WO2024061341A1 - 被用于无线通信的节点中的方法和装置 - Google Patents

被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2024061341A1
WO2024061341A1 PCT/CN2023/120645 CN2023120645W WO2024061341A1 WO 2024061341 A1 WO2024061341 A1 WO 2024061341A1 CN 2023120645 W CN2023120645 W CN 2023120645W WO 2024061341 A1 WO2024061341 A1 WO 2024061341A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
dci
state
configuration
type
Prior art date
Application number
PCT/CN2023/120645
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024061341A1 publication Critical patent/WO2024061341A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • This application relates to transmission methods and devices in wireless communication systems, and in particular to BWP (Bandwidth Part, bandwidth part) solutions and devices.
  • BWP Bandwidth Part, bandwidth part
  • DCI size alignment size alignment
  • BWP is proposed to achieve more flexible spectrum utilization.
  • a serving cell has only one active uplink BWP and/or one active downlink BWP at a given moment.
  • the DCI size usually depends on the parameter configuration of the active BWP; during the BWP dynamic switching process, the indicated BWP and the active BWP may cause a mismatch in the DCI size.
  • the inventor found through research that when the DCI format of one DCI can schedule multiple cells or BWPs, the above problems will be further aggravated, so a new solution is needed.
  • the present application discloses a solution. It should be noted that, although the original intention of the present application is to explain the scenario of a DCI scheduling multiple cells or BWP, the present application can also be used in a transmission scenario of a DCI scheduling a single cell. Furthermore, adopting a unified design scheme for different scenarios (including but not limited to a DCI scheduling multiple cells and a DCI scheduling a single cell) also helps to reduce hardware complexity and cost. In the absence of conflict, the embodiments of any node of the present application and the features in the embodiments can be applied to any other node. In the absence of conflict, the embodiments of the present application and the features in the embodiments can be arbitrarily combined with each other.
  • the present application discloses a method in a first node for wireless communication, which includes:
  • the operation is receiving, or the operation is sending;
  • the candidate state of the first configuration includes a first state and a second state; compared with the traditional DCI format configured with the first state,
  • the traditional DCI format in the second state additionally indicates the first type of information;
  • the traditional DCI format only indicates one BWP, and the DCI format of the first DCI indicates at most multiple BWPs;
  • the first BWP is in On the first serving cell, the first configuration of the active BWP on the first serving cell is the first state;
  • the first configuration applied to the first BWP is the second state, and the first Whether the DCI includes the first type of information for the first BWP depends on the first message set.
  • the above method compared with the first DCI not including the first type of information for the first BWP, the above method fully utilizes bits in the first DCI and improves scheduling flexibility.
  • the above method is as compatible as possible with the configuration of the first BWP
  • the above method relies on the first message set to determine whether the first DCI includes the first type of information for the first BWP, thereby improving configuration flexibility.
  • the above method is characterized in that the first configuration of each BWP in Q1 BWPs depends on the first message set, and the Q1 is a positive integer greater than 1; At least one BWP among the Q1 BWPs does not belong to the at least first BWP.
  • the above method is as compatible as possible with the configuration of the first BWP.
  • the above method avoids wasting bits in the first DCI and improves scheduling flexibility as much as possible.
  • the method is characterized in that, among the Q1 BWPs, only Q2 BWPs have the first configuration in the second state, and Q2 is a positive integer not greater than Q1; when the first configuration in at least the first BWP is When the number of BWPs in the second state does not exceed Q2, the first DCI includes the first type of information for the first BWP.
  • the above method avoids introducing a new DCI size and reduces the complexity of BD.
  • the above method is characterized in that whether the first DCI includes the first type of information for the first BWP depends on the BWP-Id (BWP identity) of the first BWP. and at least one of the cell identity of the first serving cell.
  • BWP identity BWP-Id
  • the above method implicitly determines the priority of the BWP based on the BWP-Id or cell identity, thereby reducing signaling overhead.
  • the above method is characterized in that if the first DCI includes the first type of information for the first BWP, it is used to indicate the third information for the first BWP.
  • the position of the bit field of a type of information in the first DCI depends on at least one of the BWP-Id of the first BWP and the cell identity of the first serving cell.
  • the above method ensures that the UE and the base station have the same understanding of the first DCI and reduces unnecessary redundant overhead.
  • the above method is characterized in that the operation is sending; the first configuration includes PTRS (Phase-tracking reference signal, phase tracking reference signal)-DMRS (Demodulation reference signal, demodulation Reference signal) association field appears, the first state includes that the PTRS-DMRS association field does not appear, the second state includes that the PTRS-DMRS association field appears, and the first type of information includes PTRS Association between ports and DMRS ports.
  • PTRS Phase-tracking reference signal, phase tracking reference signal
  • DMRS Demodulation reference signal, demodulation Reference signal
  • the first configuration is configured through parameters such as PTRS-UplinkConfig, whether transform precoder (transform precoder) is enabled, maxRank, etc.
  • parameters such as PTRS-UplinkConfig, whether transform precoder (transform precoder) is enabled, maxRank, etc.
  • the above method is characterized in that the first configuration is maxNrofCodeWordsScheduledByDCI, the first state is 1, the second state is 2, and the first type of information includes transmission blocks. 2's NDI (New Data Indicator, new data indication).
  • NDI New Data Indicator, new data indication
  • the above method is characterized in that the first configuration is TCI (Transmission configuration indication) appearing in DCI, and the first state is not enabled, or , disabled), the second state is enabled, and the first type of information includes TCI state (TCI-state).
  • TCI Transmission configuration indication
  • This application discloses a method used in a second node for wireless communication, which includes:
  • the execution is sending, or the execution is receiving;
  • the candidate state of the first configuration includes a first state and a second state; compared with the traditional DCI format configured with the first state, it is configured
  • the traditional DCI format in the second state additionally indicates the first type of information;
  • the traditional DCI format only indicates one BWP, and the DCI format of the first DCI indicates at most multiple BWPs;
  • the first BWP is in On the first serving cell, the first configuration of the active BWP on the first serving cell is the first state;
  • the first configuration applied to the first BWP is the second state, and the first Whether the DCI includes the first type of information for the first BWP depends on the first message set.
  • the above method is characterized in that the first configuration of each BWP in Q1 BWPs depends on the first message set, and the Q1 is a positive integer greater than 1; At least one BWP among the Q1 BWPs does not belong to the at least first BWP.
  • the above method is characterized in that the first configuration of only Q2 BWPs among the Q1 BWPs is the second state, and the Q2 is not larger than the A positive integer of Q1; when the number of BWPs in the at least first BWP whose first configuration is the second state does not exceed Q2, the first DCI includes the first BWP for the first BWP class information.
  • the above method is characterized in that whether the first DCI includes the first type of information for the first BWP depends on the BWP-Id of the first BWP and the third At least one of the two cell identities of a serving cell.
  • the above method is characterized in that if the first DCI includes the first type of information for the first BWP, it is used to indicate the third information for the first BWP.
  • the position of the bit field of a type of information in the first DCI depends on at least one of the BWP-Id of the first BWP and the cell identity of the first serving cell.
  • the method is characterized in that the execution is receiving; the first configuration includes Whether the PTRS-DMRS association domain appears, the first state includes that the PTRS-DMRS association domain does not appear, the second state includes that the PTRS-DMRS association domain appears, and the first type of information includes the association between the PTRS port and the DMRS port.
  • the above method is characterized in that the first configuration is maxNrofCodeWordsScheduledByDCI, the first state is 1, the second state is 2, and the first type of information includes transmission blocks 2 NDI.
  • the above method is characterized in that the first configuration is that TCI appears in DCI, the first state is disabled, the second state is enabled, and the first category of information includes TCI state.
  • This application discloses a first node for wireless communication, which includes:
  • a first receiver receiving a first message set and a first DCI; wherein the first configuration of each BWP in at least a first BWP depends on the first message set, and the first DCI indicates the at least first BWP ;
  • a first processor in response to receiving the first DCI, operating a wireless signal on the at least first BWP;
  • the operation is receiving, or the operation is sending;
  • the candidate state of the first configuration includes a first state and a second state; compared with the traditional DCI format configured with the first state,
  • the traditional DCI format in the second state additionally indicates the first type of information;
  • the traditional DCI format only indicates one BWP, and the DCI format of the first DCI indicates at most multiple BWPs;
  • the first BWP is in On the first serving cell, the first configuration of the active BWP on the first serving cell is the first state;
  • the first configuration applied to the first BWP is the second state, and the first Whether the DCI includes the first type of information for the first BWP depends on the first message set.
  • This application discloses a second node used for wireless communication, which includes:
  • a first transmitter sending a first message set and a first DCI; wherein the first configuration of each BWP in at least the first BWP depends on the first message set, and the first DCI indicates the at least first BWP ;
  • a second processor in response to sending the first DCI, performing wireless signaling on the at least first BWP;
  • the execution is sending, or the execution is receiving;
  • the candidate state of the first configuration includes a first state and a second state; compared with the traditional DCI format configured with the first state, it is configured
  • the traditional DCI format in the second state additionally indicates the first type of information;
  • the traditional DCI format only indicates one BWP, and the DCI format of the first DCI indicates at most multiple BWPs;
  • the first BWP is in On the first serving cell, the first configuration of the active BWP on the first serving cell is the first state;
  • the first configuration applied to the first BWP is the second state, and the first Whether the DCI includes the first type of information for the first BWP depends on the first message set.
  • Figure 1 shows a flow chart of a first message set, a first DCI and a wireless signal according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Figure 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a flow chart of wireless communication according to an embodiment of the present application
  • Figure 6 shows a schematic diagram of changing the active BWP according to an embodiment of the present application
  • Figure 7 shows a schematic diagram of BWP dynamic switching according to an embodiment of the present application.
  • Figure 8 shows a schematic diagram of Q2 bit fields according to an embodiment of the present application.
  • Figure 9 shows a schematic diagram of a first bit set according to an embodiment of the present application.
  • Figure 10 shows a structural block diagram of a processing device in a first node according to an embodiment of the present application
  • Figure 11 shows a structural block diagram of a processing device in the second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of the first message set, the first DCI and the wireless signal according to an embodiment of the present application, as shown in FIG. 1 .
  • each block represents a step.
  • the first node 100 receives a first message set and a first DCI in step 101; wherein a first configuration of each BWP in at least a first BWP depends on the first message set, and the first DCI indicates the at least first BWP; in step 102, in response to receiving the first DCI, operates a wireless signal on the at least first BWP;
  • the operation is receiving, or the operation is sending;
  • the candidate state of the first configuration includes a first state and a second state; compared with the traditional DCI format configured with the first state , the traditional DCI format configured with the second state additionally indicates the first type of information;
  • the traditional DCI format only indicates one BWP, and the DCI format of the first DCI indicates at most multiple BWPs;
  • the third A BWP is on the first serving cell, the first configuration of the active BWP on the first serving cell is the first state;
  • the first configuration applied to the first BWP is the second state, so Whether the first DCI includes the first type of information for the first BWP depends on the first message set.
  • the first message set is higher layer signaling.
  • the first message set includes multiple RRC (Radio Resource Control, Radio Resource Control) IE (Information Element, information unit).
  • RRC Radio Resource Control, Radio Resource Control
  • IE Information Element, information unit
  • the operation is to receive, when the first configuration relies on a BWP-Downlink IE in the first message set, the first message set is a BWP configured by the one BWP-Downlink IE. Indicates the first configuration.
  • the operation is to receive, when the first configuration is indicated by any ControlResourceSet (control resource set) IE in a BWP-Downlink IE in the first message set, the first The message set indicates the first configuration for the BWP configured by the one BWP-Downlink IE.
  • ControlResourceSet control resource set
  • the operation is sending, when the first configuration relies on a BWP-Uplink IE in the first message set, the first message set is configured by the one BWP-Uplink IE BWP indicates the first configuration.
  • the operation is to send, when the first configuration is indicated by any PUCCH-Config (Physical Uplink Control Channel Configuration) IE in a BWP-Uplink IE in the first message set,
  • the first message set indicates the first configuration for the BWP configured by the one BWP-Uplink IE.
  • a first bit group in the first DCI indicates the at least first BWP, and the first bit group includes a plurality of bits.
  • the first bit group includes a first bit subgroup and a second bit subgroup; the first bit subgroup indicates no more than 4 serving cells; the second bit subgroup is the no.
  • Each serving cell among more than 4 serving cells indicates one BWP; the BWP indicated by the second bit subgroup constitutes the at least first BWP.
  • the first bit subgroup is a CI (Carrier indicator) field
  • the second bit subgroup is a Bandwidth part indicator (BWP indicator) field.
  • the Bandwidth part indicator field indicates multiple BWPs.
  • the second bit subgroup includes L1 Bandwidth part indicator fields, where the L1 is the number of serving cells indicated by the first bit subgroup, and the L1 Bandwidth part indicator fields respectively indicate L1 BWPs, the L1 BWPs are respectively on the L1 serving cells indicated by the first bit subgroup.
  • the first bit group includes multiple Bandwidth part indicator (BWP indication) fields.
  • BWP indication Bandwidth part indicator
  • each BWP in the at least first BWP is indicated by a Bandwidth part indicator field in the first bit group, and a Bandwidth part indicator field in the first bit group indicates only one BWP.
  • the at least first BWP does not include two BWPs on the same serving cell.
  • the act of operating a wireless signal on the at least first BWP includes: operating a wireless signal on each of the at least first BWPs.
  • the act of operating a wireless signal on the at least first BWP includes: a component in the at least first BWP. Operate wireless signals on separate BWPs.
  • the behavior as a response to receiving the first DCI, operating the wireless signal on the at least first BWP means: the first DCI is used to schedule the wireless signal.
  • the behavior of operating a wireless signal on the at least first BWP as a response to receiving the first DCI means that: the first DCI includes scheduling information of the wireless signal, and the scheduling information includes occupied time and frequency resources, MCS (Modulation and coding scheme), NDI (New data indicator) and RV (Redundancy version), etc.
  • MCS Modulation and coding scheme
  • NDI New data indicator
  • RV Redundancy version
  • the behavior as a response to receiving the first DCI, operating the wireless signal on the at least first BWP means: the first DCI is used to schedule each physical layer channel carrying the wireless signal; the operation is receiving and the physical layer channel is PDSCH (Physical Downlink Shared Channel), or the operation is sending and the physical layer channel is PUSCH (Physical Uplink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the operation is to receive, and the first DCI is used to change the active downlink (active downlink) BWP on the first serving cell from the active BWP on the first serving cell to the First BWP.
  • the operation is sending, and the first DCI is used to change the active uplink BWP on the first serving cell from the active BWP on the first serving cell to the first BWP.
  • the active BWP on the first serving cell refers to the active downlink BWP before receiving the first DCI, or the active uplink BWP before receiving the first DCI.
  • the traditional DCI format belongs to the DCI format supported by 3GPP release 17.
