WO2021043174A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021043174A1
WO2021043174A1 PCT/CN2020/113061 CN2020113061W WO2021043174A1 WO 2021043174 A1 WO2021043174 A1 WO 2021043174A1 CN 2020113061 W CN2020113061 W CN 2020113061W WO 2021043174 A1 WO2021043174 A1 WO 2021043174A1
Authority
WO
WIPO (PCT)
Prior art keywords
scheduling information
terminal device
data
field
downlink
Prior art date
Application number
PCT/CN2020/113061
Other languages
English (en)
French (fr)
Inventor
向铮铮
张鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20860206.0A priority Critical patent/EP4024995A4/en
Publication of WO2021043174A1 publication Critical patent/WO2021043174A1/zh
Priority to US17/684,220 priority patent/US20220272742A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1858Transmission or retransmission of more than one copy of acknowledgement message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0033Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation each allocating device acting autonomously, i.e. without negotiation with other allocating devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and device.
  • the 5G system proposes a communication method for user cooperation.
  • a cooperative transmission group may be established for the target terminal device, and the cooperative transmission group may include N cooperative terminal devices.
  • Each cooperative terminal device can establish a side link with the target terminal device.
  • the base station sends data to the target terminal
  • the N coordinated terminals in the coordinated transmission group where the target terminal is located can also receive the aforementioned data, and each coordinated terminal device can transmit the received downlink data to the target terminal via the side link.
  • Target terminal device the downlink transmission performance of the target terminal device can be improved.
  • the communication process of user collaboration can specifically include two stages:
  • the base station sends downlink data to each coordinated terminal device in the coordinated transmission group where the target terminal device is located.
  • the cooperative terminal device forwards the downlink data sent by the base station in the first stage to the target terminal device on the established side link, and the target terminal device receives the cooperative terminal device on the established side link Sideline data sent to the target terminal device.
  • the base station needs to send control information to the target terminal device and each cooperative terminal device in the cooperative transmission group, which is used to indicate the resources and transmission parameters required for cooperative transmission, which may cause the control signaling resource overhead of the base station to be relatively low. Large, occupy transmission resources.
  • the present application provides a communication method and device, which can avoid the problem that a base station needs to send downlink control information multiple times during a user cooperative communication process, which causes a large resource consumption and a large transmission resource occupation.
  • a communication method is provided.
  • a network device generates first scheduling information and second scheduling information, where the first scheduling information indicates that a target terminal device and at least one cooperating terminal device receive first information from the network device.
  • the downlink transmission parameters and downlink time-frequency resources of the data, the second scheduling information indicates the side-line transmission parameters and the side-line time-frequency resources used for the at least one cooperative terminal device to send the second data to the target terminal device, so
  • the target terminal device and the at least one cooperative terminal device belong to a cooperative transmission group, and the second data is generated according to the first data;
  • the network device sends downlink control information to the target terminal device and the at least one cooperative terminal device, where the downlink control information includes the first scheduling information and the second scheduling information.
  • the network device does not need to send multiple downlink control information, which can save resource overhead. , Reduce the transmission resources occupied by the control information, thereby improving the spectrum efficiency.
  • the second scheduling information indicates a first side line transmission parameter and a first side line time-frequency resource, and the first side line transmission parameter and the first side line time-frequency resource are used for all
  • Each of the at least one cooperative terminal device sends the second data.
  • each coordinated terminal device in the device since the side-line transmission parameters and the side-line time-frequency resources allocated by the network device for the at least one cooperative terminal device to transmit the second data are the same, there is no need for the at least one cooperative terminal in the downlink control information.
  • Each coordinated terminal device in the device generates downlink control information separately, and only needs to carry the field indicating the first side line transmission parameter and the field indicating the first side line time-frequency resource in the downlink control information, which can reduce the downlink control information in the user cooperative transmission.
  • the time-frequency resources occupied by the control information reduce the overhead of the resources occupied by the downlink control information, thereby improving the spectrum efficiency.
  • the number of the at least one cooperative terminal device may be N, where N is a positive integer; accordingly, the second scheduling information may include N sub-scheduling information, each of the N sub-scheduling information The pieces of sub-scheduling information correspondingly indicate the side-line transmission parameters and the side-line time-frequency resources of one of the N coordinated terminal devices.
  • the network device does not need to send the N downlink control information to the N cooperative terminal devices, which can save resource overhead and reduce the control information occupancy Transmission resources, thereby improving spectrum efficiency.
  • the downlink control information may specifically include a first field, a second field, and a third field; wherein, the first field indicates the first common scheduling information, and the first common scheduling information is The first scheduling information is the same part as the second scheduling information; the second field indicates the part of the first scheduling information excluding the first common scheduling information; the third field indicates the The part of the second scheduling information excluding the first common scheduling information.
  • the above possible design can reduce the resource overhead occupied by the downlink control information in the user coordinated transmission by deduplicating the common part of the first scheduling information and the second scheduling information, thereby improving the spectrum efficiency.
  • the downlink control information may specifically include a fourth field, a first subfield, and a second subfield, where the fourth field indicates the first scheduling information, and the first subfield Indicates second common scheduling information, where the second common scheduling information is the same part of the N sub-scheduling information, and the second subfield indicates the N sub-scheduling information except for the second common scheduling information section.
  • the above possible design can reduce the resource overhead occupied by the downlink control information in the user coordinated transmission by de-duplicating the common part of the second scheduling information, thereby improving the spectrum efficiency.
  • the downlink control information may specifically include a first field, a second field, a fifth field, and a sixth field;
  • the first field indicates the first common scheduling information, and the first common scheduling information Is the same part of the first scheduling information and the second scheduling information;
  • the second field indicates the part of the first scheduling information excluding the first common scheduling information;
  • the fifth field indicates The part of the second common scheduling information other than the first common scheduling information, the second common scheduling information is the same part of the N sub-scheduling information;
  • the sixth field is the second scheduling information The part other than the first public scheduling information and the second public scheduling information.
  • the above possible design can reduce the resource overhead occupied by the downlink control information in the user coordinated transmission by deduplicating the common part of the first scheduling information and the second scheduling information, thereby improving the spectrum efficiency.
  • the first scheduling information and the second scheduling information may specifically include, but are not limited to, one or more of the following: modulation and coding mode, time-frequency resource, multiple input multiple output mode, automatic re-request Pass parameters and priority information.
  • the network device may send the first data according to the aforementioned downlink control information.
  • an embodiment of the present application provides a communication method, and the method includes:
  • the first cooperative terminal device receives downlink control information from the network device, where the downlink control information includes first scheduling information and second scheduling information, where the first scheduling information indicates that it is used for the target terminal device and at least one cooperative terminal device Receive the downlink transmission parameters and downlink time-frequency resources of the first data from the network device, and the second scheduling information indicates the sideline transmission for the at least one cooperative terminal device to send the second data to the target terminal device Parameters and side-line time-frequency resources, the second data is generated according to the first data, the target terminal device and the at least one cooperative terminal device belong to a cooperative transmission group, and the first cooperative terminal device is One of the at least one cooperative terminal device; the first cooperative terminal device receives the first data from the network device according to the first scheduling information, and generates a request according to the first data Second data sent to the target terminal device; the first cooperative terminal device sends the second data to the target terminal device according to the second scheduling information.
  • the cooperative terminal device and the target terminal device can be configured according to the network device configuration.
  • the downlink control information only one downlink control information in one physical downlink control channel needs to be received, and the first scheduling information and the second scheduling information can be obtained without receiving multiple downlink control information, which reduces the complexity of terminal equipment processing.
  • the method may further include: the first cooperative terminal device sends side-line control information to the target terminal device, where the side-line control information indicates that the first cooperative terminal device sends The target terminal device sends the side-line transmission parameter of the second data and the side-line time-frequency resource.
  • the first cooperative terminal device may also determine that the feedback confirmation message or the feedback negative message sent by the target terminal device is not monitored within a predetermined period of time, and then send the side line to the target terminal device. Control information.
  • the second scheduling information may specifically indicate the first side line transmission parameter and the first side line time-frequency resource, and the first side line transmission parameter and the first side line time-frequency resource are used Sending the second data to the target terminal device at the first cooperative terminal device.
  • the number of the at least one cooperative terminal device may be N; N is a positive integer; accordingly, the second scheduling information may include N sub-scheduling information; each of the N sub-scheduling information The pieces of sub-scheduling information correspondingly indicate the side-line transmission parameters and the side-line time-frequency resources of one of the N coordinated terminal devices.
  • the downlink control information may specifically include a first field, a second field, and a third field; wherein, the first field indicates the first common scheduling information, and the first common scheduling information is The first scheduling information is the same part as the second scheduling information; the second field indicates the part of the first scheduling information excluding the first common scheduling information; the third field indicates the The part of the second scheduling information excluding the first common scheduling information.
  • the downlink control information includes a fourth field, a first subfield, and a second subfield; wherein, the fourth field indicates the first scheduling information; the first subfield indicates Second common scheduling information; the second common scheduling information is the same part of the N sub-scheduling information; the second subfield indicates the part of the N sub-scheduling information excluding the second common scheduling information .
  • the downlink control information includes a first field, a second field, a fifth field, and a sixth field;
  • the first field indicates first common scheduling information; the first common scheduling information is the same part in the first scheduling information and the second scheduling information; the second field indicates the first scheduling information The part of the second common scheduling information other than the first common scheduling information; the fifth field indicates the part of the second common scheduling information other than the first common scheduling information, and the second common scheduling information is the N sub-scheduling The same part in the information; the sixth field indicates the part of the second scheduling information excluding the first common scheduling information and the second common scheduling information.
  • the first scheduling information and the second scheduling information may include but not limited to one or more of the following: modulation and coding method, time-frequency resource, multiple input multiple output mode, automatic retransmission request Parameters and priority information.
  • an embodiment of the present application provides a communication method.
  • a target terminal device receives downlink control information from a network device.
  • the downlink control information includes first scheduling information and second scheduling information; the first scheduling information indicates When the target terminal device and the at least one cooperative terminal device receive the downlink transmission parameters and downlink time-frequency resources of the first data from the network device, the second scheduling information indicates that the The side-line transmission parameters and side-line time-frequency resources of the second data sent by the target terminal device, the target terminal device and the at least one coordinated terminal device belong to a coordinated transmission group; the target terminal device according to the first schedule
  • the information receives the first data from the network device, and receives the second data from the at least one cooperative terminal device according to the second scheduling information, and the second data is the at least one cooperative terminal device Generated based on the received first data.
  • the cooperative terminal device and the target terminal device only need to receive one physical downlink
  • One piece of downlink control information in the control channel can obtain the first scheduling information and the second scheduling information without receiving multiple downlink control information, which reduces the processing complexity of the terminal device.
  • the method further includes:
  • the target terminal device receives the first data from the network device according to the first scheduling information.
  • the second scheduling information indicates a first side line transmission parameter and a first side line time-frequency resource, and the first side line transmission parameter and the first side line time-frequency resource are used for all
  • the target terminal device receives the second data from the first cooperative terminal device.
  • the number of the at least one cooperative terminal device is N, and N is a positive integer;
  • the second scheduling information may specifically include N pieces of sub-scheduling information, each of the N pieces of sub-scheduling information Correspondingly indicate the side-line transmission parameter and the side-line time-frequency resource of one of the N cooperative terminal devices.
  • the downlink control information may specifically include a first field, a second field, and a third field; wherein, the first field indicates the first common scheduling information, and the first common scheduling information is The first scheduling information is the same part as the second scheduling information, the second field indicates the part of the first scheduling information excluding the first common scheduling information, and the third field indicates the The part of the second scheduling information excluding the first common scheduling information.
  • the downlink control information may specifically include a fourth field, a first subfield, and a second subfield; wherein, the fourth field indicates the first scheduling information; the first subfield Indicates the second common scheduling information, the second common scheduling information is the same part of the N sub-scheduling information; the second subfield indicates the N sub-scheduling information except for the second common scheduling information section.
  • the downlink control information includes a first field, a second field, a fifth field, and a sixth field; wherein, the first field indicates first common scheduling information, and the first common scheduling information Is the same part of the first scheduling information and the second scheduling information; the second field indicates the part of the first scheduling information excluding the first common scheduling information; the fifth field indicates The part of the second common scheduling information other than the first common scheduling information, the second common scheduling information is the same part of the N sub-scheduling information; the sixth field indicates that the second scheduling information The part other than the first public scheduling information and the second public scheduling information.
  • the first scheduling information and the second scheduling information may include, but are not limited to, one or more of the following: modulation and coding mode, time-frequency resource, multiple input multiple output mode, automatic retransmission request Parameters and priority information.
  • an embodiment of the present application also provides a communication device that has the function of the first cooperative terminal device in any possible design of the foregoing second aspect or the second aspect, or has the capability of implementing the foregoing third aspect.
  • the function of the target terminal device in any possible design of the aspect or the third aspect.
  • the communication device may be a terminal device, such as a handheld terminal device, a vehicle-mounted terminal device, etc., a device included in the terminal device, such as a chip, or a device including a terminal device.
  • the functions of the above-mentioned terminal device may be realized by hardware, or may be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the communication device may also have the function of realizing the above-mentioned first aspect or any one of the possible designs of the network device in the first aspect.
  • the communication device may be a network device, such as a base station, or a device included in the network device, such as a chip.
  • the functions of the above-mentioned network device may be realized by hardware, or may be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing module and a transceiver module, wherein the processing module is configured to support the communication device to perform the corresponding function in the first aspect or any one of the first aspects. , Or perform the corresponding function in the above-mentioned second aspect or any design of the second aspect, or perform the corresponding function in the above-mentioned third aspect or any design of the third aspect.
  • the transceiver module is used to support communication between the communication device and other communication devices. For example, when the communication device is a network device, it can send downlink control information to the target terminal device and at least one cooperative terminal device.
  • the communication device may also include a storage module, which is coupled with the processing module, which stores program instructions and data necessary for the communication device.
  • the processing module may be a processor
  • the communication module may be a transceiver
  • the storage module may be a memory.
  • the memory may be integrated with the processor or may be provided separately from the processor, which is not limited in this application.
  • an embodiment of the present application further provides a communication device.
  • the structure of the communication device includes a processor and may also include a memory.
  • the processor is coupled with the memory, and can be used to execute the computer program instructions stored in the memory, so that the communication device executes the method in the first aspect or any one of the possible designs of the first aspect, or executes the second aspect or the second aspect.
  • the method in any possible design of the aspect, or the method in the implementation of the third aspect or any one of the possible designs in the third aspect.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication interface may be a transceiver or an input/output interface; when the communication device is a chip included in the terminal device, the communication interface may be an input/output interface of the chip.
  • the transceiver may be a transceiver circuit, and the input/output interface may be an input/output circuit.
  • embodiments of the present application also provide a computer-readable storage medium, including instructions, which when executed on a computer, cause the computer to execute any possible design method of the first, second, or third aspects .
  • the embodiments of the present application also provide a chip system that includes a processor and may also include a memory, and the chip system is configured to implement the method of the first, second, or third aspect described above.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • processors in the chip system there may be one or more processors in the chip system.
  • the processor can be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may be a non-transitory processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be set on different chips.
  • the setting method of the processor is not specifically limited.
  • the embodiments of the present application also provide a computer program product, including instructions, which, when the instructions run on a computer, cause the computer to execute the method of the first, second, or third aspect described above.
  • an embodiment of the present application provides a system that includes a network device for executing the method described in the first aspect, at least one cooperative terminal device for executing the method described in the second aspect, and A target terminal device used to execute the method described in the third aspect.
  • the network device, at least one cooperative terminal device and the target terminal device can form a cooperative transmission system.
  • FIG. 1a and 1b are schematic diagrams of a network architecture of a communication system to which an embodiment of this application is applicable;
  • FIG. 1c is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 1d is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 2a is a schematic flowchart of a communication method provided by an embodiment of this application.
  • 2b is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 2c is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • 4a-4d are diagrams of examples of downlink control information configuration provided by embodiments of this application.
  • 5a-5c are diagrams of examples of downlink control information configuration provided by an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 7 is another schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of another structure of another communication device provided by an embodiment of this application.
  • Downlink Downlink (Downlink, DL)
  • the downlink is used for communication between network devices and terminal devices, including one-to-one downlink communication and one-to-many downlink communication.
  • one-to-one downlink communication may include unicast
  • one-to-many downlink communication includes broadcast and multicast.
  • broadcast may refer to communication with network devices and all terminal devices in a cell
  • multicast may refer to communication between network devices and terminals in a communication group, and the communication group includes one or more terminal devices.
  • the downlink communication may include direct communication between a network device and a terminal device, and may also include downlink communication forwarded by a relay node.
  • the physical channel of downlink communication may include at least one of the following:
  • the physical downlink control channel (PDCCH) is used to carry downlink control information (Downlink Control Information, DCI) to allocate data channel resources for terminal equipment.
  • DCI Downlink Control Information
  • the DCI contains information about scheduled downlink transmissions.
  • the UE receives the downlink transmission according to the related information.
  • the control information may indicate the symbol and/or resource block (resource block, RB) to which the data channel is mapped, and the network device and the terminal device perform data transmission on the allocated time-frequency resource through the data channel.
  • the physical downlink shared channel (PDSCH) is used to carry data delivered by network devices.
  • PDSCH physical downlink shared channel
  • the side link can also be called a side link or a side link.
  • Side link is used for communication between terminal equipment and terminal equipment, including one-to-one side-link communication and one-to-many side-link communication.
  • one-to-one side-link communication may include unicast
  • one-to-many side-link communication includes broadcast and multicast.
  • broadcast may refer to communication with all terminal devices in a cell
  • multicast may refer to communication with terminals in a communication group, and the communication group includes one or more terminal devices.
  • the side link communication may include direct communication between two terminal devices, and may also include side link communication forwarded by a relay node.
  • the physical channel for side link communication may include at least one of the following:
  • PSSCH physical sidelink shared channel
  • SL data sidelink data
  • the physical sidelink control channel (PSCCH) is used to carry sidelink scheduling assistance (SLSA).
  • SLSA can also be called sidelink control information (sidelink control information).
  • control information SCI
  • the physical sidelink feedback channel is used to carry sidelink feedback control information.
  • the side link feedback information may include at least one of channel state information (CSI), hybrid automatic repeat request (HARQ) information, and the like.
  • the HARQ information may include a positive acknowledgement (acknowledgement, ACK) or a negative acknowledgement (negtive acknowledgement, NACK), etc.
  • PSBCH Physical sidelink broadcast channel
  • the physical sidelink discovery channel (PSDCH) is used to carry sidelink discovery messages.
  • DCI is information sent by a network device to a terminal device.
  • the network device can send DCI through the physical downlink control channel PDCCH.
  • DCI can be used to schedule uplink data transmission, or schedule downlink data transmission, or sidelink resource allocation.
  • the communication interface between the network device and the terminal device is a Uu interface, and uplink/downlink data transmission can be performed on the Uu interface.
  • the uplink data transmission refers to data transmission from the terminal device to the network device
  • the downlink data transmission refers to Data transmission from network equipment to terminal equipment.
  • the communication interface between the terminal device and the terminal device is the PC5 interface, and the side link transmission between the terminal devices can be carried out through the PC5 interface.
  • the side link resource allocation can be used to allocate side link link resources, and/or side link resources.
  • the uplink receives resources.
  • the network device may send DCI to the sending-side terminal device, where the DCI is used to allocate side uplink link resources to the sending-side terminal device.
  • the function of DCI The resources occupied by DCI of different functions may be different.
  • the DCI in the embodiment of this application may include: scheduling information allocated by network equipment to terminal equipment on different transmission links; for example, for downlink data.
  • the specific scheduling information may include the modulation and coding method MCS, time-frequency resources, multiple-input multiple-output MIMO mode, automatic retransmission request HARQ parameters, priority information, and so on.
  • the DCI used for downlink data scheduling may include DCI format 1_0 (format1_0) and/or DCI format 1_1 (format1_1)
  • the DCI corresponding to side row data scheduling may include DCI format 5 (format 5) and/or DCI Format 5A (format 5A), etc.
  • Search space SS network equipment configures terminal equipment to monitor DCI in different SS.
  • a terminal device can be configured to monitor DCI in a common search space (CSS), or a terminal device can be configured to monitor DCI in a UE-specific search space (UE-specific search space, USS).
  • UE-specific search space UE-specific search space
  • USS can also be called UESS.
  • Radio network temporary identity scheduling information may use different RNTIs for cyclic redundancy check (CRC) scrambling.
  • CRC cyclic redundancy check
  • the RNTI scrambled by the CRC is different due to the different scheduling types of its subdivision.
  • the scheduling information used for downlink data scheduling can be divided into scheduling information for downlink system message scheduling, scheduling information for downlink paging message scheduling, and scheduling for downlink dynamic data scheduling according to different scheduling types. Information and scheduling information for semi-persistent scheduling.
  • the system message RNTI (System information RNTI, SI-RNTI) can be used for scrambling
  • the paging RNTI Paging RNTI, P-RNTI
  • RNTI RNTI scrambling.
  • the cell RNTI Cell RNTI, C-RNTI
  • the configuration scheduling RNTI Configured Scheduling RNTI, CS-RNTI
  • the network device can be configured with different formats of DCI.
  • the network device or CUE can adopt the following methods.
  • the functions of the first DCI in different formats can be different, for example, the first The format of the DCI can be called fallback DCI (fallback DCI), etc.
  • the fallback DCI can be used for data scheduling before the RRC connection is established, or data scheduling after the RRC connection is established.
  • the first DCI in the second format may be referred to as non-fallback DCI (non-fallback DCI), and the non-fallback DCI may be used for data scheduling after the RRC connection is established.
  • DCI format Features Search space Format 1_0 Schedule downlink data CSS and/or USS Format 1_1 Schedule downlink data USS Format X Scheduling SL resources
  • the DCI in the first format may be the DCI in the format 1_0 (format1_0), and the CUE may set the SCI to the first format.
  • the DCI of the second format may be the DCI of format 1_1 (format 1_1), and the CUE may set the SCI to the second format.
  • DCI can use different radio network temporary identities (RNTI) for cyclic redundancy check (CRC) scrambling, and different RNTI scrambling can be used for identification Different CUE.
  • RNTI radio network temporary identities
  • CRC cyclic redundancy check
  • At least one refers to one or more, and “multiple” refers to two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, or c can mean: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.
  • FIGS 1a-1b show one of the communication systems 100 applied in an embodiment of the present application.
  • the method provided in the embodiments of this application can be applied to various communication systems, such as: global system for mobile communications (GSM) system, code division multiple access (CDMA) system, and broadband code division multiple access (wideband code division multiple access, WCDMA) system, general packet radio service (GPRS), long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE Time division duplex (TDD), universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WIMAX) communication system, fifth generation (5G) System or new radio (NR) system, or applied to future communication systems or other similar communication systems, etc.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • the embodiments of this application can also be applied to the evolved universal mobile telecommunications system terrestrial radio access network (E-UTRAN) system, or the next generation (NG)-RAN
  • E-UTRAN evolved universal mobile telecommunications system terrestrial radio access network
  • NG next generation
  • the system can also be applied to next-generation communication systems or similar communication systems. It can also be used for V2X networks; among them, V2X communication refers to the communication between the vehicle and anything outside, including V2V, V2P, V2I and V2N, etc., and can also be used for other car networking or device-to-device (device-to-device, D2D) ) Network etc.
  • V2X communication refers to the communication between the vehicle and anything outside, including V2V, V2P, V2I and V2N, etc.
  • D2D device-to-device
  • V2X specifically includes vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-pedestrian (V2P) direct communication, and Several application requirements such as vehicle-to-network (V2N) communication interaction.
  • V2V refers to the communication between vehicles
  • V2P refers to the communication between vehicles and people (including pedestrians, cyclists, drivers, or passengers)
  • V2I refers to the communication between vehicles and network equipment, such as RSU, and There is another type of V2N that can be included in V2I.
  • V2N refers to the communication between the vehicle and the base station/network.
  • the communication system 100 may include at least one network device 110.
  • the network device 110 may be a device that communicates with terminal devices, such as a base station or a base station controller. Each network device 110 can provide communication coverage for a specific geographic area, and can communicate with terminal devices located in the coverage area (cell).
  • the network equipment 110 network equipment includes an access network (an access network, AN) equipment, such as a base station (for example, an access point), which may refer to communication with wireless terminal equipment through one or more cells on an air interface in an access network
  • AN access network
  • a network device in a V2X technology is a roadside unit (RSU).
  • the base station can be used to convert received air frames and Internet Protocol (IP) packets into each other, and act as a router between the terminal device and the rest of the access network, where the rest of the access network may include an IP network.
  • the RSU can be a fixed infrastructure entity that supports vehicle-to-everything (V2X) applications, and can exchange messages with other entities that support V2X applications.
  • V2X vehicle-to-everything
  • the access network equipment can also coordinate the attribute management of the air interface.
  • the access network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional NodeB) in the LTE system or long term evolution-advanced (LTE-A), or may also include the fifth The next generation node B (gNB) in the new radio (NR) system in the 5th generation (5G) mobile communication technology (the 5th generation, 5G), or the cloud radio access network (Cloud Access Network, Cloud).
  • the centralized unit (CU) and distributed unit (DU) in the RAN system are not limited in the embodiment of the present application.
  • network equipment may also include core network equipment, but because the method provided in the embodiments of this application mainly relates to access network equipment, in the following text, unless otherwise specified, the “network equipment” described below is all Refers to the access network equipment.
  • the communication system 100 also includes one or more terminal devices 120, 130, 140 located within the coverage area of the network device 110.
  • Terminal devices include devices that provide users with voice and/or data connectivity. For example, they may include handheld devices with a wireless connection function or processing devices connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote Station (remote station), access point (access point, AP), remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), or user Equipment (user device), etc.
  • UE user equipment
  • wireless terminal equipment mobile terminal equipment
  • mobile terminal equipment subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote Station (remote station), access point (access point, AP), remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), or user Equipment (user device), etc.
  • mobile phones or “cellular" phones
  • computers with mobile terminal devices portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices, smart wearable devices, and so on.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • the terminal device of the embodiment of the present application may also be an on-board module, on-board module, on-board component, on-board chip, or on-board unit built into a vehicle as one or more components or units.
  • a group, a vehicle-mounted component, a vehicle-mounted chip, or a vehicle-mounted unit may implement the method of the embodiments of the present application.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for using wearable technology to intelligently design everyday wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones Use, such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the network device 110 and the terminal devices 120-140 may use air interface resources for data transmission.
  • the air interface resources may include at least one of time domain resources, frequency domain resources, and code domain resources.
  • the network device 110 may send control information to the terminal devices 120-140 through a control channel, such as a physical downlink control channel (PDCCH), thereby
  • the terminal devices 120-140 are allocated data channels, such as physical downlink shared channel (PDSCH) or physical uplink shared channel (PUSCH) resources.
  • the control information may indicate the symbol and/or resource block (RB) to which the data channel is mapped, and the network device 110 and the terminal devices 120-140 perform data transmission on the allocated time-frequency resources through the data channel.
  • the above-mentioned data transmission may include downlink data transmission and/or uplink data transmission.
  • Downlink data (such as data carried in PDSCH) transmission may refer to network device 110 sending data to terminal devices 120-140
  • uplink data (such as data carried in PUSCH) Transmission may refer to the terminal device 120-140 sending data to the network device 110.
  • Data can be data in a broad sense, such as user data, system information, broadcast information, or other information.
  • the terminal devices 120-140 can also transmit data through side link resources. Similar to the above air interface resources, the side link resources can also include time domain resources, At least one of frequency domain resources and code domain resources.
