WO2019076207A1 - 数据传输的确认方法及设备 - Google Patents

数据传输的确认方法及设备 Download PDF

Info

Publication number
WO2019076207A1
WO2019076207A1 PCT/CN2018/109394 CN2018109394W WO2019076207A1 WO 2019076207 A1 WO2019076207 A1 WO 2019076207A1 CN 2018109394 W CN2018109394 W CN 2018109394W WO 2019076207 A1 WO2019076207 A1 WO 2019076207A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
terminal
data
network device
index
Prior art date
Application number
PCT/CN2018/109394
Other languages
English (en)
French (fr)
Inventor
杜振国
丁志明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019076207A1 publication Critical patent/WO2019076207A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a method and a device for confirming data transmission.
  • an uplink (UL) transmission adopts a Grant-based manner, that is, a resource that a base station schedules a UE to perform UL transmission, and related transmission parameters. For example, the time domain, the frequency domain, the spatial domain resource, and the Modulation and Coding Scheme (MCS) used for UL transmission.
  • MCS Modulation and Coding Scheme
  • the scenarios considered include Massive Machine Type Communication (mMTC) and Ultra-reliable and Low Latency Communications. , URLLC).
  • mMTC Massive Machine Type Communication
  • URLLC Ultra-reliable and Low Latency Communications.
  • the data generated by the mMTC service is usually small data (that is, each data packet is relatively small).
  • the data transmission occupies much less resources than the signaling interaction before the data transmission (for example, The resources used by the scheduling interaction between the scheduling request and the scheduling authorization process, or the signaling interaction of the random access procedure, which results in low resource utilization, especially in the case of a large number of mMTC devices, the system resources will be largely It is occupied by interactive signaling; the URLLC service requires low latency, and the signaling interaction in the above Grant-based UL transmission process has a large delay due to RRC signaling, so the traditional Grant-based UL transmission It is also difficult to meet the needs of the URLLC business.
  • 5G introduces a Grant-free (also called transmission without grant or Grant-less) transmission method for UL transmission in New Radio (NR).
  • the so-called Grant-free transmission mode means that the UE does not need to request the UL transmission resource from the base station when the data needs to be transmitted, but is selected according to a certain rule in the transmission resource pool (which can be called a Grant-free transmission resource pool) pre-configured by the base station.
  • a transmission unit for UL transmission directly performs UL transmission. In this way, the signaling interaction in the Grant-based UL transmission process can be omitted, thereby reducing signaling overhead and transmission delay, and is particularly suitable for packet transmission and delay sensitive services.
  • the 5G-NR standard has explicitly agreed that mMTC and URLLC support Grant-free transmission.
  • the standard also determines the time-frequency resource used by the base station to configure the Grant-free transmission, that is, configures the Grant-free transmission resource pool.
  • Each Grant-free transmission resource pool includes one or more transmission units. When the UE has data to transmit, one or more transmission units are selected for transmission from the configured Grant-free transmission resource pool.
  • the same Grant-free transmission resource pool is generally configured for multiple UEs at the same time. In this case, although the transmission may fail due to the collision of different UEs selecting the same transmission unit, for the service when the UE is not sure when to arrive, Since multiple UEs share the same Grant-free transmission resource, resource utilization efficiency can be improved.
  • the Grant-free transmission resource pool configured by the base station to one UE is usually periodic, and in one cycle, the base station can configure multiple Grant-free transmission resource pools for one UE.
  • a Grant-free transport resource pool can also be referred to as a Grant-free resource.
  • HARQ Hybrid Automatic Repeat reQust
  • ACK Acknowledgement
  • NACK Negative Acknowledgement
  • One method of performing HARQ acknowledgment on Grant-free transmissions is to use a UL Grant (UL Grant) message.
  • the base station After the base station receives the Grant-free data sent by the UE (correctly decoded or not correctly decoded), and other UL data of the UE needs to be sent, the base station sends a UL Grant message to the UE, where the UE carries the Grant-free ACK/NACK information of the data.
  • the UL Grant message needs to be carried by using a Physical Downlink Control Channel (PDCCH) (ie, using DCI in the PDCCH), and each PDCCH needs to occupy at least one physical resource of the CCE.
  • PDCCH Physical Downlink Control Channel
  • the base station needs to send a large number of UL Grants, that is, a large number of PDCCHs, thereby causing a great waste of resources.
  • the resources of the control part of one downlink subframe are limited, and it is often difficult to carry a large number of PDCCHs.
  • the embodiment of the present application provides a method and device for confirming data transmission to reduce related signaling overhead.
  • the embodiment of the present application provides a method for confirming data transmission, where the method includes: sending, by a first terminal, first data to a network device on a first unlicensed GF resource, where the first GF resource belongs to a first GF resource group, where the first GF resource group includes N GF resources, N ⁇ 1; the first terminal receives a target hybrid automatic repeat request HARQ acknowledgement message sent by the network device, and the target HARQ acknowledgement Corresponding to the first GF resource group, the target HARQ acknowledgement message is used to confirm data of all terminals transmitted on the GF resource of the first GF resource group, where all terminals include the first The terminal, the data of all the terminals includes the first data.
  • the method before the first terminal sends the first data to the network device on the first GF resource, the method further includes: the first terminal Determining, according to an index of a time domain resource of the first GF resource group and an index of the frequency domain resource, a group identifier corresponding to the first GF resource group; the time domain resource includes a subframe or a time slot or a minislot The frequency domain resource includes a subcarrier or a resource block.
  • the method further includes: the first terminal receiving the first configuration information sent by the network device, where the first configuration information includes a group identifier corresponding to the first GF resource group.
  • the receiving, by the first terminal, the target HARQ acknowledgment message sent by the network device includes: Receiving, by the first terminal, a HARQ acknowledgment message sent by the network device, where the first terminal uses the group identifier to descramble the HARQ acknowledgment message, and when the HARQ acknowledgment message is correctly descrambled, determining The HARQ acknowledgement message is the target HARQ acknowledgement message.
  • the receiving, by the first terminal, the target HARQ acknowledgment message sent by the network device includes: Receiving, by the first terminal, a HARQ acknowledgement message sent by the network device; when the HARQ acknowledgement message includes the group identifier, determining that the HARQ acknowledgement message is a target HARQ acknowledgement message.
  • the first terminal sends the first data to the network device on the first GF resource
  • the method further includes: the first terminal receiving second configuration information sent by the network device, where the second configuration information includes a location index of the first terminal in a bit table, the target HARQ confirmation
  • the message includes the bit table, and a value corresponding to the location index in the bit table represents acknowledgement information of the first data.
  • the terminal sends the first data to the network device on the first GF resource
  • the method further includes: the first terminal receiving the third configuration information sent by the network device, where the third configuration information includes a demodulation reference signal of the first terminal in the first GF resource a DMRS index, where the DMRS indicated by the DMRS index is used for transmission of the first data; the first terminal determines, according to the DMRS index, a location index of the first terminal in a bit table, the target HARQ acknowledgement
  • the message includes the bit table, and a value corresponding to the location index in the bit table represents acknowledgement information of the first data.
  • the first terminal sends the first data to the network device on the first GF resource
  • the method further includes: the first terminal receiving fourth configuration information sent by the network device, where the fourth configuration information includes a resource index of the first GF resource, and the first terminal is in the a DMRS index in the first GF resource, where the resource index is an order of the first GF resource in the first GF resource group, and the DMRS indicated by the DMRS index is used for transmission of the first data; Determining, by the first terminal, a location index in the bit table of the first terminal according to the resource index and the DMRS index, where the target HARQ acknowledgement message includes the bit table, the location in the bit table The value corresponding to the index represents the confirmation information of the first data.
  • the target HARQ acknowledgement message is carried in the group common downlink control information G-DCI.
  • the embodiment of the present application provides a method for confirming data transmission, where the method includes: receiving, by a network device, first data sent by a first terminal on a first unlicensed GF resource, where the first GF resource belongs to the first a GF resource group, the first GF resource group includes N GF resources, N ⁇ 1; the network device sends a target hybrid automatic repeat request HARQ acknowledgment message to the first terminal, where the target HARQ acknowledgment message is Corresponding to the first GF resource group, the target HARQ acknowledgment message is used to confirm data of all terminals transmitted on the GF resource of the first GF resource group, where all terminals include the first terminal, The data of all the terminals includes the first data.
  • the method before the receiving, by the network device, the first data sent by the first terminal on the first GF resource, the method further includes: the network device Transmitting the first configuration information to the first terminal, where the first configuration information includes a group identifier corresponding to the first GF resource group.
  • the network device sends a target HARQ acknowledgement message to the first terminal, including: The network device scrambles the target HARQ acknowledgement message according to the group identifier; the network device sends the scrambled target HARQ acknowledgement message to the first terminal.
  • the network device on the first GF resource, receives the first sent by the first terminal Before the data, the method further includes: the network device sending second configuration information to the first terminal, where the second configuration information includes a location index of the first terminal in a bit table, the target HARQ confirmation The message includes the bit table, and a value corresponding to the location index in the bit table represents acknowledgement information of the first data.
  • the network device on the first GF resource, receives the first sent by the first terminal Before the data, the method further includes: third configuration information that is sent by the network device to the first terminal, where the third configuration information includes a demodulation reference of the first terminal in the first GF resource.
  • a signal DMRS index, the DMRS indicated by the DMRS index is used for transmission of the first data.
  • the network device on the first GF resource, receives the first sent by the first terminal Before the data, the method further includes: the network device sending fourth configuration information to the first terminal, where the fourth configuration information includes a resource index of the first GF resource and the first terminal is in the a DMRS index in the first GF resource, where the resource index is an order of the first GF resource in the first GF resource group, and the DMRS indicated by the DMRS index is used for transmission of the first data.
  • the value of the N is predefined, or the value of the N is the network device. Configured.
  • the group identifier includes a group public wireless network temporary identifier G-RNTI.
  • the embodiment of the present application provides a terminal, where the terminal has a function of implementing the behavior of the first terminal in any one of the foregoing first aspects.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the embodiment of the present application provides a network device, where the network device has a function of implementing the behavior of the network device in any one of the foregoing second aspects.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • an embodiment of the present application provides a terminal, where the terminal includes: a processor, a memory, and a transceiver; the transceiver is coupled to the processor, and the processor controls a transceiver operation of the transceiver;
  • the memory is for storing computer executable program code, the program code comprising instructions; when the processor executes the instructions, the instructions cause the terminal to perform any one of the first aspects described above Methods.
  • an embodiment of the present application provides a network device, where the network device includes: a processor, a memory, and a transceiver; the transceiver is coupled to the processor, and the processor controls transmission and reception of the transceiver action;
  • the memory is for storing computer executable program code, the program code comprising instructions; when the processor executes the instruction, the instruction causes the network device to perform any of the second aspect as described above The method described.
  • the embodiment of the present application provides a communication device, including: an interface, and a processor, where the interface is coupled to a processor, and the processor is configured to perform the method according to any one of the foregoing first aspects.
  • the communication device may be a terminal or a chip; the memory may be integrated on the same chip as the processor, or may be separately disposed on different chips.
  • the embodiment of the present application provides a communication device, including: an interface, and a processor, where the interface is coupled to a processor, where the processor is configured to perform the method according to any one of the foregoing second aspects.
  • the communication device may be a network device or a chip; the memory may be integrated on the same chip as the processor, or may be separately disposed on different chips.
  • the embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores a computer program, where the computer program includes at least one piece of code executable by a computer to control execution by the computer.
  • the computer program includes at least one piece of code executable by a computer to control execution by the computer.
  • the embodiment of the present application provides a computer program for performing the operations of any one of the first aspect to the second aspect when the computer program is executed by a computer.
  • the program may be stored in whole or in part on a storage medium packaged with the processing, or may be stored partially or entirely on a memory that is not packaged with the processor.
  • Embodiment 1 A method for confirming data transmission, the method comprising:
  • the network device receives the first data sent by the terminal device on the first GF resource, where the first GF resource belongs to the first GF resource group, and the first GF resource group includes N GF resources, where N ⁇ 1;
  • the network device sends a HARQ acknowledgment message to the terminal device, where the HARQ acknowledgment message corresponds to the first GF resource group, and the HARQ acknowledgment message includes acknowledgment information of the first data.
  • the N GF resources correspond to one HARQ acknowledgment message, and the upper limit of the number of UEs that each GF resource can accommodate is determined (depending on the number of available DMRSs), which makes the length of the Bitmap in the HARQ acknowledgment message fixed, thereby making the HARQ acknowledgment message length Fixed, this is beneficial to reduce the number of blind detections when the UE receives the HARQ acknowledgment message, thereby making the UE more power efficient.
  • Embodiment 2 The method according to Embodiment 1, before the network device receives the first data sent by the terminal device on the first GF resource, the network device sends configuration information to the terminal device, where the configuration The information includes a G-RNTI corresponding to the first GF resource group, and the G-RNTI is used to scramble the HARQ acknowledgement message.
  • Embodiment 3 The method according to the embodiment 1, before the network device receives the first data sent by the terminal device on the first GF resource, the network device sends configuration information to the terminal device, where the configuration The information includes a group identifier corresponding to the first GF resource group, and the group identifier is included in the HARQ acknowledgement message.
  • the group identifier corresponding to the resource group is explicitly carried in the HARQ acknowledgment message, and is used to distinguish the HARQ acknowledgment message corresponding to the GF resource group.
  • the explicit carrying method obviously increases the transmission overhead of the HARQ acknowledgment message, but at the same time has the advantage of high flexibility, which is beneficial to the indication of different HARQ acknowledgment messages in the case of more GF resource groups. .
  • the network device before the network device receives the first data sent by the terminal device on the first GF resource, the network device sends configuration information to the terminal device.
  • the configuration information includes a location index of the terminal device in a bit table, the HARQ acknowledgement message includes the bit table, and a value corresponding to the location index in the bit table indicates confirmation of the first data information.
  • the base station indicates the location index of the UE in the Bitmap of the HARQ acknowledgment message, so that the UE determines which bit or bits of the Bitmap of the HARQ acknowledgment message corresponds to the data sent by itself, so as to determine whether the base station correctly receives the corresponding according to the bit value at the corresponding location. data.
  • the network device before the network device receives the first data sent by the terminal device on the first GF resource, the network device sends configuration information to the terminal device
  • the configuration information includes a resource index of the first GF resource and a DMRS index of the terminal device in the first GF resource of the terminal device, where the resource index is the first GF resource in the The ordering in the first GF resource group.
  • the base station indicates a resource index and a DMRS index for the UE, such that the UE determines its own location index in the Bitmap of the HARQ acknowledgment message based on the two indexes. Since the DMRS index is not only used in this application, but the basic configuration of the GF transmission, only the resource index is a new indication of this application. Obviously, the indication overhead of the base station configuring the resource index in the embodiment is smaller than the method in which the base station directly configures the location index of the UE.
  • N is a standard pre-defined or configured by the base station, so that N is a certain value for the UE, which makes the length of the Bitmap in the HARQ acknowledgment message fixed, thereby making the length of the HARQ acknowledgment message fixed, which is advantageous for reducing the UE receiving the HARQ acknowledgment message.
  • the number of blind checks which makes the UE more power efficient.
  • Embodiment 7 is a method for confirming data transmission, the method comprising:
  • the terminal device sends the first data to the network device on the first GF resource, where the first GF resource belongs to the first GF resource group, and the first GF resource group includes N GF resources, where N ⁇ 1;
  • the terminal device receives the HARQ acknowledgment message sent by the network device, where the HARQ acknowledgment message is corresponding to the first GF resource group, and the HARQ acknowledgment message includes the acknowledgment information of the first data.
  • the N GF resources correspond to one HARQ acknowledgment message, and the upper limit of the number of UEs that each GF resource can accommodate is determined (depending on the number of available DMRSs), which makes the length of the Bitmap in the HARQ acknowledgment message fixed, thereby making the HARQ acknowledgment message length Fixed, this is beneficial to reduce the number of blind detections when the UE receives the HARQ acknowledgment message, thereby making the UE more power efficient.
  • Embodiment 8 The method according to Embodiment 7, before the terminal device sends the first data to the network device on the first GF resource, the terminal device receives configuration information sent by the network device, where the configuration The information includes a G-RNTI corresponding to the first GF resource group, and the G-RNTI is used to descramble the HARQ acknowledgement message.
  • Embodiment 9 The method of Embodiment 7, before the terminal device sends the first data to the network device on the first GF resource, the terminal device receives configuration information sent by the network device, where the configuration The information includes a group identifier corresponding to the first GF resource group, and the group identifier is included in the HARQ acknowledgement message.
  • the group identifier corresponding to the resource group is explicitly carried in the HARQ acknowledgment message, and is used to distinguish the HARQ acknowledgment message corresponding to the GF resource group.
  • the explicit carrying method obviously increases the transmission overhead of the HARQ acknowledgment message, but at the same time has the advantage of high flexibility, which is beneficial to the indication of different HARQ acknowledgment messages in the case of more GF resource groups. .
  • Embodiment 10 The method according to Embodiment 7, before the terminal device sends the first data to the network device on the first GF resource, the terminal device according to the subframe or time in which the first GF resource group is located The index of the slot or the minislot determines the G-RNTI corresponding to the first GF resource group, and the G-RNTI is used to descramble the HARQ acknowledgement message.
  • the UE determines the G-RNTI according to the index of the subframe or the time slot or the minislot in which the first GF resource group is located, so that the base station does not need to configure the G-RNTI by signaling, which is beneficial to reducing the configuration overhead.
  • the terminal device before the terminal device sends the first data to the network device on the first GF resource, the terminal device according to the subframe or time in which the first GF resource group is located
  • the index of the slot or the minislot determines the group identifier corresponding to the first GF resource group, and the HARQ confirmation message includes the group identifier.
  • the UE determines the group identifier according to the index of the subframe or the time slot or the mini-slot in which the first GF resource group is located, so that the base station does not need to configure the group identifier by signaling, which is beneficial to reducing the configuration overhead.
  • the terminal device before the terminal device sends the first data to the network device on the first GF resource, the terminal device receives the configuration information sent by the network device
  • the configuration information includes a location index of the terminal device in a bit table, the HARQ acknowledgement message includes the bit table, and a value corresponding to the location index in the bit table indicates confirmation of the first data information.
  • the base station indicates the location index of the UE in the Bitmap of the HARQ acknowledgment message, so that the UE determines which bit or bits of the Bitmap of the HARQ acknowledgment message corresponds to the data sent by itself, so as to determine whether the base station correctly receives the corresponding according to the bit value at the corresponding location. data.
  • the terminal device before the terminal device sends the first data to the network device on the first GF resource, the terminal device receives the configuration information sent by the network device
  • the configuration information includes a resource index of the first GF resource and a DMRS index of the terminal device in the first GF resource of the terminal device, where the resource index is the first GF resource in the The ordering in the first GF resource group.
  • the base station indicates a resource index and a DMRS index for the UE, such that the UE determines its own location index in the Bitmap of the HARQ acknowledgment message based on the two indexes. Since the DMRS index is not only used in this application, but the basic configuration of the GF transmission, only the resource index is a new indication of this application. Obviously, the indication overhead of the base station configuring the resource index in the embodiment is smaller than the method in which the base station directly configures the location index of the UE.
  • the terminal device determines, according to the resource index and the DMRS index, a location index of the terminal device in a bit table, where the HARQ acknowledge message includes the bit
  • the table, the value corresponding to the location index in the bit table represents the confirmation information of the first data.
  • N is a standard pre-defined or configured by the base station, so that N is a certain value for the UE, which makes the length of the Bitmap in the HARQ acknowledgment message fixed, thereby making the length of the HARQ acknowledgment message fixed, which is advantageous for reducing the UE receiving the HARQ acknowledgment message.
  • the number of blind checks which makes the UE more power efficient.
  • Embodiment 16 is a network device, where the network device includes:
  • the transceiver is configured to receive and send data
  • the memory is configured to store an instruction
  • the processor configured to execute the instructions in the memory, perform the method of any of embodiments 1-6.
  • Embodiment 17 The network device of embodiment 16, the transceiver comprising:
  • the receiver is configured to receive the first data that is sent by the terminal device, as described in any one of Embodiments 1-6;
  • the transmitter is configured to send the HARQ acknowledgment message or the configuration information as described in any of Embodiments 1-6.
  • Embodiment 18 A terminal device, where the terminal device includes:
  • the transceiver is configured to receive and send data
  • the memory is for storing instructions
  • the processor is operative to execute the instructions in the memory and perform the method of any of embodiments 7-15.
  • transceiver comprises:
  • the receiver is configured to receive, by the network device, the HARQ acknowledgement message or the configuration information, as described in any one of Embodiments 7-15;
  • the transmitter is configured to transmit the first data as described in any of embodiments 7-15.
  • Embodiment 20 is a computer program product comprising a computer program that, when executed on a computer unit, causes the computer unit to implement the method of any of embodiments 1-6.
  • Embodiment 21 A computer program product comprising a computer program that, when executed on a computer unit, causes the computer unit to implement the method of any of embodiments 7-15.
  • Embodiment 22 is a computer program that, when executed on a computer unit, causes the computer unit to implement the method of any of embodiments 1-6.
  • Embodiment 23 is a computer program that, when executed on a computer unit, causes the computer unit to implement the method of any of embodiments 7-15.
  • Embodiment 24 A network device configured to perform the method of any of embodiments 1-6.
  • Embodiment 25 A terminal device configured to perform the method of any of Embodiments 7-15.
  • Embodiment 26 is a computer readable storage medium having stored thereon a computer program that, when executed on a computer, causes the computer to implement the method of any of embodiments 1-6.
  • Embodiment 27 A computer readable storage medium having stored thereon a computer program that, when executed on a computer, causes the computer to implement the method of any of embodiments 7-15.
  • Embodiment 28 A communication system comprising the terminal device of any of embodiments 1-6 and the network device of any of embodiments 7-15.