  • the operation is sending, and the traditional DCI format is DCI format 0_0, or DCI format 0_1, or 0_2.
  • the operation is to receive, and the traditional DCI format is DCI format 1_0, or DCI format 1_1, or 1_2.
  • the DCI format of the first DCI indicates at most 4 BWPs.
  • the maximum number of BWPs indicated by the DCI format of the first DCI is configurable.
  • the first configuration of a BWP is indicated by at least one parameter in the first message set, or the first configuration of a BWP is indicated by whether the first message set includes at least one parameter. indicated.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in Figure 2.
  • FIG. 2 illustrates the network architecture 200 of LTE (Long-Term Evolution, long-term evolution), LTE-A (Long-Term Evolution Advanced, enhanced long-term evolution) and future 5G systems.
  • the network architecture 200 of LTE, LTE-A and future 5G systems is called EPS (Evolved Packet System) 200.
  • the 5G NR or LTE network architecture 200 can be called 5GS (5G System)/EPS (Evolved Packet System). Grouping System) 200 or some other suitable terminology.
  • 5GS/EPS 200 may include one or more UE (User Equipment) 201, a UE 241 that communicates with the UE 201 on a side link, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G CoreNetwork (5G Core Network)/EPC (Evolved Packet Core) 210, HSS (Home Subscriber Server)/UDM (Unified Data Management) 220 and Internet Services 230.
  • 5GS/EPS200 Interconnection with other access networks is possible, but these entities/interfaces are not shown for simplicity.
  • 5GS/EPS200 provides packet switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks providing circuit switched services.
  • NG-RAN 202 includes NR (New Radio) Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201.
  • gNB 203 may connect to other gNBs 204 via the Xn interface (eg, backhaul).
  • the gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmit Receive Point) or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircraft, narrowband physical network devices, machine type communications devices, land vehicles, cars, wearable devices, or any other similarly functional device.
  • UE201 may also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent , mobile client, client, or some other appropriate term.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/SMF (Session Management Function, session management function) 211.
  • MME/AMF/SMF214 S-GW (Service Gateway, Service Gateway)/UPF (User Plane Function, User Plane Function) 212 and P-GW (Packet Date Network Gateway, Packet Data Network Gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles signaling between UE201 and 5GC/EPC210. Basically MME/AMF/SMF211 provides bearer and connection management.
  • Internet Protocol Internet Protocol
  • S-GW/UPF212 All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213.
  • P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 is connected to Internet service 230.
  • Internet services 230 include Internet protocol services corresponding to operators, which may specifically include Internet, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching (Packet switching) services.
  • the first node in this application is the UE201.
  • the second node in this application is the gNB203.
  • the wireless link between the UE 201 and the gNB 203 includes a cellular network link.
  • the sender of the first message set includes the gNB203.
  • the recipients of the first message set include the UE201.
  • the sender of the first DCI includes the gNB203.
  • the recipient of the first DCI includes the UE201.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of the wireless protocol architecture of the user plane and control plane according to an embodiment of the present application, as shown in FIG. 3 .
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG3.
  • FIG3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300.
  • FIG3 shows the radio protocol architecture of the control plane 300 between a first communication node device (UE, gNB or RSU in V2X) and a second communication node device (gNB, UE or RSU in V2X), or between two UEs, using three layers: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first communication node device and the second communication node device, or between two UEs.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol) sublayer 304, which terminate at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides inter-zone mobility support for the first communication node device between the second communication node devices.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in a cell between the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (i.e., radio bearers) and configuring the lower layers using RRC signaling between the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is substantially the same as the corresponding layers and sublayers in the control plane 300 for the physical layer 351, the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355, but the PDCP sublayer 354 also provides header compression for upper layer data packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol) sublayer 356, which is responsible for mapping between QoS flows and data radio bearers (DRBs) to support the diversity of services.
  • SDAP Service Data Adaptation Protocol
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (e.g., an IP layer) terminated at the P-GW on the network side and an application layer terminated at the other end of the connection (e.g., a remote UE, a server, etc.).
  • a network layer e.g., an IP layer
  • an application layer terminated at the other end of the connection (e.g., a remote UE, a server, etc.).
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in the present application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in the present application.
  • the first message set is generated in the RRC sublayer 306.
  • the first DCI is generated from the PHY301 or the PHY351.
  • the first CSI set is generated in the PHY301 or the PHY351.
  • the higher layer in this application refers to the layer above the physical layer.
  • Embodiment 4 illustrates a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in the access network.
  • the first communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and control of the second communication device 450 based on various priority metrics. Radio resource allocation.
  • the controller/processor 475 is also responsible for HARQ operation, retransmission of lost packets, and signaling to the second communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 450, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M Phase Shift Keying (M-PSK), M Quadrature Amplitude Modulation (M-QAM)) constellation mapping.
  • FEC forward error correction
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more parallel streams.
  • Transmit processor 416 maps each parallel stream to a subcarrier, multiplexes the modulated symbols with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT ) to generate a physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the second communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458 with the second Any parallel flow to which communication device 450 is the destination.
  • the symbols on each parallel stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 that stores program code and data. Memory 460 may be referred to as computer-readable media. In the DL, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing. Controller/processor 459 is also responsible for error detection using acknowledgment (ACK) and/or negative acknowledgment (NACK) protocols to support HARQ operations.
  • ACK acknowledgment
  • NACK negative acknowledgment
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459 at the second communications device 450.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and logical AND based on the wireless resource allocation of the first communication device 410 Multiplexing between transport channels, implementing L2 layer functions for user plane and control plane. Controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and Prepare 410 signaling.
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated parallel streams into multi-carrier/single-carrier symbol streams, which undergo analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then are provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the function at the first communication device 410 is similar to the reception function at the second communication device 450 described in the transmission from the first communication device 410 to the second communication device 450.
  • Each receiver 418 receives a radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the multi-antenna reception processor 472 and the reception processor 470.
  • the reception processor 470 and the multi-antenna reception processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements the L2 layer functions.
  • the controller/processor 475 can be associated with a memory 476 storing program codes and data.
  • the memory 476 can be referred to as a computer-readable medium.
  • the controller/processor 475 provides demultiplexing between transmission and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover the upper layer data packets from the second communication device 450.
  • the upper layer data packets from the controller/processor 475 can be provided to the core network.
  • the controller/processor 475 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the second communication device 450 device receives at least a first message set and a first DCI; wherein at least a first configuration of each BWP in the first BWP depends on the first message set, and the first DCI indicates that the at least a first BWP; in response to receiving the first DCI, operating a wireless signal on the at least first BWP; wherein the operation is receiving, or the operation is transmitting; a candidate for the first configuration
  • the state includes a first state and a second state; compared with the traditional DCI format configured with the first state, the traditional DCI format configured with the second state additionally indicates the first type of information; the traditional The DCI format only indicates one BWP, and the DCI format of the first DCI indicates at most multiple BWPs; the first BWP is on the first serving cell
  • the second communication device 450 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: receiving a first A message set and a first DCI; wherein the first configuration of each BWP in at least the first BWP depends on the first message set, and the first DCI indicates the at least first BWP; as receiving the first In response to the DCI, the wireless signal is operated on the at least first BWP.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the first communication device 410 device sends at least a first message set and a first DCI; wherein at least the first configuration of each BWP in the first BWP depends on the first message set, and the first DCI indicates the at least a first BWP; in response to sending the first DCI, performing a wireless signal on the at least first BWP; wherein the performing is sending or receiving.
  • the first communication device 410 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: sending a first A message set and a first DCI; wherein the first configuration of each BWP in at least the first BWP depends on the first message set, and the first DCI indicates the at least first BWP; as sending the first In response to the DCI, a wireless signal is executed on the at least first BWP; wherein the execution is sending or receiving.
  • the first node in this application includes the second communication device 450.
  • the second node in this application includes the first communication device 410 .
  • the antenna 452 the receiver 454, the reception processor 456, the multi-antenna reception processor 458, the controller/processor 459, the memory 460, the data At least one of sources 467 ⁇ is used to receive the first message set; ⁇ the antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471, the controller /Processor 475, at least one of the memories 476 ⁇ is used to send the first set of messages.
  • the antenna 452 the receiver 454, the reception processor 456, the multi-antenna reception processor 458, the controller/processor 459, the memory 460, the data At least one of sources 467 ⁇ is used to receive the first DCI; ⁇ the antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471, the controller/ Processor 475, At least one of the memories 476 ⁇ is used to send the first DCI.
  • Embodiment 5 illustrates a flow chart of wireless communication according to an embodiment of the present application; as shown in Figure 5.
  • the second node U1 and the first node U2 are communication nodes transmitting through the air interface.
  • the step in block F51 occurs and the step in block F52 does not occur, or the step in block F51 does not occur and the step in block F52 occurs.
  • the first configuration of each BWP in at least the first BWP relies on the first message set
  • the first DCI indicates the at least the first BWP
  • the candidate state of the first configuration includes the first state and the second state
  • the traditional DCI format configured with the second state additionally indicates the first type of information
  • the traditional DCI format only indicates One BWP
  • the DCI format of the first DCI indicates at most multiple BWPs
  • the first BWP is on the first serving cell
  • the first configuration of the active BWP on the first serving cell is the first state
  • the first configuration applied to the first BWP is the second state, and whether the first DCI includes the first type of information for the first BWP depends on the first message set.
  • step S513 the second node U2 sends a wireless signal on the at least first BWP in response to sending the first DCI; in step S523, the second node U1 sends a wireless signal as a response to sending the first DCI. A response to the first DCI is received, and a wireless signal is received on the at least first BWP.
  • step S514 the second node U2 receives a wireless signal on the at least first BWP in response to sending the first DCI; in step S524, the second node U1 receives a wireless signal as a response to sending the first DCI. A response to the first DCI is received, and a wireless signal is sent on the at least first BWP.
  • the behavior is a response to sending the first DCI, and receiving (or sending) a wireless signal on the at least first BWP means that the first DCI is used to schedule the wireless signal.
  • the behavior as a response to sending the first DCI, receiving (or sending) a wireless signal on the at least first BWP means: the first DCI includes scheduling information of the wireless signal, The scheduling information includes occupied time-frequency resources, MCS, NDI, RV, etc.
  • the behavior is a response to sending the first DCI, and receiving (or sending) a wireless signal on the at least first BWP refers to: the first DCI is used to schedule a wireless signal carrying the wireless signal.
  • the first node U1 is the first node in this application.
  • the second node U2 is the second node in this application.
  • the second node U2 is the serving cell maintenance base station of the first node U1.
  • the first configuration of each BWP among Q1 BWPs depends on the first message set, and Q1 is a positive integer greater than 1; at least one BWP among the Q1 BWPs does not belong to Describe at least the first BWP.
  • the payload size of the first DCI depends on the first message set.
  • Q1 is 4.
  • Q1 is not greater than 4.
  • the Q1 BWPs are active BWPs of Q1 serving cells respectively.
  • the first DCI schedules the Q1 serving cells, and at least one BWP among the Q1 BWPs is not indicated by the first DCI.
  • the first configuration in which there are and only Q2 BWPs among the Q1 BWPs is the second state, and the Q2 is a positive integer not greater than the Q1; when the at least first When the number of BWPs in the first configuration of the BWPs in the second state does not exceed Q2, the first DCI includes the first type of information for the first BWP.
  • the first DCI includes at most Q2 bit fields to indicate the first type of information, and each bit field in the Q2 bit fields is applied to one BWP.
  • whether the first DCI includes the first type of information for the first BWP depends on at least one of the BWP-Id of the first BWP and the cell identity of the first serving cell.
  • the cell identity is ServCellIndex.
  • the cell identity is a non-negative integer not greater than 64.
  • the cell identity is a physical cell identity (PCI, Physical cell ID).
  • PCI physical cell identity
  • the first type of information for the first BWP is preferentially indicated by the first DCI as the BWP-Id of the first BWP decreases.
  • the first type of information for the first BWP is preferentially indicated by the first DCI as the cell identity of the first serving cell decreases.
  • the first type information of only Q2 higher priority BWPs among the Q3 BWPs is indicated by the first DCI, and the BWP-Id of the corresponding BWP and the service of the corresponding BWP are One of the two community identities of the community.
  • the priority of a BWP is the sum of the product of the cell identity of the serving cell of the one BWP and 4 or 5 plus the BWP-Id of the one BWP.
  • the BWP corresponding to the smaller cell identity has a higher priority; if the corresponding cell identities are the same, the BWP corresponding to the smaller BWP-Id has a higher priority.
  • the first type of information of the Q2 higher priority BWPs is sequentially indicated by Q2 bit fields in the first DCI.
  • the bit field used to indicate the first type of information for the first BWP is in the first The location in the DCI depends on at least one of the BWP-Id of the first BWP and the cell identity of the first serving cell.
  • the bit field used to indicate the first type of information for the first BWP is one of Q2 bit fields of the first DCI.
  • the bit field used to indicate the first type of information for the first BWP follows the first BWP in the Q2 bit fields of the first DCI. At least one of the BWP-Id of the first serving cell and the cell identity of the first serving cell changes.
  • At least one of the BWP-Id of the first BWP and the cell identity of the first serving cell is used to determine the bit field for indicating the first type of information for the first BWP from the Q2 bit fields.
  • the position of the bit field used to indicate the first type of information for the first BWP in the first bit set of the first DCI depends on the BWP-Id of the first BWP. and at least one of the cell identity of the first serving cell; the first bit set of the first DCI is not used to schedule the first type of BWP and is not used to indicate the second type of scheduling information, so
  • the first type of BWP is a BWP that simultaneously belongs to the Q1 BWPs and the at least first BWP.
  • the number of bits used to indicate the second type of scheduling information in the first DCI does not change with the first configuration. changes according to the candidate status.
  • the load size of the first DCI does not depend on the configuration of the first BWP.
  • the step in block F52 occurs and the step in block F51 does not occur;
  • the first configuration includes whether the PTRS-DMRS association domain appears, and the first state includes whether the PTRS-DMRS association domain appears. appears, the second state includes the appearance of the PTRS-DMRS association field, and the first type of information includes the association between the PTRS port and the DMRS port.
  • the traditional DCI format includes DCI format 0_1.
  • the traditional DCI format includes DCI format 0_2.
  • the first configuration is maxNrofCodeWordsScheduledByDCI
  • the first state is 1
  • the second state is 2
  • the first type of information includes NDI for transmitting block 2.
  • the step in block F51 occurs and the step in block F52 does not occur.
  • the first type of information includes RV for transport block 2.
  • the first type of information includes MCS for transport block 2.
  • the traditional DCI format includes DCI format 1_1.
  • the first configuration is that TCI (transmit configuration indication) appears in DCI, the first state is disable, and the The second state is enabled, and the first type of information includes TCI state.
  • the step in block F51 occurs and the step in block F52 does not occur.
  • the traditional DCI format includes DCI format 1_1.
  • the traditional DCI format includes DCI format 1_2.