  • the physical channels through which the terminal devices 120-140 perform data transmission may include physical sidelink shared channel (PSSCH), physical sidelink control channel (PSCCH), or physical sidelink control channel (PSCCH). At least one of a sidelink feedback channel (physical sidelink feedback channel, PSFCH), etc.
  • the PSSCH is used to transmit data
  • the PSCCH is used to transmit control information, such as scheduling assignment (SA) information
  • the PSFCH is used to transmit feedback information.
  • the feedback information may include channel state information (CSI), Positive confirmation (acknowledgement, ACK) or negative confirmation (negtive acknowledgement, NACK), etc.
  • CSI channel state information
  • ACK Positive confirmation
  • NACK negative confirmation
  • Figures 1a-1b exemplarily show a network device and three terminal devices 120-140.
  • the communication system 100 may include multiple network devices and the coverage of a network device may include other numbers
  • the terminal device is not limited in this embodiment of the application.
  • the side link communication in the embodiments of the present application may refer to the communication between one terminal device and another terminal device (such as unicast, etc.), or the side link communication may refer to a terminal device.
  • the communication with multiple terminal devices (such as multicast and broadcast, etc.) is not limited in the embodiment of the present application.
  • sidelink communication refers to communication between one terminal device and another terminal device" is taken as an example for description.
  • the 5G system provides a communication method for user cooperation, and user equipment cooperation is one of the main features supported in the fifth-generation mobile communication technology system.
  • the target terminal equipment (Target User Equipment, TUE) and several cooperative terminal equipment (Cooperation User Equipment, CUE) serving for it will form a cooperative transmission group, such as the terminal equipment in Figure 1a- Figure 1b 120 and the terminal device 130 and the terminal device 140 form a cooperative transmission group.
  • the target terminal device is the terminal device 120, and the terminal devices 130-140 are cooperative terminal devices. It should be noted that, for any terminal device, it can be a target terminal device of a cooperative transmission group centered on itself, and it can also be a cooperative terminal device of one or more other cooperative transmission groups.
  • a neighboring user equipment (NUE) adjacent to the target terminal device may be determined as a cooperative terminal device of the target terminal device through random access.
  • the cooperative terminal device in this application can be called CUE, side UE (SUE), or relay UE (relay UE), which is not limited here.
  • SUE side UE
  • relay UE relay UE
  • LTE V2X there are two transmission modes, one is the base station allocation mode, which is defined as mode 3 in the LTE standard, and the other is the user-selected mode, which is defined as mode 4 in the LTE standard.
  • the base station allocation mode is mainly used for V2X communication in the case of network coverage.
  • the base station uniformly allocates resources based on the report of the buffer status report (BSR) of the terminal equipment. Among them, the base station can allocate resources in a semi-persistent scheduling (SPS) mode or a dynamic mode.
  • SPS semi-persistent scheduling
  • the user-selected mode is mainly used for V2X communication without network coverage. Because there is no unified resource management for network equipment, V2X terminal equipment can only select resources from the resource pool configured by the network equipment for V2X communication. For example, for a cell, the network equipment is configured with a resource pool uniformly, then multiple V2X terminal devices in the cell will select resources in the resource pool.
  • the embodiment of the present application takes the base station allocation mode as an example for description.
  • CUE and TUE are terminal devices within the coverage of network equipment (in coverage, IC).
  • IC network equipment
  • the network device in the flow may specifically be the network device 110 in FIG. 1a, and the target terminal device may be the terminal device 120 in FIG. 1a.
  • the cooperative terminal device may be the terminal devices 130-140 in FIG. 1a.
  • the process includes:
  • the transmission based on user equipment cooperation mainly has two stages:
  • Step 1011 The network device allocates downlink transmission parameters and downlink time-frequency resources for the CUE and TUE to transmit the first data to the CUE and TUE by the network device, and sends the first DCI to the CUE and TUE;
  • the network device sends the first data on the downlink time-frequency resource by using downlink transmission parameters for transmitting the first data
  • the network device may send the first data to the TUE and the CUE in a multicast or broadcast manner.
  • the first DCI instructs the CUE and TUE to receive the downlink transmission parameters and downlink time-frequency resources of the first data sent by the network device.
  • the downlink transmission parameters used to transmit the first data may include: modulation and coding mode, multiple input multiple output mode, automatic retransmission request parameters, priority information, and the like.
  • the network device may send the first data on the downlink time-frequency resource occupied by the first data through the modulation and coding method and the multiple-input multiple-output mode in the downlink transmission parameters used to transmit the first data; in addition, On the time-frequency resources occupied by the first data, the CUE and TUE receive the first data through the modulation and coding method and the multiple input multiple output mode in the transmission parameters used to transmit the first data.
  • the CUE and/or TUE receives the first data according to the received first data.
  • the decoding result of a data, and the automatic retransmission request parameter in the transmission parameters send the automatic retransmission request feedback message, so that the network device can send the retransmission data for the CUE and/or TUE.
  • Step 1012 The CUE and TUE obtain the first DCI, and according to the first DCI, determine the downlink transmission parameter and the downlink time-frequency resource of the first data sent by the network device.
  • the specific process of the CUE and TUE receiving the first DCI may include: the first DCI is carried in the physical downlink control channel PDCCH for transmission.
  • the CUE and the TUE can obtain the search space SS, which includes a PDCCH candidate set (PDCCH candidate), and the PDCCH candidate set refers to a series of time-frequency resource positions where PDCCH may appear in a control resource set (CORESET).
  • the CUE and TUE blindly detect the first DCI in the candidate search space, and if the analysis is successful, the downlink transmission parameters and downlink time-frequency resources used to transmit the first data carried in the first DCI can be determined.
  • Step 1013 On the downlink time-frequency resource occupied by the first data, the TUE and the CUE receive the first data sent by the network device through the downlink transmission parameter used to transmit the first data.
  • the CUE and the TUE receive the first data sent by the network device through the downlink transmission parameter used to transmit the first data.
  • the network device allocates the same downlink time-frequency resources to TUE and CUE1 and CUE2 for sending the first data.
  • TUE, CUE1 and CUE2 simultaneously receive the first data on the downlink time-frequency resource.
  • each cooperative user equipment can establish a side-line link with the target user equipment, which can be applied to the process of the network equipment actively allocating side-line transmission resources to the terminal equipment, and it can also be applied to the passive network equipment
  • the process of the network device passively allocating the side-line transmission resources to the terminal device may include: the terminal device sends a side-link resource request to the network device; the network device receives the side link resource After the uplink resource is requested, the terminal equipment is allocated side transmission resources. That is, the process shown in FIG. 1c may further include: the CUE sends an SL resource request to the network device.
  • the specific side-line transmission process may include the following steps:
  • Step 1021 The network device allocates side-line transmission parameters and side-line time-frequency resources for transmitting the second data, and sends the second DCI to the CUE.
  • the second DCI is used to indicate the side-line transmission parameters and side-line time-frequency resources allocated to the CUE by the network device for transmitting the second data.
  • the network device may allocate different side-line time-frequency resources and side-line transmission parameters for each CUE, or configure the same side-line time-frequency resources and side-line transmission parameters for each CUE.
  • There may be multiple second DCIs that is, the network device may configure different side-line time-frequency resources and/or different side-line transmission parameters for each CUE, and each CUE corresponds to one second DCI.
  • the network device sends each second DCI to the corresponding CUE in a unicast manner, and sends all the second DCIs to the TUE.
  • the second DCI may also be one.
  • the network device allocates the same side-line time-frequency resource and side-line transmission parameters for transmitting the second data to each CUE, and the network device may send the second DCI to the CUE in the form of multicast. DCI.
  • the network device may also configure different side-line time-frequency resources for transmitting the second data and/or different side-line transmission parameters for transmitting the second data for each CUE.
  • the network device may send the second DCI to the CUE in the form of multicast.
  • Step 1022 According to the second DCI, the first CUE determines the side-line time-frequency resource and the side-line transmission parameter corresponding to the first CUE for transmitting the second data.
  • the first CUE is a CUE in the coordinated transmission group.
  • CUE1 determines the side-line time and frequency allocated by the network device to CUE1 to transmit the second data according to the second DCI from the network device. Resources and sideline transmission parameters.
  • the network device will configure different side-line time-frequency resources and side-line transmission parameters for transmitting the second data for each CUE and carry them in a second DCI, then CUE1 can only parse the corresponding CUE1 in the second DCI. To determine the side-line time-frequency resources and side-line transmission parameters of CUE1 used to transmit the second data.
  • Step 1023 The first CUE forwards the second data to the TUE according to the side-line transmission parameter corresponding to the first CUE on the side-line time-frequency resource corresponding to the first CUE.
  • CUE1 and CUE2 can forward the correctly received second DCI and/or second data to the TUE; the specific forwarding method can be amplifying, forwarding, and decoding. Transcoding or compression forwarding, etc.
  • the forwarded second data may be part of the first data or all of the data; CUE1 and CUE2 may forward the same part of the first data, or may forward different parts, which is not limited here.
  • the second data may also include the decoding result of the CUE after decoding the first data, so that the TUE can obtain the decoding result of the CUE and improve the data receiving performance.
  • the first CUE generates the first SCI according to the second DCI, and sends the first SCI to the TUE;
  • the first SCI indicates the scheduling information of the side link resources.
  • the SCI generated by the CUE1 may indicate the scheduling information of the side link resources of the CUE1 and the TUE.
  • the side-link scheduling information may include the side-line time-frequency resources and side-line transmission parameters in the second DCI correctly received by the CUE from the network device, or it may include the CUE determined from the resource pool pre-configured by the network device.
  • the first CUE may send the first SCI on the physical side link control channel PSCCH to send the scheduling information of the side link resources to the TUE; of course, it may also be scheduling assistance (SA) information.
  • SA scheduling assistance
  • Step 1024 The TUE obtains the second DCI from the network device, and receives the second data sent by the first CUE on the corresponding side-line transmission resource.
  • the TUE uses the second DCI_CUE1 corresponding to CUE1 to pass on the side-line time-frequency resources indicated by the second DCI_CUE1
  • the second DCI_CUE1 indicates the side-line transmission parameter to receive the second data sent by CUE1; the TUE receives the second data from CUE1 according to the second DCI_CUE2 corresponding to CUE2, on the side-line time-frequency resource indicated by the second DCI_CUE2, and through the side-line transmission parameter indicated by the second DCI_CUE2
  • the TUE determines whether the second DCI generated by the network device carries the side-line time-frequency resources and side-line transmission parameters of CUE1, and the side-line time-frequency resources and side-line transmission parameters of CUE2, then the TUE according to the analyzed second DCI, Determine the side-line time-frequency resource and side-line transmission parameters of CUE1 and the side-line time-frequency resource and side-line transmission parameters of CUE2, and then, on the side-line time-frequency resource corresponding to CUE1, receive the first sent by CUE1 through the side-line transmission parameters
  • Two data The TUE receives the second data sent by CUE2 through the sideline transmission parameters on the sideline time-frequency resource corresponding to CUE2 according to the second DCI corresponding to CUE2.
  • the TUE obtains the SCI from the CUE, and receives the second data sent by the CUE on the corresponding side-line transmission resource.
  • TUE obtains SCI1 from CUE1, on the side-line time-frequency resource indicated by SCI1, and receives the second data sent by CUE1 through the side-line transmission parameters indicated by SCI1.
  • TUE obtains SCI2 from CUE2, and receives the second data sent by CUE2 through the side-line transmission parameters indicated by SCI2 on the side-line time-frequency resource indicated by SCI2.
  • the TUE may combine and decode the signal of the first data from the network device received in the first stage and the signal of the second data of CUE1 and the signal of the second data of CUE2 received in the second stage to obtain the network device.
  • the first data sent.
  • the performance of receiving the first data sent by the network device by the target terminal device can be improved, and the reliability of receiving the first data by the target terminal device can be significantly enhanced.
  • the communication system 100 shown in FIG. 1b provides a user-cooperative communication process.
  • the network device in the process may be specifically the network device 110 in FIG. 1b, and the target terminal device may be the terminal device 120 in FIG. 1b.
  • the cooperative terminal device may be the terminal devices 130-140 in FIG. 1b.
  • the process includes:
  • it can include:
  • Step 1031 The network device allocates downlink time-frequency resources and downlink transmission parameters for transmitting the first data to the CUE, and sends the first DCI to the CUE.
  • the network device sends the first DCI to the CUE, and sends the first data through the downlink transmission parameters on the downlink time-frequency resource;
  • the network device may send the first data to the CUE in a multicast or broadcast manner.
  • the first DCI is used to indicate the downlink time-frequency resources and downlink transmission parameters allocated by the network device to the terminal devices in the user cooperation group for transmitting the first data.
  • Step 1032 The first CUE determines, according to the first DCI, a downlink time-frequency resource and downlink transmission parameters corresponding to the first CUE for transmitting the first data.
  • the first CUE is a CUE in the coordinated transmission group.
  • Step 1033 On the downlink time-frequency resource corresponding to the first CUE, the first CUE receives the first data sent by the network device through the downlink transmission parameters corresponding to the first CUE.
  • Step 1041 The network device allocates the side-line time-frequency resources and the side-line transmission parameters of the second data corresponding to the first CUE to the first CUE, and sends the second DCI to the first CUE.
  • the second DCI is used to indicate the side-line time-frequency resources and side-line transmission parameters allocated by the network device for the first CUE to transmit the second data.
  • the network device allocates side-line time-frequency resource 1 and side-line transmission parameter 1 corresponding to CUE1 for CUE1, and generates a second DCI_CUE1 carrying side-line time-frequency resource 1 and side-line transmission parameter 1, and then sends the second DCI_CUE1 To CUE1.
  • the network device allocates the side-line time-frequency resource 2 and the side-line transmission parameter 2 corresponding to CUE2 for CUE2, and generates a second DCI_CUE2 carrying the side-line time-frequency resource 2 and the side-line transmission parameter 2, and then transfers the second DCI_CUE2 Send to CUE2.
  • Step 1042 According to the second DCI, the first CUE determines the side-line time-frequency resource and the side-line transmission parameter corresponding to the first CUE for transmitting the second data.
  • CUE1 determines the side-line time-frequency resource 1 and side-line transmission parameter 1 in the second DCI_CUE1 according to the second DCI_CUE1 from the network device, where the side-line time-frequency resource 1 and the side-line transmission parameter 1 are used to indicate CUE1
  • the second data is sent to the TUE on the side-line time-frequency resource 1 through the side-line transmission parameter 1.
  • CUE2 determines the side-line time-frequency resource 2 and the side-line transmission parameter 2 in the second DCI_CUE2 according to the second DCI_CUE2 from the network device, where the side-line time-frequency resource 2 and the side-line transmission parameter 2 are used for CUE2's side-line transmission Parameter 2 sends second data to the TUE on the side-line time-frequency resource 2.
  • Step 1043 The first CUE generates a first SCI according to the second DCI, and sends the first SCI to the TUE.
  • the first CUE sends the first SCI to the TUE, and on the side-line time-frequency resource corresponding to the first CUE, sends the second data to the TUE through the side-line transmission parameters corresponding to the first CUE.
  • CUE1 generates SCI1 carrying side-line time-frequency resource 1 and side-line transmission parameter 1 according to the second DCI_CUE1 from the network device, and sends SCI1 to TUE. And CUE1 sends the second data to the TUE on the side-line time-frequency resource 1 through the side-line transmission parameter 1.
  • CUE2 can generate SCI2 carrying side-line time-frequency resource 2 and side-line transmission parameter 2 according to the second DCI_CUE2 from the network device, and send the SCI2 to TUE. And CUE2 sends the second data to the TUE on the side-line time-frequency resource 2 through the side-line transmission parameter 2.
  • Step 1044 The TUE obtains the first SCI, and on the side-line time-frequency resource corresponding to the first CUE, receives the second data sent by the CUE through the side-line transmission parameters corresponding to the first CUE.
  • TUE obtains SCI1, and on the side-line time-frequency resource 1, receives the second data sent by CUE1 through the side-line transmission parameter 1.
  • TUE obtains SCI2, and on the side-line time-frequency resource 2, receives the second data sent by CUE2 through the side-line transmission parameter 2.
  • the TUE can combine the forwarded signals of the multiple CUEs received in the second stage for decoding, for example, if the TUE receives the second data signal sent by CUE1 1 and signal 2 of the second data sent by CUE2, signal 1 and signal 2 can be combined for decoding, so as to improve the accuracy of decoding the second data, thereby improving the performance of cooperative transmission.
  • the performance or reliability of the TUE can be significantly enhanced, the capacity of the system and the coverage of the network can be significantly improved, and the load of network equipment can be reduced at the same time.
  • two cooperative terminal devices are taken as an example.
  • the network device Before the network device sends the downlink data on the downlink transmission link, the network device will send the data to the target terminal device and The cooperative terminal device sends the first DCI; when the network device schedules the terminal device to send a sideline signal on the sideline transmission link, the cooperative terminal device sends the second DCI to the terminal device. Therefore, in the current user cooperative communication process, the network device needs to send multiple physical downlink control information PDCCHs, which has a relatively large resource overhead and relatively occupy transmission resources.
  • the network device can configure the CUE to monitor two types of DCI, namely the first DCI and the second DCI.
  • the first DCI is used to schedule downlink data transmission
  • the second DCI is used to schedule sidelink resource allocation in the scenario shown in FIG. 1a.
  • the CUE needs to perform blind detection of the PDCCH separately.
  • Two DCIs need to perform blind detection at least twice, and the processing complexity of the terminal equipment is relatively high.
  • an embodiment of the present application provides a communication method flow.
  • the network device in the flow may be the network device 110 in FIG. 1a, and the terminal device may be the above figure.
  • Terminal devices 120-140 in 1a It is understandable that the functions of the network equipment can also be realized by the chip applied to the network equipment, or through other means to support the realization of the network equipment, and the function of the terminal equipment can also be realized by the chip applied to the terminal equipment, or through other devices. Support terminal device realization.
  • the process includes:
  • Step 201 The network device generates first scheduling information and second scheduling information.
  • the first scheduling information indicates downlink transmission parameters and downlink time-frequency resources for the target terminal device and at least one cooperative terminal device to receive the first data from the network device; specifically, the target terminal device and the at least one cooperative terminal device belong to one
  • the coordinated transmission group for example, TUE and CUE1 and CUE2 as shown in FIG. 1a belong to a coordinated transmission group.
  • the first data from the network device may be data sent by the network device in the first stage of the cooperative transmission mode to the target terminal device and the at least one cooperative terminal device.
  • the first scheduling information is used to instruct the target terminal device and at least one cooperative terminal device to receive the first data through downlink transmission parameters on the corresponding downlink time-frequency resource.
  • the second scheduling information indicates a sideline transmission parameter and a sideline time-frequency resource used for at least one cooperative terminal device to send the second data to the target terminal device.
  • the second data sent by at least one cooperative terminal device to the target terminal device may be generated by at least one cooperative terminal device based on the first data received by each cooperative terminal device; the specific generation process may refer to the aforementioned cooperative transmission The embodiments are not repeated here.
  • the second scheduling information is used to instruct at least one cooperative terminal device to send second data on the corresponding side-line time-frequency resource through the side-line transmission parameters, and to indicate that the target terminal device is on the corresponding side-line time-frequency resource through the side-line time-frequency resource.
  • the transmission parameter receives the second data.
  • the first scheduling information and the second scheduling information include one or more of the following: modulation and coding mode, time-frequency resource, multiple input multiple output mode, automatic retransmission request parameter, priority Information and other transmission parameters.
  • Step 202 The network device sends downlink control information to the target terminal device and the at least one cooperative terminal device.
  • the downlink control information includes first scheduling information and second scheduling information.
  • the DCI includes a field carrying first scheduling information and a field carrying second scheduling information.
  • the network device sends the first data according to DCI.
  • the network device sends the first data to the target terminal device and at least one cooperative terminal device according to the first scheduling information in the DCI.
  • the network device does not need to send multiple downlink control information, which can save resource overhead and reduce control information. Occupied transmission resources, which can improve spectrum efficiency.
  • Step 203 The first cooperative terminal device and the target terminal device receive downlink control information from the network device.
  • the first cooperative terminal device is one of the at least one cooperative terminal device; it should be noted that the first cooperative terminal device may be a cooperative terminal device within the coverage of the network device, or may be a network device according to If necessary, the determined cooperative terminal device may also be any cooperative terminal device in the cooperative transmission group, which is not limited here.
  • the first cooperative terminal device and the target terminal device perform blind detection on the downlink control information in the candidate search space to obtain the first scheduling information and the second scheduling information.
  • Step 204 The first cooperative terminal device and the target terminal device receive the first data from the network device according to the first scheduling information.
  • the target terminal device may choose not to receive the first data from the network device according to the needs of the actual scenario, so as to save power consumption.
  • the first cooperative terminal may also send side-line control information to the target terminal device, where the side-line control information indicates that the first cooperative terminal device sends the target terminal device to the target terminal device.
  • the side-line transmission parameters and side-line time-frequency resources of the second data are sent, so that the target terminal device can obtain the side-line control information, and then according to the side-line control information, the side-line time-frequency resources occupied by the second data
  • the second data sent by the first cooperative terminal device is received through the side-line transmission parameter.
  • the target terminal device may also send a feedback message to the network device according to the decoding result of the received first data and the automatic retransmission request parameter in the first scheduling information; for example, if the target terminal device correctly receives the first data , Send a feedback positive message to the network device; if the target terminal device does not correctly receive the first data, send a negative feedback message to the network device.
  • the first cooperative terminal device in order to avoid repeatedly sending control information and wasting resources, before the first cooperative terminal device sends the side control information to the target terminal device, it may further include:
  • Step 2041 The first cooperative terminal monitors the feedback confirmation message or the feedback negative message sent by the target terminal device to determine whether side control information needs to be generated.
  • the feedback confirmation message or the feedback negative message is used for the target terminal device to feed back to the network device whether the first data is correctly parsed.
  • the first cooperative terminal can determine whether the target terminal device correctly receives the downlink control information by monitoring whether the feedback confirmation message or the feedback negative message exists.
  • Step 2042 If the first cooperative terminal device does not monitor the feedback confirmation message or the feedback negative message sent by the target terminal device within the predetermined period of time, it is determined that the target terminal device has not correctly received the downlink control information, and the first cooperative terminal device may send the target The terminal device sends the side-line control information, so that the target terminal device can receive the second data sent by the first cooperative terminal device according to the side-line control information.
  • the first cooperative terminal device may cancel the sending of the side control information to the target terminal device, so as to save the overhead of control information resources.
  • Step 205 The first cooperative terminal device sends second data to the target terminal device according to the second scheduling information.
  • step 2042 it can also be executed simultaneously with step 205, which is not limited here.
  • Step 206 The target terminal device receives the second data from the first cooperative terminal device according to the second scheduling information.
  • the cooperative terminal device and the target terminal device can configure a DCI according to the network device, and only need to perform 1
  • the reception of the secondary PDCCH reduces the processing complexity of the terminal equipment.
  • an embodiment of the present application provides a communication method flow.
  • the network device in the flow may be the network device 110 in FIG. 1b, and the terminal device may be the communication method in FIG. 1b.
  • Terminal equipment 120-140 It is understandable that the functions of the network equipment can also be realized by the chip applied to the network equipment, or through other means to support the realization of the network equipment, and the function of the terminal equipment can also be realized by the chip applied to the terminal equipment, or through other devices. Support terminal device realization.
  • the process includes:
  • Step 301 The network device generates first scheduling information and second scheduling information.
  • the first scheduling information indicates downlink transmission parameters and downlink time-frequency resources for at least one cooperative terminal device to receive the first data from the network device; the first data from the network device may be the network in the first stage of the cooperative transmission mode Data sent by the device to at least one cooperative terminal device.
  • the first scheduling information is used to instruct at least one cooperative terminal device to receive the first data through downlink transmission parameters on the corresponding downlink time-frequency resource.
  • the second scheduling information indicates the side-line transmission parameters and side-line time-frequency resources used for at least one coordinated terminal device to send the second data to the target terminal device; specifically, the target terminal device and the at least one coordinated terminal device belong to a coordinated transmission Groups, for example, TUE, CUE1 and CUE2 as shown in Fig. 1b belong to a coordinated transmission group.
  • the second data sent by at least one cooperative terminal device to the target terminal device may be generated by at least one cooperative terminal device based on the first data received by each cooperative terminal device; the specific generation process can refer to the foregoing cooperative transmission embodiment, here No longer.
  • the second scheduling information is used to instruct at least one cooperative terminal device to send the second data through the side-line transmission parameter on the corresponding side-line time-frequency resource.
  • the first scheduling information and the second scheduling information include one or more of the following: modulation and coding mode, time-frequency resource, multiple input multiple output mode, automatic retransmission request parameter, priority Information and other transmission parameters.
  • Step 302 The network device sends downlink control information to the at least one cooperative terminal device.
  • the downlink control information includes first scheduling information and second scheduling information.
  • the DCI includes a field carrying first scheduling information and a field carrying second scheduling information.
  • the network device may send DCI, and send the first data according to the DCI.
  • the network device may send the first data to at least one cooperative terminal device according to the first scheduling information in the DCI.
  • the network device does not need to send multiple downlink control information, which can save resource overhead and reduce control information. Occupied transmission resources, which can improve spectrum efficiency.
  • Step 303 The first cooperative terminal device receives downlink control information from the network device.
  • the first cooperative terminal device is one of the at least one cooperative terminal device; it should be noted that the first cooperative terminal device may be a cooperative terminal device within the coverage of the network device, or may be a network device according to If necessary, the determined cooperative terminal device may also be any cooperative terminal device in the cooperative transmission group, which is not limited here.
  • Step 304 The first cooperative terminal device receives the first data from the network device according to the first scheduling information.
  • Step 305 After acquiring the downlink control information, the first cooperative terminal device sends the side line control information to the target terminal device, and the second data to the target terminal device according to the second scheduling information.
  • the side-line control information indicates the side-line transmission parameters and side-line time-frequency resources used for the first cooperative terminal device to send the second data to the target terminal device, so that the target terminal device can obtain the side-line control information Further, according to the side-line control information, on the side-line time-frequency resources occupied by the second data, the second data sent by the first cooperative terminal device is received through the side-line transmission parameters.
  • Step 306 The target terminal device receives the side control information from the first cooperative terminal device, and receives the second data from the first cooperative terminal device according to the second scheduling information.
  • the target terminal device performs a blind check on the side line control information in the candidate search space to obtain the second scheduling information. Furthermore, the target terminal device may receive the second data from the first cooperative terminal device according to the second scheduling information.
  • the cooperative terminal device can generate the SCI to be sent to the target terminal device according to a DCI configured by the network device.
  • the network device only needs to send the PDCCH once, and correspondingly, the cooperative terminal device only needs to receive the PDCCH once, which reduces resource consumption and the processing complexity of the cooperative terminal device.
  • the downlink control information includes fields corresponding to downlink transmission parameters, fields corresponding to downlink time-frequency resources, and fields corresponding to side-line transmission parameters and fields corresponding to side-line time-frequency resources.
  • the network device may send the first data on the downlink time-frequency resource through downlink transmission parameters.
  • the cooperative terminal device may receive the first data on the downlink time-frequency resource through the downlink transmission parameter according to the received downlink control information, and then send the second data on the sideline time-frequency resource through the sideline transmission parameter.
  • the corresponding fields of the downlink transmission parameters may include: MCS parameters, HARQ feedback parameters, MIMO mode parameters, priority and other downlink transmission parameters 101 that are required for downlink transmission configured by the network equipment for CUE1, and the network equipment is
  • the downlink transmission parameters 102 such as MCS parameters, HARQ feedback parameters, MIMO mode parameters, priority and other required for downlink transmission configured by the TUE; of course, the downlink transmission parameters 101 and the downlink transmission parameters 102 may be the same or different. If the downlink transmission parameter 101 and the downlink transmission parameter 102 are the same, the field corresponding to the downlink transmission parameter may only carry the downlink transmission parameter 101 or the downlink transmission parameter 102.
