WO2023155151A1 - 无线通信的方法、终端设备和网络设备 - Google Patents

无线通信的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2023155151A1
WO2023155151A1 PCT/CN2022/076880 CN2022076880W WO2023155151A1 WO 2023155151 A1 WO2023155151 A1 WO 2023155151A1 CN 2022076880 W CN2022076880 W CN 2022076880W WO 2023155151 A1 WO2023155151 A1 WO 2023155151A1
Authority
WO
WIPO (PCT)
Prior art keywords
sps configuration
information field
sps
dci
index
Prior art date
Application number
PCT/CN2022/076880
Other languages
English (en)
French (fr)
Inventor
马腾
张世昌
赵振山
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/076880 priority Critical patent/WO2023155151A1/zh
Publication of WO2023155151A1 publication Critical patent/WO2023155151A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, relate to a wireless communication method, a terminal device, and a network device.
  • NR New Radio
  • MMS Multicast Broadcast Service
  • the embodiment of the present application provides a wireless communication method, terminal equipment, and network equipment.
  • the communication system can simultaneously support the SPS configuration associated with the unicast service and the SPS configuration associated with the MBS service to work at the same time, and there is no limitation or influence on each other. Furthermore, the SPS configuration associated with the unicast service and the SPS configuration associated with the MBS service can work together to improve compatibility of the communication system.
  • a wireless communication method includes:
  • the terminal device receives the first DCI
  • the first DCI is used to activate or deactivate M SPS configurations, and M is a positive integer;
  • the types of the M SPS configurations include at least one of the following: SPS configurations associated with unicast services, and SPS configurations associated with MBS services.
  • a wireless communication method in a second aspect, includes:
  • the network device sends the first DCI
  • the first DCI is used to activate or deactivate M SPS configurations, and M is a positive integer;
  • the types of the M SPS configurations include at least one of the following: SPS configurations associated with unicast services, and SPS configurations associated with MBS services.
  • a terminal device configured to execute the method in the first aspect above.
  • the terminal device includes a functional module for executing the method in the first aspect above.
  • a network device configured to execute the method in the second aspect above.
  • the network device includes a functional module for executing the method in the second aspect above.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to invoke and run the computer program stored in the memory to execute the method in the first aspect above.
  • a sixth aspect provides a network device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect above.
  • an apparatus for implementing the method in any one of the first aspect to the second aspect above.
  • the device includes: a processor, configured to invoke and run a computer program from the memory, so that the device installed with the device executes the method in any one of the above first to second aspects.
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method in any one of the above-mentioned first aspect to the second aspect.
  • a computer program product including computer program instructions, the computer program instructions causing a computer to execute the method in any one of the above first to second aspects.
  • a computer program which, when running on a computer, causes the computer to execute the method in any one of the above first to second aspects.
  • the network device can activate or deactivate M SPS configurations through the first DCI, and the types of the M SPS configurations include at least one of the following: SPS configurations associated with unicast services, and SPS configurations associated with MBS services. Therefore, the communication system can simultaneously support the SPS configuration associated with the unicast service and the SPS configuration associated with the MBS service to work at the same time, and there is no restriction or influence on each other. Further, the SPS configuration associated with the unicast service and the SPS configuration associated with the MBS service The ability to work together improves the compatibility of the communication system.
  • FIG. 1 is a schematic diagram of a communication system architecture applied in an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a BWP provided by the present application.
  • Fig. 3 is a schematic diagram of an SC-PTM channel and its mapping provided by the present application.
  • Fig. 4 is a schematic diagram of an MBS downlink scheduling method provided by the present application.
  • Fig. 5 is a schematic interaction flowchart of a wireless communication method provided according to an embodiment of the present application.
  • Fig. 6 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
  • Fig. 7 is a schematic block diagram of a network device provided according to an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 9 is a schematic block diagram of an apparatus provided according to an embodiment of the present application.
  • Fig. 10 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunications System
  • WLAN Wireless Local Area Networks
  • IoT Internet of Things
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in the embodiment of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and can also be applied to an independent (Standalone, SA ) network deployment scenarios, or applied to non-independent (Non-Standalone, NSA) network deployment scenarios.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent network deployment scenarios
  • non-Standalone, NSA non-independent network deployment scenarios.
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, Wherein, the licensed spectrum can also be regarded as a non-shared spectrum.
  • the communication system in the embodiment of the present application can be applied to the FR1 frequency band (corresponding to the frequency range of 410MHz to 7.125GHz), can also be applied to the FR2 frequency band (corresponding to the frequency range of 24.25GHz to 52.6GHz), and can also be applied to The new frequency band corresponds to, for example, a frequency range from 52.6 GHz to 71 GHz or a high-frequency frequency range from 71 GHz to 114.25 GHz.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital assistant (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, vehicle communication equipment, wireless communication chip/application-specific integrated circuit (application specific integrated circuit, ASIC)/system-on-chip (System on Chip, SoC), etc.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in self driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • wireless terminal equipment in transportation safety wireless terminal equipment in smart city or wireless terminal equipment in smart home
  • vehicle communication equipment wireless communication chip/application-specific integrated circuit (application specific integrated circuit, ASIC
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , or a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network A network device or a base station (gNB) in a network device or a network device in a future evolved PLMN network or a network device in an NTN network.
  • AP Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolution
  • eNB evolved base station
  • gNB base station
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite, balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, in water, or other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources
  • the cell may be a network device (
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
  • the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
  • the communication system 100 may include a network device 110, and the network device 110 may be a device for communicating with a terminal device 120 (or called a communication terminal, terminal).
  • the network device 110 can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. This embodiment of the present application does not limit it.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include a network equipment 110 and a terminal equipment 120 with communication functions.
  • the network equipment 110 and the terminal equipment 120 may be the specific equipment described above, and will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
  • this article involves a first communication device and a second communication device
  • the first communication device may be a terminal device, such as a mobile phone, a machine facility, a customer premise equipment (Customer Premise Equipment, CPE), an industrial device, a vehicle, etc.
