, or the behavior of selecting the second random access resource group The execution time of the resource group does not depend on the first rollback parameter value.
  • the benefits of the above method include: avoiding that the behavior of selecting the second random access resource group can only be performed after a backoff time, thereby shortening the random access delay.
  • the benefits of the above method include: when the execution time of the behavior selecting the second random access resource group does not depend on the first backoff parameter value, the behavior selecting the second random access resource group There is no need to wait for a backoff time to enter the resource group, which shortens the random access delay.
  • the benefits of the above method include: adaptively adjusting the execution time of the behavior selection of the second random access resource group, solving the cell overload problem of PRACH duplication and shortening the random access delay.
  • the execution time of selecting the second random access resource group for the behavior does not depend on the first backoff parameter value.
  • the second random access resource group is selected; the behavior selects the second random access resource group The execution time does not depend on the first fallback parameter value.
  • the execution time of the behavior selection of the second random access resource group depends on the first backoff time; the first backoff time depends on the first backoff parameter value.
  • the first random access resource group consists of K1 air interface resources
  • the second random access resource group consists of K2 air interface resources
  • the K1 is a positive integer
  • K2 is an integer greater than 1.
  • the behavior of selecting whether the execution time of the second random access resource group depends on the first backoff parameter value and is related to the second random access resource group includes: The behavior selects the execution time of the second random access resource group independent of the first backoff parameter value and K1 is greater than the first threshold and K2 is greater than the first threshold; or, the behavior selects the third The execution time of the two random access resource groups depends on the first backoff parameter value and K1 is less than the first threshold and K2 is less than the first threshold.
  • the behavior of selecting whether the execution time of the second random access resource group depends on the first backoff parameter value and is related to the second random access resource group includes: The execution time of the behavioral selection of the second random access resource group depends on the first backoff parameter value and the second random access resource group belongs to the first random access resource set; or, the behavioral selection The execution time of the second random access resource group does not depend on the first backoff parameter value and the second random access resource group does not belong to the first random access resource set.
  • the behavior of selecting whether the execution time of the second random access resource group depends on the first backoff parameter value and is related to the second random access resource group includes: The execution time of the behavior selecting the second random access resource group does not depend on the first backoff parameter value and the first counter reaches a first value; or the behavior selects the second random access resource group The execution time depends on the first backoff parameter value and the first counter does not reach the first value; the first counter is used to determine the number of times Preamble is sent.
  • determining whether to rely on the first backoff parameter value based on whether the first set of conditions is satisfied determines the execution time of the first random access resource selection process
  • the second random access resource group is selected; if the first set of conditions is met, the first fallback parameter value is not relied upon to determine the The execution time of the first random access resource selection process; if the first condition set is not satisfied, the execution time of the first random access resource selection process is determined depending on the first backoff parameter value.
  • This application discloses a method used in a second node of wireless communication, which is characterized by including:
  • the second random access resource group is selected; whether the execution time of the selected second random access resource group depends on the first round
  • the back-off parameter value is related to the second random access resource group; both the first random access resource group and the second random access resource group are allocated to four-step random access.
  • the present application is characterized in that, as a response that the first random access process is not completed, before the second random access resource group is selected, a variable initialization process is performed; wherein, the The selected execution time of the second random access resource group does not depend on the first backoff time.
  • the second random access resource group is selected; the execution of the selected second random access resource group The time does not depend on the first backoff time.
  • the first backoff time is determined; wherein, the selected execution time of the second random access resource group depends on the first backoff time; the first backoff time depends on the first backoff parameter value.
  • the first random access resource group consists of K1 air interface resources
  • the second random access resource group consists of K2 air interface resources
  • the K1 is a positive integer
  • K2 is an integer greater than 1.
  • the behavior of selecting whether the execution time of the second random access resource group depends on the first backoff parameter value and is related to the second random access resource group includes: The behavior selects the execution time of the second random access resource group independent of the first backoff parameter value and K1 is greater than the first threshold and K2 is greater than the first threshold; or, the behavior selects the third The execution time of the two random access resource groups depends on the first backoff parameter value and K1 is less than the first threshold and K2 is less than the first threshold.
  • the behavior of selecting whether the execution time of the second random access resource group depends on the first backoff parameter value and is related to the second random access resource group includes: The execution time of the behavioral selection of the second random access resource group depends on the first backoff parameter value and the second random access resource group belongs to the first random access resource set; or, the behavioral selection The execution time of the second random access resource group does not depend on the first backoff parameter value and the second random access resource group does not belong to the first random access resource set.
  • the behavior of selecting whether the execution time of the second random access resource group depends on the first backoff parameter value and is related to the second random access resource group includes: The behavior selects the execution time of the second random access resource group. The time does not depend on the first backoff parameter value and the first counter reaches the first value; or, the execution time of the behavior selecting the second random access resource group depends on the first backoff parameter value and the first The counter has not reached the first value; the first counter is used to determine the number of times the Preamble is sent.
  • the present application is characterized in that, as a response that the first random access process is not completed, whether the first condition set is satisfied is used to determine whether to rely on the first backoff parameter value to determine the first Execution time of the random access resource selection process; wherein, in the first random access resource selection process, the second random access resource group is selected; if the first condition set is satisfied, the second random access resource selection process The execution time of a random access resource selection process does not depend on the first backoff parameter value; if the first condition set is not satisfied, the execution time of the first random access resource selection process depends on the first Fallback parameter value.
  • This application discloses a first node used for wireless communication, which is characterized by including:
  • a Preamble is sent according to the first random access resource group; in response to sending the Preamble according to the first random access resource group, a first MAC sub-PDU is received, and the first MAC sub-PDU is Indicate the first backoff parameter value; as a response that the first random access process is not completed, select a second random access resource group, and send a Preamble according to the second random access resource group;
  • whether the execution time of the behavior selection of the second random access resource group depends on the first backoff parameter value is related to the second random access resource group; the first random access resource group and The second random access resource group is allocated to four-step random access.
  • This application discloses a second node used for wireless communication, which is characterized in that it includes:
  • the second receiver receives the Preamble sent according to the first random access resource group
  • the second transmitter in response to receiving the Preamble sent according to the first random access resource group, sends a first MAC sub-PDU, where the first MAC sub-PDU indicates the first backoff parameter value;
  • the second receiver receives the Preamble sent according to the second random access resource group
  • the second random access resource group is selected; whether the execution time of the selected second random access resource group depends on the first round
  • the back-off parameter value is related to the second random access resource group; both the first random access resource group and the second random access resource group are allocated to four-step random access.
  • this application designs a random access fallback mechanism suitable for PRACH repetition, which has the following advantages:
  • Figure 1 shows a flow chart of the transmission of Preamble and the first MAC sub-PDU according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Figure 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a wireless signal transmission flow chart according to an embodiment of the present application
  • Figure 6 shows a wireless signal transmission flow chart according to another embodiment of the present application.
  • Figure 7 shows a flowchart of selecting an execution time of the second random access resource group that does not depend on the first backoff parameter value according to an embodiment of the present application
  • Figure 8 shows a flowchart of selecting an execution time of the second random access resource group that does not depend on the first backoff parameter value according to another embodiment of the present application
  • Figure 9 shows a flow chart in which the execution time of selecting the second random access resource group depends on the first backoff parameter value according to an embodiment of the present application
  • Figure 10 shows whether the execution time of selecting the second random access resource group depends on the first backoff parameter according to an embodiment of the present application.
  • Figure 11 shows a schematic diagram of selecting whether the execution time of the second random access resource group depends on the first backoff parameter value and is related to the second random access resource group according to another embodiment of the present application;
  • Figure 12 shows a schematic diagram of selecting whether the execution time of the second random access resource group depends on the first backoff parameter value and is related to the second random access resource group according to yet another embodiment of the present application;
  • Figure 13 shows a structural block diagram of a processing device used in a first node according to an embodiment of the present application
  • Figure 14 shows a structural block diagram of a processing device used in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of the transmission of the Preamble and the first MAC sub-PDU according to an embodiment of the present application, as shown in Figure 1.
  • each box represents a step. It should be particularly emphasized that the order of the boxes in the figure does not represent the temporal relationship between the steps represented.
  • the first node in this application in step 101, sends a Preamble according to the first random access resource group during the first random access process; in step 102, as the first node according to the first random access resource group, The random access resource group sends a Preamble response and receives the first MAC sub-PDU, which indicates the first backoff parameter value; in step 103, as the first random access process is not completed In response, select a second random access resource group, and send a Preamble according to the second random access resource group; wherein the behavior selects whether the execution time of the second random access resource group depends on the first backoff
  • the parameter value is related to the second random access resource group.
  • the first random access resource group is used to send Preamble.
  • the first random access resource group is used for a PRACH attempt.
  • the second random access resource group is used to send Preamble.
  • the second random access resource group is used for a PRACH attempt.
  • both the first random access resource group and the second random access resource group are allocated to four-step random access.
  • the type of the first random access process is set to four-step random access.
  • RA_TYPE is set to 4-stepRA.
  • the Preamble sent according to the first random access resource group indicates four-step random access.
  • the Preamble sent according to the second random access resource group indicates four-step random access.
  • any Preamble sent on any of the K1 air interface resources in this application indicates four-step random access.
  • any one of the K1 air interface resources in this application is configured for four-step random access.
  • any Preamble sent on any of the K2 air interface resources in this application indicates four-step random access.
  • any one of the K2 air interface resources in this application is configured for four-step random access.
  • the first random access resource set is configured for four-step random access.
  • the second random access resource set is configured for four-step random access.
  • both the first random access resource group and the second random access resource group are allocated to two-step random access.
  • the type of the first random access process is set to two-step random access.
  • RA_TYPE is set to 2-stepRA.
  • the Preamble sent according to the first random access resource group indicates two-step random access.
  • the Preamble sent according to the second random access resource group indicates two-step random access.
  • any Preamble sent on an air interface resource in the first random access resource group Indicates two-step random access.
  • any Preamble sent on any of the K1 air interface resources in this application indicates two-step random access.
  • any one of the K1 air interface resources in this application is configured for two-step random access.
  • any Preamble sent on any of the K2 air interface resources in this application indicates two-step random access.
  • any one of the K2 air interface resources in this application is configured for two-step random access.
  • the first random access resource set is configured for two-step random access.
  • the second random access resource set is configured for two-step random access.
  • both the first random access resource group and the second random access resource group are allocated to four-step random access.
  • the random access resource set to which the first random access resource group belongs is the first random access resource set
  • the random access resource set to which the second random access resource group belongs is the random access resource set.
  • the random access resource set to which the first random access resource group belongs is the first random access resource set
  • the random access resource set to which the second random access resource group belongs is the random access resource set.
  • the second random access resource set is the random access resource set.
  • the first random access resource group belongs to the first random access resource set.
  • the first random access resource set is selected.
  • the second random access resource group is selected from the first random access resource set.
  • the second random access resource group is selected from the second random access resource set.
  • the first random access resource group and the second random access resource group are configured for the first cell.
  • the first random access resource group and the second random access resource group are configured to the same uplink (Uplink, UL) carrier (Carrier) of the first cell.
  • Uplink, UL uplink
  • Carrier Carrier
  • the first random access resource group and the second random access resource group are configured to the same UL BWP (Bandwidth Part, bandwidth part) of the first cell.
  • the first random access resource group is not configured for PRACH repetition, and the second random access resource group is configured for PRACH repetition.
  • the first random access resource group is configured for PRACH repetition
  • the second random access resource group is configured for PRACH repetition
  • the first random access resource group is associated to the same SSB (Synchronization Signal Block, synchronization signal block).
  • SSB Synchronization Signal Block, synchronization signal block
  • the first random access resource group is associated with at least one SSB.
  • the first random access resource group is associated with multiple SSBs.
  • the second random access resource group is associated with the same SSB.
  • the second random access resource group is associated with at least one SSB.
  • the second random access resource group is associated with multiple SSBs.
  • the first random access resource group includes at least one Preamble.
  • the first random access resource group includes at least one PRACH opportunity (Occasion).
  • the first random access resource group includes at least one air interface resource.
  • the first random access resource group includes at least one uplink carrier.
  • the first random access resource group includes at least one subcarrier.
  • the first random access resource group includes at least one UL BWP.
  • the first random access resource group includes at least one RE (Resource Element, resource unit).
  • the first random access resource group includes at least one PRB (Physical Resource Block, physical resource block). piece).
  • PRB Physical Resource Block, physical resource block. piece.
  • the first random access resource group includes at least one time slot (Slot).
  • the first random access resource group includes at least one symbol (Symbol).
  • the first random access resource group includes at least one SSB.
  • the first random access resource group includes at least one CSI-RS (Channel State Information RS).
  • CSI-RS Channel State Information RS
  • the second random access resource group includes at least one Preamble.
  • the second random access resource group includes at least one PRACH opportunity.
  • the second random access resource group includes at least one air interface resource.
  • the second random access resource group includes at least one uplink carrier.
  • the second random access resource group includes at least one subcarrier.
  • the second random access resource group includes at least one UL BWP.
  • the second random access resource group includes at least one RE.
  • the second random access resource group includes at least one PRB.
  • the second random access resource group includes at least one time slot.
  • the second random access resource group includes at least one symbol.
  • the second random access resource group includes at least one SSB.
  • the second random access resource group includes at least one CSI-RS.
  • the Preamble sent according to the first random access resource group any Preamble belonging to the first random access process other than the Preamble sent according to the second random access resource group has not been sent.
  • any random access process belonging to the first random access process The resource group is not selected.
  • the random access resource selection process is only performed once.
  • the PREAMBLE_POWER_RAMPING_COUNTER for the first random access process is increased by 1.
  • PREAMBLE_POWER_RAMPING_COUNTER for the first random access process is Increase the K1.
  • PREAMBLE_TRANSMISSION_COUNTER for the first random access process is Increase the K1.
  • PREAMBLE_POWER_RAMPING_COUNTER for the first random access process is Increase a positive integer not greater than K1.
  • PREAMBLE_TRANSMISSION_COUNTER for the first random access process is Increase a positive integer not greater than K1.
  • the first random access resource group is selected.
  • the behavior of sending a Preamble according to the first random access resource group includes: sending a Preamble on the K1 air interface resources included in the first random access resource group.
  • the behavior of sending a Preamble according to the first random access resource group includes: sending a Preamble according to a PRACH opportunity associated with the first random access resource group.
  • the behavior of sending a Preamble according to the first random access resource group includes: sending a Preamble according to the first random access resource group.
  • the machine accesses the resource group and sends the Preamble at the PREAMBLE_INDEX determined by the resource group.
  • the behavior of sending a Preamble according to the first random access resource group includes: sending a Preamble according to PREAMBLE_RECEIVED_TARGET_POWER determined according to the first random access resource group.
  • the first random access procedure is initiated in the RRC_CONNECTED state.
  • the first random access procedure is initiated in the RRC_INACTIVE state.
  • the first random access procedure is initiated in the RRC_IDLE state.
  • the first random access process is triggered by a MAC sublayer (sublayer).
  • the first random access procedure is triggered by the RRC sublayer.
  • the first random access process is triggered by PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel) order.
  • PDCCH Physical Downlink Control Channel, Physical Downlink Control Channel
  • the first random access process is used for initial access (Initial Access).
  • the first random access procedure is used to restore the RRC connection from the RRC_INACTIVE state.
  • the first random access process is used for BFR (Beam Failure Recovery).
  • the first random access process is used for SDT (Small Data Transmission, small data transmission).
  • the first random access process is a four-step random access process.
  • the first random access process is a contention-based random access (Contention Based Random Access, CBRA) process.
  • CBRA Contention Based Random Access
  • the first random access procedure is performed on the first cell.
  • the first random access procedure is executed on the MAC entity of the cell group to which the first cell belongs.
  • the first cell is SpCell (Special Cell).
  • the first cell is PCell (Primary Cell).
  • the first cell is PSCell (Primary SCG (Secondary Cell Group) Cell, SCG primary cell).
  • PSCell Primary SCG (Secondary Cell Group) Cell, SCG primary cell.
  • the first random access resource group is used for PRACH repetition.
  • the first random access resource group is not used for PRACH repetition.
  • sending a Preamble according to the first random access resource group includes: sending at least one Preamble according to the first random access resource group.
  • the "sending a Preamble according to the first random access resource group” includes: sending only one Preamble according to the first random access resource group.
  • the "sending Preamble according to the first random access resource group” includes: sending multiple Preambles according to the first random access resource group.
  • a first random access response is received, where the first random access response includes at least the first MAC sub-PDU.
  • the first random access response is a MAC PDU.
  • the first random access response only includes the first MAC sub-PDU.
  • the first random access response includes the first MAC sub-PDU and at least one MAC sub-PDU.
  • the first MAC sub-PDU is a response to the Preamble sent according to the first random access resource group.
  • the first MAC subPDU is a MAC subPDU.
  • the first MAC sub-PDU is a MAC subheader (subheader).
  • the first MAC sub-PDU does not include a RAPID (Random Access Preamble ID) field.
  • RAPID Random Access Preamble ID
  • the first MAC sub-PDU is used to determine the first backoff parameter value.
  • the first MAC sub-PDU includes a BI field.
  • the BI field in the first MAC sub-PDU is used to indicate the overload condition in the first cell (the overload condition in the cell).
  • the BI field in the first MAC sub-PDU indicates the first backoff parameter value.
  • the BI field in the first MAC sub-PDU indicates the index of the first backoff parameter value.
  • the BI field in the first MAC sub-PDU is used to determine the first backoff parameter value.
  • the BI field in the first MAC sub-PDU includes 4 bits.
  • the BI field in the first MAC sub-PDU includes 5 bits.
  • the first fallback parameter value is determined according to the first MAC sub-PDU by looking up a table.
  • the first fallback parameter value is determined by searching a first fallback table according to the first MAC sub-PDU.
  • the first fallback table includes M1 indexes, and the M1 indexes include The M2 indexes indicate M2 candidate fallback parameter values.
  • each index among the M2 indexes of the M1 indexes corresponds to one candidate fallback parameter value among the M2 candidate fallback parameter values.
  • the first rollback table includes an index of the first rollback parameter value and the first rollback parameter value.
  • the first fallback table is dedicated to PRACH repetition.
  • the second fallback table is not PRACH repetition specific.
  • the first fallback table refers to Table 7.2-1 in Section 7.2 of 3GPP TS 38.321.
  • the M1 is larger than the M2.
  • the M1 is equal to the M2.
  • M1 is equal to 16 and M2 is equal to 14.
  • M1 is equal to 16 and M2 is equal to 15.
  • M1 is equal to 16 and M2 is equal to 16.
  • the unit of the first backoff parameter value is milliseconds.
  • the first fallback parameter value is predefined.
  • the response that the first random access process is not completed includes: a response that determines that the first random access process is not completed.
  • the response that the first random access process is not completed includes: at least after determining that the first random access process is not completed.
  • the response that the first random access process is not completed includes: when it is determined that the first random access process is not completed.
  • the first random access process is not completed includes: the first random access process is not considered completed.
  • the first random access process is not completed includes: considering that the first random access process is not successfully completed.
  • the first random access process is not completed includes: the first random access process is not considered to be successfully completed.
  • At least a first time window expiration is used to determine that the first random access process is not completed; the first MAC sub-PDU is received in the first time window.
  • the first node considers that the reception of the random access response is unsuccessful; the behavior "thinking that the reception of the random access response is unsuccessful" is used to determine that the first random access process is not completed.
  • At least the first time window expiration is used to determine that the random access response reception is unsuccessful.
  • Random access response it is considered that the reception of the random access response was unsuccessful.
  • At least a first timer expiration is used to determine that the first random access procedure is not completed.
  • At least unsuccessful contention resolution is used to determine that the first random access procedure is not completed.
  • the first node considers that the contention resolution is unsuccessful; the "thinking that the contention resolution is unsuccessful" is used to determine that the first random access process is not completed.
  • the first timer expiration is used to determine that contention resolution is unsuccessful.
  • the first timer is a MAC sublayer timer.
  • the first timer is ra-ContentionResolutionTimer.
  • contention resolution is considered unsuccessful.
  • the behavior of selecting the second random access resource group includes: executing a first random access resource selection process, and selecting the second random access resource in the first random access resource selection process. Resource group.
  • the behavior of selecting the second random access resource group includes: determining the second random access resource group.
  • the behavior of selecting the second random access resource group includes: selecting the second random access resource group from the first random access resource set.
  • the behavior of selecting the second random access resource group includes: selecting the second random access resource group from the second random access resource set.
  • the behavior of selecting the second random access resource group includes: determining the K2 time-frequency resources in this application.
  • the behavior of selecting the second random access resource group includes: determining at least one SSB associated with the second random access resource group.
  • the behavior of selecting the second random access resource group includes: determining at least one air interface resource associated with the second random access resource group.
  • the behavior of selecting the second random access resource group includes: determining at least one PRACH opportunity associated with the second random access resource group.
  • the behavior of selecting the second random access resource group includes: determining at least one Preamble associated with the second random access resource group.
  • the second random access resource group is selected.
  • the behavior of sending a Preamble according to the second random access resource group includes: sending a Preamble on the K1 air interface resources included in the second random access resource group.
  • the behavior of sending a Preamble according to the second random access resource group includes: sending a Preamble according to a PRACH opportunity associated with the second random access resource group.
  • the behavior of sending a Preamble according to the second random access resource group includes: sending a Preamble according to PREAMBLE_INDEX determined according to the second random access resource group.
  • the behavior of sending a Preamble according to the second random access resource group includes: sending a Preamble according to PREAMBLE_RECEIVED_TARGET_POWER determined according to the second random access resource group.
  • the execution time of the behavior of selecting the second random access resource group refers to the execution time of the first random access resource selection process.
  • the execution time of selecting the second random access resource group refers to the time of starting to execute the first random access resource selection process.
  • the execution time of the behavior of selecting the second random access resource group refers to the time of starting to select the second random access resource group.
  • a first backoff factor is set.
  • the behavior of setting the first backoff factor includes: setting the first backoff factor to 1.
  • the behavior of setting the first fallback factor includes: first setting the first fallback factor to 1, and then setting the first fallback factor as the first candidate fallback factor.
  • the first backoff factor is a variable.
  • the first backoff factor is SCALING_FACTOR_BI.
  • the name of the first fallback factor includes SCALING_FACTOR_BI.
  • the name of the first rollback factor includes at least one of SCALING_FACTOR_BI or Msg1 (Message 1, Message 1) or PRACH or Repetition.
  • the first candidate backoff factor is a scalingFactorBI.
  • the first candidate backoff factor is a scalingFactorBI configured for PRACH repetition.
  • the first candidate backoff factor is configurable.
  • the first candidate backoff factor is configured.
  • the first candidate backoff factor is configured for PRACH repetition.
  • At least one candidate of the first candidate backoff factor is greater than 1.
  • At least one candidate of the first candidate backoff factor is not greater than 1.
  • the candidates for the first candidate backoff factor include an integer greater than 1.
  • the candidates for the first candidate backoff factor include non-integers greater than 1.
  • one candidate of the first candidate backoff factor is 1.
  • any candidate of the first candidate backoff factor is not 1.