  • the traditional DCI format includes DCI format 4_2.
  • the first configuration is a domain of an RRC IE, and the name of the domain includes tci-PresentDCI.
  • the first configuration is a domain of an RRC IE, and the name of the domain includes tci-PresentInDCI.
  • the first configuration includes tci-PresentInDCI.
  • the first configuration includes tci-PresentDCI-1-2.
  • Embodiment 6 illustrates a schematic diagram of changing the active BWP according to an embodiment of the present application; as shown in FIG. 6 .
  • the first BWP and the second BWP in FIG. 6 are on the first serving cell or configured to the first serving cell.
  • the second BWP is the active BWP of the first serving cell; the first DCI is detected in the first time slot; the first DCI indicates the active uplink BWP of the first serving cell Modify to the first BWP, or the first DCI indicates that the active downlink BWP of the first serving cell is modified to the first BWP.
  • the first DCI indicates that the active uplink BWP of the first serving cell is modified to the first BWP, the uplink time slot after the handover delay d1 has passed from the beginning of the first time slot.
  • the first node can (be able to) send PUSCH on the first BWP.
  • the first DCI indicates that the active uplink BWP of the first serving cell is modified to the first BWP, and the first node stops in the first serving cell starting from the first time t1 (i.e., the second BWP) to send PUSCH.
  • the first DCI indicates that the active downlink BWP of the first serving cell is modified to the first BWP, the downlink time slot after the handover delay d1 has passed from the beginning of the first time slot.
  • the first node can receive PDSCH on the first BWP.
  • the first DCI indicates that the active downlink BWP of the first serving cell is modified to the first BWP, and the first node stops in the first serving cell starting from the first time t1 (i.e., the second BWP) to receive PUSCH.
  • the switching delay d1 is not less than one time slot.
  • the length of the switching delay d1 is configurable.
  • the length of the switching delay d1 is default.
  • the first time t1 is the cut-off time of the third symbol in the first time slot.
  • the symbols occupied by the first DCI are no later than the first time t1.
  • the symbols are OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols.
  • the symbol is a DFT (Discrete Fourier Transformation)-S (spreading)-OFDM symbol.
  • the load size of the first DCI depends on the configuration of the second BWP and does not depend on the configuration of the first BWP.
  • the first DCI schedules multiple serving cells, and the first serving cell is one of the multiple serving cells.
  • Embodiment 7 illustrates a schematic diagram of BWP dynamic switching according to an embodiment of the present application; as shown in Figure 7.
  • Q1 BWPs that is, BWPs #1, #2, ..., #Q1 in Figure 7, are respectively on Q1 serving cells, or are respectively configured for Q1 serving cells.
  • the first configuration of each BWP among the Q1 BWPs depends on the first message set, and the Q1 is a positive integer greater than 1; at least one BWP among the Q1 BWPs is not Belongs to said at least first BWP.
  • the load size of the first DCI depends on the first configuration of each of the Q1 BWPs.
  • the first configuration of each BWP in the Q1 BWPs is used to determine a first load size
  • the load size of the first DCI is the first load size Load size after DCI size alignment.
  • the first configuration of only Q2 BWPs among the Q1 BWPs is in the second state, and the bit width (ie, the number of bits) reserved for the first type of information in the first DCI increases accordingly. increases with the increase of Q2.
  • the Q1 BWPs are active BWPs of Q1 serving cells respectively; the second BWP is one of the Q1 BWPs, and the first serving cell is the Q1 One of the serving cells; the second BWP is the uplink BWP of the first serving cell, and the first DCI indicates that the active uplink BWP of the first serving cell is changed to the first BWP, or the second The BWP is the downlink BWP of the first serving cell, and the first DCI indicates that the active downlink BWP of the first serving cell is changed to the first BWP.
  • At least the first BWP indicated by the first DCI consists of Q3 BWPs, and the Q3 is a positive integer greater than 1 and not greater than Q1; the Q3 BWPs respectively belong to Q3 serving cells, so At least one serving cell among the Q1 serving cells does not belong to the Q3 serving cells (that is, it is not scheduled by the first DCI); the active BWP on the at least one serving cell is not changed by the first DCI.
  • Embodiment 8 illustrates a schematic diagram of the Q2 bit field according to an embodiment of the present application; as shown in Figure 8.
  • Q2 bit fields namely fields #1, ..., #Q2 in Figure 8 belong to the first DCI; the Q2 bit fields respectively indicate or are reserved for the first type of information of Q2 BWPs.
  • the first DCI includes all the BWPs for the first BWP. Describe the first type of information.
  • all BWPs (no more than Q2) that are first configured as the second state among the at least first BWPs are sequentially indicated by the Q2 bit fields according to priority.
  • the Q2 bit fields are unused.
  • the bit fields are used for reserved bits or are fixedly set to 0.
  • the Q2 bit fields are continuous in the first DCI.
  • the Q2 bit fields are discrete in the first DCI.
  • Embodiment 8 can maintain good compatibility with existing systems and avoid designing joint encoding (joint encoding) for the first type of information of multiple BWPs.
  • the K subfields are respectively used by the first node to determine K cell indexes, and the K cell indexes are respectively allocated to the K cells.
  • the K sub-domains are respectively represented as sub-domain #0,..., sub-domain #(K-1); the K cell indexes are respectively represented as cell index #0,... ., cell index #(K-1).
  • any one of the K subfields includes all or part of the bits in the DCI field Carrier indicator.
  • the K subfields each include different bits in a DCI field Carrier indicator.
  • the K subfields respectively include all or part of the bits in K DCI field carrier indicators.
  • the K sub-domains respectively include K DCI domain Carrier indicators.
  • the K sub-domains are K DCI domain carrier indicators respectively.
  • any cell index among the K cell indexes is a ServCellIndex or SCellIndex.
  • the definitions of the ServCellIndex and the SCellIndex can be found in 3GPP TS38.331.
  • the K cell indices are respectively non-negative integers.
  • the K cell indexes are non-negative integers not greater than 32 respectively.
  • the K cell indexes are not equal to each other.
  • the K cell indexes are used to identify the K cells respectively.
  • the K cell indexes are cell indexes of the K cells respectively.
  • the K subfields respectively indicate the K cell indexes.
  • the K sub-domains explicitly indicate the K cell indexes respectively.
  • the K subfields respectively indicate the code points of the Carrier indicator fields corresponding to the K cell indexes.
  • the K subfields respectively indicate the values of the Carrier indicator fields corresponding to the K cell indexes.
  • the K subfields implicitly indicate the K cell indexes respectively.
  • the K subdomains are used to determine the K cells.
  • the second domain of the first DCI is used to determine the K cells.
  • the K subfields respectively indicate the K cells.
  • the K subdomain belongs to the K0 subdomain, and K0 is a positive integer not less than K; the K0 subdomain corresponds to K0 cell indexes respectively, and the K cell indexes belong to the K0 Cell index; for any given cell index among the K0 cell indexes, when the value of the subfield in the K0 subfield corresponding to the given cell index is equal to the first value, the given cell The cell identified by the index is one of the K cells; when the value of the subfield in the K0 subfield corresponding to the given cell index is not equal to the first value, the given cell index The identified cell does not belong to the K cells.
  • the K0 subfields are K0 bits respectively, and the first value is equal to 1.
  • the K0 subfields are K0 bits respectively, and the first value is equal to 0.
  • the corresponding relationship between the K0 subfields and the K0 cell indexes is configured by higher layer signaling.
  • the K cell indexes are used to determine the first cell.
  • the K cell indexes are used to determine that the first CSI set is sent on the PUSCH of the first cell among the K cells.
  • the meaning of the sentence that the second domain of the first DCI is used to determine the first cell includes: the second domain includes at least one of the K sub-domains, so The K subfields are respectively used to determine the K cell indexes, and the K cell indexes are used to determine the first cell.
  • the meaning of the sentence that the second domain of the first DCI is used to determine the first cell includes: the second domain includes at least one of the K sub-domains, so The K subfields are respectively used to determine the K cell indexes, and the K cell indexes are used to determine that the first CSI set is on the PUSCH of the first cell among the K cells. is sent.
  • which cell among the K cells is configured with PUCCH is used to determine the first cell.
  • which cell among the K cells is configured with PUCCH is used to determine whether the first CSI set is sent on the PUSCH of the first cell among the K cells.
  • one of the K cells is configured with PUCCH.
  • only one cell among the K cells is configured with PUCCH.
  • the meaning of the sentence that the second domain of the first DCI is used to determine the first cell includes: the second domain includes at least one of the K sub-domains, so The K subfields are respectively used to determine the K cell indexes, and which cell among the K cells is configured with PUCCH is used to determine the first cell.
  • the meaning of the sentence that the second domain of the first DCI is used to determine the first cell includes: the second domain includes at least one of the K sub-domains, so The K subfields are used to determine the K cell indexes respectively, and which cell among the K cells is configured with PUCCH is used to determine the first CSI set in the K cells. is sent on the PUSCH of a cell.
  • the first cell is a cell in which PUCCH is configured among the K cells.
  • the first cell is the only cell configured with PUCCH among the K cells.
  • the meaning of the sentence that the second domain of the first DCI is used to determine the first cell includes: the second domain includes at least one of the K sub-domains, so The K subfields are respectively used to determine the K cell indexes, and the first cell is the cell indicated by the subfield at the target position among the K subfields.
  • the meaning of the sentence that the second domain of the first DCI is used to determine the first cell includes: the second domain includes at least one of the K sub-domains, so The K subfields are respectively used to determine the K cell indexes, and the first CSI set is sent on the PUSCH of the cell indicated by the subfield at the target position among the K subfields.
  • Embodiment 9 illustrates a schematic diagram of a first bit set according to an embodiment of the present application, as shown in FIG. 9 .
  • the first bit set consists of multiple bits or bit fields in the first DCI, and the multiple bits or bit fields in the first DCI are discontinuous or discrete. If the first DCI includes the first type of information for the first BWP, the position of the bit field used to indicate the first type of information for the first BWP in the first bit set. Relying on at least one of the BWP-Id of the first BWP and the cell identity of the first serving cell.
  • the first bit set belongs to the first DCI and is not used for scheduling the bits of the first type of BWP.
  • the first type of BWP is the bit in the at least first BWP that receives the first A BWP that has been active before a DCI (that is, the first DCI does not change the active status of the first type BWP).
  • the first set of bits belongs to the bits in the first DCI and is not used to indicate the second type of scheduling information.
  • the bit width of the second type of scheduling information in the first DCI is ( That is, the number of bits) does not change with the first configuration.
  • the bit width of the second type of scheduling information in the first DCI is fixed, or the bit width of the second type of scheduling information in the first DCI depends only on the DCI format of the first DCI, or the bit width of the second type of scheduling information in the first DCI depends on parameters used to configure the service cell and not for configuring a specific (particular) BWP.
  • the bit width of the second type of scheduling information in the first DCI depends on the ServingCellConfig IE, and does not depend on the BWP-Downlink domain in the ServingCellConfig IE, and does not depend on the BWP in the ServingCellConfig IE. -Uplink domain.
  • the indication bits of the second type of scheduling information include a TDRA (Time Domain Resource Assignment, time domain resource allocation) field.
  • TDRA Time Domain Resource Assignment, time domain resource allocation
  • the indicator bits of the second type of scheduling information include a CI (Carrier indicator) field.
  • the indication bits of the second type of scheduling information include a Bandwidth part indicator (BWP indication) field.
  • BWP indication Bandwidth part indicator
  • the indication bits of the second type of scheduling information include a HARQ (Hybrid Automatic Repeat reQuest, Hybrid Automatic Repeat Request) process number field.
  • HARQ Hybrid Automatic Repeat reQuest, Hybrid Automatic Repeat Request
  • the indication bits of the second type of scheduling information include a TPC (Transmit power control, transmit power) command.
  • the above-mentioned indication bits of the second type of scheduling information are common to uplink grant signaling and downlink grant signaling, and can be combined in any way.
  • the first DCI is Uplink Grant signaling
  • the indicator bits of the second type of scheduling information include DAI (downlink assignment index, downlink allocation index), UL/SUL indicator (uplink/supplementary) uplink instructions) and other fields.
  • the first DCI is Downlink Grant signaling
  • the indication bits of the second type of scheduling information include VRB-to-PRB mapping (virtual resource block to physical resource block mapping), for transport MCS of block 1 (transport block 1), RV for transport block 1, NDI for transport block 1, PUCCH resource indicator (physical uplink control channel resource indicator) and PDSCH-to-HARQ_feedback timing indicator (physical downlink shared channel to HARQ feedback time indication) and other fields.
  • the position of the bit field used to indicate the first type of information for the first BWP in the first bit set is along with the BWP-Id of the first BWP and the first At least one of the two cell identities of the serving cell changes.
  • the above embodiment allows BWPs to be scheduled according to priorities, ensuring the scheduling of high-priority BWPs under the condition that the DCI load size is insufficient.
  • the specific solution can be compared to the implementation in Embodiment 5.
  • the bits used to indicate the first type of information for the first BWP include at least part of two bit fields. bits; the two bit fields assume that the first DCI does not change the active uplink BWP or the active downlink BWP (that is, each BWP in the at least first BWP indicated by the first DCI is the Two fields in the DCI format of the first DCI (one of the Q1 BWPs).
  • the above embodiment enables reinterpretation of the first set of bits to be no longer limited by the original bit domain, thereby avoiding bit waste.
  • the number of bits in the first DCI used to indicate the first type of information for the first BWP depends on the configuration signaling of the first BWP.
  • the configuration signaling includes BWP-Uplink or BWP-Downlink.
  • the position of the bit field used to indicate the first type of information for the first BWP in the first bit set of the first DCI depends on at least one of the BWP-Id of the first BWP and the cell identity of the first service cell; the first bit set of the first DCI is not used to schedule the first type of BWP and is not used to indicate the second type of scheduling information, the first type of BWP is a BWP that belongs to both the Q1 BWPs and the at least the first BWP, and the number of bits in the first DCI used to indicate the second type of scheduling information does not change with the candidate state of the first configuration.
  • the load size of the first DCI does not depend on the configuration signaling of the first BWP.
  • the first DCI is used for uplink grant
  • the first configuration includes whether the PTRS-DMRS association domain appears, the first state includes that the PTRS-DMRS association domain does not appear, the second state includes that the PTRS-DMRS association domain appears, and the first type of information includes the association between the PTRS port and the DMRS port;
  • the traditional DCI format includes DCI format 0_1 and DCI format 0_2.
  • the first DCI is used for downlink granting
  • the first configuration is maxNrofCodeWordsScheduledByDCI
  • the first state is 1
  • the second state is 2
  • the first type of information includes transmission block 2 NDI
  • the traditional DCI format includes DCI format 1_1.
  • the first type of information includes RV for transport block 2 and MCS for transport block 2.
