WO2024055916A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2024055916A1
WO2024055916A1 PCT/CN2023/117909 CN2023117909W WO2024055916A1 WO 2024055916 A1 WO2024055916 A1 WO 2024055916A1 CN 2023117909 W CN2023117909 W CN 2023117909W WO 2024055916 A1 WO2024055916 A1 WO 2024055916A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
signaling
code block
condition
satisfied
Prior art date
Application number
PCT/CN2023/117909
Other languages
English (en)
French (fr)
Inventor
武露
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024055916A1 publication Critical patent/WO2024055916A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • the present application relates to transmission methods and devices in wireless communication systems, in particular to wireless signal transmission methods and devices in wireless communication systems supporting cellular networks.
  • this application discloses a solution. It should be noted that although the above description uses the uplink as an example, this application is also applicable to other scenarios (such as downlink, accompanying link), and achieves similar technical effects in the uplink. In addition, adopting a unified solution for different scenarios (including but not limited to downlink, uplink and companion link) also helps reduce hardware complexity and cost. In the case of no conflict, the embodiments and features in the embodiments in any node of this application can be applied to any other node, and vice versa. The embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily without conflict.
  • This application discloses a method used in a first node of wireless communication, which is characterized by including:
  • Receive first signaling the first signaling being used to indicate the first set of REs
  • the first RE set is reserved for the first code block set, and the first code block set includes at least one code block; the target RE set is related to whether the first condition set is satisfied; when the When the first condition set is satisfied, the target RE set is the first RE set; when the first condition set is not satisfied, the size of the target RE set depends on the first code block set including The number of bits; the first set of conditions includes one or more conditions.
  • the problems to be solved by this application include: how to adjust the time-frequency resources occupied by transmitting a set of code blocks.
  • the first condition set includes a first condition
  • the first condition includes: some or all bits in the first control information block are multiplexed to carry the first code.
  • the first control information block includes at least one bit.
  • the first condition further includes: the first control information block is triggered by the first signaling.
  • the first condition further includes: the first node receives second signaling; wherein the second signaling is used to indicate a second set of REs, and the first Two RE sets are reserved for the first control information block, and the first RE set and the second RE set overlap in the time domain.
  • the first condition further includes: the priority of the first control information block is higher than the priority of the first code block set.
  • the first set of conditions includes a second condition
  • the second condition includes:
  • the transmission scheme of the physical channel carrying the first set of code blocks includes at least one characteristic in the first set of characteristics.
  • the second bit block is used to indicate at least one of symbols occupied by the target RE set or RBs (Resource Blocks) occupied by the target RE set.
  • This application discloses a method used in a second node of wireless communication, which is characterized by including:
  • Send first signaling the first signaling being used to indicate the first set of REs
  • the first RE set is reserved for the first code block set, and the first code block set includes at least one code block; the target RE set is related to whether the first condition set is satisfied; when the When the first condition set is satisfied, the target RE set is the first RE set; when the first condition set is not satisfied, the size of the target RE set depends on the first code block set including The number of bits; the first set of conditions includes one or more conditions.
  • the first condition set includes a first condition
  • the first condition includes: some or all bits in the first control information block are multiplexed to carry the first code.
  • the first control information block includes at least one bit.
  • the first condition further includes: the first control information block is triggered by the first signaling.
  • the first condition further includes: the second node sends second signaling; wherein the second signaling is used to indicate a second RE set, and the second RE set is Two RE sets are reserved for the first control information block, and the first RE set and the second RE set overlap in the time domain.
  • the first condition further includes: the priority of the first control information block is higher than the priority of the first code block set.
  • the first condition set includes a second condition
  • the second condition includes: the transmission scheme of the physical channel carrying the first code block set includes the first characteristic set. At least one feature.
  • the second bit block is used to indicate at least one of symbols occupied by the target RE set or RBs occupied by the target RE set.
  • This application discloses a first node device used for wireless communication, which is characterized in that it includes:
  • the first receiver receives first signaling, where the first signaling is used to indicate the first set of REs;
  • a first transmitter transmitting a first code block set in a target RE set, where the target RE set is the first RE set or a proper subset of the first RE set;
  • the first RE set is reserved for the first code block set, and the first code block set includes at least one code block; the target RE set is related to whether the first condition set is satisfied; when the When the first condition set is satisfied, the target RE set is the first RE set; when the first condition set is not satisfied, the size of the target RE set depends on the first code block set including The number of bits; the first set of conditions includes one or more conditions.
  • This application discloses a second node device used for wireless communication, which is characterized in that it includes:
  • the second transmitter sends first signaling, where the first signaling is used to indicate the first set of REs;
  • a second receiver that receives the first code block set in the target RE set, the target RE set being the first RE set or a proper subset of the first RE set;
  • the first RE set is reserved for the first code block set, and the first code block set includes at least one code block; the target RE set is related to whether the first condition set is satisfied; when the When the first condition set is satisfied, the target RE set is the first RE set; when the first condition set is not satisfied, the size of the target RE set depends on the number of bits included in the first code block set; the first condition set includes one or more conditions.
  • this application has the following advantages:
  • Figure 1 shows a flow chart of first signaling and a first set of code blocks according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Figure 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a flow chart of transmission according to an embodiment of the present application
  • Figure 6 shows a schematic diagram of the relationship between a given target integer, a given number of symbols, and a given number of RBs according to an embodiment of the present application
  • Figure 7 shows a schematic diagram of the relationship between a given target integer, a given number of symbols, and a given number of RBs according to another embodiment of the present application
  • FIG8 is a schematic diagram showing a first condition according to an embodiment of the present application.
  • Figure 9 shows a schematic diagram of a first condition according to another embodiment of the present application.
  • Figure 10 shows a schematic diagram of a first condition according to an embodiment of the present application.
  • Figure 11 shows a schematic diagram of a first condition according to another embodiment of the present application.
  • Figure 12 shows a schematic diagram of the second condition according to an embodiment of the present application.
  • Figure 13 shows a structural block diagram of a processing device used in a first node device according to an embodiment of the present application
  • Figure 14 shows a structural block diagram of a processing device for a device in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of first signaling and a first set of code blocks according to an embodiment of the present application, as shown in FIG. 1 .
  • each block represents a step.
  • the first node in this application receives the first signaling in step 101; in step 102, sends the first code block set in the target RE set; wherein the first signaling is Used to indicate the first RE set; the target RE set is the first RE set or a proper subset of the first RE set; the first RE set is reserved for the first code block set, so
  • the first code block set includes at least one code block; the target RE set is related to whether the first condition set is satisfied; when the first condition set is satisfied, the target RE set is the first RE set ; When the first condition set is not satisfied, the size of the target RE set depends on the number of bits included in the first code block set; the first condition set includes one or more conditions.
  • the number of bits included in the first code block set is used to determine the target RE set from the first RE set.
  • the first node when the target RE set is a proper subset of the first RE set, the first node sends the first code block in only the target RE set in the first RE set. gather.
  • the first set of conditions includes only one condition.
  • the first condition set includes multiple conditions; when one condition in the first condition set is satisfied, the first condition set is satisfied; when all conditions in the first condition set When none of the conditions are satisfied, the first set of conditions is not satisfied.
  • the first condition set includes multiple conditions; when all conditions in the first condition set are satisfied, the first condition set is satisfied; when there is When one condition is not satisfied, the first set of conditions is not satisfied.
  • the first condition set includes a first condition and a second condition; when the first condition or the second condition is satisfied, the first condition set is satisfied; when the first condition When neither the condition nor the second condition is satisfied, the first set of conditions is not satisfied.
  • the first condition set includes a first condition and a second condition; when both the first condition and the second condition are satisfied, the first condition set is satisfied; when the third condition When a condition or the second condition is not satisfied, the first set of conditions is not satisfied.
  • the first signaling is physical layer signaling.
  • the first signaling is DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the first signaling is higher layer signaling.
  • the first signaling is RRC signaling.
  • the first signaling is MACCE signaling.
  • the higher layer signaling is RRC signaling.
  • the higher layer signaling is MACCE signaling.
  • the first signaling schedules PUSCH (Physical Uplink Shared CHannel, physical uplink shared channel), and the first RE (Resource Element, resource element) set includes all REs scheduled to the PUSCH.
  • PUSCH Physical Uplink Shared CHannel, physical uplink shared channel
  • RE Resource Element, resource element
  • the first signaling schedules PSSCH (Physical Sidelink Shared CHannel, Physical Sidelink Shared Channel), and the first RE (Resource Element, resource particle) set includes all REs scheduled to the PSSCH. .
  • PSSCH Physical Sidelink Shared CHannel, Physical Sidelink Shared Channel
  • RE Resource Element, resource particle
  • the first signaling schedules PUSCH
  • the physical channel carrying the first code block set is PUSCH.
  • the first signaling schedules PSSCH, and the physical channel carrying the first code block set is PSSCH.
  • the first signaling is SCI (Sidelink Control Information) signaling
  • the first signaling schedules PSSCH
  • the physical channel carrying the first code block set is PSSCH.
  • the first signaling scheduling configuration grant (Configured Grant, CG) PUSCH.
  • the first signaling schedules a configuration to grant PUSCH
  • the first RE set includes all REs that are assigned to PUSCH by a configuration scheduled by the first signaling.
  • the first signaling scheduling configuration is granted to PUSCH
  • the first RE set includes all REs that are granted a PUSCH transmission opportunity (transmission occasion) by a configuration scheduled by the first signaling.
  • the first signaling is CRC (Cyclic Redundancy Check) scrambled by CS (Configured scheduling)-RNTI (Radio network temporary identifier) ( scramble) DCI signaling, the first signaling scheduling configuration grant (configured grant) PUSCH.
  • CRC Cyclic Redundancy Check
  • CS Configured scheduling
  • RTI Radio network temporary identifier
  • scramble DCI signaling
  • the first signaling scheduling configuration grant (configured grant) PUSCH.
  • the first signaling is DCI signaling in which CRC (Cyclic Redundancy Check) is scrambled by C (Cell, cell)-RNTI.
  • the first signaling Scheduling configured grant PUSCH.
  • the first RE set is composed of all REs occupied by one physical channel reserved for the first code block set.
  • the meaning of the sentence "the first RE set is reserved for the first code block set” includes: the first RE set is configured or scheduled for the first code block set .
  • the meaning of the sentence "the first RE set is reserved for the first code block set” includes: the first RE set includes are reserved for carrying the first code block Collection of all REs of the physical channel.
  • the meaning of the sentence "the first RE set is reserved for the first code block set” includes: the first RE set is indicated to the first code block set.
  • the meaning of the sentence "the first RE set is reserved for the first code block set" includes: at the sending moment of the first signaling, the first RE set is scheduled Used for transmission of the first set of code blocks.
  • the meaning of the sentence "the first RE set is reserved for the first code block set" includes: the actual transmission of the first code block set occupies the first RE set. part or all of RE.
  • the first code block set includes all code blocks (code blocks) in a transport block (Transport Block, TB).
  • the first code block set includes all code blocks (code blocks) in at least one transport block (TB).
  • the first code block set includes at least one code block in a transport block (Transport Block, TB).
  • Transport Block Transport Block
  • the first code block set includes at least one code block in at least one transport block (TB).
  • TB transport block
  • the meaning of the sentence "the first RE set is reserved for the first code block set” includes: the first RE set is reserved for one of the first code block set. repeat.
  • the meaning of the sentence "the first RE set is reserved for the first code block set” includes: the first RE set is reserved for one of the first code block set. Actual repetition.
  • the meaning of the sentence "the first RE set is reserved for the first code block set” includes: the first RE set is reserved for one of the first code block set. Nominal repetition.
  • the meaning of the sentence "the first signaling is used to indicate the first set of REs" includes: the first signaling includes a first domain and a second domain, and in the first signaling The first field indicates the symbols occupied by the first RE set, and the second field in the first signaling indicates the RB (Resource Block, resource block) occupied by the first RE set.
  • the meaning of the sentence "the first signaling is used to indicate a first RE set” includes: the first signaling is used to indicate M RE sets, and the first RE set is One of the M RE sets, M is a positive integer greater than 1.
  • the meaning of the sentence "the first signaling is used to indicate the first set of REs” includes: the first signaling includes a first domain and a second domain, and in the first signaling The first field indicates the symbols occupied by the earliest RE set among the M RE sets, and the second field in the first signaling indicates the symbols occupied by the earliest RE set among the M RE sets.
  • RB the first RE set is one of the M RE sets, and M is a positive integer greater than 1.
  • the meaning of the sentence "the first signaling is used to indicate the first set of REs” includes: the first signaling includes a first domain and a second domain, and in the first signaling
  • the first field indicates the symbol sum M occupied by the earliest RE set among the M RE sets, the first RE set is one of the M RE sets, and the M is a positive integer greater than 1
  • the second field in the first signaling indicates the RB occupied by the earliest RE set among the M RE sets.
  • the first signaling is DCI signaling
  • the first domain is a Time domain resource assignment domain
  • the second domain is a Frequency domain resource assignment domain.
  • the first signaling is SCI signaling
  • the first field is a Time resource assignment field
  • the second field is a Frequency resource assignment field.
  • the first signaling is RRC signaling
  • the name of the first domain includes frequencyDomainAllocation
  • the name of the second domain includes frequencyDomainAllocation
  • the first signaling is RRC signaling
  • the first domain and the second domain are two domains in RRC IE ConfiguredGrantConfig.
  • Time domain resource assignment field and the Frequency domain resource assignment field, please refer to Chapter 7.3 of 3GPP TS38.212.
  • Time resource assignment field and the Frequency resource assignment field please refer to Chapter 8.3 of 3GPP TS38.212.
  • one RE occupies one symbol in the time domain and one subcarrier in the frequency domain.
  • the symbols are single carrier symbols.
  • the symbols are multi-carrier symbols.
  • the symbols are OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols.
  • the symbols are SC-FDMA (Single Carrier-Frequency Division Multiple Access, single carrier frequency division multiple access) symbols.
  • the symbol is a DFT-s-OFDM (Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing, Discrete Fourier Transform Spread-Orthogonal Frequency Division Multiplexing) symbol.
  • DFT-s-OFDM Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing, Discrete Fourier Transform Spread-Orthogonal Frequency Division Multiplexing
  • the symbol is a FBMC (Filter Bank Multi Carrier) symbol.
  • FBMC Breast Bank Multi Carrier
  • the symbol includes CP (Cyclic Prefix, cyclic prefix).
  • the symbol is an OFDM symbol in which transform precoding (or transform precoder) is turned off.
  • the symbol is an OFDM symbol with transform precoding (or transform precoder) enabled.
  • the target RE set is occupied by a physical channel carrying the first code block set.
  • the target RE set includes part or all of the REs in the first RE set.
  • the proper subset of the first RE set consists of some REs in the first RE set.
  • the first RE set includes the target RE set
  • the first RE set includes all REs reserved for physical channels carrying the first code block set
  • the target RE set includes actual All REs occupied by physical channels carrying the first code block set.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in Figure 2.
  • FIG. 2 illustrates the network architecture 200 of LTE (Long-Term Evolution, long-term evolution), LTE-A (Long-Term Evolution Advanced, enhanced long-term evolution) and future 5G systems.
  • the network architecture 200 of LTE, LTE-A and future 5G systems is called EPS (Evolved Packet System) 200.
  • the 5G NR or LTE network architecture 200 can be called 5GS (5G System)/EPS (Evolved Packet System). Grouping System) 200 or some other suitable terminology.
  • 5GS/EPS 200 may include one or more UE (User Equipment) 201, a UE 241 for sidelink communication with UE 201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G CoreNetwork, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, Home Subscriber Server)/UDM (Unified Data Management, Unified Data Management) 220 and Internet Services 230.
  • 5GS/EPS200 Interconnection with other access networks is possible, but these entities/interfaces are not shown for simplicity.
  • NG-RAN 202 includes NR (New Radio, New Radio) Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201.
  • gNB 203 may connect to other gNBs 204 via the Xn interface (eg, backhaul).
  • the gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmit Receive Point) or some other suitable terminology.
  • BSS Basic Service Set
  • ESS Extended Service Set
  • TRP Transmit Receive Point
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, MP3 players), cameras, game consoles, drones, aircraft, narrowband physical network devices, machine type communications devices, land vehicles, cars, wearable devices, or any other similarly functional device.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management field)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management field
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway)/UPF (User Plane Function) 212 and P-GW (Packet Date Network Gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles signaling between UE201 and 5GC/EPC210. Basically MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. P-GW provides UEIP address allocation and other functions.
  • P-GW/UPF 213 is connected to Internet service 230.
  • Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include Internet, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching (Packet switching) services.