  • each candidate of the first candidate backoff factor is greater than 1.
  • each candidate of the first candidate backoff factor is not greater than 1.
  • each candidate of the first candidate backoff factor is less than 1.
  • the first candidate backoff factor is not configured.
  • the first candidate backoff factor is configured.
  • the behavior of setting the first fallback factor includes: first setting the first fallback factor to 1, and then setting the first fallback factor as a second candidate fallback factor.
  • the second candidate backoff factor is configurable.
  • the second candidate backoff factor is configured by an RRC message.
  • any candidate of the second candidate backoff factor is not greater than 1.
  • any candidate of the second candidate backoff factor is less than 1.
  • the second candidate backoff factor is not configured.
  • the second candidate backoff factor is configured.
  • the second candidate backoff factor is configured to NSAG (Network Slice AS Group, Network Slice AS (Access Stratum, Access Stratum) group).
  • NSAG Network Slice AS Group, Network Slice AS (Access Stratum, Access Stratum) group.
  • the second candidate backoff factor is configured for BFR.
  • the first backoff factor is set to 1.
  • the first backoff factor is set as the first candidate backoff factor.
  • the first backoff factor is set as the second candidate backoff factor.
  • a first fallback variable is set.
  • the behavior of setting the first fallback variable includes: setting the first fallback variable according to at least the first fallback parameter value.
  • the behavior of setting the first fallback variable includes: setting the first fallback variable according to at least the first fallback parameter value and the first fallback factor.
  • the behavior of setting the first fallback variable includes: setting the first fallback variable as a product of the first fallback parameter value and the first fallback factor.
  • the behavior of setting the first fallback variable includes: setting the first fallback variable as the product of the first fallback parameter value, the first fallback factor, and the first parameter.
  • the name of the first fallback variable includes PREAMBLE_BACKOFF.
  • the name of the first rollback variable includes at least one of PREAMBLE or BACKOFF or Msg1 (Message 1, Message 1) or PRACH or Repetition.
  • the first rollback variable is PREAMBLE_BACKOFF.
  • the first parameter is related to the K1.
  • the first parameter is related to the K2.
  • the first parameter is related to the Preamble sent according to the first random access resource group.
  • the first parameter is related to the number of repetitions of the Preamble sent according to the first random access resource group.
  • the first parameter is related to the number of SSBs associated according to the first random access resource group.
  • the first parameter is related to the number of PRACH opportunities associated with the first random access resource group.
  • the first parameter is related to the Preamble sent according to the second random access resource group.
  • the first parameter is related to the number of repetitions of the Preamble sent according to the second random access resource group.
  • the first parameter is related to the number of SSBs associated according to the second random access resource group.
  • the first parameter is related to the number of PRACH opportunities associated with the second random access resource group.
  • the PRACH repetition includes: Msg1 (Message 1, Message 1) repetition.
  • the PRACH repetition includes: RACH repetition.
  • the PRACH repetition includes: sending multiple PRACHs in one random access attempt.
  • the PRACH repetition includes: sending multiple PRACHs between two PREAMBLE_TRANSMISSION_COUNTER updates.
  • the PRACH repetition includes: sending multiple PRACHs between two PREAMBLE_POWER_RAMPING_COUNTER updates.
  • the PRACH repetition includes: multiple consecutive PRACHs.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in Figure 2.
  • Figure 2 illustrates the network architecture 200 of the 5G NR (New Radio)/LTE (Long-Term Evolution)/LTE-A (Long-Term Evolution Advanced) system.
  • 5G NR/LTE The LTE-A network architecture 200 may be called 5GS (5G System)/EPS (Evolved Packet System) 200 or some other suitable term.
  • 5GS/EPS 200 includes UE (User Equipment) 201, RAN (Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home At least one of Subscriber Server/UDM (Unified Data Management) 220 and Internet service 230.
  • 5GS/EPS can interconnect with other access networks, but these entities/interfaces are not shown for simplicity. As shown, 5GS/EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks that provide circuit-switched services or other cellular networks.
  • the RAN includes node 203 and other nodes 204.
  • Node 203 provides user and control plane protocol termination towards UE 201.
  • Node 203 may connect to other nodes 204 via the Xn interface (eg, backhaul)/X2 interface.
  • Node 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP, or some other suitable terminology.
  • Node 203 provides UE 201 with an access point to 5GC/EPC 210.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radio, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radio non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • Node 203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management field)/SMF (Session Management Function, session management function )211, other MME/AMF/SMF214, S-GW (Service Gateway, service gateway)/UPF (User Plane Function, user plane function) 212 and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles signaling between UE201 and 5GC/EPC210. Basically, MME/AMF/SMF211 provides bearer and connection management.
  • All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213.
  • P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 is connected to Internet service 230.
  • Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching streaming services.
  • the UE201 corresponds to the first node in this application.
  • the UE201 is a user equipment (User Equipment, UE).
  • UE User Equipment
  • the UE201 is a base station equipment (BaseStation, BS).
  • BaseStation BaseStation, BS
  • the UE201 is a relay device.
  • the node 203 corresponds to the second node in this application.
  • the node 203 is a base station device.
  • the node 203 is a user equipment.
  • the node 203 is a relay device.
  • the node 203 is a gateway.
  • the UE 201 is a user equipment
  • the node 203 is a base station equipment.
  • the user equipment supports transmission of a terrestrial network (Non-Terrestrial Network, NTN).
  • NTN Non-Terrestrial Network
  • the user equipment supports transmission of non-terrestrial network (Terrestrial Network, terrestrial network).
  • the user equipment supports transmission in a large delay difference network.
  • the user equipment supports dual connection (Dual Connection, DC) transmission.
  • Dual Connection DC
  • the user equipment includes an aircraft.
  • the user equipment includes a vehicle-mounted terminal.
  • the user equipment includes a ship.
  • the user equipment includes an Internet of Things terminal.
  • the user equipment includes a terminal of the Industrial Internet of Things.
  • the user equipment includes equipment that supports low-latency and high-reliability transmission.
  • the user equipment includes a test device.
  • the user equipment includes a signaling tester.
  • the base station equipment includes a base transceiver station (Base Transceiver Station, BTS).
  • BTS Base Transceiver Station
  • the base station equipment includes a Node B (NodeB, NB).
  • NodeB NodeB, NB
  • the base station equipment includes a gNB.
  • the base station equipment includes an eNB.
  • the base station equipment includes ng-eNB.
  • the base station equipment includes en-gNB.
  • the base station equipment supports transmission in non-terrestrial networks.
  • the base station equipment supports transmission in a large delay difference network.
  • the base station equipment supports transmission of terrestrial networks.
  • the base station equipment includes a macro cellular (Marco Cellular) base station.
  • a macro cellular (Marco Cellular) base station includes a macro cellular (Marco Cellular) base station.
  • the base station equipment includes a micro cell (Micro Cell) base station.
  • Micro Cell Micro Cell
  • the base station equipment includes a Pico Cell base station.
  • the base station equipment includes a home base station (Femtocell).
  • Femtocell home base station
  • the base station equipment includes a base station equipment that supports a large delay difference.
  • the base station equipment includes a flight platform equipment.
  • the base station equipment includes satellite equipment.
  • the base station equipment includes a TRP (Transmitter Receiver Point, transmitting and receiving node).
  • TRP Transmitter Receiver Point, transmitting and receiving node
  • the base station equipment includes a CU (Centralized Unit).
  • CU Centralized Unit
  • the base station equipment includes a DU (Distributed Unit).
  • the base station equipment includes testing equipment.
  • the base station equipment includes a signaling tester.
  • the base station equipment includes an IAB (Integrated Access and Backhaul)-node.
  • IAB Integrated Access and Backhaul
  • the base station equipment includes an IAB-donor.
  • the base station equipment includes IAB-donor-CU.
  • the base station equipment includes IAB-donor-DU.
  • the base station equipment includes IAB-DU.
  • the base station equipment includes IAB-MT.
  • the relay device includes relay.
  • the relay device includes L3relay.
  • the relay device includes L2relay.
  • the relay device includes a router.
  • the relay device includes a switch.
  • the relay device includes user equipment.
  • the relay device includes a base station device.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300.
  • FIG. 3 shows the radio protocol architecture for the control plane 300 with three layers: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above PHY301, including MAC (Medium Access Control, media access control) sub-layer 302, RLC (Radio Link Control, wireless link layer control protocol) sub-layer 303 and PDCP (Packet Data Convergence) Protocol (Packet Data Convergence Protocol) sublayer 304.
  • MAC Medium Access Control, media access control
  • RLC Radio Link Control, wireless link layer control protocol
  • PDCP Packet Data Convergence Protocol
  • PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides cross-location support.
  • RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ (Hybrid Automatic Repeat Request, Hybrid Automatic Repeat Request).
  • MAC sublayer 302 provides multiplexing between logical and transport channels. The MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell. MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and configuring lower layers using RRC signaling.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture in the user plane 350 is for the physical layer 351, the PDCP sublayer 354 in the L2 layer 355, and the PDCP sublayer 354 in the L2 layer 355.
  • the RLC sublayer 353 and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides header compression for upper layer packets to reduce radio Transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • DRB Data Radio Bearer
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • any Preamble sent according to the first random access resource group in this application is generated in the PHY301 or PHY351.
  • any Preamble sent according to the second random access resource group in this application is generated in the PHY301 or PHY351.
  • the first MAC sub-PDU in this application is generated from the MAC 302 or MAC 352.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in the access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a receive processor 470, a transmit processor 416, a multi-antenna receive processor 472, a multi-antenna transmit processor 471, a transmitter/receiver 418 and an antenna 420.
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and radio resource allocation to the first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer). Transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 410, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for M-phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for M-phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the line emission processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams. Transmit processor 416 then maps each spatial stream to a subcarrier, multiplexes it with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the first communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial stream that is the destination. The symbols on each spatial stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover upper layer data and control signals transmitted by the second communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media.
  • the controller/processor 459 In transmission from the second communication device 410 to the second communication device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements headers based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 In transmission from the first communications device 450 to the second communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Using at least one processor together, the first communication device 450 at least: in the first random access process, sends a Preamble according to the first random access resource group; as a method of sending a Preamble according to the first random access resource group.
  • the first MAC sub-PDU In response, receive the first MAC sub-PDU, the first MAC sub-PDU indicating the first fallback parameter value; as a response that the first random access process is not completed, select the second random access resource group, according to the The second random access resource group sends a Preamble; wherein the behavior selects whether the execution time of the second random access resource group depends on the first backoff parameter value and is related to the second random access resource group. ; Both the first random access resource group and the second random access resource group are allocated to four-step random access.
  • the first communication device 450 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: in the first In a random access process, the Preamble is sent according to the first random access resource group; in response to the Preamble being sent according to the first random access resource group, the first MAC sub-PDU is received, and the first MAC sub-PDU indicates the A fallback parameter value; as a response to the fact that the first random access process is not completed, select a second random access resource group, and send a Preamble according to the second random access resource group; wherein the behavior selection Whether the execution time of the second random access resource group depends on the first backoff parameter value is related to the second random access resource group; the first random access resource group and the second random access Resource groups are assigned to four-step random access.
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the second communication device 410 at least: during the first random access process, receives a Preamble sent according to the first random access resource group; and in response to receiving the Preamble sent according to the first random access resource group, sends A first MAC sub-PDU indicating a first backoff parameter value; receiving a Preamble sent according to the second random access resource group; wherein, as a response that the first random access process is not completed , the second random access resource group is selected; whether the execution time of the selected second random access resource group depends on the first backoff parameter value is related to the second random access resource group; Both the first random access resource group and the second random access resource group are allocated to four-step random access.
  • the second communication device 410 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: in the first In a random access process, receive the Preamble sent according to the first random access resource group; in response to receiving the Preamble sent according to the first random access resource group, send the first MAC sub-PDU, the first MAC The sub-PDU indicates the first backoff parameter value; receiving the Preamble sent according to the second random access resource group; wherein, as a response that the first random access process is not completed, the second random access resource group is Selection; whether the selected execution time of the second random access resource group depends on the first backoff parameter value is related to the second random access resource group; the first random access resource group and the The second random access resource group is allocated to four-step random access.
  • At least one of the antenna 452, the receiver 454, the receiving processor 456, and the controller/processor 459 is used to receive the first MAC sub-PDU.
  • At least one of the antenna 420, the transmitter 418, the transmission processor 416, and the controller/processor 475 is used to send the first MAC sub-PDU.
  • At least one of the antenna 452, the receiver 454, the receiving processor 456, and the controller/processor 459 is used to receive the second MAC PDU.
  • At least one of the antenna 420, the transmitter 418, the transmission processor 416, and the controller/processor 475 is used to send the second MAC PDU.
  • At least one of the antenna 452, the receiver 454, the receiving processor 456, and the controller/processor 459 is used to receive the first RAR (Random Access Response, random access response).
  • RAR Random Access Response, random access response
  • At least one of the antenna 420, the transmitter 418, the transmission processor 416, and the controller/processor 475 is used to transmit the first RAR.
  • At least one of the antenna 452, the transmitter 454, the transmission processor 468, and the controller/processor 459 is used to transmit according to the first random access resource group. Preamble.
  • At least one of the antenna 420, the receiver 418, the receiving processor 470, and the controller/processor 475 is used to receive the data according to the first random access resource group. Send the Preamble.
  • At least one of the antenna 452, the transmitter 454, the transmission processor 468, and the controller/processor 459 is used to send the first Msg3 (Message 3, message 3).
  • At least one of the antenna 420, the receiver 418, the receiving processor 470, and the controller/processor 475 is used to receive the first Msg3.
  • At least one of the antenna 452, the transmitter 454, the transmission processor 468, and the controller/processor 459 is used to transmit according to the second random access resource group. Preamble.
  • At least one of the antenna 420, the receiver 418, the receiving processor 470, and the controller/processor 475 is used to receive the data according to the second random access resource group. Send the Preamble.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a user equipment.
  • the first communication device 450 is a relay device.
  • the first communication device 450 is a base station device.
  • the second communication device 410 is a base station device.
  • the second communication device 410 is a user equipment.
  • the second communication device 410 is a relay device.
  • the first communication device 450 is a user equipment
  • the second communication device 410 is a base station device.
  • Embodiment 5 illustrates a wireless signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 5 . It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S5101 in the first random access process, the Preamble is sent according to the first random access resource group; in step S5102, as the Preamble is sent according to the first random access resource group.
  • receive the first MAC sub-PDU which indicates the first fallback parameter value; in step S5103, receive the first RAR (Random Access Response, random access response); in step S5104, as In response to the first RAR being received, send the first Msg3; in step S5105, in response to sending the first Msg3, receive the second MAC PDU; in step S5106, determine the first random access process has not been completed; in step S5107, as a response that the first random access process has not been completed, select a second random access resource group; in step S5108, send a Preamble according to the second random access resource group .
  • RAR Random Access Response
  • step S5201 receive the Preamble; in step S5202, send the first MAC sub-PDU; in step S5203, send the first RAR; in step S5204, receive the first Msg3; in step S5205, send the second MAC PDU; in step S5203, receive the Preamble.
  • Embodiment 5 whether the execution time of the behavior selection of the second random access resource group depends on the first backoff parameter value is related to the second random access resource group; the first random access resource group Both the incoming resource group and the second random access resource group are allocated to four-step random access.
  • the first node U01 determines that the first random access process has not been completed.
  • the first node U01 determines that the first random access process has not been completed.
  • the first node U01 determines that the first random access process has not been completed.
  • step S5105 the first node U01 determines that the first random access process has not been completed.
  • the first node U01 is a user equipment.
  • the first node U01 is a base station device.
  • the first node U01 is a relay device.
  • the second node N02 is a base station device.
  • the second node N02 is a user equipment.
  • the second node N02 is a relay device.
  • the second node N02 is the maintenance base station of a serving cell of the first node U01.
  • the second node N02 is the maintenance base station of the first cell.
  • the first node U01 is a user equipment
  • the second node N02 is a base station equipment.
  • the first node U01 is a user equipment
  • the second node N02 is a relay device.
  • the first node U01 is a user equipment
  • the second node N02 is a user equipment
  • the first node U01 is a base station equipment
  • the second node N02 is a base station equipment
  • the first node U01 is a relay device
  • the second node N02 is a base station device.
  • the first node U01 and the second node N02 are connected through a uu port.
  • the first node U01 and the second node N02 are connected through an Xn port.
  • the first node U01 and the second node N02 are connected through an X2 port.
  • the first node U01 and the second node N02 are connected through a PC5 port.
  • the first node U01 and the second node N02 are connected through an air interface.
  • the second node N02 receives each Preamble sent according to the first random access resource group.
  • the second node N02 receives at least one Preamble sent according to the first random access resource group.
  • step S5105 is optional.
  • step S5105 exists.
  • the second node N02 receives each Preamble sent according to the second random access resource group.
  • the second node N02 receives at least one Preamble sent according to the second random access resource group.
  • step S5105 does not exist.
  • the second node N02 does not receive any Preamble sent according to the second random access resource group.
  • the dashed box F5.1 is optional.
  • each step in the dotted box F5.1 exists.
  • each step in the dotted box F5.1 does not exist.
  • the first RAR is received, and the first Msg3 is sent, and the second MAC PDU is not received.
  • the first RAR is received, and the first Msg3 is not sent, and the second MAC PDU is not received.
  • the first RAR is not received, and the first Msg3 is not sent, and the second MAC PDU is not received.
  • the first RAR is received.
  • the first RAR includes a MAC sub-PDU, and the random access preamble identifier in the one MAC sub-PDU matches the first PREAMBLE_INDEX.
  • the first PREAMBLE_INDEX is the index of the Preamble sent according to the first random access resource group.
  • the first PREAMBLE_INDEX is the index of one of the Preambles sent according to the first random access resource group.
  • the first PREAMBLE_INDEX is the index of any Preamble among the Preambles sent according to the first random access resource group.
  • the first node U01 considers that the random access response is received successfully.
  • the first RAR is received in a first time window; the first MAC sub-PDU is received in the first time window.
  • the first time window is stopped in response to the first RAR being received.
  • the first time window is not stopped in response to the first RAR being received.
  • the first RAR includes a MAC RAR.
  • the first RAR includes a MAC subheader.
  • the first RAR is a MAC PDU.
  • the first RAR is a MAC sub-PDU.
  • the first RAR and the first MAC sub-PDU belong to the same MAC PDU.
  • the first RAR and the first MAC sub-PDU belong to two different MAC PDUs.
  • the first RAR is not received.
  • the first time window expires.
  • a RAR is received in the first time window, and the RAR includes a MAC sub- PDU, the random access preamble identifier in the one MAC sub-PDU does not match PREAMBLE_INDEX.
  • no MAC RAR is received in the first time window.
  • At least the first time window expiration is used to determine that the random access response reception is unsuccessful.
  • the first time window expires and the first RAR is not received is used to determine that the random access response reception is unsuccessful.
  • the first time window is a time window.
  • the first time window is used to listen for random access responses.
  • the first time window is a time window for listening to random access responses.
  • the first time window includes a positive integer number of time slots.
  • the first time window includes a positive integer subframe (subframe).
  • the first time window includes a positive integer number of milliseconds.
  • the name of the first time window is ra-ResponseWindow.
  • the sending deadline time of the at least one Preamble is used to determine the start time of the first time window.
  • the name of the first time window is ra-ResponseWindow.
  • the name of the first time window includes ra-ResponseWindow.
  • the name of the first time window includes at least one of ra-ResponseWindow or Msg1 (Message 1, Message 1) or PRACH or Repetition.
  • the first Msg3 is sent.
  • the first RAR is received.
  • the first RAR indicates a UL grant.
  • the first RAR indicates a first TC-RNTI (Temporary C-RNTI).
  • the UL grant in the first RAR is used to schedule the first Msg3.
  • a first Msg3 is sent in response to the first RAR being received.
  • a DCI Downlink Control Information
  • TC-RNTI Downlink Control Information
  • the first timer in response to the first Msg3 being sent, the first timer is started or restarted.
  • the first symbol after the end of the first Msg3 transmission is used to determine the moment to start or restart the first timer.
  • the first Msg3 is a Msg3.
  • the first Msg3 includes repetitions of multiple Msg3s.
  • the first Msg3 is a Msg3 initial transmission.
  • the first Msg3 is a Msg3 retransmission.
  • the first Msg3 includes the first C-RNTI (Cell Radio Network Temporary Identifier, Cell Radio Network Temporary Identifier) MAC CE (Control Element, control unit) or the third One of the CCCH (Common Control Channel) SDU (Service data unit).
  • C-RNTI Cell Radio Network Temporary Identifier, Cell Radio Network Temporary Identifier
  • MAC CE Control Element, control unit
  • CCCH Common Control Channel
  • SDU Service data unit
  • the first Msg3 includes the first CCCH SDU.
  • the first CCCH SDU is a CCCH SDU.
  • the first CCCH SDU includes a RRCResumeRequest message.
  • the first CCCH SDU includes a RRCSetupRequest message.
  • the first CCCH SDU includes a RRCReestablishmentRequest message.
  • the first Msg3 includes the first C-RNTI MAC CE.
  • the first C-RNTI MAC CE is a C-RNTI MAC CE.
  • the first C-RNTI MAC CE includes a first C-RNTI, and the first C-RNTI is the C-RNTI of the first node U01 in the first cell. RNTI.
  • the first Msg3 is not sent.
  • the first time window expires.
  • the first node U01 does not consider that the random access response to the Preamble sent according to the first random access resource group is received successfully.
  • the second MAC PDU is received.
  • the first Msg3 is sent.
  • the second MAC PDU is received during the running of the first timer.
  • a first PDCCH transmission addressed to the first TC-RNTI is used to schedule the second MAC PDU.
  • the first Msg3 includes the first CCCH SDU; the second MAC PDU does not include UE Contention Resolution Identity MAC CE (Control Element, Control Element); The second MAC PDU does not include the UE Contention Resolution Identity MAC CE is used to determine that contention resolution was unsuccessful.
  • the first Msg3 includes the first CCCH SDU; the second MAC PDU includes a UE Contention Resolution Identity MAC CE, and the one UE Contention Resolution Identity MAC
  • the UE Contention Resolution Identity in the CE does not match the first CCCH SDU; the mismatch between the UE Contention Resolution Identity MAC in the CE and the first CCCH SDU is used to determine that the contention resolution is unsuccessful.
  • the second MAC PDU is not received.
  • the second MAC PDU is not sent by the second node N02.
  • the second MAC PDU is sent by the second node N02.
  • the first Msg3 is not sent.
  • the first Msg3 is sent.
  • the first timer expires; the first timer expiration is used to determine that contention resolution is unsuccessful.
  • the first timer expires; the first Msg3 includes the first C-RNTI MAC CE; during the running of the first timer, the addressed address is not received Any PDCCH transmission to the first C-RNTI.
  • the first timer expires; the first Msg3 includes the first C-RNTI MAC CE; during the operation of the first timer, no PDCCH is received transmission.
