WO2024061231A1 - 用于无线通信的方法和装置 - Google Patents
用于无线通信的方法和装置 Download PDFInfo
- Publication number
- WO2024061231A1 WO2024061231A1 PCT/CN2023/119783 CN2023119783W WO2024061231A1 WO 2024061231 A1 WO2024061231 A1 WO 2024061231A1 CN 2023119783 W CN2023119783 W CN 2023119783W WO 2024061231 A1 WO2024061231 A1 WO 2024061231A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bwp
- cell
- signaling
- bwps
- downlink
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 78
- 238000000034 method Methods 0.000 title claims abstract description 11
- 230000011664 signaling Effects 0.000 claims abstract description 197
- 230000004044 response Effects 0.000 claims abstract description 21
- 238000010586 diagram Methods 0.000 description 25
- 230000015654 memory Effects 0.000 description 25
- 230000005540 biological transmission Effects 0.000 description 23
- 238000012545 processing Methods 0.000 description 15
- 230000006870 function Effects 0.000 description 14
- 238000007726 management method Methods 0.000 description 7
- 238000013468 resource allocation Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- 238000013507 mapping Methods 0.000 description 5
- 238000004590 computer program Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000011218 segmentation Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 208000029632 chronic intestinal failure Diseases 0.000 description 2
- 238000013523 data management Methods 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0457—Variable allocation of band or rate
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
- H04W72/232—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
Definitions
- This application relates to transmission methods and devices in wireless communication systems, and in particular to solutions and devices related to DCI (Downlink Control Information) in wireless communication systems.
- DCI Downlink Control Information
- One DCI scheduling PUSCH/PDSCH of multiple cells is one of the SI (Study Item, research work), among which DCI Format design (DCI format design), DCI size (DCI size) and BD/CCE budget (BD, Blind Decoding) (CCE, Control Channel Element), the maximum number of cells for a DCI schedule, search space (SS, Search Space) configuration, HARQ enhancements (HARQ enhancements), DCI field design (for example, BWP indicator (Bandwidth Part Indicator), frequency domain resource allocation (FDRA, Frequency Domain Resource Allocation), time domain Resource allocation (TDRA, Time Domain Resource Allocation), downlink allocation index (DAI, Downlink Assignment Index), etc.) are the research contents of multi-cell scheduling.
- DCI Format design DCI format design
- DCI size DCI size
- BD/CCE budget BD, Blind Decoding
- CCE Control Channel Element
- SS Search Space
- HARQ enhancements HARQ enhancements
- DCI field design for example, BWP indicator (
- this application discloses a solution. It should be noted that although the original intention of this application is to schedule PUSCH (Physical Uplink Shared Channel, physical uplink shared channel)/PDSCH (Physical Downlink Shared Channel, physical downlink shared channel) transmission scenario of multiple cells with one DCI Expansion explanation: this application can also be used in a DCI scheduling PUSCH/PDSCH transmission scenario of a single cell. Furthermore, adopting a unified design solution for different scenarios (including but not limited to one DCI scheduling PUSCH/PDSCH of multiple cells and one DCI scheduling PUSCH/PDSCH of a single cell) can also help reduce hardware complexity and cost. Without conflict, the embodiments and features in the embodiments in any node of this application can be applied to any other node. The embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily without conflict.
- This application discloses a method used in a first node of wireless communication, which is characterized by including:
- the first signaling includes a first domain, the first signaling schedules a first cell set, and the first domain of the first signaling is used to indicate a The first BWP;
- the candidates for the first cell set include multiple cell sets, at least one of the multiple cell sets includes multiple cells, and the first cell is one of the first cell sets;
- the operation is receiving and the first BWP is a downlink BWP, or the operation is transmitting and the first BWP is an uplink BWP.
- the problems to be solved by this application include: calculation of CSI reporting amount.
- the above method indicates BWP handover of multiple scheduled cells through the first domain in the first signaling, thereby improving flexibility and reducing signaling overhead.
- the first domain of the first signaling consists of K1 information bits; the operation is to receive and the K1 depends on the number of downlink BWPs in the target cell set, Alternatively, the operation is to send and the K1 depends on the target cell The number of uplink BWPs in the set; the target cell set is one of the multiple cell sets.
- the operation is to receive and the target cell set is a cell set with the largest number of downlink BWPs among the plurality of cell sets, or the operation is to send and the The target cell set is a cell set including the largest number of uplink BWPs among the plurality of cell sets.
- the value of the first field of the first signaling depends on the index of the first cell and the BWP-Id of the first BWP.
- the operation is to receive, and all cells in the first cell set include a total of Q1 downlink BWPs, where Q1 is a positive integer greater than 1, and the Q1 BWPs respectively correspond to Q1 indexes, the first domain of the first signaling is used to determine the index corresponding to the first BWP from the Q1 indexes; or, the operation is to send, the first cell All cells in the set include a total of Q1 uplink BWPs, where the Q1 is a positive integer greater than 1, the Q1 BWPs respectively correspond to Q1 indexes, and the first domain of the first signaling is used to obtain from the The index corresponding to the first BWP is determined among the Q1 indexes.
- the value of the first domain of the first signaling is equal to a first numerical value, and the index corresponding to the first BWP is equal to the first index; the operation is receiving and the relationship between the first value and the first index is related to whether the Q1 downlink BWPs include an initial downlink BWP, or the operation is sending and the relationship between the first value and the first index It is related to whether the Q1 uplink BWPs include an initial uplink BWP.
- the Q1 downlink BWPs are sequentially mapped to the Q1 indexes according to the BWP-Id first and the cell index second; or the Q1 uplink BWPs are mapped according to the BWP-Id first and the cell index second.
- -Id first and cell index second are mapped to the Q1 indexes in sequence.
- This application discloses a method used in a second node of wireless communication, which is characterized by including:
- the first signaling includes a first domain, the first signaling schedules a first set of cells, and the first domain of the first signaling is used to indicate that in the first cell The first BWP;
- the candidates for the first cell set include multiple cell sets, at least one of the multiple cell sets includes multiple cells, and the first cell is one of the first cell sets;
- the execution is sending and the first BWP is a downlink BWP, or the execution is receiving and the first BWP is an uplink BWP.
- the first field of the first signaling consists of K1 information bits; the execution is receiving and the K1 depends on the number of uplink BWPs in the target cell set, or the execution is sending and the K1 depends on the number of downlink BWPs in the target cell set; the target cell set is one of the multiple cell sets.
- the execution is receiving and the target cell set is a cell set including the largest number of uplink BWPs among the plurality of cell sets, or the execution is sending and the The target cell set is the cell set including the largest number of downlink BWPs among the plurality of cell sets.
- the value of the first field of the first signaling depends on the index of the first cell and the BWP-Id of the first BWP.
- the execution is reception, and all cells in the first cell set include a total of Q1 uplink BWPs, where Q1 is a positive integer greater than 1, and the Q1 BWPs respectively correspond to Q1 indexes, the first domain of the first signaling is used to determine the index corresponding to the first BWP from the Q1 indexes; or, the execution is to send, the first cell All cells in the set include a total of Q1 downlink BWPs, where the Q1 is a positive integer greater than 1, the Q1 BWPs respectively correspond to Q1 indexes, and the first domain of the first signaling is used to obtain from the The index corresponding to the first BWP is determined among the Q1 indexes.
- the value of the first field of the first signaling is equal to a first numerical value, and the index corresponding to the first BWP is equal to the first index; the execution is receiving and the relationship between the first numerical value and the first index is related to whether the Q1 uplink BWP includes an initial uplink BWP, or the execution is sending and the relationship between the first numerical value and the first index is related to whether the Q1 downlink BWP includes an initial downlink BWP.
- the Q1 downlink BWPs are sequentially mapped to the Q1 indexes according to the BWP-Id first and the cell index second; or the Q1 uplink BWPs are mapped according to the BWP-Id first and the cell index second.
- -Id first and cell index second are mapped to the Q1 indexes in sequence.
- This application discloses a first node used for wireless communication, which is characterized by including:
- a first receiver receives first signaling, the first signaling includes a first domain, the first signaling schedules a first set of cells, and the first domain of the first signaling is used Indicates the first BWP in the first cell;
- a first transceiver in response to receiving said first signaling, operating a first signal in a BWP of each cell in said first set of cells, said BWP being said first cell's BWP;
- the candidates for the first cell set include multiple cell sets, at least one of the multiple cell sets includes multiple cells, and the first cell is one of the first cell sets;
- the operation is receiving and the first BWP is a downlink BWP, or the operation is transmitting and the first BWP is an uplink BWP.
- This application discloses a second node used for wireless communication, which is characterized in that it includes:
- the second transmitter sends first signaling, the first signaling includes a first domain, the first signaling schedules a first cell set, and the first domain of the first signaling is used for Indicates the first BWP in the first cell;
- a second transceiver in response to transmitting said first signaling, performs a first signal in the BWP of each cell in said first set of cells, said BWP being said first cell's BWP;
- the candidates for the first cell set include multiple cell sets, at least one of the multiple cell sets includes multiple cells, and the first cell is one of the first cell sets;
- the execution is receiving and the first BWP is an uplink BWP, or the execution is sending and the first BWP is a downlink BWP.
- this application has the following advantages:
- Figure 1 shows a flow chart of first signaling, a first cell set and a first signal according to an embodiment of the present application
- FIG2 shows a schematic diagram of a network architecture according to an embodiment of the present application
- Figure 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
- Figure 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
- Figure 5 shows a flow chart of transmission according to an embodiment of the present application
- Figure 6 shows a flow chart of transmission according to another embodiment of the present application.
- Figure 7 shows a schematic diagram in which the number of bits in the first domain depends on the number of BWPs in the target cell set according to an embodiment of the present application
- Figure 8 shows a schematic diagram in which the target cell set is the cell set including the largest number of BWPs according to an embodiment of the present application
- Figure 9 shows a schematic diagram in which the value of the first domain depends on the index of the first cell and the BWP-Id of the first BWP according to an embodiment of the present application;
- Figure 10 shows a schematic diagram in which the first domain is used to determine the index corresponding to the first BWP according to an embodiment of the present application
- Figure 11 shows a schematic diagram of the relationship between the first value and the first index and the initial BWP according to an embodiment of the present application
- FIG12 is a schematic diagram showing the mapping of Q1 BWPs to Q1 indexes according to an embodiment of the present application.
- Figure 13 shows a structural block diagram of a processing device used in a first node device according to an embodiment of the present application
- Figure 14 shows a structural block diagram of a processing device for a device in a second node according to an embodiment of the present application.
- Embodiment 1 illustrates a flow chart of the first signaling, the first cell set and the first signal according to an embodiment of the present application, as shown in FIG. 1 .
- each block represents a step.
- the order of the steps in the box does not imply a specific temporal relationship between the steps.
- the first node in this application receives first signaling in step 101, the first signaling includes a first domain, the first signaling schedules a first cell set, and the first signaling
- the first field of the first signaling is used to indicate the first BWP in the first cell; in step 102, in response to receiving the first signaling, in each of the first cell sets
- the first signal is operated in a BWP of the cell, and the BWP for the first cell is the first BWP; wherein the candidates for the first cell set include a plurality of cell sets, and at least one of the plurality of cell sets is A cell set includes multiple cells, and the first cell is a cell in the first cell set; the operation is receiving and the first BWP is a downlink BWP, or the operation is sending and the third BWP is a downlink BWP.
- One BWP is the uplink BWP.
- the physical layer channel occupied by the first signaling includes PDCCH (Physical Downlink Control Channel).
- PDCCH Physical Downlink Control Channel
- the first signaling includes MAC CE (Medium Access Control, Media Access Control) (Control Element, control unit).
- MAC CE Medium Access Control, Media Access Control
- the first signaling includes physical layer dynamic signaling.
- the first signaling is DCI.
- the first signaling is cell common.
- the first signaling is cell specific.
- the first signaling is user equipment group common (UE group common).
- the first signaling is UE group specific.
- the first signaling is user equipment specific (UE specific).
- the operation is receiving, and the first signaling is a downlink grant (DL Grant).
- DL Grant downlink grant
- the operation is sending, and the first signaling is an uplink grant (UL Grant).
- UL Grant uplink grant
- the operation is receiving and the first signaling schedules PDSCH on a first set of cells.
- the operation is to send and the first signaling schedules PUSCH on a first cell set.
- the first signaling only includes the first domain.
- the first signaling includes at least one domain other than the first domain.
- the first signaling includes multiple fields.
- the first domain of the first signaling includes at least one DCI domain.
- the first domain of the first signaling is a DCI domain.
- the first domain of the first signaling includes multiple DCI domains.
- the first field of the first signaling includes a Bandwidth Part Indicator field.
- the first field of the first signaling includes all or part of the information in the Bandwidth Part Indicator.
- the first field of the first signaling is a Bandwidth Part Indicator field.
- the first field of the first signaling is only used to indicate one downlink BWP or one uplink BWP.
- the first cell set includes one cell.
- the first cell set only includes the first cell.
- the first cell set includes at least one cell.
- the first cell set includes multiple cells.
- the first cell set includes N1 cells, where N1 is a positive integer greater than 1, and the N1 cells include the first cell.
- the candidates of the first cell set only include the first cell set.
- the candidates for the first cell set include multiple cell sets, at least one of the multiple cell sets includes multiple cells, and the first cell is one of the first cell sets. A neighborhood.
- the first cell is allocated an uplink BWP.
- the first cell is allocated at least one uplink BWP.
- the first cell is allocated multiple uplink BWPs.
- the first cell is allocated multiple uplink BWPs, and the maximum number of uplink BWPs allocated to the first cell is 4.
- the first cell is allocated an Initial Uplink BWP (Initial Uplink BWP).
- the first cell is allocated a downlink BWP.
- the first cell is allocated at least one downlink BWP.
- the first cell is allocated multiple downlink BWPs.
- the first cell is allocated multiple downlink BWPs, and the maximum number of downlink BWPs allocated to the first cell is 4.
- the first cell is allocated an Initial Downlink BWP (Initial Downlink BWP).
- the first cell includes the first BWP, and the first BWP is an uplink BWP or a downlink BWP.
- the cell in this application includes a serving cell.
- the cell in this application includes a physical cell.
- the cell in this application includes CC (Component Carrier).
- the cell in this application includes a primary cell (PCell, Primary Cell).
- PCell Primary Cell
- the cell in the present application includes a secondary cell (SCell, Secondary Cell).
- SCell Secondary Cell
- the cell in the present application includes a special cell (SpCell, Special Cell).
- SpCell Special Cell
- the cell in this application is the serving cell of the first node.
- the cells in this application are assigned SCellIndex or ServCellIndex respectively.
- the cell index in this application includes SCellIndex.
- the cell index in this application includes ServCellIndex.
- the cell index in this application includes ServCellIdentity.
- the cells in this application belong to the same cell group.
- the cells in this application all belong to MCG (Master Cell Group) or all belong to SCG (Secondary Cell Group).
- the cells in the present application belong to the same PUCCH (Physical Uplink Control Channel) group.