  • the second communication device may be a peer communication device of the first communication device, such as a network device, a mobile phone, an industrial device, a vehicle, and the like.
  • description is made by taking the first communication device as a terminal device and the second communication device as a network device as a specific example.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • predefined or “preconfigured” can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • the application does not limit its specific implementation.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which is not limited in the present application.
  • 5G communication networks have been introduced.
  • the main application scenarios of 5G are: Enhanced Mobile Broadband (Enhance Mobile Broadband, eMBB), Ultra-Reliable and Low Latency Communication (URLLC), Massive machine type of communication (mMTC) ).
  • eMBB enhanced Mobile Broadband
  • URLLC Ultra-Reliable and Low Latency Communication
  • mMTC Massive machine type of communication
  • eMBB still aims at users' access to multimedia content, services and data, and its demand is growing rapidly.
  • eMBB may be deployed in different scenarios, such as indoors, urban areas, and rural areas, the capabilities and requirements vary greatly, so it cannot be generalized and must be analyzed in detail in combination with specific deployment scenarios.
  • Typical applications of URLLC include: industrial automation, electric power automation, telemedicine operations (surgery), traffic safety guarantee, etc.
  • the typical characteristics of mMTC include: high connection density, small data volume, delay-insensitive services, low cost and long service life of modules, etc.
  • NR can also be deployed independently.
  • RRC Radio Resource Control
  • RRC deactivation RRC_INACTIVE
  • RRC_INACTIVE RRC deactivation
  • RRC_INACTIVE RRC deactivation
  • RRC_IDLE Mobility is terminal-based cell selection and reselection, paging is initiated by the core network (Core Network, CN), and the paging area is configured by the CN. There is no Access Stratum (AS) context of the terminal on the base station side. There is no RRC connection.
  • AS Access Stratum
  • RRC_CONNECTED There is an RRC connection, and the base station and the terminal have the AS context of the terminal.
  • the network side knows the location of the terminal at the specific cell level. Mobility is mobility controlled by the network side. Unicast data can be transmitted between the terminal and the base station.
  • RRC_INACTIVE Mobility is cell selection and reselection based on the terminal, there is a connection between the core network and NR (CN-NR), the AS context of the terminal exists on a certain base station, and paging is performed by the radio access network (Radio Access Network, RAN) trigger, the RAN-based paging area is managed by the RAN, and the network side knows the location of the terminal based on the RAN paging area level.
  • CN-NR Radio Access Network
  • RAN-based paging area is managed by the RAN, and the network side knows the location of the terminal based on the RAN paging area level.
  • the maximum channel bandwidth can be 400MHz (such as wideband carrier), which is very large compared to the maximum 20M bandwidth of LTE. If a terminal device remains operating on a broadband carrier, the power consumption of the terminal device is significant. Therefore, the radio frequency (RF) bandwidth of the terminal device can be adjusted according to the actual throughput of the terminal device. And introduce the Band Width Part (BWP) to optimize the power consumption of the terminal equipment. For example, if the rate of the terminal device is very low, a smaller bandwidth can be configured for the terminal device (as shown in (a) in Figure 2). If the rate requirement of the terminal device is very high, a larger bandwidth can be configured for the terminal device ( As shown in (b) in Figure 2).
  • BWP Band Width Part
  • multiple BWPs can be configured for the terminal device (as shown in (c) in Figure 2). Another purpose of the BWP is to trigger the coexistence of multiple numerologies in a cell.
  • a terminal in an RRC idle state or an RRC deactivated state resides on an initial (initial) BWP.
  • This BWP is visible to a terminal in an RRC idle state or an RRC deactivated state.
  • the master Information block (Master Information Block, MIB), remaining system information (Remaining System Information, RMSI), other system information (Other System Information, OSI) and filling (paging) and other information.
  • MIB Master Information Block
  • RMSI remaining system information
  • OSI Ole System Information
  • Multimedia Broadcast Multicast Service is a technology that transmits data from one data source to multiple user equipments by sharing network resources. It can effectively utilize network resources while providing multimedia services to achieve higher Rate (256kbps) multimedia service broadcast and multicast.
  • Enhanced MBMS Enhanced MBMS, E-MBMS introduces the concept of single frequency network (Single Frequency Network, SFN), which uses a unified frequency to transmit data in all cells at the same time, but the synchronization between cells must be guaranteed. This method can greatly improve the overall signal-to-noise ratio distribution of the cell, and the spectrum efficiency will also be greatly improved accordingly.
  • SFN Single Frequency Network
  • IP Internet Protocol
  • MBMS only has a broadcast bearer mode, not a multicast bearer mode.
  • the reception of MBMS service is applicable to UE in RRC connected state or RRC idle state.
  • SC-PTM Single Cell Point To Multipoint Transmission
  • MCE Multi-cell/Multicast Coordination Entity
  • SC-PTM introduces a single cell multicast control channel (Single Cell Multicast Control Channel, SC-MCCH) and a single cell multicast transport channel (Single Cell Multicast Transport Channel, SC-MTCH),
  • the SC-MCCH and the SC-MCCH can be mapped to a downlink shared channel (Downlink Shared Channel, DL-SCH) transport channel and a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) physical channel.
  • SC-MCCH and SC-MTCH do not support Hybrid Automatic Repeat reQuest (HARQ) operation.
  • HARQ Hybrid Automatic Repeat reQuest
  • SC-PTM introduces a new System Information Block (SIB) type, SIB20 to transmit SC-MCCH configuration information, and there is only one SC-MCCH in a cell.
  • SIB System Information Block
  • the configuration information includes: SC-MCCH modification period, repetition period, and radio frame and subframe configuration information.
  • a subframe scheduled by the SC-MCCH is indicated by an SC-MCCH subframe (sc-mcch-Subframe) field.
  • the SC-MCCH only transmits a message SC-PTM Configuration (SC-PTMConfiguration), which is used to configure SC-PTM configuration information.