  • the first timer expires; the first Msg3 includes the first C-RNTI MAC CE; during the running of the first timer, the addressed address is not received Any PDCCH transmission to the first C-RNTI and including the UL grant for the new transmission was not received.
  • the first timer expires; the first Msg3 includes the first CCCH SDU; during the running of the first timer, the address addressed to the Any PDCCH transmission of the first TEMPORARY_C-RNTI.
  • the first timer expires; the first Msg3 includes the first CCCH SDU; during the operation of the first timer, no PDCCH transmission is received.
  • the first node U01 considers that the random access response is received successfully, or the first node U01 considers that the contention resolution is unsuccessful.
  • the first node U01 considers that the reception of the random access response is unsuccessful; as a response that it considers that the reception of the random access response is unsuccessful, it is determined that the first random access process has not been completed.
  • the first node U01 considers that the contention resolution is unsuccessful; in response to deeming that the contention resolution is unsuccessful, it is determined that the first random access process has not been completed.
  • Embodiment 6 illustrates a wireless signal transmission flow chart according to another embodiment of the present application, as shown in FIG. 6 . It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S6101 it is determined that the first random access process has not been completed; in step S6102, as a response that the first random access process has not been completed, it is determined whether the first set of conditions is satisfied. , if the first condition set is satisfied, enter Step S6103(a), if the first condition set is not satisfied, proceed to step S6103(b); in step S6103(a), determine the first random access without relying on the first backoff parameter value. Execution time of the resource selection process; in step S6103(b), the execution time of the first random access resource selection process is determined depending on the first backoff parameter value.
  • the second random access resource group is selected.
  • determining the execution time of the first random access resource selection process without relying on the first backoff parameter value is used to determine the execution time of the behavior selecting the second random access resource group. Depends on the first fallback parameter value.
  • determining the execution time of the first random access resource selection process based on the first backoff parameter value is used to determine the execution time of the behavior selection of the second random access resource group.
  • the first fallback parameter value is used to determine the execution time of the behavior selection of the second random access resource group.
  • the first backoff time is determined first, and then the first random access resource selection is performed. process.
  • the first fallback As an embodiment, as a response to the fact that the first random access process is not completed, if the first set of conditions is met, before executing the first random access resource selection process, the first fallback The time has not been determined.
  • a variable initialization process is first performed, and then the first random access resource selection process is performed.
  • a variable initialization process is performed before the first random access resource selection process.
  • the first random access process is executed. Access resource selection process.
  • the first random access process is The input resource selection process is executed.
  • the first random access resource selection process is executed is used to determine “immediately after the first random access process is not completed” Completed, the second random access resource group is selected.”
  • determining the execution time of the first random access resource selection process without relying on the first backoff parameter value includes: before executing the first random access resource selection process, not selecting to rely on A rollback time for the first rollback parameter value.
  • determining the execution time of the first random access resource selection process without relying on the first backoff parameter value includes: before executing the first random access resource selection process, without depending on the dependence A backoff time of the first backoff parameter value determines the execution time of the first random access resource selection process.
  • determining the execution time of the first random access resource selection process relying on the first backoff parameter value includes: before executing the first random access resource selection process, determining the execution time relying on the first random access resource selection process. The first rollback time of the first rollback parameter value.
  • determining the execution time of the first random access resource selection process relying on the first backoff parameter value includes: before executing the first random access resource selection process, depending on the first random access resource selection process, The first backoff time of the first backoff parameter value determines the execution time of the first random access resource selection process.
  • the second random access resource group is selected.
  • the second random access resource group is selected through the first random access resource selection process.
  • whether the first condition set is satisfied depends on the first counter.
  • the first set of conditions is related to at least the first counter.
  • the first condition set is a condition for selecting the second random access resource set.
  • the first condition set is used to determine selection of the second random access resource set.
  • the first condition set is a condition for selecting a random access resource set to which the first random access resource group belongs.
  • the first set of conditions is used to determine the selection of a random access resource set to which the first random access resource group belongs. combine.
  • the first random access resource group belongs to the second random access resource set.
  • Embodiment 7 illustrates a flowchart of selecting an execution time of the second random access resource group that does not depend on the first backoff parameter value according to an embodiment of the present application, as shown in FIG. 7 . It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S7101 it is determined that the first random access process has not been completed; in step S7102, as a response that the first random access process has not been completed, the first random access process is selected in the behavior Before performing the second random access resource group, perform a variable initialization (perform initialization of variables) process; in step S7103, select the second random access resource group.
  • Embodiment 7 in the first random access process, as a response to sending a Preamble according to the first random access resource group, a first MAC sub-PDU is received, and the first MAC sub-PDU indicates the first Return parameter values; Preamble is sent according to the second random access resource group; both the first random access resource group and the second random access resource group are allocated to four-step random access; the behavior The execution time of selecting the second random access resource group does not depend on the first backoff parameter value.
  • the behavior execution variable initialization process includes: executing a variable initialization process repeated for PRACH.
  • the behavior execution variable initialization process includes: setting the first backoff factor.
  • the first backoff factor is set to 1.
  • the first backoff factor is first set to 1, and then the first backoff factor is set to the first candidate backoff factor.
  • the second backoff factor does not exist.
  • the behavior execution variable initialization process includes: setting the second backoff factor; and the K1 is equal to 1.
  • the second backoff factor is first set to 1, and then the second backoff factor is set to the first candidate backoff factor.
  • the second backoff factor is set to the first candidate backoff factor.
  • the first backoff factor is not set.
  • the second backoff factor is used for PRACH repetition; the first backoff factor is not used for PRACH repetition.
  • the behavior execution variable initialization process includes: setting PREAMBLE_POWER_RAMPING_STEP to a power boosting step dedicated to PRACH repetition.
  • the behavior execution variable initialization process includes: setting a variable whose name includes at least one of PREAMBLE_POWER_RAMPING_STEP or Msg1 (Message 1, Message 1) or PRACH or Repetition as a power boost step dedicated to PRACH repetition. long.
  • the behavior execution variable initialization process includes: setting PREAMBLE_POWER_RAMPING_STEP to powerRampingStep.
  • the behavior execution variable initialization process includes: first setting PREAMBLE_POWER_RAMPING_STEP to powerRampingStep, and then setting PREAMBLE_POWER_RAMPING_STEP to a power boosting step dedicated to PRACH repetition.
  • the behavior execution variable initialization process includes: first setting a variable whose name includes at least one of PREAMBLE_POWER_RAMPING_STEP or Msg1 (Message 1, Message 1) or PRACH or Repetition to powerRampingStep, and then setting the variable to powerRampingStep.
  • the variable whose name includes the PREAMBLE_POWER_RAMPING_STEP is set to a power ramping step specific to PRACH repetitions.
  • the behavior execution variable initialization process includes: setting PREAMBLE_POWER_RAMPING_STEP to powerRampingStep.
  • the behavior execution variable initialization process includes: setting preambleTransMax to the maximum number of times of Preamble transmission dedicated to PRACH repetition.
  • the behavior execution variable initialization process includes: setting a variable whose name includes at least one of preambleTransMax or Msg1 (Message 1, Message 1) or PRACH or Repetition as the maximum transmission of Preamble dedicated to PRACH repetition. frequency.
  • the behavior execution variable initialization process includes: setting preambleTransMax to preambleTransMax in RACH-ConfigGeneric.
  • the variable initialization process in response to the fact that the first random access process is not completed, before the behavior selects the second random access resource group, the variable initialization process is not performed; the behavior selects the second random access resource group.
  • the execution time of the random access resource group depends on the first backoff parameter value.
  • Embodiment 8 illustrates a flowchart of selecting an execution time of the second random access resource group that does not depend on the first backoff parameter value according to another embodiment of the present application, as shown in FIG. 8 . It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S8101 it is determined that the first random access process has not been completed; in step S8102, following the fact that the first random access process has not been completed, a second random access resource group is selected.
  • Embodiment 8 in the first random access process, as a response to sending a Preamble according to the first random access resource group, a first MAC sub-PDU is received, and the first MAC sub-PDU indicates the first Return parameter values; Preamble is sent according to the second random access resource group; both the first random access resource group and the second random access resource group are allocated to four-step random access; the behavior The execution time of selecting the second random access resource group does not depend on the first backoff parameter value.
  • the second random access resource group is selected.
  • the "selecting the second random access resource group in response to the fact that the first random access process is not completed" includes: following that the first random access process is not completed, selecting the second random access resource group. The second random access resource group.
  • select the second random access resource group means: immediately after the first random access process is not completed, Execute the first random access resource selection process; select the second random access resource group during the first random access resource selection process.
  • the first node U01 does not execute Variable initialization process.
  • the first node U01 has not determined Any rollback time that depends on the value of the first rollback parameter.
  • the first node U01 does not select Any fallback time.
  • the first node U01 does not apply The first fallback variable.
  • Embodiment 9 illustrates a flow chart in which the execution time of selecting the second random access resource group depends on the first backoff parameter value according to an embodiment of the present application, as shown in FIG. 9 . It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S9101 it is determined that the first random access process has not been completed; in step S9102, as a response that the first random access process has not been completed, the first random access process is selected in the behavior Before entering the second random access resource group, determine the first backoff time; in step S9103, select the second random access resource group.
  • Embodiment 9 in the first random access process, as a response to sending a Preamble according to the first random access resource group, a first MAC sub-PDU is received, and the first MAC sub-PDU indicates the first Return parameter values; Preamble is sent according to the second random access resource group; both the first random access resource group and the second random access resource group are allocated to four-step random access; the behavior The execution time of selecting the second random access resource group depends on the first backoff time; the first backoff time depends on the first backoff parameter value.
  • the behavior of selecting the execution time of the second random access resource group to depend on the first backoff parameter value includes: the behavior of selecting the execution time of the second random access resource group depends on The first rollback time depends on the first rollback parameter value.
  • the action of selecting the second random access resource group is performed.
  • the action selects the second random access resource group to be executed.
  • the behavior of selecting the second random access resource group is not executed.
  • the behavior selects the second random access resource group not to be executed.
  • the action selects the second random access resource group to be executed.
  • the action selects the second random access resource group to be executed.
  • the action selects the second random access resource group to be executed.
  • the first backoff time depends on at least the first backoff parameter value.
  • the first backoff time depends on the first backoff parameter value and the first backoff factor.
  • the first backoff time depends on the first backoff parameter value, the first backoff factor and the first parameter.
  • the first rollback time depends on the first rollback variable; the first rollback variable depends on at least the first rollback parameter value.
  • the first rollback time depends on the first rollback variable; the first rollback variable depends on the first rollback parameter value and the first rollback factor.
  • the first rollback time depends on the first rollback variable; the first rollback variable depends on the first rollback parameter value, the first rollback factor and the first rollback variable. parameter.
  • the first rollback time depends on the first rollback variable and the first parameter; the first rollback variable depends on at least the first rollback parameter value.
  • the first rollback time depends on the first rollback variable and the first parameter; the first rollback variable depends on the first rollback parameter value and the first rollback factor.
  • the behavior of determining the first rollback time includes: determining the first rollback time according to the first rollback variable.
  • the first backoff time is determined between 0 and the first backoff variable.
  • a random backoff time between 0 and the first backoff variable is selected as the first backoff time.
  • the first backoff time is randomly selected according to a uniform distribution between 0 and the first backoff variable.
  • the behavior of determining the first rollback time includes: determining the first rollback time according to the first rollback variable and the first parameter.
  • the second rollback time is determined between 0 and the first rollback variable; the first rollback time is determined according to the second rollback time and the first parameter. Fallback time.
  • a random backoff time is selected between 0 and the first backoff variable as the second backoff time; according to the second backoff time and the first parameter to determine the first backoff time.
  • the second backoff time is randomly selected according to a uniform distribution between 0 and the first backoff variable; according to the second backoff time and the The first parameter determines the first backoff time.
  • the first backoff time is related to (the product of the second backoff time and the first parameter).
  • the first backoff time is equal to (the product of the second backoff time and the first parameter).
  • the first backoff time is linearly related to (the product of the second backoff time and the first parameter).
  • the first backoff time the second backoff time ⁇ the first parameter.
  • the first rollback time is determined according to the first rollback variable and the first parameter.
  • the second rollback time is determined based on the first rollback variable
  • the first rollback time is determined based on the second rollback time and the first parameter
  • the second rollback variable is determined according to the first rollback variable and the first parameter
  • the first rollback time is determined according to the second rollback variable
  • the second fallback variable is related to (the product of the first fallback variable and the first parameter).
  • the second fallback variable the first fallback variable ⁇ the first parameter.
  • Embodiment 10 illustrates a schematic diagram of selecting whether the execution time of the second random access resource group depends on the first backoff parameter value and the second random access resource group according to an embodiment of the present application.
  • the first random access resource group consists of K1 air interface resources
  • the second random access resource group consists of K2 air interface resources
  • the K1 is a positive integer
  • the K2 is greater than 1 integer
  • an air interface resource is associated with a downlink (DownLink, DL) reference signal (Reference Signal, RS).
  • DownLink DownLink
  • RS Reference Signal
  • an air interface resource is associated to an SSB.
  • an air interface resource is associated with a CSI-RS.
  • an air interface resource is configured for an uplink carrier.
  • an air interface resource is configured for a UL BWP.
  • the PRACH timing of an air interface resource in the time domain is related to an SSB.
  • the PRACH timing of an air interface resource in the time domain is related to a reference SSB.
  • one air interface resource is configured for at least one Preamble.
  • an air interface resource is reserved for a Preamble.
  • an air interface resource is reserved for one transmission of a Preamble.
  • an air interface resource includes a Preamble.
  • one air interface resource occupies one PRACH opportunity in the time domain.
  • one air interface resource occupies multiple REs in the time-frequency domain.
  • an air interface resource includes time domain resources and frequency domain resources.
  • an air interface resource includes time domain resources, frequency domain resources and code domain resources.
  • an air interface resource includes time domain resources, frequency domain resources, air domain resources and code domain resources.
  • an air interface resource includes time domain resources used for a Preamble.
  • an air interface resource includes frequency domain resources used for a Preamble.
  • an air interface resource includes air domain resources used for a Preamble.
  • the frequency domain resource includes BWP.
  • the frequency domain resources include uplink carriers.
  • the time domain resources include PRACH opportunities.
  • the K1 is determined based on at least RSRP.
  • the K1 is determined based on at least one counter.
  • the K1 is determined based on at least the first counter.
  • the K1 is configurable.
  • the K1 is preconfigured.
  • K1 is predefined.
  • the K1 is configured to the random access resource set to which the first random access resource group belongs.
  • K1 is a constant.
  • K1 is equal to 1.
  • K1 is greater than 1.
  • the K2 is determined based on at least RSRP.
  • the K2 is determined based on at least one counter.
  • the K2 is determined based on at least the first counter.
  • the K2 is configurable.
  • the K2 is preconfigured.
  • the K2 is predefined.
  • the K2 is configured to the random access resource set to which the second random access resource group belongs.
  • the K2 is larger than the K1.
  • the K2 is smaller than the K1.
  • the K2 is equal to the K1.
  • the K2 is the K1.
  • the K1 air interface resources are used for one PRACH repetition.
  • each of the K1 air interface resources is used for the same Preamble.
  • each of the K1 air interface resources is used for at least two different Preambles.
  • the PREAMBLE_POWER_RAMPING_COUNTER for the first random access process is not increased; the K1 is greater than 1.
  • the PREAMBLE_TRANSMISSION_COUNTER for the first random access process is not increased; the K1 is greater than 1.
  • the K1 air interface resources are configured for one SSB; the K1 is equal to 1.
  • any two air interface resources among the K1 air interface resources are configured for the same SSB; the K1 is greater than 1.
  • any two air interface resources among the K1 air interface resources are configured to at least two SSBs; the K1 is greater than 1.
  • the K2 air interface resources are used for one PRACH repetition.
  • each of the K2 air interface resources is used for the same Preamble.
  • each of the K2 air interface resources is used for at least two different Preambles.
  • PREAMBLE_POWER_RAMPING_COUNTER for the first random access process is not increased.
  • PREAMBLE_TRANSMISSION_COUNTER for the first random access process is not increased.
  • any two air interface resources among the K2 air interface resources are configured for the same SSB.
  • any two air interface resources among the K2 air interface resources are configured to at least two SSBs.
  • any Preamble in the K1 air interface resources is different from any Preamble in the K2 air interface resources.
  • the K1 air interface resources and the K2 air interface resources are different.
  • any air interface resource among the K1 air interface resources is different from any air interface resource among the K2 air interface resources.
  • At least one air interface resource among the K1 air interface resources is different from any air interface resource among the K2 air interface resources.
  • the behavior of selecting whether the execution time of the second random access resource group depends on the first backoff parameter value and the second random access resource group includes: the behavior of selecting the second random access resource group The execution time of the second random access resource group does not depend on the first backoff parameter value and K1 is greater than the first threshold and K2 is greater than the first threshold; or, the behavior selects the second random access resource group The execution time of depends on the first backoff parameter value and K1 is less than the first threshold and K2 is less than the first threshold.
  • the behavior of selecting whether the execution time of the second random access resource group depends on the first backoff parameter value and the second random access resource group includes: the behavior of selecting the The execution time of the second random access resource group does not depend on the first backoff parameter value and K1 is greater than the first threshold and K2 is greater than the first threshold; or, the behavior selects the second random access resource group The execution time of depends on the first backoff parameter value and K1 is not greater than the first threshold and K2 is not greater than the first threshold.
  • the behavior of selecting whether the execution time of the second random access resource group depends on the first backoff parameter value and the second random access resource group includes: the behavior of selecting the The execution time of the second random access resource group does not depend on the first backoff parameter value and K1 is less than the first threshold and K2 is greater than the first threshold; or, the behavior selects the second random access resource group The execution time of depends on the first backoff parameter value and K1 is greater than the first threshold and K2 is less than the first threshold.
  • the behavior of selecting whether the execution time of the second random access resource group depends on the first backoff parameter value and the second random access resource group includes: the behavior of selecting the The execution time of the second random access resource group does not depend on the first backoff parameter value and K1 is equal to the first threshold and K2 is greater than the first threshold; or the behavior selects the second random access resource group of The execution time depends on the first backoff parameter value and K1 is equal to the first threshold and K2 is not greater than the first threshold.
  • the behavior of selecting whether the execution time of the second random access resource group depends on the first backoff parameter value and the second random access resource group includes: the behavior of selecting the The execution time of the second random access resource group does not depend on the first backoff parameter value and K1 is equal to the first threshold and K2 is not greater than the first threshold; or, the behavior selects the second random access resource The execution time of the group depends on the first backoff parameter value and K1 is equal to the first threshold and K2 is greater than the first threshold.
  • the first condition set is satisfied; when K1 is equal to the first threshold and K2 is greater than the first threshold , the first set of conditions is not satisfied.
  • the first condition set is satisfied; when K1 is equal to the first threshold and K2 is not greater than the first threshold , the first set of conditions is not satisfied.
  • the first condition set is satisfied; when K1 is larger than the first threshold and K2 is smaller than the first threshold , the first set of conditions is not satisfied.
  • the first condition set is satisfied; when K1 is less than the first threshold and K2 is less than the first threshold , the first set of conditions is not satisfied.
  • the first set of conditions when at least K1 is greater than the first threshold and K2 is greater than the first threshold, the first set of conditions is satisfied; when K1 is not greater than the first threshold and K2 is not greater than the first threshold, the first set of conditions is satisfied.
  • the first set of conditions mentioned above is not satisfied.
  • the first threshold is a positive integer.
  • the first threshold is configurable.
  • the first threshold is preconfigured.
  • the first threshold is equal to 1.
  • the first threshold is greater than 1.
  • the first threshold is the K1.
  • the first set of conditions is related to at least one of the K1 or the K2.
  • Embodiment 11 illustrates a schematic diagram of selecting whether the execution time of the second random access resource group depends on the first backoff parameter value and the second random access resource group according to another embodiment of the present application, as shown in Figure 11 Show.
  • the behavior selection of whether the execution time of the second random access resource group depends on the first backoff parameter value and the second random access resource group includes: the behavior selection The execution time of the second random access resource group depends on the first backoff parameter value and the second random access resource group belongs to the first random access resource set; or, the behavior selects the second random access resource set. The execution time of the access resource group does not depend on the first backoff parameter value and the second random access resource group does not belong to the first random access resource set.
  • the execution time of the behavior of selecting the second random access resource group depends on the first backoff parameter value and the second random access resource group belongs to the first random access resource set. ;
  • the first random access resource group belongs to the first random access resource set.
  • the execution time of the behavior selection of the second random access resource group does not depend on the first backoff parameter value and the second random access resource group belongs to the second random access resource set;
  • the first random access resource group belongs to the first random access resource set.
  • the second random access resource set is a random access resource set other than the first random access resource set.
  • the second random access resource set is configured for PRACH repetition; the second random access resource set is not configured for PRACH repetition.
  • the second random access resource set is configured for PRACH repetition; the second random access resource set is configured for PRACH repetition; the second random access resource set and the first random access resource set are configured for PRACH repetition. Access resource sets are different.
  • the maximum number of transmissions of Preamble in one PRACH repetition corresponding to the second random access resource set and the maximum number of Preamble transmissions in one PRACH repetition corresponding to the first random access resource set is equal.
  • the maximum number of transmissions of Preamble in one PRACH repetition corresponding to the second random access resource set and the maximum number of Preamble transmissions in one PRACH repetition corresponding to the first random access resource set is not equal.
  • the maximum number of sending Preambles in one PRACH repetition corresponding to the second random access resource set is greater than the number of Preamble transmissions in one PRACH repetition corresponding to the first random access resource set. Maximum number of sendings.
  • the first condition set is satisfied; otherwise, the first condition set is not satisfied.
  • the first set of conditions is met; otherwise, the first set of conditions is not met.
  • the first set of conditions is met; otherwise, the first set of conditions is not met.
  • the criterion for selecting the second random access resource set is satisfied and used to determine to select the second random access resource group from the second random access resource set.
  • the criterion for selecting the second random access resource set is not satisfied and is used to determine to select the second random access resource group from the first random access resource set.
  • Embodiment 12 illustrates a schematic diagram of selecting whether the execution time of the second random access resource group depends on the first backoff parameter value and the second random access resource group according to yet another embodiment of the present application, as shown in Figure 12 Show.
  • the behavior selection of whether the execution time of the second random access resource group depends on the first backoff parameter value and the second random access resource group includes: the behavior selection The execution time of the second random access resource group does not depend on the first backoff parameter value and the first counter reaches the first value; or, the execution time of the action selection of the second random access resource group depends on the first backoff parameter value.
  • the first backoff parameter value and the first counter does not reach the first value; the first counter is used to determine the number of times Preamble is sent.
  • the initial value of the first counter is equal to 1.
  • the initial value of the first counter is equal to 0.
  • the first counter is a MAC sublayer counter.
  • the first counter is PREAMBLE_TRANSMISSION_COUNTER.
  • the first counter is PREAMBLE_POWER_RAMPING_COUNTER.
  • the first counter is a counter other than PREAMBLE_TRANSMISSION_COUNTER and PREAMBLE_POWER_RAMPING_COUNTER.