  • the first DCI is used for downlink granting
  • the first configuration is that TCI appears in the DCI
  • the first state is disable
  • the second state is enabled
  • the first type The information includes TCI status
  • the traditional DCI format includes DCI format 1_1 and DCI format 1_2.
  • the traditional DCI format includes DCI format 4_2.
  • the first configuration includes tci-PresentInDCI.
  • the first configuration includes tci-PresentDCI-1-2.
  • Embodiment 10 illustrates a structural block diagram of a processing device in a first node according to an embodiment of the present application, as shown in FIG10.
  • the processing device 1400 in the first node includes a first receiver 1401 and a first processor 1402.
  • the first receiver 1401 receives a first message set and a first DCI; wherein at least a first configuration of each BWP in the first BWP relies on the first message set, and the first DCI indicates the at least first BWP; the first processor 1402, in response to receiving the first DCI, operates a wireless signal on the at least first BWP;
  • the operation is receiving, or the operation is sending;
  • the candidate state of the first configuration includes a first state and a second state; compared with the traditional DCI format configured with the first state , the traditional DCI format configured with the second state additionally indicates the first type of information;
  • the traditional DCI format only indicates one BWP, and the DCI format of the first DCI indicates at most multiple BWPs;
  • the third A BWP is on the first serving cell, the first configuration of the active BWP on the first serving cell is the first state;
  • the first configuration applied to the first BWP is the second state, so Whether the first DCI includes the first type of information for the first BWP depends on the first message set.
  • the first configuration of each BWP among Q1 BWPs depends on the first message set, and Q1 is a positive integer greater than 1; at least one BWP among the Q1 BWPs does not belong to Describe at least the first BWP.
  • the first configuration in which there are and only Q2 BWPs among the Q1 BWPs is the second state, and the Q2 is a positive integer not greater than the Q1; when the at least first When the number of BWPs in the first configuration of the BWPs in the second state does not exceed Q2, the first DCI includes the first type of information for the first BWP.
  • whether the first DCI includes the first type of information for the first BWP depends on the first BWP At least one of the BWP-Id and the cell identity of the first serving cell.
  • the bit field used to indicate the first type of information for the first BWP is in the first The location in the DCI depends on at least one of the BWP-Id of the first BWP and the cell identity of the first serving cell.
  • the operation is sending; the first configuration is whether the PTRS-DMRS association domain appears, the first state is that the PTRS-DMRS association domain does not appear, and the second state is that the PTRS -The DMRS association field appears, and the first type of information is the association between the PTRS port and the DMRS port.
  • the first configuration is configured through parameters such as PTRS-UplinkConfig, whether transform precoder (transform precoder) is enabled, maxRank, etc.
  • parameters such as PTRS-UplinkConfig, whether transform precoder (transform precoder) is enabled, maxRank, etc.
  • the first configuration is maxNrofCodeWordsScheduledByDCI
  • the first state is 1
  • the second state is 2
  • the first type of information includes NDI for transmitting block 2.
  • the first configuration is that TCI appears in DCI, the first state is disable, the second state is enable, and the first type of information includes TCI state.
  • the first receiver 1401 includes the ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, and data source in Embodiment 4. 467 ⁇ some or all.
  • the first processor 1402 includes ⁇ antenna 452, transmitter 454, transmission processor 468, multi-antenna transmission processor 457, controller/processor 459, memory 460, data source in Embodiment 4 467 ⁇ some or all.
  • the first processor 1402 includes part or all of ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, data source 467 ⁇ in Embodiment 4.
  • Embodiment 11 illustrates a structural block diagram of a processing device used in a second node according to an embodiment of the present application; as shown in FIG. 11 .
  • the processing device 1500 in the second node includes a first transmitter 1501 and a second processor 1502.
  • the first transmitter 1501 sends a first message set and a first DCI; wherein at least the first configuration of each BWP in the first BWP relies on the first message set, and the first DCI indicates said at least first BWP;
  • the second processor 1502 performs wireless signaling on the at least first BWP in response to sending the first DCI;
  • the execution is sending, or the execution is receiving;
  • the candidate state of the first configuration includes a first state and a second state; compared with the traditional DCI format configured with the first state , the traditional DCI format configured with the second state additionally indicates the first type of information;
  • the traditional DCI format only indicates one BWP, and the DCI format of the first DCI indicates at most multiple BWPs;
  • the third A BWP is on the first serving cell, the first configuration of the active BWP on the first serving cell is the first state;
  • the first configuration applied to the first BWP is the second state, so Whether the first DCI includes the first type of information for the first BWP depends on the first message set.
  • the first configuration of each BWP among Q1 BWPs depends on the first message set, and Q1 is a positive integer greater than 1; at least one BWP among the Q1 BWPs does not belong to Describe at least the first BWP.
  • the first configuration in which there are and only Q2 BWPs among the Q1 BWPs is the second state, and the Q2 is a positive integer not greater than the Q1; when the at least first When the number of BWPs in the first configuration of the BWPs in the second state does not exceed Q2, the first DCI includes the first type of information for the first BWP.
  • whether the first DCI includes the first type of information for the first BWP depends on at least one of the BWP-Id of the first BWP and the cell identity of the first serving cell. one.
  • the bit field used to indicate the first type of information for the first BWP is in the first The location in the DCI depends on at least one of the BWP-Id of the first BWP and the cell identity of the first serving cell.
  • the operation is sending; the first configuration is whether the PTRS-DMRS association domain appears, the first state is that the PTRS-DMRS association domain does not appear, and the second state is that the PTRS -The DMRS association field appears, and the first type of information is the association between the PTRS port and the DMRS port.
  • the first configuration is maxNrofCodeWordsScheduledByDCI
  • the first state is 1
  • the second The status is 2
  • the first type of information includes the NDI for transport block 2.
  • the first configuration is that TCI appears in DCI, the first state is disable, the second state is enable, and the first type of information includes TCI state.
  • the first transmitter 1501 includes ⁇ antenna 420, transmitter 418, transmission processor 416, multi-antenna transmission processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4. Some or all.
  • the second processor 1502 includes ⁇ antenna 420, receiver 418, receiving processor 470, multi-antenna receiving processor 472, controller/processor 475, memory 476 ⁇ in Embodiment 4. Some or all.
  • the second processor 1502 includes ⁇ antenna 420, transmitter 418, transmission processor 416, multi-antenna transmission processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4. Some or all.
  • User equipment, terminals and UEs in this application include but are not limited to drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication equipment, vehicles, vehicles, RSU, wireless sensor, network card, Internet of Things terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication, machine type communication) terminal, eMTC (enhanced MTC, enhanced MTC) terminal, data card, network card, vehicle Communication equipment, low-cost mobile phones, low-cost tablet computers and other wireless communication equipment.