  • SC-PTMConfiguration SC-PTM Configuration
  • RNTI Radio Network Temporary Identity
  • SC-RNTI single cell RNTI
  • FFFC fixed value FFFC
  • SC-PTM introduces a new RNTI, Single Cell Notification RNTI (Single Cell Notification RNTI, SC-N-RNTI) (fixed value FFFB), to identify the PDCCH of the SC-MCCH change notification.
  • SC-N-RNTI Single Cell Notification RNTI
  • FFFB fixed value FFFB
  • DCI Format Downlink Control Information Format
  • the radio link control (Radio Link Control, RLC) confirmation mode (Acknowledged Mode, AM) mode is with an automatic repeat request (Automatic Repeat reQuest, ARQ) feedback mechanism.
  • the receiving end sends an RLC status report to feed back that the receiving status of the RLC packet is a positive acknowledgment (Acknowledgment, ACK) or a negative acknowledgment (Negative Acknowledgment, NACK).
  • the sending end may repeatedly transmit the repeated transmission of the RLC packet of the sequence number (sequence number, SN) number of the NACK feedback.
  • the downlink BWP is configured through the BWP-Downlink parameter, as shown in the first paragraph of ASN.1 code below.
  • This parameter includes the bwp-Id field to identify the current BWP identifier (ID), and bwp-Common is used to configure the common parameters of the downlink BWP , as shown in the second paragraph of ASN.1 encoding below, where the genericParameters in BWP-DownlinkCommon are used to configure the frequency-domain starting point of the downlink BWP and the number of physical resource blocks (physical resource blocks, PRBs) included.
  • PRBs physical resource blocks
  • the bwp-Dedicated parameter in BWP-Downlink will configure the downlink receiving parameters on the downlink BWP, as shown in the third paragraph of ASN.1 encoding below, including at least pdcch-Config, pdsch-Config, and sps-Config, as shown in the second ASN.1 code, pdcch-Config is used to indicate the PDCCH transmission mode on the downlink BWP, pdsch-Config is used to indicate the PDSCH transmission mode on the downlink BWP, and sps-Config is used to Indicates the semi-persistent scheduling (Semi-Persistent Scheduling, SPS) configuration on the downlink BWP.
  • SPS semi-persistent Scheduling
  • the base station schedules and transmits in the following ways:
  • Broadcast The MBS service is sent by broadcasting, applicable to the terminal in the RRC_IDLE/RRC_INACTIVE (non-connected) state, and the terminal device in the RRC_CONNECTED (connected) state. That is to say, for the MBS service sent by broadcast, no matter which connection state the terminal is in, as long as it can receive it within the coverage area.
  • Multicast/Multicast Send MBS service to a group of terminals through multicast, which is suitable for the terminals in the group are in the RRC_CONNECTED state, and the base station sends the same MBS to a group of terminals through one-to-many PTM transmission mode business.
  • Unicast Send MBS service to each terminal in unicast mode, applicable to the terminal in RRC_CONNECTED state, the base station sends the same MBS service to each terminal through one-to-one PTP transmission mode.
  • CFR Common Frequency Resource
  • the CFR is configured as the MBS-specific BWP, and the MBS-specific BWP is associated with the terminal-specific unicast BWP, and the subcarrier spacing and cyclic prefix configured on the CFR are the same as those configured on the terminal-specific unicast BWP.
  • the second type the CFR is configured as a plurality of consecutive PRBs within the range of the terminal-specific unicast BWP.
  • the advantage of the first method is that CFR can continue to use BWP signaling configuration, which is beneficial to reduce the standard workload, but the problem is that since CFR is defined as BWP, if the terminal is required to receive unicast in dedicated unicast BWP and receive unicast in CFR at the same time Multicast means that the terminal needs to receive downlink transmissions on two BWPs at the same time. However, the terminal can only receive downlink transmissions on one BWP at a given moment. In addition, even if the terminal receives unicast and multicast at different times, since the two are located in Different BWPs will also introduce BWP switching delay.
  • the second method can avoid the problem of BWP switching, but because the CFR in this method is multiple consecutive PRBs, the current BWP-based signaling configuration cannot be used, and the resource range of CFR and uplink and downlink transmission parameters need to be redesigned.
  • the configuration method has a great influence on the standard.
  • the terminal since the common PDCCH for scheduling the common PDSCH needs to be sent to multiple receiving terminals at the same time, in order to ensure that the number of bits of the common downlink control information (Downlink Control Information, DCI) carried in the common PDCCH determined by the multiple terminals is the same, the terminal cannot Determine the number of bits of the common DCI according to the configuration of the respective dedicated unicast BWP.
  • the number of PRBs of the CFR may be different from the initial BWP or Control Resource Set #0 (Control Resource Set 0, CORESET#0) currently configured by the terminal, The terminal also cannot determine the number of bits of the common DCI through the initial BWP or CORESET#0.
  • the number of bits of the public DCI may be different from the number of DCI bits received by the terminal in the terminal device-specific search space (UE Search Space, USS) or common search space (Common Search Space, CSS). Then, in order to reduce the implementation complexity of the terminal, currently the terminal can only receive up to 4 DCIs with different numbers of bits in a cell. The number of DCI bits does not exceed 3 types.
  • PTM1 and point-to-point transmission (Point to Point, PTP) are already supported.
  • Group shared PDCCH (GC-PDCCH) or group shared PDSCH (GC-PDSCH) refers to the PDCCH/PDSCH sent by the base station on a set of time-frequency resources, which can be received by multiple UEs in the same group.
  • the point-to-multipoint transmission (Point to Multi-point, PTM) scheduling method mentioned in this solution refers to PTM1.
  • PTM 1 For multiple UEs in the same group in the connected state, use the group-shared PDCCH (GC-PDCCH) to schedule the group-shared PDSCH (GC-PDSCH), where the group-shared PDCCH (GC-PDCCH) cyclic redundancy check (Cyclical Redundancy Check, CRC) is scrambled with the group shared RNTI (G-RNTI), and the group shared PDSCH (GC-PDSCH) is scrambled with the same group shared RNTI (G-RNTI).