  • Embodiment 29 A chip, comprising: a processing module and a communication interface, the processing module being used to perform the communication method according to any one of embodiments 1-6.
  • Embodiment 31 A chip, comprising: a processing module and a communication interface, the processing module being configured to perform the communication method according to any one of embodiments 7-15.
  • the first terminal sends the first data to the network device by using the first GF resource, where the first GF resource belongs to the first GF resource group, and the first The GF resource group includes N GF resources, and the network device sends a target HARQ acknowledgment message to the terminal, where the target HARQ acknowledgment message corresponds to the first GF resource group, and the target HARQ acknowledgment message is used in the
  • the data of all the terminals transmitted on the GF resource of the GF resource group is confirmed, the all terminals include the first terminal, and the data of all the terminals includes the first data, and the target HARQ acknowledgement message pair is implemented in the GF.
  • the data of all the terminals transmitted on the GF resource in the resource group is confirmed, and the terminal transmitting the data on the GF resource may include one or more terminals, that is, the terminal corresponding to the GF resource according to the purpose of the GF resource packet reaching the terminal grouping. Mapping to the same HARQ acknowledgment message for acknowledgment of data transmission, thereby reducing associated signaling overhead.
  • Figure 1 is a block diagram of a communication system according to the present application.
  • FIG. 3 is a flowchart of a method for confirming data transmission according to the present application.
  • FIG. 5A is a flowchart of another method for confirming data transmission according to the present application.
  • FIG. 5B is a schematic diagram of another method for confirming data transmission according to the present application.
  • FIG. 8A is a flowchart of another method for confirming data transmission according to the present application.
  • FIG. 8B is a schematic diagram of another method for confirming data transmission according to the present application.
  • FIG. 10 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a terminal according to another embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a network device according to another embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a network device according to another embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a chip according to another embodiment of the present application.
  • the "and/or" referred to in the present application describes the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, B exists separately, and A and B exist simultaneously. three situations.
  • the communication system may be an LTE communication system, or may be another communication system (for example, a 5G communication system), which is not limited herein.
  • the communication system includes: a network device and a terminal.
  • the network device may be a base station or an access point, or may refer to a device in the access network that communicates with the wireless terminal through one or more sectors on the air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface to allocate transmission resources to the terminal.
  • the base station may be a Global System of Mobile communication (GSM) or a Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA), or may be a wideband code division multiple access (
  • the base station (NodeB, NB) in the Wideband Code Division Multiple Access (WCDMA) may also be an evolved base station (Evolutional Node B, eNB or eNodeB) in Long Term Evolution (LTE), or a relay.
  • the wireless terminal can be a wireless terminal or a wired terminal.
  • the wireless terminal can be a device that provides voice and/or other service data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • it may be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with a wireless access network.
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal.
  • the access terminal, the user terminal (User Terminal), the user agent (User Agent), and the user device (User Device or User Equipment) are not limited herein.
  • Sub-link that is, Device to Device (D2D), for example, the link between the wristband and the mobile phone in the wristband-handset-base station
  • D2D Device to Device
  • the wristband can be regarded as the terminal
  • the mobile phone is regarded as the terminal Base station.
  • the Hybrid Automatic Repeat Request Acknowledgement (HARQ ACK) message referred to in this application is carried in Group Common DCI (G-DCI), and the G-DCI is transmitted through the PDCCH.
  • the PDCCH carrying the G-DCI may also be referred to as a group common PDCCH.
  • the network device may send a HARQ ACK message to one or more terminals that transmit data through a GF resource group, that is, a HARQ ACK message includes acknowledgement information of data sent by the one or more terminals through a GF resource group, and is implemented in the present application.
  • a HARQ ACK message for confirming data transmitted by one or more terminals is referred to as a “target HARQ ACK message”.
  • the target HARQ ACK message may include one or more HARQ ACK messages, for example, the one or more terminals transmit data through multiple GF resources, then the target HARQ ACK message includes multiple HARQ ACK messages, one HARQ ACK message and one The GF resource group corresponds.
  • the G-DCI, the HARQ ACK message, and the target HARQ ACK message are only one type of message name, and the message name is not limited thereto.
  • the network device of the present application divides each of the N Grant-free (GF) resources into one group, and the same GF resource can only be located in one group, N ⁇ 1.
  • the group ID is used to identify different GF resource groups.
  • Each GF resource group corresponds to a hybrid automatic repeat request acknowledgement (HARQ ACK) message, that is, all HARQ acknowledgement messages are used to reply to all terminals that send data in the GF resource group.
  • HARQ ACK hybrid automatic repeat request acknowledgement
  • all the acknowledgment information corresponding to the data transmitted in the GF resource group (which may be any one of the GF resources or the GF resources) is included in the same HARQ ACK message, and the data may be from one terminal or From multiple terminals.
  • the HARQ ACK messages corresponding to different GF resource groups are distinguished by the group ID of the corresponding GF resource group.
  • the HARQ ACK message may be specifically carried in a group common DCI (G-DCI), where the G-DCI includes bitmap information (Bitmap) for N GFs corresponding to the HARQ ACK message.
  • G-DCI group common DCI
  • Bitmap bitmap information
  • the specific value of N may be standard pre-defined or configured by a network device.
  • the network device may configure the value of the N for the terminal by using a radio resource control (RRC) signaling, a media access control control element (MAC CE), or physical layer signaling.
  • RRC radio resource control
  • MAC CE media access control control element
  • the GF resource involved in the present application may also be referred to as a GF transmission resource, and the GF resource may include, but is not limited to, a combination of one or more of the following resources: a time domain resource (which may also be referred to as a time resource), such as a radio frame. , subframes, symbols, etc.; frequency domain resources (also known as spectrum resources), such as subcarriers, resource blocks, etc.; airspace resources, such as transmit antennas, beams, etc.; code domain resources, such as sparse code multiple access (Sparse Code Multiple Access (SCMA) codebook, Low Density Signature (LDS) sequence, CDMA code, etc.; and uplink pilot resources.
  • a time domain resource which may also be referred to as a time resource
  • frequency domain resources also known as spectrum resources
  • airspace resources such as transmit antennas, beams, etc.
  • code domain resources such as sparse code multiple access (Sparse Code Multiple Access (
  • the HARQ ACK message corresponding to the GF resource group of G-ID1 is G-DCI1
  • the HARQ ACK message corresponding to the GF resource group of G-ID2 is G-DCI2.
  • the network device can allocate multiple GF resource configurations to the same UE. For example, if the network device configures both the GF resource 1 and the GF resource 2 to the UE1, then two bits in the G-DCI1 correspond to the UE1, that is, the acknowledgment of the data sent by the UE1 in the GF resource 1 and the GF resource 2, respectively.
  • UE2 needs to receive G-DCI1 and G-DCI2 respectively to obtain its GF resource 1 And confirmation of the data sent on GF resource 4.
  • the GF resource group is grouped by the foregoing method, and each GF resource group corresponds to one HARQ ACK message, and the acknowledgment of the data transmitted on the GF resource in the GF resource group is fed back to the terminal through the HARQ ACK message, and the GF resource is transmitted on the GF resource.
  • the terminal of the data may include one or more terminals, that is, the GF resource packet is used to reach the terminal packet, and the terminal corresponding to the GF resource is mapped to the same HARQ ACK message for data transmission confirmation, thereby reducing related signaling overhead.
  • the "first terminal” and the “second terminal” referred to herein are only used to distinguish different terminals in the communication network, that is, the communication system shown in FIG. 1 may include multiple terminals, and one of the multiple terminals may be A plurality of GF resources can be used for data transmission, and the data transmitted on the GF resource is confirmed by the method for confirming data transmission in the embodiment of the present application.
  • the second terminal may also perform related method steps performed by the first terminal in the following embodiments. The following embodiments are illustrated by using a first terminal and a network device.
  • FIG. 3 is a flowchart of a method for confirming data transmission according to the present application.
  • the embodiment relates to a network device and a terminal. As shown in FIG. 3, the method in this embodiment may include:
  • Step 101 The first terminal sends the first data to the network device on the first GF resource.
  • the network device receives the first data sent by the first terminal on the first GF resource.
  • the first GF resource belongs to the first GF resource group, and the first GF resource group includes N GF resources, where N ⁇ 1.
  • the first GF resource group includes N GF resources
  • the terminal may send the first data by using one or more GF resources of the N GF resources, where the one or more GF resources are the first GF resource.
  • Step 102 The network device sends a target HARQ acknowledgement message to the first terminal.
  • the first terminal receives the target HARQ acknowledgement message sent by the network device.
  • the target HARQ acknowledgment message is associated with the first GF resource group, and the target HARQ acknowledgment message is used to confirm data of all terminals transmitted on the GF resource of the first GF resource group, where All the terminals include the first terminal, and the data of all the terminals includes the first data, that is, the confirmation information of the first data is included in the target HARQ confirmation message.
  • one or more terminals in the network may use the GF resources in the first GF resource group for data transmission, where the first terminal is one of the one or more terminals, and the network device may pass a target HARQ.
  • the acknowledgment message confirms data of one or more terminals transmitted on the GF resource of the first GF resource group.
  • the first terminal and the second terminal in the network use the GF resource in the first GF resource group for data transmission, and the network device may transmit the GF resource on the first GF resource group by using a target HARQ acknowledgement message. The data of the first terminal and the second terminal are confirmed.
  • the network device receives the data transmitted by the one or more terminals, and the data transmitted by the one or more terminals includes the first data of the first terminal, and generates the target HARQ acknowledgement message, that is, the network device sends one or more The terminals feed back the acknowledgement information of the data of all the terminals transmitted by the GF resource of the first GF resource group.
  • the first terminal sends the first data to the network device by using the first GF resource, where the first GF resource belongs to the first GF resource group, and the first GF resource group includes N GF resources.
  • the network device sends a target HARQ acknowledgement message to the terminal, where the target HARQ acknowledgement message is corresponding to the first GF resource group, and the target HARQ acknowledgement message is used to transmit on the GF resource of the first GF resource group.
  • the data of all the terminals is confirmed, and all the terminals include the first terminal, and the data of all the terminals includes the first data, and the target HARQ confirmation message is transmitted to the GF resources in the GF resource group.
  • the data of all the terminals is confirmed, and the terminal that transmits the data on the GF resource group may include one or more terminals, that is, the terminal corresponding to the GF resource group is mapped to the same HARQ acknowledge message for the purpose of reaching the terminal packet based on the GF resource packet. Confirmation of data transmission, which can reduce the associated signaling overhead.
  • FIG. 4 is a flowchart of another method for confirming data transmission according to the present application.
  • the present embodiment implements receiving and identifying by means of scrambling and descrambling group identification.
  • the target HARQ acknowledgment message corresponding to the GF resource group, the method in this embodiment may include:
  • the terminal After transmitting the data in the GF resource configured by the network device, the terminal receives the HARQ acknowledgment message to the corresponding downlink subframe/slot/microslot, and the downlink subframe/slot/microslot may be referred to as “target HARQ acknowledgement”. opportunity".
  • the target HARQ acknowledgment usually includes a plurality of time-frequency resources (ie, DCI and/or G-DCI search space) that can be used to transmit downlink control information (DCI and/or G-DCI), and the terminal blindly checks the target HARQ confirmation time.
  • a HARQ acknowledgment message (referred to as a target HARQ acknowledgment message) corresponding to the GF resource group to which the GF resource used for the transmission is used, that is, G-DCI.
  • the terminal When the terminal receives a message in the target HARQ acknowledgment opportunity, it can determine whether the message is the target HARQ acknowledgment message that it desires by the following steps, so as to determine whether the received HARQ acknowledgment message is the GF resource to which the GF resource is used for transmission.
  • the HARQ acknowledgment message corresponding to the resource group.
  • the first terminal is used as an example, and other terminals in the communication network may perform the same method steps, and details are not described herein again.
  • Step 201 The first terminal sends the first data to the network device on the first GF resource.
  • the first GF resource belongs to the first GF resource group.
  • the network device receives the first data sent by the first terminal on the first GF resource.
  • step 201 For the specific explanation of the step 201, reference may be made to the step 101 of the embodiment shown in FIG. 3, and details are not described herein again.
  • Step 202 The network device sends a HARQ acknowledgement message to the first terminal.
  • the network device receives the data of the transmission of the one or more terminals in the first GF resource group, and the data transmitted by the one or more terminals includes the first data of the first terminal, and generates a target HARQ confirmation message. That is, the network device feeds back confirmation information of data of all terminals transmitted through the GF resource in the first GF resource group to one or more terminals.
  • the network device may further perform scrambling on the target HARQ acknowledgement message according to the group identifier of the first GF resource group, and then the network device sends the scrambled to one or more terminals.
  • Target HARQ confirmation message may be performed by the target HARQ confirmation message.
  • the network device can also send multiple HARQ acknowledgment messages, and each HARQ acknowledgment message corresponds to one GF resource group, and one HARQ acknowledgment message is scrambled.
  • the target HARQ acknowledgment message ie, the HARQ acknowledgment message corresponding to the first GF resource group.
  • the specific implementation manner of the network device performing the scrambling of the target HARQ acknowledgment message according to the group identifier of the first GF resource group may be: generating a scrambling code sequence based on the group identifier of the first GF resource group, and using the scrambling code sequence
  • the Cyclic Redundancy Check (CRC) of the payload of the G-DCI carrying the target HARQ acknowledgment message is scrambled.
  • the first terminal receives the HARQ acknowledgment message sent by the network device, and the first terminal needs to determine whether the received HARQ acknowledgment message is its own target HARQ acknowledgment message by the following step 203.
  • Step 203 The first terminal uses the group identifier of the first GF resource group to descramble the HARQ acknowledgment message, and when the HARQ acknowledgment message is correctly descrambled, determine that the HARQ acknowledgment message is a target HARQ acknowledgement.
  • the message, the target HARQ acknowledgement message corresponds to the first GF resource group.
  • the first terminal uses the group identifier to descramble the received HARQ acknowledgment message, and when the HARQ acknowledgment message is correctly descrambled, determines that the HARQ acknowledgment message is a target HARQ acknowledgment message.
  • the specific implementation manner of performing descrambling on the received HARQ acknowledgment message may be: generating a scrambling code sequence based on the group identifier, and using the scrambling code sequence to perform a CRC of a payload of the received G-DCI. De-scrambling. When the descrambled CRC is completely consistent with the CRC obtained from the load calculation of the G-DCI, the HARQ acknowledgement message is considered to be correctly descrambled.
  • the first terminal sends the first data to the network device by using the first GF resource, where the first GF resource belongs to the first GF resource group, and the first GF resource group includes N GF resources.
  • the network device sends a HARQ acknowledgment message to the first terminal, where the first terminal uses the group identifier of the first GF resource group to descramble the HARQ acknowledgment message, and when the HARQ acknowledgment message is correctly descrambled, determine
  • the HARQ acknowledgement message is the target HARQ acknowledgement message, the target HARQ acknowledgement message is corresponding to the first GF resource group, and the target HARQ acknowledgement message is used to transmit on the GF resource of the first GF resource group.
  • the data of all the terminals is confirmed, and all the terminals include the first terminal, and the data of all the terminals includes the first data, and the target HARQ confirmation message is transmitted to the GF resources in the GF resource group.
  • the data of all the terminals is confirmed, and the terminal that transmits the data on the GF resource may include one or more terminals, that is, the terminal mapping corresponding to the GF resource according to the purpose of the GF resource packet reaching the terminal grouping. Confirmation of data transmission to the same HARQ acknowledgment message, thereby reducing related signaling overhead.
  • the terminal that transmits the data on the GF resource in the different GF resource group obtains the corresponding target HARQ acknowledgment message, and the GF resource group identifier does not need to be explicitly carried in the HARQ acknowledgment message, and may further Save money.
  • FIG. 5A is a flowchart of another method for confirming data transmission according to the present application
  • FIG. 5B is a schematic diagram of another method for confirming data transmission according to the present application.
  • this embodiment is used in a HARQ confirmation message.
  • the method of explicitly carrying the group identifier is implemented to receive and identify the target HARQ acknowledgment message corresponding to the first resource group.
  • the method in this embodiment may include:
  • Step 301 The first terminal sends the first data to the network device on the first GF resource.
  • the first GF resource belongs to the first GF resource group.
  • the network device receives the first data sent by the first terminal on the first GF resource.
  • step 301 For the specific explanation of the step 301, reference may be made to the step 101 of the embodiment shown in FIG. 3, and details are not described herein again.
  • Step 302 The network device sends a HARQ acknowledgement message to the first terminal.
  • the network device receives the data of the transmission of the one or more terminals in the first GF resource group, and the data transmitted by the one or more terminals includes the first data of the first terminal, and generates a target HARQ confirmation message. That is, the network device feeds back confirmation information of data of all terminals transmitted by the GF resource of the first GF resource group to one or more terminals.
  • the network device can send a plurality of HARQ acknowledgment messages, and each HARQ acknowledgment message corresponds to one GF resource group, and the network device can carry the group in the HARQ acknowledgment message, because the network device can also confirm the data of the other GF resource group. Identifies to distinguish HARQ acknowledgment messages from different GF resource groups.
  • One of the HARQ acknowledgment messages is a target HARQ acknowledgment message carrying the group identities of the first GF resource group (ie, the HARQ acknowledgment message corresponding to the first GF resource group).
  • the first terminal receives the HARQ acknowledgment message sent by the network device, and the first terminal needs to determine whether the received HARQ acknowledgment message is its own target HARQ acknowledgment message by the following step 303.
  • group identifier may also be carried in the G-DCI that carries the HARQ acknowledgement message.
  • Step 303 The first terminal determines whether the HARQ acknowledgment message includes a group identifier corresponding to the first GF resource group, and when the HARQ acknowledgment message includes a group identifier corresponding to the first GF resource group, determining The HARQ acknowledgment message is a target HARQ acknowledgment message.
  • the target HARQ acknowledgement message corresponds to the first GF resource group.
  • the first terminal may check whether the HARQ acknowledgment message carries the group identifier corresponding to the first GF resource group.
  • the HARQ acknowledgment message is determined to be
  • the target HARQ acknowledgement message further determines ACK/NACK information of the first data according to the target HARQ acknowledgement message.
  • the first terminal when receiving a G-DCI, can check whether the G-DCI carries the group identifier corresponding to the first GF resource group, and carries the group corresponding to the first GF resource group.
  • the G-DCI is determined to be the G-DCI that is desired by itself, and then the target HARQ acknowledgment message is obtained from the G-DCI, and the ACK/NACK information of the first data is determined according to the target HARQ acknowledgment message.
  • GF resource 1 and GF resource 2 are defined as GF resource group 1, and are identified by G-ID1; GF resource 3 and GF resource 4 are defined as GF resource group 2, and are identified by G-ID2.
  • the network device explicitly carries the G-ID1 in the G-DCI1 corresponding to the GF resource group 1, and indicates that the G-DCI1 is sent to one or more terminals that transmit data on the GF resource in the GF resource group 1.
  • the network device explicitly carries the G-ID2 in the G-DCI2 corresponding to the GF resource group 2, indicating that the G-DCI2 is one or more terminals that transmit data to the GF resource in the GF resource group 2. of.
  • the first terminal sends the first data to the network device by using the first GF resource, where the first GF resource belongs to the first GF resource group, and the first GF resource group includes N GF resources.
  • the network device sends a HARQ acknowledgement message to the first terminal, and when the HARQ acknowledgement message includes the group identifier of the first GF resource group, determining that the HARQ acknowledgement message is a target HARQ acknowledgement message, the target HARQ acknowledgement message Corresponding to the first GF resource group, the target HARQ acknowledgement message is used to confirm data of all terminals transmitted on the GF resource of the first GF resource group, where all terminals include the first terminal The data of all the terminals includes the first data, and the data of all terminals transmitted on the GF resources in the GF resource group is confirmed by the target HARQ acknowledgement message, and the terminal that transmits the data on the GF resource may include one Or a plurality of terminals, that is, the GF resource grouping is used to reach the terminal
  • the terminal that transmits the data on the GF resource in the different GF resource group acquires the corresponding target HARQ acknowledgement message by explicitly carrying the group identifier.
  • the group identifier is used to distinguish different GF resource groups, and the group identifier may include a group common radio network temporary identifier (G-RNTI) or a group common identifier (G). -ID).
  • G-RNTI group common radio network temporary identifier
  • G group common identifier
  • -ID group common identifier
  • the group identifier can also adopt other identifiers, which are not illustrated here.
  • the group identifier in the foregoing embodiment may be configured by the network device to the terminal, or may be determined by the terminal.
  • the group identifier is configured by the network device to the terminal.
  • the network device sends the first configuration information to the first terminal, and the first terminal receives the first configuration information that is sent by the network device, where the first configuration information includes the group identifier corresponding to the first GF resource group.
  • the network device may configure a group identifier corresponding to the GF resource group to which the GF resource belongs when the GF resource is configured for the terminal.
  • the first configuration information may be transmitted to the terminal by means of RRC signaling, MAC CE or physical layer signaling.
  • the group identification is determined by the terminal calculation. Specifically, the first terminal determines, according to the index of the time domain resource and/or the index of the frequency domain resource, where the first GF resource group is located, the group identifier corresponding to the first GF resource group.
  • the time domain resource includes a subframe or a time slot or a minislot
  • the frequency domain resource includes a subcarrier or a resource block.
  • the time-frequency resource where the first GF resource group is located may include one or more subframes/slots/microslots.
  • the first terminal may be configured according to the subframe/slot/microslot of the time-frequency resource where the first GF resource group is located.
  • the index calculates the group identifier corresponding to the first GF resource group.
  • the time-frequency resource of the first GF resource group includes multiple subframes/slots/microslots, the first terminal may be based on a specific subframe/slot/micro-time in the time-frequency resource where the first GF resource group is located.
  • the index of the slot calculates the group identifier corresponding to the first GF resource group.
  • the first subframe/slot/microslot index of the multiple subframe/slot/microslot is used to calculate the first identifier.
  • FIG. 6 is a schematic diagram of group identification calculation according to the present application, such as the conventional TDD configuration 0 shown in FIG. 6, where each square represents one subframe, and the HARQ acknowledgment messages of subframes U3 and U4 are all in a subframe.
  • the GF resource is configured in the U0 and the U4 as an example, and the GF resource in each UL subframe is defined as a GF resource group, and the GF resources of different UL subframes are mapped to the D0. Different G-DCI.
  • the network device may implicitly indicate the group identity (G-RNTI/G-ID) to the terminal by using the subframe number.
  • the group identifier (G-RNTI/G-ID) of the corresponding G-DCI in the D0 is according to the subframe.
  • the sub-frame number of U3 is calculated and obtained.
  • the group identifier (G-RNTI/G-ID) of the G-DCI corresponding to different subframes calculated according to the subframe number is also different because the subframe numbers of different subframes are different.