  • MTC Machine Type Communication, machine type communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes but is not limited to macro cell base station, micro cell base station, small cell base station, home base station, relay base station, eNB, gNB, TRP (Transmitter Receiver Point, sending and receiving node), GNSS, relay Satellites, satellite base stations, air base stations, RSU (Road Side Unit), drones, test equipment, such as wireless communication equipment such as transceivers or signaling testers that simulate some functions of the base station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了被用于无线通信的节点中的方法和装置。第一节点接收第一消息集合和第一DCI;其中,至少第一BWP中的每个BWP的第一配置依赖所述第一消息集合,所述第一DCI指示所述至少第一BWP;作为接收所述第一DCI的响应,在所述至少第一BWP上操作无线信号;其中,所述第一配置的候选状态包括第一状态和第二状态;所述传统DCI格式仅指示一个BWP,所述第一DCI的DCI格式最多指示多个BWP;所述第一DCI是否包括针对所述第一BWP的所述第一类信息依赖所述第一消息集合。本申请提高了DCI的调度灵活性,避免了比特浪费,同时具备较好的兼容性。

Description

被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及BWP(Bandwidth Part,带宽部分)的方案和装置。
背景技术
传统的无线通信中,网络设备通过DCI(Downlink Control Information,下行控制信息)对UE(User Equipment,用户设备)进行动态调度。为了降低盲译码(BD,Blind Decoding)所带来的复杂度,DCI尺寸对齐(size alignment)被提出以减少UE监测的DCI尺寸。
在NR(New Radio,新无线)系统中,BWP被提出以实现更加灵活的利用频谱。通常而言,一个服务小区在给定时刻只有一个活跃上行BWP和/或一个活跃下行BWP。
发明内容
DCI尺寸通常依赖与活跃BWP的参数配置;在BWP动态切换过程中,指示的BWP与活跃BWP不同可能会导致DCI尺寸的不匹配。发明人通过研究发现,当一个DCI的DCI格式能调度多个小区或者BWP时,上述问题会进一步加剧,因而需要新的解决方案。
针对上述问题,本申请公开了一种解决方案。需要说明的是,虽然本申请的初衷是针对一个DCI调度多个小区或者BWP的场景展开说明,本申请也能用于一个DCI调度单个小区的传输场景中。进一步的,对不同场景(包括但不限于一个DCI调度多个小区和一个DCI调度单个小区)采用统一的设计方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS38系列的定义。
本申请公开了用于无线通信的第一节点中的方法,其中,包括:
接收第一消息集合和第一DCI;其中,至少第一BWP中的每个BWP的第一配置依赖所述第一消息集合,所述第一DCI指示所述至少第一BWP;
作为接收所述第一DCI的响应,在所述至少第一BWP上操作无线信号;
其中,所述操作是接收,或者,所述操作是发送;所述第一配置的候选状态包括第一状态和第二状态;相比被配置了所述第一状态的传统DCI格式,被配置了所述第二状态的所述传统DCI格式额外的指示第一类信息;所述传统DCI格式仅指示一个BWP,所述第一DCI的DCI格式最多指示多个BWP;所述第一BWP在第一服务小区上,所述第一服务小区上的活跃BWP的第一配置为所述第一状态;被应用于所述第一BWP的第一配置为所述第二状态,所述第一DCI是否包括针对所述第一BWP的所述第一类信息依赖所述第一消息集合。
作为一个实施例,相比于所述第一DCI不包括针对所述第一BWP的所述第一类信息,上述方法充分利用所述第一DCI中的比特,提高了调度灵活性。
作为一个实施例,上述方法尽可能兼容针对所述第一BWP的配置
作为一个实施例,上述方法依赖所述第一消息集合确定所述第一DCI是否包括针对所述第一BWP的所述第一类信息,提高了配置灵活性。
具体的,根据本申请的一个方面,上述方法的特征在于,Q1个BWP中的每个BWP的所述第一配置依赖所述第一消息集合,所述Q1是大于1的正整数;所述Q1个BWP中的至少一个BWP不属于所述至少第一BWP。
作为一个实施例,上述方法尽可能兼容针对所述第一BWP的配置。
作为一个实施例,上述方法避免了所述第一DCI中的比特的浪费,尽可能提高调度灵活性。
具体的,根据本申请的一个方面,上述方法的特征在于,所述Q1个BWP中有且仅有Q2个BWP的所述第一配置是所述第二状态,所述Q2是不大于所述Q1的正整数;当所述至少第一BWP中第一配置是 所述第二状态的BWP的数量不超过所述Q2时,所述第一DCI包括针对所述第一BWP的所述第一类信息。
作为一个实施例,上述方法避免了引入新的DCI尺寸,降低了BD的复杂度。
具体的,根据本申请的一个方面,上述方法的特征在于,所述第一DCI是否包括针对所述第一BWP的所述第一类信息依赖所述第一BWP的BWP-Id(BWP身份)和所述第一服务小区的小区身份二者中的至少之一。
作为一个实施例,上述方法根据BWP-Id或者小区身份隐式的确定BWP的优先级,减少了信令开销。
具体的,根据本申请的一个方面,上述方法的特征在于,如果所述第一DCI包括针对所述第一BWP的所述第一类信息,用于指示针对所述第一BWP的所述第一类信息的比特域在所述第一DCI中位置依赖所述第一BWP的BWP-Id和所述第一服务小区的小区身份二者中的至少之一。
作为一个实施例,上述方法确保UE和基站对第一DCI具备相同的理解,并且减少了不必要的冗余开销。
具体的,根据本申请的一个方面,上述方法的特征在于,所述操作是发送;所述第一配置包括PTRS(Phase-tracking reference signal,相位跟踪参考信号)-DMRS(Demodulation reference signal,解调参考信号)关联(association)域是否出现,所述第一状态包括所述PTRS-DMRS关联域不出现,所述第二状态包括所述PTRS-DMRS关联域出现,所述第一类信息包括PTRS端口和DMRS端口之间的关联。
作为上述实施例的一个子实施例,所述第一配置通过PTRS-UplinkConfig、变换预编码(transform precoder)是否使能、maxRank等参数配置,具体的实施方式参考TS38.212。
具体的,根据本申请的一个方面,上述方法的特征在于,所述第一配置是maxNrofCodeWordsScheduledByDCI,所述第一状态是1,所述第二状态是2,所述第一类信息包括为了传输块2的NDI(New Data Indicator,新数据指示)。
具体的,根据本申请的一个方面,上述方法的特征在于,所述第一配置是DCI中出现TCI(Transmission configuration indication,传输配置指示),所述第一状态是不使能(not enabled,or,disabled),所述第二状态是使能(enabled),所述第一类信息包括TCI状态(TCI-state)。
本申请公开了被用于无线通信的第二节点中的方法,其中,包括:
发送第一消息集合和第一DCI;其中,至少第一BWP中的每个BWP的第一配置依赖所述第一消息集合,所述第一DCI指示所述至少第一BWP;
作为发送所述第一DCI的响应,在所述至少第一BWP上执行无线信号;
其中,所述执行是发送,或者,所述执行是接收;所述第一配置的候选状态包括第一状态和第二状态;相比被配置了所述第一状态的传统DCI格式,被配置了所述第二状态的所述传统DCI格式额外的指示第一类信息;所述传统DCI格式仅指示一个BWP,所述第一DCI的DCI格式最多指示多个BWP;所述第一BWP在第一服务小区上,所述第一服务小区上的活跃BWP的第一配置为所述第一状态;被应用于所述第一BWP的第一配置为所述第二状态,所述第一DCI是否包括针对所述第一BWP的所述第一类信息依赖所述第一消息集合。
具体的,根据本申请的一个方面,上述方法的特征在于,Q1个BWP中的每个BWP的所述第一配置依赖所述第一消息集合,所述Q1是大于1的正整数;所述Q1个BWP中的至少一个BWP不属于所述至少第一BWP。
具体的,根据本申请的一个方面,上述方法的特征在于,所述Q1个BWP中有且仅有Q2个BWP的所述第一配置是所述第二状态,所述Q2是不大于所述Q1的正整数;当所述至少第一BWP中第一配置是所述第二状态的BWP的数量不超过所述Q2时,所述第一DCI包括针对所述第一BWP的所述第一类信息。
具体的,根据本申请的一个方面,上述方法的特征在于,所述第一DCI是否包括针对所述第一BWP的所述第一类信息依赖所述第一BWP的BWP-Id和所述第一服务小区的小区身份二者中的至少之一。
具体的,根据本申请的一个方面,上述方法的特征在于,如果所述第一DCI包括针对所述第一BWP的所述第一类信息,用于指示针对所述第一BWP的所述第一类信息的比特域在所述第一DCI中位置依赖所述第一BWP的BWP-Id和所述第一服务小区的小区身份二者中的至少之一。
具体的,根据本申请的一个方面,上述方法的特征在于,所述执行是接收;所述第一配置包括 PTRS-DMRS关联域是否出现,所述第一状态包括所述PTRS-DMRS关联域不出现,所述第二状态包括所述PTRS-DMRS关联域出现,所述第一类信息包括PTRS端口和DMRS端口之间的关联。
具体的,根据本申请的一个方面,上述方法的特征在于,所述第一配置是maxNrofCodeWordsScheduledByDCI,所述第一状态是1,所述第二状态是2,所述第一类信息包括为了传输块2的NDI。
具体的,根据本申请的一个方面,上述方法的特征在于,所述第一配置是DCI中出现TCI,所述第一状态是不使能,所述第二状态是使能,所述第一类信息包括TCI状态。
本申请公开了用于无线通信的第一节点,其中,包括:
第一接收机,接收第一消息集合和第一DCI;其中,至少第一BWP中的每个BWP的第一配置依赖所述第一消息集合,所述第一DCI指示所述至少第一BWP;
第一处理机,作为接收所述第一DCI的响应,在所述至少第一BWP上操作无线信号;
其中,所述操作是接收,或者,所述操作是发送;所述第一配置的候选状态包括第一状态和第二状态;相比被配置了所述第一状态的传统DCI格式,被配置了所述第二状态的所述传统DCI格式额外的指示第一类信息;所述传统DCI格式仅指示一个BWP,所述第一DCI的DCI格式最多指示多个BWP;所述第一BWP在第一服务小区上,所述第一服务小区上的活跃BWP的第一配置为所述第一状态;被应用于所述第一BWP的第一配置为所述第二状态,所述第一DCI是否包括针对所述第一BWP的所述第一类信息依赖所述第一消息集合。
本申请公开了被用于无线通信的第二节点,其中,包括:
第一发射机,发送第一消息集合和第一DCI;其中,至少第一BWP中的每个BWP的第一配置依赖所述第一消息集合,所述第一DCI指示所述至少第一BWP;
第二处理机,作为发送所述第一DCI的响应,在所述至少第一BWP上执行无线信号;
其中,所述执行是发送,或者,所述执行是接收;所述第一配置的候选状态包括第一状态和第二状态;相比被配置了所述第一状态的传统DCI格式,被配置了所述第二状态的所述传统DCI格式额外的指示第一类信息;所述传统DCI格式仅指示一个BWP,所述第一DCI的DCI格式最多指示多个BWP;所述第一BWP在第一服务小区上,所述第一服务小区上的活跃BWP的第一配置为所述第一状态;被应用于所述第一BWP的第一配置为所述第二状态,所述第一DCI是否包括针对所述第一BWP的所述第一类信息依赖所述第一消息集合。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一消息集合、第一DCI和无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线通信的流程图;
图6示出了根据本申请的一个实施例的改变活跃BWP的示意图;
图7示出了根据本申请的一个实施例的BWP动态切换的示意图;
图8示出了根据本申请的一个实施例的Q2个比特域的示意图;
图9示出了根据本申请的一个实施例的第一比特集合的示意图;
图10示出了根据本申请的一个实施例的第一节点中的处理装置的结构框图;
图11示出了根据本申请的一个实施例的第二节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一消息集合、第一DCI和无线信号的流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。
第一节点100在步骤101中接收第一消息集合和第一DCI;其中,至少第一BWP中的每个BWP的第一配置依赖所述第一消息集合,所述第一DCI指示所述至少第一BWP;在步骤102中作为接收所述第一DCI的响应,在所述至少第一BWP上操作无线信号;
实施例1中,所述操作是接收,或者,所述操作是发送;所述第一配置的候选状态包括第一状态和第二状态;相比被配置了所述第一状态的传统DCI格式,被配置了所述第二状态的所述传统DCI格式额外的指示第一类信息;所述传统DCI格式仅指示一个BWP,所述第一DCI的DCI格式最多指示多个BWP;所述第一BWP在第一服务小区上,所述第一服务小区上的活跃BWP的第一配置为所述第一状态;被应用于所述第一BWP的第一配置为所述第二状态,所述第一DCI是否包括针对所述第一BWP的所述第一类信息依赖所述第一消息集合。
作为一个实施例,所述第一消息集合是更高层信令(higher layer signaling)。
作为一个实施例,所述第一消息集合包括多个RRC(Radio Resource Control,无线电资源控制)IE(Information Element,信息单元)。
作为一个实施例,所述操作是接收,当所述第一配置依赖所述第一消息集合中的一个BWP-Downlink IE时,所述第一消息集合为被所述一个BWP-DownlinkIE配置的BWP指示所述第一配置。
作为一个实施例,所述操作是接收,当所述第一配置是通过所述第一消息集合中的一个BWP-Downlink IE中的任一ControlResourceSet(控制资源集合)IE指示时,所述第一消息集合为被所述一个BWP-Downlink IE配置的BWP指示所述第一配置。
作为一个实施例,所述操作是发送,当所述第一配置依赖所述第一消息集合中的一个BWP-Uplink IE时,所述第一消息集合为被所述一个BWP-Uplink IE配置的BWP指示所述第一配置。
作为一个实施例,所述操作是发送,当所述第一配置是通过所述第一消息集合中的一个BWP-Uplink IE中的任一PUCCH-Config(物理上行控制信道配置)IE指示时,所述第一消息集合为被所述一个BWP-Uplink IE配置的BWP指示所述第一配置。
作为一个实施例,所述第一DCI中的第一比特组指示所述至少第一BWP,所述第一比特组包括多个比特。
作为一个实施例,所述第一比特组包括第一比特子组和第二比特子组;所述第一比特子组指示不超过4个服务小区;所述第二比特子组为所述不超过4个服务小区中的每个服务小区指示一个BWP;所述第二比特子组所指示的BWP组成所述至少第一BWP。
作为一个实施例,所述第一比特子组是CI(Carrier indicator,载波指示)域,所述第二比特子组是Bandwidth part indicator(BWP指示)域(field)。
作为上述实施例的一个子实施例,所述Bandwidth part indicator域指示多个BWP。
作为一个实施例,所述第二比特子组包括L1个Bandwidth part indicator域,所述L1是所述第一比特子组所指示的服务小区的数量,所述L1个Bandwidth part indicator域分别指示L1个BWP,所述L1个BWP分别在所述第一比特子组指示的L1个服务小区上。
作为一个实施例,所述第一比特组包括多个Bandwidth part indicator(BWP指示)域(field)。
作为一个实施例,所述至少第一BWP中的每个BWP由所述第一比特组中的一个Bandwidth part indicator域指示,所述第一比特组中的一个Bandwidth part indicator域仅指示一个BWP。
作为一个实施例,所述至少第一BWP中不包括在同一个服务小区上的两个BWP。
作为一个实施例,所述行为在所述至少第一BWP上操作无线信号包括:在所述至少第一BWP中的每一个BWP上操作无线信号。
作为一个实施例,所述行为在所述至少第一BWP上操作无线信号包括:在所述至少第一BWP中的部 分BWP上操作无线信号。
作为一个实施例,所述行为作为接收所述第一DCI的响应,在所述至少第一BWP上操作无线信号是指:所述第一DCI用于调度所述无线信号。
作为一个实施例,所述行为作为接收所述第一DCI的响应,在所述至少第一BWP上操作无线信号是指:所述第一DCI包括所述无线信号的调度信息,所述调度信息包括所占用的时频资源,MCS(Modulation and coding scheme,调制编码方案),NDI(New data indicator,新数据指示)和RV(Redundancy version,冗余版本)等。
作为一个实施例,所述行为作为接收所述第一DCI的响应,在所述至少第一BWP上操作无线信号是指:所述第一DCI用于调度承载所述无线信号的每个物理层信道;所述操作是接收且所述物理层信道是PDSCH(Physical Downlink Shared Channel,物理下行共享信道),或者,所述操作是发送且所述物理层信道是PUSCH(Physical Uplink Shared Channel,物理上行共享信道)。
典型的,所述操作是接收,所述第一DCI被用于将所述第一服务小区上的活跃下行(active downlink)BWP从所述第一服务小区上的所述活跃BWP改变为所述第一BWP。
典型的,所述操作是发送,所述第一DCI被用于将所述第一服务小区上的活跃上行(active uplink)BWP从所述第一服务小区上的所述活跃BWP改变为所述第一BWP。
作为一个实施例,所述第一服务小区上的所述活跃BWP是指在接收所述第一DCI之前的活跃下行BWP,或者,在接收所述第一DCI之前的活跃上行BWP。
作为一个实施例,所述传统DCI格式属于3GPP发布(release)17所支持的DCI格式。
作为一个实施例,所述操作是发送,所述传统DCI格式是DCI格式0_0,或者,DCI格式0_1,或者,0_2。
作为一个实施例,所述操作是接收,所述传统DCI格式是DCI格式1_0,或者,DCI格式1_1,或者,1_2。