  • the name of the first counter includes at least one of PREAMBLE or TRANSMISSION or POWER or RAMPING or COUNTER or Msg1 (Message 1, Message 1) or PRACH or Repetition.
  • the first value is configurable.
  • the first value is preconfigured.
  • the first numerical value is a positive integer.
  • the first value is configured by an RRC message.
  • the first value is not greater than the maximum number of sending random access preambles in the first random access process.
  • the first value is not greater than preambleTransMax.
  • the name of the first value includes at least one of TransMax or Msg1 (Message 1, Message 1) or PRACH or Repetition.
  • the first value is used to determine the maximum number of random access attempts in a random access resource set.
  • the first value is used to determine the minimum number of times to start performing PRACH repetitions in the first random access process.
  • the first value is equal to the second value +1.
  • the second value is configurable.
  • the second value is preconfigured.
  • the second numerical value is a positive integer.
  • the second value is configured by an RRC message.
  • the second value is not greater than the maximum number of sending random access preambles in the first random access process.
  • the second value is not greater than preambleTransMax.
  • the name of the second value includes at least one of TransMax or Msg1 (Message 1, Message 1) or PRACH or Repetition.
  • the first counter is increased by 1 each time.
  • the first counter is increased by no less than 1 each time.
  • the first counter is incremented.
  • the first counter is incremented.
  • whether the first counter is incremented is related to whether a Msg3 is sent.
  • the first counter is incremented and the one Msg3 is not sent.
  • the first counter is not incremented and the one Msg3 is sent.
  • whether the first counter is incremented is related to whether the one RAR is received.
  • the first counter is incremented and the one RAR is not received.
  • the first counter is not incremented and the one RAR is received.
  • the first counter is incremented in a time interval from sending a Preamble according to the first random access resource group to sending a Preamble according to the second random access resource group.
  • the first counter is increased and the first Msg3 was not sent.
  • the first counter is increased and the first RAR not received.
  • PRACH repetition is not performed; after the first counter reaches the first value, PRACH repetition is performed. ;
  • K1 is equal to 1.
  • the first set of conditions when the first counter reaches the first value, the first set of conditions is satisfied; otherwise, the first set of conditions is not satisfied.
  • the first set of conditions is satisfied; as long as the first counter does not reach the first value, the first set of conditions is not satisfied.
  • the incremented first counter reaches the first value
  • the first set of conditions is satisfied; otherwise, the first set of conditions is satisfied; otherwise, the first set of conditions is satisfied.
  • a set of conditions is not satisfied.
  • the first condition set is satisfied; as long as the incremented first counter The first counter has not reached the first value, and the first set of conditions is satisfied.
  • the first value is applied.
  • the first value is configured.
  • Embodiment 13 illustrates a structural block diagram of a processing device used in a first node according to an embodiment of the present application; as shown in FIG. 13 .
  • the processing device 1300 in the first node includes a first processor 1301 .
  • the first processor 1301 in the first random access process, sends the Preamble according to the first random access resource group; in response to sending the Preamble according to the first random access resource group, receives the first MAC sub-PDU, so The first MAC sub-PDU indicates the first backoff parameter value; as a response that the first random access process is not completed, select a second random access resource group and send a Preamble according to the second random access resource group. ;
  • the first processor 130 as a response that the first random access process is not completed, performs a variable initialization process before selecting the second random access resource group in the behavior; wherein , the execution time of selecting the second random access resource group for the behavior does not depend on the first backoff parameter value.
  • the second random access resource group is selected immediately after the first random access process is not completed; the execution time of the behavior of selecting the second random access resource group does not depend on the The value of the first fallback parameter.
  • the first processor 1301 determines a first back-off time before the action selects the second random access resource group. ; Wherein, the execution time of the behavior selection of the second random access resource group depends on the first backoff time; the first backoff time depends on the first backoff parameter value.
  • the first random access resource group consists of K1 air interface resources
  • the second random access resource group consists of K2 air interface resources
  • the K1 is a positive integer
  • the K2 is greater than 1 integer
  • the behavior of selecting whether the execution time of the second random access resource group depends on the first backoff parameter value and the second random access resource group includes: the behavior of selecting the second random access resource group The execution time of the second random access resource group does not depend on the first backoff parameter value and K1 is greater than the first threshold and K2 is greater than the first threshold; or, the behavior selects the second random access resource group The execution time of depends on the first backoff parameter value and K1 is less than the first threshold and K2 is less than the first threshold.
  • the behavior of selecting whether the execution time of the second random access resource group depends on the first backoff parameter value and the second random access resource group includes: the behavior of selecting the second random access resource group The execution time of the second random access resource group depends on the first backoff parameter value and the second random access resource group belongs to the first random access resource set; or, the behavior selects the second random access resource set.
  • the execution time of the incoming resource group does not depend on the first backoff parameter value and the second random access resource group does not belong to the first random access resource set.
  • the behavior of selecting whether the execution time of the second random access resource group depends on the first backoff parameter value and the second random access resource group includes: the behavior of selecting the The execution time of the second random access resource group does not depend on the first backoff parameter value and the first counter reaches the first value; or, the execution time of the behavior selection of the second random access resource group depends on the The first backoff parameter value and the first counter have not reached the first value; the first counter is used to determine the number of times the Preamble is sent.
  • the first processor 130 determines whether to rely on the first backoff parameter value based on whether the first condition set is satisfied. Execution time of the random access resource selection process; wherein, in the first random access resource selection process, the second random access resource group is selected; if the first condition set is satisfied, regardless of all The first fallback parameter value determines the execution time of the first random access resource selection process; if the first set of conditions is not met, the first random access parameter value is relied upon to determine The execution time of the resource selection process.
  • the first processor 1301 includes a first receiver.
  • the first processor 1301 includes a first transmitter.
  • the first processor 1301 includes at least a first receiver and a first transmitter.
  • the first receiver includes an antenna 452, a receiver 454, a multi-antenna receiving processor 458, a receiving processor 456, a controller/processor 459, a memory 460 and a data source in Figure 4 of this application. 467.
  • the first receiver includes the antenna 452, the receiver 454, the multi-antenna receiving processor 458, and the receiving processor 456 in Figure 4 of this application.
  • the first receiver includes the antenna 452, the receiver 454, and the receiving processor 456 in Figure 4 of this application.
  • the first transmitter includes the antenna 452, transmitter 454, multi-antenna transmit processor 457, transmit processor 468, controller/processor 459, memory 460 and data source in Figure 4 of this application. 467.
  • the first transmitter includes the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, and the transmission processor 468 in Figure 4 of this application.
  • the first transmitter includes the antenna 452, the transmitter 454, and the transmission processor 468 in Figure 4 of this application.
  • Embodiment 14 illustrates a structural block diagram of a processing device used in a second node according to an embodiment of the present application; as shown in FIG. 14 .
  • the processing device 1400 in the second node includes a second transmitter 1401 and a second receiver 1402.
  • the second receiver 1402 during the first random access process, receives the Preamble sent according to the first random access resource group;
  • the second transmitter 140 in response to receiving the Preamble sent according to the first random access resource group, sends the first MAC sub-PDU, where the first MAC sub-PDU indicates the first backoff parameter value;
  • the second receiver 1402 receives the Preamble sent according to the second random access resource group
  • the second random access resource group in response to the fact that the first random access process is not completed, is selected; Whether the selected execution time of the second random access resource group depends on the first backoff parameter value is related to the second random access resource group; the first random access resource group and the second random access resource group Incoming resource groups are assigned to four-step random access.
  • a variable initialization process is performed; wherein, the second random access resource The selected execution time of the group does not depend on the first backoff time.
  • the second random access resource group is selected; the execution time of the selected second random access resource group does not depend on the first random access resource group. One fallback time.
  • the first backoff time is determined; wherein the second random access The execution time of the selected resource group depends on the first rollback time; the first rollback time depends on the first rollback parameter value.
  • the first random access resource group consists of K1 air interface resources
  • the second random access resource group consists of K2 air interface resources
  • the K1 is a positive integer
  • the K2 is greater than 1. integer.
  • the behavior of selecting whether the execution time of the second random access resource group depends on the first backoff parameter value and the second random access resource group includes: the behavior of selecting the The execution time of the second random access resource group does not depend on the first backoff parameter value and K1 is greater than the first threshold and K2 is greater than the first threshold; or, the behavior selects the second random access resource group The execution time of depends on the first backoff parameter value and K1 is less than the first threshold and K2 is less than the first threshold.
  • the behavior of selecting whether the execution time of the second random access resource group depends on the first backoff parameter value and the second random access resource group includes: the behavior of selecting the The execution time of the second random access resource group depends on the first backoff parameter value and the second random access resource group belongs to the first random access resource set; or, the behavior selects the second random access resource The execution time of the incoming resource group does not depend on the first backoff parameter value and the second random access resource group does not belong to the first random access resource set.
  • the behavior of selecting whether the execution time of the second random access resource group depends on the first backoff parameter value and the second random access resource group includes: the behavior of selecting the The execution time of the second random access resource group does not depend on the first backoff parameter value and the first counter reaches the first value; or, the execution time of the behavior selection of the second random access resource group depends on the The first backoff parameter value and the first counter have not reached the first value; the first counter is used to determine the number of times the Preamble is sent.
  • whether the first set of conditions is satisfied is used to determine whether to rely on the first backoff parameter value to determine the first random access resource selection process. execution time; wherein, in the first random access resource selection process, the second random access resource group is selected; if the first set of conditions is met, the first random access resource selection The execution time of the process does not depend on the first backoff parameter value; if the first condition set is not satisfied, the execution time of the first random access resource selection process depends on the first backoff parameter value.
  • the second transmitter 1401 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475, and the memory 476 in Figure 4 of this application.