  • GC-PDCCH group-shared PDCCH
  • CRC Cyclical Redundancy Check
  • PTM 2 For multiple UEs in the same group in the connected state, use UE-specific PDCCH scheduling group shared PDSCH (GC-PDSCH) for each UE, where the CRC of UE-specific PDCCH is scrambled with UE-specific RNTI (C-RNTI) , the group shared PDSCH (GC-PDSCH) is scrambled using the group shared RNTI (G-RNTI).
  • GC-PDSCH group shared PDSCH
  • G-RNTI group shared RNTI
  • UE-specific PDCCH For UEs in connected state, UE-specific PDCCH is used to schedule UE-specific PDSCH for each UE.
  • the CRC of UE-specific PDCCH is scrambled with UE-specific RNTI (C-RNTI), and UE-specific PDSCH uses UE-specific RNTI (C-RNTI). -RNTI) scrambling.
  • the retransmission mechanism based on Hybrid Automatic Repeat request Acknowledgment (HARQ-ACK) feedback in the connected state of the MBS service supports the following methods:
  • Method 1 initial transmission of PTM1 + retransmission of PTM1;
  • HARQ process ID (HARQ process ID, HPID) is used for the NR MBS multicast and unicast related to the present application.
  • HPID (HARQ process ID: 0 ⁇ 15) of the system is shared between multicast/multicast and unicast, and how to allocate HPID is determined by the base station implementation.
  • the CRC of DCI is scrambled by CS-RNTI and is used to indicate activation and deactivation of SPS configuration (SPS configuration).
  • a single DCI activates a single SPS configuration at a time, and the HPN information field in the DCI indicates the SPS configuration index to be activated.
  • a single DCI can deactivate a single SPS configuration at a time, and the hybrid automatic repeat request process number (Hybrid Automatic Repeat request process number, HPN) information field in the DCI indicates the SPS configuration index to be activated; b) a single DCI Multiple SPS configurations can be deactivated at one time.
  • the high-level configuration parameter SPS configures the deactivation state list (sps-ConfigDeactivationStateList). Each line of the list corresponds to a list index value, and each index value corresponds to one or more SPS configuration indexes, DCI
  • the HPN information field in indicates a list index value, corresponding to deactivating one/multiple SPS configuration indexes corresponding to the list index value.
  • the SPS configuration supported by the unicast service is up to 8, and the SPS configuration index is represented by 0 ⁇ 7;
  • the HPN information field in the DCI has a length of 4 bits, and the first 8 bits (ie, 0000-0111) are used to indicate the SPS configuration index or list index corresponding to activation/deactivation.
  • G-CS-RNTI Group Configured Scheduling Radio Network Temporary Identity
  • a single group shared DCI activates a single SPS configuration of a group of UEs at a time, and the HPN information field in the DCI indicates the SPS configuration index to be activated;
  • a single group shared DCI can deactivate a single SPS configuration of a group of UEs at a time, and the HPN information field in the DCI indicates the SPS configuration index to be deactivated;
  • a single UE-specific DCI (CRC uses preconfigured scheduling wireless network Temporary identity (Configured Scheduling Radio Network Temporary Identity, CS-RNTI) scrambling) can deactivate a single SPS configuration of a UE at a time, and the HPN information field in the DCI indicates the SPS configuration index to be deactivated;
  • a single group shares the DCI once Multiple SPS configurations for a group of UEs can be deactivated; or a single UE-specific DCI can deactivate multiple SPS configurations for one UE at a time.
  • the maximum number of SPS configurations supported by the MBS service is 8, and the SPS configuration index is undetermined; the HPN information field in the DCI is 4 bits long, and which status bits are used to indicate the corresponding SPS configuration index or list index for activation/deactivation is undetermined.
  • the terminal-specific DCI When the terminal-specific DCI is used to deactivate the SPS configuration, since the CRC of the DCI is scrambled with CS-RNTI, the terminal cannot distinguish between the SPS configuration of the unicast service and the SPS configuration of the MBS service when the DCI is deactivated, because there is only the HPN information field in the DCI It is used to indicate the corresponding SPS configuration index, and no other information is used to indicate the distinction between unicast and MBS services.
  • the SPS configuration index of the MBS service has not been determined yet, and 0 to 7 are used to indicate the SPS configuration index, or other numerical values.
  • How to design the SPS configuration list for configuring the MBS service can use a single DCI to deactivate multiple SPS configurations, and can distinguish these deactivated SPS configuration indexes, which belong to the SPS configuration of the unicast service, and which belong to the SPS configuration of the MBS service.
  • this application proposes a scheme for activating or deactivating the SPS configuration.
  • the communication system can simultaneously support the SPS configuration associated with the unicast service and the SPS configuration associated with the MBS service to work at the same time, and there is no limitation and influence on each other. Furthermore, the SPS configuration associated with the unicast service and the SPS configuration associated with the MBS service can work together to improve the compatibility of the communication system.
  • FIG. 5 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 5 , the wireless communication method 200 may include at least part of the following content:
  • the network device sends the first DCI to the terminal device; wherein, the first DCI is used to activate or deactivate M SPS configurations, and M is a positive integer; wherein, the types of the M SPS configurations include at least one of the following: single The SPS configuration associated with the broadcast service and the SPS configuration associated with the MBS service;
  • the terminal device receives the first DCI.
  • the DCI used to activate the SPS configuration and the DCI used to deactivate the SPS configuration are different DCIs.
  • the MBS service described in the embodiment of this application may also be an MBMS service, which is not limited in this application.
  • M>1 that is, the first DCI can activate or deactivate multiple SPS configurations.
  • the multiple SPS configurations are SPS configurations associated with unicast services, or multiple SPS configurations All are SPS configurations associated with the MBS service, or a part of the SPS configurations in the multiple SPS configurations are SPS configurations associated with the unicast service, and the other part of the SPS configurations are SPS configurations associated with the MBS service.