  • the first node in this application includes the UE201.
  • the second node in this application includes the gNB203.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of the wireless protocol architecture of the user plane and control plane according to an embodiment of the present application, as shown in FIG. 3 .
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for user plane 350 and control plane 300
  • Figure 3 shows with three layers for a first communication node device (UE, gNB or RSU in V2X) and a second Radio protocol architecture of the control plane 300 between communication node devices (gNB, UE or RSU in V2X), or between two UEs: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions. The L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first communication node device and the second communication node device, or between two UEs.
  • L2 layer 305 includes MAC (Medium Access Control, media access control) sublayer 302, RLC (Radio Link Control, wireless link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sub-layers terminate at the second communication node device.
  • PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels. The PDCP sublayer 304 also provides security by encrypting data packets, and provides handoff support for a first communication node device between second communication node devices.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • MAC sublayer 302 provides multiplexing between logical and transport channels. The MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among first communication node devices. MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are generally the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 is also Provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (eg, IP layer) terminating at the P-GW on the network side and another terminating at the connection.
  • the application layer at one end (e.g., remote UE, server, etc.).
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • the first signaling is generated in the PHY301 or the PHY351.
  • the first signaling is generated in the RRC sublayer 306.
  • the first signaling is generated in at least one of the PHY301, the PHY351, or the RRC sublayer 306.
  • the second signaling is generated in the PHY301 or the PHY351.
  • the second signaling is generated in the RRC sublayer 306.
  • the second signaling is generated in at least one of the PHY301, the PHY351, or the RRC sublayer 306.
  • the physical channel carrying the first code block set sent in the target RE set is generated in the PHY301 or the PHY351.
  • Embodiment 4 illustrates a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in the access network.
  • the first communication device 410 includes a controller/processor 475, a memory 476, a receive processor 470, a transmit processor 416, a multi-antenna receive processor 472, a multi-antenna transmit processor 471, a transmitter/receiver 418 and an antenna 420.
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocation to the second communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for HARQ operation, retransmission of lost packets, and signaling to the second communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 450, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M Phase Shift Keying (M-PSK), M Quadrature Amplitude Modulation (M-QAM)) constellation mapping.
  • FEC forward error correction
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more parallel streams.
  • Transmit processor 416 maps each parallel stream to a subcarrier, multiplexes the modulated symbols with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT ) to generate a physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the second communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458 with the second Any parallel flow to which communication device 450 is the destination.
  • the symbols on each parallel stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media. In the DL, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing. Controller/processor 459 is also responsible for error detection using acknowledgment (ACK) and/or negative acknowledgment (NACK) protocols to support HARQ operations.
  • ACK acknowledgment
  • NACK negative acknowledgment
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and logical AND based on the wireless resource allocation of the first communication device 410 Multiplexing between transport channels, implementing L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for HARQ operation, retransmission of lost packets, and signaling to the first communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated parallel streams into multi-carrier/single-carrier symbol streams, which undergo analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then are provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the function at the first communication device 410 is similar to the reception function at the second communication device 450 described in the transmission from the first communication device 410 to the second communication device 450.
  • Each receiver 418 receives a radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the multi-antenna reception processor 472 and the reception processor 470.
  • the reception processor 470 and the multi-antenna reception processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements the L2 layer functions.
  • the controller/processor 475 can be associated with a memory 476 storing program codes and data.
  • the memory 476 can be referred to as a computer-readable medium.
  • the controller/processor 475 provides demultiplexing between transmission and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover the upper layer data packets from the second communication device 450.
  • the upper layer data packets from the controller/processor 475 can be provided to the core network.
  • the controller/processor 475 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one The memory includes computer program code; the at least one memory and the computer program code are configured for use with the at least one processor.
  • the second communication device 450 at least: receives first signaling, which is used to indicate a first RE set; and sends a first code block set in a target RE set, where the target RE set is the The first RE set or a proper subset of the first RE set; wherein the first RE set is reserved for the first code block set, and the first code block set includes at least one code block;
  • the target RE set is related to whether the first condition set is satisfied; when the first condition set is satisfied, the target RE set is the first RE set; when the first condition set is not satisfied,
  • the size of the target RE set depends on the number of bits included in the first code block set; the first condition set includes one or more conditions.
  • the second communication device 450 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: receiving a first A signaling, the first signaling is used to indicate the first RE set; sending the first code block set in the target RE set, the target RE set is the first RE set or the first RE set A proper subset of; wherein, the first RE set is reserved for the first code block set, and the first code block set includes at least one code block; whether the target RE set and the first condition set are satisfied Related; when the first condition set is satisfied, the target RE set is the first RE set; when the first condition set is not satisfied, the size of the target RE set depends on the first RE set.
  • the number of bits included in the code block set; the first condition set includes one or more conditions.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the first communication device 410 at least: sends first signaling, the first signaling is used to indicate a first RE set; receives a first code block set in a target RE set, and the target RE set is the The first RE set or a proper subset of the first RE set; wherein the first RE set is reserved for the first code block set, and the first code block set includes at least one code block;
  • the target RE set is related to whether the first condition set is satisfied; when the first condition set is satisfied, the target RE set is the first RE set; when the first condition set is not satisfied,
  • the size of the target RE set depends on the number of bits included in the first code block set; the first condition set includes one or more conditions.
  • the first communication device 410 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: sending a first A signaling, the first signaling is used to indicate a first RE set; receiving a first code block set in a target RE set, the target RE set being the first RE set or the first RE set A proper subset of; wherein, the first RE set is reserved for the first code block set, and the first code block set includes at least one code block; whether the target RE set and the first condition set are satisfied Related; when the first condition set is satisfied, the target RE set is the first RE set; when the first condition set is not satisfied, the size of the target RE set depends on the first RE set.
  • the number of bits included in the code block set; the first condition set includes one or more conditions.
  • the first node in this application includes the second communication device 450.
  • the second node in this application includes the first communication device 410 .
  • the antenna 452 the receiver 454, the reception processor 456, the multi-antenna reception processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signaling in the present application; ⁇ the antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471, At least one of the controller/processor 475 and the memory 476 ⁇ is used to send the first signaling in this application.
  • the antenna 452 the receiver 454, the reception processor 456, the multi-antenna reception processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the second signaling in the present application;
  • At least one of ⁇ the antenna 452, the transmitter 454, the transmit processor 468, the multi-antenna transmit processor 457, the controller/processor 459, and the memory 460 ⁇ is used to transmit the first code block set in the target RE set in this application; ⁇ the antenna 420, the receiver 418, the reception processor 470, the multi-antenna reception processing At least one of the controller 472, the controller/processor 475, and the memory 476 ⁇ is used to receive the first set of code blocks in the target set of REs in this application.
  • At least one of ⁇ the antenna 452, the transmitter 454, the transmit processor 468, the multi-antenna transmit processor 457, the controller/processor 459, and the memory 460 ⁇ One is used to send all in the target RE set in this application
  • the second bit block; ⁇ the antenna 420, the receiver 418, the receive processor 470, the multi-antenna receive processor 472, the controller/processor 475, the memory 476 ⁇ At least one is used to receive the second block of bits in the target set of REs in this application.
  • Embodiment 5 illustrates a flow chart of wireless transmission according to an embodiment of the present application, as shown in FIG. 5 .
  • the first node U01 and the second node N02 are two communication nodes transmitting through the air interface respectively; in Figure 5, the steps in blocks F1 and F2 are optional.
  • a second block of bits is also sent in the RE set;
  • a second block of bits is also received in the RE set.
  • the first signaling is used to indicate a first RE set; the target RE set is the first RE set or a proper subset of the first RE set; the first RE set is reserved for the first code block set, the first code block set includes at least one code block; the target RE set is related to whether the first condition set is satisfied; when the first condition set is satisfied , the target RE set is the first RE set; when the first condition set is not satisfied, the size of the target RE set depends on the number of bits included in the first code block set; the first A condition set includes one or more conditions.
  • the second bit block is used to indicate at least one of symbols occupied by the target RE set or RBs occupied by the target RE set.
  • the second signaling is used to indicate a second RE set
  • the second RE set is reserved for the first control information block
  • the first RE set and the second RE set The sets overlap in the time domain.
  • the method in the second node further includes:
  • Wireless signals are monitored in the first set of REs.
  • the second node device further includes:
  • the second receiver monitors wireless signals in the first set of REs.
  • the size of the target RE set depends on the number of bits included in the first code block set; when the number of bits included in the first code block set When the number is greater than the second target integer, the target RE set is the first RE set; when the number of bits included in the first code block set is less than the second bit size, the target RE set is A proper subset of the first set of REs; the second target integer is a positive integer, and the second bit size is a positive integer.
  • the second bit size is equal to the second target integer.
  • the second bit size is smaller than the second target integer.
  • the target RE set is the first RE set.
  • the target RE set is a proper subset of the first RE set.
  • the target RE set when the first condition set is not satisfied and the number of bits included in the first code block set belongs to the first integer set, the target RE set is the first RE set; when When the first condition set is not satisfied and the number of bits included in the first code block set belongs to the second integer set, the target RE set is a proper subset of the first RE set; the first The set of integers includes at least one positive integer, the second set of integers includes at least one positive integer, and any positive integer in the second set of integers is smaller than any positive integer in the first set of integers.
  • the second number of symbols is the number of symbols included in the first RE set in the time domain
  • the second number of RBs is the number of RBs included in the frequency domain by the first RE set
  • the second number of symbols and the second number of RBs are used to determine a second target integer; the first set of integers includes the second target integer.
  • the second number of symbols is the number of symbols included in the first RE set in the time domain
  • the second number of RBs is the number of RBs included in the frequency domain by the first RE set
  • the second number of symbols and the second number of RBs are used to determine a second target integer; any integer in the first set of integers is not less than the second target integer.
  • the second number of symbols is the number of symbols included in the first RE set in the time domain
  • the second number of RBs is the number of RBs included in the first RE set in the frequency domain
  • the second number of symbols is number and the second RB number are used to determine a second target integer; when the second target integer is less than the number of bits included in the first code block set, the target RE set is the first RE gather.
  • the target RE set is the first RE set.
  • the size of the target RE set at least depends on the number of bits included in the first code block set.
  • the size of the target RE set also depends on parameters other than the number of bits included in the first code block set.
  • the number of bits included in the first code block set is used to determine whether the target RE set is the first RE set or the first RE set.
  • a proper subset of a set is used to determine whether the target RE set is the first RE set or the first RE set.
  • the number of bits included in the first code block set is used to determine whether the size of the target RE set is equal to the size of the first RE set.
  • the size of a RE set is the number of REs included in the RE set.
  • the size of a RE set is the number of symbols included in the RE set in the time domain.
  • the size of a RE set is the number of RBs included in the frequency domain by the RE set.
  • the number of bits included in the first code block set is used to determine the first target integer, and the number of REs included in the target RE set is equal to the first A target integer, the first target integer is equal to the product of the first number of symbols, the first number of RBs, and the number of subcarriers included in one RB.
  • the number of bits included in the first code block set is used to determine the first target integer, and the number of REs included in the target RE set is not less than the A first target integer equal to a product of the first number of symbols, the first number of RBs, and the number of subcarriers included in one RB.
  • the number of bits included in the first code block set is used to determine the first target integer, and the number of REs included in the target RE set is equal to or greater than the
  • the first target integer is equal to the product of the first number of symbols, the first number of RBs, and the number of subcarriers included in one RB.
  • the target RE set includes the minimum RE required for transmitting the first code block set in the first RE set.
  • the first number of symbols is equal to the number of symbols included in the first RE set in the time domain.
  • the first number of symbols is less than or equal to the number of symbols included in the first RE set in the time domain.
  • the first number of RBs is equal to the number of RBs included in the first RE set in the frequency domain.
  • the first number of RBs is less than or equal to the number of RBs included in the first RE set in the frequency domain.
  • the number of symbols included in the target RE set in the time domain is equal to the first number of symbols.
  • the number of symbols included in the target RE set in the time domain is greater than or equal to the first number of symbols.
  • the number of RBs included in the target RE set in the frequency domain is equal to the first number of RBs.
  • the number of RBs included in the target RE set in the frequency domain is greater than or equal to the first number of RBs.
  • the target RE set and the first RE set occupy the same symbols in the time domain, and the target RE set in the frequency domain
  • the frequency domain occupies part of the RBs among all the RBs occupied by the first RE set in the frequency domain.
  • the target RE set when the target RE set is a true subset of the first RE set, the first RE set and the target RE set occupy the same RB in the frequency domain, and the target RE set is The domain occupies part of the symbols among all the symbols occupied by the first RE set in the time domain.
  • the target RE set when the target RE set is a proper subset of the first RE set, the target RE set occupies The first RE set occupies some of the RBs in the frequency domain, and the target RE set occupies some of the symbols in the time domain.
  • the number of subcarriers included in one RB is equal to 12.
  • the number of subcarriers included in an RB is a positive integer greater than 1.
  • the target value is a first type of value, the number of layers (Layer) of the physical channel carrying the first set of code blocks, the number of layers carrying the first set of code blocks, The product of the target code rate of the physical channel of the code block set and the modulation order of the physical channel carrying the first code block set; the target value is not less than the number of bits included in the first code block set.
  • the first type of value is the product of the third type of value and the first RB number
  • the third type of value is the smaller of the fourth type of value and the first reference threshold
  • the sum of the fourth type of value and The first symbol number is linearly related, and the linear coefficient between the fourth type value and the first symbol number is equal to the number of subcarriers included in one PRB.
  • the first signaling indicates the number of layers, target code rate and modulation order of the physical channel carrying the first set of code blocks.
  • the physical channel carrying the first code block set occupies the target RE set; when the first condition set is not satisfied, the target value is the first type of value, carrying the first code block The product of the number of layers of the physical channels in the set, the target code rate of the physical channel carrying the first set of code blocks, and the modulation order of the physical channel carrying the first set of code blocks. ;
  • the target value is not less than the number of bits included in the first code block set;
  • the first type of value is the product of the fourth type of value and the first RB number;
  • the fourth type of value and the first The number of symbols is linearly related, and the linear coefficient between the fourth type value and the first number of symbols is equal to the number of subcarriers included in one PRB.
  • the physical channel carrying the first code block set occupies the target RE set; when the first condition set is not satisfied, the target value is the first type of value, carrying the first code block The product of the number of layers of the physical channels in the set, the target code rate of the physical channel carrying the first set of code blocks, and the modulation order of the physical channel carrying the first set of code blocks. ;
  • the target value is not less than the number of bits included in the first code block set;
  • the first type of value is the product of the fourth type of value and the first RB number; the fourth type of value is equal to the first
  • the number of symbols is multiplied by the number of subcarriers included in a PRB.
  • the first transmitter also sends the second bit block in the target RE set only when the target RE subset is a proper subset of the first RE set.
  • the first transmitter only when the first condition set is not satisfied, the first transmitter also sends the second bit block in the target RE set.
  • the second bit block includes the configuration grant UCI in the PUSCH carrying the first code block set.
  • the second bit block belongs to the configuration grant UCI in the PUSCH carrying the first code block set.
  • the second bit block includes some bits in the configuration grant UCI in the PUSCH carrying the first code block set.
  • the second bit block further includes at least one of a HARQ process number, a redundancy version, and a new data indicator.
  • the configuration grant UCI in the PUSCH carrying the first code block set includes at least one of a HARQ process number (process number), a redundancy version (Redundancy version), and a new data indicator (New data indicator). one.
  • the second bit block includes SCI in the PSSCH carrying the first code block set.
  • the second bit block belongs to the SCI in the PSSCH carrying the first code block set.
  • the second bit block includes some bits in the SCI in the PSSCH carrying the first code block set.
  • the SCI in the PSSCH carrying the first code block set includes at least one of a HARQ process number (process number), a redundancy version (Redundancy version), and a new data indicator (New data indicator).
  • process number HARQ process number
  • Redundancy version redundancy version
  • New data indicator new data indicator
  • the second bit block is used to indicate symbols occupied by the target RE set.
  • the second bit block is used to indicate RBs occupied by the target RE set.
  • the second bit block is used to indicate symbols occupied by the target RE set and RBs occupied by the target RE set.
  • the second bit block indicates a proportion of the target RE set in the first RE set.
  • the second bit block indicates the number of symbols occupied by the target RE set.
  • the second bit block indicates the number of RBs occupied by the target RE set.
  • the second bit block indicates at least one of the number of symbols occupied by the target RE set or the number of RBs occupied by the target RE set.
  • the second bit block indicates the number of symbols occupied by the target RE set and the number of RBs occupied by the target RE set.