作为一个实施例,所述第一DCI的所述DCI格式最多指示4个BWP。
作为一个实施例,所述第一DCI的所述DCI格式最多指示的BWP的数量是可配置的。
作为一个实施例,一个BWP的所述第一配置被所述第一消息集合中的至少一个参数指示,或者,一个BWP的所述第一配置被所述第一消息集合中是否包括至少一个参数所指示。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE,LTE-A及未来5G系统的网络架构200称为EPS(Evolved Packet System,演进分组系统)200。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200或某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路(Sidelink)通信的UE241,NG-RAN(下一代无线接入网络)202,5GC(5G CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,5GS/EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。NG-RAN202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、 订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网,内联网,IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换(Packet switching)服务。
作为一个实施例,本申请中的所述第一节点是所述UE201。
作为一个实施例,本申请中的所述第二节点是所述gNB203。
作为一个实施例,所述UE201与所述gNB203之间的无线链路包括蜂窝网链路。
作为一个实施例,所述第一消息集合的发送者包括所述gNB203。
作为一个实施例,所述第一消息集合的接收者包括所述UE201。
作为一个实施例,所述第一DCI的发送者包括所述gNB203。
作为一个实施例,所述第一DCI的接收者包括所述UE201。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间,或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,负责第一通信节点设备与第二通信节点设备之间,或者两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第一消息集合生成于所述RRC子层306。
作为一个实施例,所述第一DCI生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第一CSI集合生成于所述PHY301,或所述PHY351。
作为一个实施例,本申请中的所述更高层是指物理层以上的层。
实施例4
实施例4示例了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。附图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与传输信道之间的多路复用,以及基于各种优先级量度对第二通信设备450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的星座映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个并行流。发射处理器416随后将每一并行流映射到子载波,将调制后的符号在时域和/或频域中与参考信号(例如,导频)复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以第二通信设备450为目的地的任何并行流。每一并行流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述第一通信设备410处的发送功能,控制器/处理器459基于第一通信设备410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到所述第一通信设 备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的并行流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。控制器/处理器475提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少接收第一消息集合和第一DCI;其中,至少第一BWP中的每个BWP的第一配置依赖所述第一消息集合,所述第一DCI指示所述至少第一BWP;作为接收所述第一DCI的响应,在所述至少第一BWP上操作无线信号;其中,所述操作是接收,或者,所述操作是发送;所述第一配置的候选状态包括第一状态和第二状态;相比被配置了所述第一状态的传统DCI格式,被配置了所述第二状态的所述传统DCI格式额外的指示第一类信息;所述传统DCI格式仅指示一个BWP,所述第一DCI的DCI格式最多指示多个BWP;所述第一BWP在第一服务小区上,所述第一服务小区上的活跃BWP的第一配置为所述第一状态;被应用于所述第一BWP的第一配置为所述第二状态,所述第一DCI是否包括针对所述第一BWP的所述第一类信息依赖所述第一消息集合。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一消息集合和第一DCI;其中,至少第一BWP中的每个BWP的第一配置依赖所述第一消息集合,所述第一DCI指示所述至少第一BWP;作为接收所述第一DCI的响应,在所述至少第一BWP上操作无线信号。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少发送第一消息集合和第一DCI;其中,至少第一BWP中的每个BWP的第一配置依赖所述第一消息集合,所述第一DCI指示所述至少第一BWP;作为发送所述第一DCI的响应,在所述至少第一BWP上执行无线信号;其中,所述执行是发送或者接收。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一消息集合和第一DCI;其中,至少第一BWP中的每个BWP的第一配置依赖所述第一消息集合,所述第一DCI指示所述至少第一BWP;作为发送所述第一DCI的响应,在所述至少第一BWP上执行无线信号;其中,所述执行是发送或者接收。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450。
作为一个实施例,本申请中的所述第二节点包括所述第一通信设备410。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收所述第一消息集合;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送所述第一消息集合。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收所述第一DCI;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475, 所述存储器476}中的至少之一被用于发送所述第一DCI。
实施例5
实施例5示例了根据本申请的一个实施例的无线通信的流程图;如附图5所示。在附图5中,第二节点U1和第一节点U2是通过空中接口传输的通信节点。附图5中,方框F51中的步骤出现且方框F52中的步骤不出现,或者,方框F51中的步骤不出现且方框F52中的步骤出现。
对于第二节点U2,在步骤S511中发送第一消息集合;在步骤S512中发送第一DCI;
对于第二节点U1,在步骤S521中接收第一消息集合;在步骤S522中接收第一DCI;
实施例5中,至少第一BWP中的每个BWP的第一配置依赖所述第一消息集合,所述第一DCI指示所述至少第一BWP;所述第一配置的候选状态包括第一状态和第二状态;相比被配置了所述第一状态的传统DCI格式,被配置了所述第二状态的所述传统DCI格式额外的指示第一类信息;所述传统DCI格式仅指示一个BWP,所述第一DCI的DCI格式最多指示多个BWP;所述第一BWP在第一服务小区上,所述第一服务小区上的活跃BWP的第一配置为所述第一状态;被应用于所述第一BWP的第一配置为所述第二状态,所述第一DCI是否包括针对所述第一BWP的所述第一类信息依赖所述第一消息集合。
作为一个实施例,所述第二节点U2在步骤S513中,作为发送所述第一DCI的响应,在所述至少第一BWP上发送无线信号;所述第二节点U1在步骤S523中,作为接收所述第一DCI的响应,在所述至少第一BWP上接收无线信号。
作为一个实施例,所述第二节点U2在步骤S514中,作为发送所述第一DCI的响应,在所述至少第一BWP上接收无线信号;所述第二节点U1在步骤S524中,作为接收所述第一DCI的响应,在所述至少第一BWP上发送无线信号。
作为一个实施例,所述行为作为发送所述第一DCI的响应,在所述至少第一BWP上接收(或者发送)无线信号是指:所述第一DCI用于调度所述无线信号。
作为一个实施例,所述行为作为发送所述第一DCI的响应,在所述至少第一BWP上接收(或者发送)无线信号是指:所述第一DCI包括所述无线信号的调度信息,所述调度信息包括所占用的时频资源,MCS,NDI和RV等。
作为一个实施例,所述行为作为发送所述第一DCI的响应,在所述至少第一BWP上接收(或者发送)无线信号是指:所述第一DCI用于调度承载所述无线信号的每个PUSCH(或者PDSCH)。
作为一个实施例,所述第一节点U1是本申请中的所述第一节点。
作为一个实施例,所述第二节点U2是本申请中的所述第二节点。
作为一个实施例,所述第二节点U2是所述第一节点U1的服务小区维持基站。
作为一个实施例,Q1个BWP中的每个BWP的所述第一配置依赖所述第一消息集合,所述Q1是大于1的正整数;所述Q1个BWP中的至少一个BWP不属于所述至少第一BWP。
作为一个实施例,所述第一DCI的负载尺寸(payload size)依赖所述第一消息集合。
作为一个实施例,所述Q1为4。
作为一个实施例,所述Q1不大于4。
作为一个实施例,在接收所述第一DCI之前,所述Q1个BWP分别是Q1个服务小区的活跃BWP。
作为一个实施例,所述第一DCI调度所述Q1个服务小区,所述Q1个BWP中至少存在一个BWP没有被所述第一DCI指示。
作为一个实施例,所述Q1个BWP中有且仅有Q2个BWP的所述第一配置是所述第二状态,所述Q2是不大于所述Q1的正整数;当所述至少第一BWP中第一配置是所述第二状态的BWP的数量不超过所述Q2时,所述第一DCI包括针对所述第一BWP的所述第一类信息。
作为一个实施例,所述第一DCI中包括至多Q2个比特域以指示所述第一类信息,所述Q2个比特域中的每个比特域被应用于一个BWP。
作为一个实施例,所述第一DCI是否包括针对所述第一BWP的所述第一类信息依赖所述第一BWP的BWP-Id和所述第一服务小区的小区身份二者中的至少之一。
作为一个实施例,所述小区身份是ServCellIndex。
作为一个实施例,所述小区身份是不大于64的非负整数。
作为一个实施例,所述小区身份是物理小区身份(PCI,Physical cell ID)。
作为一个实施例,针对所述第一BWP的所述第一类信息随着所述第一BWP的所述BWP-Id的减小而优先的被所述第一DCI指示。
作为一个实施例,针对所述第一BWP的所述第一类信息随着所述第一服务小区的所述小区身份的减小而优先的被所述第一DCI指示。
作为一个实施例,所述至少第一BWP中总共有Q3个BWP的第一配置是所述第二状态,所述Q3大于所述Q2。
作为一个实施例,所述Q3个BWP中仅Q2个较高优先级的BWP的所述第一类信息被所述第一DCI指示,所述优先级相应BWP的BWP-Id和相应BWP的服务小区的小区身份二者中之一。
作为一个实施例,一个BWP的所述优先级为所述一个BWP的服务小区的小区身份与4或5的乘积再加上所述一个BWP的BWP-Id所得到的和。
作为一个实施例,对于所述Q3个BWP中的任意两个BWP,如果对应的小区身份不同,则对应较小的小区身份的BWP具备较高的优先级;如果对应的小区身份相同,则对应较小的BWP-Id的BWP具备较高的优先级。
作为一个实施例,所述Q2个较高优先级的BWP的所述第一类信息被所述第一DCI中的Q2个比特域依次指示。
作为一个实施例,如果所述第一DCI包括针对所述第一BWP的所述第一类信息,用于指示针对所述第一BWP的所述第一类信息的比特域在所述第一DCI中位置依赖所述第一BWP的BWP-Id和所述第一服务小区的小区身份二者中的至少之一。
作为一个实施例,用于指示针对所述第一BWP的所述第一类信息的所述比特域是所述第一DCI的Q2个比特域中之一。
作为上述实施例的一个子实施例,用于指示针对所述第一BWP的所述第一类信息的所述比特域在所述第一DCI的Q2个比特域中随着所述第一BWP的所述BWP-Id和第一服务小区的所述小区身份二者中的至少之一而变化。
作为上述实施例的一个子实施例,所述第一BWP的所述BWP-Id和所述第一服务小区的所述小区身份二者中的至少之一被用于从所述Q2个比特域中确定用于指示针对所述第一BWP的所述第一类信息的所述比特域。
作为一个实施例,用于指示针对所述第一BWP的所述第一类信息的所述比特域在所述第一DCI的第一比特集合中的位置依赖所述第一BWP的BWP-Id和第一服务小区的小区身份二者中的至少之一;所述第一DCI的所述第一比特集合不被用于调度第一类BWP且不被用于指示第二类调度信息,所述第一类BWP是同时属于所述Q1个BWP以及所述至少第一BWP的BWP,所述第一DCI中用于指示所述第二类调度信息的比特的数量不随着所述第一配置的所述候选状态而变化。
作为一个实施例,所述第一DCI的负载尺寸不依赖所述第一BWP的配置。
作为一个实施例,方框F52中的步骤出现且方框F51中的步骤不出现;所述第一配置包括PTRS-DMRS关联域是否出现,所述第一状态包括所述PTRS-DMRS关联域不出现,所述第二状态包括所述PTRS-DMRS关联域出现,所述第一类信息包括PTRS端口和DMRS端口之间的关联。
作为上述实施例的一个子实施例,所述传统DCI格式包括DCI格式0_1。
作为上述实施例的一个子实施例,所述传统DCI格式包括DCI格式0_2。
作为一个实施例,所述第一配置是maxNrofCodeWordsScheduledByDCI,所述第一状态是1,所述第二状态是2,所述第一类信息包括为了传输块2的NDI。
作为上述实施例的一个子实施例,方框F51中的步骤出现且方框F52中的步骤不出现。
作为上述实施例的一个子实施例,所述第一类信息包括为了传输块2的RV。
作为上述实施例的一个子实施例,所述第一类信息包括为了传输块2的MCS。
作为上述实施例的一个子实施例,所述传统DCI格式包括DCI格式1_1。
作为一个实施例,所述第一配置是DCI中出现TCI(发送配置指示),所述第一状态是不使能,所述 第二状态是使能,所述第一类信息包括TCI状态。
作为上述实施例的一个子实施例,方框F51中的步骤出现且方框F52中的步骤不出现。
作为上述实施例的一个子实施例,所述传统DCI格式包括DCI格式1_1。
作为上述实施例的一个子实施例,所述传统DCI格式包括DCI格式1_2。
作为上述实施例的一个子实施例,所述传统DCI格式包括DCI格式4_2。
作为上述实施例的一个子实施例,所述第一配置是一个RRC IE的一个域,所述一个域的名字包括tci-PresentDCI。
作为上述实施例的一个子实施例,所述第一配置是一个RRC IE的一个域,所述一个域的名字包括tci-PresentInDCI。
作为上述实施例的一个子实施例,所述第一配置包括tci-PresentInDCI。
作为上述实施例的一个子实施例,所述第一配置包括tci-PresentDCI-1-2。
实施例6
实施例6示例了根据本申请的一个实施例的改变活跃BWP的示意图;如附图6所示。附图6中的第一BWP和第二BWP在第一服务小区上或者被配置给第一服务小区。
在接收第一DCI之前,第二BWP是所述第一服务小区的活跃BWP;第一DCI在第一时隙中被检测出;所述第一DCI指示所述第一服务小区的活跃上行BWP修改为所述第一BWP,或者,所述第一DCI指示所述第一服务小区的活跃下行BWP修改为所述第一BWP。
作为一个实施例,所述第一DCI指示所述第一服务小区的活跃上行BWP修改为所述第一BWP,从所述第一时隙的起始经过了切换延时d1之后的上行时隙中,第一节点能(be able to)在所述第一BWP上发送PUSCH。
作为一个实施例,所述第一DCI指示所述第一服务小区的活跃上行BWP修改为所述第一BWP,所述第一节点从所述第一时刻t1开始停止在所述第一服务小区(即所述第二BWP)上发送PUSCH。
作为一个实施例,所述第一DCI指示所述第一服务小区的活跃下行BWP修改为所述第一BWP,从所述第一时隙的起始经过了切换延时d1之后的下行时隙中,第一节点能在所述第一BWP上接收PDSCH。
作为一个实施例,所述第一DCI指示所述第一服务小区的活跃下行BWP修改为所述第一BWP,所述第一节点从所述第一时刻t1开始停止在所述第一服务小区(即所述第二BWP)上接收PUSCH。
作为一个实施例,所述切换延时d1不小于一个时隙。
作为一个实施例,所述切换延时d1的长度是可配置的。
作为一个实施例,所述切换延时d1的长度是缺省的。
作为一个实施例,所述第一时刻t1是所述第一时隙中的第三个符号的截止时间。
作为一个实施例,所述第一DCI占用的符号不晚于所述第一时刻t1。
作为一个实施例,所述符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述符号是DFT(Discrete Fourier Transformation,离散傅里叶变换)-S(spreading,扩展)-OFDM符号。
作为一个实施例,所述第一DCI的负载尺寸依赖所述第二BWP的配置,并且不依赖所述第一BWP的配置。
作为一个实施例,所述第一DCI调度多个服务小区,所述第一服务小区是所述多个服务小区中之一。
实施例7
实施例7示例了根据本申请的一个实施例的BWP动态切换的示意图;如附图7所示。在实施例7中,Q1个BWP即附图7中的BWP#1,#2,…,#Q1分别在Q1个服务小区上,或者分别被配置给Q1个服务小区。
实施例7中,所述Q1个BWP中的每个BWP的所述第一配置依赖所述第一消息集合,所述Q1是大于1的正整数;所述Q1个BWP中的至少一个BWP不属于所述至少第一BWP。
作为一个实施例,第一DCI的负载尺寸依赖所述Q1个BWP中的每个BWP的所述第一配置。
作为上述实施例的一个子实施例,所述Q1个BWP中的每个BWP的所述第一配置被用于确定第一负载尺寸,第一DCI的所述负载尺寸是所述第一负载尺寸经过DCI尺寸对齐以后的负载尺寸。
作为一个实施例,所述Q1个BWP中有且仅有Q2个BWP的所述第一配置为第二状态,第一DCI中预留给第一类信息的比特宽度(即比特的数量)随着所述Q2的增加而增加。
作为一个实施例,在第一DCI之前,所述Q1个BWP分别是Q1个服务小区的活跃BWP;第二BWP是所述Q1个BWP中之一,所述第一服务小区是所述Q1个服务小区中之一;所述第二BWP是所述第一服务小区的上行BWP,所述第一DCI指示所述第一服务小区的活跃上行BWP改变为第一BWP,或者,所述第二BWP是所述第一服务小区的下行BWP,所述第一DCI指示所述第一服务小区的活跃下行BWP改变为第一BWP。