- PUCCH Physical Uplink Control Channel
- a PUCCH group includes a group of cells, and the PUCCH signaling of the group of cells is associated with the PUCCH of the SpCell, or is associated with the PUCCH of the PUCCH SCell; a PUCCH SCell is an SCell configured with PUCCH.
- a PUCCH group includes a group of cells, and the PUCCH signaling of the group of cells is associated with the PUCCH of the same cell.
- the cells in this application have the same numerology.
- the cells in the present application have the same subcarrier spacing configuration (Subcarrier spacing configuration).
- the first signaling is used to indicate the first cell set.
- the first signaling explicitly indicates the first cell set.
- the first signaling implicitly indicates the first cell set.
- the first signaling directly indicates the first cell set.
- the first signaling indirectly indicates the first cell set.
- the first domain of the first signaling is used to indicate the first BWP in the first cell.
- the first BWP includes an RB (Resource Block).
- the first BWP includes at least one RB.
- the first BWP includes multiple RBs.
- the first BWP includes multiple RBs that are continuous in the frequency domain.
- the first BWP is a plurality of consecutive RBs in the frequency domain.
- the first BWP includes multiple RBs that are discontinuous in the frequency domain.
- the first signaling includes a second field, and the second field of the first signaling is used to indicate the first cell set.
- the second domain of the first signaling includes at least one DCI domain.
- the second domain of the first signaling is a DCI domain.
- the second domain of the first signaling includes multiple DCI domains.
- the second domain of the first signaling is used to indicate the first cell set from the M1 candidate cell set, and the candidates of the first cell set include the M1 candidate cells.
- the M1 is a positive integer greater than 1.
- the value of M1 is used to determine the maximum number of information bits occupied by the second domain of the first signaling.
- the maximum number of information bits occupied by the second domain of the first signaling is equal to
- the maximum number of information bits occupied by the second domain of the first signaling is equal to
- the multiple cell sets correspond to the M1 candidate cell sets.
- the second domain of the first signaling includes CIF (Carrier Indicator Field).
- the second domain of the first signaling is CIF.
- the first signaling only includes one field used to indicate the first cell set, and the field corresponds to the second field of the first signaling.
- the first signaling includes L1 third fields, and the L1 third fields of the first signaling are respectively used to indicate L1 cells included in the first cell set.
- L1 is a positive integer.
- the third domain of the first signaling includes at least one DCI domain.
- the third domain of the first signaling is a DCI domain.
- the third domain of the first signaling includes multiple DCI domains.
- the L1 third domains of the first signaling respectively include L1 CIFs.
- the L1 third fields of the first signaling are respectively L1 CIFs.
- the meaning of the above phrase operating the first signal in the BWP of each cell in the first cell set includes: the operation is to receive, and in the BWP of each cell in the first cell set The first signal is received in the downlink BWP.
- the first cell set includes L1 cells, the L1 is a positive integer, the L1 cells respectively include L1 downlink BWPs, and the first node is connected to the L1 downlink BWP.
- the L1 sub-signal is received in the BWP, and the L1 sub-signal constitutes the first signal.
- L1 is a positive integer.
- said L1 is equal to 1.
- said L1 is greater than 1.
- the L1 downlink BWPs include the first BWP.
- the first cell set includes L1 cells, where L1 is a positive integer, and any cell among the L1 cells only includes one activated downlink BWP, and the first node The first signal is received only in activated downlink BWPs included in the L1 cells.
- the operation is to receive, and the physical layer channel occupied by the first signal includes PDSCH.
- the operation is to receive, and the transmission channel corresponding to the first signal includes DL-SCH (Downlink Shared Channel).
- DL-SCH Downlink Shared Channel
- the operation is to receive, the physical layer channel occupied by the first signal includes L1 PDSCHs, and the L1 PDSCHs are respectively transmitted in the L1 cells included in the first cell set.
- the meaning of the above phrase operating the first signal in the BWP of each cell in the first cell set includes: the operation is to send, and in the BWP of each cell in the first cell set The first signal is sent in the uplink BWP.
- the first cell set includes L1 cells, the L1 is a positive integer, the L1 cells respectively include L1 uplink BWPs, and the first node is connected to the L1 uplink BWP.
- the L1 sub-signal is sent in the BWP, and the L1 sub-signal constitutes the first signal.
- L1 is a positive integer.
- said L1 is equal to 1.
- L1 is greater than 1.
- the L1 uplink BWPs include the first BWP.
- the first cell set includes L1 cells, where L1 is a positive integer, and the L1 small cells Any cell in the area only includes one activated uplink BWP, and the first node only sends the first signal in the activated uplink BWP included in the L1 cells.
- the operation is to send, and the physical layer channel occupied by the first signal includes PUSCH.
- the operation is to send, and the transmission channel corresponding to the first signal includes UL-SCH (Uplink Shared Channel).
- UL-SCH Uplink Shared Channel
- the operation is to send, the physical layer channel occupied by the first signal includes L1 PUSCHs, and the L1 PUSCHs are respectively transmitted in L1 cells included in the first cell set.
- the first signal is generated by a TB (Transport Block).
- the first signal is generated from a bit block.
- the first signal is generated by L1 TBs.
- the first signal is generated by L1 bit blocks.
- Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in Figure 2.
- FIG. 2 illustrates the network architecture 200 of LTE (Long-Term Evolution, long-term evolution), LTE-A (Long-Term Evolution Advanced, enhanced long-term evolution) and future 5G systems.
- the network architecture 200 of LTE, LTE-A and future 5G systems is called EPS (Evolved Packet System) 200.
- the 5G NR or LTE network architecture 200 can be called 5GS (5G System)/EPS (Evolved Packet System). Grouping System) 200 or some other suitable terminology.
- 5GS/EPS 200 may include one or more UE (User Equipment) 201, a UE 241 for sidelink communication with UE 201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G CoreNetwork, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, Home Subscriber Server)/UDM (Unified Data Management, Unified Data Management) 220 and Internet Services 230.
- 5GS/EPS200 Interconnection with other access networks is possible, but these entities/interfaces are not shown for simplicity.
- NG-RAN 202 includes NR (New Radio, New Radio) Node B (gNB) 203 and other gNBs 204.
- gNB 203 provides user and control plane protocol termination towards UE 201.
- gNB 203 may connect to other gNBs 204 via the Xn interface (eg, backhaul).
- the gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmit Receive Point) or some other suitable terminology.
- BSS Basic Service Set
- ESS Extended Service Set
- TRP Transmit Receive Point
- gNB203 provides UE201 with an access point to 5GC/EPC210.
- UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, MP3 players), cameras, game consoles, drones, aircraft, narrowband physical network devices, machine type communications devices, land vehicles, cars, wearable devices, or any other similarly functional device.
- UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
- gNB203 is connected to 5GC/EPC210 through the S1/NG interface.
- 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management field)/SMF (Session Management Function, session management function) 211.
- MME Mobility Management Entity
- AMF Authentication Management Field, authentication management field
- Session Management Function Session Management Function, session management function
- MME/AMF/SMF214 S-GW (Service Gateway)/UPF (User Plane Function) 212 and P-GW (Packet Date Network Gateway)/UPF213.
- MME/AMF/SMF211 is the control node that handles signaling between UE201 and 5GC/EPC210. Basically MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. P-GW provides UE IP address allocation and other functions.
- P-GW/UPF 213 is connected to Internet service 230.
- Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include Internet, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching (Packet switching) services.
- the first node in this application includes the UE201.
- the first node in this application includes the UE241.
- the second node in the present application includes the gNB203.
- the UE 201 supports multiple carriers being scheduled by the same DCI.
- the UE 201 supports multiple serving cells being scheduled by the same DCI.
- the UE 201 supports cross-carrier scheduling.
- the NR Node B corresponds to the second node in this application.
- the NR Node B supports multiple carriers being scheduled by the same DCI.
- the NR Node B supports multiple serving cells being scheduled by the same DCI.
- the NR Node B supports cross-carrier scheduling.
- the NR Node B is a base station.
- the NR Node B is a cell.
- the NR Node B includes multiple cells.
- the NR Node B is used to determine transmissions on multiple serving cells.
- Embodiment 3 illustrates a schematic diagram of an embodiment of the wireless protocol architecture of the user plane and control plane according to an embodiment of the present application, as shown in FIG. 3 .
- Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
- Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for user plane 350 and control plane 300
- Figure 3 shows with three layers for a first communication node device (UE, gNB or RSU in V2X) and a second Radio protocol architecture of the control plane 300 between communication node devices (gNB, UE or RSU in V2X), or between two UEs: Layer 1, Layer 2 and Layer 3.
- Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions. The L1 layer will be called PHY301 in this article.
- Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first communication node device and the second communication node device, or between two UEs.
- L2 layer 305 includes MAC (Medium Access Control, media access control) sublayer 302, RLC (Radio Link Control, wireless link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304 , these sub-layers terminate at the second communication node device.
- PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels. The PDCP sublayer 304 also provides security by encrypting data packets, and provides handoff support for a first communication node device between second communication node devices.
- the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
- MAC sublayer 302 provides multiplexing between logical and transport channels. The MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among first communication node devices. MAC sublayer 302 is also responsible for HARQ operations.
- the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the second communication node device and the first communication node device.
- the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
- the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are generally the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 is also Provides header compression for upper layer packets to reduce radio transmission overhead.
- the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
- the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
- the first communication node device may have several upper layers above the L2 layer 355, including a network layer (eg, IP layer) terminating at the P-GW on the network side and another terminating at the connection.
- the application layer at one end (e.g., remote UE, server, etc.).
- the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
- the wireless protocol architecture in FIG. 3 is applicable to the second node in the present application.
- the first signaling is generated in the PHY301 or the PHY351.
- the first signaling is generated in the MAC sublayer 302.
- the first signal is generated from the PHY301 or the PHY351.
- the first signal is generated from the MAC302 or MAC352.
- the first signal is generated from the RRC 306.
- Embodiment 4 illustrates a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application, as shown in FIG. 4 .
- Figure 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in the access network.
- the first communication device 410 includes a controller/processor 475, a memory 476, a receive processor 470, a transmit processor 416, a multi-antenna receive processor 472, a multi-antenna transmit processor 471, a transmitter/receiver 418 and an antenna 420.
- the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
- Controller/processor 475 implements the functionality of the L2 layer.
- the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and control of the second communication device 450 based on various priority metrics. Radio resource allocation.
- the controller/processor 475 is also responsible for HARQ operation, retransmission of lost packets, and signaling to the second communications device 450 .
- Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
- the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 450, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M Phase Shift Keying (M-PSK), M Quadrature Amplitude Modulation (M-QAM)) constellation mapping.
- FEC forward error correction
- the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more parallel streams.
- Transmit processor 416 maps each parallel stream to a subcarrier, multiplexes the modulated symbols with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT ) to generate a physical channel carrying a time-domain multi-carrier symbol stream. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
- a reference signal eg, a pilot
- IFFT inverse fast Fourier transform
- each receiver 454 receives the signal via its respective antenna 452 at the second communications device 450 .
- Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
- the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
- Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
- the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
- FFT Fast Fourier Transform
- the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458 with the second Any parallel flow to which communication device 450 is the destination.
- the symbols on each parallel stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
- the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communications device 410 on the physical channel.
- Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media. In the DL, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing. Controller/processor 459 is also responsible for error detection using acknowledgment (ACK) and/or negative acknowledgment (NACK) protocols to support HARQ operations.
- ACK acknowledgment
- NACK negative acknowledgment
- a data source 467 is used to provide upper layer data packets to a controller/processor 459.
- Data source 467 represents all protocol layers above the L2 layer.
- the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and logical AND based on the wireless resource allocation of the first communication device 410 Multiplexing between transport channels, implementing L2 layer functions for the user plane and control plane.
- the controller/processor 459 is also responsible for HARQ operation, retransmission of lost packets, and signaling to the first communications device 410 .
- the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
- the processor 468 modulates the generated parallel streams into multi-carrier/single-carrier symbol streams, which undergo analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then are provided to different antennas 452 via the transmitter 454.
- Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
- each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
- the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
- Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
- the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer data packets from the second communications device 450 .
- Upper layer packets from controller/processor 475 may be provided to the core network.
- Controller/processor 475 is also responsible for error detection using ACK and/or NACK protocols to support HARQ operations.
- the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
- the second communication device 450 at least: receives the first signaling; in response to receiving the first signaling, operates a first signal in the BWP of each cell in the first cell set; the third A signaling includes a first domain, the first signaling schedules a first cell set, and the first domain of the first signaling is used to indicate a first BWP in the first cell; the BWP is for The first cell is the first BWP; candidates for the first cell set include a plurality of cell sets, at least one of the plurality of cell sets includes a plurality of cells, and the first cell is the A cell in the first cell set; the operation is receiving and the first BWP is a downlink BWP, or the operation is transmitting and the first BWP is an uplink BWP.
- the second communication device 450 includes: a memory storing a program of computer-readable instructions, which when operated by at least one processor generates actions, and the actions include: receiving a first A signaling; in response to receiving the first signaling, operating a first signal in the BWP of each cell in the first set of cells.
- the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be used together with the at least one processor.
- the first communication device 410 device at least: sends a first signaling; as a response to sending the first signaling, executes a first signal in the BWP of each cell in the first cell set; the first signaling includes a first field, the first signaling schedules the first cell set, and the first field of the first signaling is used to indicate the first BWP in the first cell; the BWP is the first BWP for the first cell; the candidates of the first cell set include multiple cell sets, at least one cell set in the multiple cell sets includes multiple cells, and the first cell is one of the first cell set; the execution is sending and the first BWP is a downlink BWP, or the execution is receiving and the first BWP is an uplink BWP.
- the first communication device 410 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: sending a first A signaling; in response to sending the first signaling, executing a first signal in the BWP of each cell in the first set of cells.
- the first node in the present application includes the second communication device 450.
- the second node in this application includes the first communication device 410 .
- the antenna 452 the receiver 454, the reception processor 456, the multi-antenna reception processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signaling in the present application; ⁇ the antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471, At least one of the controller/processor 475 and the memory 476 ⁇ is used to send the first signaling in this application.
- the antenna 452 the receiver 454, the reception processor 456, the multi-antenna reception processor 458, the controller/processor 459, the memory 460, the data
- At least one of the sources 467 ⁇ is used to receive the first signal in the present application
- ⁇ the antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471, the The controller/processor 475, at least one of the memories 476 ⁇ is used to send the first signal in the present application.
- the antenna 452 the receiver 454, the reception processor 456, the multi-antenna reception processor 458, the controller/processor 459, the memory 460, the data
- At least one of the sources 467 ⁇ is used to transmit the first signal in the present application
- ⁇ the antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471, the The controller/processor 475, at least one of the memories 476 ⁇ are used to receive the first signal in the present application.
- Embodiment 5 illustrates a flow chart of transmission according to an embodiment of the present application, as shown in FIG. 5 .
- the first node U1 and the second node N2 are respectively two communication nodes transmitting through the air interface.
- the first signaling is received in step S10; in step S11, as a response to receiving the first signaling, the first node U1 is received in the downlink BWP of each cell in the first cell set. Signal.
- the first signaling is sent in step S20; in step S21, as a response to sending the first signaling, the first signaling is sent in the downlink BWP of each cell in the first cell set. Signal.