  • Embodiment 6 illustrates a schematic diagram of the relationship between a given target integer, a given number of symbols, and a given number of RBs according to an embodiment of the present application; as shown in FIG. 6 .
  • the first type of value is the product of the third type of value and the given RB number; the third type of value is the smaller of the fourth type of value and the first reference threshold; the fourth type of value is the smaller of the fourth type of value and the first reference threshold;
  • the numerical value is linearly related to the given number of symbols.
  • the linear coefficient between the fourth type of numerical value and the given number of symbols is equal to the number of subcarriers included in one RB;
  • the fourth target value is the first type of numerical value, carrying the The number of layers (Layer) of the physical channel of the first code block set, the target code rate of the physical channel carrying the first code block set, and the modulation of the physical channel carrying the first code block set
  • the product of orders the second type of value is the larger of the second reference threshold and the first reference value, the fourth target value is used to determine the third parameter, and the second reference value is equal to the fourth target value Divided by the third parameter, the first reference value is equal to the third parameter multiplied by the largest integer not greater than the second reference value, and the third parameter is a positive integer;
  • the given target integer is equal to the first type of reference integer Among all the integers in the set that are not less than the second type of value, an integer that is closest to the second type of value;
  • the first type of reference integer set includes a plurality of positive integers.
  • the given symbol number is the second symbol number in this application
  • the given RB number is the second RB number in this application
  • the given target integer is the second symbol number in this application.
  • the second target integer in .
  • the given number of symbols is the first number of symbols in this application
  • the given number of RBs is the first number of RBs in this application
  • the given target integer is equal to or greater than The number of bits included in the first code block set.
  • an integer closest to the second type value is equal to the number of bits included in the first code block set.
  • the one integer closest to the second type value is greater than the number of bits included in the first code block set.
  • the fourth type of numerical value is also linearly related to the first load parameter, the linear coefficient between the fourth type of numerical value and the first load parameter is equal to -1, and the first load parameter is non-negative integer.
  • the first load parameter is configured by a higher layer parameter.
  • the first load parameter is configured by the RRC parameter xOverhead.
  • the first load parameter is
  • the first load parameter is
  • the fourth type of numerical value is also linearly related to the second load parameter, the linear coefficient between the fourth type of numerical value and the second load parameter is equal to -1, and the second load parameter is a positive integer. .
  • the second load parameter is the number of DMRS REs in each RB in the target RE set.
  • the second load parameter is the number of DMRS REs in each RB in the first RE set.
  • the second load parameter is the number of DMRS REs in each RB.
  • the second load parameter is the overhead of a non-data (without data) DMRS CDM (Code Division Multiplexing, code division multiplexing) group (overhead) in the target RE set.
  • DMRS CDM Code Division Multiplexing, code division multiplexing
  • the second load parameter includes the overhead of a non-data (without data) DMRS CDM (Code Division Multiplexing, code division multiplexing) group (overhead) in the first RE set.
  • DMRS CDM Code Division Multiplexing, code division multiplexing
  • the second load parameter is the number of DMRSREs in each RB including the overhead of a non-data (without data) DMRSCDM (Code Division Multiplexing, code division multiplexing) group (overhead). .
  • the second load parameter is described For the specific definition, please refer to Chapter 5.1.3.2 or Chapter 6.1.4.2 in 3GPP TS38.214.
  • the first type of numerical value is N RE .
  • N RE the first type of numerical value
  • the specific definition of the N RE please refer to Chapter 5.1.3.2 in 3GPP TS38.214.
  • the first type of numerical value is N RE .
  • N RE the first type of numerical value
  • the specific definition of the N RE please refer to Chapter 6.1.4.2 in 3GPP TS38.214.
  • the given number of RBs is n PRB .
  • n PRB for the specific definition of n PRB , please refer to Chapter 5.1.3.2 in 3GPP TS38.214.
  • the given number of RBs is n PRB .
  • n PRB for the specific definition of n PRB , please refer to Chapter 6.1.4.2 in 3GPP TS38.214.
  • the fourth type of numerical value is N′ RE .
  • N′ RE for the specific definition of the N′ RE , please refer to Chapter 5.1.3.2 in 3GPP TS38.214.
  • the fourth type of numerical value is N′ RE .
  • N′ RE for the specific definition of the N′ RE , please refer to Chapter 6.1.4.2 in 3GPP TS38.214.
  • the first reference threshold is equal to 156.
  • the number of subcarriers included in one PRB is equal to 12.
  • the fourth target value is N info .
  • N info for the specific definition of N info , please refer to Chapter 5.1.3.2 or Chapter 6.1.4.2 in 3GPP TS38.214.
  • the second type of value is N′ info .
  • N′ info please refer to Chapter 5.1.3.2 or Chapter 6.1.4.2 in 3GPP TS38.214.
  • the fourth target value is not greater than 3824.
  • the second reference threshold is equal to 24.
  • the third parameter is equal to
  • the second type of numerical value is equal to
  • any integer in the first type of reference integer set is a candidate TBS (Transport Block Size).
  • the first type of reference integer set includes all TBSs in Table 5.1.3.2-1 in 3GPP TS38.214 (V15.3.0).
  • Embodiment 7 illustrates a schematic diagram of the relationship between a given target integer, a given number of symbols, and a given number of RBs according to another embodiment of the present application; as shown in FIG. 7 .
  • the first type of value is the product of the third type of value and the given RB number; the third type of value is the smaller of the fourth type of value and the first reference threshold; the fourth type of value is the smaller of the fourth type of value and the first reference threshold; The value is linearly related to the number of given symbols.
  • the linear coefficient between the fourth type of value and the given number of symbols is equal to the number of subcarriers included in one RB;
  • the fourth target value is the first type of value, carrying the The number of layers (Layer) of the physical channel of the first code block set, the target code rate of the physical channel carrying the first code block set, and the modulation of the physical channel carrying the first code block set
  • the product of orders the second type of value is the larger of the second reference threshold and the first reference value
  • the fifth target value is equal to the fourth target value minus the number of reference bits, and the number of reference bits is positive Integer;
  • the fifth target value is used to determine the third parameter, the second reference value is equal to the fifth target value divided by the third parameter, the first reference value is equal to the third parameter multiplied by the maximum An integer close to the second reference value, the third parameter is a positive integer
  • the second type of value is used to determine the fourth parameter, the given target integer is equal to The fourth parameter is a positive integer, and the first bit number is
  • the given symbol number is the second symbol number in this application
  • the given RB number is the second symbol number in this application.
  • the second RB number, the given target integer is the second target integer in this application.
  • the given number of symbols is the first number of symbols in this application
  • the given number of RBs is the first number of RBs in this application
  • the given target integer is equal to or greater than The number of bits included in the first code block set.
  • the given symbol number is the first symbol number in this application
  • the given RB number is the first RB number in this application
  • the given target integer is equal to the The number of bits included in the first set of code blocks.
  • the given symbol number is the first symbol number in this application
  • the given RB number is the first RB number in this application
  • the given target integer is greater than the The number of bits included in the first set of code blocks.
  • the fourth type of numerical value is also linearly related to the first load parameter, the linear coefficient between the fourth type of numerical value and the first load parameter is equal to -1, and the first load parameter is non-negative integer.
  • the fourth type of numerical value is also linearly related to the second load parameter, the linear coefficient between the fourth type of numerical value and the second load parameter is equal to -1, and the second load parameter is a positive integer .
  • the first type of numerical value is N RE .
  • N RE the first type of numerical value
  • the specific definition of the N RE please refer to Chapter 5.1.3.2 in 3GPP TS38.214.
  • the first type of numerical value is N RE .
  • N RE the first type of numerical value
  • the specific definition of the N RE please refer to Chapter 6.1.4.2 in 3GPP TS38.214.
  • the given number of RBs is n PRBs .
  • n PRBs For the specific definition of n PRBs , please refer to Chapter 5.1.3.2 in 3GPP TS38.214.
  • the given number of RBs is n PRBs .
  • n PRBs For the specific definition of n PRBs , please refer to Chapter 6.1.4.2 in 3GPP TS38.214.
  • N′ RE the fourth type of numerical value is N′ RE .
  • N′ RE the fourth type of numerical value
  • the fourth type of value is N′ RE .
  • N′ RE For the specific definition of N′ RE , please refer to Chapter 6.1.4.2 in 3GPP TS38.214.
  • the first reference threshold is equal to 156.
  • the number of subcarriers included in one PRB is equal to 12.
  • the fourth target value is N info .
  • N info For the specific definition of N info , please refer to Chapter 5.1.3.2 or Chapter 6.1.4.2 in 3GPP TS38.214.
  • the second type of value is N′ info .
  • N′ info For the specific definition of N′ info , please refer to Chapter 5.1.3.2 or Chapter 6.1.4.2 in 3GPP TS38.214.
  • the fourth target value is greater than 3824.
  • the first bit number is one of ⁇ 6, 11, 16, 24 ⁇ .
  • the first bit number is 24.
  • the target code rate of the physical channel carrying the first code block set is not greater than 1/4
  • the fourth parameter is
  • the target code rate of the physical channel carrying the first code block set is greater than 1/4
  • the second type value is greater than 8424
  • the fourth parameter is
  • the target code rate of the physical channel carrying the first code block set is greater than 1/4
  • the second type value is not greater than 8424
  • the fourth parameter is equal to 8.
  • the second reference threshold is equal to 3840.
  • the reference bit number is equal to the first bit number.
  • the reference bit number is one of ⁇ 6, 11, 16, 24 ⁇ .
  • the reference bit number is 24.
  • the third parameter is equal to
  • the second type of numerical value is equal to
  • Embodiment 8 illustrates a schematic diagram of the first condition according to an embodiment of the present application; as shown in FIG. 8 .
  • the first set of conditions includes a first condition
  • the first condition includes: some or all bits in the first control information block are multiplexed on a physical channel carrying the first set of code blocks.
  • the first control information block includes at least one bit.
  • the first condition set includes a first condition
  • the first condition includes: a first control information block is multiplexed in a physical channel carrying the first code block set, and the first control information block is multiplexed in a physical channel carrying the first code block set.
  • the information block includes at least one bit.
  • the first control information block includes UCI (Uplink Control Information).
  • the first control information block includes HARQ-ACK (Hybrid Automatic Repeat reQuest-Acknowledgement, Hybrid Automatic Repeat Request Acknowledgment).
  • HARQ-ACK Hybrid Automatic Repeat reQuest-Acknowledgement, Hybrid Automatic Repeat Request Acknowledgment.
  • the first control information block includes at least one of HARQ-ACK, SR (Scheduling Request, scheduling request) or CSI (Channel State Information, channel state information).
  • the first control information block includes CSI (Channel State Information).
  • the CSI includes CRI (Channel-state information reference signal Resource Indicator, channel state information reference signal resource identifier), SSBRI (Synchronization Signal/physical broadcast channel Block Resource Indicator, synchronization/physical broadcast channel block resource identifier) , LI (Layer Indicator, layer identifier), PMI (Precoding Matrix Indicator, precoding matrix identifier), CQI (Channel Quality Indicator, channel quality identifier), L1-RSRP (Layer 1 Reference Signal Received Power, layer 1-reference signal reception Power), at least one of L1-RSRQ (Layer 1 Reference Signal Received Quality, Layer 1-Reference Signal Received Quality), or L1-SINR (Layer 1 Signal to Interference and Noise Ratio, Layer 1-Signal to Interference and Noise Ratio) .
  • CRI Channel-state information reference signal Resource Indicator, channel state information reference signal resource identifier
  • SSBRI Synchromas Reference Signal/physical broadcast channel Block Resource Indicator, synchron
  • the first control information block is scheduled by signaling other than the first signaling.
  • the first control information block includes one bit.
  • the first control information block includes more than one bit.
  • Embodiment 9 illustrates a schematic diagram of the first condition according to another embodiment of the present application; as shown in Figure 9.
  • the first set of conditions includes a first condition
  • the first condition includes: some or all bits in the first control information block are multiplexed on a physical channel carrying the first set of code blocks.
  • the first control information block includes at least one bit.
  • the first condition further includes: the first control information block is triggered by the first signaling.
  • the meaning of the sentence "the first control information block is triggered by the first signaling" includes: the first signaling triggers a HARQ codebook, and the first The control information block includes the one HARQ codebook triggered by the first signaling.
  • the meaning of the sentence "the first control information block is triggered by the first signaling” includes: the first signaling triggers CSI, and the first control information block includes the The CSI triggered by the first signaling.
  • the meaning of the sentence "the first control information block is triggered by the first signaling" includes: the first signaling triggers aperiodic CSI, and the first The control information block includes the aperiodic CSI triggered by the first signaling.
  • a HARQ codebook includes at least one HARQ-ACK.
  • a HARQ codebook includes at least one HARQ-ACK for the HARQ process number.
  • Embodiment 10 illustrates a schematic diagram of the first condition according to another embodiment of the present application; as shown in FIG. 10 .
  • the first set of conditions includes a first condition
  • the first condition includes: some or all bits in the first control information block are multiplexed on a physical channel carrying the first set of code blocks.
  • the first control information block includes at least one bit.
  • the first condition further includes: the first node receives second signaling; wherein the second signaling is used to indicate a second RE set, and the second RE set is reserved for the first In the control information block, the first RE set and the second RE set overlap in the time domain.
  • the sender of the second signaling is the sender of the first signaling
  • the receiver of the second signaling is the receiver of the first signaling
  • the second signaling is physical layer signaling.
  • the second signaling is DCI (Downlink Control Information) signaling.
  • the second signaling is higher layer signaling.
  • the second signaling is RRC signaling.
  • the second signaling is MACCE signaling.
  • the higher layer signaling is RRC signaling.
  • the higher layer signaling is MACCE signaling.
  • the second signaling and the first signaling belong to the same CORESET pool.
  • the BWP (BandWidthPart, bandwidth component) where the first signaling is located is configured with two CORESET pools, and the second signaling and the first signaling belong to the two CORESET pools. The same CORESET pool.
  • the second RE set includes at least one RE.
  • the second RE set consists of all REs occupied by a PUCCH (Physical Uplink Control Channel) resource.
  • PUCCH Physical Uplink Control Channel
  • the second RE set includes one physical channel resource reserved for the first control information block.
  • the second RE set includes one PUCCH resource reserved for the first control information block.
  • the second RE set includes a PSFCH (Physical Sidelink Feedback CHannel, physical uplink control channel) resource reserved for the first control information block.
  • PSFCH Physical Sidelink Feedback CHannel, physical uplink control channel
  • the first control information block is abandoned for transmission in the second RE set, and some or all bits in the first control information block are multiplexed for transmission in the target RE set.
  • the meaning of the sentence "the second RE set is reserved for the first control information block" includes: the second RE set is configured or scheduled for the first control information block. .
  • the meaning of the sentence "the second RE set is reserved for the first control information block” includes: the second RE set is indicated to the first control information block.
  • the meaning of the sentence "the second RE set is reserved for the first control information block" includes: at the sending moment of the second signaling, the second RE set is scheduled Used for the transmission of the first control information block.
  • the sentence "the second RE set is reserved for the first control information block" means that the actual transmission of the first control information block occupies part or all of the REs in the second RE set.
  • the meaning of the sentence "the second RE set is reserved for the first control information block" includes: actual transmission of the first control information block does not occupy the second RE set.
  • the meaning of the sentence "the second RE set is reserved for the first control information block" includes: the first control information block is abandoned for transmission in the second RE set.
  • the second signaling explicitly indicates a second RE (Resource Element, resource particle) set.
  • the second signaling implicitly indicates the second set of REs.
  • the second RE set depends on the time domain resources occupied by the second signaling.
  • the second RE set depends on the time-frequency resources occupied by the second signaling.
  • the second signaling directly indicates a second RE (Resource Element, resource particle) set.
  • the second signaling indirectly indicates the second RE set.
  • the second signaling indicates the symbols occupied by the second RE set in the time domain and the subcarriers occupied by the second RE set in the frequency domain.
  • the second signaling indicates the symbols occupied by the second RE set in the time domain and the RBs (Resource Blocks) occupied by the second RE set in the frequency domain.
  • the second signaling includes a third field (field), and the third field in the second signaling is used to indicate the second RE set; the third field includes at least One bit.
  • the third domain in the second signaling indicates the index of the second RE set in the reference RE pool, and the reference RE pool includes at least one RE set, so
  • the second RE set is a RE set in the reference RE pool, and a RE set includes at least one RE.
  • the third field in the second signaling indicates that the first air interface resource set is in the reference air interface resource set.
  • the reference air interface resource pool includes at least one air interface resource set
  • the first air interface resource set is an air interface resource set in the reference air interface resource pool
  • the second RE set is composed of the third
  • An air interface resource set is composed of all REs occupied in the time and frequency domain.