  • the M SPS configurations may be the SPS configurations of the terminal device, or the M SPS configurations may be the SPS configurations of the terminal group to which the terminal device belongs.
  • the CRC of the first DCI is scrambled with CS-RNTI. That is, the first DCI is a DCI specific to the terminal device.
  • R SPS configurations are configured for unicast services, and/or Q SPS configurations are configured for MBS services; wherein, 1 ⁇ R ⁇ R max , 1 ⁇ Q ⁇ Q max , R, Q , R max and Q max are all positive integers. That is, the network device may configure R SPS configurations for the terminal device for the unicast service, and configure Q SPS configurations for the terminal device for the MBS service.
  • R and Q may be the same or different.
  • R max and Q max may be the same or different.
  • the value of R max is one of the following: 8, 16, 32.
  • R max may also have other values, which are not limited in this application.
  • the value of Q max is one of the following: 8, 16, 32.
  • Q max may also have other values, which are not limited in this application.
  • Q 8-8 that is, the value range of the SPS configuration index (SPS-ConfigIndex) associated with the MBS service is 0-7.
  • the first DCI includes a first information field; wherein, the number of SPS configurations associated with the MBS service in the M SPS configurations is 1, and the first information field is used to indicate the MBS service association in the M SPS configurations The SPS configuration index.
  • the M SPS configurations may also include one or more SPS configurations associated with the unicast service, specifically, the SPS configuration index associated with the unicast service may be indicated through other information fields in the first DCI.
  • different status bits of the first information field respectively correspond to different SPS configuration indexes associated with the MBS service.
  • the corresponding relationship between the status bit of the first information field and the SPS configuration index associated with the MBS service is stipulated in the agreement, or, the status bit of the first information field is related to the SPS configuration index associated with the MBS service.
  • the corresponding relationship between the SPS configuration indexes is configured by the network device.
  • the length of the first information field is greater than or equal to 3 bits, and the SPS configuration index associated with the MBS service indicated by the first information field is K; where K is an integer, 0 ⁇ K ⁇ Q-1 .
  • the first information field is an information field in the first DCI other than the HPN information field, or the first information field is an information field in the first DCI specially used to indicate the MBS service The info field for the associated SPS configuration index.
  • the first information domain is a time domain resource assignment (Time domain resource assignment, TDRA) information domain, or, the first information domain is a modulation and coding scheme (Modulation and Coding Scheme, MCS) information domain, or, the first information domain
  • An information field is a physical uplink control channel (Physical Uplink Control Channel, PUCCH) resource indication information field, or, the first information field is a PDSCH to HARQ feedback timing indication information field.
  • PUCCH Physical Uplink Control Channel
  • the length of the first information field is 3 bits
  • the first DCI The SPS configuration index associated with the MBS service indicated by the 8 status bits of the first information field in , may be specifically shown in Table 1.
  • the first DCI includes a second information field and a third information field
  • the third information field occupies 1 bit; wherein, bit state 0 corresponds to indicating that the first SPS is configured as an SPS configuration associated with a unicast service, and bit state 1 corresponds to indicating that the first SPS is configured as an SPS configuration associated with an MBS service; or, the bit state 1 corresponds to indicating that the first SPS configuration is an SPS configuration associated with a unicast service, and bit state 0 corresponds to indicating that the first SPS configuration is an SPS configuration associated with an MBS service.
  • different status bits of the second information field respectively correspond to different SPS configuration indexes.
  • the correspondence between the state bit of the second information field and the SPS configuration index is stipulated in the protocol, or the correspondence between the state bit of the second information field and the SPS configuration index Configured by network devices.
  • the SPS configuration index associated with the unicast service is L, 0 ⁇ L ⁇ R-1; and/or, the SPS configuration index associated with the MBS service is K, 0 ⁇ K ⁇ Q-1 ; Wherein, L and K are both integers.
  • the second information field is the HPN information field in the first DCI, for example, the second information field is 4 bits of the HPN information field in the first DCI.
  • the third information field is a virtual resource block (virtual resource block, VRB) to PRB mapping (VRB-to-PRB mapping) information field in the first DCI, or, the third information field is The redundancy version (Redundancy version) information field in the first DCI may be specifically shown in Table 2.
  • the third information domain may also be a new data indicator (New Data Indicator, NDI) information domain, or other information domains, which is not limited in this application.
  • the length of the second information field in the first DCI is 4 bits, and the length of the third information field in the first DCI is 1 bit.
  • the 8 state bits of the second information field in the first DCI respectively indicate 8 SPS configuration indexes
  • the state of the third information field in the first DCI is 0
  • state 1 indicates the SPS configuration index associated with the unicast service.
  • the SPS configuration associated with the unicast service and the SPS configuration associated with the MBS service may be distinguished through the state bit of the fourth information field.
  • the fourth information field is the HPN information field in the first DCI.
  • the SPS configuration index associated with the unicast service is L, 0 ⁇ L ⁇ R-1
  • the SPS configuration index associated with the MBS service is K, 0 ⁇ K ⁇ Q-1, where L and K are both integers; wherein, the 1st status bit to the Rth status bit in the fourth information field are respectively used to indicate the SPS configuration index associated with a unicast service, and the Rth status bit in the fourth information field
  • the +1th status bit to the Q+Rth status bit are respectively used to indicate an SPS configuration index associated with an MBS service.
  • the length of the fourth information field in the first DCI is 4 bits.
  • the first 8 status bits of the fourth information field in the first DCI respectively indicate the SPS configuration indexes associated with 8 unicast services
  • the last 8 status bits of respectively indicate the SPS configuration indexes associated with the 8 MBS services.