- the first signaling includes a first domain, the first signaling schedules a first set of cells, and the first domain of the first signaling is used to indicate that in the first cell the first BWP; the BWP for the first cell is the first BWP; the candidates for the first cell set include a plurality of cell sets, and at least one of the plurality of cell sets includes a plurality of Cell, the first cell is a cell in the first cell set.
- the first node U1 is the first node in this application.
- the second node N2 is the second node in this application.
- the air interface between the second node N2 and the first node U1 includes a wireless interface between the base station equipment and the user equipment.
- the air interface between the second node N2 and the first node U1 includes a wireless interface between the relay node device and the user equipment.
- the air interface between the second node N2 and the first node U1 includes a wireless interface between user equipment and user equipment.
- the second node N2 is the serving cell maintenance base station of the first node U1.
- the first signaling is used by the first node U1 to schedule the first signal.
- the first node receives the first signal in the downlink BWP of each cell in the first cell set.
- the first cell set includes L1 cells, the L1 is a positive integer, the L1 cells respectively include L1 downlink BWPs, and the first node is connected to the L1 downlink BWP.
- the L1 sub-signal is received in the BWP, and the L1 sub-signal constitutes the first signal.
- L1 is a positive integer.
- said L1 is equal to 1.
- L1 is greater than 1.
- the L1 downlink BWPs include the first BWP.
- the first cell set includes L1 cells, where L1 is a positive integer, and any cell among the L1 cells only includes one activated downlink BWP, and the first node The first signal is received only in activated downlink BWPs included in the L1 cells.
- the physical layer channel occupied by the first signal includes PDSCH.
- the transmission channel corresponding to the first signal includes DL-SCH.
- the physical layer channel occupied by the first signal includes L1 PDSCHs, and the L1 PDSCHs are respectively transmitted in the L1 cells included in the first cell set.
- the second node sends the first signal in the downlink BWP of each cell in the first cell set.
- the first cell set includes L1 cells, the L1 is a positive integer, the L1 cells respectively include L1 downlink BWPs, and the second node is connected to the L1 downlink BWP.
- the L1 sub-signal is sent in the BWP, and the L1 sub-signal constitutes the first signal.
- L1 is a positive integer.
- said L1 is equal to 1.
- said L1 is greater than 1.
- the L1 downlink BWPs include the first BWP.
- the first cell set includes L1 cells, where L1 is a positive integer, and any cell among the L1 cells only includes one activated downlink BWP, and the first node Only in the activated downlink BWP included in the L1 cells Send the first signal.
- the physical layer channel occupied by the first signal includes PDSCH.
- the transmission channel corresponding to the first signal includes DL-SCH.
- the physical layer channel occupied by the first signal includes L1 PDSCHs, and the L1 PDSCHs are respectively transmitted in the L1 cells included in the first cell set.
- Embodiment 6 illustrates a flow chart of transmission according to another embodiment of the present application, as shown in FIG. 6 .
- the first node U3 and the second node N4 are respectively two communication nodes transmitting through the air interface.
- the first signaling is received in step S30; in step S31, as a response to receiving the first signaling, the first node U3 is sent in the uplink BWP of each cell in the first cell set. Signal.
- the first signaling is sent in step S40; in step S41, as a response to sending the first signaling, the first signaling is received in the uplink BWP of each cell in the first cell set. Signal.
- the first signaling includes a first domain, the first signaling schedules a first set of cells, and the first domain of the first signaling is used to indicate that in the first cell the first BWP; the BWP for the first cell is the first BWP; the candidates for the first cell set include a plurality of cell sets, and at least one of the plurality of cell sets includes a plurality of Cell, the first cell is a cell in the first cell set.
- the first node U3 is the first node in this application.
- the second node N4 is the second node in this application.
- the air interface between the second node N4 and the first node U3 includes a wireless interface between the base station equipment and the user equipment.
- the air interface between the second node N4 and the first node U3 includes a wireless interface between a relay node device and a user equipment.
- the air interface between the second node N4 and the first node U3 includes a wireless interface between user equipment and user equipment.
- the second node N4 is the serving cell maintenance base station of the first node U3.
- the first signaling is used by the first node U3 to schedule the first signal.
- the first node sends the first signal in the uplink BWP of each cell in the first cell set.
- the first cell set includes L1 cells, the L1 is a positive integer, the L1 cells respectively include L1 uplink BWPs, and the first node is connected to the L1 uplink BWP.
- the L1 sub-signal is sent in the BWP, and the L1 sub-signal constitutes the first signal.
- L1 is a positive integer.
- said L1 is equal to 1.
- said L1 is greater than 1.
- the L1 uplink BWPs include the first BWP.
- the first cell set includes L1 cells, where L1 is a positive integer, and any cell among the L1 cells only includes one activated uplink BWP, and the first node The first signal is sent only in activated uplink BWPs included in the L1 cells.
- the physical layer channel occupied by the first signal includes PUSCH.
- the transmission channel corresponding to the first signal includes UL-SCH.
- the physical layer channel occupied by the first signal includes L1 PUSCHs, and the L1 PUSCHs are respectively transmitted in L1 cells included in the first cell set.
- the second node receives the first signal in the uplink BWP of each cell in the first cell set.
- the first cell set includes L1 cells, the L1 is a positive integer, the L1 cells respectively include L1 uplink BWPs, and the second node is connected to the L1 uplink BWPs.
- the L1 sub-signal is received in the BWP, and the L1 sub-signal constitutes the first signal.
- L1 is a positive integer.
- said L1 is equal to 1.
- said L1 is greater than 1.
- the L1 uplink BWPs include the first BWP.
- the first cell set includes L1 cells, where L1 is a positive integer, and any cell among the L1 cells only includes one activated uplink BWP, and the first node The first signal is received only in activated uplink BWPs included in the L1 cells.
- the physical layer channel occupied by the first signal includes PUSCH.
- the transmission channel corresponding to the first signal includes UL-SCH.
- the physical layer channel occupied by the first signal includes L1 PUSCHs, and the L1 PUSCHs are respectively transmitted in L1 cells included in the first cell set.
- Embodiment 7 illustrates a schematic diagram in which the number of bits in the first domain depends on the number of BWPs in the target cell set according to an embodiment of the present application; as shown in FIG. 7 .
- the first domain of the first signaling consists of K1 information bits; the operation is receiving and the K1 depends on the number of downlink BWPs in the target cell set, or the operation is the number of uplink BWPs sent and the K1 depends on the target cell set; the target cell set is one of the multiple cell sets.
- K1 is a real number.
- K1 is a non-negative number.
- K1 is a positive integer.
- K1 is equal to 1.
- K1 is greater than 1.
- the target cell set includes one cell.
- the target cell set includes at least one cell.
- the target cell set includes multiple cells.
- the target cell set only includes the first cell.
- the target cell set includes at least one cell other than the first cell.
- the number of downlink BWPs in the target cell set means: the number of downlink BWPs included in all cells included in the target cell set.
- the number of uplink BWPs in the target cell set means: the total number of uplink BWPs included in all cells included in the target cell set.
- the operation is to receive, the K1 becomes larger as the number of downlink BWPs in the target cell set increases; or, the K1 increases as the number of downlink BWPs in the target cell set increases. reduce and become smaller.
- the operation is to receive that the number of downlink BWPs in the target cell set is equal to The K1 is equal to
- the operation is to send, and the number of uplink BWPs in the target cell set is equal to
- the K1 is equal to
- the operation is to receive that the number of downlink BWPs in the target cell set is equal to The K1 is equal to
- the operation is to send, and the number of uplink BWPs in the target cell set is equal to
- the K1 is equal to
- Embodiment 8 illustrates a schematic diagram in which the target cell set is the cell set including the largest number of BWPs according to an embodiment of the present application; as shown in FIG. 8 .
- the operation is to receive and the target cell set is the cell set with the largest number of downlink BWPs among the plurality of cell sets, or the operation is to send and the target cell set is the cell set with the largest number of downlink BWPs.
- the cell set including the largest number of uplink BWPs among the plurality of cell sets.
- each of the multiple cell sets includes a different number of downlink BWPs.
- two of the multiple cell sets include the same number of downlink BWPs.
- the plurality of cell sets include the same number of downlink BWPs.
- the operation is receiving and the target cell set is a cell set including the largest number of downlink BWPs among the multiple cell sets.
- only one cell set among the multiple cell sets includes the largest number of downlink BWPs.
- the plurality of cell sets include two cell sets with the largest number of downlink BWPs, and the target cell set is the two cell sets that include the largest number of downlink BWPs.
- One of the neighborhood collections include two cell sets with the largest number of downlink BWPs, and the target cell set is the two cell sets that include the largest number of downlink BWPs.
- the multiple cell sets include multiple cell sets with the largest number of downlink BWPs, and the target cell set is the multiple cell set that includes the largest number of downlink BWPs.
- each of the multiple cell sets includes a different number of uplink BWPs.
- two of the multiple cell sets include the same number of uplink BWPs.
- multiple cell sets among the multiple cell sets include the same number of uplink BWPs.
- the operation is sending and the target cell set is a cell set including the largest number of uplink BWPs among the plurality of cell sets.
- only one cell set among the multiple cell sets includes the largest number of uplink BWPs.
- the plurality of cell sets include two cell sets with the largest number of uplink BWPs, and the target cell set is the two cell sets that include the largest number of uplink BWPs.
- One of the neighborhood collections include two cell sets with the largest number of uplink BWPs, and the target cell set is the two cell sets that include the largest number of uplink BWPs.
- the multiple cell sets include multiple cell sets with the largest number of uplink BWPs, and the target cell set is the multiple cell set that includes the largest number of uplink BWPs.
- Embodiment 9 illustrates a schematic diagram in which the value of the first domain depends on the index of the first cell and the BWP-Id of the first BWP according to an embodiment of the present application; as shown in FIG. 9 .
- the value of the first field of the first signaling depends on the index of the first cell and the BWP-Id of the first BWP.
- the BWP-Id of the first BWP is configured by high-layer signaling.
- the BWP-Id of the first BWP is configured by RRC signaling.
- the BWP-Id of the first BWP is configured by ServingCellConfigCommon IE (Information Element).
- the first BWP is an uplink BWP and the BWP-Id of the first BWP is configured by BWP-UplinkCommon in ServingCellConfigCommon IE.
- the first BWP is an uplink BWP and the BWP-Id of the first BWP is configured by BWP-UplinkDedicated in ServingCellConfig IE.
- the first BWP is an uplink BWP and the BWP-Id of the first BWP is configured by BWP-Uplink in the ServingCellConfig IE.
- the first BWP is a downlink BWP and the BWP-Id of the first BWP is configured by BWP-DownlinkCommon in ServingCellConfigCommon IE.
- the first BWP is a downlink BWP and the BWP-Id of the first BWP is configured by BWP-DownlinkDedicated in ServingCellConfig IE.
- the first BWP is a downlink BWP and the BWP-Id of the first BWP is configured by BWP-Downlink in ServingCellConfig IE.
- the BWP-Id of the first BWP is a non-negative integer.
- the BWP-Id of the first BWP is a non-negative integer not greater than 4.
- the BWP-Id value of the first BWP is 0, 1, 2, 3, or 4.
- the value of the first field increases as the BWP-Id of the first BWP increases.
- the value of the first field decreases as the BWP-Id of the first BWP decreases.
- the value of the first field increases as the index of the first cell increases.
- the value of the first field decreases as the index of the first cell decreases.
- the value of the first domain is linearly related to the index of the first cell.
- the value of the first domain is linearly related to the BWP-Id of the first BWP.
- the index of the first cell is configured by high-layer signaling.
- the index of the first cell is configured by RRC signaling.
- the index of the first cell is configured by IE SCellConfig.
- the index of the first cell is configured by IE ServCellIndex.
- the index of the first cell is the ServCellIndex of the first cell.
- the index of the first cell is the SCellIndex of the first cell.
- the index of the first cell is the servCellId of the first cell.
- the index of the first cell is the ServCellIdentity of the first cell.
- the operation is receiving, the value of the first domain is equal to i, j represents the BWP-Id of the first BWP, P represents the number of downlink BWPs included in the cells in the first cell set whose cell index is less than the index of the first cell, and i is equal to (P+j).
- the operation is to receive, the value of the first field is equal to i, j represents the BWP-Id of the first BWP, and P represents that the cell index in the first cell set is smaller than the first cell
- the number of downlink BWPs included in the indexed cell, and the i is equal to (P+j-1).
- the operation is to send, the value of the first field is equal to i, j represents the BWP-Id of the first BWP, and P represents that the cell index in the first cell set is smaller than the first cell
- the number of uplink BWPs included in the indexed cell, and the i is equal to (P+j).
- the operation is to send, the value of the first field is equal to i, j represents the BWP-Id of the first BWP, and P represents that the cell index in the first cell set is smaller than the first cell
- the number of uplink BWPs included in the indexed cell, and the i is equal to (P+j-1).
- Embodiment 10 illustrates a schematic diagram in which the first domain is used to determine the index corresponding to the first BWP according to an embodiment of the present application; as shown in FIG. 10 .
- the Q1 BWPs are respectively represented as BWP#0, ..., BWP#(Q1-1); the Q1 indexes are respectively represented as index #0, ..., index # (Q1-1).
- the operation is to receive, all cells in the first cell set include Q1 downlink BWPs, Q1 is a positive integer greater than 1, and the Q1 BWPs respectively correspond to Q1 indexes, so The first domain of the first signaling is used to determine the index corresponding to the first BWP from the Q1 indexes; or, the operation is to send a total of all cells in the first cell set.
- the Q1 is a positive integer greater than 1
- the Q1 BWPs respectively correspond to Q1 indexes
- the first domain of the first signaling is used to determine from the Q1 indexes The index corresponding to the first BWP.
- the Q1 indexes are 0, 1, ..., Q1-1 respectively.
- the Q1 indexes are 1, 2,..., Q1 respectively.
- the first domain of the first signaling is used to indicate the index corresponding to the first BWP from the Q1 indexes.
- Embodiment 11 illustrates a schematic diagram of the relationship between the first value and the first index and the initial BWP according to an embodiment of the present application; as shown in FIG. 11 .
- the value of the first domain of the first signaling is equal to a first numerical value, and the index corresponding to the first BWP is equal to a first index; the operation is to receive and the first
- the relationship between a value and the first index is related to whether the Q1 downlink BWPs include an initial downlink BWP, or the operation is sending and the relationship between the first value and the first index is related to the Q1 downlink BWPs. It depends on whether the upstream BWP includes the initial upstream BWP.
- the first numerical value is a non-negative number.
- the first numerical value is a non-negative integer not greater than Q1.
- the first index is a non-negative number.
- the first index is a non-negative integer not greater than Q1.
- the Q1 downlink BWPs do not include an initial downlink BWP.
- the Q1 downlink BWPs include only one initial downlink BWP.
- the Q1 downlink BWPs include an initial downlink BWP and the first value is equal to the first index; or the Q1 downlink BWPs do not include an initial downlink BWP and the first value is equal to the first index.
- An index is decremented by 1.