  • the second transmitter 1401 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471 and the transmission processor 416 in Figure 4 of this application.
  • the second transmitter 1401 includes the antenna 420, the transmitter 418, and the transmission processor 416 in Figure 4 of this application.
  • the second receiver 1402 includes the antenna 420, receiver 418, multi-antenna receiving processor 472, receiving processor 470, controller/processor 475, and memory 476 in Figure 4 of this application.
  • the second receiver 1402 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, and the receiving processor 470 in Figure 4 of this application.
  • the second receiver 1402 includes the antenna 420, the receiver 418, and the receiving processor 470 in Figure 4 of this application.
  • User equipment, terminals and UEs in this application include but are not limited to drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, IoT terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC, enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost tablets and other wireless communication equipment.
  • MTC Machine Type Communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point, transmitting and receiving node) and other wireless communications equipment.
  • gNB NR Node B
  • TRP Transmitter Receiver Point

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的通信节点中的方法和装置。通信节点在第一随机接入过程中,根据第一随机接入资源组发送Preamble;作为根据所述第一随机接入资源组发送Preamble的响应,接收第一MAC子PDU,所述第一MAC子PDU指示第一回退参数值;作为所述第一随机接入过程未被完成的响应,选择第二随机接入资源组,根据所述第二随机接入资源组发送Preamble;其中,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关;所述第一随机接入资源组和所述第二随机接入资源组都被分配给四步随机接入。本申请针对PRACH的上行链路覆盖增强,提出了一种自适应调整执行随机接入资源选择过程的执行时间的随机接入回退机制。

Description

一种被用于无线通信的通信节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及覆盖增强的传输方法和装置。
背景技术
覆盖(Coverage)是运营商在进行蜂窝通信网络商业化时考虑的关键因素之一,因为它直接影响服务质量(service quality)以及资本支出(CAPEX)和运营成本(OPEX)。在实际部署的大多数场景中,上行链路(Uplink,UL)性能可能是瓶颈,而在一些新兴的垂直用例中,上行链路流量很大,例如视频上传。在Rel-17“NR(New Radio,新空口)覆盖增强”工作项目(work item,WI)中,针对PUSCH(Physical uplink shared channel,物理上行链路共享信道)、PUCCH(Physical uplink control channel,物理上行链路控制信道)和Msg3(Message 3,消息3)的NR覆盖率进行了扩展增强。然而,PRACH(Physical random access channel,物理随机接入信道)覆盖的提高尚未得到解决。由于PRACH传输在许多过程中都是非常重要的,如初始接入和波束失效恢复,Rel-18成立了“NR覆盖的进一步增强(Further NR coverage enhancements)”工作项目,进一步增强PRACH的上行链路覆盖。
发明内容
现有协议中,通过基于回退时间(backoff time)的随机接入(RandomAccess,RA)回退(backoff)机制解决小区过载(overload)问题,如果用户设备(User Equipment,UE)在随机接入过程中接收到一个回退指示(Backoff Indicator,BI),将PREAMBLE_BACKOFF设置为通过查表确定的一个回退参数值(Backoff Parameter value)和由RRC(Radio Resource Control,无线电资源控制)消息配置的一个回退因子(SCALING_FACTOR_BI)的乘积;如果随机接入过程没有被完成,根据PREAMBLE_BACKOFF确定一个回退时间,在这个回退时间之后才执行随机接入资源选择过程。随机接入回退机制在解决小区过载问题的同时,增加了当前的随机接入过程的时延。
在随机接入(Random Access)过程中执行PRACH重复(Repetition)是增强PRACH的上行链路覆盖的一种有效手段,由于PRACH重复会导致一次PRACH尝试所占用时频资源增加,当大量用户设备发起随机接入时,小区的过载状态(overload condition)以及针对PRACH重复的随机接入资源配置和传统网络相比会发生变化,现有的基于回退时间的随机接入回退机制不能很好的解决PRACH重复的小区负载均衡问题。因此,针对PRACH重复的小区负载均衡问题,随机接入回退机制需要增强。
针对上述问题,本申请提供了一种随机接入的解决方案。针对上述问题描述中,采用NR系统作为一个例子;本申请也同样适用于例如LTE(Long Term Evolution,长期演进)系统的场景;进一步的,虽然本申请的初衷是针对Uu空口,但本申请也能被用于PC5口。进一步的,虽然本申请的初衷是针对终端与基站场景,但本申请也同样适用于V2X(Vehicle-to-Everything,车联网)场景,终端与中继,以及中继与基站之间的通信场景,取得类似的终端与基站场景中的技术效果。进一步的,虽然本申请的初衷是针对终端与基站场景,但本申请也同样适用于IAB(Integrated Access and Backhaul,集成接入和回传)的通信场景,取得类似的终端与基站场景中的技术效果。进一步的,虽然本申请的初衷是针对地面网络(Terrestrial Network,地面网络)场景,但本申请也同样适用于非地面网络(Non-Terrestrial Network,NTN)的通信场景,取得类似的TN场景中的技术效果。此外,不同场景采用统一解决方案还有助于降低硬件复杂度和成本。
作为一个实施例,对本申请中的术语(Terminology)的解释参考3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
需要说明的是,在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
在第一随机接入过程中,根据第一随机接入资源组发送Preamble;
作为根据所述第一随机接入资源组发送Preamble的响应,接收第一MAC(Medium Access Control,媒体接入控制)子PDU(subPDU),所述第一MAC子PDU指示第一回退参数值;
作为所述第一随机接入过程未被完成的响应,选择第二随机接入资源组,根据所述第二随机接入资源组发送Preamble;
其中,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关;所述第一随机接入资源组和所述第二随机接入资源组都被分配给四步随机接入(4-step RA)。
在第一随机接入过程中,根据第一随机接入资源组发送Preamble;
作为根据所述第一随机接入资源组发送Preamble的响应,接收第一MAC子PDU,所述第一MAC子PDU指示第一回退参数值;
作为所述第一随机接入过程未被完成的响应,选择第二随机接入资源组,根据所述第二随机接入资源组发送Preamble;
其中,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关;所述第一随机接入资源组和所述第二随机接入资源组都被分配给两步随机接入(2-step RA)。
作为一个实施例,本申请要解决的问题包括:如何解决PRACH重复的小区过载问题。
作为一个实施例,本申请要解决的问题包括:如何缩短随机接入时延。
作为一个实施例,本申请要解决的问题包括:如何确定选择第二随机接入资源组的执行时间。
作为一个实施例,上述方法的特质包括:所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关。
作为一个实施例,上述方法的特质包括:所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退参数值,或者,所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值。
作为一个实施例,上述方法的好处包括:避免只能在一个回退时间后才能执行所述行为选择所述第二随机接入资源组,缩短了随机接入时延。
作为一个实施例,上述方法的好处包括:当所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值时,所述行为选择所述第二随机接入资源组无需等待一个回退时间,缩短了随机接入时延。
作为一个实施例,上述方法的好处包括:自适应调整所述行为选择所述第二随机接入资源组的执行时间,解决了PRACH重复的小区过载问题的同时缩短了随机接入时延。
根据本申请的一个方面,其特征在于,包括:
作为所述第一随机接入过程未被完成的响应,在所述行为选择所述第二随机接入资源组之前,执行变量初始化过程;
其中,所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值。
根据本申请的一个方面,其特征在于,紧跟所述第一随机接入过程未被完成,所述第二随机接入资源组被选择;所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值。
根据本申请的一个方面,其特征在于,包括:
作为所述第一随机接入过程未被完成的响应,在所述行为选择所述第二随机接入资源组之前,确定第一回退时间;
其中,所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退时间;所述第一回退时间依赖所述第一回退参数值。
根据本申请的一个方面,其特征在于,所述第一随机接入资源组由K1个空口资源组成,所述第二随机接入资源组由K2个空口资源组成;所述K1是正整数,所述K2是大于1的整数。
根据本申请的一个方面,其特征在于,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关包括:所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值并且K1大于第一阈值且K2大于所述第一阈值;或者,所述行为选择所述第 二随机接入资源组的执行时间依赖所述第一回退参数值并且K1小于第一阈值且K2小于所述第一阈值。
根据本申请的一个方面,其特征在于,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关包括:所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退参数值并且所述第二随机接入资源组属于第一随机接入资源集合;或者,所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值并且所述第二随机接入资源组不属于第一随机接入资源集合。
根据本申请的一个方面,其特征在于,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关包括:所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值并且第一计数器达到第一数值;或者,所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退参数值并且第一计数器未达到第一数值;所述第一计数器被用于确定Preamble的发送次数。
根据本申请的一个方面,其特征在于,包括:
作为所述第一随机接入过程未被完成的响应,根据第一条件集合是否被满足确定是否依赖所述第一回退参数值确定第一随机接入资源选择过程的执行时间;
其中,在所述第一随机接入资源选择过程中,所述第二随机接入资源组被选择;如果所述第一条件集合被满足,不依赖所述第一回退参数值确定所述第一随机接入资源选择过程的执行时间;如果所述第一条件集合不被满足,依赖所述第一回退参数值确定所述第一随机接入资源选择过程的执行时间。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
在第一随机接入过程中,接收根据第一随机接入资源组发送的Preamble;
作为接收根据所述第一随机接入资源组发送的Preamble的响应,发送第一MAC子PDU,所述第一MAC子PDU指示第一回退参数值;
接收根据第二随机接入资源组发送的Preamble;
其中,作为所述第一随机接入过程未被完成的响应,所述第二随机接入资源组被选择;所述第二随机接入资源组被选择的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关;所述第一随机接入资源组和所述第二随机接入资源组都被分配给四步随机接入。
根据本申请的一个方面,其特征在于,作为所述第一随机接入过程未被完成的响应,在所述第二随机接入资源组被选择之前,变量初始化过程被执行;其中,所述第二随机接入资源组被选择的执行时间不依赖所述第一回退时间。
根据本申请的一个方面,其特征在于,紧跟所述第一随机接入过程未被完成,所述第二随机接入资源组被选择;所述第二随机接入资源组被选择的执行时间不依赖所述第一回退时间。
根据本申请的一个方面,其特征在于,作为所述第一随机接入过程未被完成的响应,在所述第二随机接入资源组被选择之前,第一回退时间被确定;其中,所述第二随机接入资源组被选择的执行时间依赖所述第一回退时间;所述第一回退时间依赖所述第一回退参数值。
根据本申请的一个方面,其特征在于,所述第一随机接入资源组由K1个空口资源组成,所述第二随机接入资源组由K2个空口资源组成;所述K1是正整数,所述K2是大于1的整数。
根据本申请的一个方面,其特征在于,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关包括:所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值并且K1大于第一阈值且K2大于所述第一阈值;或者,所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退参数值并且K1小于第一阈值且K2小于所述第一阈值。
根据本申请的一个方面,其特征在于,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关包括:所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退参数值并且所述第二随机接入资源组属于第一随机接入资源集合;或者,所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值并且所述第二随机接入资源组不属于第一随机接入资源集合。
根据本申请的一个方面,其特征在于,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关包括:所述行为选择所述第二随机接入资源组的执行时 间不依赖所述第一回退参数值并且第一计数器达到第一数值;或者,所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退参数值并且第一计数器未达到第一数值;所述第一计数器被用于确定Preamble的发送次数。
根据本申请的一个方面,其特征在于,作为所述第一随机接入过程未被完成的响应,第一条件集合是否被满足被用于确定是否依赖所述第一回退参数值确定第一随机接入资源选择过程的执行时间;其中,在所述第一随机接入资源选择过程中,所述第二随机接入资源组被选择;如果所述第一条件集合被满足,所述第一随机接入资源选择过程的执行时间不依赖所述第一回退参数值;如果所述第一条件集合不被满足,所述第一随机接入资源选择过程的执行时间依赖所述第一回退参数值。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
在第一随机接入过程中,根据第一随机接入资源组发送Preamble;作为根据所述第一随机接入资源组发送Preamble的响应,接收第一MAC子PDU,所述第一MAC子PDU指示第一回退参数值;作为所述第一随机接入过程未被完成的响应,选择第二随机接入资源组,根据所述第二随机接入资源组发送Preamble;
其中,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关;所述第一随机接入资源组和所述第二随机接入资源组都被分配给四步随机接入。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二接收机,在第一随机接入过程中,接收根据第一随机接入资源组发送的Preamble;
第二发射机,作为接收根据所述第一随机接入资源组发送的Preamble的响应,发送第一MAC子PDU,所述第一MAC子PDU指示第一回退参数值;
所述第二接收机,接收根据第二随机接入资源组发送的Preamble;
其中,作为所述第一随机接入过程未被完成的响应,所述第二随机接入资源组被选择;所述第二随机接入资源组被选择的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关;所述第一随机接入资源组和所述第二随机接入资源组都被分配给四步随机接入。
作为一个实施例,和传统方案相比,本申请设计了适合PRACH重复的随机接入回退机制,具备如下优势:
-.避免小区过载;
-.调整小区的负载状态;
-.缩短随机接入时延;
-.解决了PRACH重复的小区过载问题的同时缩短了随机接入时延;
-.随机接入过程未被完成时,自适应调整执行随机接入资源选择过程的执行时间。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的Preamble和第一MAC子PDU的传输的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的另一个实施例的无线信号传输流程图;
图7示出了根据本申请的一个实施例的选择第二随机接入资源组的执行时间不依赖第一回退参数值的流程图;
图8示出了根据本申请的另一个实施例的选择第二随机接入资源组的执行时间不依赖第一回退参数值的流程图;
图9示出了根据本申请的一个实施例的选择第二随机接入资源组的执行时间依赖第一回退参数值的流程图;
图10示出了根据本申请的一个实施例的选择第二随机接入资源组的执行时间是否依赖第一回退参数 值与第二随机接入资源组有关的示意图;
图11示出了根据本申请的另一个实施例的选择第二随机接入资源组的执行时间是否依赖第一回退参数值与第二随机接入资源组有关的示意图;
图12示出了根据本申请的再一个实施例的选择第二随机接入资源组的执行时间是否依赖第一回退参数值与第二随机接入资源组有关的示意图;
图13示出了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;
图14示出了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的Preamble和第一MAC子PDU的传输的流程图,如附图1所示。附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序并不代表所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的第一节点,在步骤101中,在第一随机接入过程中,根据第一随机接入资源组发送Preamble;在步骤102中,作为根据所述第一随机接入资源组发送Preamble的响应,接收第一MAC子PDU,所述第一MAC子PDU指示第一回退参数值;在步骤103中,作为所述第一随机接入过程未被完成的响应,选择第二随机接入资源组,根据所述第二随机接入资源组发送Preamble;其中,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关。
作为一个实施例,所述第一随机接入资源组被用于发送Preamble。
作为一个实施例,所述第一随机接入资源组被用于一次PRACH尝试。
作为一个实施例,所述第二随机接入资源组被用于发送Preamble。
作为一个实施例,所述第二随机接入资源组被用于一次PRACH尝试。
作为一个实施例,所述第一随机接入资源组和所述第二随机接入资源组都被分配给四步随机接入。
作为该实施例的一个子实施例,在所述第一随机接入过程的初始化期间,所述第一随机接入过程的类型被设置为四步随机接入。
作为该实施例的一个子实施例,在所述第一随机接入过程的初始化期间,将RA_TYPE设置为4-stepRA。
作为该实施例的一个子实施例,根据所述第一随机接入资源组发送的Preamble指示四步随机接入。
作为该实施例的一个子实施例,根据所述第二随机接入资源组发送的Preamble指示四步随机接入。
作为该实施例的一个子实施例,在本申请中的所述K1个空口资源中的任一空口资源上发送的任一Preamble指示四步随机接入。
作为该实施例的一个子实施例,本申请中的所述K1个空口资源中的任一空口资源被配置给四步随机接入。
作为该实施例的一个子实施例,在本申请中的所述K2个空口资源中的任一空口资源上发送的任一Preamble指示四步随机接入。
作为该实施例的一个子实施例,本申请中的所述K2个空口资源中的任一空口资源被配置给四步随机接入。
作为该实施例的一个子实施例,所述第一随机接入资源集合被配置给四步随机接入。
作为该实施例的一个子实施例,所述第二随机接入资源集合被配置给四步随机接入。
作为一个实施例,所述第一随机接入资源组和所述第二随机接入资源组都被分配给两步随机接入。
作为该实施例的一个子实施例,在所述第一随机接入过程的初始化期间,所述第一随机接入过程的类型被设置为两步随机接入。
作为该实施例的一个子实施例,在所述第一随机接入过程的初始化期间,将RA_TYPE设置为2-stepRA。
作为该实施例的一个子实施例,根据所述第一随机接入资源组发送的Preamble指示两步随机接入。
作为该实施例的一个子实施例,根据所述第二随机接入资源组发送的Preamble指示两步随机接入。
作为该实施例的一个子实施例,在所述第一随机接入资源组中的一个空口资源上发送的任一Preamble 指示两步随机接入。
作为该实施例的一个子实施例,在本申请中的所述K1个空口资源中的任一空口资源上发送的任一Preamble指示两步随机接入。
作为该实施例的一个子实施例,本申请中的所述K1个空口资源中的任一空口资源被配置给两步随机接入。
作为该实施例的一个子实施例,在本申请中的所述K2个空口资源中的任一空口资源上发送的任一Preamble指示两步随机接入。
作为该实施例的一个子实施例,本申请中的所述K2个空口资源中的任一空口资源被配置给两步随机接入。
作为该实施例的一个子实施例,所述第一随机接入资源集合被配置给两步随机接入。
作为该实施例的一个子实施例,所述第二随机接入资源集合被配置给两步随机接入。
典型的,所述第一随机接入资源组和所述第二随机接入资源组都被分配给四步随机接入。
作为一个实施例,所述第一随机接入资源组所属的随机接入资源集合是所述第一随机接入资源集合,所述第二随机接入资源组所属的随机接入资源集合是所述第一随机接入资源集合。
作为一个实施例,所述第一随机接入资源组所属的随机接入资源集合是所述第一随机接入资源集合,所述第二随机接入资源组所属的随机接入资源集合是所述第二随机接入资源集合。
作为一个实施例,所述第一随机接入资源组属于所述第一随机接入资源集合。
作为一个实施例,在所述第一随机接入过程的初始化期间,所述第一随机接入资源集合被选择。
作为一个实施例,作为所述第一随机接入过程未被完成的响应,在所述第一随机接入资源集合中选择所述第二随机接入资源组。
作为一个实施例,作为所述第一随机接入过程未被完成的响应,在所述第二随机接入资源集合中选择所述第二随机接入资源组。
作为一个实施例,所述第一随机接入资源组和所述第二随机接入资源组被配置给所述第一小区。
作为一个实施例,所述第一随机接入资源组和所述第二随机接入资源组被配置给所述第一小区的同一个上行链路(Uplink,UL)载波(Carrier)。
作为一个实施例,所述第一随机接入资源组和所述第二随机接入资源组被配置给所述第一小区的同一个UL BWP(Bandwidth Part,带宽部分)。
作为一个实施例,所述第一随机接入资源组未被配置给PRACH重复,所述第二随机接入资源组被配置给PRACH重复。
作为一个实施例,所述第一随机接入资源组被配置给PRACH重复,所述第二随机接入资源组被配置给PRACH重复。
作为一个实施例,所述第一随机接入资源组被关联到同一个SSB(Synchronization Signal Block,同步信号块)。
作为一个实施例,所述第一随机接入资源组被关联到至少一个SSB。
作为一个实施例,所述第一随机接入资源组被关联到多个SSB。
作为一个实施例,所述第二随机接入资源组被关联到同一个SSB。
作为一个实施例,所述第二随机接入资源组被关联到至少一个SSB。
作为一个实施例,所述第二随机接入资源组被关联到多个SSB。
作为一个实施例,所述第一随机接入资源组包括至少一个Preamble。
作为一个实施例,所述第一随机接入资源组包括至少一个PRACH时机(Occasion)。
作为一个实施例,所述第一随机接入资源组包括至少一个空口资源。
作为一个实施例,所述第一随机接入资源组包括至少一个上行链路载波。
作为一个实施例,所述第一随机接入资源组包括至少一个子载波。
作为一个实施例,所述第一随机接入资源组包括至少一个UL BWP。
作为一个实施例,所述第一随机接入资源组包括至少一个RE(Resource Element,资源单元)。
作为一个实施例,所述第一随机接入资源组包括至少一个PRB(Physical Resource Block,物理资源 块)。
作为一个实施例,所述第一随机接入资源组包括至少一个时隙(Slot)。
作为一个实施例,所述第一随机接入资源组包括至少一个符号(Symbol)。
作为一个实施例,所述第一随机接入资源组包括至少一个SSB。
作为一个实施例,所述第一随机接入资源组包括至少一个CSI-RS(Channel State Information RS)。
作为一个实施例,所述第二随机接入资源组包括至少一个Preamble。
作为一个实施例,所述第二随机接入资源组包括至少一个PRACH时机。
作为一个实施例,所述第二随机接入资源组包括至少一个空口资源。
作为一个实施例,所述第二随机接入资源组包括至少一个上行链路载波。
作为一个实施例,所述第二随机接入资源组包括至少一个子载波。
作为一个实施例,所述第二随机接入资源组包括至少一个UL BWP。
作为一个实施例,所述第二随机接入资源组包括至少一个RE。
作为一个实施例,所述第二随机接入资源组包括至少一个PRB。
作为一个实施例,所述第二随机接入资源组包括至少一个时隙。
作为一个实施例,所述第二随机接入资源组包括至少一个符号。
作为一个实施例,所述第二随机接入资源组包括至少一个SSB。
作为一个实施例,所述第二随机接入资源组包括至少一个CSI-RS。
作为一个实施例,从根据所述第一随机接入资源组发送Preamble到根据所述第二随机接入资源组发送Preamble之间的时间间隔内,根据所述第一随机接入资源组发送的Preamble和根据所述第二随机接入资源组发送的Preamble之外的属于所述第一随机接入过程的任一Preamble未被发送。
作为一个实施例,从根据所述第一随机接入资源组发送Preamble到选择所述第二随机接入资源组之间的时间间隔内,属于所述第一随机接入过程的任一随机接入资源组未被选择。
作为一个实施例,从根据所述第一随机接入资源组发送Preamble到根据所述第二随机接入资源组发送Preamble之间的时间间隔内,仅执行一次随机接入资源选择过程。
作为一个实施例,从根据所述第一随机接入资源组发送Preamble到根据所述第二随机接入资源组发送Preamble之间的时间间隔内,为了所述第一随机接入过程的PREAMBLE_POWER_RAMPING_COUNTER仅被增加1。
作为一个实施例,从根据所述第一随机接入资源组发送Preamble到根据所述第二随机接入资源组发送Preamble之间的时间间隔内,为了所述第一随机接入过程的PREAMBLE_POWER_RAMPING_COUNTER被增加所述K1。
作为一个实施例,从根据所述第一随机接入资源组发送Preamble到根据所述第二随机接入资源组发送Preamble之间的时间间隔内,为了所述第一随机接入过程的PREAMBLE_TRANSMISSION_COUNTER被增加所述K1。
作为一个实施例,从根据所述第一随机接入资源组发送Preamble到根据所述第二随机接入资源组发送Preamble之间的时间间隔内,为了所述第一随机接入过程的PREAMBLE_POWER_RAMPING_COUNTER被增加不大于所述K1的一个正整数。
作为一个实施例,从根据所述第一随机接入资源组发送Preamble到根据所述第二随机接入资源组发送Preamble之间的时间间隔内,为了所述第一随机接入过程的PREAMBLE_TRANSMISSION_COUNTER被增加不大于所述K1的一个正整数。
作为一个实施例,在所述行为根据所述第一随机接入资源组发送Preamble之前,选择所述第一随机接入资源组。
作为一个实施例,所述行为根据所述第一随机接入资源组发送Preamble包括:在所述第一随机接入资源组所包括的所述K1个空口资源上发送Preamble。
作为一个实施例,所述行为根据所述第一随机接入资源组发送Preamble包括:根据所述第一随机接入资源组所关联的PRACH时机发送Preamble。
作为一个实施例,所述行为根据所述第一随机接入资源组发送Preamble包括:按照根据所述第一随 机接入资源组确定的PREAMBLE_INDEX发送Preamble。
作为一个实施例,所述行为根据所述第一随机接入资源组发送Preamble包括:按照根据所述第一随机接入资源组确定的PREAMBLE_RECEIVED_TARGET_POWER发送Preamble。
作为一个实施例,所述第一随机接入过程在RRC_CONNECTED状态被发起。
作为一个实施例,所述第一随机接入过程在RRC_INACTIVE状态被发起。
作为一个实施例,所述第一随机接入过程在RRC_IDLE状态被发起。
作为一个实施例,所述第一随机接入过程被MAC子层(sublayer)触发。
作为一个实施例,所述第一随机接入过程被RRC子层触发。
作为一个实施例,所述第一随机接入过程被PDCCH(Physical Downlink Control Channel,物理下行链路控制信道)order触发。
作为一个实施例,所述第一随机接入过程被用于初始接入(Initial Access)。
作为一个实施例,所述第一随机接入过程被用于从RRC_INACTIVE状态恢复RRC连接。
作为一个实施例,所述第一随机接入过程被用于BFR(Beam Failure Recovery,波束失败恢复)。
作为一个实施例,所述第一随机接入过程被用于SDT(Small Data Transmission,小数据传输)。
作为一个实施例,所述第一随机接入过程是一个四步随机接入过程。