  • the group identifier (G-RNTI/G-ID) of the GF resource group corresponding to the G-DCI in the subframe is h(z), where h is a function.
  • the group identification (G-RNTI/G-ID) Assuming that the current system frame number is s and the subframe number of the subframe in which the GF resource is located is z, the group identifier (G-RNTI/G-ID) corresponding to the G-DCI is h(z, s).
  • the function h can be flexibly set according to requirements, and is not illustrated here.
  • the terminal can calculate the corresponding group identifier according to the index of the subframe/slot/microslot where the GF resource is located, which can further save network configuration overhead.
  • FIG. 7 is a flowchart of another method for confirming data transmission according to the present application. As shown in FIG. 7, the embodiment may further include:
  • Step 401 The network device sends second configuration information to the first terminal.
  • the first terminal receives the second configuration information sent by the network device.
  • the second configuration information includes a location index of the first terminal in a bit table, the target HARQ acknowledgement message includes the bit table, and a value corresponding to the location index in the bit table A confirmation information indicating the first data.
  • the target HARQ acknowledgement message is used to confirm data of all terminals transmitted on the GF resource of the first GF resource group, where one or more bits in the target HARQ acknowledgement message and the first data of the first terminal
  • the second configuration information is used to indicate to the first terminal the location of the acknowledgement information of the first data in the target HARQ acknowledgement message.
  • Step 402 The first terminal acquires the confirmation information of the first data according to the second configuration information.
  • the first terminal acquires the location index of the first terminal in the bit table according to the second configuration information, and obtains the acknowledgment information of the first data according to the location index.
  • the network device configures the first terminal in the GF resource 1 and configures the location index of the first terminal in the bit table to be k, and the first terminal receives the target HARQ after transmitting the data in the GF resource 1.
  • the acknowledge message determines whether the network device correctly receives the first data according to the kth bit of the bitmap of the target HARQ acknowledgment message. For example, the kth bit of the Bitmap is 1, indicating that the network device correctly receives the first data, otherwise, the network device does not correctly receive the first data.
  • the second configuration information is sent to the first terminal by using the network device, where the second configuration information includes a location index in the bit table of the first terminal, and the target HARQ acknowledgement message includes the bit table.
  • the first terminal acquires the confirmation information of the first data according to the second configuration information, so as to determine whether the network device correctly receives the first data.
  • FIG. 8A is a flowchart of another method for confirming data transmission according to the present application
  • FIG. 8B is a schematic diagram of another method for confirming data transmission according to the present application.
  • this embodiment is in any of the foregoing embodiments.
  • the method of this embodiment may further include:
  • Step 501 The network device sends third configuration information to the first terminal.
  • the first terminal receives the third configuration information sent by the network device.
  • the third configuration information includes a Demodulation Reference Signal (DMRS) index of the first terminal in the first GF resource, where the DMRS indicated by the DMRS index is used for the first data. transmission.
  • DMRS Demodulation Reference Signal
  • the foregoing third configuration information is used to implicitly indicate a location index of the terminal in a bitmap.
  • the network device When configuring the GF resource for the terminal, the network device also configures different DMRSs for different terminals in the same GF resource, that is, in one GF resource, the network device part identifies the identity of the data sender by using the DMRS of the received data. (Terminal ID).
  • the index of the DMRS configured by the network device for the terminal is the identity of the terminal, that is, the UE ID.
  • Different GF resources multiplex the same DMRS, that is, UE IDs in different GF resources may be multiplexed. For example, the UE ID in GF resource 1 is 1-12, and the UE ID in GF resource 2 is also 1-12.
  • Step 502 The first terminal determines, according to the DMRS index, a location index of the first terminal in a bit table.
  • the target HARQ acknowledgement message includes the bit table, and a value corresponding to the location index in the bit table represents acknowledgement information of the first data.
  • the target HARQ acknowledgment message is used to confirm data of all terminals transmitted on the GF resource of the first GF resource group, where a bit in the target HARQ acknowledgment message corresponds to the first data of the first terminal, where The third configuration information is used to indicate to the first terminal the location of the acknowledgement information of the first data in the target HARQ acknowledgement message.
  • GF resource 1 and GF resource 2 are mapped to G-DCI1 and G-DCI2, respectively, and each GF resource can accommodate 12 UEs (different UEs in the same GF resource are distinguished by DMRS), and each G-DCI
  • the length of the Bitmap is 12, and the UEs with the UE IDs of 1, 2, ..., 12 in the GF resource 1 respectively correspond to the first, second, ..., and 12th bits of the Bitmap in the G-DCI1.
  • Step 503 The first terminal acquires the confirmation information of the first data according to the location index.
  • the first terminal determines the location index of the first terminal in the bit table according to the third configuration information, and obtains the acknowledgment information of the first data according to the location index.
  • the first terminal determines the location index bit 2 according to the third configuration information, and after receiving the data in the GF resource 1, the first terminal receives the target HARQ acknowledgement message, according to the second bit of the bitmap of the target HARQ acknowledgement message. Determine if the network device correctly receives the first data. For example, the second bit of the Bitmap is 1, indicating that the network device correctly receives the first data, otherwise, that the network device does not correctly receive the first data.
  • the third configuration information is sent to the first terminal by using the network device, where the third configuration information includes a demodulation reference signal (DMRS) index of the first terminal in the first GF resource, where the first terminal is configured according to
  • DMRS demodulation reference signal
  • the third configuration information determines a location index of the first terminal in the bit table, and obtains confirmation information of the first data according to the location index, thereby determining whether the network device correctly receives the first data.
  • FIG. 9 is a flowchart of another method for confirming data transmission according to the present application. As shown in FIG. 9 , the method of the present embodiment may further include:
  • Step 601 The network device sends fourth configuration information to the first terminal.
  • the first terminal receives the fourth configuration information sent by the network device.
  • the fourth configuration information includes a resource index of the first GF resource and a DMRS index of the first terminal in the first GF resource, where the resource index is the first GF resource at the first Sorting in the GF resource group, the DMRS indicated by the DMRS index is used for transmission of the first data.
  • N ⁇ 2 that is, the network device configuration or the standard pre-defined at least two GF resources are mapped to one G-DCI, that is, mapped to one HARQ acknowledgement message.
  • the network device when configuring a GF resource for the terminal, the network device needs to configure the DMRS (ie, the corresponding UE ID) of the GF resource in the GF resource, and also indicates the order of the GF resource in the GF resource group.
  • a GF resource is the first GF resource in its GF resource group.
  • the ordering of GF resources in a GF resource group may be referred to as a GF resource index.
  • Step 602 The first terminal determines, according to the resource index and the DMRS index, a location index of the first terminal in a bit table.
  • the target HARQ acknowledgement message includes the bit table, and a value corresponding to the location index in the bit table represents acknowledgement information of the first data.
  • the target HARQ acknowledgement message is used to confirm data of all terminals transmitted on the GF resource of the first GF resource group, where one or more bits in the target HARQ acknowledgement message and the first data of the first terminal
  • the fourth configuration information is used to indicate to the first terminal the location of the acknowledgement information of the first data in the target HARQ acknowledgement message.
  • the GF resource 0-GF resource N-1 has a total of N GF resources (the GF resource index is 0-N-1 respectively) is a GF resource group and is mapped to G-DCI1, and each GF resource can accommodate M.
  • Terminals (differentiating different terminals in the same GF resource through DMRS), the length of the Bitmap in G-DCI1 is M ⁇ N, and the position index of each bit is 0-M ⁇ N-1.
  • the network device configures its UE ID in the GF resource n (0 ⁇ n ⁇ N-1) to be m (0 ⁇ m ⁇ M-1), then the corresponding bit of the UE1 in the Gmap of the G-DCI
  • the position index k n ⁇ M + m.
  • Step 603 The first terminal acquires the confirmation information of the first data according to the location index.
  • the first terminal determines the location index of the first terminal in the bit table according to the fourth configuration information, and obtains the confirmation information of the first data according to the location index, and determines Whether the network device correctly receives the first data.
  • the same UE may have multiple corresponding bits in a Bitmap of a target HARQ acknowledgment message, in which case any one of the following cases or multiple cases may occur simultaneously:
  • the network device configures the UE to transmit data of different transport blocks (TBs) in different GF resources of the same GF resource group, that is, data for transmitting different HARQ processes.
  • the network device configuration UE1 may transmit data of different HARQ processes in GF resource 1 and GF resource 2, that is, UE1 may transmit data of different TBs in GF resource 1 and GF resource 2, and the data of the two TBs is Each bit of the Bitmap of the target HARQ acknowledgment message corresponds to one bit.
  • the network device configures the UE to adopt multi-layer streaming in the same GF resource.
  • the network device configures the UE to adopt W layer stream transmission in the GF resource (that is, the UE adopts MIMO transmission), and each layer stream corresponds to one TB, and the W TB data corresponds to W bits in the Bitmap of the target HARQ acknowledgment message. , each bit corresponds to one TB;
  • Case 3 Network Device Configuration
  • the UE uses Code Block Group (CBG) based transmission.
  • CBG Code Block Group
  • the network device configures the UE to divide each TB into V CBGs for transmission, and the UE needs to perform HARQ acknowledgement for each CBG.
  • each TB sent by the UE needs to correspond to the V in the Bitmap of the target HARQ acknowledgement message.
  • One bit, one bit per bit corresponds to one CBG.
  • the network device needs to configure multiple GF resources corresponding to the UE, and corresponding location indexes (explicit or implicit configuration) in each GF resource.
  • the network device only needs to configure the location index of the first bit of the multiple bits corresponding to the UE.
  • the base station configures that the location index of the first bit corresponding to the UE in the Bitmap is k, then k-k+W-1 is the W bits corresponding to the UE; for case 3, the base station configures the UE corresponding The position index of the first bit is k, then k-k+V-1 is the V bits corresponding to the UE.
  • the network device needs to configure multiple GF resources corresponding to the UE, and the location index (explicit or implicit configuration) of the corresponding first bit in each GF resource. .
  • the network device configures the location index of the first bit corresponding to the UE in the Bitmap to be k, then k-k+W-1 is the W bits corresponding to the data transmitted by the UE in the GF. .
  • the fourth configuration information is sent to the first terminal by using the network device, where the fourth configuration information includes a resource index of the first GF resource and a DMRS index of the first terminal in the first GF resource.
  • the first terminal determines a location index of the first terminal in the bit table according to the fourth configuration information, and obtains confirmation information of the first data according to the location index, so as to determine whether the network device correctly receives the first data.
  • the upper limit of the Bitmap length in the HARQ acknowledgment message of the present application is determined, so that the bearer can be performed.
  • the length of the G-DCI of the HARQ acknowledgment message is fixed, so that the number of blind detections when the UE receives the G-DCI can be reduced, and the UE is more power-saving.
  • the method or the step implemented by the first terminal may also be implemented by a chip inside the first terminal.
  • the method or step implemented by the network device may also be implemented by a chip inside the network device.
  • FIG. 10 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure. As shown in FIG. 10, the terminal in this embodiment serves as a first terminal, and includes a processing module 401, a sending module 402, and a receiving module 403.
  • the processing module 401 is configured to send the first data to the network device by using the sending module 402, where the first GF resource belongs to the first GF resource group, and the first GF resource group includes N GFs. Resources, N ⁇ 1;
  • the receiving module 403 is configured to receive a target hybrid automatic repeat request (HARQ) acknowledgement message sent by the network device, where the target HARQ acknowledgement message is corresponding to the first GF resource group, and the target HARQ acknowledgement message is used in the The data of all terminals transmitted on the GF resource of a GF resource group is confirmed, and all the terminals include the first terminal, and the data of all the terminals includes the first data.
  • HARQ hybrid automatic repeat request
  • the processing module 401 is further configured to: determine, according to an index of a time domain resource and/or an index of a frequency domain resource, where the first GF resource group is located, a group identifier corresponding to the first GF resource group;
  • the time domain resource includes a subframe or a time slot or a minislot, and the frequency domain resource includes a subcarrier or a resource block.
  • the receiving module 403 is further configured to: receive first configuration information sent by the network device, where the first configuration information includes a group identifier corresponding to the first GF resource group.
  • the receiving module 403 is configured to receive a HARQ acknowledgement message sent by the network device, where the processing module 401 is configured to descramble the HARQ acknowledgement message by using the group identifier, when the HARQ is When the acknowledgment message is correctly descrambled, it is determined that the HARQ acknowledgment message is the target HARQ acknowledgment message.
  • the receiving module 403 is configured to receive a HARQ acknowledgement message sent by the network device, where the processing module 401 is configured to determine the HARQ acknowledgement when the HARQ acknowledgement message includes the group identifier.
  • the message is the target HARQ acknowledgment message.
  • the receiving module 403 is further configured to: receive second configuration information sent by the network device, where the second configuration information includes a location index of the first terminal in a bit table, the target The HARQ acknowledgment message includes the bit table, and a value corresponding to the location index in the bit table represents acknowledgment information of the first data.
  • the receiving module 403 is further configured to: receive third configuration information that is sent by the network device, where the third configuration information includes demodulation of the first terminal in the first GF resource.
  • the third configuration information includes demodulation of the first terminal in the first GF resource.
  • a DMRS index the DMRS indicated by the DMRS index is used for the transmission of the first data
  • the processing module 401 is further configured to determine, according to the DMRS index, a location index of the first terminal in a bit table,
  • the target HARQ acknowledgement message includes the bit table, and a value corresponding to the location index in the bit table represents acknowledgement information of the first data.
  • the receiving module 403 is further configured to: receive fourth configuration information that is sent by the network device, where the fourth configuration information includes a resource index of the first GF resource, and the first terminal is in a DMRS index in the first GF resource, where the resource index is an order of the first GF resource in the first GF resource group, and the DMRS indicated by the DMRS index is used for the first data
  • the processing module 401 is further configured to determine, according to the resource index and the DMRS index, a location index of the first terminal in a bit table, where the target HARQ acknowledgement message includes the bit table, the bit table The value corresponding to the position index in the middle indicates the confirmation information of the first data.
  • the target HARQ acknowledgment message is carried in group common downlink control information G-DCI
  • the first terminal described in this embodiment may be used to perform the technical implementation of the chip execution of the first terminal/first terminal in the foregoing method embodiments, and the implementation principle and the technical effect are similar, wherein the functions of each module may be referred to. Corresponding descriptions in the method embodiments are not described herein again.
  • FIG. 11 is a schematic structural diagram of a terminal according to another embodiment of the present disclosure.
  • the terminal in this embodiment serves as a first terminal, and includes: a processor 411, a memory 412, a transceiver 413, and a bus 414.
  • the processor 411, the memory 412, and the transceiver 413 are connected to one another via a bus 414.
  • the bus 414 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the above bus 4104 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 11, but it does not mean that there is only one bus or one type of bus.
  • the above receiving module 403 and the sending module 402 may be the transceiver 413 in this embodiment.
  • the transceiver 413 includes a receiver and a transmitter, and the above receiving module 403 can be a receiver in the transceiver 413, and the above transmitting module 402 can be a transmitter in the transceiver 413.
  • the above processing module 401 can be embedded in the hardware form or independent of the processor 411 of the first terminal.
  • the transceiver 413 may include a necessary radio frequency communication device such as a mixer.
  • the processor 411 may include a central processing unit (CPU), a digital signal processor (DSP), a microcontroller (Microcontroller Unit (MCU), and an application specific integrated circuit (ASIC). Or at least one of a Field-Programmable Gate Array (FPGA).
  • CPU central processing unit
  • DSP digital signal processor
  • MCU microcontroller
  • ASIC application specific integrated circuit
  • FPGA Field-Programmable Gate Array
  • the memory 412 of the first terminal in this embodiment is used to store program instructions, and the processor 411 is configured to invoke program instructions in the memory 412 to execute the foregoing solution.
  • the program instructions may be implemented in the form of a software functional unit and can be sold or used as a standalone product, which may be any form of computer readable storage medium. Based on such understanding, all or part of the technical solutions of the present application may be embodied in the form of a software product, including a plurality of instructions for causing a computer device, specifically a processor 411, to perform the first embodiment of the present application. All or part of a terminal.
  • the foregoing computer readable storage medium includes: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. The medium of the code.
  • the first terminal described in this embodiment may be used to perform the technical implementation of the chip execution of the first terminal/first terminal in the foregoing method embodiments, and the implementation principle and the technical effect are similar, wherein the functions of each device may be referred to. Corresponding descriptions in the method embodiments are not described herein again.
  • FIG. 12 is a schematic structural diagram of a chip according to an embodiment of the present invention. As shown in FIG. 12, the chip of the embodiment may be used as a chip of the first terminal.
  • the chip of this embodiment may include: a memory 421 and a processor 422.
  • the memory 421 is communicatively coupled to the processor 422.
  • receiving module 403, processing module 401, and transmitting module 402 may be embedded in hardware or in a processor 422 independent of the chip.
  • the memory 421 is used to store program instructions, and the processor 422 is used to call program instructions in the memory 421 to execute the above scheme.
  • the chip described above in this embodiment may be used to implement the technical solution of the first terminal or its internal chip in the foregoing method embodiments of the present application, and the implementation principle and the technical effect are similar.
  • the function of each module may refer to the method embodiment. The corresponding description in the description will not be repeated here.
  • FIG. 13 is a schematic structural diagram of a network device according to another embodiment of the present disclosure.
  • the communications device in this embodiment may include: a receiving module 501, a processing module 502, and a sending module 503.
  • the receiving module 501 is configured to receive, by using the first unlicensed GF resource, the first data sent by the first terminal, where the first GF resource belongs to the first GF resource group, and the first GF resource group includes N GF resources, N ⁇ 1;
  • the processing module 502 is configured to send, by using the sending module 503, a target hybrid automatic repeat request (HARQ) acknowledgement message to the first terminal, where the target HARQ acknowledgement message corresponds to the first GF resource group, and the target HARQ acknowledgement message is used by And confirming data of all terminals transmitted on the GF resource of the first GF resource group, where all terminals include the first terminal, and data of all terminals includes the first data.
  • HARQ hybrid automatic repeat request
  • the sending module 503 is further configured to: send the first configuration information to the first terminal, where the first configuration information includes a group identifier corresponding to the first GF resource group.
  • the processing module 502 is configured to scramble the target HARQ acknowledgement message according to the group identifier, and send the scrambled target HARQ acknowledgement message to the first terminal by using the sending module 503. .
  • the sending module 503 is further configured to: send, to the first terminal, second configuration information, where the second configuration information includes a location index of the first terminal in a bit table, where the target The HARQ acknowledgment message includes the bit table, and a value corresponding to the location index in the bit table represents acknowledgment information of the first data.
  • the sending module 503 is further configured to: send, to the first terminal, third configuration information, where the third configuration information includes a solution of the first terminal in the first GF resource.
  • the reference signal DMRS index is adjusted, and the DMRS indicated by the DMRS index is used for transmission of the first data.
  • the sending module 503 is further configured to: send fourth configuration information to the first terminal, where the fourth configuration information includes a resource index of the first GF resource, and the first terminal is in a DMRS index in the first GF resource, where the resource index is an order of the first GF resource in the first GF resource group, and the DMRS indicated by the DMRS index is used for the first data transmission.
  • the network device described above in this embodiment may be used to implement the technical solution of the chip execution of the network device/network device in the foregoing method embodiments, and the implementation principle and the technical effect are similar.
  • the function of each module may refer to the method embodiment. The corresponding description in the description will not be repeated here.
  • FIG. 14 is a schematic structural diagram of a network device according to another embodiment of the present disclosure.
  • the network device in this embodiment includes: a processor 511, a memory 512, a transceiver 513, and a bus 514.
  • the processor 511, the memory 512, and the transceiver 513 are connected to one another via a bus 514.
  • the bus 514 can be a PCI bus or an EISA bus.
  • the bus 514 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 14, but it does not mean that there is only one bus or one type of bus.
  • the above sending module 503 and receiving module 501 may be the transceiver 513 in this embodiment.
  • the transceiver 513 includes a transmitter and a receiver.
  • the above transmitting module 503 may be a transmitter in the transceiver 513 in this embodiment.
  • the above receiving module 501 may be a receiver in the transceiver 513 in this embodiment.
  • the transceiver 513 can include a necessary radio frequency communication device such as a mixer.
  • the processor 511 can include at least one of a CPU, a DSP, an MCU, an ASIC, or an FPGA.
  • the network device described in this embodiment may be used to implement the technical solution of the chip execution of the network device/network device in the foregoing method embodiments, and the implementation principle and the technical effect thereof are similar.
  • the function of each device may refer to the method embodiment. The corresponding description in the description will not be repeated here.
  • FIG. 15 is a schematic structural diagram of a chip according to another embodiment of the present disclosure.
  • the chip of the embodiment may be used as a chip of a network device.
  • the chip of this embodiment may include: a memory 521 and a processor 522.
  • the memory 521 is communicatively coupled to the processor 522.
  • the processor 522 can include, for example, at least one of a CPU, a DSP, an MCU, an ASIC, or an FPGA.
  • the above transmitting module 503 and receiving module 501 may be embedded in hardware or in a processor 522 independent of the chip.
  • the memory 521 is used to store program instructions, and the processor 522 is used to call the program instructions in the memory 521 to execute the above scheme.
  • the program instructions may be implemented in the form of a software functional unit and can be sold or used as a standalone product, which may be any form of computer readable storage medium. Based on such understanding, all or part of the technical solution of the present application may be embodied in the form of a software product, including a plurality of instructions for causing a computer device, specifically a processor 522, to perform the first embodiment of the present application. All or part of the steps of the device.
  • the aforementioned computer readable storage medium includes: a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk, and the like, which can store program codes.
  • the chip described above in this embodiment may be used to implement the technical solution of the network device or its internal chip in the foregoing method embodiments of the present application, and the implementation principle and the technical effect are similar.
  • the function of each module may refer to the method embodiment. The corresponding description will not be repeated here.
  • the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • the functional modules in the embodiments of the present application may be integrated into one processing module, or each module may exist physically separately, or two or more modules may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules if implemented in the form of software functional modules and sold or used as separate products, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Abstract