- the Q1 downlink BWPs include an initial downlink BWP
- the Q1 BWPs include only one initial downlink BWP, and the index corresponding to the initial downlink BWP is equal to 0.
- the Q1 uplink BWPs do not include an initial uplink BWP.
- the Q1 uplink BWPs include only one initial uplink BWP.
- the Q1 uplink BWPs include an initial uplink BWP and the first value is equal to the first index; or the Q1 uplink BWPs do not include an initial uplink BWP and the first value is equal to the first index.
- An index is decremented by 1.
- the Q1 uplink BWPs include an initial uplink BWP
- the Q1 uplink BWPs include only one initial uplink BWP, and the index corresponding to the initial uplink BWP is equal to 0.
- the Q1 uplink BWPs include multiple initial uplink BWPs.
- the Q1 uplink BWPs include n initial uplink BWPs and the first BWP is one of the n initial uplink BWPs.
- the first numerical value is a non-negative integer not greater than n, and the first numerical value is equal to the first index.
- the first numerical value is a non-negative integer less than n, and the first numerical value is equal to the first index minus 1.
- the Q1 uplink BWPs include n initial uplink BWPs and the first BWP is not one of the n initial uplink BWPs.
- the first numerical value is a non-negative integer greater than or equal to n, and the first numerical value is equal to the first index minus (n-1).
- the first numerical value is a non-negative integer greater than n, and the first numerical value is equal to the first index minus n.
- the Q1 downlink BWPs include multiple initial downlink BWPs.
- the Q1 downlink BWPs include n initial downlink BWPs and the first BWP is one of the n initial downlink BWPs.
- the first numerical value is a non-negative integer not greater than n, and the first numerical value is equal to the first index.
- the first numerical value is a non-negative integer less than n, and the first numerical value is equal to the first index minus 1.
- the Q1 downlink BWPs include n initial downlink BWPs and the first BWP is not one of the n initial downlink BWPs.
- the first value is a non-negative integer greater than or equal to n, and the first value is equal to the first Decrement the index by (n-1).
- the first numerical value is a non-negative integer greater than n, and the first numerical value is equal to the first index minus n.
- Embodiment 12 illustrates a schematic diagram of mapping Q1 BWPs to Q1 indexes according to an embodiment of the present application; as shown in Figure 12.
- the first cell set includes L1 cells, the L1 is equal to 4, and the L1 cells are respectively represented as CC#0,..., CC#3;
- the first cell set The included BWP is an uplink BWP or a downlink BWP;
- the cell CC#0 includes 3 BWPs and are respectively represented as CC0-BWP0, CC0-BWP1, CC0-BWP2;
- the cell CC#1 includes 2 BWPs and are respectively represented by Represented as CC1-BWP0, CC1-BWP1;
- the cell CC#2 includes 2 BWPs and is represented as CC2-BWP0, CC2-BWP1 respectively;
- the cell CC#3 includes 1 BWP and is represented as CC3-BWP0 ;
- the Q1 indexes are respectively represented as index #0,..., index #(Q1-1).
- the Q1 downlink BWPs are sequentially mapped to the Q1 indexes in such a way that the BWP-Id is first and the cell index is second; or the Q1 uplink BWPs are first in BWP-Id,
- the cell index of the second mode is sequentially mapped to the Q1 indexes.
- Q1 is equal to 8.
- the BWP included in the first cell set is an uplink BWP or a downlink BWP.
- the downlink BWPs belonging to the same cell among the Q1 downlink BWPs are sequentially mapped to the corresponding number of indexes according to the corresponding BWP-Id.
- the downlink BWPs belonging to the same cell among the Q1 downlink BWPs are sequentially mapped to the corresponding number of indexes in ascending order of the corresponding BWP-Id.
- the downlink BWPs belonging to the same cell among the Q1 downlink BWPs are sequentially mapped to the corresponding number of indexes in descending order of the corresponding BWP-Id.
- the indexes corresponding to the downlink BWPs belonging to the same cell are consecutive.
- the indexes corresponding to the BWPs corresponding to the same BWP-Id are discontinuous.
- the uplink BWPs belonging to the same cell among the Q1 uplink BWPs are sequentially mapped to the corresponding number of indexes according to the corresponding BWP-Id.
- the uplink BWPs belonging to the same cell among the Q1 uplink BWPs are sequentially mapped to the corresponding number of indexes in ascending order of the corresponding BWP-Id.
- the uplink BWPs belonging to the same cell among the Q1 uplink BWPs are sequentially mapped to the corresponding number of indexes in descending order of the corresponding BWP-Id.
- the indexes corresponding to the uplink BWPs belonging to the same cell among the Q1 uplink BWPs are consecutive.
- the indexes corresponding to the BWPs corresponding to the same BWP-Id among the Q1 uplink BWPs are discontinuous.
- the first signaling is physical layer dynamic signaling
- the first field of the first signaling is a BWP indication field
- the first signaling only includes one BWP indication field.
- Embodiment 13 illustrates a structural block diagram of a processing device used in a first node device according to an embodiment of the present application; as shown in FIG. 13 .
- the processing device 1300 in the first node device includes a first receiver 1301 and a first transceiver 1302.
- the first node device is user equipment.
- the first node device is a relay node device.
- the first receiver 1301 includes the ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, and data source in Embodiment 4. At least one of 467 ⁇ .
- the first transceiver 1302 includes ⁇ antenna 452, transmitter 454, transmit processor 468, multi-antenna transmit processor 457, controller/processor 459, memory 460, data source in Embodiment 4 At least one of 467 ⁇ .
- the first receiver 1301 receives the first signaling
- a first transceiver 1302 in response to receiving the first signaling, operates a first signal in the BWP of each cell in the first set of cells;
- the first signaling includes a first domain, the first signaling schedules a first cell set, and the first domain of the first signaling is used to indicate that in the first cell the first BWP;
- the BWP for the first cell is the first BWP;
- the candidates for the first cell set include a plurality of cell sets, and at least one of the plurality of cell sets includes a plurality of cell, the first cell is a cell in the first cell set;
- the operation is receiving and the first BWP is a downlink BWP, or the operation is transmitting and the first BWP is an uplink BWP.
- the first domain of the first signaling consists of K1 information bits; the operation is receiving and the K1 depends on the number of downlink BWPs in the target cell set, or the operation is is sent and the K1 depends on the number of uplink BWPs in the target cell set; the target cell set is one of the plurality of cell sets.
- the operation is to receive and the target cell set is the cell set with the largest number of downlink BWPs among the plurality of cell sets, or the operation is to send and the target cell set is the The cell set containing the largest number of uplink BWPs among multiple cell sets.
- the value of the first field of the first signaling depends on the index of the first cell and the BWP-Id of the first BWP.
- the operation is to receive, all cells in the first cell set include a total of Q1 downlink BWPs, the Q1 is a positive integer greater than 1, the Q1 BWPs respectively correspond to Q1 indexes, and the The first domain of the first signaling is used to determine the index corresponding to the first BWP from the Q1 indexes; or, the operation is to send, all cells in the first cell set include Q1 uplink BWPs, the Q1 is a positive integer greater than 1, the Q1 BWPs respectively correspond to Q1 indexes, and the first field of the first signaling is used to determine the Q1 indexes.
- the index corresponding to the first BWP is to receive, all cells in the first cell set include a total of Q1 downlink BWPs, the Q1 is a positive integer greater than 1, the Q1 BWPs respectively correspond to Q1 indexes, and the The first domain of the first signaling is used to determine the index corresponding to the first BWP from the Q1 indexes;
- the value of the first domain of the first signaling is equal to a first numerical value, and the index corresponding to the first BWP is equal to the first index; the operation is to receive and the first
- the relationship between the numerical value and the first index is related to whether the Q1 downlink BWPs include an initial downlink BWP, or the operation is sending and the relationship between the first numerical value and the first index is related to the Q1 uplink BWPs. It depends on whether the BWP includes the initial upstream BWP.
- the Q1 downlink BWPs are mapped to the Q1 indexes in sequence with BWP-Id first and cell index second; or, the Q1 uplink BWPs are mapped to the Q1 indexes with BWP-Id first and cell index second.
- the mode with the second index is sequentially mapped to the Q1 indexes.
- Embodiment 14 illustrates a structural block diagram of a processing device in a second node device according to an embodiment of the present application, as shown in FIG14.
- the processing device 1400 in the second node device includes a second transmitter 1401 and a second transceiver 1402.
- the second node device is a base station device.
- the second node device is user equipment.
- the second node device is a relay node device.
- the second transmitter 1401 includes ⁇ antenna 420, transmitter 418, transmission processor 416, multi-antenna transmission processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4. At least one.
- the second transceiver 1402 includes ⁇ antenna 420, receiver 418, receiving processor 470, multi-antenna receiving processor 472, controller/processor 475, memory 476 ⁇ in Embodiment 4. At least one.
- the second transmitter 1401 sends the first signaling
- the second transceiver 140 in response to sending the first signaling, executes the first signal in the BWP of each cell in the first cell set;
- the first signaling includes a first domain, the first signaling schedules a first cell set, and the first domain of the first signaling is used to indicate that in the first cell the first BWP;
- the BWP for the first cell is the first BWP;
- the candidates for the first cell set include a plurality of cell sets, and at least one of the plurality of cell sets includes a plurality of cell, the first cell is a cell in the first cell set;
- the execution is sending and the first BWP is a downlink BWP, or the execution is receiving and the first BWP is an uplink BWP.
- the first domain of the first signaling consists of K1 information bits; the execution is receiving and the K1 depends on the number of uplink BWPs in the target cell set, or the execution is The K1 is sent and depends on the number of downlink BWPs in the target cell set; the target cell set is one of the plurality of cell sets.
- the execution is receiving and the target cell set is the largest number of uplink BWPs included in the plurality of cell sets. Multiple cell sets, or the execution is sending and the target cell set is a cell set including the largest number of downlink BWPs among the multiple cell sets.
- the value of the first field of the first signaling depends on the index of the first cell and the BWP-Id of the first BWP.
- the execution is to receive, all cells in the first cell set include a total of Q1 uplink BWPs, the Q1 is a positive integer greater than 1, the Q1 BWPs respectively correspond to Q1 indexes, and the The first domain of the first signaling is used to determine the index corresponding to the first BWP from the Q1 indexes; or, the execution is to send, and all cells in the first cell set include Q1 downlink BWPs, the Q1 is a positive integer greater than 1, the Q1 BWPs respectively correspond to Q1 indexes, and the first field of the first signaling is used to determine the Q1 indexes.
- the index corresponding to the first BWP is to receive, all cells in the first cell set include a total of Q1 uplink BWPs, the Q1 is a positive integer greater than 1, the Q1 BWPs respectively correspond to Q1 indexes, and the The first domain of the first signaling is used to determine the index corresponding to the first BWP from the Q1 indexes
- the value of the first domain of the first signaling is equal to a first numerical value, and the index corresponding to the first BWP is equal to the first index; the execution is receiving and the first The relationship between the value and the first index is related to whether the Q1 uplink BWPs include an initial uplink BWP, or the execution is sending and the relationship between the first value and the first index is related to the Q1 downlink BWPs. It depends on whether the BWP includes the initial downstream BWP.
- the Q1 downlink BWPs are mapped to the Q1 indexes in sequence with BWP-Id first and cell index second; or, the Q1 uplink BWPs are mapped to the Q1 indexes with BWP-Id first and cell index second.
- the mode with the second index is sequentially mapped to the Q1 indexes.
- User equipment, terminals and UEs in this application include but are not limited to drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC, enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost Cost-effective tablet computers and other wireless communication devices.
- MTC Machine Type Communication
- eMTC enhanced MTC
- the base station or system equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point, transmitting and receiving node) and other wireless communications equipment.