  • the SPS configuration index associated with the unicast service is L, 0 ⁇ L ⁇ R-1
  • the SPS configuration index associated with the MBS service is K, R ⁇ K ⁇ R+Q-1
  • L and K are both integers
  • the 1st status bit to the Rth status bit in the fourth information domain are respectively used to indicate the SPS configuration index associated with the unicast service
  • the th status bit in the fourth information domain The R+1 status bit to the Q+Rth status bit are respectively used to indicate the SPS configuration index associated with the MBS service.
  • the length of the fourth information field in the first DCI is 4 bits.
  • the first 8 status bits of the fourth information field in the first DCI respectively indicate 8 SPS configuration indexes associated with unicast services
  • the last 8 status bits of respectively indicate the SPS configuration indexes associated with the 8 MBS services.
  • the first 8 status bits respectively indicate the SPS configuration indexes associated with 8 unicast services
  • the last 8 status bits respectively indicate 8 MBS service associations The SPS configuration index.
  • the 8 odd-numbered status bits may respectively indicate 8 SPS configuration indexes associated with unicast services
  • the 8 even-numbered status bits may respectively indicate 8 SPS configuration indexes associated with MBS services.
  • a combination of other status bits is used to distinguish the SPS configuration associated with the unicast service from the SPS configuration associated with the MBS service.
  • the first DCI includes a fifth information field and a sixth information field; wherein, the fifth information field is used to indicate a first state index, and the first state index corresponds to the index configured by the M SPSs;
  • the sixth information field is used to indicate that the first state index is a state index in the first SPS configuration state list, or the sixth information field is used to indicate that the first state index is a state index in the second SPS configuration state list.
  • the length of the fifth information field in the first DCI is 4 bits.
  • the first SPS configuration state list may be shown in Table 7 below
  • the second SPS configuration state list may be shown in Table 8 below.
  • the sixth information field may occupy 1 bit.
  • a bit state of 0 corresponds to indicating the first SPS configuration state list, as shown in Table 7;
  • a bit state of 1 corresponds to indicating the second SPS configuration state list, as shown in Table 8.
  • a state index in the first SPS configuration state list corresponds to one or more SPS configuration indexes associated with unicast services
  • the second SPS configuration state list corresponds to one or more SPS configuration indexes associated with the MBS service.
  • the first SPS configuration state list is stipulated by a protocol, or, the first SPS configuration state list is configured by a network device.
  • the second SPS configuration state list is stipulated by a protocol, or the second SPS configuration state list is configured by a network device.
  • the first SPS configuration state list and the second SPS configuration state list may be configured by a network device through a single signaling, or the first SPS configuration state list and the second SPS configuration state list may be network Devices are configured through different signaling.
  • the fifth information field is the HPN information field in the first DCI.
  • the fifth information domain is HPN 4 bits.
  • the sixth information field is a VRB-to-PRB mapping information field in the first DCI, or, the sixth information field is a redundancy version information field in the first DCI.
  • the sixth information domain may also be an NDI information domain, or other information domains, which is not limited in this application.
  • the first DCI includes a seventh information field; wherein, the seventh information field is used to indicate a state index in the third SPS configuration state list, and the state index indicated by the seventh information field corresponds to the M Index of SPS configuration.
  • one state index in the third SPS configuration state list corresponds to at least one SPS configuration index associated with the unicast service and/or at least one SPS configuration index associated with the MBS service.
  • the SPS configuration index associated with the unicast service is L, 0 ⁇ L ⁇ R-1, and the SPS configuration index associated with the MBS service is K, R ⁇ K ⁇ R+Q-1; where , L and K are both integers.
  • the length of the seventh information field in the first DCI is 4 bits.
  • the third SPS configuration state list may be shown in Table 10 below.
  • the third SPS configuration state list is stipulated by a protocol, or the third SPS configuration state list is configured by a network device.
  • the seventh information field is the HPN information field in the first DCI.
  • the first DCI includes an eighth information field
  • the eighth information field is used to indicate the index of the third SPS configuration among the indexes of the N SPS configurations
  • the N SPS configurations include a single n 1 SPS configurations associated with the broadcast service and n 2 SPS configurations associated with the MBS service
  • the third SPS configuration is the SPS configuration associated with the unicast service
  • the third SPS configuration is the SPS configuration associated with the MBS service
  • N max is one of the following: 8, 16, 32.
  • the length of the eighth information field is ⁇ 3 bits.
  • the indexes configured by the N SPSs are numbered uniformly.
  • the indexes of the N SPS configurations and the corresponding SPS configuration types are stipulated by the protocol, or the indexes of the N SPS configurations and the corresponding SPS configuration types are configured by the network device.
  • the eighth information field is the HPN information field (4 bits) in the first DCI.
  • n 2 3, the SPS configuration index (SPS-ConfigIndex) is 1, 4, 6 is the SPS configuration associated with the MBS service.
  • the indexes of the eight SPS configurations and the corresponding SPS configuration types may be shown in Table 11 below.
  • the terminal-specific DCI is used to activate/deactivate the SPS configuration, which effectively avoids the confusion that the terminal-specific DCI is used to activate/deactivate the SPS configuration, and clearly and clearly integrates the DCI between the unicast service and the MBS service. Not only does it not affect the design mechanism of unicast services, nor does it add additional signaling overhead or redundant design; in addition, it supports the design of single DCI activation/deactivation of multiple SPS configurations in MBS services, The overhead of downlink control signaling is greatly saved, and the flexibility of the system in SPS dynamic control is improved.
  • the network device can activate or deactivate M SPS configurations through the first DCI, and the types of the M SPS configurations include at least one of the following: SPS configurations associated with unicast services, SPS configurations associated with MBS services configuration. Therefore, the communication system can simultaneously support the SPS configuration associated with the unicast service and the SPS configuration associated with the MBS service to work at the same time, and there is no restriction or influence on each other. Further, the SPS configuration associated with the unicast service and the SPS configuration associated with the MBS service The ability to work together improves the compatibility of the communication system.
  • Fig. 6 shows a schematic block diagram of a terminal device 300 according to an embodiment of the present application.