  • the fields corresponding to the downlink time-frequency resource include: the downlink time-frequency resource 101 configured for CUE1 by the network device and the downlink time-frequency resource 102 configured for TUE; the downlink time-frequency resource 101 and the downlink time-frequency resource 102 may be the same or different. If the downlink time-frequency resource 101 and the downlink time-frequency resource 102 are the same, the field corresponding to the downlink time-frequency resource may only carry the downlink time-frequency resource 101 or the downlink time-frequency resource 102.
  • the network device may send the first data to the CUE1 on the downlink time-frequency resource 101 through the downlink transmission parameter 101, and send the first data to the TUE on the downlink time-frequency resource 102 through the downlink transmission parameter 102. If the CUE1 correctly receives the downlink control information, it can receive the first data on the downlink time-frequency resource 101 through the downlink transmission parameter 101.
  • the fields corresponding to side-line transmission parameters include: MCS parameters, HARQ feedback parameters, MIMO mode parameters, priority and other side-line transmission parameters required for side-line transmission configured by the network device for CUE1; 101; fields corresponding to downlink time-frequency resources may include : The side-line time-frequency resource 101 required for side-line transmission configured by the network device for CUE1.
  • the downlink control information may also include a manner for generating the second data configured by the network device for CUE1.
  • the second data is part of the first data, or the second data is all the data of the first data. It can also be the data in the signal that the CUE1 correctly receives the first data sent by the network device, which is not limited here.
  • the manner in which CUE1 generates the second data may be pre-configured by the network device for CUE1, or, among the multiple generation manners set in the standard, CUE1 generates the second data according to one of the multiple generation methods set in the standard. the way.
  • the CUE1 After the CUE1 generates the second data, it can send the second data to the TUE on the side-line time-frequency resource 101 through the side-line transmission parameter 101.
  • CUE1 Before sending the second data, CUE1 may also send an SCI to TUE, where the SCI carries the field corresponding to the side-line transmission parameter and the field corresponding to the side-line time-frequency resource.
  • CUE1 can also confirm whether the TUE has received the downlink control information according to the HARQ feedback positive message or the HARQ feedback negative message sent by the TUE. If it is determined that the TUE has received the downlink control information, it can cancel sending the SCI to save The consumption of signaling.
  • TUE For TUE, if it receives downlink control information, it can receive the first data sent by the network device through downlink transmission parameters on the downlink time-frequency resource; on the side-line time-frequency resource, receive the first data sent by the CUE through the side-line transmission parameters. Two data.
  • the TUE can receive the first data sent by the network device on the downlink time-frequency resource 102 through the downlink transmission parameter 102.
  • the TUE can receive the second data sent by CUE1 on the side-line time-frequency resource 101 through the side-line transmission parameter 101.
  • the target terminal device receives the first data sent by the network device and the second data sent by the CUE1, it can perform joint decoding based on the signal of the first data and the signal of the second data to improve the decoding rate.
  • each transmission parameter in the second scheduling information may not carry the CUE identifier, but only carry the user cooperation group identifier; the CUE identifier may be the radio network temporary identifier RNTI or other identifiers.
  • the identity of the CUE nor the identity of the user cooperation group may be carried, which is not limited here.
  • the first scheduling information indicates the first downlink transmission parameter and the first downlink time-frequency resource .
  • the first downlink transmission parameter and the first downlink time-frequency resource are used by the network device on the first downlink time-frequency resource to send first data to the N CUEs and TUEs through the first downlink transmission parameter .
  • Each CUE and/or TUE of the N CUEs receives the first data on the first downlink time-frequency resource through the first downlink transmission parameter.
  • the network device may send the first data through the first downlink transmission parameter on the first downlink time-frequency resource in a manner of broadcast or multicast.
  • the N CUEs may receive the first data through the first downlink transmission parameter on the first downlink time-frequency resource according to the received downlink control information. For the TUE, if the downlink control information is received, it can receive the first data sent by the network device through the first downlink transmission parameter on the first downlink time-frequency resource.
  • the downlink control information includes a field corresponding to the first downlink transmission parameter, a field corresponding to the first downlink time-frequency resource, and a field corresponding to the second scheduling information.
  • the field of the first downlink transmission parameter may include: the first downlink transmission parameter 201 required for downlink transmission configured by the network device for CUE1, CUE2, and TUE;
  • the frequency resource field may include: the first downlink time-frequency resource 201 required for downlink transmission configured by the network device for CUE1, CUE2, and TUE.
  • the network device may send the first data on the first downlink time-frequency resource 201 through the first downlink transmission parameter 201 in a broadcast or multicast manner.
  • CUE1 and CUE2 can decode the field corresponding to the first downlink transmission parameter 201 and the field corresponding to the first downlink time-frequency resource 201 according to the received downlink control information, and then on the first downlink time-frequency resource 201, pass The first downlink transmission parameter 201 receives the first data.
  • TUE For TUE, if it receives downlink control information, it can decode the field of the first downlink transmission parameter 201, the field of the first downlink time-frequency resource 201, and then the first downlink time-frequency resource 201 through the first download
  • the line transmission parameter 201 receives the first data sent by the network device.
  • the CUE1 receives the first data, it can generate the second data 1 to be sent to the TUE according to various methods.
  • the CUE2 receives the first data, it can generate the second data 2 sent to the TUE according to various methods.
  • the second data 1 and the second data 2 may be different or the same.
  • the specific generation method may be pre-configured by the network device, or may be statically, semi-statically, or dynamically scheduled by the network device. For the specific sending method, refer to the above-mentioned embodiment, which will not be repeated here.
  • CUE1 obtains the resources of the side transmission link between CUE1 and TUE by analyzing the field corresponding to the second scheduling information in the downlink control information.
  • the resources of the side transmission link between CUE1 and TUE are the side transmission time-frequency resources. 201 and the side-line transmission parameter 201, and then the second data 1 sent by the CUE1 to the TUE through the side-line transmission parameter 201 on the side-line time-frequency resource 201.
  • CUE2 obtains the resources of the side transmission link between CUE2 and TUE by analyzing the field corresponding to the second scheduling information in the downlink control information.
  • the resource of the side transmission link between CUE2 and TUE is the side transmission.
  • TUE For TUE, if downlink control information is received, it can obtain the resources of the side-line transmission link between CUE1 and TUE by analyzing the field corresponding to the second scheduling information, and then the TUE is on the side-line time-frequency resource 201 through the side-line transmission link.
  • the transmission parameter 201 receives the second data 1 sent by CUE1.
  • the TUE can obtain the resources of the side-line transmission link between CUE2 and TUE by analyzing the fields corresponding to the second scheduling information, and then the TUE can receive the second data sent by CUE2 through the side-line transmission parameter 202 on the side-line time-frequency resource 202 2.
  • the TUE performs joint decoding based on the received first data signal and/or second data 1 and second data 2 signals.
  • TUE receives signal 1 of the first data sent by the network device, signal 2 of the second data 1 sent by CUE1, and signal 3 of the second data 2 sent by CUE2, it can combine signal 1, signal 2, and The signal 3 is combined for decoding to improve the accuracy of decoding the first data, thereby improving the performance of the transmission of the first data.
  • the TUE receives the signal 2 of the second data 1 sent by CUE1 and the signal 3 of the second data 2 sent by CUE2, the signal 2 and signal 3 can be combined for decoding to improve the accuracy of decoding the second data. In order to improve the performance of cooperative transmission.
  • the base station since the base station transmits the first data to the N CUEs and TUEs on the same time-frequency resource through the same transmission parameters, there is no need to generate an indication of N+1 downlink control information for the N CUEs and TUEs; only the transmission is required.
  • the field corresponding to the first downlink transmission parameter and the field corresponding to the first downlink time-frequency resource can reduce the time-frequency resource occupied by the control message in the user coordinated transmission, reduce the overhead of the resource occupied by the downlink control information, and thereby increase the frequency spectrum. effectiveness.
  • the second scheduling information indicates the first side-line transmission parameters and the first side-line time-frequency resources Resource; the first side-line transmission parameter and the first side-line time-frequency resource are used for each of the at least one coordinated terminal device to send the second data.
  • the first side row transmission parameter may be a side row transmission parameter required by a CUE for transmitting the second data and the first side row time-frequency resource may be a side row time-frequency resource required by a CUE for transmitting the second data. For example, as shown in FIG.
  • the downlink control information includes a field corresponding to the first scheduling information, a field corresponding to the first side line transmission parameter, and a field corresponding to the first side line time-frequency resource.
  • the cooperative terminal device may send the second data through the first side row transmission parameter on the first side row time-frequency resource according to the received downlink control information.
  • the target terminal device if the downlink control information is received, it can receive the second data sent by N CUEs on the first side line time-frequency resource through the first side line transmission parameter.
  • N CUEs may include CUE1 and CUE2.
  • the fields corresponding to the first scheduling information may include: field 301, field 302, and field 303; among them, field 301 may include: downlink transmission parameters 301 required for downlink transmission configured by the network device for CUE1 and Downlink time-frequency resource 301; field 302 may include: downlink transmission parameters 302 and downlink time-frequency resource 302 required for downlink transmission configured by the network equipment for CUE2; field 303 may include: downlink required for downlink transmission configured by network equipment for TUE Transmission parameters 303 and downlink time-frequency resources 303.
  • the network device can send the first data to CUE1 on the downlink time-frequency resource 301 through the downlink transmission parameter 301, send the first data to CUE2 on the downlink time-frequency resource 302 through the downlink transmission parameter 302, and send the first data to CUE2 on the downlink time-frequency resource 302 through the downlink transmission parameter 303.
  • the resource 303 sends the first data to the TUE.
  • the CUE1 If the CUE1 correctly receives the downlink control information, it can decode the field 301 and then receive the first data on the downlink time-frequency resource 301 based on the downlink transmission parameter 301. If the CUE2 correctly receives the downlink control information, the decoding field 302 can be used to receive the first data on the downlink time-frequency resource 302 based on the downlink transmission parameter 302. If the TUE correctly receives the downlink control information, it can receive the first data on the downlink time-frequency resource 303 through the decoding field 303 and then the downlink transmission parameter 303.
  • the downlink transmission parameter 301, the downlink transmission parameter 302, and the downlink transmission parameter 303 may be the same or different.
  • the downlink transmission parameter carried in the field corresponding to the first scheduling information may be determined according to whether the downlink transmission parameter 301, the downlink transmission parameter 302, and the downlink transmission parameter 303 are the same.
  • the downlink transmission parameter 301 and the downlink transmission parameter 302 are the same, only the downlink transmission parameter 301 in the field 301 and the downlink transmission parameter 303 in the field 303 can be carried in the field corresponding to the first scheduling information, indicating that CUE1 and CUE2 uses the downlink transmission parameter 301 as the downlink transmission parameter of CUE1 and CUE2; instructs the TUE to use the downlink transmission parameter 303 as the downlink transmission parameter of the TUE.
  • the downlink time-frequency resource 301, the downlink time-frequency resource 302, and the downlink time-frequency resource 303 may be the same or different.
  • the downlink time-frequency resource carried in the field corresponding to the first scheduling information may be determined according to whether the downlink time-frequency resource 301, the downlink time-frequency resource 302, and the downlink time-frequency resource 303 are the same. For example, if it is determined that the downlink time-frequency resource 301, the downlink time-frequency resource 301, and the downlink time-frequency resource 303 are the same.
  • the downlink time-frequency resource 301 in the field 301 and the downlink time-frequency resource 302 in the field 302 can be carried in the field corresponding to the first scheduling information, indicating that CUE1 and TUE use the downlink time-frequency resource 301 as CUE1 And the downlink time-frequency resource of TUE; instruct CUE2 to use the downlink time-frequency resource 302 as the downlink time-frequency resource of CUE2.
  • the fields corresponding to the first scheduling information include: field 301', field 302', and field 303'; among them, field 301' may include: downlink transmission parameter 301 and downlink time-frequency resource 301; field 302' may include: downlink Time-frequency resource 302; field 303' may include: downlink transmission parameter 303.
  • the network device can send the first data to CUE1 on the downlink time-frequency resource 301 through the downlink transmission parameter 301, send the first data to CUE2 on the downlink time-frequency resource 302 through the downlink transmission parameter 301, and send the first data to the CUE2 on the downlink time-frequency resource 302 through the downlink transmission parameter 303.
  • the resource 301 sends the first data to the TUE.
  • the CUE1 correctly receives the downlink control information, it can decode the field 301' and then receive the first data on the downlink time-frequency resource 301 based on the downlink transmission parameter 301. If the CUE2 correctly receives the downlink control information, it can decode the field 301' and the field 302', and then receive the first data on the downlink time-frequency resource 302 based on the downlink transmission parameter 301. If the TUE correctly receives the downlink control information, it can decode the field 301' and the field 303', and then use the downlink transmission parameter 303 to receive the first data on the downlink time-frequency resource 301.
  • the fields of the first side row transmission parameters may include: MCS parameters, HARQ feedback parameters, MIMO mode parameters, priority and other side row transmissions required for transmitting the second data on the side row transmission link allocated by the network equipment for CUE1 and CUE2 Parameter 301.
  • the field of the first side line time-frequency resource may include: the side line time-frequency resource 301 allocated by the network device for the CUE1 and CUE2 and required to transmit the second data on the side line transmission link.
  • the second data can be generated in a variety of ways.
  • the second data generated by the N CUEs needs to be the same to avoid the signal of the second data sent by the N CUEs on the side transmission link. Produce interference.
  • the downlink control information may also include the same manner of generating second data configured by the network device for the N CUEs.
  • the second data is part of the first data, or the second data is all the data of the first data. It can also be the data in the signal that CUE1 correctly decodes the first data sent by the network device, which is not limited here.
  • the manner in which the N CUEs generate the second data may be pre-configured by the network device for the N CUEs.
  • CUE1 After CUE1 generates the second data, it can decode the first side line time-frequency resource field and the first side line transmission parameter field, and then based on the first side line transmission parameter 301, on the first side line time-frequency resource 301 Send second data to TUE.
  • CUE2 After CUE2 generates the second data, it can decode the fields of the first side line time-frequency resource 301 and the fields of the first side line transmission parameter 301, and then use the first side line transmission parameter 301 in the first side line time-frequency resource 301 Send the second data to the TUE.
  • the target terminal device For the target terminal device, if downlink control information is received, it can decode the first side line time-frequency resource 301 field and the first side line transmission parameter 301 field, and then pass on the first side line time-frequency resource 301, The signal 1 of the second data sent by the CUE1 and/or the signal 2 of the second data sent by the CUE2 is received through the first sideline transmission parameter 301.
  • the target terminal device receives signal 1 of the second data sent by CUE1 and signal 2 of the second data sent by CUE2, it can combine signal 1 and signal 2 for decoding to improve the accuracy of decoding the second data, and then Improve the performance of cooperative transmission.
  • first side-line transmission parameters and the first side-line time-frequency resources used by multiple CUEs for side-line transmission in the second stage are exactly the same, the side-line transmission parameters and the side-line time-frequency resources in the second scheduling information do not need to be distinguished Multiple CUEs only need to carry the field corresponding to the first side line time-frequency resource and the field corresponding to the first side line transmission parameter to realize the resource scheduling for the side link, which can reduce the amount of downlink control information in the user cooperative transmission. Time-frequency resources, reduce the overhead of resources occupied by downlink control information, thereby improving spectrum efficiency.
  • the second scheduling information may include N sub-scheduling information, each of the N sub-scheduling information Each sub-scheduling information correspondingly indicates the side-line transmission parameters and the side-line time-frequency resources of each cooperative terminal device.
  • the downlink control information includes a field corresponding to the first scheduling information, a field of the first sub-scheduling information, a field of the second sub-scheduling information, ..., a field of the Nth sub-scheduling information.
  • Each of the N coordinated terminal devices can send the second data based on the received downlink control information and the side-line time-frequency resources indicated by the respective sub-scheduling information through the side-line transmission parameters indicated by the respective sub-scheduling information. .
  • the target terminal device if it receives the downlink control information, it can receive the second data sent by the N CUEs through the N sideline transmission parameters on the N time-frequency resources indicated by the N sub-scheduling information.
  • the target terminal device If the target terminal device correctly receives the downlink control information, it can determine the first sub-scheduling information corresponding to the first cooperative terminal device according to the downlink control information, and then pass the first sub-scheduling information on the time-frequency resources indicated by the first sub-scheduling information. A side-line transmission parameter indicated by the sub-scheduling information receives the second data.
  • N CUEs include CUE1 and CUE2.
  • the field of the second scheduling information may include: a first sub-scheduling information field and a second sub-scheduling information field; wherein, the first sub-scheduling information field may include: the second data transmission on the side transmission link allocated to CUE1.
  • the required MCS parameters, HARQ feedback parameters, MIMO mode parameters, priority and other side-line transmission parameters 401 and side-line time-frequency resources 401; the second sub-scheduling information field may include: transmission on the side-line transmission link allocated for CUE2
  • the side-line transmission parameters 402 and the side-line time-frequency resources 402 required for the second data such as MCS parameters, HARQ feedback parameters, MIMO mode parameters, and priority.
  • the CUE1 If the CUE1 correctly receives the downlink control information, it can decode the first sub-scheduling information field, and then send the second data 1 on the side-line time-frequency resource 401 based on the side-line transmission parameter 401. If the CUE2 correctly receives the downlink control information, it can decode the second sub-scheduling information field, and then send the second data 2 on the side-line time-frequency resource 402 based on the side-line transmission parameter 402. Among them, the second data 1 and the second data 2 may be the same or different. For the specific method of generating the first data 1 by CUE1 and the method of generating the second data 2 by CUE2, please refer to the above-mentioned embodiment, which will not be repeated here. Go into details.
  • the TUE receives the downlink control information correctly, it can decode the first sub-scheduling information field and the second sub-scheduling information field, and then use the side-line transmission parameter 401 to receive the second data sent by CUE1 on the side-line time-frequency resource 401 1 , Receiving the second data 2 sent by CUE2 on the side-line time-frequency resource 402 through the side-line transmission parameter 402.
  • the target terminal device may also receive the first sub-scheduling information according to the SCI1 sent by CUE1 and carry the first sub-scheduling information; and receive the second sub-scheduling information through the SCI2 sent by CUE2 and carry the second sub-scheduling information.
  • the side-line transmission parameter 401 and the side-line transmission parameter 402 may be the same or different.
  • the side-line time-frequency resource 401 and the side-line time-frequency resource 402 may be the same or different.
  • the network device may further compress the resources occupied by the downlink control information according to whether there is the same content in the second scheduling information.
  • the downlink control information includes a fourth field, a first subfield, and a second subfield; wherein the fourth field indicates the first scheduling information; the first subfield indicates the first 2.
  • the second common scheduling information is the same part of the N sub-scheduling information; the second subfield indicates the part of the N sub-scheduling information except the second common scheduling information.
  • the network device may carry the side-line time-frequency resource information in the first subfield corresponding to the second common scheduling information.
  • the second subfield carries N side row transmission parameters for the N sub-scheduling information used to transmit the second data.
  • the network device sends the DCI carrying the fourth field, the first subfield and the second subfield to the target terminal device and the first cooperative terminal device; the first cooperative terminal device and/or the target terminal device is based on The fourth field determines the first scheduling information; the first cooperative terminal device and/or the target terminal device are determined according to the sideline transmission parameters and the sideline time-frequency resources corresponding to the first cooperative terminal device in the first subfield and the second subfield The second scheduling information of the first cooperative terminal device.
  • the format of the first scheduling information indicated by the fourth field in the downlink control information can refer to Embodiment 2 and Embodiment 3, which will not be repeated here.
  • the side-line transmission parameter carried in the second scheduling information may be determined according to whether the side-line transmission parameter 401 and the side-line transmission parameter 402 are the same to determine the side-line transmission parameter to be carried. For example, if it is determined that the side-line transmission parameter 401 and the side-line transmission parameter 402 are the same, at this time, the first subfield may include: the side-line transmission parameter 401.
  • the second subfield may include: side-line time-frequency resources 401 and side-line time-frequency resources 402.
  • CUE1 If CUE1 correctly receives the downlink control information, it can decode the first subfield and the second subfield. Furthermore, CUE1 can send the second data 1 to the TUE on the sideline time-frequency resource 401 through the sideline transmission parameter 401. If CUE2 correctly receives the downlink control information, by decoding the first subfield and the second subfield, CUE2 sends the second data 2 to the TUE on the sideline time-frequency resource 402 through the sideline transmission parameter 401.
  • the TUE If the TUE receives the downlink control information correctly, it can decode the first and second subfields, and then receive the second data 1 on the side-line time-frequency resource 401 through the side-line transmission parameter 401, and pass the side-line transmission parameter 401 The second data 2 is received on the side-line time-frequency resource 402.
  • the side-line time-frequency resource carried in the second scheduling information may be determined according to whether the side-line time-frequency resource 401 and the side-line time-frequency resource 402 are the same. For example, if the network device determines that the side-line time-frequency resource 401 and the side-line time-frequency resource 402 are the same.
  • the first subfield may include: a side-line time-frequency resource 401.
  • the second subfield may include: side-line transmission parameters 401 and side-line transmission parameters 402.
  • the CUE1 If the CUE1 correctly receives the downlink control information, it can decode the first subfield and the second subfield, and then the CUE1 can send the second data 1 to the TUE on the sideline time-frequency resource 401 through the sideline transmission parameter 401. If the CUE2 correctly receives the downlink control information, the first subfield and the second subfield can be decoded, and then the CUE2 sends the second data 2 to the TUE on the sideline time-frequency resource 401 through the sideline transmission parameter 402.
  • the first subfield may carry the side-line time domain resources allocated by the network device to CUE1 and CUE2. 401';
  • the second subfield carries the side row transmission parameters 401 and side row frequency domain resources 401' allocated by the network device to CUE1; and the side row transmission parameters 402 and side row frequency domain resources 402' allocated by the network device to CUE2.
  • CUE1 If CUE1 receives the downlink control information correctly, it can obtain the side-line time domain resource 401', the side-line frequency domain resource 401', and the side-line transmission parameter 401 by decoding the first and second subfields; in this case, CUE1 The second data 1 can be sent to the TUE on the side row time domain resource 401 ′ and the side row frequency domain resource 401 ′ through the side row transmission parameter 401.
  • CUE2 If CUE2 correctly receives the downlink control information, it can obtain the side-line time domain resources 402', the side-line frequency domain resources 402', and the side-line transmission parameters 402 by decoding the first and second subfields; in this case, CUE2 The second data 2 can be sent to the TUE on the side row time domain resource 402 ′ and the side row frequency domain resource 402 ′ through the side row transmission parameter 402.
  • the TUE If the TUE correctly receives the downlink control information, it can decode the first subfield and the second subfield, pass the side row transmission parameter 401, and receive the CUE1 transmission on the side row time domain resource 401' and the side row frequency domain resource 401'
  • the second data 1 of the CUE2; the second data 2 sent by CUE2 is received on the side-line time domain resource 402' and the side-line frequency domain resource 402' through the side-line transmission parameter 402.
  • the TUE may perform joint decoding according to the received signal of the second data 1, the signal of the second data 2, and/or the signal of the first data.
  • the resource overhead occupied by the downlink control information in the user coordinated transmission can be reduced, thereby improving the spectrum efficiency.
  • the network device may further compress the resources occupied by the downlink control information according to whether the first scheduling information and the second scheduling information have the same content.
  • the downlink control information includes a first field, a second field, and a third field;
  • the first field indicates first common scheduling information, and the first common scheduling information is the same part in the first scheduling information and the second scheduling information;
  • the second field indicates a part of the first scheduling information excluding the first common scheduling information
  • the third field indicates a part of the second scheduling information excluding the first common scheduling information.
  • the network device sends the DCI carrying the first field, the second field, and the third field to the target terminal device and the first cooperative terminal device; the first cooperative terminal device and/or the target terminal device according to the first The first field and the second field determine the first scheduling information; the first cooperative terminal device and/or the target terminal device are determined according to the sideline transmission parameters and the sideline time-frequency resources corresponding to the first cooperative terminal device in the first field and the third field The second scheduling information of the first cooperative terminal device.
  • the first field in the downlink control information may be: MCS parameters; the second field may be Including: field 501, field 502, and field 503; among them, field 501 may include the second downlink transmission such as HARQ feedback parameters, MIMO mode parameters, priority, etc., required for downlink transmission configured by the network device for CUE1 except for MCS parameters Parameter 501' and downlink time-frequency resource 501; field 502 may include: second downlink transmission parameters such as HARQ feedback parameters, MIMO mode parameters, priority, etc., other than MCS parameters that are required for downlink transmission configured by the network device for CUE2 502' And the downlink time-frequency resource 502; the field 503 may include: the second downlink transmission parameters 503', such as HARQ feedback parameters, MIMO mode parameters, priority, etc., other than the MCS parameters required for the down
  • the third field may include: field 511 and field 512, where field 511 may include: HARQ feedback parameters other than MCS parameters, MIMO mode parameters, priority, etc., required for side-line transmission configured by the network device for CUE1. Side-line transmission parameters 501' and side-line time-frequency resources 501; field 512 may include: the HARQ feedback parameters, MIMO mode parameters, priority, etc., other than MCS parameters required for side-line transmission configured by the network device for CUE2 Side-line transmission parameters 502' and side-line time-frequency resources 502.
  • the network device sends the DCI carrying the first field, the second field and the third field to TUE, CUE1 and CUE2;
  • CUE1 determines the MCS parameter in the first field and the second downlink transmission parameter 501' in the field 501 in the second field as the downlink transmission parameter 501 used by CUE1 for downlink transmission; further, CUE1 uses the downlink transmission parameter 501 in the downlink
  • the first data sent by the network device is received on the time-frequency resource 501.
  • CUE2 determines the MCS parameter in the first field and the second downlink transmission parameter 502' in the field 502 in the second field as the downlink transmission parameter 502 used by CUE2 for downlink transmission; further, CUE2 uses the downlink transmission parameter 502 in the downlink
  • the first data sent by the network device is received on the time-frequency resource 502.
  • the TUE receives the downlink control information, it can be determined as the downlink transmission parameter 503 used by the TUE for downlink transmission according to the MCS parameter in the first field and the second downlink transmission parameter 503' in the field 503 in the second field; , The TUE receives the first data sent by the network device on the downlink time-frequency resource 503 through the downlink transmission parameter 503.
  • CUE1 determines the side-line transmission parameter 501 used by CUE1 for side-line transmission according to the MCS parameter in the first field and the second side-line transmission parameter 501' in field 511 in the third field; further, CUE1 The second data 1 is sent to the TUE on the side-line time-frequency resource 501 through the side-line transmission parameter 501.
  • CUE2 determines the side row transmission parameter 502 used by CUE2 for side row transmission according to the MCS parameter in the first field and the second side row transmission parameter 502' in field 512 in the third field; further, CUE2 uses side row transmission
  • the parameter 502 sends the second data 2 to the TUE on the side-line time-frequency resource 502.
  • the TUE can determine the side-line transmission parameter 501 and the side-line time-frequency resource 501 of CUE1 according to the MCS parameter in the first field and the field 511 in the third field, and further, based on the side-line transmission parameter 501 receives the second data 1 sent by the TUE on the side-line time-frequency resource 501.
  • the foregoing implementation manners can reduce the resource overhead occupied by the downlink control information in the user cooperative transmission, so that the spectrum efficiency can be improved.