- gNB NR Node B
- TRP Transmitter Receiver Point
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请公开了用于无线通信的方法和装置。第一节点接收第一信令,所述第一信令包括第一域,所述第一信令调度第一小区集合,且所述第一信令的所述第一域被用于指示第一小区中的第一BWP;作为接收所述第一信令的响应,在所述第一小区集合中的每个小区的BWP中操作第一信号,所述BWP对于所述第一小区是所述第一BWP;所述第一小区集合的候选包括多个小区集合,所述多个小区集合中的至少一个小区集合包括多个小区,所述第一小区是所述第一小区集合中的一个小区;所述操作是接收且所述第一BWP是下行BWP,或者所述操作是发送且所述第一BWP是上行BWP。本申请能通过一个DCI调度多个小区以及指示BWP切换,提高了灵活性,降低了信令开销,快速适应了环境和场景的变化。
Description
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信系统中和DCI(Downlink Control Information,下行控制信息)有关的方案和装置。
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或5G)进行研究,在3GPP RAN#75次全会上通过了新空口技术(NR,New Radio)的WI(Work Item,工作项目),开始对NR进行标准化工作。
当前,R18版本的5G NR已经开始了研究工作,一个DCI调度多个小区的PUSCH/PDSCH(Multi-cell PUSCH/PDSCH scheduling with a single DCI)是其中一个SI(Study Item,研究工作),其中DCI格式设计(DCI format design),DCI大小(DCI size)和BD/CCE预算(BD/CCE budget)(BD,Blind Decoding)(CCE,Control Channel Element),一个DCI调度的最大小区数量,搜索空间(SS,Search Space)配置,HARQ增强(HARQ enhancements),DCI域的设计(DCI field design)(比如,BWP指示器(Bandwidth Part Indicator),频域资源分配(FDRA,Frequency Domain Resource Allocation),时域资源分配(TDRA,Time Domain Resource Allocation),下行链路分配索引(DAI,Downlink Assignment Index)等等)是多小区调度的研究内容。
发明内容
发明人通过研究发现,在无线通信系统中,DCI域的设计是一个关键问题。
针对上述问题,本申请公开了一种解决方案。需要说明的是,虽然本申请的初衷是针对一个DCI调度多个小区的PUSCH(Physical Uplink Shared Channel,物理上行链路共享信道)/PDSCH(Physical Downlink Shared Channel,物理下行链路共享信道)传输场景展开说明,本申请也能用于一个DCI调度单个小区的PUSCH/PDSCH的传输场景中。进一步的,对不同场景(包括但不限于一个DCI调度多个小区的PUSCH/PDSCH和一个DCI调度单个小区的PUSCH/PDSCH)采用统一的设计方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信令,所述第一信令包括第一域,所述第一信令调度第一小区集合,且所述第一信令的所述第一域被用于指示第一小区中的第一BWP;
作为发送所述第一信令的响应,在所述第一小区集合中的每个小区的BWP中操作第一信号,所述BWP对于所述第一小区是所述第一BWP;
其中,所述第一小区集合的候选包括多个小区集合,所述多个小区集合中的至少一个小区集合包括多个小区,所述第一小区是所述第一小区集合中的一个小区;所述操作是接收且所述第一BWP是下行BWP,或者所述操作是发送且所述第一BWP是上行BWP。作为一个实施例,本申请要解决的问题包括:CSI上报量的计算。
作为一个实施例,上述方法通过所述第一信令中的所述第一域指示所调度的多个小区的BWP切换,提高了灵活性,降低了信令开销。
根据本申请的一个方面,其特征在于,所述第一信令的所述第一域由K1个信息比特组成;所述操作是接收且所述K1依赖目标小区集合中的下行BWP的数量,或者,所述操作是发送且所述K1依赖目标小区
集合中的上行BWP的数量;所述目标小区集合是所述多个小区集合中的之一。
根据本申请的一个方面,其特征在于,所述操作是接收且所述目标小区集合是所述多个小区集合中包括的下行BWP数量最多的小区集合,或者,所述操作是发送且所述目标小区集合是所述多个小区集合中包括的上行BWP数量最多的小区集合。
根据本申请的一个方面,其特征在于,所述第一信令的所述第一域的值依赖所述第一小区的索引和所述第一BWP的BWP-Id。
根据本申请的一个方面,其特征在于,所述操作是接收,所述第一小区集合的所有小区共包括Q1个下行BWP,所述Q1是大于1的正整数,所述Q1个BWP分别对应Q1个索引,所述第一信令的所述第一域被用于从所述Q1个索引中确定所述第一BWP所对应的索引;或者,所述操作是发送,所述第一小区集合的所有小区共包括Q1个上行BWP,所述Q1是大于1的正整数,所述Q1个BWP分别对应Q1个索引,所述第一信令的所述第一域被用于从所述Q1个索引中确定所述第一BWP所对应的索引。
根据本申请的一个方面,其特征在于,所述第一信令的所述第一域的值等于第一数值,所述第一BWP所对应的所述索引等于第一索引;所述操作是接收且所述第一数值与所述第一索引的关系与所述Q1个下行BWP中是否包括初始下行BWP有关,或者所述操作是发送且所述第一数值与所述第一索引的关系与所述Q1个上行BWP中是否包括初始上行BWP有关。
根据本申请的一个方面,其特征在于,所述Q1个下行BWP按照BWP-Id第一,小区索引第二的方式被依次映射到所述Q1个索引;或者,所述Q1个上行BWP按照BWP-Id第一,小区索引第二的方式被依次映射到所述Q1个索引。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信令,所述第一信令包括第一域,所述第一信令调度第一小区集合,且所述第一信令的所述第一域被用于指示第一小区中的第一BWP;
作为发送所述第一信令的响应,在所述第一小区集合中的每个小区的BWP中执行第一信号,所述BWP对于所述第一小区是所述第一BWP;
其中,所述第一小区集合的候选包括多个小区集合,所述多个小区集合中的至少一个小区集合包括多个小区,所述第一小区是所述第一小区集合中的一个小区;所述执行是发送且所述第一BWP是下行BWP,或者所述执行是接收且所述第一BWP是上行BWP。
根据本申请的一个方面,其特征在于,所述第一信令的所述第一域由K1个信息比特组成;所述执行是接收且所述K1依赖目标小区集合中的上行BWP的数量,或者,所述执行是发送且所述K1依赖目标小区集合中的下行BWP的数量;所述目标小区集合是所述多个小区集合中的之一。
根据本申请的一个方面,其特征在于,所述执行是接收且所述目标小区集合是所述多个小区集合中包括的上行BWP数量最多的小区集合,或者,所述执行是发送且所述目标小区集合是所述多个小区集合中包括的下行BWP数量最多的小区集合。
根据本申请的一个方面,其特征在于,所述第一信令的所述第一域的值依赖所述第一小区的索引和所述第一BWP的BWP-Id。
根据本申请的一个方面,其特征在于,所述执行是接收,所述第一小区集合的所有小区共包括Q1个上行BWP,所述Q1是大于1的正整数,所述Q1个BWP分别对应Q1个索引,所述第一信令的所述第一域被用于从所述Q1个索引中确定所述第一BWP所对应的索引;或者,所述执行是发送,所述第一小区集合的所有小区共包括Q1个下行BWP,所述Q1是大于1的正整数,所述Q1个BWP分别对应Q1个索引,所述第一信令的所述第一域被用于从所述Q1个索引中确定所述第一BWP所对应的索引。
根据本申请的一个方面,其特征在于,所述第一信令的所述第一域的值等于第一数值,所述第一BWP所对应的所述索引等于第一索引;所述执行是接收且所述第一数值与所述第一索引的关系与所述Q1个上行BWP中是否包括初始上行BWP有关,或者所述执行是发送且所述第一数值与所述第一索引的关系与所述Q1个下行BWP中是否包括初始下行BWP有关。
根据本申请的一个方面,其特征在于,所述Q1个下行BWP按照BWP-Id第一,小区索引第二的方式被依次映射到所述Q1个索引;或者,所述Q1个上行BWP按照BWP-Id第一,小区索引第二的方式被依次映射到所述Q1个索引。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一接收机,接收第一信令,所述第一信令包括第一域,所述第一信令调度第一小区集合,且所述第一信令的所述第一域被用于指示第一小区中的第一BWP;
第一收发机,作为接收所述第一信令的响应,在所述第一小区集合中的每个小区的BWP中操作第一信号,所述BWP对于所述第一小区是所述第一BWP;
其中,所述第一小区集合的候选包括多个小区集合,所述多个小区集合中的至少一个小区集合包括多个小区,所述第一小区是所述第一小区集合中的一个小区;所述操作是接收且所述第一BWP是下行BWP,或者所述操作是发送且所述第一BWP是上行BWP。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二发射机,发送第一信令,所述第一信令包括第一域,所述第一信令调度第一小区集合,且所述第一信令的所述第一域被用于指示第一小区中的第一BWP;
第二收发机,作为发送所述第一信令的响应,在所述第一小区集合中的每个小区的BWP中执行第一信号,所述BWP对于所述第一小区是所述第一BWP;
其中,所述第一小区集合的候选包括多个小区集合,所述多个小区集合中的至少一个小区集合包括多个小区,所述第一小区是所述第一小区集合中的一个小区;所述执行是接收且所述第一BWP是上行BWP,或者所述执行是发送且所述第一BWP是下行BWP。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-提高了灵活性;
-降低了DCI的冗余开销。
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令,第一小区集合和第一信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的传输的流程图;
图6示出了根据本申请的另一实施例的传输的流程图;
图7示出了根据本申请的一个实施例的第一域的比特数量依赖目标小区集合中的BWP数量的示意图;
图8示出了根据本申请的一个实施例的目标小区集合是包括的BWP数量最多的小区集合的示意图;
图9示出了根据本申请的一个实施例的第一域的值依赖第一小区的索引和第一BWP的BWP-Id的示意图;
图10示出了根据本申请的一个实施例的第一域被用于确定第一BWP所对应的索引的示意图;
图11示出了根据本申请的一个实施例的第一数值与第一索引的关系与初始BWP有关的示意图;
图12示出了根据本申请的一个实施例的Q1个BWP映射到Q1个索引的示意图;
图13示出了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;
图14示出了根据本申请的一个实施例的用于第二节点中设备的处理装置的结构框图。
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信令,第一小区集合和第一信号的流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。特别的,方框中的步骤的顺序不代表各个步骤之间特定的时间先后关系。
在实施例1中,本申请中的所述第一节点在步骤101中接收第一信令,所述第一信令包括第一域,所述第一信令调度第一小区集合,且所述第一信令的所述第一域被用于指示第一小区中的第一BWP;在步骤102中作为接收所述第一信令的响应,在所述第一小区集合中的每个小区的BWP中操作第一信号,所述BWP对于所述第一小区是所述第一BWP;其中,所述第一小区集合的候选包括多个小区集合,所述多个小区集合中的至少一个小区集合包括多个小区,所述第一小区是所述第一小区集合中的一个小区;所述操作是接收且所述第一BWP是下行BWP,或者所述操作是发送且所述第一BWP是上行BWP。
作为一个实施例,所述第一信令所占用的物理层信道包括PDCCH(Physical Downlink Control Channel,物理下行链路控制信道)。
作为一个实施例,所述第一信令包括MAC CE(Medium Access Control,媒体接入控制)(Control Element,控制单元)。
作为一个实施例,所述第一信令包括物理层动态信令。
作为一个实施例,所述第一信令是DCI。
作为一个实施例,所述第一信令是小区公共(cell common)的。
作为一个实施例,所述第一信令是小区特有(cell specific)的。
作为一个实施例,所述第一信令是用户设备组公共(UE group common)的。
作为一个实施例,所述第一信令是用户设备组特有(UE group specific)的。
作为一个实施例,所述第一信令是用户设备特有(UE specific)的。
作为一个实施例,所述操作是接收,所述第一信令是一个下行授权(DL Grant)。
作为一个实施例,所述操作是发送,所述第一信令是一个上行授权(UL Grant)。
作为一个实施例,所述操作是接收且所述第一信令调度第一小区集合上的PDSCH。
作为一个实施例,所述操作是发送且所述第一信令调度第一小区集合上的PUSCH。
作为一个实施例,所述第一信令仅包括第一域。
作为一个实施例,所述第一信令包括第一域之外的至少一个域。
作为一个实施例,所述第一信令包括多个域。
作为一个实施例,所述第一信令的所述第一域包括至少一个DCI域。
作为一个实施例,所述第一信令的所述第一域是一个DCI域。
作为一个实施例,所述第一信令的所述第一域包括多个DCI域。
作为一个实施例,所述第一信令的所述第一域包括Bandwidth Part Indicator域。
作为一个实施例,所述第一信令的所述第一域包括Bandwidth Part Indicator中的全部或部分信息。
作为一个实施例,所述第一信令的所述第一域是Bandwidth Part Indicator域。
作为一个实施例,所述第一信令的所述第一域仅被用于指示一个下行BWP或一个上行BWP。
作为一个实施例,所述第一小区集合包括一个小区。
作为一个实施例,所述第一小区集合仅包括所述第一小区。
作为一个实施例,所述第一小区集合包括至少一个小区。
作为一个实施例,所述第一小区集合包括多个小区。
作为一个实施例,所述第一小区集合包括N1个小区,所述N1是大于1的正整数,所述N1个小区包括所述第一小区。
作为一个实施例,所述第一小区集合的候选仅包括所述第一小区集合。
作为一个实施例,所述第一小区集合的候选包括多个小区集合,所述多个小区集合中的至少一个小区集合包括多个小区,所述第一小区是所述第一小区集合中的一个小区。
作为一个实施例,所述第一小区被分配了一个上行BWP。
作为一个实施例,所述第一小区被分配了至少一个上行BWP。
作为一个实施例,所述第一小区被分配了多个上行BWP。
作为一个实施例,所述第一小区被分配了多个上行BWP,所述第一小区被分配的上行BWP数量最大为4。
作为一个实施例,所述第一小区被分配了初始上行BWP(Initial Uplink BWP)。
作为一个实施例,所述第一小区被分配了一个下行BWP。
作为一个实施例,所述第一小区被分配了至少一个下行BWP。
作为一个实施例,所述第一小区被分配了多个下行BWP。
作为一个实施例,所述第一小区被分配了多个下行BWP,所述第一小区被分配的下行BWP数量最大为4。
作为一个实施例,所述第一小区被分配了初始下行BWP(Initial Downlink BWP)。
作为一个实施例,所述第一小区包括所述第一BWP,所述第一BWP是一个上行BWP或者一个下行BWP。
作为一个实施例,本申请中的所述小区包括服务小区。
作为一个实施例,本申请中的所述小区包括物理小区。
作为一个实施例,本申请中的所述小区包括CC(Component Carrier,分量载波)。
作为一个实施例,本申请中的所述小区包括主小区(PCell,Primary Cell)。
作为一个实施例,本申请中的所述小区包括辅小区(SCell,Secondary Cell)。
作为一个实施例,本申请中的所述小区包括特殊小区(SpCell,Special Cell)。
作为一个实施例,本申请中的所述小区是所述第一节点的服务小区。
作为一个实施例,本申请中的所述小区分别被分配了SCellIndex或ServCellIndex。
作为一个实施例,本申请中的所述小区索引包括SCellIndex。
作为一个实施例,本申请中的所述小区索引包括ServCellIndex。
作为一个实施例,本申请中的所述小区索引包括ServCellIdentity。
作为一个实施例,本申请中的所述小区属于同一个cell group。
作为一个实施例,本申请中的所述小区都属于MCG(Master Cell Group,主小区组)或都属于SCG(Secondary Cell Group,辅小区组)。
作为一个实施例,本申请中的所述小区属于同一个PUCCH(Physical Uplink Control Channel,物理上行链路控制信道)group。
作为一个实施例,一个PUCCH group包括一组小区,所述一组小区的PUCCH信令和SpCell的PUCCH相关联,或者和PUCCH SCell的PUCCH相关联;一个PUCCH SCell是一个被配置了PUCCH的SCell。