  • An air interface resource set includes at least one RE in the time and frequency domain.
  • the third domain in the second signaling indicates the index of the first PUCCH resource in a PUCCH resource set, and the PUCCH resource set includes at least one PUCCH resource, so
  • the first PUCCH resource is a PUCCH resource in the one PUCCH resource set
  • the second RE set is composed of all REs occupied by the first PUCCH resource in the time-frequency domain
  • one PUCCH resource includes at least A RE.
  • the third domain is the PUCCH resource indicator domain.
  • the first control information block includes HARQ-ACK (Hybrid Automatic Repeat reQuest-Acknowledgement, Hybrid Automatic Repeat Request Acknowledgment) associated with the second signaling.
  • HARQ-ACK Hybrid Automatic Repeat reQuest-Acknowledgement, Hybrid Automatic Repeat Request Acknowledgment
  • the HARQ-ACK associated with the second signaling includes NACK.
  • the HARQ-ACK associated with the second signaling includes ACK or NACK.
  • the HARQ-ACK associated with the second signaling indicates whether each bit in the set of bit blocks scheduled by the second signaling is received correctly.
  • the set of bit blocks scheduled by the second signaling includes a TB (Transport Block).
  • the set of bit blocks scheduled by the second signaling includes at least one TB.
  • the set of bit blocks scheduled by the second signaling includes at least one CB (Code Block).
  • the set of bit blocks scheduled by the second signaling includes at least one CBG (Code Block Group).
  • the HARQ-ACK associated with the second signaling indicates whether the second signaling is received correctly.
  • the second signaling is used to indicate SPS (Semi-Persistent Scheduling, quasi-static scheduling) release (Release), and the HARQ-ACK associated with the second signaling indicates the first 2. Whether the signaling is received correctly.
  • SPS Semi-Persistent Scheduling, quasi-static scheduling
  • Release Release
  • the second signaling is used to schedule PDSCH (Physical Downlink Shared Channel, physical downlink shared channel), and the HARQ-ACK associated with the second signaling indicates the second Whether the PDSCH scheduled by the signaling is received correctly.
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • the first receiver receives a first signal; wherein the second signaling is used to indicate the time-frequency resource occupied by the first signal, and the first control information block includes the HARQ-ACK of the first signal.
  • the first control information block includes a HARQ-ACK associated with the second signaling, and the HARQ-ACK associated with the second signaling is for the HARQ-ACK of the first signal.
  • the transmission channel of the first signal is DL-SCH (Downlink Shared Channel).
  • the first signal is transmitted on the PDSCH.
  • the first signal carries a set of bit blocks.
  • the first signal carries a TB.
  • the first signal carries at least one TB.
  • the first signal carries at least one CB.
  • the first signal carries at least one CBG (Code Block Group).
  • the first signal carries a set of bit blocks scheduled by the second signaling.
  • the first control information block indicates whether each bit block carried by the first signal is received correctly.
  • the second signaling indicates the time domain resources occupied by the first signal and the frequency domain resources occupied by the first signal.
  • the second signaling includes a first domain and a second domain
  • the first domain in the second signaling Indicates the time domain resources occupied by the first signal
  • the second domain in the second signaling indicates the frequency domain resources occupied by the first signal
  • the second signaling includes a first domain and a second domain
  • the first domain in the second signaling indicates the symbols occupied by the first signal
  • the The second field in the second signaling indicates that the first signal occupies RB.
  • a bit block set includes at least one bit block, and a bit block includes at least one bit.
  • the first RE set and the second RE set are orthogonal.
  • the first RE set and the second RE set do not include the same RE.
  • the first RE set and the second RE set include at least one identical RE.
  • the first RE set and the second RE set include at least one same symbol in the time domain.
  • the first RE set and the second RE set include at least one same subcarrier in the frequency domain.
  • the first RE set and the second RE set are orthogonal in the frequency domain.
  • the first RE set and the second RE set overlap in the frequency domain.
  • the first RE set and the second RE set do not include the same subcarrier in the frequency domain.
  • Embodiment 11 illustrates a schematic diagram of the first condition according to an embodiment of the present application; as shown in Figure 11.
  • the first condition further includes: the priority of the first control information block is higher than the priority of the first code block set.
  • the priority of the first code block set is the priority of the physical channel carrying the first code block set.
  • the priority of the first code block set is not higher than the priority of the physical channel carrying the first code block set.
  • the first condition further includes: the priority of the first control information block is equal to or higher than the priority of the first code block set.
  • the meaning of the sentence "the priority of the first control information block is higher than the priority of the first code block set" includes: the priority index of the first control information block is 0 , the priority index of the first code block set is a positive integer.
  • the meaning of the sentence "the priority of the first control information block is higher than the priority of the first code block set" includes: the priority index of the first control information block is 1 , the priority index of the first code block set is 0.
  • the meaning of the sentence "the priority of the first control information block is higher than the priority of the first code block set” includes: the priority index of the first control information block is greater than the priority of the first code block set. Index of the priority of the first set of code blocks.
  • the sentence "the priority of the first control information block is higher than the priority of the first code block set" means that the index of the priority of the first control information block is smaller than the index of the priority of the first code block set.
  • the priority index of the first control information block is a non-negative integer
  • the priority index of the first code block set is a non-negative integer
  • the second signaling indicates the priority of the first control information block
  • the first signaling indicates the priority of the first code block set
  • the second signaling indicates the priority of the first control information block
  • the first signaling indicates the priority of the first code block set
  • the first signaling includes a fourth field, and the fourth field in the first signaling indicates the priority of the first code block set.
  • the second signaling includes a fourth field, and the fourth field in the second signaling indicates the priority of the first control information block.
  • the first signaling includes a fourth field, and the fourth field in the first signaling indicates an index of priority of the first code block set.
  • the second signaling includes a fourth field, and the fourth field in the second signaling indicates an index of the priority of the first control information block.
  • the fourth domain is a Priority indicator domain.
  • the specific definition of the priority indicator field can be found in Chapter 7 of 3GPP TS38.212.
  • the fourth domain is a Priority domain.
  • the priority index is a priority index.
  • the priority index is priority value.
  • the specific definition of the priority value can be found in Chapter 8 of 3GPP TS38.214.
  • Embodiment 12 illustrates a schematic diagram of the second condition according to an embodiment of the present application; as shown in Figure 12.
  • the first set of conditions includes a second condition
  • the second condition includes: a transmission scheme of a physical channel carrying the first set of code blocks includes at least one characteristic in the first set of characteristics.
  • the first set of characteristics includes: repeated transmission.
  • the first characteristic set includes: the number of repeated transmissions is greater than a third reference threshold, and the third reference threshold is a positive integer.
  • the third reference threshold is equal to 1.
  • the third reference threshold is greater than 1.
  • the third reference threshold is configurable.
  • the third reference threshold is configured by RRC parameters.
  • the first feature set includes: multiple transmitting and receiving nodes (Transmit Receive Point, TRP) transmission.
  • TRP Transmit Receive Point
  • the first characteristic set includes: multiple antenna panel transmissions.
  • the first feature set includes: SFN (Single Frequency Network, single frequency network).
  • the first feature set includes: bundling DMRS.
  • the first feature set includes: TB processing over multiple slots.
  • the first feature set includes: nominal repetition.
  • the first feature set includes: PUSCH repetition TypeB.
  • DMRS bundling can be found in Chapter 6 of 3GPP TS38.214.
  • bundling DMRS includes: PUSCH transmission within a time domain window (TDW) maintains power consistency (power consistency) and phase continuity (phase continuity).
  • TDW time domain window
  • Embodiment 13 illustrates a structural block diagram of a processing device used in a first node device according to an embodiment of the present application; as shown in FIG. 13 .
  • the processing device 1200 in the first node device includes a first receiver 1201 and a first transmitter 1202.
  • the first node device is user equipment.
  • the first node device is a relay node device.
  • the first receiver 1201 includes the ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, and data source in Embodiment 4. At least one of 467 ⁇ .
  • the first transmitter 1202 includes the ⁇ antenna 452, transmitter 454, transmit processor 468, multi-antenna transmit processor 457, controller/processor 459, memory 460, data source in Embodiment 4. At least one of 467 ⁇ .
  • the first receiver 1201 receives first signaling, where the first signaling is used to indicate the first RE set;
  • the first transmitter 1202 transmits the first code block set in the target RE set, where the target RE set is the first RE set or a proper subset of the first RE set;
  • the first RE set is reserved for the first code block set, and the first code block set includes at least one code block; whether the target RE set and the first condition set are satisfied Related; when the first condition set is satisfied, the target RE set is the first RE set; when the first condition set is not satisfied, the size of the target RE set depends on the first RE set.
  • Code block collection package The number of bits included; the first set of conditions includes one or more conditions.
  • the first set of conditions includes a first condition
  • the first condition includes: some or all bits in the first control information block are multiplexed in a physical channel carrying the first set of code blocks.
  • the first control information block includes at least one bit.
  • the first condition further includes: the first control information block is triggered by the first signaling.
  • the first condition further includes: the first node receives second signaling; wherein the second signaling is used to indicate a second RE set, and the second RE set is reserved.
  • the first RE set and the second RE set overlap in the time domain.
  • the first receiver 1201 receives the second signaling.
  • the first condition further includes: the priority of the first control information block is higher than the priority of the first code block set.
  • the first set of conditions includes a second condition
  • the second condition includes: a transmission scheme of a physical channel carrying the first set of code blocks includes at least one characteristic in the first set of characteristics.
  • the first transmitter 1202 also sends a second bit block in the target RE set
  • the second bit block is used to indicate at least one of symbols occupied by the target RE set or RBs occupied by the target RE set.
  • Embodiment 14 illustrates a structural block diagram of a processing device used in a second node device according to an embodiment of the present application; as shown in FIG. 14 .
  • the processing device 1300 in the second node device includes a second transmitter 1301 and a second receiver 1302.
  • the second node device is a base station device.
  • the second node device is a relay node device.
  • the second transmitter 1301 includes ⁇ antenna 420, transmitter 418, transmission processor 416, multi-antenna transmission processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4. At least one.
  • the second receiver 1302 includes ⁇ antenna 420, receiver 418, receiving processor 470, multi-antenna receiving processor 472, controller/processor 475, memory 476 ⁇ in Embodiment 4. At least one.
  • the second transmitter 1301 sends first signaling, where the first signaling is used to indicate the first RE set;
  • the second receiver 1302 receives the first code block set in the target RE set, and the target RE set is the first RE set or a proper subset of the first RE set;
  • the first RE set is reserved for the first code block set, and the first code block set includes at least one code block; the target RE set is related to whether the first condition set is satisfied. ; When the first condition set is satisfied, the target RE set is the first RE set; when the first condition set is not satisfied, the size of the target RE set depends on the first code The number of bits included in the block set; the first condition set includes one or more conditions.
  • the first set of conditions includes a first condition
  • the first condition includes: some or all bits in the first control information block are multiplexed in a physical channel carrying the first set of code blocks.
  • the first control information block includes at least one bit.
  • the first condition further includes: the first control information block is triggered by the first signaling.
  • the first condition further includes: the second node sends second signaling; wherein the second signaling is used to indicate a second RE set, and the second RE set is reserved.
  • the first RE set and the second RE set overlap in the time domain.
  • the second transmitter 1301 sends the second signaling.
  • the first condition further includes: the priority of the first control information block is higher than the priority of the first code block set.
  • the first set of conditions includes a second condition
  • the second condition includes: a transmission scheme of a physical channel carrying the first set of code blocks includes at least one characteristic in the first set of characteristics.
  • the second receiver 1302 also receives a second bit block in the target RE set; wherein the second bit block is used to indicate symbols occupied by the target RE set or the target RE set. At least one of the RBs occupied by the RE set.
  • User equipment, terminals and UEs in this application include but are not limited to drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC, enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost Cost-effective tablet computers and other wireless communication devices.
  • MTC Machine Type Communication
  • eMTC enhanced MTC
  • the base stations or system equipment in this application include but are not limited to macro cell base stations, micro cell base stations, home base stations, relay base stations, gNB (NR Node B) NR Node B, TRP (Transmit Receive Point, transmitting and receiving node) and other wireless communications equipment.