  • the network device can further compress the resources occupied by the downlink control information according to whether the first scheduling information and the second scheduling information have the same content.
  • the downlink control information includes a first field, a second field, a fifth field, and a sixth field.
  • the first field indicates the first common scheduling information
  • the first common scheduling information is the same part of the first scheduling information and the second scheduling information
  • the second field indicates the first scheduling information except for the first common scheduling information
  • the fifth field indicates the part of the second common scheduling information except the first common scheduling information
  • the second common scheduling information is the part of the N sub-scheduling information that has the same scheduling information
  • the sixth field indicates the second scheduling information except The part other than the first public dispatch information and the second public dispatch information.
  • the network device may send the DCI carrying the first field, the second field, the fifth field, and the sixth field to the target terminal device and the first cooperative terminal device.
  • the first cooperative terminal device and/or the target terminal device determine the first scheduling information according to the first field and the second field.
  • the first coordinated terminal device and/or the target terminal device determine the second scheduling information of the first coordinated terminal device according to the transmission parameters and time-frequency resources corresponding to the first coordinated terminal device in the first field, the fifth field, and the sixth field.
  • the network device determines that the MCS parameters and MIMO mode parameters in the first scheduling information and the second scheduling information are the same, and determine the side-line time-frequency resource of each of the N sub-scheduling information in the second scheduling information Similarly, the first field can carry MCS parameters and MIMO mode parameters, and the fifth field can carry side-line time-frequency resources.
  • the second field carries the downlink time-frequency resources used to transmit the first data and the downlink transmission parameters except the indication information of MCS parameters and MIMO mode parameters; the fifth field carries the N sub-scheduling information used to transmit the second data.
  • N side-line transmission parameters other than the indication information of MCS parameters and MIMO mode parameters.
  • the network device determines that the MCS parameters and MIMO mode parameters in the first scheduling information and the second scheduling information are the same, and determine each sub-scheduling in the N sub-scheduling information in the second scheduling information
  • the side-line time-frequency resources of the information are the same.
  • the first field may be: MCS parameters and MIMO mode parameters
  • the fifth field may include: the side-line time-frequency resources configured by the network device for CUE1 and CUE2 for side-line transmission 601.
  • the second field may include: field 601, field 602, and field 603; among them, field 601 may include: downlink time-frequency resource 601 configured by the network device for CUE1 for downlink transmission, and other than MCS parameters and MIMO mode parameters HARQ feedback parameters, priority and other third downlink transmission parameters 601'; field 602 may include: downlink time-frequency resources 602 configured by the network device for CUE2 for downlink transmission, and HARQ feedback other than MCS parameters and MIMO mode parameters Third downlink transmission parameters 602' such as parameters and priorities.
  • the field 603 may include: a downlink time-frequency resource 603 configured for the TUE by the network device for downlink transmission, and third downlink transmission parameters 603' such as HARQ feedback parameters and priority in addition to MCS parameters and MIMO mode parameters.
  • the sixth field may include: field 611 and field 612; among them, field 611 may include: HARQ feedback parameters, priority, etc., configured for sideline transmission by the network device for CUE1 except for MCS parameters and MIMO mode parameters.
  • Side row transmission parameters 601'; field 612 may include: third side row transmission parameters 602' configured by the network device for CUE2 for side row transmission, except for MCS parameters and MIMO mode parameters, such as HARQ feedback parameters and priority.
  • CUE1 uses the MCS parameter, MIMO mode parameter, and the third downlink transmission parameter 601' as the downlink transmission parameter 601 used by CUE1 for downlink transmission according to the field 601 in the first field and the second field; in turn, CUE1 can use the downlink transmission parameter 601 , Receiving the first data sent by the network device on the downlink time-frequency resource 601.
  • CUE2 uses the MCS parameter, MIMO mode parameter, and the third downlink transmission parameter 602' as the downlink transmission parameter 602 used by CUE2 for downlink transmission according to the first field and field 602 in the second field. Then CUE2 can use the downlink transmission parameter 602 , Receiving the first data sent by the network device on the downlink time-frequency resource 602.
  • the TUE If the TUE correctly receives the downlink control information, it will use the MCS parameter, MIMO mode parameter and the third downlink transmission parameter 603' as the downlink transmission parameter 603 used by the TUE for downlink transmission according to the field 603 in the first and second fields. ; In turn, the TUE can receive the first data sent by the network device on the downlink time-frequency resource 603 through the downlink transmission parameter 603.
  • CUE1 generating second data 1 according to the first data, and CUE2 generating second data 2 according to the first data can refer to the above-mentioned embodiment, which will not be repeated here.
  • CUE1 uses the MCS parameter, MIMO mode parameter, and third side row transmission parameter 601' as the side row transmission parameter 601 used by CUE1 for side row transmission according to field 611 in the first, fifth, and sixth fields, and then The CUE1 can send the second data 1 to the TUE on the side-line time-frequency resource 601 through the side-line transmission parameter 601.
  • the TUE receives the downlink control information correctly, it will use the MCS parameters, the MIMO mode parameters and the third side row transmission parameter 601' as CUE1 for the side row according to the field 611 in the first, fifth and sixth fields.
  • the transmitted side-line transmission parameter 601 and then the TUE can receive the second data 1 sent by CUE1 on the side-line time-frequency resource 601 through the side-line transmission parameter 601.
  • TUE uses the MCS parameter, MIMO mode parameter, and third side line transmission parameter 601' as CUE1 according to the SCI issued by CUE1 that carries the first field, fifth field, and field 611.
  • the side-line transmission parameter 601 of the side-line transmission and further, the TUE can receive the second data 1 sent by the CUE1 on the side-line time-frequency resource 601 through the side-line transmission parameter 601.
  • CUE2 uses the MCS parameter, MIMO mode parameter, and third side row transmission parameter 602' as the side row transmission parameter 602 used by CUE2 for side row transmission according to field 612 in the first, fifth, and sixth fields, and then The CUE2 can send the second data 2 to the TUE on the side-line time-frequency resource 601 through the side-line transmission parameter 602.
  • the TUE receives the downlink control information correctly, it will use the MCS parameters, MIMO mode parameters, and third side row transmission parameters 602' as CUE2 for the side row according to the fields 612 in the first, fifth and sixth fields.
  • the transmitted side-line transmission parameter 602 and then the TUE can receive the second data 2 sent by CUE2 on the side-line time-frequency resource 601 through the side-line transmission parameter 602.
  • TUE uses the MCS parameter, MIMO mode parameter, and third side row transmission parameter 602' as CUE2 according to the SCI issued by CUE2 that carries the first field, the fifth field, and the field 612.
  • the side-line transmission parameter 602 of the side-line transmission and then the TUE can receive the second data 2 sent by the CUE2 on the side-line time-frequency resource 601 through the side-line transmission parameter 602.
  • the resource overhead occupied by the downlink control information in the user coordinated transmission can be reduced, thereby enabling Improve the spectral efficiency, in addition, for the terminal device, the decoding complexity is reduced, and the power consumption of the terminal device is reduced.
  • the methods provided in the embodiments of the present application are introduced from the perspective of network equipment, terminal, and interaction between the network equipment and the terminal.
  • the network device and the terminal may include a hardware structure and/or software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether a certain function of the above-mentioned functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • FIG. 6 is a schematic structural diagram of a communication device provided in an embodiment of the present application.
  • the communication device 600 includes a transceiver module 610 and a processing module 620.
  • the communication device can be used to implement the functions related to the first cooperative terminal device or the target terminal device in any of the foregoing method embodiments.
  • the communication device may be a terminal device, such as a handheld terminal device or a vehicle-mounted terminal device; the communication device may be a chip included in the terminal device, or a device including the terminal device, such as various types of vehicles; the communication device may also It may be other combined devices, components, etc., that have the functions of the above-mentioned terminal equipment.
  • the transceiver module may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a central processing unit (CPU).
  • the transceiver module may be a radio frequency unit, and the processing module may be a processor.
  • the transceiver module may be an input/output interface of the chip system, and the processing module may be a processor of the chip system.
  • the communication device belongs to at least one cooperative terminal device; when the method embodiment shown in FIGS. 2a-2c is executed, the transceiver module 610 is configured to execute: receive downlink from a network device Control information.
  • the downlink control information includes first scheduling information and second scheduling information, where the first scheduling information indicates the downlink transmission parameters and parameters used for the target terminal device and at least one cooperating terminal device to receive the first data from the network device.
  • Downlink time-frequency resources indicates side-line transmission parameters and side-line time-frequency resources for at least one cooperative terminal device to send second data to the target terminal device, and the second data is generated according to the first data
  • the target terminal device and at least one cooperative terminal device belong to a cooperative transmission group.
  • the processing module 620 is configured to perform: receiving first data from a network device according to the first scheduling information; sending second data to a target terminal device according to the second scheduling information.
  • the transceiver module 610 is configured to perform: receive downlink control information from a network device, where the downlink control information includes first scheduling information And second scheduling information, where the first scheduling information indicates the downlink transmission parameters and downlink time-frequency resources for the target terminal device and at least one cooperating terminal device to receive the first data from the network device, and the second scheduling information indicates the When at least one cooperative terminal device sends the side-line transmission parameters and side-line time-frequency resources of the second data to the communication device, the second data is generated according to the first data, and the communication device and the at least one cooperative terminal device belong to one In the cooperative transmission group, the first cooperative terminal device is one cooperative terminal device among the at least one cooperative terminal device.
  • the processing module 620 is configured to perform: receiving the second data from the first cooperative terminal device according to the second scheduling information.
  • the number of at least one cooperative terminal device may be N, and N is a positive integer.
  • the second scheduling information may include N pieces of sub-scheduling information, and each of the N pieces of sub-scheduling information indicates N Side-line transmission parameters and side-line time-frequency resources of one of the cooperative terminal devices.
  • the downlink control information may specifically include a first field, a second field, and a third field, where the first field indicates the first common scheduling information, and the first common scheduling information is the first scheduling information and the second In the same part of the scheduling information, the second field indicates the part of the first scheduling information except the first common scheduling information, and the third field indicates the part of the second scheduling information except the first common scheduling information.
  • the downlink control information includes a fourth field, a first subfield, and a second subfield, where the fourth field indicates the first scheduling information; the first subfield indicates the second common scheduling information, The second common scheduling information is the same part of the N sub-scheduling information, and the second subfield indicates the part of the N sub-scheduling information except the second common scheduling information.
  • the downlink control information includes a first field, a second field, a fifth field, and a sixth field;
  • the first field indicates the first common scheduling information
  • the first common scheduling information is the same part of the first scheduling information and the second scheduling information
  • the second field indicates the part of the first scheduling information excluding the first common scheduling information
  • the first The five fields indicate the part of the second common scheduling information except the first common scheduling information
  • the second common scheduling information is the same part of the N sub-scheduling information
  • the sixth field indicates the second scheduling information except the first common scheduling information and The part outside the second public scheduling information.
  • the first scheduling information and the second scheduling information may include but not limited to one or more of the following: modulation and coding method, time-frequency resource, multiple input multiple output mode, automatic request retransmission parameters, priority information.
  • the processing module 620 involved in the communication device may be implemented by a processor or processor-related circuit components, and the transceiver module 610 may be implemented by a transceiver or transceiver-related circuit components.
  • the operation and/or function of each module in the communication device is to implement the corresponding process of the method shown in FIG. 2a-FIG. 2c, respectively.
  • the transceiver module 610 can be used to perform step 203 and step 303, and the processing module 620 can be used to perform step 204 to step 205, and step 304 to step 305.
  • the transceiver module 610 can be used to perform step 203 and step 303, and the processing module 620 can be used to perform step 204 and step 206, step 304 and step 306.
  • the processing module 620 and the transceiver module 610 please refer to the record in the foregoing method embodiment.
  • the division of modules in the embodiments of this application is illustrative, and it is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of this application can be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules.