作为一个实施例,所述第一随机接入过程是基于竞争的随机接入(Contention Based Random Access,CBRA)过程。
作为一个实施例,所述第一随机接入过程在第一小区上被执行。
作为一个实施例,所述第一随机接入过程在针对第一小区所属的小区组的MAC实体上被执行。
作为一个实施例,所述第一小区是SpCell(Special Cell,特殊小区)。
作为一个实施例,所述第一小区是PCell(Primary Cell,主小区)。
作为一个实施例,所述第一小区是PSCell(Primary SCG(Secondary Cell Group,辅小区组)Cell,SCG主小区)。
作为一个实施例,所述第一随机接入资源组被用于PRACH重复。
作为一个实施例,所述第一随机接入资源组不被用于PRACH重复。
作为一个实施例,所述“根据第一随机接入资源组发送Preamble”包括:根据所述第一随机接入资源组发送至少一个Preamble。
作为一个实施例,所述“根据第一随机接入资源组发送Preamble”包括:根据所述第一随机接入资源组发送仅一个Preamble。
作为一个实施例,所述“根据第一随机接入资源组发送Preamble”包括:根据所述第一随机接入资源组发送多个Preamble。
作为一个实施例,作为所述至少一个Preamble被发送的响应,接收第一随机接入响应,所述第一随机接入响应包括至少所述第一MAC子PDU。
作为该实施例的一个子实施例,所述第一随机接入响应是一个MAC PDU。
作为该实施例的一个子实施例,所述第一随机接入响应仅包括所述第一MAC子PDU。
作为该实施例的一个子实施例,所述第一随机接入响应包括所述第一MAC子PDU和至少一个MAC子PDU。
作为一个实施例,所述第一MAC子PDU是针对根据所述第一随机接入资源组发送的Preamble的响应。
作为一个实施例,所述第一MAC子PDU是一个MAC subPDU。
作为一个实施例,所述第一MAC子PDU是一个MAC子头(subheader)。
作为一个实施例,所述第一MAC子PDU不包括RAPID(Random Access Preamble ID)域(field)。
作为一个实施例,所述第一MAC子PDU被用于确定所述第一回退参数值。
作为一个实施例,所述第一MAC子PDU中包括一个BI域。
作为一个实施例,所述第一MAC子PDU中的BI域被用于指示所述第一小区的过载状态(the overload condition in the cell)。
作为一个实施例,所述第一MAC子PDU中的BI域指示所述第一回退参数值。
作为一个实施例,所述第一MAC子PDU中的BI域指示所述第一回退参数值的索引。
作为一个实施例,所述第一MAC子PDU中的BI域被用于确定所述第一回退参数值。
作为一个实施例,所述第一MAC子PDU中的BI域包括4比特。
作为一个实施例,所述第一MAC子PDU中的BI域包括5比特。
作为一个实施例,根据所述第一MAC子PDU通过查表方式确定所述第一回退参数值。
作为一个实施例,根据所述第一MAC子PDU通过查找第一回退表格确定所述第一回退参数值,所述第一回退表格中包括M1个索引,所述M1个索引中的M2个索引指示M2个候选回退参数值。
作为该实施例的一个子实施例,所述M1个索引的所述M2个索引中的每个索引对应所述M2个候选回退参数值中的一个候选回退参数值。
作为该实施例的一个子实施例,所述第一回退表格中包括所述第一回退参数值的索引和所述第一回退参数值。
作为该实施例的一个子实施例,所述第一回退表格是PRACH重复专用的。
作为该实施例的一个子实施例,所述第二回退表格不是PRACH重复专用的。
作为该实施例的一个子实施例,所述第一回退表格参考3GPP TS 38.321中的7.2节中的表格7.2-1。
作为该实施例的一个子实施例,所述M1大于所述M2。
作为该实施例的一个子实施例,所述M1等于所述M2。
作为该实施例的一个子实施例,所述M1等于16,所述M2等于14。
作为该实施例的一个子实施例,所述M1等于16,所述M2等于15。
作为该实施例的一个子实施例,所述M1等于16,所述M2等于16。
作为一个实施例,所述第一回退参数值的单位是毫秒(millisecond)。
作为一个实施例,所述第一回退参数值是预定义的。
作为一个实施例,所述作为所述第一随机接入过程未被完成的响应包括:作为确定所述第一随机接入过程未被完成的响应。
作为一个实施例,所述作为所述第一随机接入过程未被完成的响应包括:至少在确定所述第一随机接入过程未被完成之后。
作为一个实施例,所述作为所述第一随机接入过程未被完成的响应包括:当确定所述第一随机接入过程未被完成时。
作为一个实施例,所述“所述第一随机接入过程未被完成”包括:所述第一随机接入过程未被认为完成。
作为一个实施例,所述“所述第一随机接入过程未被完成”包括:认为所述第一随机接入过程未被成功完成。
作为一个实施例,所述“所述第一随机接入过程未被完成”包括:所述第一随机接入过程未被认为成功完成。
作为一个实施例,至少第一时间窗过期被用于确定所述第一随机接入过程未被完成;所述第一MAC子PDU在所述第一时间窗中被接收。
作为一个实施例,所述第一节点认为随机接入响应接收不成功;所述行为“认为随机接入响应接收不成功”被用于确定所述第一随机接入过程未被完成。
作为该实施例的一个子实施例,至少所述第一时间窗过期被用于确定认为随机接入响应接收不成功。
作为该实施例的一个子实施例,如果所述第一时间窗过期,认为随机接入响应接收不成功。
作为该实施例的一个子实施例,如果所述第一时间窗过期,并且,所述第一时间窗运行期间未接收包括与发送的PREAMBLE_INDEX匹配的随机接入前导标识(Random Access Preamble identifier)的随机接入响应,认为随机接入响应接收不成功。
作为一个实施例,至少第一计时器过期被用于确定所述第一随机接入过程未被完成。
作为一个实施例,至少竞争解决不成功被用于确定所述第一随机接入过程未被完成。
作为一个实施例,所述第一节点认为竞争解决不成功;所述“认为竞争解决不成功”被用于确定所述第一随机接入过程未被完成。
作为该实施例的一个子实施例,所述第一计时器过期被用于确定认为竞争解决不成功。
作为该实施例的一个子实施例,所述第一计时器是MAC子层计时器。
作为该实施例的一个子实施例,所述第一计时器是ra-ContentionResolutionTimer。
作为该实施例的一个子实施例,如果第一计时器过期,认为竞争解决不成功。
作为一个实施例,所述行为选择所述第二随机接入资源组包括:执行第一随机接入资源选择过程,在所述第一随机接入资源选择过程中选择所述第二随机接入资源组。
作为一个实施例,所述行为选择所述第二随机接入资源组包括:确定所述第二随机接入资源组。
作为一个实施例,所述行为选择所述第二随机接入资源组包括:在所述第一随机接入资源集合中选择所述第二随机接入资源组。
作为一个实施例,所述行为选择所述第二随机接入资源组包括:在所述第二随机接入资源集合中选择所述第二随机接入资源组。
作为一个实施例,所述行为选择所述第二随机接入资源组包括:确定本申请中的所述K2个时频资源。
作为一个实施例,所述行为选择所述第二随机接入资源组包括:确定所述第二随机接入资源组关联的至少一个SSB。
作为一个实施例,所述行为选择所述第二随机接入资源组包括:确定所述第二随机接入资源组关联的至少一个空口资源。
作为一个实施例,所述行为选择所述第二随机接入资源组包括:确定所述第二随机接入资源组关联的至少一个PRACH时机。
作为一个实施例,所述行为选择所述第二随机接入资源组包括:确定所述第二随机接入资源组关联的至少一个Preamble。
作为一个实施例,在所述行为根据所述第二随机接入资源组发送Preamble之前,选择所述第二随机接入资源组。
作为一个实施例,所述行为根据所述第二随机接入资源组发送Preamble包括:在所述第二随机接入资源组所包括的所述K1个空口资源上发送Preamble。
作为一个实施例,所述行为根据所述第二随机接入资源组发送Preamble包括:根据所述第二随机接入资源组所关联的PRACH时机发送Preamble。
作为一个实施例,所述行为根据所述第二随机接入资源组发送Preamble包括:按照根据所述第二随机接入资源组确定的PREAMBLE_INDEX发送Preamble。
作为一个实施例,所述行为根据所述第二随机接入资源组发送Preamble包括:按照根据所述第二随机接入资源组确定的PREAMBLE_RECEIVED_TARGET_POWER发送Preamble。
作为一个实施例,所述行为所述选择第二随机接入资源组的执行时间是指:所述第一随机接入资源选择过程的执行时间。
作为一个实施例,所述行为所述选择第二随机接入资源组的执行时间是指:开始执行所述第一随机接入资源选择过程的时间。
作为一个实施例,所述行为所述选择第二随机接入资源组的执行时间是指:开始选择所述第二随机接入资源组的时间。
作为一个实施例,在所述第一随机接入过程的初始化过程中,设置第一回退因子。
作为一个实施例,所述行为设置所述第一回退因子包括:将所述第一回退因子设置为1。
作为一个实施例,所述行为设置所述第一回退因子包括:先将所述第一回退因子设置为1,再将所述第一回退因子设置为第一候选回退因子。
作为一个实施例,所述第一回退因子是一个变量。
作为一个实施例,所述第一回退因子是SCALING_FACTOR_BI。
作为一个实施例,所述第一回退因子的名字中包括SCALING_FACTOR_BI。
作为一个实施例,所述第一回退因子的名字中包括SCALING_FACTOR_BI或者Msg1(Message 1,消息1)或者PRACH或者Repetition中的至少之一。
作为一个实施例,所述第一候选回退因子是一个scalingFactorBI。
作为一个实施例,所述第一候选回退因子是配置给PRACH重复的一个scalingFactorBI。
作为一个实施例,所述第一候选回退因子是可配置的。
作为一个实施例,所述第一候选回退因子被配置。
作为一个实施例,所述第一候选回退因子被配置给PRACH重复。
作为一个实施例,所述第一候选回退因子的至少一个候选大于1。
作为一个实施例,所述第一候选回退因子的至少一个候选不大于1。
作为一个实施例,所述第一候选回退因子的候选包括大于1的整数。
作为一个实施例,所述第一候选回退因子的候选包括大于1的非整数。
作为一个实施例,所述第一候选回退因子的一个候选是1。
作为一个实施例,所述第一候选回退因子的任一候选不是1。
作为一个实施例,所述第一候选回退因子的每个候选大于1。
作为一个实施例,所述第一候选回退因子的每个候选不大于1。
作为一个实施例,所述第一候选回退因子的每个候选小于1。
作为一个实施例,所述第一候选回退因子未被配置。
作为一个实施例,所述第一候选回退因子被配置。
作为一个实施例,所述行为设置所述第一回退因子包括:先将所述第一回退因子设置为1,再将所述第一回退因子设置为第二候选回退因子。
作为一个实施例,所述第二候选回退因子是可配置的。
作为一个实施例,所述第二候选回退因子由RRC消息配置。
作为一个实施例,所述第二候选回退因子的任一候选不大于1。
作为一个实施例,所述第二候选回退因子的任一候选小于1。
作为一个实施例,所述第二候选回退因子未被配置。
作为一个实施例,所述第二候选回退因子被配置。
作为一个实施例,所述第二候选回退因子被配置给NSAG(Network Slice AS Group,网络切片AS(Access Stratum,接入层)组)。
作为一个实施例,所述第二候选回退因子被配置给BFR。
作为一个实施例,所述第一MAC子PDU被接收时,所述第一回退因子被设置为1。
作为一个实施例,所述第一MAC子PDU被接收时,所述第一回退因子被设置为所述第一候选回退因子。
作为一个实施例,所述第一MAC子PDU被接收时,所述第一回退因子被设置为所述第二候选回退因子。
作为一个实施例,作为所述第一MAC子PDU被接收的响应,设置第一回退变量。
作为一个实施例,所述行为设置所述第一回退变量包括:根据至少所述第一回退参数值设置所述第一回退变量。
作为一个实施例,所述行为设置所述第一回退变量包括:根据至少所述第一回退参数值和所述第一回退因子设置所述第一回退变量。
作为一个实施例,所述行为设置所述第一回退变量包括:将第一回退变量设置为所述第一回退参数值与所述第一回退因子的乘积。
作为一个实施例,所述行为设置所述第一回退变量包括:将第一回退变量设置为所述第一回退参数值与所述第一回退因子和第一参数的乘积。
作为一个实施例,所述第一回退变量的名字中包括PREAMBLE_BACKOFF。
作为一个实施例,所述第一回退变量的名字中包括PREAMBLE或者BACKOFF或者Msg1(Message 1,消息1)或者PRACH或者Repetition中的至少之一。
作为一个实施例,所述第一回退变量是PREAMBLE_BACKOFF。
作为一个实施例,所述第一参数与所述K1有关。
作为一个实施例,所述第一参数与所述K2有关。
作为一个实施例,所述第一参数与根据所述第一随机接入资源组发送的Preamble有关。
作为一个实施例,所述第一参数与根据所述第一随机接入资源组发送的Preamble的重复次数有关。
作为一个实施例,所述第一参数与根据所述第一随机接入资源组所关联的SSB的数量有关。
作为一个实施例,所述第一参数与根据所述第一随机接入资源组所关联的PRACH时机的数量有关。
作为一个实施例,所述第一参数与根据所述第二随机接入资源组发送的Preamble有关。
作为一个实施例,所述第一参数与根据所述第二随机接入资源组发送的Preamble的重复次数有关。
作为一个实施例,所述第一参数与根据所述第二随机接入资源组所关联的SSB的数量有关。
作为一个实施例,所述第一参数与根据所述第二随机接入资源组所关联的PRACH时机的数量有关。
作为一个实施例,所述PRACH重复包括:Msg1(Message 1,消息1)重复。
作为一个实施例,所述PRACH重复包括:RACH重复。
作为一个实施例,所述PRACH重复包括:在一次随机接入尝试中发送多个PRACH。
作为一个实施例,所述PRACH重复包括:在两次PREAMBLE_TRANSMISSION_COUNTER更新之间,发送多个PRACH。
作为一个实施例,所述PRACH重复包括:在两次PREAMBLE_POWER_RAMPING_COUNTER更新之间,发送多个PRACH。
作为一个实施例,所述PRACH重复包括:多个连续的PRACH。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。附图2说明了5G NR(New Radio,新空口)/LTE(Long-Term Evolution,长期演进)/LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200。5G NR/LTE/LTE-A网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。5GS/EPS 200包括UE(User Equipment,用户设备)201,RAN(无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230中的至少之一。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。RAN包括节点203和其它节点204。节点203提供朝向UE201的用户和控制平面协议终止。节点203可经由Xn接口(例如,回程)/X2接口连接到其它节点204。节点203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP或某种其它合适术语。节点203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。节点203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201是一个用户设备(User Equipment,UE)。
作为一个实施例,所述UE201是一个基站设备(BaseStation,BS)。
作为一个实施例,所述UE201是一个中继设备。
作为一个实施例,所述节点203对应本申请中的所述第二节点。
作为一个实施例,所述节点203是一个基站设备。
作为一个实施例,所述节点203是一个用户设备。
作为一个实施例,所述节点203是一个中继设备。
作为一个实施例,所述节点203是网关(Gateway)。
典型的,所述UE201是一个用户设备,所述节点203是一个基站设备。
作为一个实施例,所述用户设备支持地面网络(Non-Terrestrial Network,NTN)的传输。
作为一个实施例,所述用户设备支持非地面网络(Terrestrial Network,地面网络)的传输。
作为一个实施例,所述用户设备支持大时延差网络中的传输。
作为一个实施例,所述用户设备支持双连接(Dual Connection,DC)传输。
作为一个实施例,所述用户设备包括飞行器。
作为一个实施例,所述用户设备包括车载终端。
作为一个实施例,所述用户设备包括船只。
作为一个实施例,所述用户设备包括物联网终端。
作为一个实施例,所述用户设备包括工业物联网的终端。
作为一个实施例,所述用户设备包括支持低时延高可靠传输的设备。
作为一个实施例,所述用户设备包括测试设备。
作为一个实施例,所述用户设备包括信令测试仪。
作为一个实施例,所述基站设备包括基站收发台(Base Transceiver Station,BTS)。
作为一个实施例,所述基站设备包括节点B(NodeB,NB)。
作为一个实施例,所述基站设备包括gNB。
作为一个实施例,所述基站设备包括eNB。
作为一个实施例,所述基站设备包括ng-eNB。
作为一个实施例,所述基站设备包括en-gNB。
作为一个实施例,所述基站设备支持在非地面网络的传输。
作为一个实施例,所述基站设备支持在大时延差网络中的传输。
作为一个实施例,所述基站设备支持地面网络的传输。
作为一个实施例,所述基站设备包括宏蜂窝(Marco Cellular)基站。
作为一个实施例,所述基站设备包括微小区(Micro Cell)基站。
作为一个实施例,所述基站设备包括微微小区(Pico Cell)基站。
作为一个实施例,所述基站设备包括家庭基站(Femtocell)。
作为一个实施例,所述基站设备包括支持大时延差的基站设备。
作为一个实施例,所述基站设备包括飞行平台设备。
作为一个实施例,所述基站设备包括卫星设备。
作为一个实施例,所述基站设备包括TRP(Transmitter Receiver Point,发送接收节点)。
作为一个实施例,所述基站设备包括CU(Centralized Unit,集中单元)。
作为一个实施例,所述基站设备包括DU(Distributed Unit,分布单元)。
作为一个实施例,所述基站设备包括测试设备。
作为一个实施例,所述基站设备包括信令测试仪。
作为一个实施例,所述基站设备包括IAB(Integrated Access and Backhaul)-node。
作为一个实施例,所述基站设备包括IAB-donor。
作为一个实施例,所述基站设备包括IAB-donor-CU。
作为一个实施例,所述基站设备包括IAB-donor-DU。
作为一个实施例,所述基站设备包括IAB-DU。
作为一个实施例,所述基站设备包括IAB-MT。
作为一个实施例,所述中继设备包括relay。
作为一个实施例,所述中继设备包括L3relay。
作为一个实施例,所述中继设备包括L2relay。
作为一个实施例,所述中继设备包括路由器。
作为一个实施例,所述中继设备包括交换机。
作为一个实施例,所述中继设备包括用户设备。
作为一个实施例,所述中继设备包括基站设备。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的根据所述第一随机接入资源组发送的任一Preamble生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的根据所述第二随机接入资源组发送的任一Preamble生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一MAC子PDU生成于所述MAC302或者MAC352。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天 线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450至少:在第一随机接入过程中,根据第一随机接入资源组发送Preamble;作为根据所述第一随机接入资源组发送Preamble的响应,接收第一MAC子PDU,所述第一MAC子PDU指示第一回退参数值;作为所述第一随机接入过程未被完成的响应,选择第二随机接入资源组,根据所述第二随机接入资源组发送Preamble;其中,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关;所述第一随机接入资源组和所述第二随机接入资源组都被分配给四步随机接入。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一随机接入过程中,根据第一随机接入资源组发送Preamble;作为根据所述第一随机接入资源组发送Preamble的响应,接收第一MAC子PDU,所述第一MAC子PDU指示第一回退参数值;作为所述第一随机接入过程未被完成的响应,选择第二随机接入资源组,根据所述第二随机接入资源组发送Preamble;其中,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关;所述第一随机接入资源组和所述第二随机接入资源组都被分配给四步随机接入。
作为一个实施例,所述第二通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410至少:在第一随机接入过程中,接收根据第一随机接入资源组发送的Preamble;作为接收根据所述第一随机接入资源组发送的Preamble的响应,发送第一MAC子PDU,所述第一MAC子PDU指示第一回退参数值;接收根据第二随机接入资源组发送的Preamble;其中,作为所述第一随机接入过程未被完成的响应,所述第二随机接入资源组被选择;所述第二随机接入资源组被选择的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关;所述第一随机接入资源组和所述第二随机接入资源组都被分配给四步随机接入。
作为一个实施例,所述第二通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一随机接入过程中,接收根据第一随机接入资源组发送的Preamble;作为接收根据所述第一随机接入资源组发送的Preamble的响应,发送第一MAC子PDU,所述第一MAC子PDU指示第一回退参数值;接收根据第二随机接入资源组发送的Preamble;其中,作为所述第一随机接入过程未被完成的响应,所述第二随机接入资源组被选择;所述第二随机接入资源组被选择的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关;所述第一随机接入资源组和所述第二随机接入资源组都被分配给四步随机接入。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收所述第一MAC子PDU。
作为一个实施例,所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送所述第一MAC子PDU。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收所述第二MAC PDU。
作为一个实施例,所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送所述第二MAC PDU。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收所述第一RAR(Random Access Response,随机接入响应)。
作为一个实施例,所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送所述第一RAR。
作为一个实施例,所述天线452,所述发射器454,所述发射处理器468,所述控制器/处理器459中的至少之一被用于根据所述第一随机接入资源组发送Preamble。
作为一个实施例,所述天线420,所述接收器418,所述接收处理器470,所述控制器/处理器475中的至少之一被用于接收根据所述第一随机接入资源组发送的Preamble。
作为一个实施例,所述天线452,所述发射器454,所述发射处理器468,所述控制器/处理器459中的至少之一被用于发送所述第一Msg3(Message 3,消息3)。
作为一个实施例,所述天线420,所述接收器418,所述接收处理器470,所述控制器/处理器475中的至少之一被用于接收所述第一Msg3。
作为一个实施例,所述天线452,所述发射器454,所述发射处理器468,所述控制器/处理器459中的至少之一被用于根据所述第二随机接入资源组发送Preamble。
作为一个实施例,所述天线420,所述接收器418,所述接收处理器470,所述控制器/处理器475中的至少之一被用于接收根据所述第二随机接入资源组发送的Preamble。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个用户设备。
作为一个实施例,所述第一通信设备450是一个中继设备。
作为一个实施例,所述第一通信设备450是一个基站设备。
作为一个实施例,所述第二通信设备410是一个基站设备。
作为一个实施例,所述第二通信设备410是一个用户设备。
作为一个实施例,所述第二通信设备410是一个中继设备。
典型的,所述第一通信设备450是一个用户设备,所述第二通信设备410是一个基站设备。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S5101中,在第一随机接入过程中,根据第一随机接入资源组发送Preamble;在步骤S5102中,作为根据所述第一随机接入资源组发送Preamble的响应,接收第一MAC子PDU,所述第一MAC子PDU指示第一回退参数值;在步骤S5103中,接收第一RAR(Random Access Response,随机接入响应);在步骤S5104中,作为所述第一RAR被接收的响应,发送第一Msg3;在步骤S5105中,作为发送所述第一Msg3的响应,接收第二MAC PDU;在步骤S5106中,确定所述第一随机接入过程未被完成;在步骤S5107中,作为所述第一随机接入过程未被完成的响应,选择第二随机接入资源组;在步骤S5108中,根据所述第二随机接入资源组发送Preamble。
对于第二节点N02,在步骤S5201中,接收Preamble;在步骤S5202中,发送所述第一MAC子PDU;在步骤S5203中,发送所述第一RAR;在步骤S5204中,接收所述第一Msg3;在步骤S5205中,发送所述第二MAC PDU;在步骤S5203中,接收Preamble。
在实施例5中,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关;所述第一随机接入资源组和所述第二随机接入资源组都被分配给四步随机接入。
作为一个实施例,在所述步骤S5102之后,所述第一节点U01确定所述第一随机接入过程未被完成。
作为一个实施例,在所述步骤S5103之后,所述第一节点U01确定所述第一随机接入过程未被完成。
作为一个实施例,在所述步骤S5104之后,所述第一节点U01确定所述第一随机接入过程未被完成。
作为一个实施例,在所述步骤S5105之后,所述第一节点U01确定所述第一随机接入过程未被完成。
作为一个实施例,所述第一节点U01是一个用户设备。
作为一个实施例,所述第一节点U01是一个基站设备。
作为一个实施例,所述第一节点U01是一个中继设备。
作为一个实施例,所述第二节点N02是一个基站设备。
作为一个实施例,所述第二节点N02是一个用户设备。
作为一个实施例,所述第二节点N02是一个中继设备。
作为一个实施例,所述第二节点N02是所述第一节点U01的一个服务小区的维持基站。
作为一个实施例,所述第二节点N02是所述第一小区的维持基站。
作为一个实施例,所述第一节点U01是一个用户设备,所述第二节点N02是一个基站设备。
作为一个实施例,所述第一节点U01是一个用户设备,所述第二节点N02是一个中继设备。
作为一个实施例,所述第一节点U01是一个用户设备,所述第二节点N02是一个用户设备。
作为一个实施例,所述第一节点U01是一个基站设备,所述第二节点N02是一个基站设备。
作为一个实施例,所述第一节点U01是一个中继设备,所述第二节点N02是一个基站设备。
作为一个实施例,所述第一节点U01和所述第二节点N02之间通过uu口连接。
作为一个实施例,所述第一节点U01和所述第二节点N02之间通过Xn口连接。
作为一个实施例,所述第一节点U01和所述第二节点N02之间通过X2口连接。
作为一个实施例,所述第一节点U01和所述第二节点N02之间通过PC5口连接。
作为一个实施例,所述第一节点U01和所述第二节点N02之间通过空口连接。
作为一个实施例,所述第二节点N02接收根据所述第一随机接入资源组发送的每个Preamble。
作为一个实施例,所述第二节点N02接收根据所述第一随机接入资源组发送的至少一个Preamble。
作为一个实施例,所述步骤S5105是可选的。
作为一个实施例,所述步骤S5105存在。
作为该实施例的一个子实施例,所述第二节点N02接收根据所述第二随机接入资源组发送的每个Preamble。
作为该实施例的一个子实施例,所述第二节点N02接收根据所述第二随机接入资源组发送的至少一个Preamble。
作为一个实施例,所述步骤S5105不存在。
作为该实施例的一个子实施例,所述第二节点N02未接收根据所述第二随机接入资源组发送的任一Preamble。
作为一个实施例,虚线方框F5.1是可选的。
作为一个实施例,所述虚线方框F5.1中的每个步骤都存在。
作为一个实施例,所述虚线方框F5.1中的每个步骤不存在。
作为一个实施例,所述虚线方框F5.1中的部分步骤不存在。
作为一个实施例,所述第一RAR被接收,并且,所述第一Msg3被发送,并且,所述第二MAC PDU未被接收。
作为一个实施例,所述第一RAR被接收,并且,所述第一Msg3未被发送,并且,所述第二MAC PDU未被接收。
作为一个实施例,所述第一RAR未被接收,并且,所述第一Msg3未被发送,并且,所述第二MAC PDU未被接收。
作为一个实施例,所述第一RAR被接收。
作为该实施例的一个子实施例,所述第一RAR包括一个MAC子PDU,所述一个MAC子PDU中的随机接入前导标识与第一PREAMBLE_INDEX匹配。
作为该实施例的一个子实施例,所述第一PREAMBLE_INDEX是根据所述第一随机接入资源组发送的Preamble的索引。
作为该实施例的一个子实施例,如果执行PRACH传输,所述第一PREAMBLE_INDEX是根据所述第一随机接入资源组发送的Preamble中的一个Preamble的索引。
作为该实施例的一个子实施例,如果执行PRACH传输,所述第一PREAMBLE_INDEX是根据所述第一随机接入资源组发送的Preamble中的任一Preamble的索引。
作为该实施例的一个子实施例,仅当所述第一RAR中的随机接入前导标识与第一PREAMBLE_INDEX匹配时,所述第一节点U01认为随机接入响应接收成功。
作为该实施例的一个子实施例,在第一时间窗中接收第一RAR;所述第一MAC子PDU在所述第一时间窗中被接收。
作为该实施例的一个子实施例,作为所述第一RAR被接收的响应,停止所述第一时间窗。
作为该实施例的一个子实施例,作为所述第一RAR被接收的响应,所述第一时间窗未被停止。
作为该实施例的一个子实施例,所述第一RAR包括一个MAC RAR。
作为该实施例的一个子实施例,所述第一RAR包括一个MAC子头(subheader)。
作为该实施例的一个子实施例,所述第一RAR是一个MAC PDU。
作为该实施例的一个子实施例,所述第一RAR是一个MAC子PDU。
作为该实施例的一个子实施例,所述第一RAR和所述第一MAC子PDU属于同一个MAC PDU。
作为该实施例的一个子实施例,所述第一RAR和所述第一MAC子PDU属于两个不同的MAC PDU。
作为一个实施例,所述第一RAR未被接收。
作为该实施例的一个子实施例,所述第一时间窗过期。
作为该实施例的一个子实施例,在所述第一时间窗中接收一个RAR,所述一个RAR中包括一个MAC子 PDU,所述一个MAC子PDU中的随机接入前导标识与PREAMBLE_INDEX不匹配。
作为该实施例的一个子实施例,在所述第一时间窗中未接收任一MAC RAR。
作为该实施例的一个子实施例,至少所述第一时间窗过期被用于确定认为随机接入响应接收不成功。
作为该实施例的一个子实施例,所述第一时间窗过期并且所述第一RAR未被接收被用于确定认为随机接入响应接收不成功。