本申请实施例提供一种数据传输的确认方法及设备。本申请的数据传输的确认方法,包括:第一终端在第一免授权GF资源上向网络设备发送第一数据,所述第一GF资源属于第一GF资源组,所述第一GF资源组包括N个GF资源,N≥1;所述第一终端接收所述网络设备发送的目标混合自动重传请求HARQ确认消息,所述目标HARQ确认消息与所述第一GF资源组对应,所述目标HARQ确认消息用于对在所述第一GF资源组的GF资源上传输的所有终端的数据进行确认,所述所有终端包括所述第一终端,所述所有终端的数据包括所述第一数据。本申请实施例可以减少相关信令开销。

Description

数据传输的确认方法及设备
本申请要求于2017年10月16日提交中国国家知识产权局、申请号为201710960609.7、申请名称为“一种数据传输的确认方法和设备”的中国专利申请的优先权,以及于2018年2月28日提交中国国家知识产权局、申请号为201810168674.0、申请名称为“数据传输的确认方法及设备”的中国专利申请的优先权,它们的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术,尤其涉及一种数据传输的确认方法及设备。
背景技术
传统蜂窝通信系统中,如长期演进(Long Term Evolution,LTE),上行(Uplink,UL)传输中采用基于授权(Grant-based)的方式,即基站调度UE进行UL传输的资源以及相关传输参数,例如UL传输所使用时域、频域、空域资源以及调制编码方案(Modulation and Coding Scheme,MCS)。上述基于授权(Grant-based)的UL传输过程都需要较多信令开销,并且这些信令交互不可避免地会带来延迟。
在3GPP制定的蜂窝通信的第五代标准(5th Generation,5G)中,考虑的场景包括海量机器类型通信(Massive Machine Type Communication,mMTC)和高可靠低时延通信(Ultra-reliable and Low Latency Communications,URLLC)。其中,mMTC业务产生的数据通常是小数据(即每个数据包比较小),若采用传统Grant-based的UL传输方式,则数据传输所占据的资源远小于数据传输之前的信令交互(如调度请求和调度授权过程的信令交互,或者,随机接入过程的信令交互)所使用的资源,这导致资源利用率低下,特别是在有大量mMTC设备的情况下,系统资源将大量地被交互信令所占据;URLLC业务要求低延时,而上述Grant-based的UL传输过程中的信令交互,由于涉及RRC信令,其延迟是很大的,因此传统Grant-based的UL传输方式也很难满足URLLC业务的需求。
基于上述原因,5G在新无线(New Radio,NR)中引入了免授权(Grant-free,又称为transmission without grant或Grant-less)传输方式,用于UL传输。所谓Grant-free传输方式,是指UE有数据需要传输时无需向基站请求UL传输资源,而是在基站预先配置的传输资源池(可称为Grant-free传输资源池)中基于某种规则选择一个用于UL传输的传输单元直接进行UL传输。这样,便可以省去Grant-based的UL传输过程中的信令交互,从而降低了信令开销和传输延时,特别适合于小包传输以及延时敏感业务。
5G-NR标准已经明确同意mMTC和URLLC支持Grant-free传输。另外,标准还确定由基站配置Grant-free传输所使用的时频资源,即配置Grant-free传输资源池。每个Grant-free传输资源池中包括一个或多个传输单元,当UE有数据需要传输时,从配置给自己的Grant-free传输资源池中选择一个或多个传输单元进行传输。同一个Grant-free传输资源池一般同时配置给多个UE,这种情况下,虽然可能由于不同UE 选择相同传输单元发生碰撞而导致传输失败,但对于UE不确定何时到达的业务来说,由于多个UE共享相同的Grant-free传输资源,能够提高资源的利用效率。基站配置给一个UE的Grant-free传输资源池通常是周期性的,并且在一个周期内,基站可以给一个UE配置多个Grant-free传输资源池。Grant-free传输资源池也可简称为Grant-free资源。
当UE在配置给自己的Grant-free资源上发送了数据之后,期望收到基站发送的混合自动重传请求(Hybrid Automatic Repeat reQust,HARQ)确认,即肯定应答(Acknowledgement,ACK)/否定应答(Negative Acknowledgement,NACK),表示基站是否正确接收UE发送的数据。一种对Grant-free传输进行HARQ确认的方法是采用UL Grant(UL授权)消息。当基站接收到UE发送的Grant-free数据后(正确解码或未正确解码),恰好有该UE的其它UL数据需要发送,则基站向该UE发送UL Grant消息,其中携带该UE的Grant-free数据的ACK/NACK信息。
然而,UL Grant消息需使用物理下行控制信道(Physical Downlink Control Channel,PDCCH)(即利用PDCCH中的DCI)来承载,而每个PDCCH至少需占据一个CCE的物理资源。当有较多UE的UL数据需要确认时,基站需发送大量UL Grant,即大量PDCCH,从而造成资源的极大浪费。并且,一个下行子帧的控制部分的资源是有限的,往往很难承载大量PDCCH。
发明内容
本申请实施例提供一种数据传输的确认方法及设备,以减少相关信令开销。
第一方面,本申请实施例提供一种一种数据传输的确认方法,所述方法包括:第一终端在第一免授权GF资源上向网络设备发送第一数据,所述第一GF资源属于第一GF资源组,所述第一GF资源组包括N个GF资源,N≥1;所述第一终端接收所述网络设备发送的目标混合自动重传请求HARQ确认消息,所述目标HARQ确认消息与所述第一GF资源组对应,所述目标HARQ确认消息用于对在所述第一GF资源组的GF资源上传输的所有终端的数据进行确认,所述所有终端包括所述第一终端,所述所有终端的数据包括所述第一数据。
结合第一方面,在第一方面的一种可能的实现方式中,在所述第一终端在第一GF资源上向网络设备发送第一数据之前,所述方法还包括:所述第一终端根据所述第一GF资源组所在时域资源的索引和/或频域资源的索引确定所述第一GF资源组对应的组标识;所述时域资源包括子帧或时隙或微时隙,所述频域资源包括子载波或资源块。
结合第一方面或第一方面的一种可能的实现方式,在第一方面的另一种可能的实现方式中,在所述第一终端在第一GF资源上向网络设备发送第一数据之前,所述方法还包括:所述第一终端接收所述网络设备发送的第一配置信息,所述第一配置信息包括所述第一GF资源组对应的组标识。
结合第一方面或第一方面的任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述第一终端接收所述网络设备发送的目标HARQ确认消息,包括:所述第一终端接收所述网络设备发送的HARQ确认消息;所述第一终端使用所述组标识对所述HARQ确认消息进行解扰,当所述HARQ确认消息被正确解扰时,则确定所述HARQ 确认消息为所述目标HARQ确认消息。
结合第一方面或第一方面的任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述第一终端接收所述网络设备发送的目标HARQ确认消息,包括:所述第一终端接收所述网络设备发送的HARQ确认消息;当所述HARQ确认消息包括所述组标识时,则确定所述HARQ确认消息为目标HARQ确认消息。
结合第一方面或第一方面的任一种可能的实现方式,在第一方面的另一种可能的实现方式中,在所述第一终端在第一GF资源上向网络设备发送第一数据之前,所述方法还包括:所述第一终端接收所述网络设备发送的第二配置信息,所述第二配置信息包括所述第一终端在位表中的位置索引,所述目标HARQ确认消息包括所述位表,所述位表中的所述位置索引对应的值表示所述第一数据的确认信息。
结合第一方面或第一方面的任一种可能的实现方式,在第一方面的另一种可能的实现方式中,在第一所述终端在第一GF资源上向网络设备发送第一数据之前,所述方法还包括:所述第一终端接收所述网络设备发送的第三配置信息,所述第三配置信息包括所述第一终端在所述第一GF资源中的解调参考信号DMRS索引,所述DMRS索引所指示的DMRS用于所述第一数据的传输;所述第一终端根据所述DMRS索引确定所述第一终端在位表中的位置索引,所述目标HARQ确认消息包括所述位表,所述位表中的所述位置索引对应的值表示所述第一数据的确认信息。
结合第一方面或第一方面的任一种可能的实现方式,在第一方面的另一种可能的实现方式中,在所述第一终端在第一GF资源上向网络设备发送第一数据之前,所述方法还包括:所述第一终端接收所述网络设备发送的第四配置信息,所述第四配置信息包括所述第一GF资源的资源索引和所述第一终端在所述第一GF资源中的DMRS索引,所述资源索引是所述第一GF资源在所述第一GF资源组中的排序,所述DMRS索引所指示的DMRS用于所述第一数据的传输;所述第一终端根据所述资源索引和所述DMRS索引确定所述第一终端在位表中的位置索引,所述目标HARQ确认消息包括所述位表,所述位表中的所述位置索引对应的值表示所述第一数据的确认信息。
结合第一方面或第一方面的任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述目标HARQ确认消息被携带在组公共下行控制信息G-DCI中。
第二方面,本申请实施例提供一种数据传输的确认方法,所述方法包括:网络设备在第一免授权GF资源上接收第一终端发送的第一数据,所述第一GF资源属于第一GF资源组,所述第一GF资源组包括N个GF资源,N≥1;所述网络设备向所述第一终端发送目标混合自动重传请求HARQ确认消息,所述目标HARQ确认消息与所述第一GF资源组对应,所述目标HARQ确认消息用于对在所述第一GF资源组的GF资源上传输的所有终端的数据进行确认,所述所有终端包括所述第一终端,所述所有终端的数据包括所述第一数据。
结合第二方面,在第二方面的一种可能的实现方式中,在所述网络设备在第一GF资源上接收第一终端发送的第一数据之前,所述方法还包括:所述网络设备向所述第一终端发送第一配置信息,所述第一配置信息包括所述第一GF资源组对应的组标识。
结合第二方面或第二方面的一种可能的实现方式,在第二方面的另一种可能的实现方式中,所述网络设备向所述第一终端发送目标HARQ确认消息,包括:所述网络设 备根据所述组标识对所述目标HARQ确认消息进行加扰;所述网络设备向所述第一终端发送加扰后的目标HARQ确认消息。
结合第二方面或第二方面的任一种可能的实现方式,在第二方面的另一种可能的实现方式中,在所述网络设备在第一GF资源上接收第一终端发送的第一数据之前,所述方法还包括:所述网络设备向所述第一终端发送第二配置信息,所述第二配置信息包括所述第一终端在位表中的位置索引,所述目标HARQ确认消息包括所述位表,所述位表中的所述位置索引对应的值表示所述第一数据的确认信息。
结合第二方面或第二方面的任一种可能的实现方式,在第二方面的另一种可能的实现方式中,在所述网络设备在第一GF资源上接收第一终端发送的第一数据之前,所述方法还包括:所述网络设备向所述第一终端发送的第三配置信息,所述第三配置信息包括所述第一终端在所述第一GF资源中的解调参考信号DMRS索引,所述DMRS索引所指示的DMRS用于所述第一数据的传输。
结合第二方面或第二方面的任一种可能的实现方式,在第二方面的另一种可能的实现方式中,在所述网络设备在第一GF资源上接收第一终端发送的第一数据之前,所述方法还包括:所述网络设备向所述第一终端发送第四配置信息,所述第四配置信息包括所述第一GF资源的资源索引和所述第一终端在所述第一GF资源中的DMRS索引,所述资源索引是所述第一GF资源在所述第一GF资源组中的排序,所述DMRS索引所指示的DMRS用于所述第一数据的传输。
结合上述任一方面或任一方面的任一种可能的实现方式,在另一种可能的实现方式中,所述N的值是预定义的,或,所述N的值是所述网络设备配置的。
结合上述任一方面或任一方面的任一种可能的实现方式,在另一种可能的实现方式中,所述组标识包括组公共无线网络临时标识G-RNTI。
第三方面,本申请实施例提供一种终端,该终端具有实现上述第一方面任一项中第一终端行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第四方面,本申请实施例提供一种网络设备,该网络设备具有实现上述第二方面任一项中网络设备行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第五方面,本申请实施例提供一种终端,所述终端包括:处理器、存储器、收发器;所述收发器耦合至所述处理器,所述处理器控制所述收发器的收发动作;
其中,所述存储器用于存储计算机可执行程序代码,所述程序代码包括指令;当所述处理器执行所述指令时,所述指令使所述终端执行如上述第一方面任一项所述的方法。
第六方面,本申请实施例提供一种网络设备,所述网络设备包括:处理器、存储器、收发器;所述收发器耦合至所述处理器,所述处理器控制所述收发器的收发动作;
其中,所述存储器用于存储计算机可执行程序代码,所述程序代码包括指令;当所述处理器执行所述指令时,所述指令使所述网络设备执行如上述第二方面任一项所述的方法。
第七方面,本申请实施例提供一种通信设备,包括:接口和处理器,所述接口和 处理器耦合,所述处理器用于执行上述第一方面任一项所述的方法。
上述通信设备可以为终端,也可以为芯片;存储器可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上。
第八方面,本申请实施例提供一种通信设备,包括:接口和处理器,所述接口和处理器耦合,所述处理器用于执行上述第二方面任一项所述的方法。
上述通信设备可以为网络设备,也可以为芯片;存储器可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上。
第九方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序包含至少一段代码,该至少一段代码可由计算机执行,以控制所述计算机执行如第一方面至第二方面任一项所述的操作。
第十方面,本申请实施例提供一种计算机程序,当所述计算机程序被计算机执行时,用于执行如第一方面至第二方面任一项所述的操作。
所述程序可以全部或者部分存储在与处理封装在一起的存储介质上,也可以部分或者全部存储在不与处理器封装在一起的存储器上。
本申请提供的实施例包括以下任一个:
实施例1、一种数据传输的确认方法,所述方法包括:
网络设备在第一GF资源上接收终端设备发送的第一数据,所述第一GF资源属于第一GF资源组,所述第一GF资源组包括N个GF资源,N≥1;
所述网络设备向所述终端设备发送HARQ确认消息,所述HARQ确认消息与所述第一GF资源组对应,所述HARQ确认消息中包括所述第一数据的确认信息。
N个GF资源对应一个HARQ确认消息,而每个GF资源能够容纳的UE数目上限是确定的(取决于可用的DMRS数目),这使得HARQ确认消息中的Bitmap长度固定,进而使HARQ确认消息长度固定,这有利于降低UE接收HARQ确认消息时的盲检次数,从而使UE更加省电。
实施例2、根据实施例1所述的方法,在所述网络设备在第一GF资源上接收终端设备发送的第一数据之前,所述网络设备向所述终端设备发送配置信息,所述配置信息包括所述第一GF资源组对应的G-RNTI,所述G-RNTI用于对所述HARQ确认消息进行加扰。
基于G-RNTI生成扰码序列来加扰HARQ确认消息,从而区分不同GF资源组对应的HARQ确认消息。由于采用加扰的方法,G-RNTI不必显式携带在HARQ确认消息中,这有利于降低HARQ确认消息的传输开销。
实施例3、根据实施例1所述的方法,在所述网络设备在第一GF资源上接收终端设备发送的第一数据之前,所述网络设备向所述终端设备发送配置信息,所述配置信息包括所述第一GF资源组对应的组标识,所述HARQ确认消息中包括所述组标识。
资源组对应的组标识显式携带在HARQ确认消息中,用于区分不同GF资源组对应的HARQ确认消息。相比加扰的方法,这种显式携带的方法显然会增加HARQ确认消息的传输开销,但同时具有灵活性高的优点,有利于存在较多GF资源组情况下的不同HARQ确认消息的指示。
实施例4、根据实施例1-3任一所述的方法,在所述网络设备在第一GF资源上接 收终端设备发送的第一数据之前,所述网络设备向所述终端设备发送配置信息,所述配置信息包括所述终端设备在位表中的位置索引,所述HARQ确认消息包括所述位表,所述位表中的所述位置索引对应的值表示所述第一数据的确认信息。
基站指示UE在HARQ确认消息的Bitmap中的位置索引,使得UE据此确定HARQ确认消息的Bitmap中哪个或哪些比特与自己发送的数据对应,从而根据对应位置上的比特值确定基站是否正确接收对应数据。
实施例5、根据实施例1-3任一所述的方法,在所述网络设备在第一GF资源上接收终端设备发送的第一数据之前,所述网络设备向所述终端设备发送配置信息,所述配置信息包括所述第一GF资源的资源索引和所述终端设备在所述终端设备在所述第一GF资源中的DMRS索引,所述资源索引是所述第一GF资源在所述第一GF资源组中的排序。
基站为UE指示资源索引和DMRS索引,使得UE基于这两个索引确定自身在HARQ确认消息的Bitmap中的位置索引。由于DMRS索引并不仅用于本申请,而是GF传输的基本配置,故仅资源索引是本申请新增指示。显然,相比基站直接配置UE的位置索引的方法,本实施例中基站配置资源索引的指示开销更小。
实施例6、根据实施例1-5任一所述的方法,所述N的值是预定义的,或,所述N的值是所述网络设备配置的。
N为标准预定义或由基站配置,使得对于UE来说,N是确定值,这使得HARQ确认消息中的Bitmap长度固定,进而使HARQ确认消息长度固定,这有利于降低UE接收HARQ确认消息时的盲检次数,从而使UE更加省电。
实施例7、一种数据传输的确认方法,所述方法包括:
终端设备在第一GF资源上向网络设备发送第一数据,所述第一GF资源属于第一GF资源组,所述第一GF资源组包括N个GF资源,N≥1;
所述终端设备接收所述网络设备发送的HARQ确认消息,所述HARQ确认消息与所述第一GF资源组对应,所述HARQ确认消息中包括所述第一数据的确认信息。
N个GF资源对应一个HARQ确认消息,而每个GF资源能够容纳的UE数目上限是确定的(取决于可用的DMRS数目),这使得HARQ确认消息中的Bitmap长度固定,进而使HARQ确认消息长度固定,这有利于降低UE接收HARQ确认消息时的盲检次数,从而使UE更加省电。
实施例8、根据实施例7所述的方法,在所述终端设备在第一GF资源上向网络设备发送第一数据之前,所述终端设备接收所述网络设备发送的配置信息,所述配置信息包括所述第一GF资源组对应的G-RNTI,所述G-RNTI用于对所述HARQ确认消息进行解扰。
基于G-RNTI生成扰码序列来加扰HARQ确认消息,从而区分不同GF资源组对应的HARQ确认消息。由于采用加扰的方法,G-RNTI不必显式携带在HARQ确认消息中,这有利于降低HARQ确认消息的传输开销。
实施例9、根据实施例7所述的方法,在所述终端设备在第一GF资源上向网络设备发送第一数据之前,所述终端设备接收所述网络设备发送的配置信息,所述配置信息包括所述第一GF资源组对应的组标识,所述HARQ确认消息中包括所述组标识。
资源组对应的组标识显式携带在HARQ确认消息中,用于区分不同GF资源组对应的HARQ确认消息。相比加扰的方法,这种显式携带的方法显然会增加HARQ确认消息的传输开销,但同时具有灵活性高的优点,有利于存在较多GF资源组情况下的不同HARQ确认消息的指示。
实施例10、根据实施例7所述的方法,在所述终端设备在第一GF资源上向网络设备发送第一数据之前,所述终端设备根据所述第一GF资源组所在子帧或时隙或微时隙的索引确定所述第一GF资源组对应的G-RNTI,所述G-RNTI用于对所述HARQ确认消息进行解扰。
UE根据第一GF资源组所在子帧或时隙或微时隙的索引来确定G-RNTI,这样就无需基站通过信令配置G-RNTI,有利于降低配置开销。
实施例11、根据实施例7所述的方法,在所述终端设备在第一GF资源上向网络设备发送第一数据之前,所述终端设备根据所述第一GF资源组所在子帧或时隙或微时隙的索引确定所述第一GF资源组对应的组标识,所述HARQ确认消息中包括所述组标识。
UE根据第一GF资源组所在子帧或时隙或微时隙的索引来确定组标识,这样就无需基站通过信令配置组标识,有利于降低配置开销。
实施例12、根据实施例7-11任一所述的方法,在所述终端设备在第一GF资源上向网络设备发送第一数据之前,所述终端设备接收所述网络设备发送的配置信息,所述配置信息包括所述终端设备在位表中的位置索引,所述HARQ确认消息包括所述位表,所述位表中的所述位置索引对应的值表示所述第一数据的确认信息。
基站指示UE在HARQ确认消息的Bitmap中的位置索引,使得UE据此确定HARQ确认消息的Bitmap中哪个或哪些比特与自己发送的数据对应,从而根据对应位置上的比特值确定基站是否正确接收对应数据。
实施例13、根据实施例7-11任一所述的方法,在所述终端设备在第一GF资源上向网络设备发送第一数据之前,所述终端设备接收所述网络设备发送的配置信息,所述配置信息包括所述第一GF资源的资源索引和所述终端设备在所述终端设备在所述第一GF资源中的DMRS索引,所述资源索引是所述第一GF资源在所述第一GF资源组中的排序。
基站为UE指示资源索引和DMRS索引,使得UE基于这两个索引确定自身在HARQ确认消息的Bitmap中的位置索引。由于DMRS索引并不仅用于本申请,而是GF传输的基本配置,故仅资源索引是本申请新增指示。显然,相比基站直接配置UE的位置索引的方法,本实施例中基站配置资源索引的指示开销更小。
实施例14、根据实施例13所述的方法,所述终端设备基于所述资源索引和所述DMRS索引,确定所述终端设备在位表中的位置索引,所述HARQ确认消息包括所述位表,所述位表中的所述位置索引对应的值表示所述第一数据的确认信息。
实施例15、根据实施例7-14任一所述的方法,所述N的值是预定义的,或,所述N的值是所述网络设备配置的。
N为标准预定义或由基站配置,使得对于UE来说,N是确定值,这使得HARQ确认消息中的Bitmap长度固定,进而使HARQ确认消息长度固定,这有利于降低UE接收 HARQ确认消息时的盲检次数,从而使UE更加省电。
实施例16、一种网络设备,所述网络设备包括:
处理器,存储器和收发器;
所述收发器,用于接收和发送数据;
所述存储器,用于存储指令;
所述处理器,用于执行所述存储器中的所述指令,执行如实施例1-6任一所述的方法。
实施例17、根据实施例16所述的网络设备,所述收发器包括:
发送器和接收器;
所述接收器用于接收终端设备发送的如实施例1-6任一所述第一数据;
所述发送器用于发送如实施例1-6任一所述HARQ确认消息或所述配置信息。
实施例18、一种终端设备,所述终端设备包括:
处理器,存储器和收发器;
所述收发器,用于接收和发送数据;
所述存储器用于存储指令;
所述处理器用于执行所述存储器中的所述指令,执行如实施例7-15任一所述的方法。