  • gNB NR Node B
  • TRP Transmit Receive Point, transmitting and receiving node

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点接收第一信令,所述第一信令被用于指示第一RE集合;在目标RE集合中发送第一码块集合,所述目标RE集合是所述第一RE集合或所述第一RE集合的真子集。所述第一RE集合被预留给所述第一码块集合,所述第一码块集合包括至少一个码块;所述目标RE集合和第一条件集合是否被满足有关;当所述第一条件集合被满足时,所述目标RE集合是所述第一RE集合;当所述第一条件集合不被满足时,所述目标RE集合的大小依赖所述第一码块集合包括的比特数;所述第一条件集合包括一个或多个条件。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是支持蜂窝网的无线通信系统中的无线信号的传输方法和装置。
背景技术
在5G系统中,为了更好地服务于虚拟现实、云游戏等业务的需求,3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#90e次全会上通过了NR(New Radio,新空口)Release 18的XR增强的SI(Study Item,研究项目)。其中,针对XR业务特性,研究如何提供更有效的资源分配和调度机制是其中的一个重点问题。
发明内容
发明人通过研究发现,如何调整传输一个码块集合所占用的时频资源是一个关键问题。
针对上述问题,本申请公开了一种解决方案。需要说明的是,虽然上述描述采用上行链路作为例子,本申请也适用于其他场景(比如下行链路、伴随链路),并取得类似在上行链路中的技术效果。此外,不同场景(包括但不限于下行链路,上行链路和伴随链路)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到其他任一节点中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信令,所述第一信令被用于指示第一RE集合;
在目标RE集合中发送第一码块集合,所述目标RE集合是所述第一RE集合或所述第一RE集合的真子集;
其中,所述第一RE集合被预留给所述第一码块集合,所述第一码块集合包括至少一个码块;所述目标RE集合和第一条件集合是否被满足有关;当所述第一条件集合被满足时,所述目标RE集合是所述第一RE集合;当所述第一条件集合不被满足时,所述目标RE集合的大小依赖所述第一码块集合包括的比特数;所述第一条件集合包括一个或多个条件。
作为一个实施例,本申请要解决的问题包括:如何调整传输一个码块集合所占用的时频资源。
根据本申请的一个方面,其特征在于,所述第一条件集合包括第一条件,所述第一条件包括:第一控制信息块中的部分或全部比特被复用在承载所述第一码块集合的物理信道中,所述第一控制信息块包括至少一个比特。
根据本申请的一个方面,其特征在于,所述第一条件还包括:所述第一控制信息块是被所述第一信令触发的。
根据本申请的一个方面,其特征在于,所述第一条件还包括:所述第一节点接收第二信令;其中,所述第二信令被用于指示第二RE集合,所述第二RE集合被预留给所述第一控制信息块,所述第一RE集合和所述第二RE集合在时域交叠。
根据本申请的一个方面,其特征在于,所述第一条件还包括:所述第一控制信息块的优先级高于所述第一码块集合的优先级。
根据本申请的一个方面,其特征在于,所述第一条件集合包括第二条件,所述第二条件包括: 承载所述第一码块集合的物理信道的传输方案包括第一特性集合中的至少一个特性。
根据本申请的一个方面,其特征在于,包括:
在所述目标RE集合中还发送第二比特块;
其中,所述第二比特块被用于指示所述目标RE集合占用的符号或者所述目标RE集合占用的RB(Resource Block,资源块)中的至少之一。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信令,所述第一信令被用于指示第一RE集合;
在目标RE集合中接收第一码块集合,所述目标RE集合是所述第一RE集合或所述第一RE集合的真子集;
其中,所述第一RE集合被预留给所述第一码块集合,所述第一码块集合包括至少一个码块;所述目标RE集合和第一条件集合是否被满足有关;当所述第一条件集合被满足时,所述目标RE集合是所述第一RE集合;当所述第一条件集合不被满足时,所述目标RE集合的大小依赖所述第一码块集合包括的比特数;所述第一条件集合包括一个或多个条件。
根据本申请的一个方面,其特征在于,所述第一条件集合包括第一条件,所述第一条件包括:第一控制信息块中的部分或全部比特被复用在承载所述第一码块集合的物理信道中,所述第一控制信息块包括至少一个比特。
根据本申请的一个方面,其特征在于,所述第一条件还包括:所述第一控制信息块是被所述第一信令触发的。
根据本申请的一个方面,其特征在于,所述第一条件还包括:所述第二节点发送第二信令;其中,所述第二信令被用于指示第二RE集合,所述第二RE集合被预留给所述第一控制信息块,所述第一RE集合和所述第二RE集合在时域交叠。
根据本申请的一个方面,其特征在于,所述第一条件还包括:所述第一控制信息块的优先级高于所述第一码块集合的优先级。
根据本申请的一个方面,其特征在于,所述第一条件集合包括第二条件,所述第二条件包括:承载所述第一码块集合的物理信道的传输方案包括第一特性集合中的至少一个特性。
根据本申请的一个方面,其特征在于,包括:
在所述目标RE集合中还接收第二比特块;
其中,所述第二比特块被用于指示所述目标RE集合占用的符号或者所述目标RE集合占用的RB中的至少之一。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一接收机,接收第一信令,所述第一信令被用于指示第一RE集合;
第一发射机,在目标RE集合中发送第一码块集合,所述目标RE集合是所述第一RE集合或所述第一RE集合的真子集;
其中,所述第一RE集合被预留给所述第一码块集合,所述第一码块集合包括至少一个码块;所述目标RE集合和第一条件集合是否被满足有关;当所述第一条件集合被满足时,所述目标RE集合是所述第一RE集合;当所述第一条件集合不被满足时,所述目标RE集合的大小依赖所述第一码块集合包括的比特数;所述第一条件集合包括一个或多个条件。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二发射机,发送第一信令,所述第一信令被用于指示第一RE集合;
第二接收机,在目标RE集合中接收第一码块集合,所述目标RE集合是所述第一RE集合或所述第一RE集合的真子集;
其中,所述第一RE集合被预留给所述第一码块集合,所述第一码块集合包括至少一个码块;所述目标RE集合和第一条件集合是否被满足有关;当所述第一条件集合被满足时,所述目标RE集合 是所述第一RE集合;当所述第一条件集合不被满足时,所述目标RE集合的大小依赖所述第一码块集合包括的比特数;所述第一条件集合包括一个或多个条件。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-根据不同场景,灵活确定传输码块集合所需的时频资源;
-提高了资源的利用率。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令和第一码块集合的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的传输的流程图;
图6示出了根据本申请的一个实施例的给定目标整数和给定符号数、给定RB数的关系的示意图;
图7示出了根据本申请的另一个实施例的给定目标整数和给定符号数、给定RB数的关系的示意图;
图8示出了根据本申请的一个实施例的第一条件的示意图;
图9示出了根据本申请的另一个实施例的第一条件的示意图;
图10示出了根据本申请的一个实施例的第一条件的示意图;
图11示出了根据本申请的另一个实施例的第一条件的示意图;
图12示出了根据本申请的一个实施例的第二条件的示意图;
图13示出了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;
图14示出了根据本申请的一个实施例的用于第二节点中设备的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信令和第一码块集合的流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。
在实施例1中,本申请中的所述第一节点在步骤101中接收第一信令;在步骤102中在目标RE集合中发送第一码块集合;其中,所述第一信令被用于指示第一RE集合;所述目标RE集合是所述第一RE集合或所述第一RE集合的真子集;所述第一RE集合被预留给所述第一码块集合,所述第一码块集合包括至少一个码块;所述目标RE集合和第一条件集合是否被满足有关;当所述第一条件集合被满足时,所述目标RE集合是所述第一RE集合;当所述第一条件集合不被满足时,所述目标RE集合的大小依赖所述第一码块集合包括的比特数;所述第一条件集合包括一个或多个条件。
典型的,当所述第一条件集合不被满足时,所述第一码块集合包括的比特数被用于从所述第一RE集合中确定所述目标RE集合。
作为一个实施例,当所述目标RE集合所述第一RE集合的真子集时,所述第一节点在所述第一RE集合中的仅所述目标RE集合中发送所述第一码块集合。
作为一个实施例,所述第一条件集合包括仅一个条件。
作为一个实施例,所述第一条件集合包括多个条件;当所述第一条件集合中存在一个条件被满足时,所述第一条件集合被满足;当所述第一条件集合中的所有条件都不被满足时,所述第一条件集合不被满足。
作为一个实施例,所述第一条件集合包括多个条件;当所述第一条件集合中的所有条件都被满足时,所述第一条件集合被满足;当所述第一条件集合中存在一个条件不被满足时,所述第一条件集合不被满足。
作为一个实施例,所述第一条件集合包括第一条件和第二条件;当所述第一条件或所述第二条件被满足时,所述第一条件集合被满足;当所述第一条件和所述第二条件都不被满足时,所述第一条件集合不被满足。
作为一个实施例,所述第一条件集合包括第一条件和第二条件;当所述第一条件和所述第二条件都被满足时,所述第一条件集合被满足;当所述第一条件或所述第二条件不被满足时,所述第一条件集合不被满足。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是DCI(下行控制信息,Downlink Control Information)信令。
作为一个实施例,所述第一信令是更高层信令。
作为一个实施例,所述第一信令是RRC信令。
作为一个实施例,所述第一信令是MACCE信令。
作为一个实施例,所述更高层信令是RRC信令。
作为一个实施例,所述更高层信令是MACCE信令。
作为一个实施例,所述第一信令调度PUSCH(Physical Uplink Shared CHannel,物理上行共享信道),所述第一RE(Resource Element,资源粒子)集合包括被调度给所述PUSCH的所有RE。
作为一个实施例,所述第一信令调度PSSCH(Physical Sidelink Shared CHannel,物理副链路共享信道),所述第一RE(Resource Element,资源粒子)集合包括被调度给所述PSSCH的所有RE。
作为一个实施例,所述第一信令调度PUSCH,承载所述第一码块集合的物理信道是PUSCH。
作为一个实施例,所述第一信令调度PSSCH,承载所述第一码块集合的物理信道是PSSCH。
作为一个实施例,所述第一信令是SCI(副链路控制信息,Sidelink Control Information)信令,所述第一信令调度PSSCH,承载所述第一码块集合的物理信道是PSSCH。
作为一个实施例,所述第一信令调度配置授予(Configured Grant,CG)PUSCH。
作为一个实施例,所述第一信令调度配置授予PUSCH,所述第一RE集合包括被所述第一信令所调度的一个配置授予PUSCH的所有RE。
作为一个实施例,所述第一信令调度配置授予PUSCH,所述第一RE集合包括被所述第一信令所调度的一个配置授予PUSCH传输时机(transmission occasion)的所有RE。
作为一个实施例,所述第一信令是CRC(Cyclic Redundancy Check,循环冗余校验)被CS(Configured scheduling,配置调度)-RNTI(Radio network temporary identifier,无线网络临时标识)所加扰(scramble)的DCI信令,所述第一信令调度配置授予(configured grant)PUSCH。
作为一个实施例,所述第一信令是CRC(Cyclic Redundancy Check,循环冗余校验)被C(Cell,小区)-RNTI所加扰(scramble)的DCI信令,所述第一信令调度配置授予(configured grant)PUSCH。
作为一个实施例,所述第一RE集合由被预留给所述第一码块集合的一个物理信道占用的所有RE组成。
作为一个实施例,所述句子“所述第一RE集合被预留给所述第一码块集合”的意思包括:所述第一RE集合被配置或被调度给所述第一码块集合。
作为一个实施例,所述句子“所述第一RE集合被预留给所述第一码块集合”的意思包括:所述第一RE集合包括被预留用于承载所述第一码块集合的物理信道的所有RE。
作为一个实施例,所述句子“所述第一RE集合被预留给所述第一码块集合”的意思包括:所述第一RE集合被指示给所述第一码块集合。
作为一个实施例,所述句子“所述第一RE集合被预留给所述第一码块集合”的意思包括:在所述第一信令的发送时刻,所述第一RE集合被调度用于所述第一码块集合的传输。
作为一个实施例,所述句子“所述第一RE集合被预留给所述第一码块集合”的意思包括:所述第一码块集合的实际传输占用了所述第一RE集合中的部分或全部RE。
作为一个实施例,所述第一码块集合包括一个传输块(Transport Block,TB)中的全部码块(code block)。
作为一个实施例,所述第一码块集合包括至少一个传输块(Transport Block,TB)中的全部码块(code block)。
作为一个实施例,所述第一码块集合包括一个传输块(Transport Block,TB)中的至少一个码块。
作为一个实施例,所述第一码块集合包括至少一个传输块(Transport Block,TB)中的至少一个码块。
作为一个实施例,所述句子“所述第一RE集合被预留给所述第一码块集合”的意思包括:所述第一RE集合被预留给所述第一码块集合的一个重复。
作为一个实施例,所述句子“所述第一RE集合被预留给所述第一码块集合”的意思包括:所述第一RE集合被预留给所述第一码块集合的一个实际重复(actual repetition)。
作为一个实施例,所述句子“所述第一RE集合被预留给所述第一码块集合”的意思包括:所述第一RE集合被预留给所述第一码块集合的一个名义重复(nominal repetition)。
作为一个实施例,所述actual repetition和所述nominal repetition的具体定义参见3GPP TS38.214中第6章节。
作为一个实施例,所述句子“所述第一信令被用于指示第一RE集合”的意思包括:所述第一信令包括第一域和第二域,所述第一信令中的所述第一域指示所述第一RE集合占用的符号,所述第一信令中的所述第二域指示所述第一RE集合占用的RB(Resource Block,资源块)。
作为一个实施例,所述句子“所述第一信令被用于指示第一RE集合”的意思包括:所述第一信令被用于指示M个RE集合,所述第一RE集合是所述M个RE集合中之一,M是大于1的正整数。
作为一个实施例,所述句子“所述第一信令被用于指示第一RE集合”的意思包括:所述第一信令包括第一域和第二域,所述第一信令中的所述第一域指示M个RE集合中最早的RE集合所占用的符号,所述第一信令中的所述第二域指示所述M个RE集合中的最早的RE集合所占用的RB;所述第一RE集合是所述M个RE集合中之一,所述M是大于1的正整数。
作为一个实施例,所述句子“所述第一信令被用于指示第一RE集合”的意思包括:所述第一信令包括第一域和第二域,所述第一信令中的所述第一域指示M个RE集合中最早的RE集合所占用的符号和M,所述第一RE集合是所述M个RE集合中之一,所述M是大于1的正整数,所述第一信令中的所述第二域指示所述M个RE集合中的最早的RE集合所占用的RB。
作为一个实施例,所述第一信令是DCI信令,所述第一域是Time domain resource assignment域,所述第二域是Frequency domain resource assignment域。
作为一个实施例,所述第一信令是SCI信令,所述第一域是Time resource assignment域,所述第二域是Frequency resource assignment域。
作为一个实施例,所述第一信令是RRC信令,所述第一域的名称包括frequencyDomainAllocation,所述第二域的名称包括frequencyDomainAllocation。
作为一个实施例,所述第一信令是RRC信令,所述第一域和所述第二域是RRC IE ConfiguredGrantConfig中的两个域。
作为一个实施例,frequencyDomainAllocation域,frequencyDomainAllocation,RRC IE ConfiguredGrantConfig的具体定义参见3GPP TS38.331中第6.3.2章节。
作为一个实施例,所述Time domain resource assignment域,所述Frequency domain resource assignment域的具体定义参见3GPP TS38.212第7.3章节。
作为一个实施例,所述Time resource assignment域,所述Frequency resource assignment域的具体定义参见3GPP TS38.212第8.3章节。
作为一个实施例,一个RE在时域占用一个符号和在频域占用一个子载波。
作为一个实施例,所述符号是单载波符号。
作为一个实施例,所述符号是多载波符号。
作为一个实施例,所述符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,所述符号是DFT-s-OFDM(Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩展的正交频分复用)符号。
作为一个实施例,所述符号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个实施例,所述符号包括CP(Cyclic Prefix,循环前缀)。
作为一个实施例,所述符号是变换预编码(transform precoding)(或者变换预编码器(transform precoder))被关闭的(disabled)OFDM符号。
作为一个实施例,所述符号是变换预编码(或者变换预编码器)被打开的(enabled)OFDM符号。
典型的,所述目标RE集合被承载所述第一码块集合的物理信道所占用。
作为一个实施例,所述目标RE集合包括所述第一RE集合中的部分或全部RE。
典型的,所述第一RE集合的真子集由所述第一RE集合中的部分RE组成。
典型的,所述第一RE集合包括所述目标RE集合,所述第一RE集合包括被预留用于承载所述第一码块集合的物理信道的所有RE,所述目标RE集合包括实际承载所述第一码块集合的物理信道所占用的所有RE。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE,LTE-A及未来5G系统的网络架构200称为EPS(Evolved Packet System,演进分组系统)200。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200或某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路(Sidelink)通信的UE241,NG-RAN(下一代无线接入网络)202,5GC(5G CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,5GS/EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。NG-RAN202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UEIP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网,内联网,IMS(IPMultimedia Subsystem,IP多媒体子系统)和包交换(Packet switching)服务。
作为一个实施例,本申请中的所述第一节点包括所述UE201。