  • the terminal device 300 includes:
  • a communication unit 310 configured to receive first downlink control information DCI
  • the first DCI is used to activate or deactivate M semi-persistent scheduling SPS configurations, and M is a positive integer;
  • the types of the M SPS configurations include at least one of the following: SPS configuration associated with a unicast service, and SPS configuration associated with a multicast broadcast service MBS service.
  • the cyclic redundancy check (CRC) of the first DCI is scrambled using a preconfigured scheduled radio network temporary identifier (CS-RNTI).
  • CS-RNTI preconfigured scheduled radio network temporary identifier
  • R SPS configurations are configured for unicast services, and/or Q SPS configurations are configured for MBS services;
  • 1 ⁇ R ⁇ R max , 1 ⁇ Q ⁇ Q max , R, Q, R max and Q max are all positive integers.
  • the value of R max is one of the following: 8, 16, 32; and/or, the value of Q max is one of the following: 8, 16, 32.
  • the first DCI includes a first information field
  • the number of SPS configurations associated with the MBS service in the M SPS configurations is 1, and the first information field is used to indicate the SPS configuration index associated with the MBS service in the M SPS configurations.
  • different status bits of the first information field respectively correspond to different SPS configuration indexes associated with the MBS service.
  • the corresponding relationship between the status bit of the first information field and the SPS configuration index associated with the MBS service is stipulated in the agreement, or, the status bit of the first information field and the SPS configuration index associated with the MBS service The correspondence between them is configured by the network device.
  • the length of the first information field is greater than or equal to 3 bits, and the SPS configuration index associated with the MBS service indicated by the first information field is K; where K is an integer, 0 ⁇ K ⁇ Q-1 .
  • the first information field is an information field in the first DCI other than the hybrid automatic repeat request process number HPN information field, or the first information field is used in the first DCI specifically for Indicates the information field of the SPS configuration index associated with the MBS service.
  • the first DCI includes a second information field and a third information field
  • the M SPS configurations only include the first SPS configuration
  • the second information field is used to indicate the index of the first SPS configuration
  • the third information field is used to indicate that the first SPS configuration is an SPS associated with a unicast service Configuration, or, the third information field is used to indicate that the first SPS configuration is the SPS configuration associated with the MBS service.
  • different status bits of the second information field respectively correspond to different SPS configuration indexes.
  • the correspondence between the status bit of the second information field and the SPS configuration index is specified by the protocol, or the correspondence between the status bit of the second information field and the SPS configuration index is configured by the network device .
  • the SPS configuration index associated with the unicast service is L, 0 ⁇ L ⁇ R-1; and/or, the SPS configuration index associated with the MBS service is K, 0 ⁇ K ⁇ Q-1; wherein, L and K are both integers.
  • the second information field is the HPN information field in the first DCI.
  • the third information field is the virtual resource block VRB to physical resource block PRB mapping information field in the first DCI, or the third information field is the redundancy version information field in the first DCI .
  • the first DCI includes a fourth information field
  • the M SPS configurations only include the second SPS configuration
  • the fourth information field is used to indicate the index of the second SPS configuration
  • the fourth information field is used to indicate that the second SPS configuration is associated with a unicast service SPS configuration
  • the fourth information field is used to indicate that the second SPS configuration is an SPS configuration associated with an MBS service.
  • the SPS configuration index associated with the unicast service is L, 0 ⁇ L ⁇ R-1
  • the SPS configuration index associated with the MBS service is K, 0 ⁇ K ⁇ Q-1
  • the SPS configuration index associated with the unicast service is The SPS configuration index is L, 0 ⁇ L ⁇ R-1
  • the SPS configuration index associated with the MBS service is K, R ⁇ K ⁇ R+Q-1; where L and K are both integers;
  • the 1st state bit to the Rth state bit in the fourth information field are respectively used to indicate the SPS configuration index associated with the unicast service, and the R+1th state bit to the th state bit in the fourth information field
  • the Q+R status bits are respectively used to indicate the SPS configuration index associated with the MBS service.
  • the fourth information field is the HPN information field in the first DCI.
  • the first DCI includes a fifth information field and a sixth information field
  • the fifth information field is used to indicate the first state index
  • the sixth information field is used to indicate that the first state index is the state index in the first SPS configuration state list
  • the sixth information field is used to indicate The first state index is a state index in the second SPS configuration state list
  • a state index in the first SPS configuration state list corresponds to one or more SPS configuration indexes associated with unicast services
  • a state index in the second SPS configuration state list corresponds to one or more SPSs associated with MBS services A configuration index, where the first state index corresponds to the index configured by the M SPSs.
  • the first SPS configuration state list is stipulated by a protocol, or, the first SPS configuration state list is configured by a network device.
  • the second SPS configuration state list is stipulated by a protocol, or, the second SPS configuration state list is configured by a network device.
  • the fifth information field is the HPN information field in the first DCI.
  • the sixth information field is a VRB-to-PRB mapping information field in the first DCI, or, the sixth information field is a redundancy version information field in the first DCI.
  • the first DCI includes a seventh information field
  • the seventh information field is used to indicate a state index in the third SPS configuration state list
  • a state index in the third SPS configuration state list corresponds to at least one SPS configuration index associated with the unicast service and/or at least one SPS configuration index associated with the MBS service
  • the state index indicated by the seventh information field corresponds to the Index of M SPS configurations.
  • the SPS configuration index associated with the unicast service is L, 0 ⁇ L ⁇ R-1, and the SPS configuration index associated with the MBS service is K, R ⁇ K ⁇ R+Q-1; wherein, L and K are integers.
  • the third SPS configuration state list is stipulated by a protocol, or, the third SPS configuration state list is configured by a network device.
  • the seventh information field is the HPN information field in the first DCI.