  • FIG. 7 is a schematic diagram of another structure of a communication device provided in an embodiment of this application.
  • the communication device may specifically be a terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal device includes a processor, and may also include a memory. Of course, it may also include a radio frequency circuit, an antenna, an input and output device, and so on.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 7 only one memory and processor are shown in FIG. 7. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiver function may be regarded as the transceiver module of the terminal device, and the processor with the processing function may be regarded as the processing module of the terminal device. That is, the terminal equipment includes a transceiver module and a processing module.
  • the transceiver module may also be called a transceiver, transceiver, transceiver, and so on.
  • the processing module may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device used to implement the receiving function in the transceiver module can be regarded as the receiving module
  • the device used to implement the transmitting function in the transceiver module can be regarded as the transmitting module
  • the transceiver module includes the receiving module and the transmitting module.
  • the transceiver module may sometimes be called a transceiver, transceiver, or transceiver circuit.
  • the receiving module may sometimes be called a receiver, receiver, or receiving circuit.
  • the sending module may sometimes be called a transmitter, transmitter, or transmitting circuit. It should be understood that the transceiving module is used to perform the sending operation and receiving operation of the terminal device in the foregoing method embodiment, and the processing module is used to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
  • the embodiment of the present application also provides another communication device.
  • FIG. 8 is a schematic structural diagram of another communication device provided in an embodiment of the present application.
  • the communication device 800 includes a transceiver module 810 and a processing module 820.
  • the communication device can be used to implement the functions related to the network equipment in any of the foregoing method embodiments.
  • the communication device may be a network device or a chip included in the network device, and the communication device may also be other combination devices or components having the functions of the above-mentioned network device.
  • the transceiver module may be a transceiver, which may include an antenna and a radio frequency circuit, etc., and the processing module may be a processor, such as a central processing unit (CPU).
  • the transceiver module may be a radio frequency unit, and the processing module may be a processor.
  • the transceiver module may be an input/output interface of the chip system, and the processing module may be a processor of the chip system.
  • the transceiver module 810 is configured to execute: send downlink control information to the target terminal device and at least one cooperative terminal device, and the downlink control The information includes the first scheduling information and the second scheduling information.
  • the processing module 820 is configured to generate first scheduling information and second scheduling information, where the first scheduling information indicates downlink transmission parameters for the target terminal device and at least one cooperating terminal device to receive first data from the network device And downlink time-frequency resources, the second scheduling information indicates side-line transmission parameters and side-line time-frequency resources for the at least one cooperative terminal device to send second data to the target terminal device, the target terminal device and The at least one cooperative terminal device belongs to a cooperative transmission group, and the second data is generated according to the first data.
  • the number of at least one cooperative terminal device may be N, and N is a positive integer.
  • the second scheduling information may include N pieces of sub-scheduling information, and each of the N pieces of sub-scheduling information indicates N Side-line transmission parameters and side-line time-frequency resources of one of the cooperative terminal devices.
  • the downlink control information may specifically include a first field, a second field, and a third field, where the first field indicates the first common scheduling information, and the first common scheduling information is the first scheduling information and the second In the same part of the scheduling information, the second field indicates the part of the first scheduling information except the first common scheduling information, and the third field indicates the part of the second scheduling information except the first common scheduling information.
  • the downlink control information includes a fourth field, a first subfield, and a second subfield, where the fourth field indicates the first scheduling information; the first subfield indicates the second common scheduling information, The second common scheduling information is the same part of the N sub-scheduling information, and the second subfield indicates the part of the N sub-scheduling information except the second common scheduling information.
  • the downlink control information includes a first field, a second field, a fifth field, and a sixth field;
  • the first field indicates the first common scheduling information
  • the first common scheduling information is the same part of the first scheduling information and the second scheduling information
  • the second field indicates the part of the first scheduling information excluding the first common scheduling information
  • the first The five fields indicate the part of the second common scheduling information except the first common scheduling information
  • the second common scheduling information is the same part of the N sub-scheduling information
  • the sixth field indicates the second scheduling information except the first common scheduling information and The part outside the second public scheduling information.
  • the first scheduling information and the second scheduling information may include but not limited to one or more of the following: modulation and coding method, time-frequency resource, multiple input multiple output mode, automatic retransmission request parameter, priority information.
  • the processing module 820 involved in the communication device may be implemented by a processor or a processor-related circuit component
  • the transceiver module 810 may be implemented by a transceiver or a transceiver-related circuit component.
  • the operations and/or functions of the various modules in the communication device are respectively intended to implement the corresponding processes of the methods shown in FIGS. 2a-2c.
  • the communication device is used as a network device
  • the transceiver module 810 can be used to perform step 202 and step 302
  • the processing module 820 can be used to perform step 201 and step 301.
  • I will not list them one by one here.
  • the communication device may be specifically a type of network equipment, such as a base station, which is used to implement the functions of the network equipment in any of the foregoing method embodiments.
  • the network equipment includes: one or more radio frequency units, such as a remote radio unit (RRU) 901 and one or more baseband units (BBU) (also known as digital units, digital units, DU) )902.
  • the RRU 901 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 9011 and a radio frequency unit 9012.
  • the RRU 901 part is mainly used for receiving and sending radio frequency signals and converting radio frequency signals and baseband signals.
  • the part 902 of the BBU is mainly used for baseband processing, control of the base station, and so on.
  • the RRU 901 and the BBU 902 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 902 is the control center of the base station, and may also be called a processing module, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU (processing module) 902 may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the BBU 902 can be composed of one or more single boards, and multiple single boards can jointly support a radio access network with a single access indication (such as an LTE network), or can respectively support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 902 may also include a memory 9021 and a processor 9022, and the memory 9021 is used to store necessary instructions and data.
  • the processor 9022 is configured to control the base station to perform necessary actions, for example, to control the base station to perform the sending operation in the foregoing method embodiment.
  • the memory 9021 and the processor 9022 may serve one or more boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • An embodiment of the present application further provides a chip system, including: a processor, the processor is coupled with a memory, the memory is used to store a program or instruction, when the program or instruction is executed by the processor, the The chip system implements the method in any of the foregoing method embodiments.
  • processors in the chip system there may be one or more processors in the chip system.
  • the processor can be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may be a non-transitory processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be set on different chips.
  • the setting method of the processor is not specifically limited.
  • the chip system may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC). It can also be a central processor unit (CPU), a network processor (NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (microcontroller).
  • the controller unit, MCU may also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • each step in the foregoing method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the embodiments of the present application also provide a computer-readable storage medium, which stores computer-readable instructions, and when the computer reads and executes the computer-readable instructions, the computer is caused to execute any of the above-mentioned method embodiments In the method.
  • the embodiments of the present application also provide a computer program product, which when the computer reads and executes the computer program product, causes the computer to execute the method in any of the foregoing method embodiments.
  • An embodiment of the present application also provides a communication system, which includes a network device and at least one terminal device.
  • processors mentioned in the embodiments of this application may be a central processing unit (central processing unit, CPU), or other general-purpose processors, digital signal processors (digital signal processors, DSP), and application-specific integrated circuits ( application specific integrated circuit (ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • CPU central processing unit
  • DSP digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solutions provided by the embodiments of the present application are essentially or the part that contributes to the prior art or parts of the technical solutions can be embodied in the form of a software product, and the computer software product is stored in a storage medium. It includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法及装置,可以应用于车联网,例如V2X、LTE-V、V2V等,或可以用于D2D,智能驾驶,智能网联车等领域,该方法包括:网络设备生成第一调度信息和第二调度信息,所述第一调度信息指示用于目标终端设备和至少一个协作终端设备接收来自所述网络设备的第一数据的下行传输参数和下行时频资源,第二调度信息指示用于所述至少一个协作终端设备向目标终端设备发送第二数据的侧行传输参数和侧行时频资源,目标终端设备和至少一个协作终端设备属于一个协作传输组,第二数据是根据第一数据生成的;网络设备向目标终端设备和至少一个协作终端设备发送下行控制信息,下行控制信息包括第一调度信息和第二调度信息。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2019年09月02日提交中国专利局、申请号为201910824680.1、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
新的无线业务类型,例如物联网、自动驾驶等业务对下一代无线通信系统,也即5G系统提出了更高的要求。为进一步提高5G系统的容量以及网络的覆盖范围,5G系统提出了一种用户协作的通信方式。在用户协作通信之前,可以为目标终端设备建立协作传输组,协作传输组中可以包括N个协作终端设备。每个协作终端设备可以与目标终端设备建立侧行链路。这样基站向目标终端发送数据时,所述目标终端所在的协作传输组中的N个协作终端也可以接收前述数据,进而每个协作终端设备可以通过侧行链路将接收到的下行数据传输给目标终端设备。从而可以提升目标终端设备的下行传输性能。
用户协作的通信过程具体可以包括两个阶段:
第一阶段,下行传输阶段,基站向目标终端设备所在的协作传输组中的各个协作终端设备发送下行数据。
第二阶段,侧行传输阶段,协作终端设备在建立的侧行链路上向目标终端设备转发基站在第一阶段发送的下行数据,目标终端设备在建立的侧行链路上接收协作终端设备向目标终端设备发送的侧行数据。
目前用户协作通信过程中,基站需要向目标终端设备和协作传输组中的各个协作终端设备发送控制信息,用于指示协作传输所需的资源和传输参数,可能导致基站的控制信令资源开销较大,占用传输资源。
发明内容
本申请提供一种通信方法及装置,可避免用户协作通信过程中,基站需要多次发送下行控制信息,导致消耗资源较大且占用传输资源较多的问题。
第一方面,提供一种通信方法,网络设备生成第一调度信息和第二调度信息,所述第一调度信息指示用于目标终端设备和至少一个协作终端设备接收来自所述网络设备的第一数据的下行传输参数和下行时频资源,所述第二调度信息指示用于所述至少一个协作终端设备向所述目标终端设备发送第二数据的侧行传输参数和侧行时频资源,所述目标终端设备和所述至少一个协作终端设备属于一个协作传输组,所述第二数据是根据所述第一数据生成的;
所述网络设备向所述目标终端设备和所述至少一个协作终端设备发送下行控制信息, 所述下行控制信息包括所述第一调度信息和所述第二调度信息。
采用本申请实施例提供的方法,通过将下行传输的第一调度信息和侧行传输的第二调度信息包含在同一个下行控制信息中,网络设备无需发送多个下行控制信息,可以节省资源开销,降低控制信息占用的传输资源,从而可以提高频谱效率。
一种可能的设计中,所述第二调度信息指示第一侧行传输参数和第一侧行时频资源,所述第一侧行传输参数和所述第一侧行时频资源用于所述至少一个协作终端设备中的每个协作终端设备发送所述第二数据。
上述可能的设计中,由于网络设备为至少一个协作终端设备分配的用于传输第二数据的侧行传输参数和侧行时频资源相同,在下行控制信息中,无需为所述至少一个协作终端设备中的每个协作终端设备分别生成下行控制信息,仅需在下行控制信息中携带指示第一侧行传输参数的字段、指示第一侧行时频资源的字段,可以减少用户协作传输中下行控制信息占用的时频资源,降低下行控制信息占用的资源的开销,从而能够提高频谱效率。
一种可能的设计中,所述至少一个协作终端设备的数量可以为N,N为正整数;相应地,所述第二调度信息可以包括N个子调度信息,所述N个子调度信息中的每个子调度信息对应指示N个协作终端设备中的一个协作终端设备的侧行传输参数和侧行时频资源。
上述可能的设计中,通过将侧行传输的N个子调度信息包含在同一个下行控制信息中,网络设备无需向N个协作终端设备发送N个下行控制信息,可节省资源开销,降低控制信息占用的传输资源,从而提高频谱效率。
一种可能的设计中,所述下行控制信息具体可以包括第一字段、第二字段和第三字段;其中,所述第一字段指示第一公共调度信息,所述第一公共调度信息为所述第一调度信息与所述第二调度信息中相同的部分;所述第二字段指示所述第一调度信息中除所述第一公共调度信息外的部分;所述第三字段指示所述第二调度信息中除所述第一公共调度信息外的部分。
上述可能的设计,通过将第一调度信息和第二调度信息的公共部分去重,可以减少用户协作传输中下行控制信息所占用的资源开销,从而能够提高频谱效率。
一种可能的设计中,所述下行控制信息具体可以包括第四字段,第一子字段,第二子字段,其中,所述第四字段指示所述第一调度信息,所述第一子字段指示第二公共调度信息,所述第二公共调度信息为所述N个子调度信息中相同的部分,所述第二子字段指示所述N个子调度信息中除所述第二公共调度信息外的部分。
上述可能的设计,通过将第二调度信息的公共部分去重,可以减少用户协作传输中下行控制信息所占用的资源开销,从而能够提高频谱效率。
一种可能的设计中,所述下行控制信息具体可以包括第一字段、第二字段、第五字段和第六字段;所述第一字段指示第一公共调度信息,所述第一公共调度信息为所述第一调度信息与所述第二调度信息中相同的部分;所述第二字段指示所述第一调度信息中除所述第一公共调度信息外的部分;所述第五字段指示第二公共调度信息中除所述第一公共调度信息外的部分,所述第二公共调度信息为所述N个子调度信息中相同的部分;所述第六字段为所述第二调度信息中除所述第一公共调度信息及所述第二公共调度信息外的部分。
上述可能的设计,通过将第一调度信息和第二调度信息的公共部分去重,可以减少用户协作传输中下行控制信息所占用的资源开销,从而能够提高频谱效率。
一种可能的设计中,所述第一调度信息、所述第二调度信息具体可以但不限于包括以 下一项或多项:调制编码方式、时频资源、多输入多输出模式、自动请求重传参数、优先级信息。
一种可能的设计中,所述网络设备就可以根据上述下行控制信息发送所述第一数据。
第二方面,本申请实施例提供一种通信方法,所述方法包括:
第一协作终端设备接收来自网络设备的下行控制信息,所述下行控制信息包括第一调度信息和第二调度信息,其中,所述第一调度信息指示用于目标终端设备和至少一个协作终端设备接收来自所述网络设备的第一数据的下行传输参数和下行时频资源,所述第二调度信息指示用于所述至少一个协作终端设备向所述目标终端设备发送第二数据的侧行传输参数和侧行时频资源,所述第二数据是根据所述第一数据生成的,所述目标终端设备和所述至少一个协作终端设备属于一个协作传输组,所述第一协作终端设备为所述至少一个协作终端设备中的一个协作终端设备;所述第一协作终端设备根据所述第一调度信息接收来自所述网络设备的所述第一数据,并根据所述第一数据生成需要发送给目标终端设备的第二数据;所述第一协作终端设备根据所述第二调度信息向所述目标终端设备发送所述第二数据。
采用本申请实施例提供的方法,通过将下行传输的第一调度信息和侧行传输的第二调度信息包含在同一个下行控制信息中,协作终端设备和目标终端设备可以根据网络设备配置的一个下行控制信息,仅需接收1个物理下行控制信道中的一个下行控制信息,无需接收多个下行控制信息,即可获得第一调度信息和第二调度信息,降低了终端设备处理的复杂度。
一种可能的设计中,所述方法还可以包括:所述第一协作终端设备向所述目标终端设备发送侧行控制信息,所述侧行控制信息指示用于所述第一协作终端设备向所述目标终端设备发送第二数据的所述侧行传输参数和所述侧行时频资源。
一种可能的设计中,所述第一协作终端设备还可以确定在预定时长内未监测到所述目标终端设备发送的反馈确认消息或反馈否定消息后,再向所述目标终端设备发送侧行控制信息。
一种可能的设计中,所述第二调度信息可具体指示第一侧行传输参数和第一侧行时频资源,所述第一侧行传输参数和所述第一侧行时频资源用于所述第一协作终端设备向所述目标终端设备发送所述第二数据。
一种可能的设计中,所述至少一个协作终端设备的数量可以为N;N为正整数;相应地,所述第二调度信息可以包括N个子调度信息;所述N个子调度信息中的每个子调度信息对应指示N个协作终端设备中的一个协作终端设备的侧行传输参数和侧行时频资源。
一种可能的设计中,所述下行控制信息具体可以包括第一字段、第二字段和第三字段;其中,所述第一字段指示第一公共调度信息,所述第一公共调度信息为所述第一调度信息与所述第二调度信息中相同的部分;所述第二字段指示所述第一调度信息中除所述第一公共调度信息外的部分;所述第三字段指示所述第二调度信息中除所述第一公共调度信息外的部分。
另一种可能的设计中,所述下行控制信息包括第四字段,第一子字段,第二子字段;其中,所述第四字段指示所述第一调度信息;所述第一子字段指示第二公共调度信息;所述第二公共调度信息为所述N个子调度信息中相同的部分;所述第二子字段指示所述N个子调度信息中除所述第二公共调度信息外的部分。
再一种可能的设计中,所述下行控制信息包括第一字段、第二字段、第五字段和第六字段;
所述第一字段指示第一公共调度信息;所述第一公共调度信息为所述第一调度信息与所述第二调度信息中相同的部分;所述第二字段指示所述第一调度信息中除所述第一公共调度信息外的部分;所述第五字段指示第二公共调度信息中除所述第一公共调度信息外的部分,所述第二公共调度信息为所述N个子调度信息中相同的部分;所述第六字段指示所述第二调度信息中除所述第一公共调度信息及所述第二公共调度信息外的部分。
一种可能的设计中,所述第一调度信息、所述第二调度信息可以单不限于包括以下一项或多项:调制编码方式、时频资源、多输入多输出模式、自动请求重传参数、优先级信息。
第三方面,本申请实施例提供一种通信方法,目标终端设备接收来自网络设备的下行控制信息,所述下行控制信息包括第一调度信息和第二调度信息;所述第一调度信息指示用于所述目标终端设备和至少一个协作终端设备接收来自所述网络设备的第一数据的下行传输参数和下行时频资源,所述第二调度信息指示用于所述至少一个协作终端设备向所述目标终端设备发送第二数据的侧行传输参数和侧行时频资源,所述目标终端设备和所述至少一个协作终端设备属于一个协作传输组;所述目标终端设备根据所述第一调度信息接收来自所述网络设备的第一数据,并根据所述第二调度信息分别接收来自所述至少一个协作终端设备的所述第二数据,所述第二数据是所述至少一个协作终端设备根据接收的所述第一数据生成的。
采用本申请实施例提供的方法,通过将下行传输的第一调度信息和侧行传输的第二调度信息包含在同一个下行控制信息中,协作终端设备和目标终端设备仅需接收1个物理下行控制信道中的一个下行控制信息,无需接收多个下行控制信息,即可获得第一调度信息和第二调度信息,降低了终端设备处理的复杂度。
一种可能的设计中,所述方法还包括:
所述目标终端设备根据所述第一调度信息接收来自所述网络设备的所述第一数据。
一种可能的设计中,所述第二调度信息指示第一侧行传输参数和第一侧行时频资源,所述第一侧行传输参数和所述第一侧行时频资源用于所述目标终端设备接收来自所述第一协作终端设备的所述第二数据。
一种可能的设计中,所述至少一个协作终端设备的数量为N,N为正整数;所述第二调度信息具体可以包括N个子调度信息,所述N个子调度信息中的每个子调度信息对应指示N个协作终端设备中的一个协作终端设备的侧行传输参数和侧行时频资源。
一种可能的设计中,所述下行控制信息具体可以包括第一字段、第二字段和第三字段;其中,所述第一字段指示第一公共调度信息,所述第一公共调度信息为所述第一调度信息与所述第二调度信息中相同的部分,所述第二字段指示所述第一调度信息中除所述第一公共调度信息外的部分,所述第三字段指示所述第二调度信息中除所述第一公共调度信息外的部分。
一种可能的设计中,所述下行控制信息具体可以包括第四字段,第一子字段,第二子字段;其中,所述第四字段指示所述第一调度信息;所述第一子字段指示第二公共调度信息,所述第二公共调度信息为所述N个子调度信息中相同的部分;所述第二子字段指示所述N个子调度信息中除所述第二公共调度信息外的部分。