作为一个实施例,本申请中的所述第二节点包括所述gNB203。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间,或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,负责第一通信节点设备与第二通信节点设备之间,或者两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第一信令生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第一信令生成于所述RRC子层306。
作为一个实施例,所述第一信令生成于所述PHY301,所述PHY351,或RRC子层306中的至少之一。
作为一个实施例,所述第二信令生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第二信令生成于所述RRC子层306。
作为一个实施例,所述第二信令生成于所述PHY301,所述PHY351,或RRC子层306中的至少之一。
作为一个实施例,在目标RE集合中发送的承载第一码块集合的物理信道生成于所述PHY301,或所述PHY351。
实施例4
实施例4示例了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。附图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中, 控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与传输信道之间的多路复用,以及基于各种优先级量度对第二通信设备450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的星座映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个并行流。发射处理器416随后将每一并行流映射到子载波,将调制后的符号在时域和/或频域中与参考信号(例如,导频)复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以第二通信设备450为目的地的任何并行流。每一并行流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述第一通信设备410处的发送功能,控制器/处理器459基于第一通信设备410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的并行流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。控制器/处理器475提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个 存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收第一信令,所述第一信令被用于指示第一RE集合;在目标RE集合中发送第一码块集合,所述目标RE集合是所述第一RE集合或所述第一RE集合的真子集;其中,所述第一RE集合被预留给所述第一码块集合,所述第一码块集合包括至少一个码块;所述目标RE集合和第一条件集合是否被满足有关;当所述第一条件集合被满足时,所述目标RE集合是所述第一RE集合;当所述第一条件集合不被满足时,所述目标RE集合的大小依赖所述第一码块集合包括的比特数;所述第一条件集合包括一个或多个条件。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令,所述第一信令被用于指示第一RE集合;在目标RE集合中发送第一码块集合,所述目标RE集合是所述第一RE集合或所述第一RE集合的真子集;其中,所述第一RE集合被预留给所述第一码块集合,所述第一码块集合包括至少一个码块;所述目标RE集合和第一条件集合是否被满足有关;当所述第一条件集合被满足时,所述目标RE集合是所述第一RE集合;当所述第一条件集合不被满足时,所述目标RE集合的大小依赖所述第一码块集合包括的比特数;所述第一条件集合包括一个或多个条件。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送第一信令,所述第一信令被用于指示第一RE集合;在目标RE集合中接收第一码块集合,所述目标RE集合是所述第一RE集合或所述第一RE集合的真子集;其中,所述第一RE集合被预留给所述第一码块集合,所述第一码块集合包括至少一个码块;所述目标RE集合和第一条件集合是否被满足有关;当所述第一条件集合被满足时,所述目标RE集合是所述第一RE集合;当所述第一条件集合不被满足时,所述目标RE集合的大小依赖所述第一码块集合包括的比特数;所述第一条件集合包括一个或多个条件。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信令,所述第一信令被用于指示第一RE集合;在目标RE集合中接收第一码块集合,所述目标RE集合是所述第一RE集合或所述第一RE集合的真子集;其中,所述第一RE集合被预留给所述第一码块集合,所述第一码块集合包括至少一个码块;所述目标RE集合和第一条件集合是否被满足有关;当所述第一条件集合被满足时,所述目标RE集合是所述第一RE集合;当所述第一条件集合不被满足时,所述目标RE集合的大小依赖所述第一码块集合包括的比特数;所述第一条件集合包括一个或多个条件。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450。
作为一个实施例,本申请中的所述第二节点包括所述第一通信设备410。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收本申请中的所述第一信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信令。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收本申请中的所述第二信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第二信令。
作为一个实施例,{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460}中的至少之一被用于在本申请中的所述目标RE集合中发送所述第一码块集合;{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述目标RE集合中接收所述第一码块集合。
作为一个实施例,{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460}中的至少之一被用于在本申请中的所述目标RE集合中发送所 述第二比特块;{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述目标RE集合中接收所述第二比特块。
实施例5
实施例5示例了根据本申请的一个实施例的无线传输的流程图,如附图5所示。在附图5中,第一节点U01和第二节点N02分别是通过空中接口传输的两个通信节点;附图5中,方框F1和F2中的步骤是可选的。
对于第一节点U01,在步骤S5101中接收第二信令;在步骤S5102中接收第一信令;在步骤S5103中在目标RE集合中发送第一码块集合;在步骤S5104中在所述目标RE集合中还发送第二比特块;
对于第二节点N02,在步骤S5201中发送第二信令;在步骤S5202中发送第一信令;在步骤S5203中在目标RE集合中接收第一码块集合;在步骤S5204中在所述目标RE集合中还接收第二比特块。
在实施例5中,所述第一信令被用于指示第一RE集合;所述目标RE集合是所述第一RE集合或所述第一RE集合的真子集;所述第一RE集合被预留给所述第一码块集合,所述第一码块集合包括至少一个码块;所述目标RE集合和第一条件集合是否被满足有关;当所述第一条件集合被满足时,所述目标RE集合是所述第一RE集合;当所述第一条件集合不被满足时,所述目标RE集合的大小依赖所述第一码块集合包括的比特数;所述第一条件集合包括一个或多个条件。
作为一个实施例,所述第二比特块被用于指示所述目标RE集合占用的符号或者所述目标RE集合占用的RB中的至少之一。
作为一个实施例,所述第二信令被用于指示第二RE集合,所述第二RE集合被预留给所述第一控制信息块,所述第一RE集合和所述第二RE集合在时域交叠。
作为一个实施例,所述第二节点中的方法还包括:
在所述第一RE集合中监测无线信号。
作为一个实施例,所述第二节点设备还包括:
第二接收机,在所述第一RE集合中监测无线信号。
作为一个实施例,当所述第一条件集合不被满足时,所述目标RE集合的大小依赖所述第一码块集合包括的比特数;当所述第一码块集合包括的所述比特数大于所述第二目标整数时,所述目标RE集合是所述第一RE集合;当所述第一码块集合包括的所述比特数小于第二比特大小时,所述目标RE集合是所述第一RE集合的真子集;所述第二目标整数是正整数,所述第二比特大小是正整数。
作为上述实施例的一个子实施例,所述第二比特大小等于所述第二目标整数。
作为上述实施例的一个子实施例,所述第二比特大小小于所述第二目标整数。
作为上述实施例的一个子实施例,当所述第一码块集合包括的所述比特数等于所述第二目标整数时,所述目标RE集合是所述第一RE集合。
作为上述实施例的一个子实施例,当所述第一码块集合包括的所述比特数等于所述第二目标整数时,所述目标RE集合是所述第一RE集合的真子集。
作为一个实施例,当所述第一条件集合不被满足并且所述第一码块集合包括的所述比特数属于第一整数集合时,所述目标RE集合是所述第一RE集合;当所述第一条件集合不被满足并且所述第一码块集合包括的所述比特数属于第二整数集合时,所述目标RE集合是所述第一RE集合的真子集;所述第一整数集合包括至少一个正整数,所述第二整数集合包括至少一个正整数,所述第二整数集合中的任一正整数小于所述第一整数集合中的任一正整数。
作为上述实施例的一个子实施例,第二符号数是所述第一RE集合在时域包括的符号的数量,第二RB数是所述第一RE集合在频域包括的RB的数量,所述第二符号数和所述第二RB数被用于确定第二目标整数;所述第一整数集合包括所述第二目标整数。
作为上述实施例的一个子实施例,第二符号数是所述第一RE集合在时域包括的符号的数量,第二RB数是所述第一RE集合在频域包括的RB的数量,所述第二符号数和所述第二RB数被用于确定第二目标整数;所述第一整数集合中的任一整数不小于所述第二目标整数。
作为一个实施例,第二符号数是所述第一RE集合在时域包括的符号的数量,第二RB数是所述第一RE集合在频域包括的RB的数量,所述第二符号数和所述第二RB数被用于确定第二目标整数;当所述第二目标整数小于所述第一码块集合包括的比特的数量时,所述目标RE集合是所述第一RE集合。
作为上述实施例的一个子实施例,当所述第二目标整数等于所述第一码块集合包括的比特的数量时,所述目标RE集合是所述第一RE集合。
作为一个实施例,当所述第一条件集合不被满足时,所述目标RE集合的大小至少依赖所述第一码块集合包括的比特数。
作为一个实施例,当所述第一条件集合不被满足时,所述目标RE集合的大小还依赖所述第一码块集合包括的所述比特数之外的参数。
作为一个实施例,当所述第一条件集合不被满足时,所述第一码块集合包括的比特数被用于确定所述目标RE集合是所述第一RE集合还是所述第一RE集合的真子集。
作为一个实施例,当所述第一条件集合不被满足时,所述第一码块集合包括的比特数被用于确定所述目标RE集合的大小是否等于所述第一RE集合的大小。
作为一个实施例,一个RE集合的大小是所述一个RE集合包括的RE数。
作为一个实施例,一个RE集合的大小是所述一个RE集合在时域包括的符号数。
作为一个实施例,一个RE集合的大小是所述一个RE集合在频域包括的RB数。
作为一个实施例,当所述第一条件集合不被满足时,所述第一码块集合包括的比特数被用于确定第一目标整数,所述目标RE集合包括的RE数等于所述第一目标整数,所述第一目标整数等于第一符号数、第一RB数和一个RB中包括的子载波数三者的乘积。
作为一个实施例,当所述第一条件集合不被满足时,所述第一码块集合包括的比特数被用于确定第一目标整数,所述目标RE集合包括的RE数不小于所述第一目标整数,所述第一目标整数等于第一符号数、第一RB数和一个RB中包括的子载波数三者的乘积。
作为一个实施例,当所述第一条件集合不被满足时,所述第一码块集合包括的比特数被用于确定第一目标整数,所述目标RE集合包括的RE数等于或大于所述第一目标整数,所述第一目标整数等于第一符号数、第一RB数和一个RB中包括的子载波数三者的乘积。
作为一个实施例,当所述第一条件集合不被满足时,所述目标RE集合包括所述第一RE集合中的用于传输所述第一码块集合所需的最少的RE。
作为一个实施例,所述第一符号数等于所述第一RE集合在时域包括的符号的数量。
作为一个实施例,所述第一符号数小于或等于所述第一RE集合在时域包括的符号的数量。
作为一个实施例,所述第一RB数等于所述第一RE集合在频域包括的RB的数量。
作为一个实施例,所述第一RB数小于或等于所述第一RE集合在频域包括的RB的数量。
作为一个实施例,当所述第一条件集合不被满足时,所述目标RE集合在时域包括的符号的数量等于所述第一符号数。
作为一个实施例,当所述第一条件集合不被满足时,所述目标RE集合在时域包括的符号的数量大于或等于所述第一符号数。
作为一个实施例,当所述第一条件集合不被满足时,所述目标RE集合在频域包括的RB的数量等于所述第一RB数。
作为一个实施例,当所述第一条件集合不被满足时,所述目标RE集合在频域包括的RB的数量大于或等于所述第一RB数。
作为一个实施例,当所述目标RE集合是所述第一RE集合的真子集时,所述目标RE集合和所述第一RE集合在时域占用相同的符号,所述目标RE集合在频域占用所述第一RE集合在频域所占用的所有RB中的部分RB。
作为一个实施例,当所述目标RE集合是所述第一RE集合的真子集时,所述第一RE集合和所述目标RE集合在频域占用相同的RB,所述目标RE集合在时域占用所述第一RE集合在时域所占用的所有符号中的部分符号。
作为一个实施例,当所述目标RE集合是所述第一RE集合的真子集时,所述目标RE集合在频域占用 所述第一RE集合在频域所占用的所有RB中的部分RB,所述目标RE集合在时域占用所述第一RE集合在时域所占用的所有符号中的部分符号。
典型的,一个RB中包括的子载波数等于12。
典型的,一个RB中包括的子载波数是大于1的正整数。
作为一个实施例,当所述第一条件集合不被满足时,目标数值是第一类数值、承载所述第一码块集合的所述物理信道的层(Layer)数、承载所述第一码块集合的所述物理信道的目标码率和承载所述第一码块集合的所述物理信道的调制阶数的乘积;所述目标数值不小于所述第一码块集合包括的比特的数量;所述第一类数值是第三类数值和第一RB数的乘积;所述第三类数值是第四类数值和第一参考阈值中的较小者;所述第四类数值和所述第一符号数线性相关,所述第四类数值和所述第一符号数之间的线性系数等于一个PRB包括的子载波的数量。
典型的,所述第一信令指示承载所述第一码块集合的所述物理信道的层(Layer)数、目标码率和调制阶数。
作为一个实施例,承载所述第一码块集合的物理信道占用所述目标RE集合;当所述第一条件集合不被满足时,目标数值是第一类数值、承载所述第一码块集合的所述物理信道的层(Layer)数、承载所述第一码块集合的所述物理信道的目标码率和承载所述第一码块集合的所述物理信道的调制阶数的乘积;所述目标数值不小于所述第一码块集合包括的比特的数量;所述第一类数值是第四类数值和第一RB数的乘积;所述第四类数值和所述第一符号数线性相关,所述第四类数值和所述第一符号数之间的线性系数等于一个PRB包括的子载波的数量。
作为一个实施例,承载所述第一码块集合的物理信道占用所述目标RE集合;当所述第一条件集合不被满足时,目标数值是第一类数值、承载所述第一码块集合的所述物理信道的层(Layer)数、承载所述第一码块集合的所述物理信道的目标码率和承载所述第一码块集合的所述物理信道的调制阶数的乘积;所述目标数值不小于所述第一码块集合包括的比特的数量;所述第一类数值是第四类数值和第一RB数的乘积;所述第四类数值等于所述第一符号数乘以一个PRB包括的子载波的数量。
作为一个实施例,仅当所述目标RE子集是所述第一RE集合的真子集时,所述第一发射机在所述目标RE集合中还发送所述第二比特块。
作为一个实施例,仅当所述第一条件集合不被满足时,所述第一发射机在所述目标RE集合中还发送所述第二比特块。
作为一个实施例,所述第二比特块包括承载所述第一码块集合的PUSCH中的配置授予UCI。
作为一个实施例,所述第二比特块属于承载所述第一码块集合的PUSCH中的配置授予UCI。
作为一个实施例,所述第二比特块包括承载所述第一码块集合的PUSCH中的配置授予UCI中的部分比特。
作为一个实施例,所述第二比特块还包括HARQ进程号(process number)、冗余版本(Redundancy version),新数据指示(New data indicator)中的至少之一。
作为一个实施例,承载所述第一码块集合的PUSCH中的所述配置授予UCI包括HARQ进程号(process number)、冗余版本(Redundancy version),新数据指示(New data indicator)中的至少之一。
作为一个实施例,所述第二比特块包括承载所述第一码块集合的PSSCH中的SCI。
作为一个实施例,所述第二比特块属于承载所述第一码块集合的PSSCH中的SCI。
作为一个实施例,所述第二比特块包括承载所述第一码块集合的PSSCH中的SCI中的部分比特。
作为一个实施例,承载所述第一码块集合的PSSCH中的SCI包括HARQ进程号(process number)、冗余版本(Redundancy version),新数据指示(New data indicator)中的至少之一。
作为一个实施例,所述第二比特块被用于指示所述目标RE集合占用的符号。
作为一个实施例,所述第二比特块被用于指示所述目标RE集合占用的RB。
作为一个实施例,所述第二比特块被用于指示所述目标RE集合占用的符号和所述目标RE集合占用的RB。
作为一个实施例,所述第二比特块指示所述目标RE集合在所述第一RE集合中的比例。
作为一个实施例,所述第二比特块指示所述目标RE集合占用的符号的数量。
作为一个实施例,所述第二比特块指示所述目标RE集合占用的RB的数量。
作为一个实施例,所述第二比特块指示所述目标RE集合占用的符号的数量或者所述目标RE集合占用的RB的数量中的至少之一。
作为一个实施例,所述第二比特块指示所述目标RE集合占用的符号的数量和所述目标RE集合占用的RB的数量。
实施例6
实施例6示例了根据本申请的一个实施例的给定目标整数和给定符号数、给定RB数的关系的示意图;如附图6所示。
在实施例6中,第一类数值是第三类数值和给定RB数的乘积;所述第三类数值是第四类数值和第一参考阈值中的较小者;所述第四类数值和给定符号数线性相关,所述第四类数值和所述给定符号数之间的线性系数等于一个RB包括的子载波的数量;第四目标数值是第一类数值、承载所述第一码块集合的所述物理信道的层(Layer)数、承载所述第一码块集合的所述物理信道的目标码率和承载所述第一码块集合的所述物理信道的调制阶数的乘积;第二类数值是第二参考阈值和第一参考数值中的较大者,所述第四目标数值被用于确定第三参数,第二参考数值等于所述第四目标数值除以所述第三参数,第一参考数值等于所述第三参数乘以不大于所述第二参考数值的最大整数,所述第三参数是正整数;给定目标整数等于第一类参考整数集合中的所有不小于所述第二类数值的整数中和所述第二类数值最接近的一个整数;所述第一类参考整数集合包括多个正整数。
作为一个实施例,所述给定符号数是本申请中的所述第二符号数,所述给定RB数是本申请中的所述第二RB数,所述给定目标整数是本申请中的所述第二目标整数。
作为一个实施例,所述给定符号数是本申请中的所述第一符号数,所述给定RB数是本申请中的所述第一RB数,所述给定目标整数等于或者大于所述第一码块集合包括的比特的数量。
作为一个实施例,第一类参考整数集合中的所有不小于所述第二类数值的整数中和所述第二类数值最接近的一个整数等于所述第一码块集合包括的比特的数量。
作为一个实施例,第一类参考整数集合中的所有不小于所述第二类数值的整数中和所述第二类数值最接近的一个整数大于所述第一码块集合包括的比特的数量。
作为一个实施例,所述第四类数值还和第一负载参数线性相关,所述第四类数值和所述第一负载参数之间的线性系数等于-1,所述第一负载参数是非负整数。
作为一个实施例,所述第一负载参数是由更高层参数配置的。
作为一个实施例,所述第一负载参数是由RRC参数xOverhead配置的。
作为一个实施例,所述第一负载参数是
作为一个实施例,所述第一负载参数是
作为一个实施例,所述的具体定义参见3GPP TS38.214中的5.1.3.2章节或者6.1.4.2章节。
作为一个实施例,所述第四类数值还和第二负载参数线性相关,所述第四类数值和所述第二负载参数之间的线性系数等于-1,所述第二负载参数是正整数。
作为一个实施例,所述第二负载参数是所述目标RE集合中的每个RB中的DMRS RE的数量。
作为一个实施例,所述第二负载参数是所述第一RE集合中的每个RB中的DMRS RE的数量。
作为一个实施例,所述第二负载参数是每个RB中的DMRS RE的数量。