作为一个实施例,所述第一DCI指示的至少第一BWP由Q3个BWP组成,所述Q3是大于1且不大于Q1的正整数;所述Q3个BWP分别属于Q3个服务小区上,所述Q1个服务小区中至少一个服务小区不属于所述Q3个服务小区(即不被所述第一DCI调度);所述至少一个服务小区上的活跃BWP不被所述第一DCI改变。
实施例8
实施例8示例了根据本申请的一个实施例的Q2个比特域的示意图;如附图8所示。实施例8中,Q2个比特域即附图8中的域#1,…,#Q2属于第一DCI;所述Q2个比特域分别指示或者被预留给Q2个BWP的第一类信息。
当第一DCI指示的或者调度的所述至少第一BWP中第一配置是所述第二状态的BWP的数量不超过所述Q2时,所述第一DCI包括针对所述第一BWP的所述第一类信息。
作为一个实施例,所述至少第一BWP中所有第一配置为所述第二状态的(不超过Q2个)BWP按照优先级依次被所述Q2个比特域指示。
作为一个实施例,当第一DCI指示的或者调度的所述至少第一BWP中第一配置是所述第二状态的BWP的数量小于所述Q2时,所述Q2个比特域中未被使用的比特域被用于预留(reserved)比特或者被固定设置为0。
作为一个实施例,所述Q2个比特域在所述第一DCI中是连续的。
作为一个实施例,所述第一DCI的DCI格式中不存在一个比特不属于所述Q2个比特域且位于所述域#1和所述域#Q2之间。
作为一个实施例,所述Q2个比特域在所述第一DCI中是离散的。
作为一个实施例,所述第一DCI的DCI格式中存在至少一个比特或者比特域不属于所述Q2个比特域且位于所述域#1和所述域#Q2之间。
实施例8能够和现有系统保持较好的兼容性,避免设计针对多个BWP的第一类信息的联合编码(joint encoding)。
在实施例8中,所述K个子域分别被所述第一节点用于确定K个小区索引,所述K个小区索引分别被分配给所述K个小区。在附图8中,所述K个子域分别被表示为子域#0,...,子域#(K-1);所述K个小区索引分别被表示为小区索引#0,...,小区索引#(K-1)。
作为一个实施例,所述K个子域中任一子域包括DCI域Carrier indicator中的全部或部分比特。
作为一个实施例,所述K个子域分别包括一个DCI域Carrier indicator中的不同比特。
作为一个实施例,所述K个子域分别包括K个DCI域Carrier indicator中的全部或部分比特。
作为一个实施例,所述K个子域分别包括K个DCI域Carrier indicator。
作为一个实施例,所述K个子域分别是K个DCI域Carrier indicator。
作为一个实施例,所述K个小区索引中的任一小区索引是一个ServCellIndex或SCellIndex。
作为一个实施例,所述ServCellIndex和所述SCellIndex的定义参见3GPP TS38.331。
作为一个实施例,所述K个小区索引分别是非负整数。
作为一个实施例,所述K个小区索引分别是不大于32的非负整数。
作为一个实施例,所述K个小区索引两两互不相等。
作为一个实施例,所述K个小区索引分别被用于标识所述K个小区。
作为一个实施例,所述K个小区索引分别是所述K个小区的小区索引。
作为一个实施例,所述K个子域分别指示所述K个小区索引。
作为一个实施例,所述K个子域分别显式的指示所述K个小区索引。
作为一个实施例,所述K个子域分别指示所述K个小区索引对应的Carrier indicator域的码点(codepoint)。
作为一个实施例,所述K个子域分别指示所述K个小区索引对应的Carrier indicator域的值。
作为一个实施例,所述K个子域分别隐式的指示所述K个小区索引。
作为一个实施例,所述K个子域被用于确定所述K个小区。
作为一个实施例,所述第一DCI的所述第二域被用于确定所述K个小区。
作为一个实施例,所述K个子域分别指示所述K个小区。
作为一个实施例,所述K个子域属于K0个子域,K0是不小于所述K的正整数;所述K0个子域分别和K0个小区索引对应,所述K个小区索引属于所述K0个小区索引;对于所述K0个小区索引中的任一给定小区索引,当所述K0个子域中和所述给定小区索引对应的子域的值等于第一数值时,所述给定小区索引所标识的小区是所述K个小区中之一;当所述K0个子域中和所述给定小区索引对应的子域的值不等于所述第一数值时,所述给定小区索引所标识的小区不属于所述K个小区。
作为上述实施例的一个子实施例,所述K0个子域分别是K0个比特,所述第一数值等于1。
作为上述实施例的一个子实施例,所述K0个子域分别是K0个比特,所述第一数值等于0。
作为上述实施例的一个子实施例,所述K0个子域分别和所述K0个小区索引之间的对应关系是更高层信令配置的。
作为一个实施例,所述K个小区索引被用于确定所述第一小区。
作为一个实施例,所述K个小区索引被用于确定所述第一CSI集合在所述K个小区中的所述第一小区的所述PUSCH上被发送。
作为一个实施例,所述句子所述第一DCI的所述第二域被用于确定所述第一小区的意思包括:所述第二域包括所述K个子域中的至少之一,所述K个子域分别被用于确定所述K个小区索引,所述K个小区索引被用于确定所述第一小区。
作为一个实施例,所述句子所述第一DCI的所述第二域被用于确定所述第一小区的意思包括:所述第二域包括所述K个子域中的至少之一,所述K个子域分别被用于确定所述K个小区索引,所述K个小区索引被用于确定所述第一CSI集合在所述K个小区中的所述第一小区的所述PUSCH上被发送。
作为一个实施例,所述K个小区中的哪个小区被配置了PUCCH被用于确定所述第一小区。
作为一个实施例,所述K个小区中的哪个小区被配置了PUCCH被用于确定所述第一CSI集合在所述K个小区中的所述第一小区的所述PUSCH上被发送。
作为一个实施例,所述K个小区中的一个小区被配置了PUCCH。
作为一个实施例,所述K个小区中的仅一个小区被配置了PUCCH。
作为一个实施例,所述句子所述第一DCI的所述第二域被用于确定所述第一小区的意思包括:所述第二域包括所述K个子域中的至少之一,所述K个子域分别被用于确定所述K个小区索引,所述K个小区中的哪个小区被配置了PUCCH被用于确定所述第一小区。
作为一个实施例,所述句子所述第一DCI的所述第二域被用于确定所述第一小区的意思包括:所述第二域包括所述K个子域中的至少之一,所述K个子域分别被用于确定所述K个小区索引,所述K个小区中的哪个小区被配置了PUCCH被用于确定所述第一CSI集合在所述K个小区中的所述第一小区的所述PUSCH上被发送。
作为一个实施例,所述第一小区是所述K个小区中被配置了PUCCH的小区。
作为一个实施例,所述第一小区是所述K个小区中唯一被配置了PUCCH的小区。
作为一个实施例,所述句子所述第一DCI的所述第二域被用于确定所述第一小区的意思包括:所述第二域包括所述K个子域中的至少之一,所述K个子域分别被用于确定所述K个小区索引,所述第一小区是所述K个子域中处于所述目标位置的子域所指示的小区。
作为一个实施例,所述句子所述第一DCI的所述第二域被用于确定所述第一小区的意思包括:所述第二域包括所述K个子域中的至少之一,所述K个子域分别被用于确定所述K个小区索引,所述第一CSI集合在所述K个子域中处于所述目标位置的子域所指示的小区的所述PUSCH上被发送。
实施例9
实施例9示例了根据本申请的一个实施例的第一比特集合的示意图,如附图9所示。
实施例9中,第一比特集合由第一DCI中的多个比特或者比特域组成,所述多个比特或者比特域在所述第一DCI中是不连续的或者离散的。如果所述第一DCI包括针对所述第一BWP的所述第一类信息,用于指示针对所述第一BWP的所述第一类信息的比特域在所述第一比特集合中的位置依赖所述第一BWP的BWP-Id和所述第一服务小区的小区身份二者中的至少之一。
作为一个实施例,所述第一比特集合属于所述第一DCI中且不被用于调度第一类BWP的比特,所述第一类BWP是所述至少第一BWP中在接收所述第一DCI之前已经活跃的BWP(即所述第一DCI没有改变所述第一类BWP的活跃状态)。
作为一个实施例,所述第一比特集合属于所述第一DCI中且不被用于指示第二类调度信息的比特,所述第二类调度信息在所述第一DCI中的比特宽度(即比特的数量)不随着所述第一配置而变化。
作为一个实施例,所述第二类调度信息在所述第一DCI中的比特宽度是固定的,或者,所述第二类调度信息在所述第一DCI中的比特宽度仅依赖所述第一DCI的DCI格式,或者,所述第二类调度信息在所述第一DCI中的比特宽度依赖用于配置服务小区且不用于配置特定(particular)BWP的参数。
作为一个实施例,所述第二类调度信息在所述第一DCI中的比特宽度依赖ServingCellConfig IE,且不依赖所述ServingCellConfig IE中的BWP-Downlink域,且不依赖所述ServingCellConfig IE中的BWP-Uplink域。
作为一个实施例,所述第二类调度信息的指示比特包括TDRA(Time Domain Resource Assignment,时域资源分配)域。
作为一个实施例,所述第二类调度信息的指示比特包括CI(Carrier indicator,载波指示)域。
作为一个实施例,所述第二类调度信息的指示比特包括Bandwidth part indicator(BWP指示)域。
作为一个实施例,所述第二类调度信息的指示比特包括HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号(process number)域。
作为一个实施例,所述第二类调度信息的指示比特包括TPC(Transmit power control,发送功率)命令(command)。
上述所述第二类调度信息的指示比特对于上行授予信令和下行授予信令是通用的,可以任意组合。
作为一个实施例,所述第一DCI是上行授予(Uplink Grant)信令,所述第二类调度信息的指示比特包括DAI(downlink assignment index,下行分配索引)、UL/SUL indicator(上行/补充上行指示)等域。
作为一个实施例,所述第一DCI是下行授予(Downlink Grant)信令,所述第二类调度信息的指示比特包括VRB-to-PRB mapping(虚拟资源块到物理资源块映射)、为了transport block 1(传输块1)的MCS、为了transport block 1的RV、为了transport block 1的NDI、PUCCH resource indicator(物理上行控制信道资源指示)和PDSCH-to-HARQ_feedback timing indicator(物理下行共享信道到HARQ反馈时间指示)等域。
作为一个实施例,用于指示针对所述第一BWP的所述第一类信息的比特域在所述第一比特集合中的位置随着所述第一BWP的所述BWP-Id和第一服务小区的所述小区身份二者中的至少之一而变化。
上述实施例使得根据优先级调度BWP,在DCI负载尺寸不足的条件下确保高优先级的BWP的调度。具体的方案可以类比实施例5中的实施方式。
作为一个实施例,用于指示针对所述第一BWP的所述第一类信息的比特包括两个比特域中的至少部 分比特;所述两个比特域是假设所述第一DCI没有改变活跃上行BWP或者活跃下行BWP的条件下(即所述第一DCI指示的所述至少第一BWP中每个BWP都是所述Q1个BWP中之一)所述第一DCI的DCI格式中的两个域。
上述实施例使得所述第一比特集合的重解读不再受限于原始的比特域的限制,能避免比特浪费。
作为一个实施例,所述第一DCI中用于指示针对所述第一BWP的所述第一类信息的比特的数量依赖所述第一BWP的配置信令。
作为一个实施例,所述配置信令包括BWP-Uplink或者BWP-Downlink。
作为一个实施例,用于指示针对所述第一BWP的所述第一类信息的所述比特域在所述第一DCI的第一比特集合中的位置依赖所述第一BWP的BWP-Id和第一服务小区的小区身份二者中的至少之一;所述第一DCI的所述第一比特集合不被用于调度第一类BWP且不被用于指示第二类调度信息,所述第一类BWP是同时属于所述Q1个BWP以及所述至少第一BWP的BWP,所述第一DCI中用于指示所述第二类调度信息的比特的数量不随着所述第一配置的所述候选状态而变化。
作为一个实施例,所述第一DCI的负载尺寸不依赖所述第一BWP的配置信令。
作为一个实施例,所述第一DCI用于上行授予,所述第一配置包括PTRS-DMRS关联域是否出现,所述第一状态包括所述PTRS-DMRS关联域不出现,所述第二状态包括所述PTRS-DMRS关联域出现,所述第一类信息包括PTRS端口和DMRS端口之间的关联;所述传统DCI格式包括DCI格式0_1和DCI格式0_2。
作为一个实施例,所述第一DCI用于下行授予,所述第一配置是maxNrofCodeWordsScheduledByDCI,所述第一状态是1,所述第二状态是2,所述第一类信息包括为了传输块2的NDI,所述传统DCI格式包括DCI格式1_1。
作为上述实施例的一个子实施例,所述第一类信息包括为了传输块2的RV和为了传输块2的MCS。
作为一个实施例,所述第一DCI用于下行授予,所述第一配置是DCI中出现TCI,所述第一状态是不使能,所述第二状态是使能,所述第一类信息包括TCI状态;所述传统DCI格式包括DCI格式1_1和DCI格式1_2。
作为上述实施例的一个子实施例,所述传统DCI格式包括DCI格式4_2。
作为上述实施例的一个子实施例,所述第一配置包括tci-PresentInDCI。
作为上述实施例的一个子实施例,所述第一配置包括tci-PresentDCI-1-2。
实施例10
实施例10示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;如附图10所示。在附图10中,第一节点中的处理装置1400包括第一接收机1401和第一处理机1402。
在实施例10中,第一接收机1401接收第一消息集合和第一DCI;其中,至少第一BWP中的每个BWP的第一配置依赖所述第一消息集合,所述第一DCI指示所述至少第一BWP;第一处理机1402作为接收所述第一DCI的响应,在所述至少第一BWP上操作无线信号;
实施例10中,所述操作是接收,或者,所述操作是发送;所述第一配置的候选状态包括第一状态和第二状态;相比被配置了所述第一状态的传统DCI格式,被配置了所述第二状态的所述传统DCI格式额外的指示第一类信息;所述传统DCI格式仅指示一个BWP,所述第一DCI的DCI格式最多指示多个BWP;所述第一BWP在第一服务小区上,所述第一服务小区上的活跃BWP的第一配置为所述第一状态;被应用于所述第一BWP的第一配置为所述第二状态,所述第一DCI是否包括针对所述第一BWP的所述第一类信息依赖所述第一消息集合。
作为一个实施例,Q1个BWP中的每个BWP的所述第一配置依赖所述第一消息集合,所述Q1是大于1的正整数;所述Q1个BWP中的至少一个BWP不属于所述至少第一BWP。
作为一个实施例,所述Q1个BWP中有且仅有Q2个BWP的所述第一配置是所述第二状态,所述Q2是不大于所述Q1的正整数;当所述至少第一BWP中第一配置是所述第二状态的BWP的数量不超过所述Q2时,所述第一DCI包括针对所述第一BWP的所述第一类信息。
作为一个实施例,所述第一DCI是否包括针对所述第一BWP的所述第一类信息依赖所述第一BWP 的BWP-Id和所述第一服务小区的小区身份二者中的至少之一。
作为一个实施例,如果所述第一DCI包括针对所述第一BWP的所述第一类信息,用于指示针对所述第一BWP的所述第一类信息的比特域在所述第一DCI中位置依赖所述第一BWP的BWP-Id和所述第一服务小区的小区身份二者中的至少之一。
作为一个实施例,所述操作是发送;所述第一配置是PTRS-DMRS关联域是否出现,所述第一状态是所述PTRS-DMRS关联域不出现,所述第二状态是所述PTRS-DMRS关联域出现,所述第一类信息是PTRS端口和DMRS端口之间的关联。
作为上述实施例的一个子实施例,所述第一配置通过PTRS-UplinkConfig、变换预编码(transform precoder)是否使能、maxRank等参数配置,具体的实施方式参考TS38.212。
作为一个实施例,所述第一配置是maxNrofCodeWordsScheduledByDCI,所述第一状态是1,所述第二状态是2,所述第一类信息包括为了传输块2的NDI。
作为一个实施例,所述第一配置是DCI中出现TCI,所述第一状态是不使能,所述第二状态是使能,所述第一类信息包括TCI状态。
作为一个实施例,所述第一接收机1401包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的部分或者全部。
作为一个实施例,所述第一处理机1402包括实施例4中的{天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的部分或者全部。
作为一个实施例,所述第一处理机1402包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的部分或者全部。
实施例11
实施例11示例了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;如附图11所示。在附图11中,第二节点中的处理装置1500包括第一发射机1501和第二处理机1502。
在实施例11中,第一发射机1501发送第一消息集合和第一DCI;其中,至少第一BWP中的每个BWP的第一配置依赖所述第一消息集合,所述第一DCI指示所述至少第一BWP;
第二处理机1502作为发送所述第一DCI的响应,在所述至少第一BWP上执行无线信号;
实施例11中,所述执行是发送,或者,所述执行是接收;所述第一配置的候选状态包括第一状态和第二状态;相比被配置了所述第一状态的传统DCI格式,被配置了所述第二状态的所述传统DCI格式额外的指示第一类信息;所述传统DCI格式仅指示一个BWP,所述第一DCI的DCI格式最多指示多个BWP;所述第一BWP在第一服务小区上,所述第一服务小区上的活跃BWP的第一配置为所述第一状态;被应用于所述第一BWP的第一配置为所述第二状态,所述第一DCI是否包括针对所述第一BWP的所述第一类信息依赖所述第一消息集合。
作为一个实施例,Q1个BWP中的每个BWP的所述第一配置依赖所述第一消息集合,所述Q1是大于1的正整数;所述Q1个BWP中的至少一个BWP不属于所述至少第一BWP。
作为一个实施例,所述Q1个BWP中有且仅有Q2个BWP的所述第一配置是所述第二状态,所述Q2是不大于所述Q1的正整数;当所述至少第一BWP中第一配置是所述第二状态的BWP的数量不超过所述Q2时,所述第一DCI包括针对所述第一BWP的所述第一类信息。
作为一个实施例,所述第一DCI是否包括针对所述第一BWP的所述第一类信息依赖所述第一BWP的BWP-Id和所述第一服务小区的小区身份二者中的至少之一。
作为一个实施例,如果所述第一DCI包括针对所述第一BWP的所述第一类信息,用于指示针对所述第一BWP的所述第一类信息的比特域在所述第一DCI中位置依赖所述第一BWP的BWP-Id和所述第一服务小区的小区身份二者中的至少之一。
作为一个实施例,所述操作是发送;所述第一配置是PTRS-DMRS关联域是否出现,所述第一状态是所述PTRS-DMRS关联域不出现,所述第二状态是所述PTRS-DMRS关联域出现,所述第一类信息是PTRS端口和DMRS端口之间的关联。
作为一个实施例,所述第一配置是maxNrofCodeWordsScheduledByDCI,所述第一状态是1,所述第二 状态是2,所述第一类信息包括为了传输块2的NDI。
作为一个实施例,所述第一配置是DCI中出现TCI,所述第一状态是不使能,所述第二状态是使能,所述第一类信息包括TCI状态。