实施例19、根据实施例18所述的终端设备,所述收发器包括:
发送器和接收器;
所述接收器用于接收网络设备发送的如实施例7-15任一所述HARQ确认消息或所述配置信息;
所述发送器用于发送如实施例7-15任一所述第一数据。
实施例20、一种计算机程序产品,包括计算机程序,该计算机程序在某一计算机单元上执行时,将会使所述计算机单元实现实施例1-6任一所述的方法。
实施例21一种计算机程序产品,包括计算机程序,该计算机程序在某一计算机单元上执行时,将会使所述计算机单元实现实施例7-15任一所述的方法。
实施例22、一种计算机程序,该计算机程序在某一计算机单元上执行时,将会使所述计算机单元实现实施例1-6任一所述的方法。
实施例23、一种计算机程序,该计算机程序在某一计算机单元上执行时,将会使所述计算机单元实现实施例7-15任一所述的方法。
实施例24、一种网络设备,所述网络设备被配置为执行如实施例1-6任一所述的方法。
实施例25、一种终端设备,所述终端设备被配置为执行如实施例7-15任一所述的方法。
实施例26、一种计算机可读存储介质,其上存储有计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例1-6任一所述的方法。
实施例27、一种计算机可读存储介质,其上存储有计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例7-15任一所述的方法。
实施例28、一种通信系统,包括如实施例1-6任一所述的终端设备和如实施例7-15 任一所述的网络设备。
实施例29、一种芯片,包括:处理模块与通信接口,所述处理模块用于执行实施例1-6中任一项所述的通信方法。
实施例30、根据实施例29所述的芯片,所述芯片还包括存储模块,所述存储模块用于存储指令,所述处理模块用于执行所述存储模块存储的指令,并且对所述存储模块中存储的指令的执行使得所述处理模块执行实施例1-6中任一项所述的通信方法。
实施例31、一种芯片,包括:处理模块与通信接口,所述处理模块用于执行实施例7-15中任一项所述的通信方法。
实施例32、根据实施例31所述的芯片,所述芯片还包括存储模块,所述存储模块用于存储指令,所述处理模块用于执行所述存储模块存储的指令,并且对所述存储模块中存储的指令的执行使得所述处理模块执行实施例7-15中任一项所述的通信方法。
本申请实施例的数据传输的确认方法及设备,通过第一终端在第一GF资源上向网络设备发送第一数据,其中,所述第一GF资源属于第一GF资源组,所述第一GF资源组包括N个GF资源,网络设备向所述终端发送目标HARQ确认消息,所述目标HARQ确认消息与所述第一GF资源组对应,所述目标HARQ确认消息用于对在所述第一GF资源组的GF资源上传输的所有终端的数据进行确认,所述所有终端包括所述第一终端,所述所有终端的数据包括所述第一数据,实现通过目标HARQ确认消息对在GF资源组中的GF资源上传输的所有终端的数据进行确认,该GF资源上传输数据的终端可以包括一个或多个终端,即基于GF资源分组达到终端分组的目的,同组GF资源对应的终端映射至同一个HARQ确认消息进行数据传输的确认,从而可以减少相关信令开销。
附图说明
下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍。
图1为本申请涉及的通信系统的框架图;
图2为本申请的N=2时的GF资源组与G-DCI的示意图;
图3为本申请的一种数据传输的确认方法的流程图;
图4为本申请的另一种数据传输的确认方法的流程图;
图5A为本申请的另一种数据传输的确认方法的流程图;
图5B为本申请的另一种数据传输的确认方法的示意图;
图6为本申请的组标识计算的示意图;
图7为本申请的另一种数据传输的确认方法的流程图;
图8A为本申请的另一种数据传输的确认方法的流程图;
图8B为本申请的另一种数据传输的确认方法的示意图;
图9为本申请的另一种数据传输的确认方法的流程图;
图10为本申请一实施例提供的终端的结构示意图;
图11为本申请另一实施例提供的终端的结构示意图;
图12为本申请一实施例提供的芯片的结构示意图;
图13为本申请另一实施例提供的网络设备的结构示意图;
图14为本申请另一实施例提供的网络设备的结构示意图;
图15为本申请另一实施例提供的芯片的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请所涉及的“/”表示或的关系,例如,A/B可以表示:单独存在A、单独存在B这两种情况。
本申请所涉及的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A、单独存在B,同时存在A和B这三种情况。
图1为本申请涉及的通信系统的框架图。本申请提供的数据传输的确认方法适用于如图1所示的通信系统,该通信系统可以是LTE通信系统,也可以是其他通信系统(例如5G通信系统),在此不作限制。如图1所示,该通信系统包括:网络设备和终端。
其中,网络设备:可以是基站,或者接入点,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理,为终端分配传输资源。例如,基站可以是全球移动通讯(Global System of Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继(Relay)站或接入点(Access Point,AP),或者热点(pico),或者家庭基站(Femeto),或者5G网络中的基站等,在此并不限定。
终端:可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)、手机、电脑、手环、智能手表、数据卡、传感器等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
需要说明的是。对于Sidelink(副链路),即设备到设备(Device to Device,D2D),例如,手环-手机-基站中手环与手机之间的链路,手环可视为终端,而手机视为基站。
本申请所涉及的“混合自动重传请求确认(HARQ ACK)消息”被携带在组公共下行控制信息(Group common DCI,G-DCI)中,该G-DCI通过PDCCH发送。承载G-DCI的PDCCH又可称为组公共物理下行控制信道(Group common PDCCH)。网络设备可以向通过一个GF资源组传输数据的一个或多个终端发送一个HARQ ACK消息,即一个HARQACK消息中包括该一个或多个终端通过一个GF资源组发送的数据的确认信息,本申请实施例将对该一个或多个终端发送的数据进行确认的HARQ ACK消息称之为“目标HARQ ACK消息”。该目标HARQ ACK消息可以包括一个或多个HARQ ACK消息,例如,该一个或多个终端通过多个GF资源传输数据,则该目标HARQ ACK消息包括多个HARQ ACK消息,一个HARQ ACK消息与一个GF资源组对应。
需要说明的是,G-DCI、HARQ ACK消息、目标HARQ ACK消息仅为一种消息名称,其消息名称并不以此作为限制。
本申请的网络设备将每N个免授权(Grant-free,GF)资源分为一组,同一GF资源只能位于一个组中,N≥1。其中,使用组标识(group ID)标识不同的GF资源组。每个GF资源组对应一个混合自动重传请求确认(HARQ ACK)消息,即使用一个HARQ确认消息对所有在该GF资源组中发送数据的终端进行回复。换句话说,所有在该GF资源组(可以是其中任一GF资源或多个GF资源)中传输的数据所对应的确认信息包含在同一HARQ ACK消息中,这些数据可以来自一个终端,也可以来自多个终端。不同GF资源组对应的HARQ ACK消息,用对应GF资源组的组标识(group ID)进行区分。其中,HARQ ACK消息具体可以携带在组公共下行控制信息(Group common DCI,G-DCI),该G-DCI中包括位图信息(Bitmap),用于对在该HARQ ACK消息对应的N个GF资源上传输的数据进行HARQ确认。
其中,N的具体取值可以是标准预定义的,也可以是由网络设备配置的。网络设备可通过无线资源控制(Radio Resource Control,RRC)信令、媒体访问控制控制元素(Media Access Control Control Element,MAC CE)或物理层信令为终端配置N的取值。
本申请涉及的GF资源,也可以称之为GF传输资源,该GF资源可以包括但不限于以下资源的一种或多种的组合:时域资源(也可以称为时间资源),如无线帧、子帧、符号等;频域资源(也可以称为频谱资源),如子载波、资源块等;空域资源,如发送天线、波束等;码域资源,如稀疏码多址接入(Sparse Code Multiple Access,SCMA)码本、低密度签名(Low Density Signature,LDS)序列、CDMA码等;以及,上行导频资源。
举例而言,图2为本申请的N=2时的GF资源组与G-DCI的示意图,其中,GF资源1和GF资源2分为第一组,可以用G-ID1(group ID1)标识;GF资源3和GF资源4分为第二组,用G-ID2(group ID2)标识。G-ID1的GF资源组对应的HARQ ACK消息为G-DCI1,G-ID2的GF资源组对应的HARQ ACK消息为G-DCI2。当UE在GF资源1和/或GF资源2中进行数据传输时,则在G-DCI1中接收对应的确认消息;当UE在GF 资源3和/或GF资源4中进行数据传输时,则在G-DCI2中接收对应的确认消息。需要说明的是,网络设备可以将多个GF资源配置配给同一UE。例如,网络设备将GF资源1和GF资源2都配置给UE1,则在G-DCI1中有两个比特与UE1对应,即分别对应UE1在GF资源1和GF资源2中发送的数据的确认。再如,网络设备将GF资源1和GF资源4配置给UE2,且UE2在两个GF资源上都发送了数据,则UE2需分别接收G-DCI1和G-DCI2,以获得其在GF资源1和GF资源4上发送数据的确认。
本申请通过上述方式将多个GF资源进行分组,每个GF资源组对应一个HARQ ACK消息,通过HARQ ACK消息向终端反馈GF资源组中的GF资源上传输的数据的确认,该GF资源上传输数据的终端可以包括一个或多个终端,即基于GF资源分组达到终端分组的目的,同组GF资源对应的终端映射至同一个HARQ ACK消息进行数据传输的确认,从而可以减少相关信令开销。
本文所涉及的“第一终端”和“第二终端”仅用于区分通信网络中不同的终端,即上述图1所示的通信系统中可以包括多个终端,该多个终端中的一个或者多个可以使用GF资源进行数据传输,通过本申请实施例的数据传输的确认方法对该GF资源上传输的数据进行确认。其中,第二终端也可以执行下述实施例中第一终端执行的相关方法步骤。下述实施例采用第一终端和网络设备进行举例说明。
本申请的数据传输的确认方法的具体解释说明可以参见下述实施例的具体解释说明。
图3为本申请的一种数据传输的确认方法的流程图,本实施例涉及网络设备和终端,如图3所示,本实施例的方法可以包括:
步骤101、第一终端在第一GF资源上向网络设备发送第一数据。
相应的,网络设备在第一GF资源上接收第一终端发送的第一数据。
其中,所述第一GF资源属于第一GF资源组,所述第一GF资源组包括N个GF资源,N≥1。
具体的,该第一GF资源组包括N个GF资源,终端可以使用N个GF资源中一个或多个GF资源发送第一数据,该一个或多个GF资源即为该第一GF资源。
步骤102、所述网络设备向所述第一终端发送目标HARQ确认消息。
相应的,第一终端接收网络设备发送的目标HARQ确认消息。
其中,所述目标HARQ确认消息与所述第一GF资源组对应,所述目标HARQ确认消息用于对在所述第一GF资源组的GF资源上传输的所有终端的数据进行确认,所述所有终端包括所述第一终端,所述所有终端的数据包括所述第一数据,即该所述目标HARQ确认消息中包括所述第一数据的确认信息。
可以理解的,网络中可以有一个或多个终端使用第一GF资源组中的GF资源进行数据传输,上述第一终端为上述一个或多个终端中的一个终端,网络设备可以通过一个目标HARQ确认消息对在该第一GF资源组的GF资源上传输的一个或多个终端的数据进行确认。举例而言,网络中第一终端和第二终端使用第一GF资源组中的GF资源进行数据传输,网络设备可以通过一个目标HARQ确认消息对在该第一GF资源组的GF资源上传输的第一终端和第二终端的数据进行确认。
具体的,网络设备根据一个或多个终端传输的数据的接收情况,该一个或多个终 端传输的数据包括第一终端的第一数据,生成该目标HARQ确认消息,即网络设备向一个或多个终端反馈通过第一GF资源组的GF资源传输的所有终端的数据的确认信息。
本实施例,通过第一终端在第一GF资源上向网络设备发送第一数据,其中,所述第一GF资源属于第一GF资源组,所述第一GF资源组包括N个GF资源,网络设备向所述终端发送目标HARQ确认消息,所述目标HARQ确认消息与所述第一GF资源组对应,所述目标HARQ确认消息用于对在所述第一GF资源组的GF资源上传输的所有终端的数据进行确认,所述所有终端包括所述第一终端,所述所有终端的数据包括所述第一数据,实现通过目标HARQ确认消息对在GF资源组中的GF资源上传输的所有终端的数据进行确认,该GF资源组上传输数据的终端可以包括一个或多个终端,即基于GF资源分组达到终端分组的目的,同组GF资源对应的终端映射至同一个HARQ确认消息进行数据传输的确认,从而可以减少相关信令开销。
下面采用几个具体的实施例,对图3所示方法实施例的技术方案进行详细说明。
图4为本申请的另一种数据传输的确认方法的流程图,如图4所示,本实施例在上述实施例的基础上,通过加扰、解扰组标识的方式实现接收和识别第一GF资源组对应的目标HARQ确认消息,本实施例的方法可以包括:
终端在网络设备配置的GF资源中传输数据之后,到对应的下行子帧/时隙/微时隙接收HARQ确认消息,该下行子帧/时隙/微时隙可以称之为“目标HARQ确认时机”。该目标HARQ确认时机通常包括多个可用于传输下行控制信息(DCI和/或G-DCI)的时频资源(即DCI和/或G-DCI搜索空间),终端在该目标HARQ确认时机盲检与自己传输使用的GF资源所属GF资源组对应的HARQ确认消息(称为目标HARQ确认消息),即G-DCI。当终端在目标HARQ确认时机中收到一个消息,可以通过下述步骤确定该消息是否是自己期望的目标HARQ确认消息,即可以确定接收到的HARQ确认消息是否是自己传输使用的GF资源所属GF资源组对应的HARQ确认消息。下述实施例中采用第一终端做举例说明,通信网络中的其他终端可以执行相同的方法步骤,此处不再赘述。
步骤201、第一终端在第一GF资源上向网络设备发送第一数据。
其中,第一GF资源属于第一GF资源组。
相应的,网络设备在第一GF资源上接收第一终端发送的第一数据。
其中,步骤201的具体解释说明可以参见上述图3所示实施例的步骤101,此处不再赘述。
步骤202、网络设备向第一终端发送HARQ确认消息。
具体的,网络设备根据一个或多个终端在第一GF资源组中的传输的数据的接收情况,该一个或多个终端传输的数据包括第一终端的第一数据,生成目标HARQ确认消息,即网络设备向一个或多个终端反馈通过第一GF资源组中的GF资源传输的所有终端的数据的确认信息。本实施例中,所述网络设备还可以根据所述第一GF资源组的组标识对所述目标HARQ确认消息进行加扰,然后,所述网络设备向一个或多个终端发送加扰后的目标HARQ确认消息。其中,由于网络设备还可以对其他GF资源组的数据进行确认,所以,网络设备可以发送多个HARQ确认消息,每个HARQ确认消息对应一个GF资源组,其中一个HARQ确认消息即为加扰后的目标HARQ确认消息(即第一GF资源组对应的HARQ确认消息)。
其中,网络设备根据所述第一GF资源组的组标识对所述目标HARQ确认消息进行加扰的具体实现方式可以为,基于第一GF资源组的组标识产生扰码序列,使用扰码序列对承载该所述目标HARQ确认消息的G-DCI的负载(payload)的循环冗余效验(Cyclic Redundancy Check,CRC)进行加扰。
第一终端接收网络设备发送的HARQ确认消息,第一终端需要通过下述步骤203,以确定接收到的HARQ确认消息是否为自身的目标HARQ确认消息。
步骤203、所述第一终端使用第一GF资源组的组标识对所述HARQ确认消息进行解扰,当所述HARQ确认消息被正确解扰时,则确定所述HARQ确认消息为目标HARQ确认消息,所述目标HARQ确认消息与所述第一GF资源组对应。
具体的,第一终端使用组标识对接收到的HARQ确认消息进行解扰,当所述HARQ确认消息被正确解扰时,则确定所述HARQ确认消息为目标HARQ确认消息。
其中,对接收到的HARQ确认消息进行解扰的具体实现方式可以为,基于所述组标识产生扰码序列,使用该扰码序列对接收到的G-DCI进行的负载(payload)的CRC进行解扰。当解扰后的CRC与根据G-DCI的负载计算获得CRC完全一致时,则认为所述HARQ确认消息被正确解扰。
本实施例,通过第一终端在第一GF资源上向网络设备发送第一数据,其中,所述第一GF资源属于第一GF资源组,所述第一GF资源组包括N个GF资源,网络设备向所述第一终端发送HARQ确认消息,第一终端使用第一GF资源组的组标识对所述HARQ确认消息进行解扰,当所述HARQ确认消息被正确解扰时,则确定所述HARQ确认消息为所述目标HARQ确认消息,所述目标HARQ确认消息与所述第一GF资源组对应,所述目标HARQ确认消息用于对在所述第一GF资源组的GF资源上传输的所有终端的数据进行确认,所述所有终端包括所述第一终端,所述所有终端的数据包括所述第一数据,实现通过目标HARQ确认消息对在GF资源组中的GF资源上传输的所有终端的数据进行确认,该GF资源上传输数据的终端可以包括一个或多个终端,即基于GF资源分组达到终端分组的目的,同组GF资源对应的终端映射至同一个HARQ确认消息进行数据传输的确认,从而可以减少相关信令开销。
并且,通过加扰、解扰的方式使得在不同GF资源组中的GF资源上传输数据的终端获取对应的目标HARQ确认消息,GF资源组的标识不必显式携带在HARQ确认消息中,可以进一步节省开销。
图5A为本申请的另一种数据传输的确认方法的流程图,图5B为本申请的另一种数据传输的确认方法的示意图,如图5A所示,本实施例通过在HARQ确认消息中显式携带组标识的方式实现接收和识别第一资源组对应的目标HARQ确认消息,本实施例的方法可以包括:
步骤301、第一终端在第一GF资源上向网络设备发送第一数据。
其中,第一GF资源属于第一GF资源组。
相应的,网络设备在第一GF资源上接收第一终端发送的第一数据。
其中,步骤301的具体解释说明可以参见上述图3所示实施例的步骤101,此处不再赘述。
步骤302、网络设备向第一终端发送HARQ确认消息。
具体的,网络设备根据一个或多个终端在第一GF资源组中的传输的数据的接收情况,该一个或多个终端传输的数据包括第一终端的第一数据,生成目标HARQ确认消息,即网络设备向一个或多个终端反馈通过第一GF资源组的GF资源传输的所有终端的数据的确认信息。其中,由于网络设备还可以对其他GF资源组的数据进行确认,所以,网络设备可以发送多个HARQ确认消息,每个HARQ确认消息对应一个GF资源组,网络设备可以在HARQ确认消息中携带组标识,以区分不同GF资源组的HARQ确认消息。其中一个HARQ确认消息即为携带第一GF资源组的组标识的目标HARQ确认消息(即第一GF资源组对应的HARQ确认消息)。
第一终端接收网络设备发送的HARQ确认消息,第一终端需要通过下述步骤303,以确定接收到的HARQ确认消息是否为自身的目标HARQ确认消息。
需要说明的是,该组标识也可以携带在承载HARQ确认消息的G-DCI中。
步骤303、所述第一终端判断所述HARQ确认消息是否包括所述第一GF资源组对应的组标识,当所述HARQ确认消息包括所述第一GF资源组对应的组标识时,则确定所述HARQ确认消息为目标HARQ确认消息。
所述目标HARQ确认消息与所述第一GF资源组对应。
即第一终端在接收到一个HARQ确认消息时,可以检查该HARQ确认消息是否携带第一GF资源组对应的组标识,当携带第一GF资源组对应的组标识时,确定该HARQ确认消息为目标HARQ确认消息,进而根据该目标HARQ确认消息确定第一数据的ACK/NACK信息。
可以理解的,另一种实现方式,第一终端在接收到一个G-DCI时,可以检查该G-DCI是否携带第一GF资源组对应的组标识,当携带第一GF资源组对应的组标识时,确定该G-DCI为自己期望的G-DCI,进而从该G-DCI中获取目标HARQ确认消息,根据该目标HARQ确认消息确定第一数据的ACK/NACK信息。
以图5B做举例说明,将GF资源1和GF资源2定义为GF资源组1,用G-ID1标识;GF资源3和GF资源4定义为GF资源组2,用G-ID2标识。网络设备在发送的与GF资源组1对应的G-DCI1中,显式携带G-ID1,表示G-DCI1是发送给在GF资源组1中的GF资源上传输数据的一个或多个终端的;网络设备在发送的与GF资源组2对应的G-DCI2中,显式携带G-ID2,表示G-DCI2是发送给在GF资源组2中的GF资源上传输数据的一个或多个终端的。
本实施例,通过第一终端在第一GF资源上向网络设备发送第一数据,其中,所述第一GF资源属于第一GF资源组,所述第一GF资源组包括N个GF资源,网络设备向所述第一终端发送HARQ确认消息,当该HARQ确认消息包括所述第一GF资源组的组标识时,则确定所述HARQ确认消息为目标HARQ确认消息,所述目标HARQ确认消息与所述第一GF资源组对应,所述目标HARQ确认消息用于对在所述第一GF资源组的GF资源上传输的所有终端的数据进行确认,所述所有终端包括所述第一终端,所述所有终端的数据包括所述第一数据,实现通过目标HARQ确认消息对在GF资源组中的GF资源上传输的所有终端的数据进行确认,该GF资源上传输数据的终端可以包括一个或多个终端,即基于GF资源分组达到终端分组的目的,同组GF资源对应的终端映射至同一个HARQ确认消息进行数据传输的确认,从而可以减少相关信令开销。
并且,通过显式携带组标识的方式使得在不同GF资源组中的GF资源上传输数据的终端获取对应的目标HARQ确认消息。
本申请实施例中,组标识用于区分不同的GF资源组,组标识具体可以包括组公共无线网络临时标识(Group common Radio Network Temporary Identity,G-RNTI)或者组公共标识(Group common Identity,G-ID)。当然可以理解的,该组标识还可以采用其他标识,此处不一一举例说明。
上述实施例中的组标识可以是网络设备配置给终端的,也可以是终端计算确定的。
具体的,一种可实现方式,组标识是网络设备配置给终端的。具体的,网络设备向第一终端发送第一配置信息,相应的,第一终端接收网络设备发送的第一配置信息,该第一配置信息包括所述第一GF资源组对应的组标识。
其中,举例而言,网络设备可以在为终端配置GF资源时,同时配置与该GF资源所属GF资源组对应的组标识。
该第一配置信息可以通过RRC信令、MAC CE或物理层信令等方式传输给终端。
另一种可实现方式,组标识是终端计算确定的。具体的,第一终端根据所述第一GF资源组所在时域资源的索引和/或频域资源的索引确定所述第一GF资源组对应的组标识。其中,所述时域资源包括子帧或时隙或微时隙,所述频域资源包括子载波或资源块。