作为一个实施例,一个PUCCH group包括一组小区,所述一组小区的PUCCH信令和同一个小区的PUCCH相关联。
作为一个实施例,本申请中的所述小区具有相同的numerology。
作为一个实施例,本申请中的所述小区具有相同的子载波间隔配置(Subcarrier spacing configuration)。
作为一个实施例,所述第一信令被用于指示所述第一小区集合。
作为一个实施例,所述第一信令显式的指示所述第一小区集合。
作为一个实施例,所述第一信令隐式的指示所述第一小区集合。
作为一个实施例,所述第一信令直接指示所述第一小区集合。
作为一个实施例,所述第一信令间接指示所述第一小区集合。
作为一个实施例,所述第一信令的所述第一域被用于指示所述第一小区中的所述第一BWP。
作为一个实施例,所述第一BWP包括一个RB(Resoure Block,资源块)。
作为一个实施例,所述第一BWP包括至少一个RB。
作为一个实施例,所述第一BWP包括多个RB。
作为一个实施例,所述第一BWP包括在频域上连续的多个RB。
作为一个实施例,所述第一BWP是在频域上连续的多个RB。
作为一个实施例,所述第一BWP包括在频域上不连续的多个RB。
典型的,所述第一信令包括第二域,所述第一信令的所述第二域被用于指示所述第一小区集合。
作为一个实施例,所述第一信令的所述第二域包括至少一个DCI域。
作为一个实施例,所述第一信令的所述第二域是一个DCI域。
作为一个实施例,所述第一信令的所述第二域包括多个DCI域。
作为一个实施例,所述第一信令的所述第二域被用于从M1个候选小区集合中指示所述第一小区集合,所述第一小区集合的候选包括所述M1个候选小区集合,所述M1是大于1的正整数。
作为该实施例的一个子实施例,所述M1的值被用于确定所述第一信令的所述第二域所占用的最大信息比特数。
作为该实施例的一个子实施例,所述第一信令的所述第二域所占用的最大信息比特数等于
作为该实施例的一个子实施例,所述第一信令的所述第二域所占用的最大信息比特数等于
作为该实施例的一个子实施例,所述多个小区集合对应所述M1个候选小区集合。
作为一个实施例,所述第一信令的所述第二域包括CIF(Carrier Indicator Field,载波指示域)。
作为一个实施例,所述第一信令的所述第二域是CIF。
作为一个实施例,所述第一信令仅包括一个用于指示所述第一小区集合的域,且所述域对应所述第一信令的所述第二域。
典型的,所述第一信令包括L1个第三域,所述第一信令的所述L1个第三域分别被用于指示所述第一小区集合所包括的L1个小区,所述L1是正整数。
作为一个实施例,所述第一信令的所述第三域包括至少一个DCI域。
作为一个实施例,所述第一信令的所述第三域是一个DCI域。
作为一个实施例,所述第一信令的所述第三域包括多个DCI域。
作为一个实施例,所述第一信令的所述L1个第三域分别包括L1个CIF。
作为一个实施例,所述第一信令的所述L1个第三域分别是L1个CIF。
作为一个实施例,上述短语在所述第一小区集合中的每个小区的BWP中操作第一信号的意思包括:所述操作是接收,且在所述第一小区集合中的每个小区的下行BWP中接收第一信号。
作为该实施例的一个子实施例,所述第一小区集合包括L1个小区,所述L1是正整数,所述L1个小区分别包括L1个下行BWP,所述第一节点在所述L1个下行BWP中接收L1个子信号,所述L1个子信号组成所述第一信号。
作为该子实施例的附属实施例,所述L1是正整数。
作为该子实施例的附属实施例,所述L1等于1。
作为该子实施例的附属实施例,所述L1大于1。
作为该子实施例的附属实施例,所述L1个下行BWP包括所述第一BWP。
作为该实施例的一个子实施例,所述第一小区集合包括L1个小区,所述L1是正整数,所述L1个小区中的任一小区仅包括一个激活的下行BWP,所述第一节点仅在所述L1个小区所包括的激活的下行BWP中接收所述第一信号。
作为一个实施例,所述操作是接收,所述第一信号所占用的物理层信道包括PDSCH。
作为一个实施例,所述操作是接收,所述第一信号所对应的传输信道包括DL-SCH(Downlink Shared Channel,下行共享信道)。
作为一个实施例,所述操作是接收,所述第一信号所占用的物理层信道包括L1个PDSCH,所述L1个PDSCH分别在所述第一小区集合所包括的L1个小区中被传输。
作为一个实施例,上述短语在所述第一小区集合中的每个小区的BWP中操作第一信号的意思包括:所述操作是发送,且在所述第一小区集合中的每个小区的上行BWP中发送第一信号。
作为该实施例的一个子实施例,所述第一小区集合包括L1个小区,所述L1是正整数,所述L1个小区分别包括L1个上行BWP,所述第一节点在所述L1个上行BWP中发送L1个子信号,所述L1个子信号组成所述第一信号。
作为该子实施例的附属实施例,所述L1是正整数。
作为该子实施例的附属实施例,所述L1等于1。
作为该子实施例的附属实施例,所述L1大于1。
作为该子实施例的附属实施例,所述L1个上行BWP包括所述第一BWP。
作为该实施例的一个子实施例,所述第一小区集合包括L1个小区,所述L1是正整数,所述L1个小
区中的任一小区仅包括一个激活的上行BWP,所述第一节点仅在所述L1个小区所包括的激活的上行BWP中发送所述第一信号。
作为一个实施例,所述操作是发送,所述第一信号所占用的物理层信道包括PUSCH。
作为一个实施例,所述操作是发送,所述第一信号所对应的传输信道包括UL-SCH(Uplink Shared Channel,上行共享信道)。
作为一个实施例,所述操作是发送,所述第一信号所占用的物理层信道包括L1个PUSCH,所述L1个PUSCH分别在所述第一小区集合所包括的L1个小区中被传输。
作为一个实施例,所述第一信号由一个TB(Transport Block,传输块)生成。
作为一个实施例,所述第一信号由一个比特块生成。
作为一个实施例,所述第一信号由L1个TB生成。
作为一个实施例,所述第一信号由L1个比特块生成。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE,LTE-A及未来5G系统的网络架构200称为EPS(Evolved Packet System,演进分组系统)200。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200或某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路(Sidelink)通信的UE241,NG-RAN(下一代无线接入网络)202,5GC(5G CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,5GS/EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。NG-RAN202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网,内联网,IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换(Packet switching)服务。
作为一个实施例,本申请中的所述第一节点包括所述UE201。
作为一个实施例,本申请中的所述第一节点包括所述UE241。
作为一个实施例,本申请中的所述第二节点包括所述gNB203。
作为一个实施例,所述UE201支持多个载波被同一个DCI调度。
作为一个实施例,所述UE201支持多个服务小区被同一个DCI调度。
作为一个实施例,所述UE201支持跨载波调度。
作为一个实施例,所述NR节点B对应本申请中的所述第二节点。
作为一个实施例,所述NR节点B支持多个载波被同一个DCI调度。
作为一个实施例,所述NR节点B支持多个服务小区被同一个DCI调度。
作为一个实施例,所述NR节点B支持跨载波调度。
作为一个实施例,所述NR节点B是一个基站。
作为一个实施例,所述NR节点B是一个小区。
作为一个实施例,所述NR节点B包括多个小区。
作为一个实施例,所述NR节点B被用于确定多个服务小区上的传输。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间,或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,负责第一通信节点设备与第二通信节点设备之间,或者两个UE之间的链路。L2层305包括MAC(MediumAccess Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第一信令生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第一信令生成于所述MAC子层302。
作为一个实施例,所述第一信号生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第一信号生成于所述MAC302或者MAC352。
作为一个实施例,所述第一信号生成于所述RRC306。
实施例4
实施例4示例了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。附图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与传输信道之间的多路复用,以及基于各种优先级量度对第二通信设备450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的星座映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个并行流。发射处理器416随后将每一并行流映射到子载波,将调制后的符号在时域和/或频域中与参考信号(例如,导频)复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以第二通信设备450为目的地的任何并行流。每一并行流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述第一通信设备410处的发送功能,控制器/处理器459基于第一通信设备410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的并行流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似
于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。控制器/处理器475提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收第一信令;作为接收所述第一信令的响应,在所述第一小区集合中的每个小区的BWP中操作第一信号;所述第一信令包括第一域,所述第一信令调度第一小区集合,且所述第一信令的所述第一域被用于指示第一小区中的第一BWP;所述BWP对于所述第一小区是所述第一BWP;所述第一小区集合的候选包括多个小区集合,所述多个小区集合中的至少一个小区集合包括多个小区,所述第一小区是所述第一小区集合中的一个小区;所述操作是接收且所述第一BWP是下行BWP,或者所述操作是发送且所述第一BWP是上行BWP。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器操作时产生动作,所述动作包括:接收第一信令;作为接收所述第一信令的响应,在所述第一小区集合中的每个小区的BWP中操作第一信号。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送第一信令;作为发送所述第一信令的响应,在所述第一小区集合中的每个小区的BWP中执行第一信号;所述第一信令包括第一域,所述第一信令调度第一小区集合,且所述第一信令的所述第一域被用于指示第一小区中的第一BWP;所述BWP对于所述第一小区是所述第一BWP;所述第一小区集合的候选包括多个小区集合,所述多个小区集合中的至少一个小区集合包括多个小区,所述第一小区是所述第一小区集合中的一个小区;所述执行是发送且所述第一BWP是下行BWP,或者所述执行是接收且所述第一BWP是上行BWP。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信令;作为发送所述第一信令的响应,在所述第一小区集合中的每个小区的BWP中执行第一信号。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450。
作为一个实施例,本申请中的所述第二节点包括所述第一通信设备410。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收本申请中的所述第一信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信令。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收本申请中的所述第一信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于发送本申请中的所述第一信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述第一信号。
实施例5
实施例5示例了根据本申请的一个实施例的传输的流程图,如附图5所示。在附图5中,第一节点U1和第二节点N2分别是通过空中接口传输的两个通信节点。
对于第一节点U1,在步骤S10中接收第一信令;在步骤S11中作为接收所述第一信令的响应,在所述第一小区集合中的每个小区的下行BWP中接收第一信号。
对于第二节点N2,在步骤S20中发送第一信令;在步骤S21中作为发送所述第一信令的响应,在所述第一小区集合中的每个小区的下行BWP中发送第一信号。
在实施例5中,所述第一信令包括第一域,所述第一信令调度第一小区集合,且所述第一信令的所述第一域被用于指示第一小区中的第一BWP;所述BWP对于所述第一小区是所述第一BWP;所述第一小区集合的候选包括多个小区集合,所述多个小区集合中的至少一个小区集合包括多个小区,所述第一小区是所述第一小区集合中的一个小区。
作为一个实施例,所述第一节点U1是本申请中的所述第一节点。
作为一个实施例,所述第二节点N2是本申请中的所述第二节点。
作为一个实施例,所述第二节点N2和所述第一节点U1之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点N2和所述第一节点U1之间的空中接口包括中继节点设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点N2和所述第一节点U1之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点N2是所述第一节点U1的服务小区维持基站。
作为一个实施例,所述第一信令被所述第一节点U1用于调度第一信号。
作为一个实施例,所述第一节点在所述第一小区集合中的每个小区的下行BWP中接收第一信号。
作为该实施例的一个子实施例,所述第一小区集合包括L1个小区,所述L1是正整数,所述L1个小区分别包括L1个下行BWP,所述第一节点在所述L1个下行BWP中接收L1个子信号,所述L1个子信号组成所述第一信号。
作为该子实施例的附属实施例,所述L1是正整数。
作为该子实施例的附属实施例,所述L1等于1。
作为该子实施例的附属实施例,所述L1大于1。
作为该子实施例的附属实施例,所述L1个下行BWP包括所述第一BWP。
作为该实施例的一个子实施例,所述第一小区集合包括L1个小区,所述L1是正整数,所述L1个小区中的任一小区仅包括一个激活的下行BWP,所述第一节点仅在所述L1个小区所包括的激活的下行BWP中接收所述第一信号。
作为该实施例的一个子实施例,所述第一信号所占用的物理层信道包括PDSCH。
作为该实施例的一个子实施例,所述第一信号所对应的传输信道包括DL-SCH。
作为该实施例的一个子实施例,所述第一信号所占用的物理层信道包括L1个PDSCH,所述L1个PDSCH分别在所述第一小区集合所包括的L1个小区中被传输。
作为一个实施例,所述第二节点在所述第一小区集合中的每个小区的下行BWP中发送第一信号。
作为该实施例的一个子实施例,所述第一小区集合包括L1个小区,所述L1是正整数,所述L1个小区分别包括L1个下行BWP,所述第二节点在所述L1个下行BWP中发送L1个子信号,所述L1个子信号组成所述第一信号。
作为该子实施例的附属实施例,所述L1是正整数。
作为该子实施例的附属实施例,所述L1等于1。
作为该子实施例的附属实施例,所述L1大于1。
作为该子实施例的附属实施例,所述L1个下行BWP包括所述第一BWP。
作为该实施例的一个子实施例,所述第一小区集合包括L1个小区,所述L1是正整数,所述L1个小区中的任一小区仅包括一个激活的下行BWP,所述第一节点仅在所述L1个小区所包括的激活的下行BWP中
发送所述第一信号。
作为该实施例的一个子实施例,所述第一信号所占用的物理层信道包括PDSCH。
作为该实施例的一个子实施例,所述第一信号所对应的传输信道包括DL-SCH。
作为该实施例的一个子实施例,所述第一信号所占用的物理层信道包括L1个PDSCH,所述L1个PDSCH分别在所述第一小区集合所包括的L1个小区中被传输。
实施例6
实施例6示例了根据本申请的另一实施例的传输的流程图,如附图6所示。在附图6中,第一节点U3和第二节点N4分别是通过空中接口传输的两个通信节点。
对于第一节点U3,在步骤S30中接收第一信令;在步骤S31中作为接收所述第一信令的响应,在所述第一小区集合中的每个小区的上行BWP中发送第一信号。
对于第二节点N4,在步骤S40中发送第一信令;在步骤S41中作为发送所述第一信令的响应,在所述第一小区集合中的每个小区的上行BWP中接收第一信号。