作为一个实施例,所述第一发射机1501包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的部分或者全部。
作为一个实施例,所述第二处理机1502包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476}中的部分或者全部。
作为一个实施例,所述第二处理机1502包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的部分或者全部。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,,交通工具,车辆,RSU,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,小蜂窝基站,家庭基站,中继基站,eNB,gNB,TRP(Transmitter Receiver Point,发送接收节点),GNSS,中继卫星,卫星基站,空中基站,RSU(Road Side Unit,路边单元),无人机,测试设备,例如模拟基站部分功能的收发装置或信令测试仪等无线通信设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (32)

  1. 用于无线通信的第一节点,其中,包括:
    第一接收机,接收第一消息集合和第一DCI;其中,至少第一BWP中的每个BWP的第一配置依赖所述第一消息集合,所述第一DCI指示所述至少第一BWP;
    第一处理机,作为接收所述第一DCI的响应,在所述至少第一BWP上操作无线信号;
    其中,所述操作是接收,或者,所述操作是发送;所述第一配置的候选状态包括第一状态和第二状态;相比被配置了所述第一状态的传统DCI格式,被配置了所述第二状态的所述传统DCI格式额外的指示第一类信息;所述传统DCI格式仅指示一个BWP,所述第一DCI的DCI格式最多指示多个BWP;所述第一BWP在第一服务小区上,所述第一服务小区上的活跃BWP的第一配置为所述第一状态;被应用于所述第一BWP的第一配置为所述第二状态,所述第一DCI是否包括针对所述第一BWP的所述第一类信息依赖所述第一消息集合。
  2. 根据权利要求1所述的第一节点,其特征在于,Q1个BWP中的每个BWP的所述第一配置依赖所述第一消息集合,所述Q1是大于1的正整数;所述Q1个BWP中的至少一个BWP不属于所述至少第一BWP。
  3. 根据权利要求2所述的第一节点,其特征在于,所述Q1个BWP中有且仅有Q2个BWP的所述第一配置是所述第二状态,所述Q2是不大于所述Q1的正整数;当所述至少第一BWP中第一配置是所述第二状态的BWP的数量不超过所述Q2时,所述第一DCI包括针对所述第一BWP的所述第一类信息。
  4. 根据权利要求2或3所述的第一节点,其特征在于,所述第一DCI是否包括针对所述第一BWP的所述第一类信息依赖所述第一BWP的BWP-Id和所述第一服务小区的小区身份二者中的至少之一。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,如果所述第一DCI包括针对所述第一BWP的所述第一类信息,用于指示针对所述第一BWP的所述第一类信息的比特域在所述第一DCI中位置依赖所述第一BWP的BWP-Id和所述第一服务小区的小区身份二者中的至少之一。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,所述操作是发送;所述第一配置包括PTRS-DMRS关联域是否出现,所述第一状态包括所述PTRS-DMRS关联域不出现,所述第二状态包括所述PTRS-DMRS关联域出现,所述第一类信息包括PTRS端口和DMRS端口之间的关联。
  7. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,所述第一配置是maxNrofCodeWordsScheduledByDCI,所述第一状态是1,所述第二状态是2,所述第一类信息包括为了传输块2的NDI。
  8. 根据权利要求1至5、7中任一权利要求所述的第一节点,其特征在于,所述第一配置是DCI中出现TCI,所述第一状态是不使能,所述第二状态是使能,所述第一类信息包括TCI状态。
  9. 被用于无线通信的第二节点,其中,包括:
    第一发射机,发送第一消息集合和第一DCI;其中,至少第一BWP中的每个BWP的第一配置依赖所述第一消息集合,所述第一DCI指示所述至少第一BWP;
    第二处理机,作为发送所述第一DCI的响应,在所述至少第一BWP上执行无线信号;
    其中,所述执行是发送,或者,所述执行是接收;所述第一配置的候选状态包括第一状态和第二状态;相比被配置了所述第一状态的传统DCI格式,被配置了所述第二状态的所述传统DCI格式额外的指示第一类信息;所述传统DCI格式仅指示一个BWP,所述第一DCI的DCI格式最多指示多个BWP;所述第一BWP在第一服务小区上,所述第一服务小区上的活跃BWP的第一配置为所述第一状态;被应用于所述第一BWP的第一配置为所述第二状态,所述第一DCI是否包括针对所述第一BWP的所述第一类信息依赖所述第一消息集合。
  10. 根据权利要求9所述的第二节点,其特征在于,Q1个BWP中的每个BWP的所述第一配置依赖所述第一消息集合,所述Q1是大于1的正整数;所述Q1个BWP中的至少一个BWP不属于所述至少第一BWP。
  11. 根据权利要求9或10所述的第二节点,其特征在于,所述Q1个BWP中有且仅有Q2个BWP的所述第一配置是所述第二状态,所述Q2是不大于所述Q1的正整数;当所述至少第一BWP中第一配置是所述第二状态的BWP的数量不超过所述Q2时,所述第一DCI包括针对所述第一BWP的所述第一类信息。
  12. 根据权利要求9至11中任一权利要求所述的第二节点,其特征在于,所述第一DCI是否包括针 对所述第一BWP的所述第一类信息依赖所述第一BWP的BWP-Id和所述第一服务小区的小区身份二者中的至少之一。
  13. 根据权利要求9至12中任一权利要求所述的第二节点,其特征在于,如果所述第一DCI包括针对所述第一BWP的所述第一类信息,用于指示针对所述第一BWP的所述第一类信息的比特域在所述第一DCI中位置依赖所述第一BWP的BWP-Id和所述第一服务小区的小区身份二者中的至少之一。
  14. 根据权利要求9至13中任一权利要求所述的第二节点,其特征在于,所述操作是发送;所述第一配置是PTRS-DMRS关联域是否出现,所述第一状态是所述PTRS-DMRS关联域不出现,所述第二状态是所述PTRS-DMRS关联域出现,所述第一类信息是PTRS端口和DMRS端口之间的关联。
  15. 根据权利要求9至14中任一权利要求所述的第二节点,其特征在于,所述第一配置是maxNrofCodeWordsScheduledByDCI,所述第一状态是1,所述第二状态是2,所述第一类信息包括为了传输块2的NDI。
  16. 根据权利要求9至15中任一权利要求所述的第二节点,其特征在于,所述第一配置是DCI中出现TCI,所述第一状态是不使能,所述第二状态是使能,所述第一类信息包括TCI状态。
  17. 用于无线通信的第一节点中的方法,其中,包括:
    接收第一消息集合和第一DCI;其中,至少第一BWP中的每个BWP的第一配置依赖所述第一消息集合,所述第一DCI指示所述至少第一BWP;
    作为接收所述第一DCI的响应,在所述至少第一BWP上操作无线信号;
    其中,所述操作是接收,或者,所述操作是发送;所述第一配置的候选状态包括第一状态和第二状态;相比被配置了所述第一状态的传统DCI格式,被配置了所述第二状态的所述传统DCI格式额外的指示第一类信息;所述传统DCI格式仅指示一个BWP,所述第一DCI的DCI格式最多指示多个BWP;所述第一BWP在第一服务小区上,所述第一服务小区上的活跃BWP的第一配置为所述第一状态;被应用于所述第一BWP的第一配置为所述第二状态,所述第一DCI是否包括针对所述第一BWP的所述第一类信息依赖所述第一消息集合。
  18. 根据权利要求17所述的第一节点中的方法,其特征在于,Q1个BWP中的每个BWP的所述第一配置依赖所述第一消息集合,所述Q1是大于1的正整数;所述Q1个BWP中的至少一个BWP不属于所述至少第一BWP。
  19. 根据权利要求17或18所述的第一节点中的方法,其特征在于,所述Q1个BWP中有且仅有Q2个BWP的所述第一配置是所述第二状态,所述Q2是不大于所述Q1的正整数;当所述至少第一BWP中第一配置是所述第二状态的BWP的数量不超过所述Q2时,所述第一DCI包括针对所述第一BWP的所述第一类信息。
  20. 根据权利要求17至19中任一权利要求所述的第一节点中的方法,其特征在于,所述第一DCI是否包括针对所述第一BWP的所述第一类信息依赖所述第一BWP的BWP-Id(BWP身份)和所述第一服务小区的小区身份二者中的至少之一。
  21. 根据权利要求17至20中任一权利要求所述的第一节点中的方法,其特征在于,如果所述第一DCI包括针对所述第一BWP的所述第一类信息,用于指示针对所述第一BWP的所述第一类信息的比特域在所述第一DCI中位置依赖所述第一BWP的BWP-Id和所述第一服务小区的小区身份二者中的至少之一。
  22. 根据权利要求17至21中任一权利要求所述的第一节点中的方法,其特征在于,所述操作是发送;所述第一配置包括PTRS(Phase-tracking reference signal,相位跟踪参考信号)-DMRS(Demodulation reference signal,解调参考信号)关联(association)域是否出现,所述第一状态包括所述PTRS-DMRS关联域不出现,所述第二状态包括所述PTRS-DMRS关联域出现,所述第一类信息包括PTRS端口和DMRS端口之间的关联。
  23. 根据权利要求17至22中任一权利要求所述的第一节点中的方法,其特征在于,所述第一配置是maxNrofCodeWordsScheduledByDCI,所述第一状态是1,所述第二状态是2,所述第一类信息包括为了传输块2的NDI。
  24. 根据权利要求17至23中任一权利要求所述的第一节点中的方法,其特征在于,所述第一配置是DCI中出现TCI,所述第一状态是不使能,所述第二状态是使能,所述第一类信息包括TCI状态。
  25. 用于无线通信的第二节点中的方法,其中,包括:
    发送第一消息集合和第一DCI;其中,至少第一BWP中的每个BWP的第一配置依赖所述第一消息集合,所述第一DCI指示所述至少第一BWP;
    作为发送所述第一DCI的响应,在所述至少第一BWP上执行无线信号;
    其中,所述执行是发送,或者,所述执行是接收;所述第一配置的候选状态包括第一状态和第二状态;相比被配置了所述第一状态的传统DCI格式,被配置了所述第二状态的所述传统DCI格式额外的指示第一类信息;所述传统DCI格式仅指示一个BWP,所述第一DCI的DCI格式最多指示多个BWP;所述第一BWP在第一服务小区上,所述第一服务小区上的活跃BWP的第一配置为所述第一状态;被应用于所述第一BWP的第一配置为所述第二状态,所述第一DCI是否包括针对所述第一BWP的所述第一类信息依赖所述第一消息集合。
  26. 根据权利要求25所述的第二节点中的方法,其特征在于,Q1个BWP中的每个BWP的所述第一配置依赖所述第一消息集合,所述Q1是大于1的正整数;所述Q1个BWP中的至少一个BWP不属于所述至少第一BWP。
  27. 根据权利要求25或26所述的第二节点中的方法,其特征在于,所述Q1个BWP中有且仅有Q2个BWP的所述第一配置是所述第二状态,所述Q2是不大于所述Q1的正整数;当所述至少第一BWP中第一配置是所述第二状态的BWP的数量不超过所述Q2时,所述第一DCI包括针对所述第一BWP的所述第一类信息。
  28. 根据权利要求25至27中任一权利要求所述的第二节点中的方法,其特征在于,所述第一DCI是否包括针对所述第一BWP的所述第一类信息依赖所述第一BWP的BWP-Id和所述第一服务小区的小区身份二者中的至少之一。
  29. 根据权利要求25至28中任一权利要求所述的第二节点中的方法,其特征在于,如果所述第一DCI包括针对所述第一BWP的所述第一类信息,用于指示针对所述第一BWP的所述第一类信息的比特域在所述第一DCI中位置依赖所述第一BWP的BWP-Id和所述第一服务小区的小区身份二者中的至少之一。
  30. 根据权利要求25至29中任一权利要求所述的第二节点中的方法,其特征在于,所述执行是接收;所述第一配置包括PTRS-DMRS关联域是否出现,所述第一状态包括所述PTRS-DMRS关联域不出现,所述第二状态包括所述PTRS-DMRS关联域出现,所述第一类信息包括PTRS端口和DMRS端口之间的关联。
  31. 根据权利要求25至30中任一权利要求所述的第二节点中的方法,其特征在于,所述第一配置是maxNrofCodeWordsScheduledByDCI,所述第一状态是1,所述第二状态是2,所述第一类信息包括为了传输块2的NDI。
  32. 根据权利要求25至31中任一权利要求所述的第二节点中的方法,其特征在于,所述第一配置是DCI中出现TCI,所述第一状态是不使能,所述第二状态是使能,所述第一类信息包括TCI状态。
PCT/CN2023/120645 2022-09-24 2023-09-22 被用于无线通信的节点中的方法和装置 WO2024061341A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211168768.0 2022-09-24
CN202211168768.0A CN117834097A (zh) 2022-09-24 2022-09-24 被用于无线通信的节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2024061341A1 true WO2024061341A1 (zh) 2024-03-28

Family

ID=90453906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/120645 WO2024061341A1 (zh) 2022-09-24 2023-09-22 被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN117834097A (zh)
WO (1) WO2024061341A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020143802A1 (zh) * 2019-01-11 2020-07-16 华为技术有限公司 一种通信方法及装置
CN113543325A (zh) * 2020-04-17 2021-10-22 维沃移动通信有限公司 下行控制信息dci传输方法和通信设备
WO2022153491A1 (ja) * 2021-01-15 2022-07-21 株式会社Nttドコモ 端末、無線通信方法及び基地局
CN114978447A (zh) * 2021-02-18 2022-08-30 上海推络通信科技合伙企业(有限合伙) 一种被用于无线通信的节点中的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020143802A1 (zh) * 2019-01-11 2020-07-16 华为技术有限公司 一种通信方法及装置
CN113543325A (zh) * 2020-04-17 2021-10-22 维沃移动通信有限公司 下行控制信息dci传输方法和通信设备
WO2022153491A1 (ja) * 2021-01-15 2022-07-21 株式会社Nttドコモ 端末、無線通信方法及び基地局
CN114978447A (zh) * 2021-02-18 2022-08-30 上海推络通信科技合伙企业(有限合伙) 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN117834097A (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
WO2021023039A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023038A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021052166A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021103926A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021164558A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021093512A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023037A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020253532A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022166702A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022193644A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021213251A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024061341A1 (zh) 被用于无线通信的节点中的方法和装置
WO2023202378A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023185522A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024037475A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024027693A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024088393A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021088617A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023186163A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024022239A1 (zh) 一种用于无线通信的方法和装置
WO2023221800A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023103831A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023216894A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867626

Country of ref document: EP

Kind code of ref document: A1