具体的,该第一GF资源组所在时频资源可以包括一个或多个子帧/时隙/微时隙。当该第一GF资源组所在时频资源包括一个子帧/时隙/微时隙时,第一终端可以根据该第一GF资源组所在时频资源的子帧/时隙/微时隙的索引计算该第一GF资源组对应的组标识。当该第一GF资源组所在时频资源包括多个子帧/时隙/微时隙时,第一终端可以根据该第一GF资源组所在时频资源中的特定子帧/时隙/微时隙的索引计算该第一GF资源组对应的组标识,举例而言,采用多个子帧/时隙/微时隙中的第一个子帧/时隙/微时隙的索引计算该第一GF资源组对应的组标识。
可以理解的,在确定该第一GF资源组对应的组标识的过程中,还可以考虑其他因素,如当前系统帧号等。
举例而言,图6为本申请的组标识计算的示意图,如图6所示的传统TDD配置0,其中每个方格代表一个子帧,子帧U3和U4的HARQ确认消息都在子帧D0中传输,以U3和U4中均配置了GF资源为例进行举例说明,且每个UL子帧中的GF资源定义为一个GF资源组,则不同UL子帧的GF资源映射到D0中的不同G-DCI。进而,网络设备可通过子帧号隐式向终端指示组标识(G-RNTI/G-ID)。例如,当终端被配置了U3中的GF资源,且在U3中的GF资源上传输了数据,则终端在D0中对应的G-DCI的组标识(G-RNTI/G-ID)根据子帧U3的子帧号来计算获得。由于不同子帧的子帧号不同,根据子帧号计算得到的不同子帧对应的G-DCI的组标识(G-RNTI/G-ID)也是不同的。假设GF资源所在子帧的子帧号为z,则该子帧中的GF资源组对应G-DCI的组标识(G-RNTI/G-ID)为h(z),h为函数。除了子帧号之外,组标识(G-RNTI/G-ID)的计算中还可考虑其它因素,如当前系统帧号。假设当前系统帧号为s,GF资源所在子帧的子帧号为z,则对应G-DCI的组标识(G-RNTI/G-ID)为h(z,s)。函数h可以根据需求进行灵活设置,此处不一一举例说明。
终端根据GF资源所在子帧/时隙/微时隙的索引计算对应的组标识的方式,可以进一步节省网络配置开销。
图7为本申请的另一种数据传输的确认方法的流程图,如图7所示,本实施例在上述任一实施例的基础上,本实施例的方法还可以包括:
步骤401、网络设备向第一终端发送第二配置信息。
相应的,第一终端接收网络设备发送的第二配置信息。
其中,所述第二配置信息包括所述第一终端在位表中的位置索引,所述目标HARQ确认消息包括所述位表(bitmap),所述位表中的所述位置索引对应的值表示所述第一数据的确认信息。
具体的,目标HARQ确认消息用于对在第一GF资源组的GF资源上传输的所有终端的数据进行确认,该目标HARQ确认消息中一个或多个比特位与该第一终端的第一数据对应,该第二配置信息用于向第一终端指示第一数据的确认信息在目标HARQ确认消息中的位置。
步骤402、第一终端根据所述第二配置信息获取第一数据的确认信息。
具体的,第一终端通过上述实施例获取目标HARQ确认消息后,第一终端根据第二配置信息获取第一终端在位表中的位置索引,根据该位置索引获取第一数据的确认信息。
举例而言,网络设备将第一终端配置在GF资源1中,且配置该第一终端在位表中的位置索引为k,则第一终端在GF资源1中发送数据之后,接收到目标HARQ确认消息,根据目标HARQ确认消息的bitmap的第k位确定网络设备是否正确接收该第一数据。例如,Bitmap的第k位为1,表示网络设备正确接收该第一数据,否则,表示网络设备未正确接收该第一数据。
本实施例,通过网络设备向第一终端发送第二配置信息,该第二配置信息包括所述第一终端在位表中的位置索引,所述目标HARQ确认消息包括所述位表(bitmap),第一终端根据所述第二配置信息获取第一数据的确认信息,从而确定网络设备是否正确接收该第一数据。
图8A为本申请的另一种数据传输的确认方法的流程图,图8B为本申请的另一种数据传输的确认方法的示意图,如图8A所示,本实施例在上述任一实施例的基础上,本实施例的方法还可以包括:
步骤501、网络设备向第一终端发送第三配置信息。
相应的,第一终端接收网络设备发送的第三配置信息。
所述第三配置信息包括所述第一终端在所述第一GF资源中的解调参考信号(Demodulation Reference Signal,DMRS)索引,所述DMRS索引所指示的DMRS用于所述第一数据的传输。
具体的,上述第三配置信息用于隐式指示终端在位表(Bitmap)中的位置索引。网络设备在为终端配置GF资源时,还为同一GF资源中的不同终端配置了不同的DMRS,即在一个GF资源中,网络设备部通过接收到的数据的DMRS来识别该数据发送方的身份(即终端标识),这种情况下,网络设备为终端配置的DMRS的索引即为终端的身份标识,即UE ID。不同GF资源复用相同DMRS,即不同GF资源中的UE ID可以是复用 的。例如,GF资源1中UE ID为1-12,GF资源2中UE ID也是1-12。
步骤502、所述第一终端根据所述DMRS索引确定所述第一终端在位表中的位置索引。
所述目标HARQ确认消息包括所述位表,所述位表中的所述位置索引对应的值表示所述第一数据的确认信息。
具体的,目标HARQ确认消息用于对在第一GF资源组的GF资源上传输的所有终端的数据进行确认,该目标HARQ确认消息中一个比特位与该第一终端的第一数据对应,该第三配置信息用于向第一终端指示第一数据的确认信息在目标HARQ确认消息中的位置。
如图8B所示,N=1,即网络设备配置或标准预定义每个GF资源映射到一个G-DCI,且两者之间一一对应。这种情况下,可以利用UE ID来隐式指示第一终端在G-DCI中的Bitmap中的位置索引。假设第一终端在GF资源中的UE ID为u,对应位置索引为k,则k=f(u),f为映射函数。一种简单的映射方法是,UE ID即为位置索引,即f(u)=u。如8B所示,GF资源1和GF资源2分别映射到G-DCI1和G-DCI2,每个GF资源可容纳12个UE(通过DMRS区分同一GF资源中的不同UE),每个G-DCI中的Bitmap长度为12,则GF资源1中UE ID为1、2、…、12的UE分别与G-DCI1中Bitmap的第1、第2、…、第12位相对应。
步骤503、第一终端根据所述位置索引获取第一数据的确认信息。
具体的,第一终端通过上述实施例获取目标HARQ确认消息后,第一终端根据第三配置信息确定第一终端在位表中的位置索引,根据该位置索引获取第一数据的确认信息。
举例而言,第一终端根据第三配置信息确定该位置索引位2,则第一终端在GF资源1中发送数据之后,接收到目标HARQ确认消息,根据目标HARQ确认消息的bitmap的第2位确定网络设备是否正确接收该第一数据。例如,Bitmap的第2位为1,表示网络设备正确接收该第一数据,否则,表示网络设备未正确接收该第一数据。
本实施例,通过网络设备向第一终端发送第三配置信息,该第三配置信息包括所述第一终端在所述第一GF资源中的解调参考信号(DMRS)索引,第一终端根据所述第三配置信息确定第一终端在位表中的位置索引,根据该位置索引获取第一数据的确认信息,从而确定网络设备是否正确接收该第一数据。
图9为本申请的另一种数据传输的确认方法的流程图,如图9所示,本实施例在上述任一实施例的基础上,本实施例的方法还可以包括:
步骤601、网络设备向第一终端发送第四配置信息。
相应的,第一终端接收网络设备发送的第四配置信息。
所述第四配置信息包括所述第一GF资源的资源索引和所述第一终端在所述第一GF资源中的DMRS索引,所述资源索引是所述第一GF资源在所述第一GF资源组中的排序,所述DMRS索引所指示的DMRS用于所述第一数据的传输。
具体的,对于GF资源的N≥2,即网络设备配置或标准预定义至少两个GF资源映射到一个G-DCI,即映射到一个HARQ确认消息。这种情况下,网络设备在为终端配置一个GF资源时,不仅需要配置终端在此GF资源中的DMRS(即对应UE ID),还需指 示该GF资源在GF资源组中的排序,即该GF资源是其所在GF资源组中的第几个GF资源。GF资源在GF资源组中的排序可称为GF资源索引。
步骤602、所述第一终端根据所述资源索引和所述DMRS索引确定所述第一终端在位表中的位置索引。
所述目标HARQ确认消息包括所述位表,所述位表中的所述位置索引对应的值表示所述第一数据的确认信息。
具体的,目标HARQ确认消息用于对在第一GF资源组的GF资源上传输的所有终端的数据进行确认,该目标HARQ确认消息中一个或多个比特位与该第一终端的第一数据对应,该第四配置信息用于向第一终端指示第一数据的确认信息在目标HARQ确认消息中的位置。
具体的,第一终端基于网络设备配置的DMRS索引以及资源索引,即可确定自身在目标HARQ确认消息的Bitmap中对应的位置索引。举例而言,资源索引为n,第一终端在该GF资源中的UE ID为u,则该UE在Bitmap中对应的位置索引为k=g(u,n),g为映射函数。
进一步举例说明,假设GF资源0-GF资源N-1共N个GF资源(GF资源索引分别为0-N-1)为一个GF资源组且映射到G-DCI1,每个GF资源可容纳M个终端(通过DMRS区分同一GF资源中的不同终端),G-DCI1中的Bitmap长度为M×N,其中各比特的位置索引分别为0-M×N-1。对于UE1,网络设备配置其在GF资源n(0≤n≤N-1)中的UE ID为m(0≤m≤M-1),则该UE1在G-DCI的Bitmap中对应的比特的位置索引k=n×M+m。
步骤603、第一终端根据所述位置索引获取第一数据的确认信息。
具体的,第一终端通过上述实施例获取目标HARQ确认消息后,第一终端根据第四配置信息确定第一终端在位表中的位置索引,根据该位置索引获取第一数据的确认信息,确定网络设备是否正确接收该第一数据。
需要说明的是,本实施例中同一UE在一个目标HARQ确认消息的Bitmap中可以有多个对应比特,这种情况下发生在下述任一情况下或多种情况同时出现时:
情况1:网络设备配置UE在同一GF资源组的不同GF资源中传输不同传输块(Transmission Block,TB)的数据,即传输不同HARQ进程的数据。举例而言,网络设备配置UE1可在GF资源1和GF资源2中传输不同HARQ进程的数据,即UE1可在GF资源1和GF资源2中传输不同TB的数据,这两个TB的数据在目标HARQ确认消息的Bitmap中各对应一个比特。
情况2:网络设备配置UE在同一GF资源中采用多层流传输。例如,网络设备配置UE可以在GF资源中采用W层流传输(即UE采用MIMO传输),每层流对应一个TB,则该W个TB的数据在目标HARQ确认消息的Bitmap中对应W个比特,每比特对应一个TB;
情况3:网络设备配置UE采用基于码块组(Code Block Group,CBG)的传输。例如,网络设备配置UE将每个TB划分为V个CBG进行传输,UE需对每个CBG进行HARQ确认,这种情况下,UE发送的每个TB需在目标HARQ确认消息的Bitmap中对应V个比特,每比特对应一个CBG。
其中,对于情况1,网络设备需配置UE对应的多个GF资源,以及其在每个GF资源中对应的位置索引(显式或隐式配置)。
对于情况2或情况3,网络设备只需配置UE对应的多个比特的第一个比特的位置索引即可。例如,对于情况2,基站配置UE在Bitmap中对应的第一个比特的位置索引为k,则k-k+W-1即为该UE对应的W个比特;对于情况3,基站配置UE对应的第一个比特的位置索引为k,则k-k+V-1即为该UE对应的V个比特。
对于情况1-情况3中任意两种或三种情况同时出现的情况,根据上述方法类推即可,具体不再赘述。例如,对于情况1和情况2同时出现的情况,网络设备需配置UE对应的多个GF资源,以及其在每个GF资源中对应的第一个比特的位置索引(显式或隐式配置)。对于其中某个GF资源,假设网络设备配置UE在Bitmap中对应的第一个比特的位置索引为k,则k-k+W-1即为该UE在该GF传输的数据对应的W个比特。
本实施例,通过网络设备向第一终端发送第四配置信息,该第四配置信息包括所述第一GF资源的资源索引和所述第一终端在所述第一GF资源中的DMRS索引,第一终端根据所述第四配置信息确定第一终端在位表中的位置索引,根据该位置索引获取第一数据的确认信息,从而确定网络设备是否正确接收该第一数据。
需要说明的是,本申请实施例中在给定N的情况下,且每个GF资源能容纳的UE个数上限确定时,本申请的HARQ确认消息中Bitmap长度上限确定,因此可以使得承载该HARQ确认消息的G-DCI长度固定,从而可以减少UE在接收G-DCI时的盲检次数,使UE更加省电。
可以理解的是,上述各个实施例中,由第一终端实现的方法或步骤,也可以是由第一终端内部的芯片实现的。由网络设备实现的方法或者步骤,也可以是由网络设备内部的芯片实现的。
图10为本申请一实施例提供的终端的结构示意图,如图10所示,本实施例的终端作为第一终端,包括:处理模块401、发送模块402和接收模块403。
处理模块401,用于通过发送模块402在第一免授权GF资源上向网络设备发送第一数据,所述第一GF资源属于第一GF资源组,所述第一GF资源组包括N个GF资源,N≥1;
接收模块403,接收所述网络设备发送的目标混合自动重传请求HARQ确认消息,所述目标HARQ确认消息与所述第一GF资源组对应,所述目标HARQ确认消息用于对在所述第一GF资源组的GF资源上传输的所有终端的数据进行确认,所述所有终端包括所述第一终端,所述所有终端的数据包括所述第一数据。
在一些实施例中,所述处理模块401还用于:根据所述第一GF资源组所在时域资源的索引和/或频域资源的索引确定所述第一GF资源组对应的组标识;所述时域资源包括子帧或时隙或微时隙,所述频域资源包括子载波或资源块。
在一些实施例中,所述接收模块403还用于:接收所述网络设备发送的第一配置信息,所述第一配置信息包括所述第一GF资源组对应的组标识。
在一些实施例中,所述接收模块403用于接收所述网络设备发送的HARQ确认消息;所述处理模块401用于使用所述组标识对所述HARQ确认消息进行解扰,当所述HARQ确认消息被正确解扰时,则确定所述HARQ确认消息为所述目标HARQ确认消息。
在一些实施例中,所述接收模块403用于接收所述网络设备发送的HARQ确认消息;所述处理模块401用于当所述HARQ确认消息包括所述组标识时,则确定所述HARQ确认消息为目标HARQ确认消息。
在一些实施例中,所述接收模块403还用于:接收所述网络设备发送的第二配置信息,所述第二配置信息包括所述第一终端在位表中的位置索引,所述目标HARQ确认消息包括所述位表,所述位表中的所述位置索引对应的值表示所述第一数据的确认信息。
在一些实施例中,所述接收模块403还用于:接收所述网络设备发送的第三配置信息,所述第三配置信息包括所述第一终端在所述第一GF资源中的解调参考信号DMRS索引,所述DMRS索引所指示的DMRS用于所述第一数据的传输;所述处理模块401还用于根据所述DMRS索引确定所述第一终端在位表中的位置索引,所述目标HARQ确认消息包括所述位表,所述位表中的所述位置索引对应的值表示所述第一数据的确认信息。
在一些实施例中,所述接收模块403还用于:接收所述网络设备发送的第四配置信息,所述第四配置信息包括所述第一GF资源的资源索引和所述第一终端在所述第一GF资源中的DMRS索引,所述资源索引是所述第一GF资源在所述第一GF资源组中的排序,所述DMRS索引所指示的DMRS用于所述第一数据的传输;所述处理模块401还用于根据所述资源索引和所述DMRS索引确定所述第一终端在位表中的位置索引,所述目标HARQ确认消息包括所述位表,所述位表中的所述位置索引对应的值表示所述第一数据的确认信息。
在一些实施例中,所述目标HARQ确认消息被携带在组公共下行控制信息G-DCI
中。
本实施例以上所述的第一终端,可以用于执行上述各方法实施例中第一终端/第一终端的芯片执行的技术方案,其实现原理和技术效果类似,其中各个模块的功能可以参考方法实施例中相应的描述,此处不再赘述。
图11为本申请另一实施例提供的终端的结构示意图,如图11所示,本实施例的终端作为第一终端,包括:处理器411、存储器412、收发器413以及总线414。其中,处理器411、存储器412和收发器413通过总线414相互连接。其中,总线414可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。上述总线4104可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在硬件实现上,以上接收模块403和发送模块402可以是本实施例中的收发器413。或者,收发器413包括接收器和发射器,则以上接收模块403可以为收发器413中的接收器,以上发送模块402可以为收发器413中的发射器。以上处理模块401可以以硬件形式内嵌于或独立于第一终端的处理器411中。
所述收发器413可以包括混频器等必要的射频通信器件。所述处理器411可以包括中央处理单元(Central Processing Unit,CPU)、数字信号处理器(digital signal processor,DSP)、微控制器(Microcontroller Unit,MCU)、专用集成电路(Application  Specific Integrated Circuit,ASIC)或现场可编程逻辑门阵列(Field-Programmable Gate Array,FPGA)中的至少一个。
可选的,本实施例的第一终端的存储器412用于存储程序指令,处理器411用于调用存储器412中的程序指令执行上述方案。
所述程序指令可以以软件功能单元的形式实现并能够作为独立的产品销售或使用,所述存储器412可以是任意形式的计算机可读取存储介质。基于这样的理解,本申请的技术方案的全部或部分可以以软件产品的形式体现出来,包括若干指令用以使得一台计算机设备,具体可以是处理器411,来执行本申请各个实施例中第一终端的全部或部分步骤。而前述的计算机可读存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本实施例以上所述的第一终端,可以用于执行上述各方法实施例中第一终端/第一终端的芯片执行的技术方案,其实现原理和技术效果类似,其中各个器件的功能可以参考方法实施例中相应的描述,此处不再赘述。
图12为本申请一实施例提供的芯片的结构示意图,如图12所示,本实施例的芯片可以作为第一终端的芯片,本实施例的芯片可以包括:存储器421和处理器422。存储器421与处理器422通信连接。
在硬件实现上,以上接收模块403、处理模块401和发送模块402可以以硬件形式内嵌于或独立于芯片的处理器422中。
其中,存储器421用于存储程序指令,处理器422用于调用存储器421中的程序指令执行上述方案。
本实施例以上所述的芯片,可以用于执行本申请上述各方法实施例中第一终端或其内部芯片的技术方案,其实现原理和技术效果类似,其中各个模块的功能可以参考方法实施例中相应的描述,此处不再赘述。
图13为本申请另一实施例提供的网络设备的结构示意图,如图13所示,本实施例的通信设备可以包括:接收模块501、处理模块502和发送模块503。
接收模块501,用于在第一免授权GF资源上接收第一终端发送的第一数据,所述第一GF资源属于第一GF资源组,所述第一GF资源组包括N个GF资源,N≥1;
处理模块502,用于通过发送模块503向所述第一终端发送目标混合自动重传请求HARQ确认消息,所述目标HARQ确认消息与所述第一GF资源组对应,所述目标HARQ确认消息用于对在所述第一GF资源组的GF资源上传输的所有终端的数据进行确认,所述所有终端包括所述第一终端,所述所有终端的数据包括所述第一数据。
在一些实施例中,所述发送模块503还用于:向所述第一终端发送第一配置信息,所述第一配置信息包括所述第一GF资源组对应的组标识。
在一些实施例中,所述处理模块502用于根据所述组标识对所述目标HARQ确认消息进行加扰;通过所述发送模块503向所述第一终端发送加扰后的目标HARQ确认消息。
在一些实施例中,所述发送模块503还用于:向所述第一终端发送第二配置信息,所述第二配置信息包括所述第一终端在位表中的位置索引,所述目标HARQ确认消息包括所述位表,所述位表中的所述位置索引对应的值表示所述第一数据的确认信息。
在一些实施例中,所述发送模块503还用于:向所述第一终端发送的第三配置信息,所述第三配置信息包括所述第一终端在所述第一GF资源中的解调参考信号DMRS索引,所述DMRS索引所指示的DMRS用于所述第一数据的传输。
在一些实施例中,所述发送模块503还用于:向所述第一终端发送第四配置信息,所述第四配置信息包括所述第一GF资源的资源索引和所述第一终端在所述第一GF资源中的DMRS索引,所述资源索引是所述第一GF资源在所述第一GF资源组中的排序,所述DMRS索引所指示的DMRS用于所述第一数据的传输。
本实施例以上所述的网络设备,可以用于执行上述各方法实施例中网络设备/网络设备的芯片执行的技术方案,其实现原理和技术效果类似,其中各个模块的功能可以参考方法实施例中相应的描述,此处不再赘述。
图14为本申请另一实施例提供的网络设备的结构示意图,如图14所示,本实施例的网络设备,包括:处理器511、存储器512、收发器513以及总线514。其中,处理器511、存储器512和收发器513通过总线514相互连接。其中,总线514可以是PCI总线或EISA总线等。总线514可以分为地址总线、数据总线、控制总线等。为便于表示,图14中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在硬件实现上,以上发送模块503和接收模块501可以是本实施例中的收发器513。或者,收发器513包括发射器和接收器,以上发送模块503可以是本实施例中的收发器513中的发射器,以上接收模块501可以是本实施例中的收发器513中的接收机。
所述收发器513可以包括混频器等必要的射频通信器件。所述处理器511可以包括CPU、DSP、MCU、ASIC或FPGA中的至少一个。
本实施例以上所述的网络设备,可以用于执行上述各方法实施例中网络设备/网络设备的芯片执行的技术方案,其实现原理和技术效果类似,其中各个器件的功能可以参考方法实施例中相应的描述,此处不再赘述。
图15为本申请另一实施例提供的芯片的结构示意图,如图15所示,本实施例的芯片可以作为网络设备的芯片,本实施例的芯片可以包括:存储器521和处理器522。存储器521与处理器522通信连接。所述处理器522例如可以包括CPU、DSP、MCU、ASIC或FPGA的至少一个。
在硬件实现上,以上发送模块503和接收模块501可以以硬件形式内嵌于或独立于芯片的处理器522中。
其中,存储器521用于存储程序指令,处理器522用于调用存储器521中的程序指令执行上述方案。
所述程序指令可以以软件功能单元的形式实现并能够作为独立的产品销售或使用,所述存储器可以是任意形式的计算机可读取存储介质。基于这样的理解,本申请的技术方案的全部或部分可以以软件产品的形式体现出来,包括若干指令用以使得一台计算机设备,具体可以是处理器522,来执行本申请各个实施例中第二设备的全部或部分步骤。而前述的计算机可读存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本实施例以上所述的芯片,可以用于执行本申请上述各方法实施例中网络设备或其内部芯片的技术方案,其实现原理和技术效果类似,其中各个模块的功能可以参考 方法实施例中相应的描述,此处不再赘述。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (30)