在实施例6中,所述第一信令包括第一域,所述第一信令调度第一小区集合,且所述第一信令的所述第一域被用于指示第一小区中的第一BWP;所述BWP对于所述第一小区是所述第一BWP;所述第一小区集合的候选包括多个小区集合,所述多个小区集合中的至少一个小区集合包括多个小区,所述第一小区是所述第一小区集合中的一个小区。
作为一个实施例,所述第一节点U3是本申请中的所述第一节点。
作为一个实施例,所述第二节点N4是本申请中的所述第二节点。
作为一个实施例,所述第二节点N4和所述第一节点U3之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点N4和所述第一节点U3之间的空中接口包括中继节点设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点N4和所述第一节点U3之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点N4是所述第一节点U3的服务小区维持基站。
作为一个实施例,所述第一信令被所述第一节点U3用于调度第一信号。
作为一个实施例,所述第一节点在所述第一小区集合中的每个小区的上行BWP中发送第一信号。
作为该实施例的一个子实施例,所述第一小区集合包括L1个小区,所述L1是正整数,所述L1个小区分别包括L1个上行BWP,所述第一节点在所述L1个上行BWP中发送L1个子信号,所述L1个子信号组成所述第一信号。
作为该子实施例的附属实施例,所述L1是正整数。
作为该子实施例的附属实施例,所述L1等于1。
作为该子实施例的附属实施例,所述L1大于1。
作为该子实施例的附属实施例,所述L1个上行BWP包括所述第一BWP。
作为该实施例的一个子实施例,所述第一小区集合包括L1个小区,所述L1是正整数,所述L1个小区中的任一小区仅包括一个激活的上行BWP,所述第一节点仅在所述L1个小区所包括的激活的上行BWP中发送所述第一信号。
作为一个实施例,所述第一信号所占用的物理层信道包括PUSCH。
作为一个实施例,所述第一信号所对应的传输信道包括UL-SCH。
作为一个实施例,所述第一信号所占用的物理层信道包括L1个PUSCH,所述L1个PUSCH分别在所述第一小区集合所包括的L1个小区中被传输。
作为一个实施例,所述第二节点在所述第一小区集合中的每个小区的上行BWP中接收第一信号。
作为该实施例的一个子实施例,所述第一小区集合包括L1个小区,所述L1是正整数,所述L1个小区分别包括L1个上行BWP,所述第二节点在所述L1个上行BWP中接收L1个子信号,所述L1个子信号组成所述第一信号。
作为该子实施例的附属实施例,所述L1是正整数。
作为该子实施例的附属实施例,所述L1等于1。
作为该子实施例的附属实施例,所述L1大于1。
作为该子实施例的附属实施例,所述L1个上行BWP包括所述第一BWP。
作为该实施例的一个子实施例,所述第一小区集合包括L1个小区,所述L1是正整数,所述L1个小区中的任一小区仅包括一个激活的上行BWP,所述第一节点仅在所述L1个小区所包括的激活的上行BWP中接收所述第一信号。
作为一个实施例,所述第一信号所占用的物理层信道包括PUSCH。
作为一个实施例,所述第一信号所对应的传输信道包括UL-SCH。
作为一个实施例,所述第一信号所占用的物理层信道包括L1个PUSCH,所述L1个PUSCH分别在所述第一小区集合所包括的L1个小区中被传输。
实施例7
实施例7示例了根据本申请的一个实施例的第一域的比特数量依赖目标小区集合中的BWP数量的示意图;如附图7所示。
在实施例7中,所述第一信令的所述第一域由K1个信息比特组成;所述操作是接收且所述K1依赖目标小区集合中的下行BWP的数量,或者,所述操作是发送且所述K1依赖目标小区集合中的上行BWP的数量;所述目标小区集合是所述多个小区集合中的之一。
作为一个实施例,所述K1是实数。
作为一个实施例,所述K1是非负数。
作为一个实施例,所述K1是正整数。
作为一个实施例,所述K1等于1。
作为一个实施例,所述K1大于1。
作为一个实施例,所述目标小区集合包括一个小区。
作为一个实施例,所述目标小区集合包括至少一个小区。
作为一个实施例,所述目标小区集合包括多个小区。
作为一个实施例,所述目标小区集合仅包括所述第一小区。
作为一个实施例,所述目标小区集合包括所述第一小区之外的至少一个小区。
作为一个实施例,所述目标小区集合中的下行BWP的数量的意思包括:所述目标小区集合所包括的所有小区一共包括的下行BWP的数量。
作为一个实施例,所述目标小区集合中的上行BWP的数量的意思包括:所述目标小区集合所包括的所有小区一共包括的上行BWP的数量。
作为一个实施例,所述操作是接收,所述K1随所述目标小区集合中的下行BWP的数量的增加而变大;或者,所述K1随所述目标小区集合中的下行BWP的数量的减少而变小。
作为一个实施例,所述操作是接收,所述目标小区集合中的下行BWP的数量等于所述K1等于
作为一个实施例,所述操作是发送,所述目标小区集合中的上行BWP的数量等于所述K1等于
作为一个实施例,所述操作是接收,所述目标小区集合中的下行BWP的数量等于所述K1等于
作为一个实施例,所述操作是发送,所述目标小区集合中的上行BWP的数量等于所述K1等于
实施例8
实施例8示例了根据本申请的一个实施例的目标小区集合是包括的BWP数量最多的小区集合的示意图;如附图8所示。
在实施例8中,所述操作是接收且所述目标小区集合是所述多个小区集合中包括的下行BWP数量最多的小区集合,或者,所述操作是发送且所述目标小区集合是所述多个小区集合中包括的上行BWP数量最多的小区集合。
作为一个实施例,所述多个小区集合中每个小区集合包括的下行BWP数量不同。
作为一个实施例,所述多个小区集合存在两个小区集合包括的下行BWP数量相同。
作为一个实施例,所述多个小区集合存在多个小区集合包括的下行BWP数量相同。
作为一个实施例,所述操作是接收且所述目标小区集合是所述多个小区集合中包括的下行BWP数量最多的小区集合。
作为该实施例的一个子实施例,所述多个小区集合中仅包括一个小区集合的下行BWP数量最多。
作为该实施例的一个子实施例,所述多个小区集合中包括两个小区集合的下行BWP数量最多,所述目标小区集合是所述多个小区集合中包括的下行BWP数量最多的两个小区集合之一。
作为该实施例的一个子实施例,所述多个小区集合中包括多个小区集合的下行BWP数量最多,所述目标小区集合是所述多个小区集合中包括的下行BWP数量最多的多个小区集合中的之一。
作为一个实施例,所述多个小区集合中每个小区集合包括的上行BWP数量不同。
作为一个实施例,所述多个小区集合中有两个小区集合包括的上行BWP数量相同。
作为一个实施例,所述多个小区集合中有多个小区集合包括的上行BWP数量相同。
作为一个实施例,所述操作是发送且所述目标小区集合是所述多个小区集合中包括的上行BWP数量最多的小区集合。
作为该实施例的一个子实施例,所述多个小区集合中仅包括一个小区集合的上行BWP数量最多。
作为该实施例的一个子实施例,所述多个小区集合中包括两个小区集合的上行BWP数量最多,所述目标小区集合是所述多个小区集合中包括的上行BWP数量最多的两个小区集合之一。
作为该实施例的一个子实施例,所述多个小区集合中包括多个小区集合的上行BWP数量最多,所述目标小区集合是所述多个小区集合中包括的上行BWP数量最多的多个小区集合中的之一。
实施例9
实施例9示例了根据本申请的一个实施例的第一域的值依赖第一小区的索引和第一BWP的BWP-Id的示意图;如附图9所示。
在实施例9中,所述第一信令的所述第一域的值依赖所述第一小区的索引和所述第一BWP的BWP-Id。
作为一个实施例,所述第一BWP的BWP-Id被高层信令配置。
作为一个实施例,所述第一BWP的BWP-Id被RRC信令配置。
作为一个实施例,所述第一BWP的BWP-Id被ServingCellConfigCommon IE(Information Element,信息单元)配置。
作为一个实施例,所述第一BWP是上行BWP且所述第一BWP的BWP-Id被ServingCellConfigCommon IE中的BWP-UplinkCommon配置。
作为一个实施例,所述第一BWP是上行BWP且所述第一BWP的BWP-Id被ServingCellConfig IE中的BWP-UplinkDedicated配置。
作为一个实施例,所述第一BWP是上行BWP且所述第一BWP的BWP-Id被ServingCellConfig IE中的BWP-Uplink配置。
作为一个实施例,所述第一BWP是下行BWP且所述第一BWP的BWP-Id被ServingCellConfigCommon IE中的BWP-DownlinkCommon配置。
作为一个实施例,所述第一BWP是下行BWP且所述第一BWP的BWP-Id被ServingCellConfig IE中的BWP-DownlinkDedicated配置。
作为一个实施例,所述第一BWP是下行BWP且所述第一BWP的BWP-Id被ServingCellConfig IE中的BWP-Downlink配置。
作为一个实施例,所述第一BWP的BWP-Id是非负整数。
作为一个实施例,所述第一BWP的BWP-Id是不大于4的非负整数。
作为一个实施例,所述第一BWP的BWP-Id的取值为0,1,2,3,或者4。
作为一个实施例,当所述第一小区的所述索引保持不变时,所述第一域的值随所述第一BWP的BWP-Id的增大而增大。
作为一个实施例,当所述第一小区的所述索引保持不变时,所述第一域的值随所述第一BWP的BWP-Id的减小而减小。
作为一个实施例,当所述第一BWP的BWP-Id保持不变时,所述第一域的值随所述第一小区的所述索引的增大而增大。
作为一个实施例,当所述第一BWP的BWP-Id保持不变时,所述第一域的值随所述第一小区的所述索引的减小而减小。
作为一个实施例,所述第一域的值与所述第一小区的所述索引线性相关。
作为一个实施例,所述第一域的值与所述第一BWP的BWP-Id线性相关。
作为一个实施例,所述第一小区的索引被高层信令配置。
作为一个实施例,所述第一小区的索引被RRC信令配置。
作为一个实施例,所述第一小区的索引被IE SCellConfig配置。
作为一个实施例,所述第一小区的索引被IE ServCellIndex配置。
作为一个实施例,所述第一小区的索引是所述第一小区的ServCellIndex。
作为一个实施例,所述第一小区的索引是所述第一小区的SCellIndex。
作为一个实施例,所述第一小区的索引是所述第一小区的servCellId。
作为一个实施例,所述第一小区的索引是所述第一小区的ServCellIdentity。
作为一个实施例,所述操作是接收,所述第一域的值等于i,j表示所述第一BWP的BWP-Id,P表示所述第一小区集合中小区索引小于所述第一小区的所述索引的小区所包括的下行BWP数,所述i等于(P+j)。
作为一个实施例,所述操作是接收,所述第一域的值等于i,j表示所述第一BWP的BWP-Id,P表示所述第一小区集合中小区索引小于所述第一小区的所述索引的小区所包括的下行BWP数,所述i等于(P+j-1)。
作为一个实施例,所述操作是发送,所述第一域的值等于i,j表示所述第一BWP的BWP-Id,P表示所述第一小区集合中小区索引小于所述第一小区的所述索引的小区所包括的上行BWP数,所述i等于(P+j)。
作为一个实施例,所述操作是发送,所述第一域的值等于i,j表示所述第一BWP的BWP-Id,P表示所述第一小区集合中小区索引小于所述第一小区的所述索引的小区所包括的上行BWP数,所述i等于(P+j-1)。
实施例10
实施例10示例了根据本申请的一个实施例的第一域被用于确定第一BWP所对应的索引的示意图;如附图10所示。
在附图10中,所述Q1个BWP分别被表示为BWP#0,...,BWP#(Q1-1);所述Q1个索引分别被表示为索引#0,...,索引#(Q1-1)。
在实施例10中,所述操作是接收,所述第一小区集合的所有小区共包括Q1个下行BWP,所述Q1是大于1的正整数,所述Q1个BWP分别对应Q1个索引,所述第一信令的所述第一域被用于从所述Q1个索引中确定所述第一BWP所对应的索引;或者,所述操作是发送,所述第一小区集合的所有小区共包括Q1个上行BWP,所述Q1是大于1的正整数,所述Q1个BWP分别对应Q1个索引,所述第一信令的所述第一域被用于从所述Q1个索引中确定所述第一BWP所对应的索引。
作为一个实施例,所述Q1个索引分别是0,1,…,Q1-1。
作为一个实施例,所述Q1个索引分别是1,2,…,Q1。
作为一个实施例,所述第一信令的所述第一域被用于从所述Q1个索引中指示所述第一BWP所对应的索引。
实施例11
实施例11示例了根据本申请的一个实施例的第一数值与第一索引的关系与初始BWP有关的示意图;如附图11所示。
在实施例11中,所述第一信令的所述第一域的值等于第一数值,所述第一BWP所对应的所述索引等于第一索引;所述操作是接收且所述第一数值与所述第一索引的关系与所述Q1个下行BWP中是否包括初始下行BWP有关,或者所述操作是发送且所述第一数值与所述第一索引的关系与所述Q1个上行BWP中是否包括初始上行BWP有关。
作为一个实施例,所述第一数值是非负数。
作为一个实施例,所述第一数值是不大于Q1的非负整数。
作为一个实施例,所述第一索引是非负数。
作为一个实施例,所述第一索引是不大于Q1的非负整数。
作为一个实施例,所述Q1个下行BWP中不包括初始下行BWP。
作为一个实施例,所述Q1个下行BWP中仅包括一个初始下行BWP。
典型的,所述Q1个下行BWP中包括初始下行BWP且所述第一数值等于所述第一索引;或者所述Q1个下行BWP中不包括初始下行BWP且所述第一数值等于所述第一索引减1。
典型的,当所述Q1个下行BWP中包括初始下行BWP时,所述Q1个BWP中仅包括一个初始下行BWP,且所述初始下行BWP所对应的索引等于0。
作为一个实施例,所述Q1个上行BWP中不包括初始上行BWP。
作为一个实施例,所述Q1个上行BWP中仅包括一个初始上行BWP。
典型的,所述Q1个上行BWP中包括初始上行BWP且所述第一数值等于所述第一索引;或者所述Q1个上行BWP中不包括初始上行BWP且所述第一数值等于所述第一索引减1。
典型的,当所述Q1个上行BWP中包括初始上行BWP时,所述Q1个上行BWP中仅包括一个初始上行BWP,且所述初始上行BWP所对应的索引等于0。
作为一个实施例,所述Q1个上行BWP中包括多个初始上行BWP。
作为一个实施例,所述Q1个上行BWP中包括n个初始上行BWP且所述第一BWP是所述n个初始上行BWP的其中之一。
作为该实施例的一个子实施例,所述第一数值是不大于n的非负整数,所述第一数值等于所述第一索引。
作为该实施例的一个子实施例,所述第一数值是小于n的非负整数,所述第一数值等于所述第一索引减1。
作为一个实施例,所述Q1个上行BWP中包括n个初始上行BWP且所述第一BWP不是所述n个初始上行BWP的其中之一。
作为该实施例的一个子实施例,所述第一数值是大于等于n的非负整数,所述第一数值等于所述第一索引减(n-1)。
作为该实施例的一个子实施例,所述第一数值是大于n的非负整数,所述第一数值等于所述第一索引减n。
作为一个实施例,所述Q1个下行BWP中包括多个初始下行BWP。
作为一个实施例,所述Q1个下行BWP中包括n个初始下行BWP且所述第一BWP是所述n个初始下行BWP的其中之一。
作为该实施例的一个子实施例,所述第一数值是不大于n的非负整数,所述第一数值等于所述第一索引。
作为该实施例的一个子实施例,所述第一数值是小于n的非负整数,所述第一数值等于所述第一索引减1。
作为一个实施例,所述Q1个下行BWP中包括n个初始下行BWP且所述第一BWP不是所述n个初始下行BWP的其中之一。
作为该实施例的一个子实施例,所述第一数值是大于等于n的非负整数,所述第一数值等于所述第一
索引减(n-1)。
作为该实施例的一个子实施例,所述第一数值是大于n的非负整数,所述第一数值等于所述第一索引减n。
实施例12
实施例12示例了根据本申请的一个实施例的Q1个BWP映射到Q1个索引的示意图;如附图12所示。
在附图12中,所述第一小区集合包括L1个小区,所述L1等于4,所述L1个小区分别被表示为CC#0,...,CC#3;所述第一小区集合包括的BWP是上行BWP或者下行BWP;所述小区CC#0包括3个BWP且分别被表示为CC0-BWP0,CC0-BWP1,CC0-BWP2;所述小区CC#1包括2个BWP且分别被表示为CC1-BWP0,CC1-BWP1;所述小区CC#2包括2个BWP且分别被表示为CC2-BWP0,CC2-BWP1;所述小区CC#3包括1个BWP且被表示为CC3-BWP0;所述Q1个索引分别被表示为索引#0,...,索引#(Q1-1)。
在实施例12中,所述Q1个下行BWP按照BWP-Id第一,小区索引第二的方式被依次映射到所述Q1个索引;或者,所述Q1个上行BWP按照BWP-Id第一,小区索引第二的方式被依次映射到所述Q1个索引。
作为一个实施例,所述Q1等于8。
作为一个实施例,所述第一小区集合包括的BWP是上行BWP或者下行BWP。
作为一个实施例,所述Q1个下行BWP中属于同一个小区的下行BWP按照对应的BWP-Id被依次映射到对应数量的索引中。
作为该实施例的一个子实施例,所述Q1个下行BWP中属于同一个小区的下行BWP按照对应的BWP-Id升序被依次映射到对应数量的索引中。
作为该实施例的一个子实施例,所述Q1个下行BWP中属于同一个小区的下行BWP按照对应的BWP-Id降序被依次映射到对应数量的索引中。
作为一个实施例,所述Q1个下行BWP中属于同一个小区的下行BWP所对应的索引是连续的。
作为一个实施例,所述Q1个下行BWP中对应同一个BWP-Id的BWP所对应的索引是不连续的。
作为一个实施例,所述Q1个上行BWP中属于同一个小区的上行BWP按照对应的BWP-Id被依次映射到对应数量的索引中。
作为该实施例的一个子实施例,所述Q1个上行BWP中属于同一个小区的上行BWP按照对应的BWP-Id升序被依次映射到对应数量的索引中。