一种可能的设计中,所述下行控制信息包括第一字段、第二字段、第五字段和第六字段;其中,所述第一字段指示第一公共调度信息,所述第一公共调度信息为所述第一调度信息与所述第二调度信息中相同的部分;所述第二字段指示所述第一调度信息中除所述第一公共调度信息外的部分;所述第五字段指示第二公共调度信息中除所述第一公共调度信息外的部分,所述第二公共调度信息为所述N个子调度信息中相同的部分;所述第六字段指示所述第二调度信息中除所述第一公共调度信息及所述第二公共调度信息外的部分。
一种可能的设计中,所述第一调度信息、所述第二调度信息可以但不限于包括以下一项或多项:调制编码方式、时频资源、多输入多输出模式、自动请求重传参数、优先级信息。
第四方面,本申请实施例还提供一种通信装置,该通信装置具有实现上述第二方面或第二方面的任一种可能的设计中第一协作终端设备的功能,或具有实现上述第三方面或第三方面的任一种可能的设计中目标终端设备的功能。该通信装置可以为终端设备,例如手持终端设备、车载终端设备等,也可以为终端设备中包含的装置,例如芯片,也可以为包含终端设备的装置。上述终端设备的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块。
该通信装置也可以具有实现上述第一方面或第一方面的任一种可能的设计中网络设备的功能。该通信装置可以为网络设备,例如基站,也可以为网络设备中包含的装置,例如芯片。上述网络设备的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该通信装置的结构中包括处理模块和收发模块,其中,处理模块被配置为支持该通信装置执行上述第一方面或第一方面的任一种设计中相应的功能、或执行上述第二方面或第二方面的任一种设计中相应的功能、或执行上述第三方面或第三方面的任一种设计中相应的功能。收发模块用于支持该通信装置与其他通信设备之间的通信,例如该通信装置为网络设备时,可向目标终端设备和至少一个协作终端设备发送下行控制信息。该通信装置还可以包括存储模块,存储模块与处理模块耦合,其保存有通信装置必要的程序指令和数据。作为一种示例,处理模块可以为处理器,通信模块可以为收发器,存储模块可以为存储器,存储器可以和处理器集成在一起,也可以和处理器分离设置,本申请并不限定。
在另一种可能的设计中,本申请实施例还提供一种通信装置,该通信装置的结构中包括处理器,还可以包括存储器。处理器与存储器耦合,可用于执行存储器中存储的计算机程序指令,以使通信装置执行上述第一方面或第一方面的任一种可能的设计中的方法,或者执行上述第二方面或第二方面的任一种可能的设计中的方法、或执行上述第三方面或第三方面的任一种可能的设计中的方法。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。当通信装置为终端设备时,该通信接口可以是收发器或输入/输出接口;当该通信装置为终端设备中包含的芯片时,该通信接口可以是芯片的输入/输出接口。可选地,收发器可以为收发电路,输入/输出接口可以是输入/输出电路。
第五方面,本申请实施例还提供一种计算机可读存储介质,包括指令,当指令在计算机上运行时,使得计算机执行第一方面、第二方面或第三方面任一种可能设计的方法。
第六方面,本申请实施例还提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,所述芯片系统用于实现上述第一方面、第二方面或第三方面的方法。该芯片系统 可以由芯片构成,也可以包含芯片和其他分立器件。
可选地,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
第七方面,本申请实施例中还提供一种计算机程序产品,包括指令,当指令在计算机上运行时,使得计算机执行上述第一方面、第二方面或第三方面的方法。
第八方面,本申请实施例提供一种系统,所述系统包括用于执行上述第一方面所述的方法的网络设备、用于执行上述第二方面所述的方法的至少一个协作终端设备和用于执行上述第三方面所述的方法的目标终端设备。由网络设备、至少一个协作终端设备和目标终端设备即可以构成一个协作传输系统。
附图说明
图1a和图1b为本申请实施例适用的一种通信系统的网络架构示意图;
图1c为本申请实施例提供的一种通信方法的流程示意图;
图1d为本申请实施例提供的一种通信方法的流程示意图;
图2a为本申请实施例提供的一种通信方法的流程示意图;
图2b为本申请实施例提供的一种通信方法的流程示意图;
图2c为本申请实施例提供的一种通信方法的流程示意图;
图3为本申请实施例提供的一种通信方法的流程示意图;
图4a-图4d为本申请实施例提供的下行控制信息配置的示例图;
图5a-图5c为本申请实施例提供的下行控制信息配置的示例图;
图6为本申请实施例提供的一种通信装置的结构示意图;
图7为本申请实施例提供的一种通信装置的另一结构示意图;
图8为本申请实施例提供的另一种通信装置的结构示意图;
图9为本申请实施例提供的另一种通信的装置的另一结构示意图。
具体实施方式
下面将结合附图,对本申请实施例进行描述。
下面对本申请所使用到的一些通信名词或术词进行解释说明,该通信名词或术语也作为本申请实施例发明内容的一部分。
一、下行链路(Downlink,DL)
下行链路用于网络设备和终端设备之间的通信,包括一对一的下行链路通信和一对多的下行链路通信。其中,一对一的下行链路通信可包括单播,一对多的下行链路通信包括广播和组播等。示例性的,广播可指与小区内网络设备与所有终端设备的通信,组播可指网络设备与通信组中的终端进行通信,所述通信组中包括一个或多个终端设备。所述下行 链路通信可包括网络设备与终端设备间的直接通信,也可包括由中继节点转发的下行链路通信。
其中,下行链路通信的物理信道可包括以下的至少一种:
物理下行控制信道(physical downlink control channel,PDCCH),用于承载下行控制信息(Downlink Control Information,DCI),从而为终端设备分配数据信道的资源,DCI里包含了被调度的下行传输的相关信息,UE根据所述相关信息来接收所述下行传输。例如,该控制信息可以指示数据信道所映射至的符号和/或资源块(resource block,RB),网络设备和终端设备在该分配的时频资源通过数据信道进行数据传输。
物理下行共享信道(physical downlink shared channel,PDSCH),用于承载网络设备下发的数据。
二、侧行链路(sidelink,SL)
侧行链路,也可称为边链路或侧链路等。侧行链路用于终端设备和终端设备之间的通信,包括一对一的侧行链路通信和一对多的侧行链路通信。其中,一对一的侧行链路通信可包括单播,一对多的侧行链路通信包括广播和组播等。示例性的,广播可指与小区内所有终端设备的通信,组播可指与通信组中的终端进行通信,所述通信组中包括一个或多个终端设备。所述侧行链路通信可包括两个终端设备间的直接通信,也可包括由中继节点转发的侧行链路通信。
其中,侧行链路通信的物理信道可包括以下的至少一种:
物理侧行链路共享信道(physical sidelink shared channel,PSSCH),用于承载侧行链路数据(SL data)。
物理侧行链路控制信道(physical sidelink control channel,PSCCH),用于承载侧行链路调度分配(sidelink scheduling assigment,SL SA),所述SL SA也可称为侧行链路控制信息(sidelink control information,SCI)。
物理侧行链路反馈信道(physical sidelink feedback channel,PSFCH),用于承载侧行链路反馈控制信息。比如,侧行链路反馈信息可包括信道状态信息(channel state information,CSI),混合自动重传请求(hybrid automatic repeat request,HARQ)信息等中的至少一个信息。其中,HARQ信息可以包括肯定确认(acknowledgement,ACK)或否定确认(negtive acknowledgement,NACK)等。
物理侧行链路广播信道(physical sidelink broadcast channel,PSBCH),用于承载系统和同步相关的信息;
物理侧行链路发现信道(physical sidelink discovery channel,PSDCH),用于承载侧行链路发现消息。
三、下行控制信息(down control information,DCI)
DCI是网络设备发送给终端设备的信息,比如,网络设备可通过物理下行控制信道PDCCH发送DCI。DCI可用于调度上行数据传输,或者,调度下行数据传输,或者,侧行链路资源分配。比如,网络设备与终端设备间的通信接口为Uu接口,可在Uu接口上进行上行/下行数据传输,所述上行数据传输指从终端设备到网络设备间的数据传输,所述下行数据传输指从网络设备到终端设备间的数据传输。终端设备与终端设备间的通信接口为PC5接口,终端设备间可通过PC5接口进行侧行链路传输,所述侧行链路资源分配可用于分配侧行链路链路资源,和/或侧行链路接收资源。比如,在一示例中,网络设备可向发送 侧终端设备发送DCI,所述DCI用于为发送侧终端设备分配侧行链路链路资源。
三、DCI占用的资源
(1)、DCI的功能,不同功能的DCI占用的资源可能不同,本申请实施例中的DCI可以包括:网络设备为终端设备在不同传输链路上分配的调度信息;比如,用于下行数据调度的调度信息和用于侧行数据调度的调度信息。具体的调度信息可以包括,调制编码方式MCS、时频资源、多输入多输出MIMO模式、自动请求重传HARQ参数、优先级信息等。
(2)、DCI的格式,不同格式的DCI所包含的信息域不同。比如,对于用于下行数据调度的DCI,可包括DCI格式1_0(format1_0)和/或DCI格式1_1(format1_1),对应侧行数据调度的DCI,可以包括DCI格式5(format 5)和/或DCI格式5A(format 5A)等。
(3)、搜索空间SS,网络设备配置终端设备在不同的SS监控DCI。比如,可以配置终端设备在公共搜索空间(common search space,CSS)中监控DCI,也可以配置终端设备在UE特定的搜索空间(UE-specific search space,USS)中监控DCI。可选的,USS还可称为UESS。
(4)、无线网络临时标识(radio network tempory identity,RNTI),调度信息可能采用不同的RNTI进行循环冗余校验(cyclic redundancy check,CRC)加扰。比如,对于通用功能的DCI格式,由于其细分的调度类型不同,其CRC加扰的RNTI不同。比如,对于用于下行数据调度的调度信息,按照调度类型的不同,可分为用于下行系统消息调度的调度信息,用于下行寻呼消息调度的调度信息、用于下行动态数据调度的调度信息和半静态调度的调度信息。对于用于下行系统消息调度的调度信息可使用系统消息RNTI(System information RNTI,SI-RNTI)进行加扰,对于用于下行寻呼消息调度的调度信息可使用寻呼RNTI(Paging RNTI,P-RNTI)进行加扰。对于用于下行动态数据调度的调度信息可使用小区RNTI(Cell RNTI,C-RNTI)进行加扰,对于用于半静态数据调度的调度信息可使用配置调度RNTI(Configured Scheduling RNTI,CS-RNTI:)进行加扰等。
在本申请实施例中,网络设备可配置不同格式的DCI,在本申请实施例中,网络设备或CUE可采用以下方式,示例的,不同格式的第一DCI的功能可不同,比如,第一格式的DCI,可称为回退DCI(fall back DCI)等,回退DCI可用于RRC连接建立前的数据调度,或RRC连接建立后的数据调度。第二格式的第一DCI,可称为非回退DCI(non-fall back DCI),非回退DCI可用于RRC连接建立后的数据调度等。
表1 DCI格式说明
DCI格式 功能 搜索空间
Format 1_0 调度下行数据 CSS和/或USS
Format 1_1 调度下行数据 USS
Format X 调度SL资源  
示例的,如果网络设备配置CUE监控第一格式的DCI,例如,第一格式的DCI可为格式1_0(format1_0)的DCI,则CUE可将SCI设置为第一格式。
示例的,如果网络设备配置CUE监控第二格式的DCI时,例如,第二格式的DCI可为格式1_1(format 1_1)的DCI,则CUE可将SCI设置为第二格式。
在本申请实施例中,DCI可采用不同的无线网络临时标识(radio network tempory identity,RNTI)进行循环冗余校验(cyclic redundancy check,CRC)加扰,且不同RNTI加 扰,可以用于标识不同的CUE。
上述仅为本申请的示例,并不作为对本申请实施例的限定。在本申请实施例中,还有其它因素可影响DCI的内容,在此不再一一列举。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
图1a-图1b示出了本申请实施例应用的通信系统100之一。本申请实施例提供的方法可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WIMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR)系统,或者应用于未来的通信系统或其它类似的通信系统等。进一步地,本申请实施例还可应用于演进的通用移动通信系统陆地无线接入网(evolved universal mobile telecommunications system terrestrial radio access network,E-UTRAN)系统,或者下一代(next generation,NG)-RAN系统,或者还可以应用于下一代通信系统或者类似的通信系统。还可以用于V2X网络;其中,V2X通信是指车辆与外界的任何事物的通信,包括V2V、V2P、V2I和V2N等,还可以为其他车联网或者设备到设备(device-to-device,D2D)网络等。V2X具体又包括车与车(vehicle-to-vehicle,V2V)、车与路侧基础设施(vehicle-to-infrastructure,V2I)、车与行人(vehicle-to-pedestrian,V2P)的直接通信,以及车与网络(vehicle-to-network,V2N)的通信交互等几种应用需求。V2V指的是车辆间的通信;V2P指的是车辆与人(包括行人、骑自行车的人、司机、或乘客)的通信;V2I指的是车辆与网络设备的通信,网络设备例如RSU,另外还有一种V2N可以包括在V2I中,V2N指的是车辆与基站/网络的通信。
该通信系统100可以包括至少一个网络设备110。网络设备110可以是与终端设备通信的设备,如基站或基站控制器等。每个网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域(小区)内的终端设备进行通信。
该网络设备110网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种V2X技术中的网络设备为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持车连接一切(vehicle-to-everything,V2X)应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。接入网设备还可协调对空口的属性管理。例如,接入网设备可以包括LTE系 统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5th generation,5G)新空口(new radio,NR)系统中的下一代节点B(next generation node B,gNB),或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
当然网络设备还可以包括核心网设备,但因为本申请实施例提供的方法主要涉及的是接入网设备,因此在后文中,如无特殊说明,则后文所描述的“网络设备”均是指接入网设备。
该通信系统100还包括位于网络设备110覆盖范围内的一个或多个终端设备120,130,140。终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。本申请实施例的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请实施例的方法。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
其中,网络设备110与终端设备120-140间可以通过空口资源进行数据传输,空口资源可以包括时域资源、频域资源,码域资源中的至少一种。具体来说,网络设备110和终端设备120-140进行数据传输时,网络设备110可以通过控制信道,如物理下行控制信道(physical downlink control channel,PDCCH)向终端设备120-140发送控制信息,从而为终端设备120-140分配数据信道,如物理下行共享信道(physical downlink shared channel, PDSCH)或物理上行共享信道(physical uplink shared channel,PUSCH)的资源。比如该控制信息可以指示数据信道所映射至的符号和/或资源块(resource block,RB),网络设备110和终端设备120-140在该分配的时频资源通过数据信道进行数据传输。其中,上述数据传输可以包括下行数据传输和/或上行数据传输,下行数据(如PDSCH携带的数据)传输可以指网络设备110向终端设备120-140发送数据,上行数据(如PUSCH携带的数据)传输可以是指终端设备120-140向网络设备110发送数据。数据可以是广义的数据,比如可以是用户数据,也可以是系统信息,广播信息,或其他的信息等。
在图1a和图1b所示的通信系统中,终端设备120-140之间还可以通过侧行链路资源进行数据传输,与上述空口资源类似,侧行链路资源也可以包括时域资源、频域资源、码域资源中的至少一个。具体来说,终端设备120-140进行数据传输的物理信道可以包括物理侧行链路共享信道(physical sidelink shared channel,PSSCH)、物理侧行链路控制信道(physical sidelink control channel,PSCCH)或物理侧行链路反馈信道(physical sidelink feedback channel,PSFCH)等中的至少一个。其中,PSSCH用于传输数据,PSCCH用于传输控制信息,比如调度分配(scheduling assignment,SA)信息,PSFCH用于传输反馈信息,比如反馈信息中可以包括信道状态信息(channel state information,CSI)、肯定确认(acknowledgement,ACK)或否定确认(negtive acknowledgement,NACK)等。
图1a-图1b示例性地示出了一个网络设备和3个终端设备120-140,可选地,该通信系统100可以包括多个网络设备并且一个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不作限定。另外,可以理解的是,本申请实施例中的侧行链路通信可以指一个终端设备与另一个终端设备间的通信(比如单播等),或者,侧行链路通信可以指一个终端设备与多个终端设备间的通信(比如组播和广播等),本申请实施例对此不作限定。为了便于描述,在本申请实施例中“以侧行链路通信指一个终端设备与另一个终端设备间的通信”为例进行说明。
为进一步提高5G系统的容量以及网络的覆盖范围,5G系统提供了用户协作的通信方式,用户设备协作是第五代移动通信技术系统中主要支持的特性之一。在用户设备协作通信中,目标终端设备(Target User Equipment,TUE)和为其服务的若干协作终端设备(Cooperation User Equipment,CUE)会形成一个协作传输组,例如图1a-图1b中的终端设备120和终端设备130及终端设备140就形成了一个协作传输组。例如,目标终端设备为终端设备120,终端设备130-140为协作终端设备。需要说明的是,对于任何一个终端设备,既可以是以自身为中心的协作传输组的目标终端设备,同时也可以是其他一个或者多个协作传输组的协作终端设备。
与目标终端设备邻近的邻近终端设备(neighboring user equipment,NUE),可以通过随机接入的方式,确定为所述目标终端设备的协作终端设备。在同一小区中,可以存在多个不同的协作传输组。本申请中的协作终端设备,可以被称为CUE,还可以被称为侧行用户设备(side UE,SUE),还可以被称为中继用户设备(relay UE),在此不做限定,为描述方便,本申请实施例中以CUE为例进行说明。
在LTE V2X中,存在两种传输模式,一种为基站分配模式,在LTE标准中定义为mode3,另一种为用户自选模式,在LTE标准中定义为mode 4。
基站分配模式主要应用于有网络覆盖的情形下的V2X通信。基站统一根据终端设备的缓冲区状态报告(buffer status report,BSR)的上报情况,集中进行资源分配。其中,基 站可以按照半静态调度(semi-persistent scheduling,SPS)模式或动态模式进行资源分配。用户自选模式主要应用于没有网络覆盖情况下的V2X通信。因为没有网络设备的统一资源管理,V2X终端设备只能自行从网络设备配置的资源池中选择资源进行V2X通信。例如对于一个小区来说,网络设备是统一配置了一个资源池,那么该小区的多个V2X终端设备都会在该资源池内选择资源。本申请实施例以基站分配模式为例进行描述。
一种可能的场景中,CUE和TUE为网络设备覆盖范围内(in coverage,IC)的终端设备。基于图1a所示的通信系统100,提供一种用户协作的通信的流程,该流程中的网络设备可具体为图1a中的网络设备110,目标终端设备可以为图1a中的终端设备120,协作终端设备可以为图1a中的终端设备130-140,如图1c所示,该流程包括:
基于用户设备协作的传输主要有两个阶段:
第一阶段,下行传输阶段
步骤1011:网络设备为CUE和TUE分配用于网络设备向CUE和TUE传输第一数据的下行传输参数和下行时频资源,并向CUE和TUE发送第一DCI;
进一步的,网络设备通过用于传输第一数据的下行传输参数在所述下行时频资源上发送第一数据;
具体的,网络设备可以通过多播或广播的方式向TUE以及CUE发送第一数据。
其中,第一DCI指示CUE和TUE接收网络设备发送第一数据的下行传输参数和下行时频资源。用于传输第一数据的下行传输参数可以包括:调制编码方式、多输入多输出模式、自动请求重传参数、优先级信息等。举例来说,网络设备可以在所述第一数据所占据的下行时频资源上通过用于传输第一数据的下行传输参数中的调制编码方式、多输入多输出模式发送第一数据;另外,CUE和TUE在第一数据所占据的时频资源上,通过用于传输第一数据的传输参数中的调制编码方式、多输入多输出模式接收第一数据,CUE和/或TUE根据接收的第一数据的译码结果,及传输参数中的自动请求重传参数,发送自动请求重传反馈消息,以便网络设备为CUE和/或TUE发送重传数据。
步骤1012:CUE和TUE获取第一DCI,并根据第一DCI,确定网络设备发送的第一数据的下行传输参数和下行时频资源。
具体的CUE以及TUE接收第一DCI的过程,可包括:由第一DCI携带于物理下行控制信道PDCCH中传输。CUE以及TUE可获取搜索空间SS,所述SS中包括候选PDCCH集合(PDCCH candidate),候选PDCCH集合指在控制资源集合(control resource set,CORESET)中,一系列可能出现PDCCH的时频资源位置。例如,CUE和TUE在候选搜索空间内,盲检第一DCI,若解析成功,则可以确定第一DCI中携带的用于传输第一数据的下行传输参数和下行时频资源。
步骤1013:TUE以及CUE在所述第一数据所占据的下行时频资源上,通过用于传输第一数据的下行传输参数接收网络设备发送的第一数据。
具体的,CUE和TUE在所述第一数据所占据的下行时频资源上,通过用于传输第一数据的下行传输参数接收网络设备发送的第一数据。
例如,网络设备为TUE以及CUE1、CUE2分配相同的下行时频资源,用于发送第一数据。TUE及CUE1、CUE2同时在该下行时频资源上接收所述第一数据。
第二阶段,侧行传输阶段:每个协作用户设备可以与目标用户设备建立侧行链路,可应用于网络设备主动为终端设备分配侧行传输资源的过程中,也可应用于网络设备被动为 终端设备分配侧行传输资源的过程中,所述网络设备被动为终端设备分配侧行传输资源的过程可包括:终端设备发送侧行链路资源请求至网络设备;网络设备接收到所述侧行链路资源请求后,为终端设备分配侧行传输资源。即,图1c所示的流程中,还可包括:CUE向网络设备发送SL资源请求。
具体的侧行传输过程,可以包括以下步骤:
步骤1021:网络设备分配用于传输第二数据的侧行传输参数和侧行时频资源,并向CUE发送第二DCI。
其中,第二DCI用于指示网络设备为CUE分配的用于传输第二数据的侧行传输参数和侧行时频资源。
举例来说,网络设备可以为每个CUE分配不同的侧行时频资源和侧行传输参数,也可以为每个CUE配置相同的侧行时频资源和侧行传输参数。第二DCI可以为多个,即网络设备可以为每个CUE配置不同的侧行时频资源和/或不同的侧行传输参数,每个CUE对应一个第二DCI。网络设备将每个第二DCI以单播的方式,发送至对应的CUE,将所有的第二DCI发送至TUE。第二DCI也可以为一个,例如,网络设备为每个CUE分配相同的用于传输第二数据的侧行时频资源和侧行传输参数,网络设备可以多播的形式向CUE发送该第二DCI。另一种可能的实现方式,网络设备也可以将为每个CUE分别配置不同的用于传输第二数据的侧行时频资源和/或不同的用于传输第二数据的侧行传输参数携带在一个第二DCI中,网络设备可以以多播的形式向CUE发送该第二DCI。
步骤1022:第一CUE根据第二DCI,确定第一CUE对应的用于传输第二数据的侧行时频资源和侧行传输参数。其中,第一CUE为协作传输组中的一个CUE。
例如,假设网络设备将CUE1的第二DCI以单播的方式,发送至CUE1,则CUE1根据来自网络设备的第二DCI,确定网络设备分配给CUE1的用于传输第二数据的侧行时频资源和侧行传输参数。再比如,网络设备将为每个CUE分别配置不同的用于传输第二数据的侧行时频资源和侧行传输参数携带在一个第二DCI中,则CUE1可以只解析第二DCI中对应CUE1的字段,以确定CUE1的用于传输第二数据的侧行时频资源和侧行传输参数。
步骤1023:第一CUE在第一CUE对应的侧行时频资源上,根据第一CUE对应的侧行传输参数向TUE转发第二数据。
例如,CUE1和CUE2都正确接收到第二DCI和第一数据,则CUE1和CUE2可以将正确接收到的第二DCI和/或第二数据转发给TUE;具体的转发方式可以为放大转发、解码转码或压缩转发等。其中,转发的第二数据可以为第一数据的部分数据,也可以为全部数据;CUE1和CUE2可以转发第一数据中相同的部分,也可以转发不同的部分,在此不做限定。当然,第二数据还可以包括CUE译码第一数据后的译码结果,以便TUE获得CUE的译码结果,提高数据的接收性能。
一种可能的实现方式,第一CUE根据第二DCI,生成第一SCI,并将第一SCI发送至TUE;
其中,所述第一SCI指示侧行链路资源的调度信息,例如,CUE1生成的SCI可以指示CUE1与TUE的侧行链路资源的调度信息。该侧行链路的调度信息可以包括CUE正确接收到的来自网络设备的第二DCI中的侧行时频资源和侧行传输参数,或者,包括CUE根据网络设备预配置的资源池中确定的侧行时频资源和侧行传输参数。具体的,第一CUE可在物理侧行链路控制信道PSCCH上发送第一SCI,将侧行链路资源的调度信息发送至 TUE;当然,也可以是调度分配(scheduling assigment,SA)信息,在此不做限定。
步骤1024:TUE获取来自网络设备的第二DCI,在对应的侧行传输资源上,接收第一CUE发送的第二数据。
举例来说,假设网络设备将CUE1对应的第二DCI_CUE1及CUE2对应的第二DCI_CUE2,发送至TUE,则TUE根据CUE1对应的第二DCI_CUE1,在第二DCI_CUE1指示的侧行时频资源上,通过第二DCI_CUE1指示的侧行传输参数接收CUE1发送的第二数据;TUE根据CUE2对应的第二DCI_CUE2,在第二DCI_CUE2指示的侧行时频资源上,通过第二DCI_CUE2指示的侧行传输参数接收CUE2发送的第二数据。再比如,假设网络设备生成的第二DCI中携带有CUE1的侧行时频资源和侧行传输参数,及CUE2的侧行时频资源和侧行传输参数,则TUE根据解析的第二DCI,确定CUE1的侧行时频资源和侧行传输参数和CUE2的侧行时频资源和侧行传输参数,进而,在CUE1对应的侧行时频资源上,通过侧行传输参数接收CUE1发送的第二数据;TUE根据CUE2对应的第二DCI,在CUE2对应的侧行时频资源上,通过侧行传输参数接收CUE2发送的第二数据。
或者,TUE获取来自CUE的SCI,在对应的侧行传输资源上,接收CUE发送的第二数据。
例如,TUE获取来自CUE1的SCI1,在SCI1指示的侧行时频资源上,通过SCI1指示的侧行传输参数,接收CUE1发送的第二数据。TUE获取来自CUE2的SCI2,在SCI2指示的侧行时频资源上,通过SCI2指示的侧行传输参数接收CUE2发送的第二数据。
进一步的,TUE可以将第一阶段接收的来自网络设备的第一数据的信号和第二阶段接收的CUE1的第二数据的信号和CUE2的第二数据的信号联合起来进行解码,以获得网络设备发送的第一数据。
通过用户设备协作,可以提高目标终端设备对网络设备发送的第一数据的接收性能,显著增强目标终端设备接收第一数据的可靠性。
另一种可能的场景中,例如,TUE在小区覆盖范围外,或者TUE信道质量太差,TUE在第一阶段接收不到网络设备发送的第一数据,完全依靠在第二阶段CUE对网络设备发送的第一数据进行转发。如图1b所示的通信系统100,提供一种用户协作的通信的流程,该流程中的网络设备可具体为图1b中的网络设备110,目标终端设备可以为图1b中的终端设备120,协作终端设备可以为图1b中的终端设备130-140,如图1d所示,该流程包括:
具体的,可以包括:
第一阶段,下行传输阶段
步骤1031:网络设备为CUE分配用于传输第一数据的下行时频资源和下行传输参数,并向CUE发送第一DCI。
进一步的,网络设备向CUE发送第一DCI,以及在下行时频资源上通过下行传输参数发送第一数据;
具体的,网络设备可以通过多播或广播的方式向CUE发送第一数据。
其中,第一DCI用于指示网络设备为用户协作组中的终端设备分配的用于传输第一数据的下行时频资源和下行传输参数。
步骤1032:第一CUE根据第一DCI,确定所述第一CUE对应的用于传输第一数据的下行时频资源和下行传输参数。其中,第一CUE为协作传输组中的一个CUE。
步骤1033:第一CUE在第一CUE对应的下行时频资源上,通过所述第一CUE对应 的下行传输参数接收网络设备发送的第一数据。
第二阶段,侧行传输阶段
步骤1041:网络设备为第一CUE分配的第一CUE对应的用于传输第二数据的侧行时频资源和侧行传输参数,并向第一CUE发送第二DCI。
其中,第二DCI用于指示网络设备为第一CUE分配的用于传输第二数据的侧行时频资源和侧行传输参数。
例如,网络设备为CUE1分配CUE1对应的侧行时频资源1和侧行传输参数1,并生成携带有侧行时频资源1和侧行传输参数1的第二DCI_CUE1,进而将第二DCI_CUE1发送至CUE1。
同理,网络设备为CUE2分配CUE2对应的侧行时频资源2和侧行传输参数2,并生成携带有侧行时频资源2和侧行传输参数2的第二DCI_CUE2,进而将第二DCI_CUE2发送至CUE2。
步骤1042:第一CUE根据第二DCI,确定第一CUE对应的用于传输第二数据的侧行时频资源和侧行传输参数。
结合上述例子,CUE1根据来自网络设备的第二DCI_CUE1,确定第二DCI_CUE1中侧行时频资源1和侧行传输参数1,其中,侧行时频资源1和侧行传输参数1用于指示CUE1通过侧行传输参数1在侧行时频资源1上向TUE发送第二数据。CUE2根据来自网络设备的第二DCI_CUE2,确定第二DCI_CUE2中的侧行时频资源2和侧行传输参数2,其中,侧行时频资源2和侧行传输参数2用于CUE2通过侧行传输参数2在侧行时频资源2上向TUE发送第二数据。
步骤1043:第一CUE根据第二DCI,生成第一SCI,并将第一SCI发送至TUE。
进一步的,第一CUE向TUE发送第一SCI,以及在第一CUE对应的侧行时频资源上,通过第一CUE对应的侧行传输参数向TUE发送第二数据。
例如,CUE1根据来自网络设备的第二DCI_CUE1,生成携带有侧行时频资源1和侧行传输参数1的SCI1,并将SCI1发送至TUE。以及CUE1在侧行时频资源1上,通过侧行传输参数1向TUE发送第二数据。同理,CUE2可以根据来自网络设备的第二DCI_CUE2,生成携带有侧行时频资源2和侧行传输参数2的SCI2,并将SCI2发送至TUE。以及CUE2在侧行时频资源2上,通过侧行传输参数2向TUE发送第二数据。
步骤1044:TUE获取第一SCI,在所述第一CUE对应的侧行时频资源上,通过第一CUE对应的侧行传输参数接收CUE发送的第二数据。
例如,TUE获取SCI1,在侧行时频资源1上,通过侧行传输参数1接收CUE1发送的第二数据。TUE获取SCI2,在侧行时频资源2上,通过侧行传输参数2接收CUE2发送的第二数据。
其中,若TUE接收到多个CUE发送的第二数据,则TUE可以将第二阶段收到的多个CUE的转发信号联合起来进行解码,例如,若TUE接收到CUE1发送的第二数据的信号1及CUE2发送的第二数据的信号2,则可以将信号1和信号2联合起来进行解码,以提高解码第二数据的准确度,进而提高协作传输的性能。
通过用户协作传输,可以显著增强TUE的性能或者可靠性,显著提高系统的容量以及网络的覆盖范围,同时可以降低网络设备的负载。
需要说明的是,上述流程,仅为本申请应用的一种场景,并不作为对本申请的限定, 本申请实施例所提供的通信方法,还可应用于涉及DCI的其它应用场景中。
上述实施例中,针对用户协作中的终端设备在进行数据传输的情况,以两个协作终端设备为例,当网络设备在下行传输链路上发送下行数据前,网络设备会向目标终端设备和协作终端设备发送第一DCI;当网络设备调度终端设备在侧行传输链路上发送侧行信号时,协作终端设备会向终端设备发送第二DCI。因此,目前用户协作通信过程中,网络设备需发送多个物理下行控制信息PDCCH,资源开销较大,比较占用传输资源。
另外,为了下行空口通信与侧行链路通信的相兼容,网络设备可配置CUE监控2种DCI,分别为第一DCI、第二DCI。其中,第一DCI用于调度下行数据传输,第二DCI用于调度图1a所示的场景中的侧行链路资源分配。CUE在每个PDCCH候选位置,需要分别进行PDCCH的盲检,二个DCI至少需要盲检2次,终端设备处理的复杂度较高。
基于以上,针对第一种场景,如图2a所示,本申请实施例提供一种通信方法的流程,该流程中的网络设备可为上述图1a中的网络设备110,终端设备可为上述图1a中的终端设备120-140。可以理解的是,网络设备的功能也可通过应用于网络设备的芯片实现,或者通过其他装置来支持网络设备实现,终端设备的功能也可通过应用于终端设备的芯片实现,或者通过其他装置来支持终端设备实现。该流程包括:
步骤201:网络设备生成第一调度信息和第二调度信息。
其中,第一调度信息指示用于目标终端设备和至少一个协作终端设备接收来自网络设备的第一数据的下行传输参数和下行时频资源;具体的,目标终端设备和至少一个协作终端设备属于一个协作传输组,例如,如图1a所示的TUE和CUE1和CUE2属于一个协作传输组。来自网络设备的第一数据可以为协作传输模式中第一阶段的网络设备发送至目标终端设备和至少一个协作终端设备的数据。第一调度信息用于指示目标终端设备和至少一个协作终端设备在对应的下行时频资源上,通过下行传输参数接收所述第一数据。
第二调度信息指示用于至少一个协作终端设备向所述目标终端设备发送第二数据的侧行传输参数和侧行时频资源。具体的,至少一个协作终端设备向所述目标终端设备发送的第二数据,可以为至少一个协作终端设备据各协作终端设备接收的第一数据生成的;具体的生成过程可以参考上述协作传输的实施例,在此不再赘述。第二调度信息用于指示至少一个协作终端设备在对应的侧行时频资源上,通过侧行传输参数发送第二数据,以及指示目标终端设备在对应的侧行时频资源上,通过侧行传输参数接收第二数据。
一种可能的实现方式,所述第一调度信息、所述第二调度信息包括以下一项或多项:调制编码方式、时频资源、多输入多输出模式、自动请求重传参数、优先级信息等传输参数。
步骤202:网络设备向所述目标终端设备和所述至少一个协作终端设备发送下行控制信息。
其中,所述下行控制信息包括第一调度信息和第二调度信息。例如,如图3所示,DCI中包括携带第一调度信息的字段,及携带第二调度信息的字段。
进一步的,网络设备根据DCI发送第一数据。
具体的,网络设备根据DCI中的第一调度信息,向目标终端设备和至少一个协作终端设备发送第一数据。
上述实施方式中,通过将下行传输的第一调度信息和侧行传输的第二调度信息包含在同一个下行控制信息中,网络设备无需发送多个下行控制信息,可以节省资源开销,降低 控制信息占用的传输资源,从而可以提高频谱效率。
步骤203:第一协作终端设备和目标终端设备接收来自网络设备的下行控制信息。
其中,第一协作终端设备为至少一个协作终端设备中的一个协作终端设备;需要说明的是,第一协作终端设备可以为在网络设备的覆盖范围内的协作终端设备,也可以为网络设备根据需要,确定的协作终端设备,也可以为协作传输组的任一协作终端设备,在此不做限定。
具体的,第一协作终端设备和目标终端设备在候选搜索空间中,对下行控制信息进行盲检,获得第一调度信息和第二调度信息。
步骤204:第一协作终端设备和目标终端设备根据第一调度信息接收来自网络设备的第一数据。
另一种可能的场景,目标终端设备也可以在接收到下行控制信息后,可以根据实际场景的需要,选择不接收来自网络设备的第一数据,以节省功耗。
进一步的,第一协作终端在获取下行控制信息后,还可以向所述目标终端设备发送侧行控制信息,所述侧行控制信息指示用于所述第一协作终端设备向所述目标终端设备发送第二数据的侧行传输参数和侧行时频资源,以使目标终端设备可以获取到侧行控制信息,进而根据侧行控制信息,在所述第二数据所占据的侧行时频资源上,通过侧行传输参数,接收第一协作终端设备发送的第二数据。
进一步的,目标终端设备还可以根据接收第一数据的解码结果,及第一调度信息中的自动请求重传参数,向网络设备发送反馈消息;例如,若目标终端设备正确接收所述第一数据,则向网络设备发送反馈肯定消息;若目标终端设备没有正确接收所述第一数据,则向网络设备发送反馈否定消息。
基于上述反馈肯定消息或反馈否定消息,如图2b所示,为避免重复发送控制信息,浪费资源,第一协作终端设备向所述目标终端设备发送侧行控制信息之前,还可以包括:
步骤2041:第一协作终端监测目标终端设备发送的反馈确认消息或反馈否定消息,以确定是否需要生成侧行控制信息。