作为一个实施例,所述第二负载参数是包括非数据(without data)DMRS CDM(Code Division Multiplexing,码分复用)组(group)的开销(overhead)在内,所述目标RE集合中的每个RB中的DMRS RE的数量。
作为一个实施例,所述第二负载参数是包括非数据(without data)DMRS CDM(Code Division Multiplexing,码分复用)组(group)的开销(overhead)在内,所述第一RE集合中的每个RB中的DMRS RE的数量。
作为一个实施例,所述第二负载参数是包括非数据(without data)DMRSCDM(Code Division Multiplexing,码分复用)组(group)的开销(overhead)在内,每个RB中的DMRSRE的数量。
作为一个实施例,所述第二负载参数是所述的具体定义参见3GPP TS38.214中的5.1.3.2章节或者6.1.4.2章节。
作为一个实施例,所述第一类数值是NRE,所述NRE的具体定义参见3GPP TS38.214中的5.1.3.2章节。
作为一个实施例,所述第一类数值是NRE,所述NRE的具体定义参见3GPP TS38.214中的第6.1.4.2章节。
作为一个实施例,给定RB数是nPRB
作为一个实施例,所述nPRB的具体定义参见3GPP TS38.214中的5.1.3.2章节。
作为一个实施例,给定RB数是nPRB
作为一个实施例,所述nPRB的具体定义参见3GPP TS38.214中的6.1.4.2章节。
作为一个实施例,所述第四类数值是N′RE
作为一个实施例,所述N′RE的具体定义参见3GPP TS38.214中的5.1.3.2章节。
作为一个实施例,所述第四类数值是N′RE
作为一个实施例,所述N′RE的具体定义参见3GPP TS38.214中的6.1.4.2章节。
作为一个实施例,所述第一参考阈值等于156。
作为一个实施例,一个PRB包括的子载波的数量等于12。
作为一个实施例,所述第四目标数值是Ninfo
作为一个实施例,所述Ninfo的具体定义参见3GPP TS38.214中的5.1.3.2章节或者6.1.4.2章节。
作为一个实施例,所述第二类数值是N′info
作为一个实施例,所述N′info的具体定义参见3GPP TS38.214中的5.1.3.2章节或者6.1.4.2章节。
作为一个实施例,所述第四目标数值不大于3824。
作为一个实施例,所述第二参考阈值等于24。
作为一个实施例,所述第三参数等于
作为一个实施例,所述第二类数值等于
作为一个实施例,所述第一类参考整数集合中的任一整数是一个候选TBS(Transport Block Size,传输块大小)。
作为一个实施例,所述第一类参考整数集合包括3GPP TS38.214(V15.3.0)中的Table 5.1.3.2-1中的所有TBS。
实施例7
实施例7示例了根据本申请的另一个实施例的给定目标整数和给定符号数、给定RB数的关系的示意图;如附图7所示。
在实施例7中,第一类数值是第三类数值和给定RB数的乘积;所述第三类数值是第四类数值和第一参考阈值中的较小者;所述第四类数值和给定符号数线性相关,所述第四类数值和所述给定符号数之间的线性系数等于一个RB包括的子载波的数量;第四目标数值是第一类数值、承载所述第一码块集合的所述物理信道的层(Layer)数、承载所述第一码块集合的所述物理信道的目标码率和承载所述第一码块集合的所述物理信道的调制阶数的乘积;第二类数值是第二参考阈值和第一参考数值中的较大者,所述第五目标数值等于所述第四目标数值减去参考比特数,所述参考比特数是正整数;所述第五目标数值被用于确定第三参数,第二参考数值等于所述第五目标数值除以所述第三参数,所述第一参考数值等于所述第三参数乘以最接近所述第二参考数值的整数,所述第三参数是正整数;所述第二类数值被用于确定第四参数,给定目标整数等于所述第四参数是正整数,所述第一比特数是正整数。
作为一个实施例,所述给定符号数是本申请中的所述第二符号数,所述给定RB数是本申请中的所述 第二RB数,所述给定目标整数是本申请中的所述第二目标整数。
作为一个实施例,所述给定符号数是本申请中的所述第一符号数,所述给定RB数是本申请中的所述第一RB数,所述给定目标整数等于或者大于所述第一码块集合包括的比特的数量。
作为一个实施例,所述给定符号数是本申请中的所述第一符号数,所述给定RB数是本申请中的所述第一RB数,所述给定目标整数等于所述第一码块集合包括的比特的数量。
作为一个实施例,所述给定符号数是本申请中的所述第一符号数,所述给定RB数是本申请中的所述第一RB数,所述给定目标整数大于所述第一码块集合包括的比特的数量。
作为一个实施例,所述第四类数值还和第一负载参数线性相关,所述第四类数值和所述第一负载参数之间的线性系数等于-1,所述第一负载参数是非负整数。
作为一个实施例,所述第四类数值还和第二负载参数线性相关,所述第四类数值和所述第二负载参数之间的线性系数等于-1,所述第二负载参数是正整数。
作为一个实施例,所述第一类数值是NRE,所述NRE的具体定义参见3GPP TS38.214中的5.1.3.2章节。
作为一个实施例,所述第一类数值是NRE,所述NRE的具体定义参见3GPP TS38.214中的第6.1.4.2章节。
作为一个实施例,所述给定RB数是nPRB,所述nPRB的具体定义参见3GPP TS38.214中的5.1.3.2章节。
作为一个实施例,所述给定RB数是nPRB,所述nPRB的具体定义参见3GPP TS38.214中的6.1.4.2章节。
作为一个实施例,所述第四类数值是N′RE,所述N′RE的具体定义参见3GPP TS38.214中的5.1.3.2章节。
作为一个实施例,所述第四类数值是N′RE,所述N′RE的具体定义参见3GPP TS38.214中的6.1.4.2章节。
作为一个实施例,所述第一参考阈值等于156。
作为一个实施例,一个PRB包括的子载波的数量等于12。
作为一个实施例,所述第四目标数值是Ninfo,所述Ninfo的具体定义参见3GPP TS38.214中的5.1.3.2章节或者6.1.4.2章节。
作为一个实施例,所述第二类数值是N′info,所述N′info的具体定义参见3GPP TS38.214中的5.1.3.2章节或者6.1.4.2章节。
作为一个实施例,所述第四目标数值大于3824。
作为一个实施例,所述第一比特数是{6,11,16,24}中之一。
作为一个实施例,所述第一比特数是24。
作为一个实施例,所述承载所述第一码块集合的所述物理信道的目标码率不大于1/4,所述第四参数是
作为一个实施例,所述承载所述第一码块集合的所述物理信道的目标码率大于1/4,所述第二类数值大于8424,所述第四参数是
作为一个实施例,所述承载所述第一码块集合的所述物理信道的目标码率大于1/4,所述第二类数值不大于8424,所述第四参数等于8。
作为一个实施例,所述第二参考阈值等于3840。
作为一个实施例,所述参考比特数等于所述第一比特数。
作为一个实施例,所述参考比特数是{6,11,16,24}中之一。
作为一个实施例,所述参考比特数是24。
作为一个实施例,所述第三参数等于
作为一个实施例,所述第二类数值等于
实施例8
实施例8示例了根据本申请的一个实施例的第一条件的示意图;如附图8所示。
在实施例8中,所述第一条件集合包括第一条件,所述第一条件包括:第一控制信息块中的部分或全部比特被复用在承载所述第一码块集合的物理信道中,所述第一控制信息块包括至少一个比特。
作为一个实施例,所述第一条件集合包括第一条件,所述第一条件包括:第一控制信息块被复用在承载所述第一码块集合的物理信道中,所述第一控制信息块包括至少一个比特。
作为一个实施例,所述第一控制信息块包括UCI(Uplink Control Information,上行控制信息)。
作为一个实施例,所述第一控制信息块包括HARQ-ACK(Hybrid Automatic Repeat reQuest-Acknowledgement,混合自动重传请求确认)。
作为一个实施例,所述第一控制信息块包括HARQ-ACK、SR(Scheduling Request,调度请求)或者CSI(Channel State Information,信道状态信息)中的至少之一。
作为一个实施例,所述第一控制信息块包括CSI(Channel State Information,信道状态信息)。
作为一个实施例,所述CSI包括CRI(Channel-state information reference signal Resource Indicator,信道状态信息参考信号资源标识),SSBRI(Synchronization Signal/physical broadcast channel Block Resource Indicator,同步/物理广播信道块资源标识),LI(Layer Indicator,层标识),PMI(Precoding Matrix Indicator,预编码矩阵标识),CQI(Channel Quality Indicator,信道质量标识),L1-RSRP(Layer 1 Reference Signal Received Power,层1-参考信号接收功率),L1-RSRQ(Layer 1 Reference Signal Received Quality,层1-参考信号接收质量),或者L1-SINR(Layer 1 Signal to Interference and Noise Ratio,层1-信干噪比)中的至少之一。
作为一个实施例,所述第一控制信息块是被所述第一信令之外的信令所调度的。
作为一个实施例,所述第一控制信息块包括一个比特。
作为一个实施例,所述第一控制信息块包括大于一个比特。
实施例9
实施例9示例了根据本申请的另一个实施例的第一条件的示意图;如附图9所示。
在实施例9中,所述第一条件集合包括第一条件,所述第一条件包括:第一控制信息块中的部分或全部比特被复用在承载所述第一码块集合的物理信道中,所述第一控制信息块包括至少一个比特。所述第一条件还包括:所述第一控制信息块是被所述第一信令触发的。
作为一个实施例,所述句子“所述第一控制信息块是被所述第一信令触发的”的意思包括:所述第一信令触发一个HARQ码本(codebook),所述第一控制信息块包括被所述第一信令所触发的所述一个HARQ码本。
作为一个实施例,所述句子“所述第一控制信息块是被所述第一信令触发的”的意思包括:所述第一信令触发CSI,所述第一控制信息块包括被所述第一信令所触发的所述CSI。
作为一个实施例,所述句子“所述第一控制信息块是被所述第一信令触发的”的意思包括:所述第一信令触发非周期性(aperiodic)CSI,所述第一控制信息块包括被所述第一信令所触发的所述非周期性CSI。
典型的,一个HARQ码本包括至少一个HARQ-ACK。
典型的,一个HARQ码本包括至少一个HARQ进程号的HARQ-ACK。
实施例10
实施例10示例了根据本申请的另一个实施例的第一条件的示意图;如附图10所示。
在实施例10中,所述第一条件集合包括第一条件,所述第一条件包括:第一控制信息块中的部分或全部比特被复用在承载所述第一码块集合的物理信道中,所述第一控制信息块包括至少一个比特。所述第一条件还包括:所述第一节点接收第二信令;其中,所述第二信令被用于指示第二RE集合,所述第二RE集合被预留给所述第一控制信息块,所述第一RE集合和所述第二RE集合在时域交叠。
典型的,所述第二信令的发送者是所述第一信令的发送者,所述第二信令的接收者是所述第一信令的接收者。
作为一个实施例,所述第二信令是物理层信令。
作为一个实施例,所述第二信令是DCI(下行控制信息,Downlink Control Information)信令。
作为一个实施例,所述第二信令是更高层信令。
作为一个实施例,所述第二信令是RRC信令。
作为一个实施例,所述第二信令是MACCE信令。
作为一个实施例,所述更高层信令是RRC信令。
作为一个实施例,所述更高层信令是MACCE信令。
作为一个实施例,所述第二信令和所述第一信令属于同一个CORESET池(pool)。
作为一个实施例,所述第一信令所在的BWP(BandWidthPart,带宽分量)被配置了两个CORESET池,所述第二信令和所述第一信令属于所述两个CORESET池中的同一个CORESET池。
作为一个实施例,所述第二RE集合包括至少一个RE。
作为一个实施例,所述第二RE集合由一个PUCCH(Physical Uplink Control CHannel,物理上行控制信道)资源占用的所有RE组成。
作为一个实施例,所述第二RE集合包括被预留给所述第一控制信息块的一个物理信道资源。
作为一个实施例,所述第二RE集合包括被预留给所述第一控制信息块的一个PUCCH资源。
作为一个实施例,所述第二RE集合包括被预留给所述第一控制信息块的一个PSFCH(Physical Sidelink Feedback CHannel,物理上行控制信道)资源。
作为一个实施例,所述第一控制信息块被放弃在所述第二RE集合中传输,所述第一控制信息块中的部分或全部比特被复用到所述目标RE集合中传输。
作为一个实施例,所述句子“所述第二RE集合被预留给所述第一控制信息块”的意思包括:所述第二RE集合被配置或被调度给所述第一控制信息块。
作为一个实施例,所述句子“所述第二RE集合被预留给所述第一控制信息块”的意思包括:所述第二RE集合被指示给所述第一控制信息块。
作为一个实施例,所述句子“所述第二RE集合被预留给所述第一控制信息块”的意思包括:在所述第二信令的发送时刻,所述第二RE集合被调度用于所述第一控制信息块的传输。
作为一个实施例,所述句子“所述第二RE集合被预留给所述第一控制信息块”的意思包括:所述第一控制信息块的实际传输占用了所述第二RE集合中的部分或全部RE。
作为一个实施例,所述句子“所述第二RE集合被预留给所述第一控制信息块”的意思包括:所述第一控制信息块的实际传输不占用所述第二RE集合。
作为一个实施例,所述句子“所述第二RE集合被预留给所述第一控制信息块”的意思包括:所述第一控制信息块被放弃在所述第二RE集合中传输。
作为一个实施例,所述第二信令显式的指示第二RE(Resource Element,资源粒子)集合。
作为一个实施例,所述第二信令隐式的指示第二RE集合。
作为一个实施例,所述第二RE集合依赖所述第二信令占用的时域资源。
作为一个实施例,所述第二RE集合依赖所述第二信令占用的时频资源。
作为一个实施例,所述第二信令直接的指示第二RE(Resource Element,资源粒子)集合。
作为一个实施例,所述第二信令间接的指示第二RE集合。
作为一个实施例,所述第二信令指示所述第二RE集合在时域占用的符号和所述第二RE集合在频域占用的子载波。
作为一个实施例,所述第二信令指示所述第二RE集合在时域占用的符号和所述第二RE集合在频域占用的RB(Resource Block,资源块)。
作为一个实施例,所述第二信令包括第三域(field),所述第二信令中的所述第三域被用于指示所述第二RE集合;所述第三域包括至少一个比特。
作为上述实施例的一个子实施例,所述第二信令中的所述第三域指示所述第二RE集合在参考RE池中的索引,所述参考RE池包括至少一个RE集合,所述第二RE集合是所述参考RE池中的一个RE集合,一个RE集合包括至少一个RE。
作为上述实施例的一个子实施例,所述第二信令中的所述第三域指示第一空口资源集合在参考空口资 源池中的索引,所述参考空口资源池包括至少一个空口资源集合,所述第一空口资源集合是所述参考空口资源池中的一个空口资源集合,所述第二RE集合由所述第一空口资源集合在时频域占用的所有RE组成,一个空口资源集合在时频域包括至少一个RE。
作为上述实施例的一个子实施例,所述第二信令中的所述第三域指示第一PUCCH资源在一个PUCCH资源集合中的索引,所述一个PUCCH资源集合包括至少一个PUCCH资源,所述第一PUCCH资源是所述一个PUCCH资源集合中的一个PUCCH资源,所述第二RE集合由所述第一PUCCH资源在时频域占用的所有RE组成,一个PUCCH资源在时频域包括至少一个RE。
作为上述实施例的一个子实施例,所述第三域是PUCCH resource indicator域。
作为一个实施例,所述PUCCH resource indicator域的具体定义参见3GPP TS38.212第7.3.1章节。
作为一个实施例,所述第一控制信息块包括与所述第二信令相关联的HARQ-ACK(Hybrid Automatic Repeat reQuest-Acknowledgement,混合自动重传请求确认)。
作为一个实施例,与所述第二信令相关联的所述HARQ-ACK包括NACK。
作为一个实施例,与所述第二信令相关联的所述HARQ-ACK包括ACK或者NACK。
作为一个实施例,与所述第二信令相关联的所述HARQ-ACK指示所述第二信令所调度的比特块集合中的每一个比特是否被正确接收。
作为上述实施例的一个子实施例,所述第二信令所调度的所述比特块集合包括一个TB(Transport Block,传输块)。
作为上述实施例的一个子实施例,所述第二信令所调度的所述比特块集合包括至少一个TB。
作为上述实施例的一个子实施例,所述第二信令所调度的所述比特块集合包括至少一个CB(Code Block,码块)。
作为上述实施例的一个子实施例,所述第二信令所调度的所述比特块集合包括至少一个CBG(Code Block Group,码块组)。
作为一个实施例,与所述第二信令相关联的所述HARQ-ACK指示所述第二信令是否被正确接收。
作为一个实施例,所述第二信令被用于指示SPS(Semi-Persistent Scheduling,准静态调度)释放(Release),与所述第二信令相关联的所述HARQ-ACK指示所述第二信令是否被正确接收。
作为一个实施例,所述第二信令被用于调度PDSCH(Physical Downlink Shared Channel,物理下行链路共享信道),与所述第二信令相关联的所述HARQ-ACK指示所述第二信令所调度的PDSCH是否被正确接收。
作为一个实施例,所述第一接收机接收第一信号;其中,所述第二信令被用于指示所述第一信号占用的时频资源,所述第一控制信息块包括针对所述第一信号的HARQ-ACK。
作为上述实施例的一个子实施例,所述第一控制信息块包括与所述第二信令相关联的HARQ-ACK,与所述第二信令相关联的所述HARQ-ACK是针对所述第一信号的HARQ-ACK。
作为上述实施例的一个子实施例,所述第一信号的传输信道是DL-SCH(Downlink Shared Channel,下行共享信道)。
作为上述实施例的一个子实施例,所述第一信号在PDSCH上传输。
作为上述实施例的一个子实施例,所述第一信号携带一个比特块集合。
作为上述实施例的一个子实施例,所述第一信号携带一个TB。
作为上述实施例的一个子实施例,所述第一信号携带至少一个TB。
作为上述实施例的一个子实施例,所述第一信号携带至少一个CB。
作为上述实施例的一个子实施例,所述第一信号携带至少一个CBG(Code Block Group,码块组)。
作为上述实施例的一个子实施例,所述第一信号携带所述第二信令所调度的比特块集合。
作为上述实施例的一个子实施例,所述第一控制信息块指示所述第一信号所携带的每个比特块是否被正确接收。
作为上述实施例的一个子实施例,所述第二信令指示所述第一信号占用的时域资源和所述第一信号占用的频域资源。
作为上述实施例的一个子实施例,所述第二信令包括第一域和第二域,所述第二信令中的所述第一域 指示所述第一信号占用的时域资源,所述第二信令中的所述第二域指示所述第一信号占用的频域资源。
作为上述实施例的一个子实施例,所述第二信令包括第一域和第二域,所述第二信令中的所述第一域指示所述第一信号占用的符号,所述第二信令中的所述第二域指示所述第一信号占用RB。
作为一个实施例,一个比特块集合包括至少一个比特块,一个比特块包括至少一个比特。
作为一个实施例,所述第一RE集合和所述第二RE集合正交。
作为一个实施例,所述第一RE集合和所述第二RE集合不包括一个相同的RE。
作为一个实施例,所述第一RE集合和所述第二RE集合包括至少一个相同的RE。
作为一个实施例,所述第一RE集合和所述第二RE集合在时域包括至少一个相同的符号。
作为一个实施例,所述第一RE集合和所述第二RE集合在频域包括至少一个相同的子载波。
作为一个实施例,所述第一RE集合和所述第二RE集合在频域正交。
作为一个实施例,所述第一RE集合和所述第二RE集合在频域交叠。
作为一个实施例,所述第一RE集合和所述第二RE集合在频域不包括一个相同的子载波。
实施例11
实施例11示例了根据本申请的一个实施例的第一条件的示意图;如附图11所示。
在实施例11中,所述第一条件还包括:所述第一控制信息块的优先级高于所述第一码块集合的优先级。
典型的,所述第一码块集合的优先级是承载所述第一码块集合的物理信道的优先级。
典型的,所述第一码块集合的优先级不高于承载所述第一码块集合的物理信道的优先级。
作为一个实施例,所述第一条件还包括:所述第一控制信息块的优先级等于或者高于所述第一码块集合的优先级。
作为一个实施例,所述句子“所述第一控制信息块的优先级高于所述第一码块集合的优先级”的意思包括:所述第一控制信息块的优先级的索引是0,所述第一码块集合的优先级的索引是正整数。