  1. 一种数据传输的确认方法,其特征在于,所述方法包括:
    第一终端在第一免授权GF资源上向网络设备发送第一数据,所述第一GF资源属于第一GF资源组,所述第一GF资源组包括N个GF资源,N≥1;
    所述第一终端接收所述网络设备发送的目标混合自动重传请求HARQ确认消息,所述目标HARQ确认消息与所述第一GF资源组对应,所述目标HARQ确认消息用于对在所述第一GF资源组的GF资源上传输的所有终端的数据进行确认,所述所有终端包括所述第一终端,所述所有终端的数据包括所述第一数据。
  2. 根据权利要求1所述的方法,其特征在于,在所述第一终端在第一GF资源上向网络设备发送第一数据之前,所述方法还包括:
    所述第一终端根据所述第一GF资源组所在时域资源的索引和/或频域资源的索引确定所述第一GF资源组对应的组标识;
    所述时域资源包括子帧或时隙或微时隙,所述频域资源包括子载波或资源块。
  3. 根据权利要求1所述的方法,其特征在于,在所述第一终端在第一GF资源上向网络设备发送第一数据之前,所述方法还包括:
    所述第一终端接收所述网络设备发送的第一配置信息,所述第一配置信息包括所述第一GF资源组对应的组标识。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一终端接收所述网络设备发送的目标HARQ确认消息,包括:
    所述第一终端接收所述网络设备发送的HARQ确认消息;
    所述第一终端使用所述组标识对所述HARQ确认消息进行解扰,当所述HARQ确认消息被正确解扰时,则确定所述HARQ确认消息为所述目标HARQ确认消息。
  5. 根据权利要求2或3所述的方法,其特征在于,所述第一终端接收所述网络设备发送的目标HARQ确认消息,包括:
    所述第一终端接收所述网络设备发送的HARQ确认消息;
    当所述HARQ确认消息包括所述组标识时,则确定所述HARQ确认消息为目标HARQ确认消息。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,在所述第一终端在第一GF资源上向网络设备发送第一数据之前,所述方法还包括:
    所述第一终端接收所述网络设备发送的第二配置信息,所述第二配置信息包括所述第一终端在位表中的位置索引,所述目标HARQ确认消息包括所述位表,所述位表中的所述位置索引对应的值表示所述第一数据的确认信息。
  7. 根据权利要求1至5任一项所述的方法,其特征在于,在第一所述终端在第一GF资源上向网络设备发送第一数据之前,所述方法还包括:
    所述第一终端接收所述网络设备发送的第三配置信息,所述第三配置信息包括所述第一终端在所述第一GF资源中的解调参考信号DMRS索引,所述DMRS索引所指示的DMRS用于所述第一数据的传输;
    所述第一终端根据所述DMRS索引确定所述第一终端在位表中的位置索引,所述目标HARQ确认消息包括所述位表,所述位表中的所述位置索引对应的值表示所述第一数 据的确认信息。
  8. 根据权利要求1至5任一项所述的方法,其特征在于,在所述第一终端在第一GF资源上向网络设备发送第一数据之前,所述方法还包括:
    所述第一终端接收所述网络设备发送的第四配置信息,所述第四配置信息包括所述第一GF资源的资源索引和所述第一终端在所述第一GF资源中的DMRS索引,所述资源索引是所述第一GF资源在所述第一GF资源组中的排序,所述DMRS索引所指示的DMRS用于所述第一数据的传输;
    所述第一终端根据所述资源索引和所述DMRS索引确定所述第一终端在位表中的位置索引,所述目标HARQ确认消息包括所述位表,所述位表中的所述位置索引对应的值表示所述第一数据的确认信息。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述目标HARQ确认消息被携带在组公共下行控制信息G-DCI中。
  10. 一种数据传输的确认方法,其特征在于,所述方法包括:
    网络设备在第一免授权GF资源上接收第一终端发送的第一数据,所述第一GF资源属于第一GF资源组,所述第一GF资源组包括N个GF资源,N≥1;
    所述网络设备向所述第一终端发送目标混合自动重传请求HARQ确认消息,所述目标HARQ确认消息与所述第一GF资源组对应,所述目标HARQ确认消息用于对在所述第一GF资源组的GF资源上传输的所有终端的数据进行确认,所述所有终端包括所述第一终端,所述所有终端的数据包括所述第一数据。
  11. 根据权利要求10所述的方法,其特征在于,在所述网络设备在第一GF资源上接收第一终端发送的第一数据之前,所述方法还包括:
    所述网络设备向所述第一终端发送第一配置信息,所述第一配置信息包括所述第一GF资源组对应的组标识。
  12. 根据权利要求11所述的方法,其特征在于,所述网络设备向所述第一终端发送目标HARQ确认消息,包括:
    所述网络设备根据所述组标识对所述目标HARQ确认消息进行加扰;
    所述网络设备向所述第一终端发送加扰后的目标HARQ确认消息。
  13. 根据权利要求10至12任一项所述的方法,其特征在于,在所述网络设备在第一GF资源上接收第一终端发送的第一数据之前,所述方法还包括:
    所述网络设备向所述第一终端发送第二配置信息,所述第二配置信息包括所述第一终端在位表中的位置索引,所述目标HARQ确认消息包括所述位表,所述位表中的所述位置索引对应的值表示所述第一数据的确认信息。
  14. 根据权利要求10至12任一项所述的方法,其特征在于,在所述网络设备在第一GF资源上接收第一终端发送的第一数据之前,所述方法还包括:
    所述网络设备向所述第一终端发送的第三配置信息,所述第三配置信息包括所述第一终端在所述第一GF资源中的解调参考信号DMRS索引,所述DMRS索引所指示的DMRS用于所述第一数据的传输。
  15. 根据权利要求10至12任一项所述的方法,其特征在于,在所述网络设备在第一GF资源上接收第一终端发送的第一数据之前,所述方法还包括:
    所述网络设备向所述第一终端发送第四配置信息,所述第四配置信息包括所述第一GF资源的资源索引和所述第一终端在所述第一GF资源中的DMRS索引,所述资源索引是所述第一GF资源在所述第一GF资源组中的排序,所述DMRS索引所指示的DMRS用于所述第一数据的传输。
  16. 一种终端,所述终端作为第一终端,其特征在于,所述第一终端包括:
    处理器,用于通过发送器在第一免授权GF资源上向网络设备发送第一数据,所述第一GF资源属于第一GF资源组,所述第一GF资源组包括N个GF资源,N≥1;
    接收器,接收所述网络设备发送的目标混合自动重传请求HARQ确认消息,所述目标HARQ确认消息与所述第一GF资源组对应,所述目标HARQ确认消息用于对在所述第一GF资源组的GF资源上传输的所有终端的数据进行确认,所述所有终端包括所述第一终端,所述所有终端的数据包括所述第一数据。
  17. 根据权利要求16所述的终端,其特征在于,所述处理器还用于:
    根据所述第一GF资源组所在时域资源的索引和/或频域资源的索引确定所述第一GF资源组对应的组标识;
    所述时域资源包括子帧或时隙或微时隙,所述频域资源包括子载波或资源块。
  18. 根据权利要求16所述的终端,其特征在于,所述接收器还用于:
    接收所述网络设备发送的第一配置信息,所述第一配置信息包括所述第一GF资源组对应的组标识。
  19. 根据权利要求17或18所述的终端,其特征在于,所述接收器用于接收所述网络设备发送的HARQ确认消息;
    所述处理器用于使用所述组标识对所述HARQ确认消息进行解扰,当所述HARQ确认消息被正确解扰时,则确定所述HARQ确认消息为所述目标HARQ确认消息。
  20. 根据权利要求17或18所述的终端,其特征在于,所述接收器用于接收所述网络设备发送的HARQ确认消息;
    所述处理器用于当所述HARQ确认消息包括所述组标识时,则确定所述HARQ确认消息为目标HARQ确认消息。
  21. 根据权利要求16至20任一项所述的终端,其特征在于,所述接收器还用于:接收所述网络设备发送的第二配置信息,所述第二配置信息包括所述第一终端在位表中的位置索引,所述目标HARQ确认消息包括所述位表,所述位表中的所述位置索引对应的值表示所述第一数据的确认信息。
  22. 根据权利要求16至20任一项所述的终端,其特征在于,所述接收器还用于:接收所述网络设备发送的第三配置信息,所述第三配置信息包括所述第一终端在所述第一GF资源中的解调参考信号DMRS索引,所述DMRS索引所指示的DMRS用于所述第一数据的传输;
    所述处理器还用于根据所述DMRS索引确定所述第一终端在位表中的位置索引,所述目标HARQ确认消息包括所述位表,所述位表中的所述位置索引对应的值表示所述第一数据的确认信息。
  23. 根据权利要求16至20任一项所述的终端,其特征在于,所述接收器还用于:接收所述网络设备发送的第四配置信息,所述第四配置信息包括所述第一GF资源的资 源索引和所述第一终端在所述第一GF资源中的DMRS索引,所述资源索引是所述第一GF资源在所述第一GF资源组中的排序,所述DMRS索引所指示的DMRS用于所述第一数据的传输;
    所述处理器还用于根据所述资源索引和所述DMRS索引确定所述第一终端在位表中的位置索引,所述目标HARQ确认消息包括所述位表,所述位表中的所述位置索引对应的值表示所述第一数据的确认信息。
  24. 根据权利要求16至23任一项所述的终端,其特征在于,所述目标HARQ确认消息被携带在组公共下行控制信息G-DCI中。
  25. 一种网络设备,其特征在于,所述网络设备包括:
    接收器,用于在第一免授权GF资源上接收第一终端发送的第一数据,所述第一GF资源属于第一GF资源组,所述第一GF资源组包括N个GF资源,N≥1;
    处理器,用于通过发送器向所述第一终端发送目标混合自动重传请求HARQ确认消息,所述目标HARQ确认消息与所述第一GF资源组对应,所述目标HARQ确认消息用于对在所述第一GF资源组的GF资源上传输的所有终端的数据进行确认,所述所有终端包括所述第一终端,所述所有终端的数据包括所述第一数据。
  26. 根据权利要求25所述的网络设备,其特征在于,所述发送器还用于:向所述第一终端发送第一配置信息,所述第一配置信息包括所述第一GF资源组对应的组标识。
  27. 根据权利要求26所述的网络设备,其特征在于,所述处理器用于根据所述组标识对所述目标HARQ确认消息进行加扰;通过所述发送器向所述第一终端发送加扰后的目标HARQ确认消息。
  28. 根据权利要求25至27任一项所述的网络设备,所述发送器还用于:向所述第一终端发送第二配置信息,所述第二配置信息包括所述第一终端在位表中的位置索引,所述目标HARQ确认消息包括所述位表,所述位表中的所述位置索引对应的值表示所述第一数据的确认信息。
  29. 根据权利要求25至27任一项所述的网络设备,其特征在于,所述发送器还用于:向所述第一终端发送的第三配置信息,所述第三配置信息包括所述第一终端在所述第一GF资源中的解调参考信号DMRS索引,所述DMRS索引所指示的DMRS用于所述第一数据的传输。
  30. 根据权利要求25至27任一项所述的网络设备,其特征在于,所述发送器还用于:向所述第一终端发送第四配置信息,所述第四配置信息包括所述第一GF资源的资源索引和所述第一终端在所述第一GF资源中的DMRS索引,所述资源索引是所述第一GF资源在所述第一GF资源组中的排序,所述DMRS索引所指示的DMRS用于所述第一数据的传输。
PCT/CN2018/109394 2017-10-16 2018-10-09 数据传输的确认方法及设备 WO2019076207A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710960609.7 2017-10-16
CN201710960609 2017-10-16
CN201810168674.0 2018-02-28
CN201810168674.0A CN109672506B (zh) 2017-10-16 2018-02-28 数据传输的确认方法及设备