其中,反馈确认消息或反馈否定消息用于目标终端设备向网络设备反馈第一数据是否正确解析。第一协作终端通过监测反馈确认消息或反馈否定消息是否存在,可以确定目标终端设备是否正确接收到下行控制信息。
步骤2042:若第一协作终端设备在预定时长内未监测到目标终端设备发送的反馈确认消息或反馈否定消息,则确定目标终端设备没有正确接收到下行控制信息,则第一协作终端可以向目标终端设备发送侧行控制信息,以使目标终端设备可以根据侧行控制信息,接收第一协作终端设备发送的第二数据。
另外,第一协作终端设备若确定目标终端设备接收到下行控制信息,则可以取消向目标终端设备发送侧行控制信息,以节省控制信息资源的开销。
步骤205:第一协作终端设备根据第二调度信息向目标终端设备发送第二数据。
需要说明的是,若第一协作终端设备执行步骤2042,还可以与步骤205同时执行,在此不做限定。
步骤206:目标终端设备根据第二调度信息接收来自第一协作终端设备的第二数据。
上述实施方式中,通过将下行传输的第一调度信息和侧行传输的第二调度信息包含在同一个DCI中,协作终端设备和目标终端设备可以根据网络设备配置的一个DCI,仅需进 行1次PDCCH的接收,降低了终端设备处理的复杂度。
针对第二种场景,如图2c所示,本申请实施例提供一种通信方法的流程,该流程中的网络设备可为上述图1b中的网络设备110,终端设备可为上述图1b中的终端设备120-140。可以理解的是,网络设备的功能也可通过应用于网络设备的芯片实现,或者通过其他装置来支持网络设备实现,终端设备的功能也可通过应用于终端设备的芯片实现,或者通过其他装置来支持终端设备实现。该流程包括:
步骤301:网络设备生成第一调度信息和第二调度信息。
其中,第一调度信息指示用于至少一个协作终端设备接收来自网络设备的第一数据的下行传输参数和下行时频资源;来自网络设备的第一数据可以为协作传输模式中第一阶段的网络设备发送至至少一个协作终端设备的数据。第一调度信息用于指示至少一个协作终端设备在对应的下行时频资源上,通过下行传输参数接收所述第一数据。
第二调度信息指示用于至少一个协作终端设备向所述目标终端设备发送第二数据的侧行传输参数和侧行时频资源;具体的,目标终端设备和至少一个协作终端设备属于一个协作传输组,例如,如图1b所示的TUE、CUE1和CUE2属于一个协作传输组。至少一个协作终端设备向目标终端设备发送的第二数据,可以为至少一个协作终端设备据各协作终端设备接收的第一数据生成的;具体的生成过程可以参考上述协作传输的实施例,在此不再赘述。第二调度信息用于指示至少一个协作终端设备在对应的侧行时频资源上,通过侧行传输参数发送第二数据。
一种可能的实现方式,所述第一调度信息、所述第二调度信息包括以下一项或多项:调制编码方式、时频资源、多输入多输出模式、自动请求重传参数、优先级信息等传输参数。
步骤302:网络设备向所述至少一个协作终端设备发送下行控制信息。
其中,所述下行控制信息包括第一调度信息和第二调度信息。例如,如图3所示,DCI中包括携带第一调度信息的字段,及携带第二调度信息的字段。
进一步的,网络设备可以发送DCI,以及根据DCI发送第一数据。
具体的,网络设备可以根据DCI中的第一调度信息,向至少一个协作终端设备发送第一数据。
上述实施方式中,通过将下行传输的第一调度信息和侧行传输的第二调度信息包含在同一个下行控制信息中,网络设备无需发送多个下行控制信息,可以节省资源开销,降低控制信息占用的传输资源,从而可以提高频谱效率。
步骤303:第一协作终端设备接收来自网络设备的下行控制信息。
其中,第一协作终端设备为至少一个协作终端设备中的一个协作终端设备;需要说明的是,第一协作终端设备可以为在网络设备的覆盖范围内的协作终端设备,也可以为网络设备根据需要,确定的协作终端设备,也可以为协作传输组的任一协作终端设备,在此不做限定。
步骤304:第一协作终端设备根据第一调度信息接收来自网络设备的第一数据。
步骤305:第一协作终端设备在获取下行控制信息后,向目标终端设备发送侧行控制信息,以及根据第二调度信息向目标终端设备第二数据。
所述侧行控制信息指示用于所述第一协作终端设备向所述目标终端设备发送第二数据的侧行传输参数和侧行时频资源,以使目标终端设备可以获取到侧行控制信息,进而根 据侧行控制信息,在所述第二数据所占据的侧行时频资源上,通过侧行传输参数,接收第一协作终端设备发送的第二数据。
步骤306:目标终端设备接收来自第一协作终端设备的侧行控制信息,以及根据第二调度信息接收来自第一协作终端设备的第二数据。
具体的,目标终端设备在候选搜索空间中,对侧行控制信息进行盲检,获得第二调度信息。进而,目标终端设备可以根据所述第二调度信息接收来自所述第一协作终端设备的第二数据。
上述实施方式中,通过将下行传输的第一调度信息和侧行传输的第二调度信息包含在同一个DCI中,协作终端设备可以根据网络设备配置的一个DCI,生成向目标终端设备发送的SCI,网络设备仅需发送1次PDCCH,对应的,协作终端设备仅需1次PDCCH的接收,降低了资源的消耗,及协作终端设备处理的复杂度。
下面对本申请中的实施例中的下行控制信息的内容进行具体说明。
示例一
针对只有一个CUE的场景,如图4a所示,下行控制信息包括下行传输参数对应的字段、下行时频资源对应的字段,及侧行传输参数对应的字段、侧行时频资源对应的字段。
在具体实施过程中,网络设备可以在下行时频资源上,通过下行传输参数发送第一数据。协作终端设备可以根据接收到的下行控制信息,在下行时频资源上,通过下行传输参数接收第一数据,进而在侧行时频资源上,通过侧行传输参数发送第二数据。
以CUE为CUE1为例,下行传输参数对应的字段可以包括:网络设备为CUE1配置的下行传输所需的MCS参数、HARQ反馈参数、MIMO模式参数、优先级等下行传输参数101,和网络设备为TUE配置的下行传输所需的MCS参数、HARQ反馈参数、MIMO模式参数、优先级等下行传输参数102;当然,下行传输参数101和下行传输参数102可以相同,也可以不同。若下行传输参数101和下行传输参数102相同,下行传输参数对应的字段可以只携带下行传输参数101或下行传输参数102即可。下行时频资源对应的字段包括:网络设备为CUE1配置的下行时频资源101和为TUE配置的下行时频资源102;下行时频资源101和下行时频资源102可以相同,也可以不同。若下行时频资源101和下行时频资源102相同,则下行时频资源对应的字段可以只携带下行时频资源101或下行时频资源102。
网络设备可以通过下行传输参数101在下行时频资源101上向CUE1发送第一数据,通过下行传输参数102在下行时频资源102上向TUE发送第一数据。CUE1若正确接收到下行控制信息,则可以通过下行传输参数101在下行时频资源101上接收第一数据。
侧行传输参数对应的字段包括:网络设备为CUE1配置的侧行传输所需的MCS参数、HARQ反馈参数、MIMO模式参数、优先级等侧行传输参数101;下行时频资源对应的字段可以包括:网络设备为CUE1配置的侧行传输所需的侧行时频资源101。
CUE1接收到第一数据后,可以根据多种方式生成第二数据。一种可能的实现方式,下行控制信息中还可以包括网络设备为CUE1配置的生成第二数据的方式。例如,第二数据为第一数据的部分数据,或者第二数据为第一数据的全部数据,也可以为CUE1正确接收网络设备发送的第一数据的信号中的数据,在此不做限定。另一种可能的实现方式,CUE1生成第二数据的方式可以为网络设备为CUE1预先配置的,或者,为标准中设定的多种生成方式中,CUE1根据需要选择的一种生成第二数据方式。
CUE1在生成第二数据后,可以通过侧行传输参数101在侧行时频资源101上向TUE发送第二数据。
CUE1在发送第二数据之前,还可以向TUE发送SCI,该SCI携带侧行传输参数对应的字段、侧行时频资源对应的字段。
进一步的,CUE1还可以根据TUE发送的HARQ反馈肯定消息或HARQ反馈否定消息,确认TUE是否接收到所述下行控制信息,若确定TUE接收到所述下行控制信息,则可以取消发送SCI,以节省信令的消耗。
对于TUE,若接收到下行控制信息,则可以在下行时频资源上,通过下行传输参数接收网络设备发送的第一数据;在侧行时频资源上,通过侧行传输参数接收CUE发送的第二数据。
例如,若TUE接收到下行控制信息,则可以通过下行传输参数102,在下行时频资源102上接收网络设备发送的第一数据。TUE可以通过侧行传输参数101,在侧行时频资源101上接收CUE1发送的第二数据。
目标终端设备若接收到网络设备发送的第一数据及CUE1发送的第二数据,则可以根据第一数据的信号和第二数据的信号进行联合解码,以提高解码率。
由于只有1个CUE,第二调度信息中的各传输参数可以不携带CUE的标识,仅携带用户协作组标识;CUE标识可以为无线网络临时标识RNTI,也可以为其他标识。当然,也可以CUE的标识和用户协作组标识都不携带,在此不做限定。
示例二
针对网络设备通过相同的传输参数在相同的时频资源上向N个CUE和TUE传输第一数据的场景,此时,第一调度信息指示第一下行传输参数和第一下行时频资源,其中,第一下行传输参数和第一下行时频资源用于网络设备在第一下行时频资源上,通过第一下行传输参数向所述N个CUE和TUE发送第一数据。所述N个CUE中的每个CUE和/或TUE在第一下行时频资源上,通过第一下行传输参数接收第一数据。
在具体实施过程中,网络设备可以通过广播或多播的方式,在第一下行时频资源上,通过第一下行传输参数发送第一数据。N个CUE可以根据接收到的下行控制信息,在第一下行时频资源上,通过第一下行传输参数接收第一数据。对于TUE,若接收到下行控制信息,则可以在第一下行时频资源上,通过第一下行传输参数接收网络设备发送的第一数据。
例如,如图4b所示,下行控制信息包括第一下行传输参数对应的字段,第一下行时频资源对应的字段,及第二调度信息对应的字段。
以N个CUE包括CUE1和CUE2为例,第一下行传输参数的字段可以包括:网络设备为CUE1、CUE2和TUE配置的下行传输所需的第一下行传输参数201;第一下行时频资源的字段可以包括:网络设备为CUE1、CUE2和TUE配置的下行传输所需的第一下行时频资源201。
此时,网络设备可以通过广播或多播的方式,在第一下行时频资源201上,通过第一下行传输参数201发送第一数据。CUE1、CUE2可以根据接收到的下行控制信息,解码第一下行传输参数201对应的字段,及第一下行时频资源201对应的字段,进而在第一下行时频资源201上,通过第一下行传输参数201接收第一数据。对于TUE,若接收到下行控制信息,则可以解码第一下行传输参数201的字段,第一下行时频资源201的字段,进而在第一下行时频资源201上,通过第一下行传输参数201接收网络设备发送的第一数据。
进一步的,CUE1接收到第一数据后,可以根据多种方式生成向TUE发送的第二数据1。CUE2接收到第一数据后,可以根据多种方式生成向TUE发送的第二数据2。第二数据1和第二数据2可以不同,也可以相同。具体的生成方式,可以为网络设备预先配置的,也可以为网络设备静态、半静态或动态调度的。具体发送方式可以参考上述实施例,在此不再赘述。
CUE1通过解析下行控制信息中的第二调度信息对应的字段,获取CUE1与TUE间的侧行传输链路的资源,例如,CUE1与TUE间的侧行传输链路的资源为侧行时频资源201和侧行传输参数201,进而CUE1在侧行时频资源201上,通过侧行传输参数201向TUE发送的第二数据1。同理,CUE2通过解析下行控制信息中的第二调度信息对应的字段,获取CUE2与TUE间的侧行传输链路的资源,例如,CUE2与TUE间的侧行传输链路的资源为侧行时频资源202和侧行传输参数202,进而CUE2在侧行时频资源202上,通过侧行传输参数202向TUE发送第二数据2。
对于TUE,若接收到下行控制信息,则可以通过解析第二调度信息对应的字段,获取CUE1与TUE间的侧行传输链路的资源,进而TUE在侧行时频资源201上,通过侧行传输参数201接收CUE1发送的第二数据1。TUE可以通过解析第二调度信息对应的字段,获取CUE2与TUE间的侧行传输链路的资源,进而TUE在侧行时频资源202上,通过侧行传输参数202接收CUE2发送的第二数据2。
从而,TUE根据接收到的第一数据的信号和/或第二数据1、第二数据2的信号,进行联合解码。
举例来说,若TUE接收到网络设备发送的第一数据的信号1,CUE1发送的第二数据1的信号2及CUE2发送的第二数据2的信号3,则可以将信号1、信号2和信号3联合起来进行解码,以提高解码第一数据的准确度,进而提高第一数据的传输的性能。
再比如,若TUE接收到CUE1发送的第二数据1的信号2及CUE2发送的第二数据2的信号3,则可以将信号2和信号3联合起来进行解码,以提高解码第二数据的准确度,进而提高协作传输的性能。
上述实施方式中,由于基站通过相同的传输参数在相同的时频资源上向N个CUE和TUE传输第一数据,无需为N个CUE和TUE生成指示N+1个下行控制信息;仅需传输第一下行传输参数对应的字段、第一下行时频资源对应的字段,可以减少用户协作传输中控制消息所占的时频资源,降低下行控制信息占用的资源的开销,从而能够提高频谱效率。
示例三
针对网络设备为N个CUE分配的用于传输第二数据的侧行传输参数和侧行时频资源相同的场景,所述第二调度信息指示第一侧行传输参数和第一侧行时频资源;所述第一侧行传输参数和所述第一侧行时频资源用于所述至少一个协作终端设备中的每个协作终端设备发送所述第二数据。第一侧行传输参数可以为一个CUE用于传输第二数据所需的侧行传输参数和第一侧行时频资源可以为一个CUE用于传输第二数据所需的侧行时频资源。例如,如图4c所示,下行控制信息包括第一调度信息对应的字段,及第一侧行传输参数对应的字段、第一侧行时频资源对应的字段。协作终端设备可以根据接收到的下行控制信息,在第一侧行时频资源上,通过第一侧行传输参数发送第二数据。对于目标终端设备,若接收到下行控制信息,则可以在第一侧行时频资源上,通过第一侧行传输参数接收N个CUE发送的第二数据。
以N为2为例,即N个CUE可以包括CUE1和CUE2。一种可能的实现方式中,第一调度信息对应的字段可以包括:字段301,字段302和字段303;其中,字段301可以包括:网络设备为CUE1配置的下行传输所需的下行传输参数301以及下行时频资源301;字段302可以包括:网络设备为CUE2配置的下行传输所需的下行传输参数302以及下行时频资源302;字段303可以包括:网络设备为TUE配置的下行传输所需的下行传输参数303以及下行时频资源303。
网络设备可以通过下行传输参数301在下行时频资源301上向CUE1发送第一数据,通过下行传输参数302在下行时频资源302上向CUE2发送第一数据,通过下行传输参数303在下行时频资源303上向TUE发送第一数据。
若CUE1正确接收到下行控制信息,可以通过解码字段301,进而基于下行传输参数301在下行时频资源301上接收第一数据。若CUE2正确接收到下行控制信息,则可以通过解码字段302,进而基于下行传输参数302在下行时频资源302上接收第一数据。若TUE正确接收到下行控制信息,则可以通过解码字段303,进而通过下行传输参数303在下行时频资源303上接收第一数据。
当然,下行传输参数301、下行传输参数302和下行传输参数303可以相同,也可以不同。第一调度信息对应的字段中携带的下行传输参数可以根据下行传输参数301、下行传输参数302和下行传输参数303是否相同,确定携带的下行传输参数。例如,若确定下行传输参数301、下行传输参数302相同,则可以在第一调度信息对应的字段中,只携带字段301中的下行传输参数301和字段303中的下行传输参数303,指示CUE1和CUE2将下行传输参数301作为CUE1和CUE2的下行传输参数;指示TUE将下行传输参数303作为TUE的下行传输参数。同理,下行时频资源301、下行时频资源302和下行时频资源303可以相同,也可以不同。第一调度信息对应的字段中携带的下行时频资源可以根据下行时频资源301、下行时频资源302和下行时频资源303是否相同确定,例如,若确定下行时频资源301、下行时频资源303相同,则可以在第一调度信息对应的字段中,只携带字段301中的下行时频资源301和字段302中的下行时频资源302,指示CUE1和TUE将下行时频资源301作为CUE1和TUE的下行时频资源;指示CUE2将下行时频资源302作为CUE2的下行时频资源。
此时,第一调度信息对应的字段包括:字段301’,字段302’和字段303’;其中,字段301’可以包括:下行传输参数301以及下行时频资源301;字段302’可以包括:下行时频资源302;字段303’可以包括:下行传输参数303。
网络设备可以通过下行传输参数301在下行时频资源301上向CUE1发送第一数据,通过下行传输参数301在下行时频资源302上向CUE2发送第一数据,通过下行传输参数303在下行时频资源301上向TUE发送第一数据。
若CUE1正确接收到下行控制信息,可以通过解码字段301’,进而基于下行传输参数301在下行时频资源301上接收第一数据。若CUE2正确接收到下行控制信息,则可以通过解码字段301’和字段302’,进而基于下行传输参数301在下行时频资源302上接收第一数据。若TUE正确接收到下行控制信息,则可以通过解码字段301’和字段303’,进而通过下行传输参数303在下行时频资源301上接收第一数据。
第一侧行传输参数的字段可以包括:网络设备为CUE1和CUE2分配的在侧行传输链路上传输第二数据所需的MCS参数、HARQ反馈参数、MIMO模式参数、优先级等侧行 传输参数301。第一侧行时频资源的字段可以包括:网络设备为CUE1和CUE2分配的在侧行传输链路上传输第二数据所需的侧行时频资源301。
CUE1和/或CUE2接收到第一数据后,可以根据多种方式生成第二数据。
需要说明的是,由于为侧行传输链路分配的资源完全相同,因此,N个CUE生成的第二数据需要相同,以避免N个CUE在侧行传输链路上发送的第二数据的信号产生干扰。
一种可能的实现方式,下行控制信息中还可以包括网络设备为N个CUE配置的相同的生成第二数据的方式。例如,第二数据为第一数据的部分数据,或者第二数据为第一数据的全部数据,也可以为CUE1正确解码网络设备发送的第一数据的信号中的数据,在此不做限定。一种可能的实现方式,N个CUE生成第二数据的方式可以为网络设备为N个CUE预先配置的。
CUE1在生成第二数据后,可以通过解码第一侧行时频资源的字段和第一侧行传输参数的字段,进而基于第一侧行传输参数301,在第一侧行时频资源301上向TUE发送第二数据。CUE2在生成第二数据后,可以通过解码第一侧行时频资源301的字段和第一侧行传输参数301的字段,进而通过第一侧行传输参数301在第一侧行时频资源301上向TUE发送第二数据。
对于目标终端设备,若接收到下行控制信息,则可以通过解码第一侧行时频资源301的字段和第一侧行传输参数301的字段,进而通过在第一侧行时频资源301上,通过第一侧行传输参数301接收CUE1发送的第二数据的信号1和/或CUE2发送的第二数据的信号2。
若目标终端设备接收到CUE1发送的第二数据的信号1及CUE2发送的第二数据的信号2,则可以将信号1和信号2联合起来进行解码,以提高解码第二数据的准确度,进而提高协作传输的性能。
由于多个CUE在第二阶段用于侧行传输的第一侧行传输参数和第一侧行时频资源完全相同,第二调度信息中的侧行传输参数和侧行时频资源不需要区分多个CUE,仅需要携带第一侧行时频资源对应的字段和第一侧行传输参数对应的字段即可实现针对侧行链路的资源调度,可以减少用户协作传输中下行控制信息所占的时频资源,降低下行控制信息占用的资源的开销,从而能够提高频谱效率。
示例四
针对网络设备为N个CUE分配的用于传输第二数据的侧行传输参数和侧行时频资源不同的场景,第二调度信息可以包括N个子调度信息,所述N个子调度信息中的每个子调度信息对应指示每个协作终端设备的侧行传输参数和侧行时频资源。
如图4d所示,下行控制信息包括第一调度信息对应的字段,及第一个子调度信息的字段、第二个子调度信息的字段,…、第N个子调度信息的字段。N个协作终端设备的每个协作终端设备可以根据接收到的下行控制信息,各自的子调度信息指示的侧行时频资源上,通过各自的子调度信息指示的侧行传输参数发送第二数据。对于目标终端设备,若接收到下行控制信息,则可以在N个子调度信息指示的N个时频资源上,通过N个侧行传输参数接收N个CUE发送的第二数据。目标终端设备若正确接收到下行控制信息,则可以根据下行控制信息,确定第一协作终端设备对应的第一子调度信息,进而在第一子调度信息指示侧行的时频资源上,通过第一子调度信息指示的侧行传输参数接收第二数据。
以N为2为例,即N个CUE包括CUE1和CUE2,下行控制信息中指示的第一调度 信息的字段格式可以参考实施例二和实施例三,在此不再赘述。第二调度信息的字段可以包括:第一子调度信息字段和第二子调度信息字段;其中,第一子调度信息字段可以包括:为CUE1分配的在侧行传输链路上传输第二数据所需的MCS参数、HARQ反馈参数、MIMO模式参数、优先级等侧行传输参数401和侧行时频资源401;第二子调度信息字段可以包括:为CUE2分配的在侧行传输链路上传输第二数据所需的MCS参数、HARQ反馈参数、MIMO模式参数、优先级等侧行传输参数402和侧行时频资源402。
若CUE1正确接收到下行控制信息,可以通过解码第一子调度信息字段,进而基于侧行传输参数401在侧行时频资源401上发送第二数据1。若CUE2正确接收到下行控制信息,则可以通过解码第二子调度信息字段,进而基于侧行传输参数402在侧行时频资源402上发送第二数据2。其中,第二数据1和第二数据2可以相同,也可以不同,具体的CUE1生成第一数据1的生成方式和CUE2生成第二数据2的生成方式,可以参考上述实施例,在此不再赘述。
若TUE正确接收到下行控制信息,则可以通过解码第一子调度信息字段和第二子调度信息字段,进而通过侧行传输参数401在侧行时频资源401上接收CUE1发送的第二数据1,通过侧行传输参数402在侧行时频资源402上接收CUE2发送的第二数据2。
目标终端设备还可以根据CUE1发送的携带有第一子调度信息的SCI1,接收第一子调度信息;通过CUE2发送的携带有第二子调度信息的SCI2,接收第二子调度信息。
其中,侧行传输参数401和侧行传输参数402可以相同,也可以不同。同理,侧行时频资源401和侧行时频资源402可以相同,也可以不同。此时,网络设备可以根据第二调度信息中是否有相同内容,对下行控制信息占用的资源进一步压缩。一种可能的实现方式,如图5a所示,下行控制信息包括第四字段,第一子字段,第二子字段;其中,第四字段指示所述第一调度信息;第一子字段指示第二公共调度信息,第二公共调度信息为N个子调度信息中调度信息相同的部分;第二子字段指示所述N个子调度信息中除第二公共调度信息外的部分。
例如,网络设备若确定第二调度信息中N个子调度信息中的每个子调度信息的侧行时频资源相同,则可以将第二公共调度信息对应的第一子字段携带侧行时频资源的指示信息。第二子字段携带有用于传输第二数据的N个子调度信息的N个侧行传输参数。
在具体实施过程中,网络设备将携带有第四字段、第一子字段和第二子字段的DCI发送至目标终端设备和第一协作终端设备;第一协作终端设备和/或目标终端设备根据第四字段,确定第一调度信息;第一协作终端设备和/或目标终端设备根据第一子字段和第二子字段中第一协作终端设备对应的侧行传输参数及侧行时频资源确定第一协作终端设备的第二调度信息。
以N个CUE为CUE1和CUE2为例,下行控制信息中的第四字段指示的第一调度信息的格式可以参考实施例二和实施例三,在此不再赘述。
结合上述举例,第二调度信息中携带的侧行传输参数可以根据侧行传输参数401和侧行传输参数402是否相同,确定需携带的侧行传输参数。例如,若确定侧行传输参数401、侧行传输参数402相同,此时,第一子字段可以包括:侧行传输参数401。第二子字段可以包括:侧行时频资源401和侧行时频资源402。
若CUE1正确接收到下行控制信息,可以通过解码第一子字段和第二子字段,进而,CUE1可以通过侧行传输参数401在侧行时频资源401上向TUE发送第二数据1。若CUE2 正确接收到下行控制信息,可以通过解码第一子字段和第二子字段,CUE2通过侧行传输参数401在侧行时频资源402上向TUE发送第二数据2。若TUE正确接收到下行控制信息,则可以通过解码第一子字段和第二子字段,进而通过侧行传输参数401在侧行时频资源401上接收第二数据1,通过侧行传输参数401在侧行时频资源402上接收第二数据2。
另一种可能的实现方式,第二调度信息中携带的侧行时频资源可以根据侧行时频资源401和侧行时频资源402是否相同确定。例如,网络设备若确定侧行时频资源401、侧行时频资源402相同。此时,第一子字段可以包括:侧行时频资源401。第二子字段可以包括:侧行传输参数401、侧行传输参数402。
若CUE1正确接收到下行控制信息,可以通过解码第一子字段和第二子字段,进而CUE1可以通过侧行传输参数401在侧行时频资源401上向TUE发送第二数据1。若CUE2正确接收到下行控制信息,可以通过解码第一子字段和第二子字段,进而CUE2通过侧行传输参数402在侧行时频资源401上向TUE发送第二数据2。
再一种可能的实现方式,网络设备若确定第二调度信息中2个子调度信息中的时域资源相同,则可以将第一子字段中携带网络设备为CUE1和CUE2分配的侧行时域资源401’;
第二子字段中携带网络设备为CUE1分配的侧行传输参数401及侧行频域资源401’;以及网络设备为CUE2分配的侧行传输参数402及侧行频域资源402’。
若CUE1正确接收到下行控制信息,则可以通过解码第一子字段和第二子字段,获得侧行时域资源401’、侧行频域资源401’及侧行传输参数401;此时,CUE1可以通过侧行传输参数401,在侧行时域资源401’和侧行频域资源401’上向TUE发送第二数据1。
若CUE2正确接收到下行控制信息,则可以通过解码第一子字段和第二子字段,获得侧行时域资源402’、侧行频域资源402’及侧行传输参数402;此时,CUE2可以通过侧行传输参数402,在侧行时域资源402’和侧行频域资源402’上向TUE发送第二数据2。
若TUE正确接收到下行控制信息,则可以通过解码第一子字段和第二子字段,通过侧行传输参数401,在侧行时域资源401’和侧行频域资源401’上接收CUE1发送的第二数据1;通过侧行传输参数402,在侧行时域资源402’和侧行频域资源402’上接收CUE2发送的第二数据2。TUE可以根据接收到的第二数据1的信号、第二数据2的信号和/或第一数据的信号,进行联合解码。
上述实施方式,通过对第二调度信息的进一步压缩,可以减少用户协作传输中下行控制信息所占用的资源开销,从而提高频谱效率。
示例五
网络设备可以根据第一调度信息与第二调度信息中是否有相同内容,进行进一步压缩下行控制信息占用的资源。具体的,可以如图5b所示,所述下行控制信息包括第一字段、第二字段和第三字段;其中,
所述第一字段指示第一公共调度信息,所述第一公共调度信息为所述第一调度信息与所述第二调度信息中相同的部分;
所述第二字段指示所述第一调度信息中除所述第一公共调度信息外的部分;
所述第三字段指示所述第二调度信息中除所述第一公共调度信息外的部分。
在具体实施过程中,网络设备将携带有第一字段、第二字段和第三字段的DCI发送至目标终端设备和第一协作终端设备;第一协作终端设备和/或目标终端设备根据第一字段和第二字段,确定第一调度信息;第一协作终端设备和/或目标终端设备根据第一字段和第三 字段中第一协作终端设备对应的侧行传输参数及侧行时频资源确定第一协作终端设备的第二调度信息。
以N个CUE为CUE1和CUE2为例,假设网络设备若确定第一调度信息与第二调度信息中的MCS参数相同,则下行控制信息中的第一字段可以为:MCS参数;第二字段可以包括:字段501,字段502和字段503;其中,字段501可以包括:网络设备为CUE1配置的下行传输所需的除MCS参数之外的HARQ反馈参数、MIMO模式参数、优先级等第二下行传输参数501’以及下行时频资源501;字段502可以包括:网络设备为CUE2配置的下行传输所需的除MCS参数之外的HARQ反馈参数、MIMO模式参数、优先级等第二下行传输参数502’以及下行时频资源502;字段503可以包括:网络设备为TUE配置的下行传输所需的除MCS参数之外的HARQ反馈参数、MIMO模式参数、优先级等第二下行传输参数503’以及下行时频资源503;
第三字段可以包括:字段511和字段512,其中,字段511可以包括:网络设备为CUE1配置的侧行传输所需的除MCS参数之外的HARQ反馈参数、MIMO模式参数、优先级等第二侧行传输参数501’以及侧行时频资源501;字段512可以包括:网络设备为CUE2配置的侧行传输所需的除MCS参数之外的HARQ反馈参数、MIMO模式参数、优先级等第二侧行传输参数502’以及侧行时频资源502。
在传输过程中,网络设备将携带有第一字段、第二字段和第三字段的DCI发送至TUE、CUE1和CUE2;
CUE1将第一字段中的MCS参数和第二字段中的字段501中的第二下行传输参数501’,确定为CUE1用于下行传输的下行传输参数501;进而,CUE1通过下行传输参数501在下行时频资源501上接收网络设备发送的第一数据。
CUE2将第一字段中的MCS参数和第二字段中的字段502中的第二下行传输参数502’,确定为CUE2用于下行传输的下行传输参数502;进而,CUE2通过下行传输参数502在下行时频资源502上接收网络设备发送的第一数据。
若TUE接收到下行控制信息,则可以根据第一字段中的MCS参数和第二字段中的字段503中的第二下行传输参数503’,确定为TUE用于下行传输的下行传输参数503;进而,TUE通过下行传输参数503在下行时频资源503上接收网络设备发送的第一数据。
针对侧行传输,CUE1根据第一字段中的MCS参数和第三字段中的字段511中的第二侧行传输参数501’,确定CUE1用于侧行传输的侧行传输参数501;进而,CUE1通过侧行传输参数501在侧行时频资源501上向TUE发送第二数据1。
CUE2根据第一字段中的MCS参数和第三字段中的字段512中的第二侧行传输参数502’,确定为CUE2用于侧行传输的侧行传输参数502;进而,CUE2通过侧行传输参数502在侧行时频资源502上向TUE发送第二数据2。
若TUE接收到下行控制信息,则可以根据第一字段中的MCS参数和第三字段中的字段511,确定CUE1的侧行传输参数501和侧行时频资源501,进而,基于侧行传输参数501在侧行时频资源501上接收TUE发送的第二数据1。根据第一字段和第三字段的字段512,确定CUE2的侧行传输参数502和侧行时频资源502,进而通过侧行传输参数502在侧行时频资源502上接收TUE发送的第二数据2。
上述实施方式,可以减少用户协作传输中下行控制信息所占用的资源开销,从而能够提高频谱效率。
示例六
结合上述实施例,网络设备可以根据第一调度信息与第二调度信息中是否有相同内容,对下行控制信息占用的资源进一步压缩。具体的,如图5c所示,下行控制信息包括第一字段、第二字段、第五字段和第六字段。其中,第一字段指示第一公共调度信息,第一公共调度信息为第一调度信息与所述第二调度信息中相同的部分,第二字段指示第一调度信息中除第一公共调度信息外的部分,第五字段指示第二公共调度信息中除第一公共调度信息外的部分,第二公共调度信息为N个子调度信息中调度信息相同的部分,第六字段指示第二调度信息中除第一公共调度信息及第二公共调度信息外的部分。
在具体实施过程中,网络设备可以将携带有第一字段、第二字段、第五字段和第六字段的DCI发送至目标终端设备和第一协作终端设备。第一协作终端设备和/或目标终端设备根据第一字段和第二字段,确定第一调度信息。第一协作终端设备和/或目标终端设备根据第一字段、第五字段和第六字段中第一协作终端设备对应的传输参数及时频资源确定第一协作终端设备的第二调度信息。
举例来说,网络设备若确定第一调度信息与第二调度信息中的MCS参数和MIMO模式参数相同,且确定第二调度信息中N个子调度信息中的每个子调度信息的侧行时频资源相同,则可以将第一字段携带MCS参数和MIMO模式参数,将第五字段携带侧行时频资源。第二字段携带有用于传输第一数据的下行时频资源和除MCS参数和MIMO模式参数的指示信息之外的下行传输参数;第五字段携带有用于传输第二数据的N个子调度信息中除MCS参数和MIMO模式参数的指示信息之外的N个侧行传输参数。
以N个CUE为CUE1和CUE2为例,网络设备若确定第一调度信息与第二调度信息中的MCS参数和MIMO模式参数相同,且确定第二调度信息中N个子调度信息中的每个子调度信息的侧行时频资源相同,此时,第一字段可以为:MCS参数和MIMO模式参数;第五字段可以包括:网络设备为CUE1和CUE2配置的用于侧行传输的侧行时频资源601。
第二字段可以包括:字段601、字段602和字段603;其中,字段601可以包括:网络设备为CUE1配置的用于下行传输的下行时频资源601,及除MCS参数和MIMO模式参数之外的HARQ反馈参数、优先级等第三下行传输参数601’;字段602可以包括:网络设备为CUE2配置的用于下行传输的下行时频资源602,及除MCS参数和MIMO模式参数之外的HARQ反馈参数、优先级等第三下行传输参数602’。字段603可以包括:网络设备为TUE配置的用于下行传输的下行时频资源603,及除MCS参数和MIMO模式参数之外的HARQ反馈参数、优先级等第三下行传输参数603’。
第六字段可以包括:字段611和字段612;其中,字段611可以包括:网络设备为CUE1配置的用于侧行传输的除MCS参数和MIMO模式参数之外的HARQ反馈参数、优先级等第三侧行传输参数601’;字段612可以包括:网络设备为CUE2配置的用于侧行传输除MCS参数和MIMO模式参数之外的HARQ反馈参数、优先级等第三侧行传输参数602’。
CUE1根据第一字段和第二字段中的字段601,将MCS参数和MIMO模式参数及第三下行传输参数601’,作为CUE1用于下行传输的下行传输参数601;进而CUE1可以通过下行传输参数601,在下行时频资源601上接收网络设备发送的第一数据。
CUE2根据第一字段和第二字段中的字段602,将MCS参数和MIMO模式参数及第三下行传输参数602’,作为CUE2用于下行传输的下行传输参数602;进而CUE2可以通过下行传输参数602,在下行时频资源602上接收网络设备发送的第一数据。
TUE若正确接收到下行控制信息,则根据第一字段和第二字段中的字段603,将MCS参数和MIMO模式参数及第三下行传输参数603’,作为TUE用于下行传输的下行传输参数603;进而TUE可以通过下行传输参数603,在下行时频资源603上接收网络设备发送的第一数据。
CUE1根据第一数据生成第二数据1,和CUE2根据第一数据生成第二数据2的过程可以参考上述实施例,在此不再赘述。
CUE1根据第一字段、第五字段和第六字段中的字段611,将MCS参数和MIMO模式参数及第三侧行传输参数601’,作为CUE1用于侧行传输的侧行传输参数601,进而CUE1可以通过侧行传输参数601,在侧行时频资源601上向TUE发送第二数据1。
TUE若正确接收到下行控制信息,则根据第一字段、第五字段和第六字段中的字段611,将MCS参数和MIMO模式参数及第三侧行传输参数601’,作为CUE1用于侧行传输的侧行传输参数601,进而TUE可以通过侧行传输参数601,在侧行时频资源601上接收CUE1发送的第二数据1。
另一种可能的实现方式,TUE根据CUE1下发的携带有第一字段、第五字段和字段611的SCI,将MCS参数和MIMO模式参数及第三侧行传输参数601’,作为CUE1用于侧行传输的侧行传输参数601,进而TUE可以通过侧行传输参数601,在侧行时频资源601上接收CUE1发送的第二数据1。
CUE2根据第一字段、第五字段和第六字段中的字段612,将MCS参数和MIMO模式参数及第三侧行传输参数602’,作为CUE2用于侧行传输的侧行传输参数602,进而CUE2可以通过侧行传输参数602,在侧行时频资源601上向TUE发送第二数据2。
TUE若正确接收到下行控制信息,则根据第一字段、第五字段和第六字段中的字段612,将MCS参数和MIMO模式参数及第三侧行传输参数602’,作为CUE2用于侧行传输的侧行传输参数602,进而TUE可以通过侧行传输参数602,在侧行时频资源601上接收CUE2发送的第二数据2。
另一种可能的实现方式,TUE根据CUE2下发的携带有第一字段、第五字段和字段612的SCI,将MCS参数和MIMO模式参数及第三侧行传输参数602’,作为CUE2用于侧行传输的侧行传输参数602,进而TUE可以通过侧行传输参数602,在侧行时频资源601上接收CUE2发送的第二数据2。
上述实施方式,通过将第一调度信息和第二调度信息的公共部分去重,并将第二调度信息的公共部分去重,可以减少用户协作传输中下行控制信息所占用的资源开销,从而能够提高频谱效率,另外,对于终端设备而言,减少了解码的复杂度,降低了终端设备的功耗。
可以理解的是,在本申请实施例中,不同示例可单独使用,也可组合使用,不同示例单独使用或组合使用均在本申请的保护范围内。
上述本申请提供的实施例中,分别从网络设备、终端、以及网络设备和终端之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
与上述构思相同,本申请实施例提供一种通信装置,请参考图6,为本申请实施例提供的一种通信装置的结构示意图,该通信装置600包括:收发模块610和处理模块620。该通信装置可用于实现上述任一方法实施例中涉及第一协作终端设备或目标终端设备的功能。例如,该通信装置可以是终端设备,例如手持终端设备或车载终端设备;该通信装置可以是终端设备中包括的芯片,或者包括终端设备的装置,如各种类型的车辆等;该通信装置还可以是其他具有上述终端设备功能的组合器件、部件等。当通信装置是终端设备时,收发模块可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理单元(central processing unit,CPU)。当通信装置是具有上述终端设备功能的部件时,收发模块可以是射频单元,处理模块可以是处理器。当通信装置是芯片系统时,收发模块可以是芯片系统的输入输出接口、处理模块可以是芯片系统的处理器。
当该通信装置作为第一协作终端设备,所述通信装置属于至少一个协作终端设备;执行图2a-图2c中所示的方法实施例时,收发模块610用于执行:接收来自网络设备的下行控制信息,所述下行控制信息包括第一调度信息和第二调度信息,其中,第一调度信息指示用于目标终端设备和至少一个协作终端设备接收来自网络设备的第一数据的下行传输参数和下行时频资源,第二调度信息指示用于至少一个协作终端设备向所述目标终端设备发送第二数据的侧行传输参数和侧行时频资源,第二数据是根据第一数据生成的,目标终端设备和至少一个协作终端设备属于一个协作传输组。
处理模块620用于执行:根据所述第一调度信息接收来自网络设备的第一数据;根据所述第二调度信息向目标终端设备发送第二数据。
当该通信装置作为目标终端设备,执行图2a-图2c中所示的方法实施例时,收发模块610用于执行:接收来自网络设备的下行控制信息,所述下行控制信息包括第一调度信息和第二调度信息,其中,第一调度信息指示用于目标终端设备和至少一个协作终端设备接收来自所述网络设备的第一数据的下行传输参数和下行时频资源,第二调度信息指示用于至少一个协作终端设备向所述通信装置发送第二数据的侧行传输参数和侧行时频资源,第二数据是根据第一数据生成的,所述通信装置和至少一个协作终端设备属于一个协作传输组,第一协作终端设备为所述至少一个协作终端设备中的一个协作终端设备。