作为一个实施例,所述句子“所述第一控制信息块的优先级高于所述第一码块集合的优先级”的意思包括:所述第一控制信息块的优先级的索引是1,所述第一码块集合的优先级的索引是0。
作为一个实施例,所述句子“所述第一控制信息块的优先级高于所述第一码块集合的优先级”的意思包括:所述第一控制信息块的优先级的索引大于所述第一码块集合的优先级的索引。
作为一个实施例,所述句子“所述第一控制信息块的优先级高于所述第一码块集合的优先级”的意思包括:所述第一控制信息块的优先级的索引小于所述第一码块集合的优先级的索引。
典型的,所述第一控制信息块的优先级的索引是非负整数,所述第一码块集合的优先级的索引是非负整数。
作为一个实施例,所述第二信令指示所述第一控制信息块的优先级,所述第一信令指示所述第一码块集合的优先级。
作为一个实施例,所述第二信令指示所述第一控制信息块的优先级,所述第一信令指示所述第一码块集合的优先级。
作为一个实施例,所述第一信令包括第四域,所述第一信令中的所述第四域指示所述第一码块集合的优先级。
作为一个实施例,所述第二信令包括第四域,所述第二信令中的所述第四域指示所述第一控制信息块的优先级。
作为一个实施例,所述第一信令包括第四域,所述第一信令中的所述第四域指示所述第一码块集合的优先级的索引。
作为一个实施例,所述第二信令包括第四域,所述第二信令中的所述第四域指示所述第一控制信息块的优先级的索引。
作为一个实施例,所述第四域是Priority indicator域。
作为一个实施例,所述priority indicator域的具体定义参见3GPP TS38.212中第7章节。
作为一个实施例,所述第四域是Priority域。
作为一个实施例,所述priority域的具体定义参见3GPP TS38.212中第8章节。
作为一个实施例,所述优先级的索引是priority index。
作为一个实施例,所述priority index的具体定义参见3GPP TS38.214中第5章节和第6章节。
作为一个实施例,所述优先级的索引是priority value。
作为一个实施例,所述priority value的具体定义参见3GPP TS38.214中第8章节。
实施例12
实施例12示例了根据本申请的一个实施例的第二条件的示意图;如附图12所示。
在实施例12中,所述第一条件集合包括第二条件,所述第二条件包括:承载所述第一码块集合的物理信道的传输方案包括第一特性集合中的至少一个特性。
作为一个实施例,所述第一特性集合包括:重复传输。
作为一个实施例,所述第一特性集合包括:重复传输的次数大于第三参考阈值,所述第三参考阈值是正整数。
作为上述实施例的一个子实施例,所述第三参考阈值等于1。
作为上述实施例的一个子实施例,所述第三参考阈值大于1。
作为上述实施例的一个子实施例,所述第三参考阈值是可配置的。
作为上述实施例的一个子实施例,所述第三参考阈值是由RRC参数配置的。
作为一个实施例,所述第一特性集合包括:多个发送接收节点(Transmit Receive Point,TRP)传输。
作为一个实施例,所述第一特性集合包括:多个天线面板(panel)传输。
作为一个实施例,所述第一特性集合包括:SFN(Single Frequency Network,单频网)。
作为一个实施例,所述第一特性集合包括:捆绑(bundling)DMRS。
作为一个实施例,所述第一特性集合包括:跨多个时隙的TB处理(TB processing over multiple slots)。
作为一个实施例,所述第一特性集合包括:名义重复(nominal repetition)。
作为一个实施例,所述第一特性集合包括:PUSCH repetition TypeB。
作为一个实施例,所述DMRS bundling的具体定义参见3GPP TS38.214中第6章节。
作为一个实施例,所述TB processing over multiple slots的具体定义参见3GPP TS38.214中第6章节。
作为一个实施例,所述nominal repetition的具体定义参见3GPP TS38.214中第6章节。
作为一个实施例,所述PUSCH repetition Type B的具体定义参见3GPP TS38.214中第6章节。
典型的,捆绑(bundling)DMRS的意思包括:在一个时域窗(Time Domain Window,TDW)内的PUSCH传输保持功率一致(power consistency)和相位连续(phase continuity)。
实施例13
实施例13示例了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;如附图13所示。在附图13中,第一节点设备中的处理装置1200包括第一接收机1201和第一发射机1202。
作为一个实施例,所述第一节点设备是用户设备。
作为一个实施例,所述第一节点设备是中继节点设备。
作为一个实施例,所述第一接收机1201包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一发射机1202包括实施例4中的{天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一。
第一接收机1201,接收第一信令,所述第一信令被用于指示第一RE集合;
第一发射机1202,在目标RE集合中发送第一码块集合,所述目标RE集合是所述第一RE集合或所述第一RE集合的真子集;
在实施例13中,所述第一RE集合被预留给所述第一码块集合,所述第一码块集合包括至少一个码块;所述目标RE集合和第一条件集合是否被满足有关;当所述第一条件集合被满足时,所述目标RE集合是所述第一RE集合;当所述第一条件集合不被满足时,所述目标RE集合的大小依赖所述第一码块集合包 括的比特数;所述第一条件集合包括一个或多个条件。
作为一个实施例,所述第一条件集合包括第一条件,所述第一条件包括:第一控制信息块中的部分或全部比特被复用在承载所述第一码块集合的物理信道中,所述第一控制信息块包括至少一个比特。
作为一个实施例,所述第一条件还包括:所述第一控制信息块是被所述第一信令触发的。
作为一个实施例,所述第一条件还包括:所述第一节点接收第二信令;其中,所述第二信令被用于指示第二RE集合,所述第二RE集合被预留给所述第一控制信息块,所述第一RE集合和所述第二RE集合在时域交叠。
典型的,所述第一接收机1201接收所述第二信令。
作为一个实施例,所述第一条件还包括:所述第一控制信息块的优先级高于所述第一码块集合的优先级。
作为一个实施例,所述第一条件集合包括第二条件,所述第二条件包括:承载所述第一码块集合的物理信道的传输方案包括第一特性集合中的至少一个特性。
作为一个实施例,所述第一发射机1202在所述目标RE集合中还发送第二比特块;
其中,所述第二比特块被用于指示所述目标RE集合占用的符号或者所述目标RE集合占用的RB中的至少之一。
实施例14
实施例14示例了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图;如附图14所示。在附图14中,第二节点设备中的处理装置1300包括第二发射机1301和第二接收机1302。
作为一个实施例,所述第二节点设备是基站设备。
作为一个实施例,所述第二节点设备是中继节点设备。
作为一个实施例,所述第二发射机1301包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二接收机1302包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
第二发射机1301,发送第一信令,所述第一信令被用于指示第一RE集合;
第二接收机1302,在目标RE集合中接收第一码块集合,所述目标RE集合是所述第一RE集合或所述第一RE集合的真子集;
在实施例14,所述第一RE集合被预留给所述第一码块集合,所述第一码块集合包括至少一个码块;所述目标RE集合和第一条件集合是否被满足有关;当所述第一条件集合被满足时,所述目标RE集合是所述第一RE集合;当所述第一条件集合不被满足时,所述目标RE集合的大小依赖所述第一码块集合包括的比特数;所述第一条件集合包括一个或多个条件。
作为一个实施例,所述第一条件集合包括第一条件,所述第一条件包括:第一控制信息块中的部分或全部比特被复用在承载所述第一码块集合的物理信道中,所述第一控制信息块包括至少一个比特。
作为一个实施例,所述第一条件还包括:所述第一控制信息块是被所述第一信令触发的。
作为一个实施例,所述第一条件还包括:所述第二节点发送第二信令;其中,所述第二信令被用于指示第二RE集合,所述第二RE集合被预留给所述第一控制信息块,所述第一RE集合和所述第二RE集合在时域交叠。
典型的,所述第二发射机1301发送所述第二信令。
作为一个实施例,所述第一条件还包括:所述第一控制信息块的优先级高于所述第一码块集合的优先级。
作为一个实施例,所述第一条件集合包括第二条件,所述第二条件包括:承载所述第一码块集合的物理信道的传输方案包括第一特性集合中的至少一个特性。
作为一个实施例,所述第二接收机1302在所述目标RE集合中还接收第二比特块;其中,所述第二比特块被用于指示所述目标RE集合占用的符号或者所述目标RE集合占用的RB中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmit Receive Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。基于说明书中所描述的实施例所做出的任何变化和修改,如果能获得类似的部分或者全部技术效果,应当被视为显而易见并属于本发明的保护范围。

Claims (10)

  1. 一种用于无线通信的第一节点设备,其特征在于,包括:
    第一接收机,接收第一信令,所述第一信令被用于指示第一RE集合;
    第一发射机,在目标RE集合中发送第一码块集合,所述目标RE集合是所述第一RE集合或所述第一RE集合的真子集;
    其中,所述第一RE集合被预留给所述第一码块集合,所述第一码块集合包括至少一个码块;所述目标RE集合和第一条件集合是否被满足有关;当所述第一条件集合被满足时,所述目标RE集合是所述第一RE集合;当所述第一条件集合不被满足时,所述目标RE集合的大小依赖所述第一码块集合包括的比特数;所述第一条件集合包括一个或多个条件。
  2. 根据权利要求1所述的第一节点设备,其特征在于,所述第一条件集合包括第一条件,所述第一条件包括:第一控制信息块中的部分或全部比特被复用在承载所述第一码块集合的物理信道中,所述第一控制信息块包括至少一个比特。
  3. 根据权利要求2所述的第一节点设备,其特征在于,所述第一条件还包括:所述第一控制信息块是被所述第一信令触发的。
  4. 根据权利要求2所述的第一节点设备,其特征在于,所述第一条件还包括:所述第一节点接收第二信令;其中,所述第二信令被用于指示第二RE集合,所述第二RE集合被预留给所述第一控制信息块,所述第一RE集合和所述第二RE集合在时域交叠。
  5. 根据权利要求2至4中任一权利要求所述的第一节点设备,其特征在于,所述第一条件还包括:所述第一控制信息块的优先级高于所述第一码块集合的优先级。
  6. 根据权利要求2所述的第一节点设备,其特征在于,所述第一条件集合包括第二条件,所述第二条件包括:承载所述第一码块集合的物理信道的传输方案包括第一特性集合中的至少一个特性。
  7. 根据权利要求1至6中任一权利要求所述的第一节点设备,其特征在于,包括:
    所述第一发射机,在所述目标RE集合中还发送第二比特块;
    其中,所述第二比特块被用于指示所述目标RE集合占用的符号或者所述目标RE集合占用的RB中的至少之一。
  8. 一种用于无线通信的第二节点设备,其特征在于,包括:
    第二发射机,发送第一信令,所述第一信令被用于指示第一RE集合;
    第二接收机,在目标RE集合中接收第一码块集合,所述目标RE集合是所述第一RE集合或所述第一RE集合的真子集;
    其中,所述第一RE集合被预留给所述第一码块集合,所述第一码块集合包括至少一个码块;所述目标RE集合和第一条件集合是否被满足有关;当所述第一条件集合被满足时,所述目标RE集合是所述第一RE集合;当所述第一条件集合不被满足时,所述目标RE集合的大小依赖所述第一码块集合包括的比特数;所述第一条件集合包括一个或多个条件。
  9. 一种用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信令,所述第一信令被用于指示第一RE集合;
    在目标RE集合中发送第一码块集合,所述目标RE集合是所述第一RE集合或所述第一RE集合的真子集;
    其中,所述第一RE集合被预留给所述第一码块集合,所述第一码块集合包括至少一个码块;所述目标RE集合和第一条件集合是否被满足有关;当所述第一条件集合被满足时,所述目标RE集合是所述第一RE集合;当所述第一条件集合不被满足时,所述目标RE集合的大小依赖所述第一码块集合包括的比特数;所述第一条件集合包括一个或多个条件。
  10. 一种用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信令,所述第一信令被用于指示第一RE集合;
    在目标RE集合中接收第一码块集合,所述目标RE集合是所述第一RE集合或所述第一RE集合的真子集;
    其中,所述第一RE集合被预留给所述第一码块集合,所述第一码块集合包括至少一个码块;所述目标RE集合和第一条件集合是否被满足有关;当所述第一条件集合被满足时,所述目标RE集合是所述第 一RE集合;当所述第一条件集合不被满足时,所述目标RE集合的大小依赖所述第一码块集合包括的比特数;所述第一条件集合包括一个或多个条件。
PCT/CN2023/117909 2022-09-13 2023-09-11 一种被用于无线通信的节点中的方法和装置 WO2024055916A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211111121.4A CN117769009A (zh) 2022-09-13 2022-09-13 一种被用于无线通信的节点中的方法和装置
CN202211111121.4 2022-09-13

Publications (1)

Publication Number Publication Date
WO2024055916A1 true WO2024055916A1 (zh) 2024-03-21

Family

ID=90274234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117909 WO2024055916A1 (zh) 2022-09-13 2023-09-11 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (2) CN117769009A (zh)
WO (1) WO2024055916A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111526589A (zh) * 2019-02-02 2020-08-11 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021008587A1 (zh) * 2019-07-17 2021-01-21 夏普株式会社 由用户设备执行的方法以及用户设备
CN112350806A (zh) * 2019-08-08 2021-02-09 上海朗桦通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2022166702A1 (zh) * 2021-02-03 2022-08-11 上海推络通信科技合伙企业(有限合伙) 一种被用于无线通信的节点中的方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111526589A (zh) * 2019-02-02 2020-08-11 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN114826533A (zh) * 2019-02-02 2022-07-29 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021008587A1 (zh) * 2019-07-17 2021-01-21 夏普株式会社 由用户设备执行的方法以及用户设备
CN112350806A (zh) * 2019-08-08 2021-02-09 上海朗桦通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2021023039A1 (zh) * 2019-08-08 2021-02-11 上海朗桦通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2022166702A1 (zh) * 2021-02-03 2022-08-11 上海推络通信科技合伙企业(有限合伙) 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN117880966A (zh) 2024-04-12
CN117769009A (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
CN111769925B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018166188A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2020168907A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN111278110B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020088212A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021164558A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020177608A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020034847A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2023072136A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN114189884B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020186990A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113453345B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020253532A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019006717A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2020192350A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024055916A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024051624A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN116321478A (zh) 一种被用于无线通信的节点中的方法和装置
WO2024046251A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023040809A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023221800A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024022342A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024061231A1 (zh) 用于无线通信的方法和装置
CN112788770B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023151468A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864648

Country of ref document: EP

Kind code of ref document: A1