作为该实施例的一个子实施例,所述Q1个上行BWP中属于同一个小区的上行BWP按照对应的BWP-Id降序被依次映射到对应数量的索引中。
作为一个实施例,所述Q1个上行BWP中属于同一个小区的上行BWP所对应的索引是连续的。
作为一个实施例,所述Q1个上行BWP中对应同一个BWP-Id的BWP所对应的索引是不连续的。
典型的,所述第一信令是物理层动态信令,所述第一信令的所述第一域是BWP指示域,且所述第一信令仅包括一个BWP指示域。
实施例13
实施例13示例了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;如附图13所示。在附图13中,第一节点设备中的处理装置1300包括第一接收机1301和第一收发机1302。
作为一个实施例,所述第一节点设备是用户设备。
作为一个实施例,所述第一节点设备是中继节点设备。
作为一个实施例,所述第一接收机1301包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一收发机1302包括实施例4中的{天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一。
第一接收机1301,接收第一信令;
第一收发机1302,作为接收所述第一信令的响应,在所述第一小区集合中的每个小区的BWP中操作第一信号;
在实施例13中,所述第一信令包括第一域,所述第一信令调度第一小区集合,且所述第一信令的所述第一域被用于指示第一小区中的第一BWP;所述BWP对于所述第一小区是所述第一BWP;所述第一小区集合的候选包括多个小区集合,所述多个小区集合中的至少一个小区集合包括多个小区,所述第一小区是所述第一小区集合中的一个小区;所述操作是接收且所述第一BWP是下行BWP,或者所述操作是发送且所述第一BWP是上行BWP。
作为一个实施例,所述第一信令的所述第一域由K1个信息比特组成;所述操作是接收且所述K1依赖目标小区集合中的下行BWP的数量,或者,所述操作是发送且所述K1依赖目标小区集合中的上行BWP的数量;所述目标小区集合是所述多个小区集合中的之一。
作为一个实施例,所述操作是接收且所述目标小区集合是所述多个小区集合中包括的下行BWP数量最多的小区集合,或者,所述操作是发送且所述目标小区集合是所述多个小区集合中包括的上行BWP数量最多的小区集合。
作为一个实施例,所述第一信令的所述第一域的值依赖所述第一小区的索引和所述第一BWP的BWP-Id。
作为一个实施例,所述操作是接收,所述第一小区集合的所有小区共包括Q1个下行BWP,所述Q1是大于1的正整数,所述Q1个BWP分别对应Q1个索引,所述第一信令的所述第一域被用于从所述Q1个索引中确定所述第一BWP所对应的索引;或者,所述操作是发送,所述第一小区集合的所有小区共包括Q1个上行BWP,所述Q1是大于1的正整数,所述Q1个BWP分别对应Q1个索引,所述第一信令的所述第一域被用于从所述Q1个索引中确定所述第一BWP所对应的索引。
作为一个实施例,所述第一信令的所述第一域的值等于第一数值,所述第一BWP所对应的所述索引等于第一索引;所述操作是接收且所述第一数值与所述第一索引的关系与所述Q1个下行BWP中是否包括初始下行BWP有关,或者所述操作是发送且所述第一数值与所述第一索引的关系与所述Q1个上行BWP中是否包括初始上行BWP有关。
作为一个实施例,所述Q1个下行BWP按照BWP-Id第一,小区索引第二的方式被依次映射到所述Q1个索引;或者,所述Q1个上行BWP按照BWP-Id第一,小区索引第二的方式被依次映射到所述Q1个索引。
实施例14
实施例14示例了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图;如附图14所示。在附图14中,第二节点设备中的处理装置1400包括第二发射机1401和第二收发机1402。
作为一个实施例,所述第二节点设备是基站备。
作为一个实施例,所述第二节点设备是用户设备。
作为一个实施例,所述第二节点设备是中继节点设备。
作为一个实施例,所述第二发射机1401包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二收发机1402包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
第二发射机1401,发送第一信令;
第二收发机1402,作为发送所述第一信令的响应,在所述第一小区集合中的每个小区的BWP中执行第一信号;
在实施例14中,所述第一信令包括第一域,所述第一信令调度第一小区集合,且所述第一信令的所述第一域被用于指示第一小区中的第一BWP;所述BWP对于所述第一小区是所述第一BWP;所述第一小区集合的候选包括多个小区集合,所述多个小区集合中的至少一个小区集合包括多个小区,所述第一小区是所述第一小区集合中的一个小区;所述执行是发送且所述第一BWP是下行BWP,或者所述执行是接收且所述第一BWP是上行BWP。
作为一个实施例,所述第一信令的所述第一域由K1个信息比特组成;所述执行是接收且所述K1依赖目标小区集合中的上行BWP的数量,或者,所述执行是发送且所述K1依赖目标小区集合中的下行BWP的数量;所述目标小区集合是所述多个小区集合中的之一。
作为一个实施例,所述执行是接收且所述目标小区集合是所述多个小区集合中包括的上行BWP数量最
多的小区集合,或者,所述执行是发送且所述目标小区集合是所述多个小区集合中包括的下行BWP数量最多的小区集合。
作为一个实施例,所述第一信令的所述第一域的值依赖所述第一小区的索引和所述第一BWP的BWP-Id。
作为一个实施例,所述执行是接收,所述第一小区集合的所有小区共包括Q1个上行BWP,所述Q1是大于1的正整数,所述Q1个BWP分别对应Q1个索引,所述第一信令的所述第一域被用于从所述Q1个索引中确定所述第一BWP所对应的索引;或者,所述执行是发送,所述第一小区集合的所有小区共包括Q1个下行BWP,所述Q1是大于1的正整数,所述Q1个BWP分别对应Q1个索引,所述第一信令的所述第一域被用于从所述Q1个索引中确定所述第一BWP所对应的索引。
作为一个实施例,所述第一信令的所述第一域的值等于第一数值,所述第一BWP所对应的所述索引等于第一索引;所述执行是接收且所述第一数值与所述第一索引的关系与所述Q1个上行BWP中是否包括初始上行BWP有关,或者所述执行是发送且所述第一数值与所述第一索引的关系与所述Q1个下行BWP中是否包括初始下行BWP有关。
作为一个实施例,所述Q1个下行BWP按照BWP-Id第一,小区索引第二的方式被依次映射到所述Q1个索引;或者,所述Q1个上行BWP按照BWP-Id第一,小区索引第二的方式被依次映射到所述Q1个索引。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。基于说明书中所描述的实施例所做出的任何变化和修改,如果能获得类似的部分或者全部技术效果,应当被视为显而易见并属于本发明的保护范围。
Claims (10)
- 一种被用于无线通信的第一节点,其特征在于,包括:第一接收机,接收第一信令,所述第一信令包括第一域,所述第一信令调度第一小区集合,且所述第一信令的所述第一域被用于指示第一小区中的第一BWP;第一收发机,作为接收所述第一信令的响应,在所述第一小区集合中的每个小区的BWP中操作第一信号,所述BWP对于所述第一小区是所述第一BWP;其中,所述第一小区集合的候选包括多个小区集合,所述多个小区集合中的至少一个小区集合包括多个小区,所述第一小区是所述第一小区集合中的一个小区;所述操作是接收且所述第一BWP是下行BWP,或者所述操作是发送且所述第一BWP是上行BWP。
- 根据权利要求1所述的第一节点,其特征在于,所述第一信令的所述第一域由K1个信息比特组成;所述操作是接收且所述K1依赖目标小区集合中的下行BWP的数量,或者,所述操作是发送且所述K1依赖目标小区集合中的上行BWP的数量;所述目标小区集合是所述多个小区集合中的之一。
- 根据权利要求2所述的第一节点,其特征在于,所述操作是接收且所述目标小区集合是所述多个小区集合中包括的下行BWP数量最多的小区集合,或者,所述操作是发送且所述目标小区集合是所述多个小区集合中包括的上行BWP数量最多的小区集合。
- 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,所述第一信令的所述第一域的值依赖所述第一小区的索引和所述第一BWP的BWP-Id。
- 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,所述操作是接收,所述第一小区集合的所有小区共包括Q1个下行BWP,所述Q1是大于1的正整数,所述Q1个BWP分别对应Q1个索引,所述第一信令的所述第一域被用于从所述Q1个索引中确定所述第一BWP所对应的索引;或者,所述操作是发送,所述第一小区集合的所有小区共包括Q1个上行BWP,所述Q1是大于1的正整数,所述Q1个BWP分别对应Q1个索引,所述第一信令的所述第一域被用于从所述Q1个索引中确定所述第一BWP所对应的索引。
- 根据权利要求5所述的第一节点,其特征在于,所述第一信令的所述第一域的值等于第一数值,所述第一BWP所对应的所述索引等于第一索引;所述操作是接收且所述第一数值与所述第一索引的关系与所述Q1个下行BWP中是否包括初始下行BWP有关,或者所述操作是发送且所述第一数值与所述第一索引的关系与所述Q1个上行BWP中是否包括初始上行BWP有关。
- 根据权利要求5或6所述的第一节点,其特征在于,所述Q1个下行BWP按照BWP-Id第一,小区索引第二的方式被依次映射到所述Q1个索引;或者,所述Q1个上行BWP按照BWP-Id第一,小区索引第二的方式被依次映射到所述Q1个索引。
- 一种被用于无线通信的第二节点,其特征在于,包括:第二发射机,发送第一信令,所述第一信令包括第一域,所述第一信令调度第一小区集合,且所述第一信令的所述第一域被用于指示第一小区中的第一BWP;第二收发机,作为发送所述第一信令的响应,在所述第一小区集合中的每个小区的BWP中执行第一信号,所述BWP对于所述第一小区是所述第一BWP;其中,所述第一小区集合的候选包括多个小区集合,所述多个小区集合中的至少一个小区集合包括多个小区,所述第一小区是所述第一小区集合中的一个小区;所述执行是发送且所述第一BWP是下行BWP,或者所述执行是接收且所述第一BWP是上行BWP。
- 一种被用于无线通信的第一节点中的方法,其特征在于,包括:接收第一信令,所述第一信令包括第一域,所述第一信令调度第一小区集合,且所述第一信令的所述第一域被用于指示第一小区中的第一BWP;作为接收所述第一信令的响应,在所述第一小区集合中的每个小区的BWP中操作第一信号,所述BWP对于所述第一小区是所述第一BWP;其中,所述第一小区集合的候选包括多个小区集合,所述多个小区集合中的至少一个小区集合包括多个小区,所述第一小区是所述第一小区集合中的一个小区;所述操作是接收且所述第一BWP是下行BWP,或者所述操作是发送且所述第一BWP是上行BWP。
- 一种被用于无线通信的第二节点中的方法,其特征在于,包括:发送第一信令,所述第一信令包括第一域,所述第一信令调度第一小区集合,且所述第一信令的所述第一域被用于指示第一小区中的第一BWP;作为发送所述第一信令的响应,在所述第一小区集合中的每个小区的BWP中执行第一信号,所述BWP对于所述第一小区是所述第一BWP;其中,所述第一小区集合的候选包括多个小区集合,所述多个小区集合中的至少一个小区集合包括多个小区,所述第一小区是所述第一小区集合中的一个小区;所述执行是发送且所述第一BWP是下行BWP,或者所述执行是接收且所述第一BWP是上行BWP。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211147703.8A CN117792589A (zh) | 2022-09-19 | 2022-09-19 | 用于无线通信的方法和装置 |
CN202211147703.8 | 2022-09-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024061231A1 true WO2024061231A1 (zh) | 2024-03-28 |
Family
ID=90396805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/119783 WO2024061231A1 (zh) | 2022-09-19 | 2023-09-19 | 用于无线通信的方法和装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117792589A (zh) |
WO (1) | WO2024061231A1 (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105991269A (zh) * | 2015-02-11 | 2016-10-05 | 上海朗帛通信技术有限公司 | 一种增强的ca中的pdcch方法和装置 |
CN113498181A (zh) * | 2020-04-03 | 2021-10-12 | 上海朗帛通信技术有限公司 | 一种用于无线通信的节点中的方法和装置 |
-
2022
- 2022-09-19 CN CN202211147703.8A patent/CN117792589A/zh active Pending
-
2023
- 2023-09-19 WO PCT/CN2023/119783 patent/WO2024061231A1/zh unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105991269A (zh) * | 2015-02-11 | 2016-10-05 | 上海朗帛通信技术有限公司 | 一种增强的ca中的pdcch方法和装置 |
CN113498181A (zh) * | 2020-04-03 | 2021-10-12 | 上海朗帛通信技术有限公司 | 一种用于无线通信的节点中的方法和装置 |
Non-Patent Citations (1)
Title |
---|
ZTE: "Discussion on Multi-cell PUSCH/PDSCH scheduling with a single DCI", 3GPP TSG RAN WG1 MEETING #110, R1-2205962, 12 August 2022 (2022-08-12), XP052273895 * |
Also Published As
Publication number | Publication date |
---|---|
CN117792589A (zh) | 2024-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019174530A1 (zh) | 一种被用于无线通信的用户设备、基站中的方法和装置 | |
WO2021204156A1 (zh) | 一种被用于无线通信的节点中的方法和装置 | |
WO2018166188A1 (zh) | 一种被用于无线通信的用户、基站中的方法和装置 | |
WO2020088212A1 (zh) | 一种被用于无线通信的用户设备、基站中的方法和装置 | |
WO2020168907A1 (zh) | 一种被用于无线通信的用户设备、基站中的方法和装置 | |
WO2021023038A1 (zh) | 一种被用于无线通信的节点中的方法和装置 | |
WO2021023037A1 (zh) | 一种被用于无线通信的节点中的方法和装置 | |
WO2020034847A1 (zh) | 一种被用于无线通信的用户设备、基站中的方法和装置 | |
WO2023024964A1 (zh) | 一种被用于无线通信的节点中的方法和装置 | |
WO2022257866A1 (zh) | 一种被用于无线通信的节点中的方法和装置 | |
WO2022193644A1 (zh) | 一种被用于无线通信的节点中的方法和装置 | |
WO2021129251A1 (zh) | 一种被用于无线通信的节点中的方法和装置 | |
WO2024061231A1 (zh) | 用于无线通信的方法和装置 | |
WO2024051624A1 (zh) | 一种被用于无线通信的节点中的方法和装置 | |
WO2024022342A1 (zh) | 一种被用于无线通信的节点中的方法和装置 | |
WO2023193741A1 (zh) | 一种被用于无线通信的节点中的方法和装置 | |
WO2023174375A1 (zh) | 一种被用于无线通信的节点中的方法和装置 | |
WO2024055916A1 (zh) | 一种被用于无线通信的节点中的方法和装置 | |
WO2024032479A1 (zh) | 一种被用于无线通信的节点中的方法和装置 | |
WO2023185521A1 (zh) | 一种被用于无线通信的节点中的方法和装置 | |
WO2022237709A1 (zh) | 一种被用于无线通信的节点中的方法和装置 | |
WO2023186163A1 (zh) | 一种被用于无线通信的节点中的方法和装置 | |
WO2021088617A1 (zh) | 一种被用于无线通信的节点中的方法和装置 | |
WO2023202378A1 (zh) | 一种被用于无线通信的节点中的方法和装置 | |
WO2023202414A1 (zh) | 用于无线通信的方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23867518 Country of ref document: EP Kind code of ref document: A1 |