作为一个实施例,所述第一时间窗是一个时间窗。
作为一个实施例,所述第一时间窗被用于监听随机接入响应。
作为一个实施例,所述第一时间窗是监听随机接入响应的时间窗。
作为一个实施例,所述第一时间窗包括正整数个时隙(slot)。
作为一个实施例,所述第一时间窗包括正整数个子帧(subframe)。
作为一个实施例,所述第一时间窗包括正整数个毫秒(millisecond)。
作为一个实施例,如果不执行PRACH重复,所述第一时间窗的名字是ra-ResponseWindow。
作为一个实施例,如果不执行PRACH重复,所述至少一个Preamble的发送截止时刻被用于确定所述第一时间窗的开始时刻。
作为一个实施例,如果执行PRACH重复,所述第一时间窗的名字是ra-ResponseWindow。
作为一个实施例,如果执行PRACH重复,所述第一时间窗的名字中包括ra-ResponseWindow。
作为一个实施例,如果执行PRACH重复,所述第一时间窗的名字中包括ra-ResponseWindow或者Msg1(Message 1,消息1)或者PRACH或者Repetition中的至少之一。
作为一个实施例,所述第一Msg3被发送。
作为该实施例的一个子实施例,所述第一RAR被接收。
作为该实施例的一个子实施例,所述第一RAR指示UL grant。
作为该实施例的一个子实施例,所述第一RAR指示第一TC-RNTI(Temporary C-RNTI)。
作为该实施例的一个子实施例,所述第一RAR中的UL grant被用于调度所述第一Msg3。
作为该实施例的一个子实施例,作为所述第一RAR被接收的响应,发送第一Msg3。
作为该实施例的一个子实施例,被所述第一TC-RNTI加扰的一个DCI(Downlink Control Information,下行链路控制信息)被用于调度所述第一Msg3。
作为该实施例的一个子实施例,作为所述第一Msg3被发送的响应,启动或者重新启动所述第一计时器。
作为该实施例的一个子实施例,所述第一Msg3传输结束后的第一个符号被用于确定启动或者重新启动第一计时器的时刻。
作为该实施例的一个子实施例,所述第一Msg3是一个Msg3。
作为该实施例的一个子实施例,所述第一Msg3包括多个Msg3的重复。
作为该实施例的一个子实施例,所述第一Msg3是一个Msg3初传。
作为该实施例的一个子实施例,所述第一Msg3是一个Msg3重传。
作为该实施例的一个子实施例,所述第一Msg3中包括所述第一C-RNTI(Cell Radio Network Temporary Identifier,小区无线网络临时标识)MAC CE(Control Element,控制单元)或者所述第一CCCH(Common Control Channel,公共控制信道)SDU(Service data unit,服务数据单元)中的仅之一。
作为该实施例的一个子实施例,所述第一Msg3中包括所述第一CCCH SDU。
作为该实施例的一个子实施例,所述第一CCCH SDU是一个CCCH SDU。
作为该实施例的一个子实施例,所述第一CCCH SDU包括RRCResumeRequest消息。
作为该实施例的一个子实施例,所述第一CCCH SDU包括RRCSetupRequest消息。
作为该实施例的一个子实施例,所述第一CCCH SDU包括RRCReestablishmentRequest消息。
作为该实施例的一个子实施例,所述第一Msg3中包括第一C-RNTI MAC CE。
作为该实施例的一个子实施例,所述第一C-RNTI MAC CE是一个C-RNTI MAC CE。
作为该实施例的一个子实施例,所述第一C-RNTI MAC CE中包括第一C-RNTI,所述第一C-RNTI是所述第一节点U01在所述第一小区的C-RNTI。
作为一个实施例,所述第一Msg3未被发送。
作为该实施例的一个子实施例,所述第一时间窗过期。
作为该实施例的一个子实施例,所述第一节点U01未认为针对根据所述第一随机接入资源组发送的Preamble的随机接入响应接收成功。
作为一个实施例,所述第二MAC PDU被接收。
作为该实施例的一个子实施例,所述第一Msg3被发送。
作为该实施例的一个子实施例,所述第二MAC PDU在所述第一计时器运行期间被接收。
作为该实施例的一个子实施例,一个被寻址到所述第一TC-RNTI的第一PDCCH传输被用于调度所述第二MAC PDU。
作为该实施例的一个子实施例,所述第一Msg3中包括所述第一CCCH SDU;所述第二MAC PDU中不包括UE Contention Resolution Identity MAC CE(Control Element,控制元素);所述第二MAC PDU中不包括UE Contention Resolution Identity MAC CE被用于确定认为竞争解决不成功。
作为该实施例的一个子实施例,所述第一Msg3中包括所述第一CCCH SDU;所述第二MAC PDU中包括一个UE Contention Resolution Identity MAC CE,并且,所述一个UE Contention Resolution Identity MAC CE中的UE Contention Resolution Identity和第一CCCH SDU不匹配;所述一个UE Contention Resolution Identity MAC CE中的UE Contention Resolution Identity和第一CCCH SDU不匹配被用于确定认为竞争解决不成功。
作为一个实施例,所述第二MAC PDU未被接收。
作为该实施例的一个子实施例,所述第二MAC PDU不被所述第二节点N02发送。
作为该实施例的一个子实施例,所述第二MAC PDU被所述第二节点N02发送。
作为该实施例的一个子实施例,所述第一Msg3未被发送。
作为该实施例的一个子实施例,所述第一Msg3被发送。
作为该实施例的一个子实施例,所述第一计时器过期;所述第一计时器过期被用于确定认为竞争解决不成功。
作为该实施例的一个子实施例,所述第一计时器过期;所述第一Msg3中包括所述第一C-RNTI MAC CE;在所述第一计时器运行期间,未接收被寻址到所述第一C-RNTI的任一PDCCH传输。
作为该实施例的一个子实施例,所述第一计时器过期;所述第一Msg3中包括所述第一C-RNTI MAC CE;在所述第一计时器运行期间,未接收任一PDCCH传输。
作为该实施例的一个子实施例,所述第一计时器过期;所述第一Msg3中包括所述第一C-RNTI MAC CE;在所述第一计时器运行期间,未接收被寻址到所述第一C-RNTI并且包括为了新传输的UL grant的任一PDCCH传输未被接收。
作为该实施例的一个子实施例,所述第一计时器过期;所述第一Msg3中包括所述第一CCCH SDU;在所述第一计时器运行期间,未接收被寻址到所述第一TEMPORARY_C-RNTI的任一PDCCH传输。
作为该实施例的一个子实施例,所述第一计时器过期;所述第一Msg3中包括所述第一CCCH SDU;在所述第一计时器运行期间,未接收任一PDCCH传输。
作为一个实施例,所述第一节点U01认为随机接入响应接收成功,或者,所述第一节点U01认为竞争解决不成功。
作为一个实施例,所述第一节点U01认为随机接入响应接收不成功;作为认为随机接入响应接收不成功的响应,确定所述第一随机接入过程未被完成。
作为一个实施例,所述第一节点U01认为竞争解决不成功;作为认为竞争解决不成功的响应,确定所述第一随机接入过程未被完成。
实施例6
实施例6示例了根据本申请的另一个实施例的无线信号传输流程图,如附图6所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S6101中,确定第一随机接入过程未被完成;在步骤S6102中,作为所述第一随机接入过程未被完成的响应,判断第一条件集合是否被满足,如果所述第一条件集合被满足,进入 步骤S6103(a),如果所述第一条件集合不被满足,进入步骤S6103(b);在所述步骤S6103(a)中,不依赖所述第一回退参数值确定第一随机接入资源选择过程的执行时间;在所述步骤S6103(b)中,依赖所述第一回退参数值确定第一随机接入资源选择过程的执行时间。
在实施例6中,在所述第一随机接入资源选择过程中,所述第二随机接入资源组被选择。
作为一个实施例,不依赖所述第一回退参数值确定所述第一随机接入资源选择过程的执行时间被用于确定所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值。
作为一个实施例,依赖所述第一回退参数值确定所述第一随机接入资源选择过程的执行时间被用于确定所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退参数值。
作为一个实施例,作为所述第一随机接入过程未被完成的响应,如果所述第一条件集合不被满足,先确定第一回退时间,再执行所述第一随机接入资源选择过程。
作为一个实施例,作为所述第一随机接入过程未被完成的响应,如果所述第一条件集合不被满足,在所述第一随机接入资源选择过程之前,确定所述第一回退时间。
作为一个实施例,作为所述第一随机接入过程未被完成的响应,如果所述第一条件集合被满足,在执行所述第一随机接入资源选择过程之前,所述第一回退时间未被确定。
作为一个实施例,作为所述第一随机接入过程未被完成的响应,如果所述第一条件集合被满足,先执行变量初始化过程,再执行所述第一随机接入资源选择过程。
作为一个实施例,作为所述第一随机接入过程未被完成的响应,如果所述第一条件集合被满足,在所述第一随机接入资源选择过程之前,执行变量初始化过程。
作为一个实施例,作为所述第一随机接入过程未被完成的响应,如果所述第一条件集合被满足,紧跟所述第一随机接入过程未被完成,执行所述第一随机接入资源选择过程。
作为一个实施例,作为所述第一随机接入过程未被完成的响应,如果所述第一条件集合被满足,紧跟所述第一随机接入过程未被完成,所述第一随机接入资源选择过程被执行。
作为一个实施例,“在所述第一随机接入资源选择过程之前,执行变量初始化过程”被用于确定“在所述行为选择所述第二随机接入资源组之前,执行变量初始化过程”。
作为一个实施例,“紧跟所述第一随机接入过程未被完成,所述第一随机接入资源选择过程被执行”被用于确定“紧跟所述第一随机接入过程未被完成,所述第二随机接入资源组被选择”。
作为一个实施例,“在所述第一随机接入资源选择过程之前,确定所述第一回退时间”被用于确定“在所述行为选择所述第二随机接入资源组之前,确定第一回退时间”。
作为一个实施例,所述不依赖所述第一回退参数值确定所述第一随机接入资源选择过程的执行时间包括:在执行所述第一随机接入资源选择过程之前,不选择依赖所述第一回退参数值的一个回退时间。
作为一个实施例,所述不依赖所述第一回退参数值确定所述第一随机接入资源选择过程的执行时间包括:在执行所述第一随机接入资源选择过程之前,不根据依赖所述第一回退参数值的一个回退时间确定所述第一随机接入资源选择过程的执行时间。
作为一个实施例,所述依赖所述第一回退参数值确定所述第一随机接入资源选择过程的执行时间包括:在执行所述第一随机接入资源选择过程之前,确定依赖所述第一回退参数值的所述第一回退时间。
作为一个实施例,所述依赖所述第一回退参数值确定所述第一随机接入资源选择过程的执行时间包括:在执行所述第一随机接入资源选择过程之前,根据依赖所述第一回退参数值的第一回退时间确定所述第一随机接入资源选择过程的执行时间。
作为一个实施例,在所述第一随机接入资源选择过程中,选择所述第二随机接入资源组。
作为一个实施例,通过所述第一随机接入资源选择过程选择所述第二随机接入资源组。
作为一个实施例,所述第一条件集合是否被满足依赖所述第一计数器。
作为一个实施例,所述第一条件集合与至少所述第一计数器有关。
作为一个实施例,所述第一条件集合是选择所述第二随机接入资源集合的条件。
作为一个实施例,所述第一条件集合被用于确定选择所述第二随机接入资源集合。
作为一个实施例,所述第一条件集合是选择所述第一随机接入资源组所属的随机接入资源集合的条件。
作为一个实施例,所述第一条件集合被用于确定选择所述第一随机接入资源组所属的随机接入资源集 合。
作为一个实施例,所述第一随机接入资源组属于所述第二随机接入资源集合。
实施例7
实施例7示例了根据本申请的一个实施例的选择第二随机接入资源组的执行时间不依赖第一回退参数值的流程图,如附图7所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S7101中,确定第一随机接入过程未被完成;在步骤S7102中,作为所述第一随机接入过程未被完成的响应,在所述行为选择所述第二随机接入资源组之前,执行变量初始化(perform initialization of variables)过程;在步骤S7103中,选择所述第二随机接入资源组。
在实施例7中,在第一随机接入过程中,作为根据所述第一随机接入资源组发送Preamble的响应,第一MAC子PDU被接收,所述第一MAC子PDU指示第一回退参数值;根据所述第二随机接入资源组Preamble被发送;所述第一随机接入资源组和所述第二随机接入资源组都被分配给四步随机接入;所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值。
作为一个实施例,所述行为执行变量初始化过程包括:执行针对PRACH重复的变量初始化过程。
作为一个实施例,所述行为执行变量初始化过程包括:设置所述第一回退因子。
作为该实施例的一个子实施例,将所述第一回退因子设置为1。
作为该实施例的一个子实施例,先将所述第一回退因子设置为1,再将所述第一回退因子设置为所述第一候选回退因子。
作为该实施例的一个子实施例,所述第二回退因子不存在。
作为一个实施例,所述行为执行变量初始化过程包括:设置所述第二回退因子;所述K1等于1。
作为该实施例的一个子实施例,先将所述第二回退因子设置为1,再将所述第二回退因子设置为所述第一候选回退因子。
作为该实施例的一个子实施例,将所述第二回退因子设置为所述第一候选回退因子。
作为该实施例的一个子实施例,所述第一回退因子不被设置。
作为该实施例的一个子实施例,所述第二回退因子被用于PRACH重复;所述第一回退因子不被用于PRACH重复。
作为一个实施例,所述行为执行变量初始化过程包括:将PREAMBLE_POWER_RAMPING_STEP设置为针对PRACH重复专用的功率抬升步长。
作为一个实施例,所述行为执行变量初始化过程包括:将一个名字中包括PREAMBLE_POWER_RAMPING_STEP或者Msg1(Message 1,消息1)或者PRACH或者Repetition中的至少之一的变量设置为针对PRACH重复专用的功率抬升步长。
作为一个实施例,所述行为执行变量初始化过程包括:将PREAMBLE_POWER_RAMPING_STEP设置为powerRampingStep。
作为一个实施例,所述行为执行变量初始化过程包括:先将PREAMBLE_POWER_RAMPING_STEP设置为powerRampingStep,再将PREAMBLE_POWER_RAMPING_STEP设置为针对PRACH重复专用的功率抬升步长。
作为一个实施例,所述行为执行变量初始化过程包括:先将一个名字中包括PREAMBLE_POWER_RAMPING_STEP或者Msg1(Message 1,消息1)或者PRACH或者Repetition中的至少之一的变量设置为powerRampingStep,再将所述一个名字中包括所述PREAMBLE_POWER_RAMPING_STEP的所述变量设置为针对PRACH重复专用的功率抬升步长。
作为一个实施例,所述行为执行变量初始化过程包括:将PREAMBLE_POWER_RAMPING_STEP设置为powerRampingStep。
作为一个实施例,所述行为执行变量初始化过程包括:将preambleTransMax设置为针对PRACH重复专用的Preamble最大发送次数。
作为一个实施例,所述行为执行变量初始化过程包括:将一个名字中包括preambleTransMax或者Msg1(Message 1,消息1)或者PRACH或者Repetition中的至少之一的变量设置为针对PRACH重复专用的Preamble最大发送次数。
作为一个实施例,所述行为执行变量初始化过程包括:将preambleTransMax设置为RACH-ConfigGeneric中的preambleTransMax。
作为一个实施例,作为所述第一随机接入过程未被完成的响应,在所述行为选择所述第二随机接入资源组之前,未执行变量初始化过程;所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退参数值。
实施例8
实施例8示例了根据本申请的另一个实施例的选择第二随机接入资源组的执行时间不依赖第一回退参数值的流程图,如附图8所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S8101中,确定第一随机接入过程未被完成;在步骤S8102中,紧跟所述第一随机接入过程未被完成,选择第二随机接入资源组。
在实施例8中,在第一随机接入过程中,作为根据所述第一随机接入资源组发送Preamble的响应,第一MAC子PDU被接收,所述第一MAC子PDU指示第一回退参数值;根据所述第二随机接入资源组Preamble被发送;所述第一随机接入资源组和所述第二随机接入资源组都被分配给四步随机接入;所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值。
作为一个实施例,紧跟所述第一随机接入过程未被完成,所述第二随机接入资源组被选择。
作为一个实施例,所述“作为所述第一随机接入过程未被完成的响应,选择第二随机接入资源组”包括:紧跟所述第一随机接入过程未被完成,选择所述第二随机接入资源组。
作为一个实施例,所述“作为所述第一随机接入过程未被完成的响应,选择第二随机接入资源组”的意思是:紧跟所述第一随机接入过程未被完成,执行所述第一随机接入资源选择过程;在所述第一随机接入资源选择过程中,选择所述第二随机接入资源组。
作为一个实施例,在所述行为确定所述第一随机接入过程未被完成到所述行为选择所述第二随机接入资源组之间的时间间隔内,所述第一节点U01未执行变量初始化过程。
作为一个实施例,在所述行为确定所述第一随机接入过程未被完成到所述行为选择所述第二随机接入资源组之间的时间间隔内,所述第一节点U01未确定依赖所述第一回退参数值的任一回退时间。
作为一个实施例,在所述行为确定所述第一随机接入过程未被完成到所述行为选择所述第二随机接入资源组之间的时间间隔内,所述第一节点U01未选择任一回退时间。
作为一个实施例,在所述行为确定所述第一随机接入过程未被完成到所述行为选择所述第二随机接入资源组之间的时间间隔内,所述第一节点U01未应用所述第一回退变量。
实施例9
实施例9示例了根据本申请的一个实施例的选择第二随机接入资源组的执行时间依赖第一回退参数值的流程图,如附图9所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S9101中,确定第一随机接入过程未被完成;在步骤S9102中,作为所述第一随机接入过程未被完成的响应,在所述行为选择所述第二随机接入资源组之前,确定第一回退时间;在步骤S9103中,选择第二随机接入资源组。
在实施例9中,在第一随机接入过程中,作为根据所述第一随机接入资源组发送Preamble的响应,第一MAC子PDU被接收,所述第一MAC子PDU指示第一回退参数值;根据所述第二随机接入资源组Preamble被发送;所述第一随机接入资源组和所述第二随机接入资源组都被分配给四步随机接入;所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退时间;所述第一回退时间依赖所述第一回退参数值。
作为一个实施例,所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退参数值包括:所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退时间,所述第一回退时间依赖所述第一回退参数值。
作为一个实施例,至少在所述第一回退时间被确定之后,所述行为选择所述第二随机接入资源组被执行。
作为一个实施例,在所述第一回退时间期间,所述行为选择所述第二随机接入资源组被执行。
作为一个实施例,在所述第一回退时间期间,所述行为选择所述第二随机接入资源组未被执行。
作为一个实施例,在所述第一回退时间期间,所述行为选择所述第二随机接入资源组不被执行。
作为一个实施例,在所述第一回退时间之后,所述行为选择所述第二随机接入资源组被执行。
作为一个实施例,从确定所述第一回退时间的时刻开始经过所述第一回退时间之后,所述行为选择所述第二随机接入资源组被执行。
作为一个实施例,从确定所述第一随机接入过程未被完成的时刻开始经过所述第一回退时间之后,所述行为选择所述第二随机接入资源组被执行。
作为一个实施例,所述第一回退时间依赖至少所述第一回退参数值。
作为一个实施例,所述第一回退时间依赖所述第一回退参数值和所述第一回退因子。
作为一个实施例,所述第一回退时间依赖所述第一回退参数值、所述第一回退因子和所述第一参数。
作为一个实施例,所述第一回退时间依赖所述第一回退变量;所述第一回退变量依赖至少所述第一回退参数值。
作为一个实施例,所述第一回退时间依赖所述第一回退变量;所述第一回退变量依赖所述第一回退参数值和所述第一回退因子。
作为一个实施例,所述第一回退时间依赖所述第一回退变量;所述第一回退变量依赖所述第一回退参数值、所述第一回退因子和所述第一参数。
作为一个实施例,所述第一回退时间依赖所述第一回退变量和所述第一参数;所述第一回退变量依赖至少所述第一回退参数值。
作为一个实施例,所述第一回退时间依赖所述第一回退变量和所述第一参数;所述第一回退变量依赖所述第一回退参数值和所述第一回退因子。
作为一个实施例,所述行为确定所述第一回退时间包括:根据所述第一回退变量确定所述第一回退时间。
作为该实施例的一个子实施例,在0到所述第一回退变量之间确定所述第一回退时间。
作为该实施例的一个子实施例,在0到所述第一回退变量之间选择一个随机回退时间(random backoff time)作为所述第一回退时间。
作为该实施例的一个子实施例,在0到所述第一回退变量之间按照均匀分布(uniform distribution)随机选择所述第一回退时间。
作为一个实施例,所述行为确定所述第一回退时间包括:根据所述第一回退变量和所述第一参数确定所述第一回退时间。
作为该实施例的一个子实施例,在0到所述第一回退变量之间确定所述第二回退时间;根据所述第二回退时间和所述第一参数确定所述第一回退时间。
作为该实施例的一个子实施例,在0到所述第一回退变量之间选择一个随机回退时间(random backoff time)作为所述第二回退时间;根据所述第二回退时间和所述第一参数确定所述第一回退时间。
作为该实施例的一个子实施例,在0到所述第一回退变量之间按照均匀分布(uniform distribution)随机选择所述第二回退时间;根据所述第二回退时间和所述第一参数确定所述第一回退时间。
作为该实施例的一个子实施例,所述第一回退时间与(所述第二回退时间和所述第一参数的乘积)有关。
作为该实施例的一个子实施例,所述第一回退时间与(所述第二回退时间和所述第一参数的乘积)相等。
作为该实施例的一个子实施例,所述第一回退时间与(所述第二回退时间和所述第一参数的乘积)线性相关。
作为该实施例的一个子实施例,所述第一回退时间=所述第二回退时间×所述第一参数。
作为一个实施例,根据所述第一回退变量和第一参数确定所述第一回退时间。
作为一个实施例,根据所述第一回退变量确定所述第二回退时间,根据所述第二回退时间和所述第一参数确定所述第一回退时间。
作为一个实施例,根据所述第一回退变量和所述第一参数确定第二回退变量,根据所述第二回退变量确定所述第一回退时间。
作为一个实施例,所述第二回退变量和(所述第一回退变量和所述第一参数的乘积)有关。
作为一个实施例,所述第二回退变量=所述第一回退变量×所述第一参数。
实施例10
实施例10示例了根据本申请的一个实施例的选择第二随机接入资源组的执行时间是否依赖第一回退参数值与第二随机接入资源组有关的示意图。
在实施例10中,所述第一随机接入资源组由K1个空口资源组成,所述第二随机接入资源组由K2个空口资源组成;所述K1是正整数,所述K2是大于1的整数。
作为一个实施例,一个空口资源被关联到一个下行链路(DownLink,DL)参考信号(Reference Signal,RS)。
作为一个实施例,一个空口资源被关联到一个SSB。
作为一个实施例,一个空口资源被关联到一个CSI-RS。
作为一个实施例,一个空口资源被配置给一个上行链路载波。
作为一个实施例,一个空口资源被配置给一个UL BWP。
作为一个实施例,一个空口资源在时域上的PRACH时机与一个SSB有关。
作为一个实施例,一个空口资源在时域上的PRACH时机与一个参考SSB有关。
作为一个实施例,一个空口资源被配置给至少一个Preamble。
作为一个实施例,一个空口资源被预留给一个Preamble。
作为一个实施例,一个空口资源被预留给一个Preamble的一次发送。
作为一个实施例,一个空口资源包括一个Preamble。
作为一个实施例,一个空口资源在时域上占用一个PRACH时机。
作为一个实施例,一个空口资源在时频域上占用多个RE。
作为一个实施例,一个空口资源包括时域资源和频域资源。
作为一个实施例,一个空口资源包括时域资源、频域资源和码域资源。
作为一个实施例,一个空口资源包括时域资源、频域资源、空域资源和码域资源。
作为一个实施例,一个空口资源包括被用于一个Preamble的时域资源。
作为一个实施例,一个空口资源包括被用于一个Preamble的频域资源。
作为一个实施例,一个空口资源包括被用于一个Preamble的空域资源。
作为一个实施例,所述频域资源包括BWP。
作为一个实施例,所述频域资源包括上行链路载波。
作为一个实施例,所述时域资源包括PRACH时机。
作为一个实施例,所述K1根据至少RSRP确定。
作为一个实施例,所述K1根据至少一个计数器确定。
作为一个实施例,所述K1根据至少所述第一计数器确定。
作为一个实施例,所述K1是可配置的。
作为一个实施例,所述K1是预配置的。
作为一个实施例,所述K1是预定义的。
作为一个实施例,所述K1被配置给所述第一随机接入资源组所属的随机接入资源集合。
作为一个实施例,所述K1是一个常量。
作为一个实施例,所述K1等于1。
作为一个实施例,所述K1大于1。
作为一个实施例,所述K2根据至少RSRP确定。
作为一个实施例,所述K2根据至少一个计数器确定。
作为一个实施例,所述K2根据至少所述第一计数器确定。
作为一个实施例,所述K2是可配置的。
作为一个实施例,所述K2是预配置的。
作为一个实施例,所述K2是预定义的。
作为一个实施例,所述K2被配置给所述第二随机接入资源组所属的随机接入资源集合。
作为一个实施例,所述K2大于所述K1。
作为一个实施例,所述K2小于所述K1。
作为一个实施例,所述K2等于所述K1。
作为一个实施例,所述K2是所述K1。
作为一个实施例,所述K1个空口资源被用于一次PRACH重复。
作为一个实施例,所述K1个空口资源中的每个空口资源被用于同一个Preamble。
作为一个实施例,所述K1个空口资源中的每个空口资源被用于至少两个不同的Preamble。
作为一个实施例,在所述K1个空口资源中的任意两个空口资源发送Preamble的时间间隔内,为了所述第一随机接入过程的PREAMBLE_POWER_RAMPING_COUNTER不被增加;所述K1大于1。
作为一个实施例,在所述K1个空口资源中的任意两个空口资源发送Preamble的时间间隔内,为了所述第一随机接入过程的PREAMBLE_TRANSMISSION_COUNTER不被增加;所述K1大于1。
作为一个实施例,在所述K1个空口资源被配置给一个SSB;所述K1等于1。
作为一个实施例,在所述K1个空口资源中的任意两个空口资源被配置给同一个SSB;所述K1大于1。
作为一个实施例,在所述K1个空口资源中的任意两个空口资源被配置给至少两个SSB;所述K1大于1。
作为一个实施例,所述K2个空口资源被用于一次PRACH重复。
作为一个实施例,所述K2个空口资源中的每个空口资源被用于同一个Preamble。
作为一个实施例,所述K2个空口资源中的每个空口资源被用于至少两个不同的Preamble。
作为一个实施例,在所述K2个空口资源中的任意两个空口资源发送Preamble的时间间隔内,为了所述第一随机接入过程的PREAMBLE_POWER_RAMPING_COUNTER不被增加。
作为一个实施例,在所述K2个空口资源中的任意两个空口资源发送Preamble的时间间隔内,为了所述第一随机接入过程的PREAMBLE_TRANSMISSION_COUNTER不被增加。
作为一个实施例,在所述K2个空口资源中的任意两个空口资源被配置给同一个SSB。
作为一个实施例,在所述K2个空口资源中的任意两个空口资源被配置给至少两个SSB。
作为一个实施例,所述K1个空口资源中的任一Preamble和所述K2个空口资源中的任一Preamble不同。
作为一个实施例,所述K1个空口资源和所述K2个空口资源不同。
作为一个实施例,所述K1个空口资源中的任一空口资源和所述K2个空口资源中的任一空口资源不同。
作为一个实施例,所述K1个空口资源中的至少一个空口资源和所述K2个空口资源中的任一空口资源不同。
作为一个实施例,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关包括:所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值并且K1大于第一阈值且K2大于所述第一阈值;或者,所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退参数值并且K1小于第一阈值且K2小于所述第一阈值。
作为一个实施例,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关包括:所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值并且K1大于第一阈值且K2大于所述第一阈值;或者,所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退参数值并且K1不大于第一阈值且K2不大于所述第一阈值。
作为一个实施例,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关包括:所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值并且K1小于第一阈值且K2大于所述第一阈值;或者,所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退参数值并且K1大于第一阈值且K2小于所述第一阈值。
作为一个实施例,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关包括:所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值并且K1等于第一阈值且K2大于所述第一阈值;或者,所述行为选择所述第二随机接入资源组的 执行时间依赖所述第一回退参数值并且K1等于第一阈值且K2不大于所述第一阈值。
作为一个实施例,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关包括:所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值并且K1等于第一阈值且K2不大于所述第一阈值;或者,所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退参数值并且K1等于第一阈值且K2大于所述第一阈值。
作为一个实施例,当至少K1等于所述第一阈值且K2不大于所述第一阈值时,所述第一条件集合被满足;当K1等于所述第一阈值且K2大于所述第一阈值时,所述第一条件集合不被满足。
作为一个实施例,当至少K1等于所述第一阈值且K2大于所述第一阈值时,所述第一条件集合被满足;当K1等于所述第一阈值且K2不大于所述第一阈值时,所述第一条件集合不被满足。
作为一个实施例,当至少K1小于所述第一阈值且K2大于所述第一阈值时,所述第一条件集合被满足;当K1大于所述第一阈值且K2小于所述第一阈值时,所述第一条件集合不被满足。
作为一个实施例,当至少K1大于所述第一阈值且K2大于所述第一阈值时,所述第一条件集合被满足;当K1小于所述第一阈值且K2小于所述第一阈值时,所述第一条件集合不被满足。
作为一个实施例,当至少K1大于第一阈值且K2大于所述第一阈值时,所述第一条件集合被满足;当K1不大于第一阈值且K2不大于所述第一阈值时,所述第一条件集合不被满足。
作为一个实施例,所述第一阈值是一个正整数。
作为一个实施例,所述第一阈值是可配置的。