Publications (1)

Publication Number Publication Date
WO2019076207A1 true WO2019076207A1 (zh) 2019-04-25

Family

ID=66141985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109394 WO2019076207A1 (zh) 2017-10-16 2018-10-09 数据传输的确认方法及设备

Country Status (2)

Country Link
CN (1) CN109672506B (zh)
WO (1) WO2019076207A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114629606A (zh) * 2020-12-11 2022-06-14 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3963778A1 (en) * 2019-05-03 2022-03-09 Sony Group Corporation Communications device, infrastructure equipment and methods
WO2021042391A1 (en) * 2019-09-06 2021-03-11 Qualcomm Incorporated Common bandwidth size based resource scheduling
CN111031611B (zh) * 2020-01-03 2022-03-01 浙江工业大学 一种基于非授权的导频随机接入方法
CN113872736B (zh) * 2020-06-30 2023-08-18 成都鼎桥通信技术有限公司 数据传输方法、装置、设备和存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108347321A (zh) * 2017-01-25 2018-07-31 华为技术有限公司 一种通信方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103650620A (zh) * 2011-05-16 2014-03-19 黑莓有限公司 使用harq的上行链路随机接入数据信道
CN107979450B (zh) * 2012-09-26 2020-12-04 Lg电子株式会社 无线通信系统中的ue及其通信方法
US20140192767A1 (en) * 2012-12-14 2014-07-10 Futurewei Technologies, Inc. System and Method for Small Traffic Transmissions
CN105024782A (zh) * 2014-06-24 2015-11-04 魅族科技(中国)有限公司 一种数据传输方法、相关设备及系统
US9780924B2 (en) * 2014-10-13 2017-10-03 Telefonaktiebolaget Lm Ericsson (Publ) HARQ feedback reporting based on mirrored information
CN106507497B (zh) * 2015-09-08 2020-09-11 华为技术有限公司 用于上行数据传输的方法、终端设备和网络设备
US20170134139A1 (en) * 2015-11-06 2017-05-11 Electronics And Telecommunications Research Institute Method and apparatus for fast access in communication system
CN110190939B (zh) * 2015-12-19 2021-07-27 上海朗帛通信技术有限公司 一种laa传输中的上行控制信令的传输方法和装置
US10382169B2 (en) * 2016-04-01 2019-08-13 Huawei Technologies Co., Ltd. HARQ systems and methods for grant-free uplink transmissions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108347321A (zh) * 2017-01-25 2018-07-31 华为技术有限公司 一种通信方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "HARQ Feedback Indication Design for UL Grant-Free Transmission", 3GPP TSG RAN WG1 AD HOC MEETING, R1-1711431, 30 June 2017 (2017-06-30), XP051300619 *
HUAWEI ET AL.: "HARQ Timing Relationships for Grant-Free Transmission", 3GPP TSG RAN WG1 MEETING #86, R1-167206, 26 August 2016 (2016-08-26), XP051140574 *
HUAWEI ET AL.: "The Retransmission and HARQ Schemes for Grant-Free", 3GPP TSG RAN WG1 MEETING #86BIS, R1-1608859, 14 October 2016 (2016-10-14), XP051148913 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114629606A (zh) * 2020-12-11 2022-06-14 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2022121829A1 (en) * 2020-12-11 2022-06-16 Shanghai Langbo Communication Technology Company Limited Method and device in node for wireless communication

Also Published As

Publication number Publication date
CN109672506A (zh) 2019-04-23
CN109672506B (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
US11528099B2 (en) Communication method and apparatus
JP5764197B2 (ja) モバイル・ネットワークにおいて通信するための方法
JP7272484B2 (ja) 通信システム
CN109672506B (zh) 数据传输的确认方法及设备
EP2656678B1 (en) Method and arrangement for acknowledgement of contention-based uplink transmissions in a telecommunication system
WO2014176972A1 (zh) D2d通信中的数据发送方法和设备
CN110621075B (zh) 一种传输数据的方法和装置
WO2021043174A1 (zh) 一种通信方法及装置
KR20130019386A (ko) 하이브리드형 스테이션별 및 플로우별 업링크 할당들을 수행하기 위한 방법 및 장치
WO2014000214A1 (zh) 下行数据的反馈信息的传输方法及终端、基站
WO2014000514A1 (zh) 设备间通信方法、用户设备和基站
WO2017020199A1 (zh) 一种物理下行控制信道的传输方法及装置
EP2870815A1 (en) Methods and apparatus for contention based transmission
WO2018184471A1 (zh) 一种发送调度信息的方法和网络设备
WO2011098010A1 (zh) 确定物理下行控制信道搜索空间的方法、装置
WO2013034042A1 (zh) 传输控制信息的方法、基站和用户设备
TW202127949A (zh) 在上行鏈路共享通道傳輸上多工上行鏈路控制資訊
CN110035528A (zh) 一种通信方法、装置以及系统
WO2019080555A1 (zh) 免授权数据传输的确认方法和装置
JP6745406B2 (ja) 情報を伝送する方法、ネットワーク装置、及び端末装置
WO2015013965A1 (zh) 一种数据传输资源配置的方法和设备
WO2018201504A1 (zh) 数据反馈方法及相关设备
CN110730513A (zh) 一种通信方法及装置
EP3487100B1 (en) Harq response information transmission method
WO2018028454A1 (zh) 信息的传输方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868296

Country of ref document: EP

Kind code of ref document: A1