处理模块620用于执行:根据所述第二调度信息接收来自第一协作终端设备的第二数据。
一种可能的设计中,至少一个协作终端设备的数量可以为N,N为正整数,相应地,第二调度信息可以包括N个子调度信息,N个子调度信息中的每个子调度信息对应指示N个协作终端设备中的一个协作终端设备的侧行传输参数和侧行时频资源。
一种可能的设计中,下行控制信息具体可以包括第一字段、第二字段和第三字段,其中,第一字段指示第一公共调度信息,第一公共调度信息为第一调度信息与第二调度信息中相同的部分,第二字段指示第一调度信息中除第一公共调度信息外的部分,第三字段指示第二调度信息中除第一公共调度信息外的部分。
另一种可能的设计中,下行控制信息包括第四字段,第一子字段,第二子字段,其中,第四字段指示所述第一调度信息;第一子字段指示第二公共调度信息,第二公共调度信息为所述N个子调度信息中相同的部分,第二子字段指示N个子调度信息中除第二公共调度信息外的部分。
再一种可能的设计中,下行控制信息包括第一字段、第二字段、第五字段和第六字段;
第一字段指示第一公共调度信息,第一公共调度信息为第一调度信息与第二调度信息中相同的部分,第二字段指示第一调度信息中除第一公共调度信息外的部分,第五字段指示第二公共调度信息中除第一公共调度信息外的部分,第二公共调度信息为N个子调度信息中相同的部分,第六字段指示第二调度信息中除第一公共调度信息及第二公共调度信息外的部分。
一种可能的设计中,第一调度信息、第二调度信息可以单不限于包括以下一项或多项:调制编码方式、时频资源、多输入多输出模式、自动请求重传参数、优先级信息。
该通信装置中涉及的处理模块620可以由处理器或处理器相关电路组件实现,收发模块610可以由收发器或收发器相关电路组件实现。该通信装置中的各个模块的操作和/或功能分别为了实现图2a-图2c中所示方法的相应流程。如在图2a-图2c中,若通信装置为第一协作终端设备,收发模块610可用于执行步骤203和步骤303,处理模块620可用于执行步骤204至步骤205,和步骤304至步骤305。若通信装置为目标终端设备,收发模块610可用于执行步骤203和步骤303,处理模块620可用于执行步骤204和步骤206,步骤304和步骤306。
关于处理模块620、收发模块610的具体执行过程,可参见上述方法实施例中的记载。本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
请参考图7,为本申请实施例中提供的一种通信装置的另一结构示意图。该通信装置具体可为一种终端设备。便于理解和图示方便,在图7中,终端设备以手机作为例子。如图7所示,终端设备包括处理器,还可以包括存储器,当然,也还可以包括射频电路、天线以及输入输出装置等。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图7中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发模块,将具有处理功能的处理器视为终端设备的处理模块。即终端设备包括收发模块和处理模块。收发模块也可以称为收发器、收发机、收发装置等。处理模块也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发模块中用于实现接收功能的器件视为接 收模块,将收发模块中用于实现发送功能的器件视为发送模块,即收发模块包括接收模块和发送模块。收发模块有时也可以称为收发机、收发器、或收发电路等。接收模块有时也可以称为接收机、接收器、或接收电路等。发送模块有时也可以称为发射机、发射器或者发射电路等。应理解,收发模块用于执行上述方法实施例中终端设备的发送操作和接收操作,处理模块用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
本申请实施例还提供另一种通信装置,请参考图8,为本申请实施例提供的另一种通信装置的结构示意图,该通信装置800包括:收发模块810和处理模块820。该通信装置可用于实现上述任一方法实施例中涉及网络设备的功能。例如,该通信装置可以是网络设备或网络设备中包括的芯片,该通信装置还可以是其他具有上述网络设备功能的组合器件、部件等。当通信装置是网络设备时,收发模块可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理单元(central processing unit,CPU)。当通信装置是具有上述网络设备功能的部件时,收发模块可以是射频单元,处理模块可以是处理器。当通信装置是芯片系统时,收发模块可以是芯片系统的输入输出接口、处理模块可以是芯片系统的处理器。
当该通信装置作为网络设备,执行图2a-图2c中所示的方法实施例时,收发模块810,用于执行:向目标终端设备和至少一个协作终端设备发送下行控制信息,所述下行控制信息包括所述第一调度信息和所述第二调度信息。
处理模块820,用于:生成第一调度信息和第二调度信息,所述第一调度信息指示用于目标终端设备和至少一个协作终端设备接收来自所述网络设备的第一数据的下行传输参数和下行时频资源,所述第二调度信息指示用于所述至少一个协作终端设备向所述目标终端设备发送第二数据的侧行传输参数和侧行时频资源,所述目标终端设备和所述至少一个协作终端设备属于一个协作传输组,所述第二数据是根据所述第一数据生成的。
一种可能的设计中,至少一个协作终端设备的数量可以为N,N为正整数,相应地,第二调度信息可以包括N个子调度信息,N个子调度信息中的每个子调度信息对应指示N个协作终端设备中的一个协作终端设备的侧行传输参数和侧行时频资源。
一种可能的设计中,下行控制信息具体可以包括第一字段、第二字段和第三字段,其中,第一字段指示第一公共调度信息,第一公共调度信息为第一调度信息与第二调度信息中相同的部分,第二字段指示第一调度信息中除第一公共调度信息外的部分,第三字段指示第二调度信息中除第一公共调度信息外的部分。
另一种可能的设计中,下行控制信息包括第四字段,第一子字段,第二子字段,其中,第四字段指示所述第一调度信息;第一子字段指示第二公共调度信息,第二公共调度信息为所述N个子调度信息中相同的部分,第二子字段指示N个子调度信息中除第二公共调度信息外的部分。
再一种可能的设计中,下行控制信息包括第一字段、第二字段、第五字段和第六字段;
第一字段指示第一公共调度信息,第一公共调度信息为第一调度信息与第二调度信息中相同的部分,第二字段指示第一调度信息中除第一公共调度信息外的部分,第五字段指示第二公共调度信息中除第一公共调度信息外的部分,第二公共调度信息为N个子调度信息中相同的部分,第六字段指示第二调度信息中除第一公共调度信息及第二公共调度信息外的部分。
一种可能的设计中,第一调度信息、第二调度信息可以单不限于包括以下一项或多项: 调制编码方式、时频资源、多输入多输出模式、自动请求重传参数、优先级信息。
应理解,该通信装置中涉及的处理模块820可以由处理器或处理器相关电路组件实现,收发模块810可以由收发器或收发器相关电路组件实现。该通信装置中的各个模块的操作和/或功能分别为了实现图2a-图2c中所示方法的相应流程。如在图2a-图2c中,通信装置作为网络设备,收发模块810可用于执行步骤202和步骤302,处理模块820可用于执行步骤201和步骤301。为了简洁,在此不再一一列举。
请参考图9为本申请实施例中提供的另一种通信装置的另一结构示意图。该通信装置可具体为一种网络设备,例如基站,用于实现上述任一方法实施例中涉及网络设备的功能。
该网络设备包括:一个或多个射频单元,如远端射频单元(remote radio unit,RRU)901和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)902。所述RRU 901可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线9011和射频单元9012。所述RRU 901部分主要用于射频信号的收发以及射频信号与基带信号的转换。所述BBU 902部分主要用于进行基带处理,对基站进行控制等。所述RRU 901与BBU 902可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 902为基站的控制中心,也可以称为处理模块,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理模块)902可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU 902可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 902还可以包括存储器9021和处理器9022,所述存储器9021用于存储必要的指令和数据。所述处理器9022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中发送操作。所述存储器9021和处理器9022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本申请实施例还提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述任一方法实施例中的方法。
可选地,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
示例性的,该芯片系统可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器 (programmable logic device,PLD)或其他集成芯片。
应理解,上述方法实施例中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例还提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述任一方法实施例中的方法。
本申请实施例还提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述任一方法实施例中的方法。
本申请实施例还提供一种通信系统,该通信系统包括网络设备和至少一个终端设备。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通 过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例提供的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (37)

  1. 一种通信方法,其特征在于,包括:
    网络设备生成第一调度信息和第二调度信息,所述第一调度信息指示用于目标终端设备和至少一个协作终端设备接收来自所述网络设备的第一数据的下行传输参数和下行时频资源,所述第二调度信息指示用于所述至少一个协作终端设备向所述目标终端设备发送第二数据的侧行传输参数和侧行时频资源,所述目标终端设备和所述至少一个协作终端设备属于一个协作传输组,所述第二数据是根据所述第一数据生成的;
    所述网络设备向所述目标终端设备和所述至少一个协作终端设备发送下行控制信息,所述下行控制信息包括所述第一调度信息和所述第二调度信息。
  2. 如权利要求1所述的方法,其特征在于,
    所述第二调度信息指示第一侧行传输参数和第一侧行时频资源,所述第一侧行传输参数和所述第一侧行时频资源用于所述至少一个协作终端设备中的每个协作终端设备发送所述第二数据。
  3. 如权利要求1所述的方法,其特征在于,所述至少一个协作终端设备的数量为N,N为正整数;所述第二调度信息包括N个子调度信息,所述N个子调度信息中的每个子调度信息对应指示每个协作终端设备的侧行传输参数和侧行时频资源。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述下行控制信息包括第一字段、第二字段和第三字段;其中,
    所述第一字段指示第一公共调度信息,所述第一公共调度信息为所述第一调度信息与所述第二调度信息中相同的部分;
    所述第二字段指示所述第一调度信息中除所述第一公共调度信息外的部分;
    所述第三字段指示所述第二调度信息中除所述第一公共调度信息外的部分。
  5. 如权利要求3所述的方法,其特征在于,所述下行控制信息包括第四字段,第一子字段,第二子字段;其中,
    所述第四字段指示所述第一调度信息,所述第一子字段指示第二公共调度信息,所述第二公共调度信息为所述N个子调度信息中调度信息相同的部分;
    所述第二子字段指示所述N个子调度信息中除所述第二公共调度信息外的部分。
  6. 如权利要求3所述的方法,其特征在于,所述下行控制信息包括第一字段、第二字段、第五字段和第六字段;
    所述第一字段指示第一公共调度信息,所述第一公共调度信息为所述第一调度信息与所述第二调度信息中相同的部分;
    所述第二字段指示所述第一调度信息中除所述第一公共调度信息外的部分;
    所述第五字段指示第二公共调度信息中除所述第一公共调度信息外的部分,所述第二公共调度信息为所述N个子调度信息中调度信息相同的部分;
    所述第六字段为所述第二调度信息中除所述第一公共调度信息及所述第二公共调度信息外的部分。
  7. 如权利要求1~6任一所述的方法,其特征在于,所述第一调度信息、所述第二调度信息包括以下一项或多项:
    调制编码方式、时频资源、多输入多输出模式、自动请求重传参数、优先级信息。
  8. 如权利要求1~6任一所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述下行控制信息发送所述第一数据。
  9. 一种通信方法,其特征在于,所述方法包括:
    第一协作终端设备接收来自网络设备的下行控制信息,所述下行控制信息包括第一调度信息和第二调度信息,其中,所述第一调度信息指示用于目标终端设备和至少一个协作终端设备接收来自所述网络设备的第一数据的下行传输参数和下行时频资源,所述第二调度信息指示用于所述至少一个协作终端设备向所述目标终端设备发送第二数据的侧行传输参数和侧行时频资源,所述第二数据是根据所述第一数据生成的,所述目标终端设备和所述至少一个协作终端设备属于一个协作传输组,所述第一协作终端设备为所述至少一个协作终端设备中的一个协作终端设备;
    所述第一协作终端设备根据所述第一调度信息接收来自所述网络设备的所述第一数据;
    所述第一协作终端设备根据所述第二调度信息向所述目标终端设备发送所述第二数据。
  10. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    所述第一协作终端设备向所述目标终端设备发送侧行控制信息,所述侧行控制信息指示用于所述第一协作终端设备向所述目标终端设备发送第二数据的所述侧行传输参数和所述侧行时频资源。
  11. 如权利要求10所述的方法,其特征在于,所述第一协作终端设备向所述目标终端设备发送侧行控制信息之前,还包括:
    所述第一协作终端设备在预定时长内未监测到所述目标终端设备发送的反馈确认消息或反馈否定消息。
  12. 如权利要求9所述的方法,其特征在于,所述第二调度信息指示第一侧行传输参数和第一侧行时频资源,所述第一侧行传输参数和所述第一侧行时频资源用于所述第一协作终端设备向所述目标终端设备发送所述第二数据。
  13. 一种通信方法,其特征在于,所述方法包括:
    目标终端设备接收来自网络设备的下行控制信息,所述下行控制信息包括第一调度信息和第二调度信息;所述第一调度信息指示用于所述目标终端设备和至少一个协作终端设备接收来自所述网络设备的第一数据的下行传输参数和下行时频资源,所述第二调度信息指示用于所述至少一个协作终端设备向所述目标终端设备发送第二数据的侧行传输参数和侧行时频资源,所述目标终端设备和所述至少一个协作终端设备属于一个协作传输组;
    所述目标终端设备根据所述第二调度信息接收来自所述第一协作终端设备的所述第二数据,所述第一协作终端设备为所述至少一个协作终端设备中的一个协作终端设备,所述第二数据是根据所述第一数据生成的。
  14. 如权利要求13所述的方法,其特征在于,所述方法还包括:
    所述目标终端设备根据所述第一调度信息接收来自所述网络设备的所述第一数据。
  15. 如权利要求13或14所述的方法,其特征在于,所述第二调度信息指示第一侧行传输参数和第一侧行时频资源,所述第一侧行传输参数和所述第一侧行时频资源用于所述目标终端设备接收来自所述第一协作终端设备的所述第二数据。
  16. 如权利要求9-15任一项所述的方法,其特征在于,所述至少一个协作终端设备的 数量为N,N为正整数;所述第二调度信息包括N个子调度信息,所述N个子调度信息中的每个子调度信息对应指示每个协作终端设备的侧行传输参数和侧行时频资源。
  17. 如权利要求9-15任一项所述的方法,其特征在于,所述下行控制信息包括第一字段、第二字段和第三字段;其中,
    所述第一字段指示第一公共调度信息,所述第一公共调度信息为所述第一调度信息与所述第二调度信息中相同的部分;
    所述第二字段指示所述第一调度信息中除所述第一公共调度信息外的部分;
    所述第三字段指示所述第二调度信息中除所述第一公共调度信息外的部分。
  18. 如权利要求17所述的方法,其特征在于,所述下行控制信息包括第四字段,第一子字段,第二子字段;其中,
    所述第四字段指示所述第一调度信息;
    所述第一子字段指示第二公共调度信息,所述第二公共调度信息为所述N个子调度信息中调度信息相同的部分;
    所述第二子字段指示所述N个子调度信息中除所述第二公共调度信息外的部分。
  19. 如权利要求17所述的方法,其特征在于,所述下行控制信息包括第一字段、第二字段、第五字段和第六字段;其中,
    所述第一字段指示第一公共调度信息,所述第一公共调度信息为所述第一调度信息与所述第二调度信息中相同的部分;
    所述第二字段指示所述第一调度信息中除所述第一公共调度信息外的部分;
    所述第五字段指示第二公共调度信息中除所述第一公共调度信息外的部分,所述第二公共调度信息为所述N个子调度信息中调度信息相同的部分;
    所述第六字段指示所述第二调度信息中除所述第一公共调度信息及所述第二公共调度信息外的部分。
  20. 如权利要求9~19任一所述的方法,其特征在于,所述第一调度信息、所述第二调度信息包括以下一项或多项:
    调制编码方式、时频资源、多输入多输出模式、自动请求重传参数、优先级信息。
  21. 一种通信装置,其特征在于,包括:
    处理模块,用于生成第一调度信息和第二调度信息,所述第一调度信息指示用于目标终端设备和至少一个协作终端设备接收来自所述通信装置的第一数据的下行传输参数和下行时频资源,所述第二调度信息指示用于所述至少一个协作终端设备向所述目标终端设备发送第二数据的侧行传输参数和侧行时频资源,所述目标终端设备和所述至少一个协作终端设备属于一个协作传输组,所述第二数据是根据所述第一数据生成的;
    收发模块,用于向所述目标终端设备和所述至少一个协作终端设备发送下行控制信息,所述下行控制信息包括所述第一调度信息和所述第二调度信息。
  22. 如权利要求21所述的装置,其特征在于,所述第二调度信息指示第一侧行传输参数和第一侧行时频资源,所述第一侧行传输参数和所述第一侧行时频资源用于所述至少一个协作终端设备中的每个协作终端设备发送所述第二数据。
  23. 如权利要求21所述的装置,其特征在于,所述收发模块,还用于:根据所述下行控制信息发送所述第一数据。
  24. 一种通信装置,其特征在于,包括:
    收发模块,用于接收来自网络设备的下行控制信息,所述下行控制信息包括第一调度信息和第二调度信息,其中,所述第一调度信息指示用于目标终端设备和至少一个协作终端设备接收来自所述网络设备的第一数据的下行传输参数和下行时频资源,所述第二调度信息指示用于所述至少一个协作终端设备向所述目标终端设备发送第二数据的侧行传输参数和侧行时频资源,所述第二数据是根据所述第一数据生成的,所述目标终端设备和所述至少一个协作终端设备属于一个协作传输组,所述通信装置属于所述至少一个协作终端设备;
    处理模块,用于根据所述第一调度信息接收来自所述网络设备的所述第一数据;根据所述第二调度信息向所述目标终端设备发送所述第二数据。
  25. 如权利要求24所述的装置,其特征在于,所述第二调度信息指示第一侧行传输参数和第一侧行时频资源,所述第一侧行传输参数和所述第一侧行时频资源用于所述通信装置向所述目标终端设备发送所述第二数据。
  26. 如权利要求24所述的装置,其特征在于,所述收发模块,还用于:向所述目标终端设备发送侧行控制信息,所述侧行控制信息指示用于所述通信装置向所述目标终端设备发送第二数据的所述侧行传输参数和所述侧行时频资源。
  27. 如权利要求24所述的装置,其特征在于,所述处理模块,还用于:在预定时长内监测所述目标终端设备发送的反馈确认消息或反馈否定消息。
  28. 一种通信装置,其特征在于,包括:
    收发模块,用于接收来自网络设备的下行控制信息,所述下行控制信息包括第一调度信息和第二调度信息;所述第一调度信息指示用于所述通信装置和至少一个协作终端设备接收来自所述网络设备的第一数据的下行传输参数和下行时频资源,所述第二调度信息指示用于所述至少一个协作终端设备向所述通信装置发送第二数据的侧行传输参数和侧行时频资源,所述通信装置和所述至少一个协作终端设备属于一个协作传输组;
    处理模块,用于根据所述第二调度信息接收来自所述第一协作终端设备的所述第二数据,所述第一协作终端设备为所述至少一个协作终端设备中的一个协作终端设备,所述第二数据是根据所述第一数据生成的。
  29. 如权利要求28所述的装置,其特征在于,所述收发模块,还用于:根据所述第一调度信息接收来自所述网络设备的所述第一数据。
  30. 如权利要求28或29所述的装置,其特征在于,所述第二调度信息指示第一侧行传输参数和第一侧行时频资源,所述第一侧行传输参数和所述第一侧行时频资源用于所述通信装置接收来自所述第一协作终端设备的所述第二数据。
  31. 如权利要求21-30任一项所述的装置,其特征在于,所述至少一个协作终端设备的数量为N,N为正整数;所述第二调度信息包括N个子调度信息,所述N个子调度信息中的每个子调度信息对应指示每个协作终端设备的侧行传输参数和侧行时频资源。
  32. 如权利要求21-30任一项所述的装置,其特征在于,所述下行控制信息包括第一字段、第二字段和第三字段;其中,
    所述第一字段指示第一公共调度信息,所述第一公共调度信息为所述第一调度信息与所述第二调度信息中相同的部分;
    所述第二字段指示所述第一调度信息中除所述第一公共调度信息外的部分;
    所述第三字段指示所述第二调度信息中除所述第一公共调度信息外的部分。
  33. 如权利要求31所述的装置,其特征在于,所述下行控制信息包括第四字段,第一子字段,第二子字段;其中,
    所述第四字段指示所述第一调度信息,所述第一子字段指示第二公共调度信息,所述第二公共调度信息为所述N个子调度信息中调度信息相同的部分;
    所述第二子字段指示所述N个子调度信息中除所述第二公共调度信息外的部分。
  34. 如权利要求31所述的装置,其特征在于,所述下行控制信息包括第一字段、第二字段、第五字段和第六字段;
    所述第一字段指示第一公共调度信息,所述第一公共调度信息为所述第一调度信息与所述第二调度信息中相同的部分;
    所述第二字段指示所述第一调度信息中除所述第一公共调度信息外的部分;
    所述第五字段指示第二公共调度信息中除所述第一公共调度信息外的部分,所述第二公共调度信息为所述N个子调度信息中调度信息相同的部分;
    所述第六字段为所述第二调度信息中除所述第一公共调度信息及所述第二公共调度信息外的部分。
  35. 如权利要求21-34任一所述的装置,其特征在于,所述第一调度信息、所述第二调度信息包括以下一项或多项:调制编码方式、时频资源、多输入多输出模式、自动请求重传参数、优先级信息。
  36. 一种通信装置,其特征在于,包括处理器、收发器和存储器,所述存储器中存储有指令,所述处理器执行所述指令时,使得所述装置通过所述收发器执行权利要求1至20任一项所述的方法。
  37. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至20任一项所述的方法。
PCT/CN2020/113061 2019-09-02 2020-09-02 一种通信方法及装置 WO2021043174A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20860206.0A EP4024995A4 (en) 2019-09-02 2020-09-02 COMMUNICATION APPARATUS AND METHOD
US17/684,220 US20220272742A1 (en) 2019-09-02 2022-03-01 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910824680.1 2019-09-02
CN201910824680.1A CN112449436B (zh) 2019-09-02 2019-09-02 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/684,220 Continuation US20220272742A1 (en) 2019-09-02 2022-03-01 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2021043174A1 true WO2021043174A1 (zh) 2021-03-11

Family

ID=74735041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113061 WO2021043174A1 (zh) 2019-09-02 2020-09-02 一种通信方法及装置

Country Status (4)

Country Link
US (1) US20220272742A1 (zh)
EP (1) EP4024995A4 (zh)
CN (1) CN112449436B (zh)
WO (1) WO2021043174A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023033703A1 (en) * 2021-09-01 2023-03-09 Telefonaktiebolaget Lm Ericsson (Publ) Enhanced network controlled sidelink communications

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114916069A (zh) * 2021-02-10 2022-08-16 华为技术有限公司 一种数据传输方法及通信装置
CN113329502B (zh) * 2021-05-20 2024-06-07 中国水利水电科学研究院 一种基于可变二维码的多环节独立设备标识方法及系统
US12010677B2 (en) * 2021-07-09 2024-06-11 Qualcomm Incorporated Cancellation of sidelink data channel
WO2023115365A1 (en) * 2021-12-22 2023-06-29 Qualcomm Incorporated Communicating selection of user equipment for user equipment cooperation
CN117241396A (zh) * 2022-06-02 2023-12-15 华为技术有限公司 数据传输的方法、装置和系统
WO2024075192A1 (ja) * 2022-10-04 2024-04-11 株式会社Nttドコモ 端末、基地局及び通信方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130107848A1 (en) * 2010-06-29 2013-05-02 Lg Electronics Inc. Method and apparatus for performing client cooperation transmission through a group resource allocation scheme in a wireless access system
CN103974420A (zh) * 2013-02-04 2014-08-06 普天信息技术研究院有限公司 一种长期演进系统中设备到设备数据的传输方法
CN109565853A (zh) * 2016-07-01 2019-04-02 Lg 电子株式会社 在无线通信系统中发送和接收数据的方法及其装置
CN109565488A (zh) * 2016-11-03 2019-04-02 松下电器(美国)知识产权公司 基站、用户设备和无线通信方法
CN109729594A (zh) * 2017-10-27 2019-05-07 华为技术有限公司 控制信息的处理方法及系统、第一设备、第二设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10778387B2 (en) * 2016-11-23 2020-09-15 Huawei Technologies Co., Ltd. System and method for group-assisted downlink transmission
WO2018131922A1 (ko) * 2017-01-13 2018-07-19 엘지전자 주식회사 사이드링크를 통해 harqack/nack 신호를 전송하는 방법 및 단말
WO2018131935A1 (ko) * 2017-01-13 2018-07-19 엘지전자 주식회사 근접 기반 무선 통신 방법 및 사용자기기
JP6936862B2 (ja) * 2017-02-10 2021-09-22 華為技術有限公司Huawei Technologies Co.,Ltd. データ伝送方法、関連するデバイス、及びシステム
CN108512576A (zh) * 2017-02-28 2018-09-07 华为技术有限公司 一种实现用户设备协作的方法及装置
CN109217989B (zh) * 2017-06-30 2022-02-18 华为技术有限公司 数据传输的方法、接入网设备和终端设备
KR102452316B1 (ko) * 2017-07-07 2022-10-07 엘지전자 주식회사 무선통신시스템에서 상향링크 자원과 사이드링크 자원을 공유하여 단말 간 통신을 수행하는 방법 및 장치
EP3873149B1 (en) * 2018-10-28 2023-05-03 LG Electronics Inc. Method by which terminal performs sidelink operation in wireless communication system, and terminal using method
CN111277356B (zh) * 2018-12-05 2021-11-09 华为技术有限公司 侧行链路质量测量的方法和通信装置
CN111356240B (zh) * 2018-12-20 2023-06-16 华硕电脑股份有限公司 处理侧链路反馈与侧链路数据之间的冲突的方法和设备
CN109792594B (zh) * 2018-12-29 2022-05-20 北京小米移动软件有限公司 直连通信的数据传输方法、装置、设备及系统
CN113783663B (zh) * 2019-02-22 2023-06-09 Oppo广东移动通信有限公司 传输信息的方法、终端设备和网络设备
WO2021029674A1 (en) * 2019-08-13 2021-02-18 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving a feedback signal in a wireless communication system
US20210136783A1 (en) * 2019-10-30 2021-05-06 Qualcomm Incorporated Reversed sidelink communication initiated by receiving user equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130107848A1 (en) * 2010-06-29 2013-05-02 Lg Electronics Inc. Method and apparatus for performing client cooperation transmission through a group resource allocation scheme in a wireless access system
CN103974420A (zh) * 2013-02-04 2014-08-06 普天信息技术研究院有限公司 一种长期演进系统中设备到设备数据的传输方法
CN109565853A (zh) * 2016-07-01 2019-04-02 Lg 电子株式会社 在无线通信系统中发送和接收数据的方法及其装置
CN109565488A (zh) * 2016-11-03 2019-04-02 松下电器(美国)知识产权公司 基站、用户设备和无线通信方法
CN109729594A (zh) * 2017-10-27 2019-05-07 华为技术有限公司 控制信息的处理方法及系统、第一设备、第二设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on sidelink resource allocation mode 1", 3GPP TSG RAN WG1 MEETING #96BIS; R1-1903950, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 2 April 2019 (2019-04-02), Xi’an, China; 20190408 - 20190412, XP051707065 *
HUAWEI, HISILICON: "Support for UE Cooperation in NR", 3GPP TSG RAN WG1 MEETING #85; R1-164379, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 27 May 2016 (2016-05-27), Nanjing, China, 20160523-20160527, pages 1 - 7, XP051089769 *
See also references of EP4024995A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023033703A1 (en) * 2021-09-01 2023-03-09 Telefonaktiebolaget Lm Ericsson (Publ) Enhanced network controlled sidelink communications

Also Published As

Publication number Publication date
US20220272742A1 (en) 2022-08-25
CN112449436B (zh) 2024-07-09
EP4024995A4 (en) 2022-10-19
EP4024995A1 (en) 2022-07-06
CN112449436A (zh) 2021-03-05

Similar Documents

Publication Publication Date Title
WO2021043174A1 (zh) 一种通信方法及装置
WO2021057805A1 (zh) 一种通信方法及装置
WO2020224432A1 (zh) 一种通信方法和装置
US20210243790A1 (en) Transmission apparatus and method of feedback information
WO2022150937A1 (zh) 用于接收数据的方法与装置和用于发送数据的方法与装置
WO2020211096A1 (zh) 无线通信方法、终端设备和网络设备
WO2020259611A1 (zh) 一种通信方法、装置及存储介质
WO2019076207A1 (zh) 数据传输的确认方法及设备
CN110730513B (zh) 一种通信方法及装置
JP7419553B2 (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
WO2020199778A1 (zh) 一种通信方法及通信装置
US20230171035A1 (en) Data transmission method and apparatus
US20220368505A1 (en) Data feedback method and apparatus
WO2020199032A1 (zh) 一种通信方法及设备
US20210376968A1 (en) Feedback method and apparatus
WO2021088260A1 (zh) 传输反馈信息的方法、终端设备和网络设备
WO2021088063A1 (zh) 一种通信方法及装置
JP2023525249A (ja) サイドリンクフィードバック情報の送受信方法及び装置
WO2019191911A1 (zh) 数据传输的方法和设备
WO2023004584A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022016477A1 (zh) 一种通信方法及通信装置
WO2022061548A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023279399A1 (zh) 侧行传输资源的确定方法、发送方法、装置、设备及介质
WO2023155151A1 (zh) 无线通信的方法、终端设备和网络设备
US20240007231A1 (en) Wireless communication method and terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020860206

Country of ref document: EP

Effective date: 20220330