作为一个实施例,所述第一阈值是预配置的。
作为一个实施例,所述第一阈值等于1。
作为一个实施例,所述第一阈值大于1。
作为一个实施例,所述第一阈值是所述K1。
作为一个实施例,所述第一条件集合与所述K1或者所述K2中的至少之一有关。
实施例11
实施例11示例了根据本申请的另一个实施例的选择第二随机接入资源组的执行时间是否依赖第一回退参数值与第二随机接入资源组有关的示意图,如附图11所示。
在实施例11中,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关包括:所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退参数值并且所述第二随机接入资源组属于第一随机接入资源集合;或者,所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值并且所述第二随机接入资源组不属于第一随机接入资源集合。
作为一个实施例,所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退参数值并且所述第二随机接入资源组属于所述第一随机接入资源集合;所述第一随机接入资源组属于所述第一随机接入资源集合。
作为一个实施例,所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值并且所述第二随机接入资源组属于第二随机接入资源集合;所述第一随机接入资源组属于第一随机接入资源集合。
作为一个实施例,所述第二随机接入资源集合是所述第一随机接入资源集合之外的一个随机接入资源集合。
作为一个实施例,所述第二随机接入资源集合被配置给PRACH重复;所述第二随机接入资源集合未被配置给PRACH重复。
作为一个实施例,所述第二随机接入资源集合被配置给PRACH重复;所述第二随机接入资源集合被配置给PRACH重复;所述第二随机接入资源集合和所述第一随机接入资源集合不同。
作为该实施例的一个子实施例,所述第二随机接入资源集合所对应的一次PRACH重复中Preamble的最大发送次数和所述第一随机接入资源集合所对应的一次PRACH重复中Preamble的最大发送次数相等。
作为该实施例的一个子实施例,所述第二随机接入资源集合所对应的一次PRACH重复中Preamble的最大发送次数和所述第一随机接入资源集合所对应的一次PRACH重复中Preamble的最大发送次数不相等。
作为该实施例的一个子实施例,所述第二随机接入资源集合所对应的一次PRACH重复中Preamble的最大发送次数大于所述第一随机接入资源集合所对应的一次PRACH重复中Preamble的最大发送次数。
作为一个实施例,仅当选择所述第二随机接入资源集合的准则被满足时,所述第一条件集合被满足;否则,所述第一条件集合不被满足。
作为一个实施例,当选择所述第二随机接入资源集合的准则被满足时,所述第一条件集合被满足;否则,所述第一条件集合不被满足。
作为一个实施例,当至少选择所述第二随机接入资源集合的准则被满足时,所述第一条件集合被满足;否则,所述第一条件集合不被满足。
作为一个实施例,选择所述第二随机接入资源集合的准则被满足被用于确定在所述第二随机接入资源集合中选择所述第二随机接入资源组。
作为一个实施例,选择所述第二随机接入资源集合的准则不被满足被用于确定在所述第一随机接入资源集合中选择所述第二随机接入资源组。
实施例12
实施例12示例了根据本申请的再一个实施例的选择第二随机接入资源组的执行时间是否依赖第一回退参数值与第二随机接入资源组有关的示意图,如附图12所示。
在实施例12中,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关包括:所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值并且第一计数器达到第一数值;或者,所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退参数值并且第一计数器未达到第一数值;所述第一计数器被用于确定Preamble的发送次数。
作为一个实施例,所述第一计数器的初始值等于1。
作为一个实施例,所述第一计数器的初始值等于0。
作为一个实施例,所述第一计数器是一个MAC子层计数器。
作为一个实施例,所述第一计数器是PREAMBLE_TRANSMISSION_COUNTER。
作为一个实施例,所述第一计数器是PREAMBLE_POWER_RAMPING_COUNTER。
作为一个实施例,所述第一计数器是PREAMBLE_TRANSMISSION_COUNTER和PREAMBLE_POWER_RAMPING_COUNTER之外的一个计数器。
作为一个实施例,所述第一计数器的名字中包括PREAMBLE或者TRANSMISSION或者POWER或者RAMPING或者COUNTER或者Msg1(Message 1,消息1)或者PRACH或者Repetition中的至少之一。
作为一个实施例,所述第一数值是可配置的。
作为一个实施例,所述第一数值是预配置的。
作为一个实施例,所述第一数值是正整数。
作为一个实施例,所述第一数值由RRC消息配置。
作为一个实施例,所述第一数值不大于所述第一随机接入过程中随机接入前导的最大发送次数。
作为一个实施例,所述第一数值不大于preambleTransMax。
作为一个实施例,所述第一数值的名字中包括TransMax或者Msg1(Message 1,消息1)或者PRACH或者Repetition中的至少之一。
作为一个实施例,所述第一数值被用于确定在一个随机接入资源集合中的随机接入的最大尝试次数。
作为一个实施例,所述第一数值被用于确定在所述第一随机接入过程中开始执行PRACH重复的最小次数。
作为一个实施例,所述第一数值等于第二数值+1。
作为该实施例的一个子实施例,所述第二数值是可配置的。
作为该实施例的一个子实施例,所述第二数值是预配置的。
作为该实施例的一个子实施例,所述第二数值是正整数。
作为该实施例的一个子实施例,所述第二数值由RRC消息配置。
作为该实施例的一个子实施例,所述第二数值不大于所述第一随机接入过程中随机接入前导的最大发送次数。
作为该实施例的一个子实施例,所述第二数值不大于preambleTransMax。
作为该实施例的一个子实施例,所述第二数值的名字中包括TransMax或者Msg1(Message 1,消息1)或者PRACH或者Repetition中的至少之一。
作为一个实施例,所述第一计数器每次被增加1。
作为一个实施例,所述第一计数器每次被增加不小于1。
作为一个实施例,在所述第一随机接入过程中,每次根据一个随机接入资源组发送Preamble,所述第一计数器被增加。
作为一个实施例,每次确定所述第一随机接入过程未被完成,所述第一计数器被增加。
作为一个实施例,所述第一计数器是否被增加与一个Msg3是否被发送有关。
作为该实施例的一个子实施例,所述第一计数器被增加并且所述一个Msg3未被发送。
作为该实施例的一个子实施例,所述第一计数器未被增加并且所述一个Msg3被发送。
作为一个实施例,所述第一计数器是否被增加与所述一个RAR是否被接收有关。
作为该实施例的一个子实施例,所述第一计数器被增加并且所述一个RAR未被接收。
作为该实施例的一个子实施例,所述第一计数器未被增加并且所述一个RAR被接收。
作为一个实施例,从根据所述第一随机接入资源组发送Preamble到根据所述第二随机接入资源组发送Preamble之间的时间间隔内,所述第一计数器被增加。
作为一个实施例,从根据所述第一随机接入资源组发送Preamble到根据所述第二随机接入资源组发送Preamble之间的时间间隔内,所述第一计数器被增加并且所述第一Msg3未被发送。
作为一个实施例,从根据所述第一随机接入资源组发送Preamble到根据所述第二随机接入资源组发送Preamble之间的时间间隔内,所述第一计数器被增加并且所述第一RAR未被接收。
作为一个实施例,在所述第一随机接入过程中,所述第一计数器达到所述第一数值之前,未执行PRACH重复;所述第一计数器达到所述第一数值之后,执行PRACH重复;所述K1等于1。
作为一个实施例,当所述第一计数器达到所述第一数值时,所述第一条件集合被满足;否则,所述第一条件集合不被满足。
作为一个实施例,当至少所述第一计数器达到所述第一数值时,所述第一条件集合被满足;只要所述第一计数器未达到所述第一数值,所述第一条件集合不被满足。
作为一个实施例,作为所述第一随机接入过程未被完成的响应,如果被增加的所述第一计数器达到所述第一数值,所述第一条件集合被满足;否则,所述第一条件集合不被满足。
作为一个实施例,作为所述第一随机接入过程未被完成的响应,如果至少被增加的所述第一计数器达到所述第一数值,所述第一条件集合被满足;只要被增加的所述第一计数器未达到所述第一数值,所述第一条件集合被满足。
作为一个实施例,所述第一数值被应用。
作为一个实施例,所述第一数值被配置。
实施例13
实施例13示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;如附图13所示。在附图13中,第一节点中的处理装置1300包括第一处理机1301。
第一处理机1301,在第一随机接入过程中,根据第一随机接入资源组发送Preamble;作为根据所述第一随机接入资源组发送Preamble的响应,接收第一MAC子PDU,所述第一MAC子PDU指示第一回退参数值;作为所述第一随机接入过程未被完成的响应,选择第二随机接入资源组,根据所述第二随机接入资源组发送Preamble;
实施例13中,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关;所述第一随机接入资源组和所述第二随机接入资源组都被分配给四步随机接入。
作为一个实施例,所述第一处理机1301,作为所述第一随机接入过程未被完成的响应,在所述行为选择所述第二随机接入资源组之前,执行变量初始化过程;其中,所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值。
作为一个实施例,紧跟所述第一随机接入过程未被完成,所述第二随机接入资源组被选择;所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值。
作为一个实施例,所述第一处理机1301,作为所述第一随机接入过程未被完成的响应,在所述行为选择所述第二随机接入资源组之前,确定第一回退时间;其中,所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退时间;所述第一回退时间依赖所述第一回退参数值。
作为一个实施例,所述第一随机接入资源组由K1个空口资源组成,所述第二随机接入资源组由K2个空口资源组成;所述K1是正整数,所述K2是大于1的整数。
作为一个实施例,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关包括:所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值并且K1大于第一阈值且K2大于所述第一阈值;或者,所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退参数值并且K1小于第一阈值且K2小于所述第一阈值。
作为一个实施例,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关包括:所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退参数值并且所述第二随机接入资源组属于第一随机接入资源集合;或者,所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值并且所述第二随机接入资源组不属于第一随机接入资源集合。
作为一个实施例,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关包括:所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值并且第一计数器达到第一数值;或者,所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退参数值并且第一计数器未达到第一数值;所述第一计数器被用于确定Preamble的发送次数。
作为一个实施例,所述第一处理机1301,作为所述第一随机接入过程未被完成的响应,根据第一条件集合是否被满足确定是否依赖所述第一回退参数值确定第一随机接入资源选择过程的执行时间;其中,在所述第一随机接入资源选择过程中,所述第二随机接入资源组被选择;如果所述第一条件集合被满足,不依赖所述第一回退参数值确定所述第一随机接入资源选择过程的执行时间;如果所述第一条件集合不被满足,依赖所述第一回退参数值确定所述第一随机接入资源选择过程的执行时间。
作为一个实施例,所述第一处理机1301包括第一接收机。
作为一个实施例,所述第一处理机1301包括第一发射机。
作为一个实施例,所述第一处理机1301包括至少第一接收机和第一发射机。
作为一个实施例,所述第一接收机包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467。
作为一个实施例,所述第一接收机包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456。
作为一个实施例,所述第一接收机包括本申请附图4中的天线452,接收器454,接收处理器456。
作为一个实施例,所述第一发射机包括本申请附图4中的天线452,发射器454,多天线发射处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467。
作为一个实施例,所述第一发射机包括本申请附图4中的天线452,发射器454,多天线发射处理器457,发射处理器468。
作为一个实施例,所述第一发射机包括本申请附图4中的天线452,发射器454,发射处理器468。
实施例14
实施例14示例了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;如附图14所示。在附图14中,第二节点中的处理装置1400包括第二发射机1401和第二接收机1402。
第二接收机1402,在第一随机接入过程中,接收根据第一随机接入资源组发送的Preamble;
第二发射机1401,作为接收根据所述第一随机接入资源组发送的Preamble的响应,发送第一MAC子PDU,所述第一MAC子PDU指示第一回退参数值;
所述第二接收机1402,接收根据第二随机接入资源组发送的Preamble;
实施例14中,作为所述第一随机接入过程未被完成的响应,所述第二随机接入资源组被选择;所述 第二随机接入资源组被选择的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关;所述第一随机接入资源组和所述第二随机接入资源组都被分配给四步随机接入。
作为一个实施例,作为所述第一随机接入过程未被完成的响应,在所述第二随机接入资源组被选择之前,变量初始化过程被执行;其中,所述第二随机接入资源组被选择的执行时间不依赖所述第一回退时间。
作为一个实施例,紧跟所述第一随机接入过程未被完成,所述第二随机接入资源组被选择;所述第二随机接入资源组被选择的执行时间不依赖所述第一回退时间。
作为一个实施例,作为所述第一随机接入过程未被完成的响应,在所述第二随机接入资源组被选择之前,第一回退时间被确定;其中,所述第二随机接入资源组被选择的执行时间依赖所述第一回退时间;所述第一回退时间依赖所述第一回退参数值。
作为一个实施例,所述第一随机接入资源组由K1个空口资源组成,所述第二随机接入资源组由K2个空口资源组成;所述K1是正整数,所述K2是大于1的整数。
作为一个实施例,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关包括:所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值并且K1大于第一阈值且K2大于所述第一阈值;或者,所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退参数值并且K1小于第一阈值且K2小于所述第一阈值。
作为一个实施例,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关包括:所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退参数值并且所述第二随机接入资源组属于第一随机接入资源集合;或者,所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值并且所述第二随机接入资源组不属于第一随机接入资源集合。
作为一个实施例,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关包括:所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值并且第一计数器达到第一数值;或者,所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退参数值并且第一计数器未达到第一数值;所述第一计数器被用于确定Preamble的发送次数。
作为一个实施例,作为所述第一随机接入过程未被完成的响应,第一条件集合是否被满足被用于确定是否依赖所述第一回退参数值确定第一随机接入资源选择过程的执行时间;其中,在所述第一随机接入资源选择过程中,所述第二随机接入资源组被选择;如果所述第一条件集合被满足,所述第一随机接入资源选择过程的执行时间不依赖所述第一回退参数值;如果所述第一条件集合不被满足,所述第一随机接入资源选择过程的执行时间依赖所述第一回退参数值。
作为一个实施例,所述第二发射机1401包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475,存储器476。
作为一个实施例,所述第二发射机1401包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416。
作为一个实施例,所述第二发射机1401包括本申请附图4中的天线420,发射器418,发射处理器416。
作为一个实施例,所述第二接收机1402包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475,存储器476。
作为一个实施例,所述第二接收机1402包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470。
作为一个实施例,所述第二接收机1402包括本申请附图4中的天线420,接收器418,接收处理器470。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端, MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一处理机,在第一随机接入过程中,根据第一随机接入资源组发送Preamble;作为根据所述第一随机接入资源组发送Preamble的响应,接收第一MAC子PDU,所述第一MAC子PDU指示第一回退参数值;作为所述第一随机接入过程未被完成的响应,选择第二随机接入资源组,根据所述第二随机接入资源组发送Preamble;
    其中,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关;所述第一随机接入资源组和所述第二随机接入资源组都被分配给四步随机接入。
  2. 根据权利要求1所述的第一节点,其特征在于,包括:
    所述第一处理机,作为所述第一随机接入过程未被完成的响应,在所述行为选择所述第二随机接入资源组之前,执行变量初始化过程;
    其中,所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值。
  3. 根据权利要求1所述的第一节点,其特征在于,紧跟所述第一随机接入过程未被完成,所述第二随机接入资源组被选择;所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值。
  4. 根据权利要求1所述的第一节点,其特征在于,包括:
    所述第一处理机,作为所述第一随机接入过程未被完成的响应,在所述行为选择所述第二随机接入资源组之前,确定第一回退时间;
    其中,所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退时间;所述第一回退时间依赖所述第一回退参数值。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,所述第一随机接入资源组由K1个空口资源组成,所述第二随机接入资源组由K2个空口资源组成;所述K1是正整数,所述K2是大于1的整数。
  6. 根据权利要求5所述的第一节点,其特征在于,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关包括:所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值并且K1大于第一阈值且K2大于所述第一阈值;或者,所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退参数值并且K1小于第一阈值且K2小于所述第一阈值。
  7. 根据权利要求1至6中任一权利要求所述的第一节点,其特征在于,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关包括:所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退参数值并且所述第二随机接入资源组属于第一随机接入资源集合;或者,所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值并且所述第二随机接入资源组不属于第一随机接入资源集合。
  8. 根据权利要求1至7中任一权利要求所述的第一节点,其特征在于,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关包括:所述行为选择所述第二随机接入资源组的执行时间不依赖所述第一回退参数值并且第一计数器达到第一数值;或者,所述行为选择所述第二随机接入资源组的执行时间依赖所述第一回退参数值并且第一计数器未达到第一数值;所述第一计数器被用于确定Preamble的发送次数。
  9. 根据权利要求1至8中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一处理机,作为所述第一随机接入过程未被完成的响应,根据第一条件集合是否被满足确定是否依赖所述第一回退参数值确定第一随机接入资源选择过程的执行时间;
    其中,在所述第一随机接入资源选择过程中,所述第二随机接入资源组被选择;如果所述第一条件集合被满足,不依赖所述第一回退参数值确定所述第一随机接入资源选择过程的执行时间;如果所述第一条件集合不被满足,依赖所述第一回退参数值确定所述第一随机接入资源选择过程的执行时间。
  10. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二接收机,在第一随机接入过程中,接收根据第一随机接入资源组发送的Preamble;
    第二发射机,作为接收根据所述第一随机接入资源组发送的Preamble的响应,发送第一MAC子PDU,所述第一MAC子PDU指示第一回退参数值;
    所述第二接收机,接收根据第二随机接入资源组发送的Preamble;
    其中,作为所述第一随机接入过程未被完成的响应,所述第二随机接入资源组被选择;所述第二随机接入资源组被选择的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关;所述第一随机接入资源组和所述第二随机接入资源组都被分配给四步随机接入。
  11. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    在第一随机接入过程中,根据第一随机接入资源组发送Preamble;作为根据所述第一随机接入资源组发送Preamble的响应,接收第一MAC子PDU,所述第一MAC子PDU指示第一回退参数值;作为所述第一随机接入过程未被完成的响应,选择第二随机接入资源组,根据所述第二随机接入资源组发送Preamble;
    其中,所述行为选择所述第二随机接入资源组的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关;所述第一随机接入资源组和所述第二随机接入资源组都被分配给四步随机接入。
  12. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    在第一随机接入过程中,接收根据第一随机接入资源组发送的Preamble;
    作为接收根据所述第一随机接入资源组发送的Preamble的响应,发送第一MAC子PDU,所述第一MAC子PDU指示第一回退参数值;
    接收根据第二随机接入资源组发送的Preamble;
    其中,作为所述第一随机接入过程未被完成的响应,所述第二随机接入资源组被选择;所述第二随机接入资源组被选择的执行时间是否依赖所述第一回退参数值与所述第二随机接入资源组有关;所述第一随机接入资源组和所述第二随机接入资源组都被分配给四步随机接入。
PCT/CN2023/115994 2022-09-07 2023-08-31 一种被用于无线通信的通信节点中的方法和装置 WO2024051560A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211090094.7 2022-09-07
CN202211090094 2022-09-07
CN202211105175.XA CN117676912A (zh) 2022-09-07 2022-09-09 一种被用于无线通信的通信节点中的方法和装置
CN202211105175.X 2022-09-09

Publications (1)

Publication Number Publication Date
WO2024051560A1 true WO2024051560A1 (zh) 2024-03-14

Family

ID=90075959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/115994 WO2024051560A1 (zh) 2022-09-07 2023-08-31 一种被用于无线通信的通信节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN117676912A (zh)
WO (1) WO2024051560A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110476474A (zh) * 2017-04-04 2019-11-19 Lg电子株式会社 用于执行随机接入过程的设备和方法
CN112385299A (zh) * 2018-06-19 2021-02-19 三星电子株式会社 在无线通信系统中执行随机接入回退的方法和装置
CN113891487A (zh) * 2020-07-03 2022-01-04 维沃移动通信有限公司 随机接入方法、装置及网络侧设备
US20220240326A1 (en) * 2019-06-10 2022-07-28 Telefonaktiebolaget Lm Ericsson (Publ) Recovery/fallback after unsuccessful 2-step random access attempt

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110476474A (zh) * 2017-04-04 2019-11-19 Lg电子株式会社 用于执行随机接入过程的设备和方法
CN112385299A (zh) * 2018-06-19 2021-02-19 三星电子株式会社 在无线通信系统中执行随机接入回退的方法和装置
US20220240326A1 (en) * 2019-06-10 2022-07-28 Telefonaktiebolaget Lm Ericsson (Publ) Recovery/fallback after unsuccessful 2-step random access attempt
CN113891487A (zh) * 2020-07-03 2022-01-04 维沃移动通信有限公司 随机接入方法、装置及网络侧设备

Also Published As

Publication number Publication date
CN117676912A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
WO2022057693A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024051560A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN117750390A (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024051626A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN114258073A (zh) 一种被用于无线通信的通信节点中的方法和装置
CN114389770A (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024051559A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024046155A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024046152A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024017078A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024022238A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024078434A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023174228A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023226924A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024114346A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024007870A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023213219A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023186164A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN114257274B (zh) 一种被用于无线通信的节点中的方法和装置
CN114285533B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023169322A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024032478A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023030425A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN112887065B (zh) 一种被用于无线通信的方法和设备
US20230328552A1 (en) Method and device in nodes used for wireless communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862254

Country of ref document: EP

Kind code of ref document: A1