  • the first DCI includes an eighth information field
  • the M SPS configurations only include the third SPS configuration
  • the eighth information field is used to indicate the index of the third SPS configuration among the indexes of N SPS configurations
  • the N SPS configurations include n 1 associated with the unicast service n 2 SPS configurations associated with the SPS configuration and the MBS service
  • the third SPS configuration is the SPS configuration associated with the unicast service
  • the third SPS configuration is the SPS configuration associated with the MBS service
  • the indices of the N SPS configurations are numbered uniformly.
  • the indexes of the N SPS configurations and the corresponding SPS configuration types are stipulated by the protocol, or the indexes of the N SPS configurations and the corresponding SPS configuration types are configured by the network device.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • terminal device 300 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 300 are to realize the method shown in FIG. 5
  • the corresponding process of the terminal device in 200 will not be repeated here.
  • Fig. 7 shows a schematic block diagram of a network device 400 according to an embodiment of the present application.
  • the network device 400 includes:
  • a communication unit 410 configured to send first downlink control information DCI
  • the first DCI is used to activate or deactivate M semi-persistent scheduling SPS configurations, and M is a positive integer;
  • the types of the M SPS configurations include at least one of the following: SPS configuration associated with a unicast service, and SPS configuration associated with a multicast broadcast service MBS service.
  • the cyclic redundancy check (CRC) of the first DCI is scrambled using a preconfigured scheduled radio network temporary identifier (CS-RNTI).
  • CS-RNTI preconfigured scheduled radio network temporary identifier
  • R SPS configurations are configured for unicast services, and/or Q SPS configurations are configured for MBS services;
  • 1 ⁇ R ⁇ R max , 1 ⁇ Q ⁇ Q max , R, Q, R max and Q max are all positive integers.
  • the value of R max is one of the following: 8, 16, 32; and/or, the value of Q max is one of the following: 8, 16, 32.
  • the first DCI includes a first information field
  • the number of SPS configurations associated with the MBS service in the M SPS configurations is 1, and the first information field is used to indicate the SPS configuration index associated with the MBS service in the M SPS configurations.
  • different status bits of the first information field respectively correspond to different SPS configuration indexes associated with the MBS service.
  • the corresponding relationship between the status bit of the first information field and the SPS configuration index associated with the MBS service is stipulated in the agreement, or, the status bit of the first information field and the SPS configuration index associated with the MBS service The correspondence between them is configured by the network device.
  • the length of the first information field is greater than or equal to 3 bits, and the SPS configuration index associated with the MBS service indicated by the first information field is K; where K is an integer, 0 ⁇ K ⁇ Q-1 .
  • the first information field is an information field in the first DCI other than the hybrid automatic repeat request process number HPN information field, or the first information field is used in the first DCI exclusively for Indicates the information field of the SPS configuration index associated with the MBS service.
  • the first DCI includes a second information field and a third information field
  • the M SPS configurations only include the first SPS configuration
  • the second information field is used to indicate the index of the first SPS configuration
  • the third information field is used to indicate that the first SPS configuration is an SPS associated with a unicast service Configuration, or, the third information field is used to indicate that the first SPS configuration is the SPS configuration associated with the MBS service.
  • different status bits of the second information field respectively correspond to different SPS configuration indexes.
  • the correspondence between the status bit of the second information field and the SPS configuration index is specified by the protocol, or the correspondence between the status bit of the second information field and the SPS configuration index is configured by the network device .
  • the SPS configuration index associated with the unicast service is L, 0 ⁇ L ⁇ R-1; and/or, the SPS configuration index associated with the MBS service is K, 0 ⁇ K ⁇ Q-1; wherein, L and K are both integers.
  • the second information field is the HPN information field in the first DCI.
  • the third information field is the virtual resource block VRB to physical resource block PRB mapping information field in the first DCI, or the third information field is the redundancy version information field in the first DCI .
  • the first DCI includes a fourth information field
  • the M SPS configurations only include the second SPS configuration
  • the fourth information field is used to indicate the index of the second SPS configuration
  • the fourth information field is used to indicate that the second SPS configuration is associated with a unicast service SPS configuration
  • the fourth information field is used to indicate that the second SPS configuration is an SPS configuration associated with an MBS service.
  • the SPS configuration index associated with the unicast service is L, 0 ⁇ L ⁇ R-1
  • the SPS configuration index associated with the MBS service is K, 0 ⁇ K ⁇ Q-1
  • the SPS configuration index associated with the unicast service is The SPS configuration index is L, 0 ⁇ L ⁇ R-1
  • the SPS configuration index associated with the MBS service is K, R ⁇ K ⁇ R+Q-1; where L and K are both integers;
  • the 1st state bit to the Rth state bit in the fourth information field are respectively used to indicate the SPS configuration index associated with the unicast service, and the R+1th state bit to the th state bit in the fourth information field
  • the Q+R status bits are respectively used to indicate the SPS configuration index associated with the MBS service.
  • the fourth information field is the HPN information field in the first DCI.
  • the first DCI includes a fifth information field and a sixth information field
  • the fifth information field is used to indicate the first state index
  • the sixth information field is used to indicate that the first state index is the state index in the first SPS configuration state list
  • the sixth information field is used to indicate The first state index is a state index in the second SPS configuration state list
  • a state index in the first SPS configuration state list corresponds to one or more SPS configuration indexes associated with unicast services
  • a state index in the second SPS configuration state list corresponds to one or more SPSs associated with MBS services A configuration index, where the first state index corresponds to the index configured by the M SPSs.
  • the first SPS configuration state list is stipulated by a protocol, or, the first SPS configuration state list is configured by a network device.
  • the second SPS configuration state list is stipulated by a protocol, or, the second SPS configuration state list is configured by a network device.
  • the fifth information field is the HPN information field in the first DCI.
  • the sixth information field is a VRB-to-PRB mapping information field in the first DCI, or, the sixth information field is a redundancy version information field in the first DCI.
  • the first DCI includes a seventh information field
  • the seventh information field is used to indicate a state index in the third SPS configuration state list
  • a state index in the third SPS configuration state list corresponds to at least one SPS configuration index associated with the unicast service and/or at least one SPS configuration index associated with the MBS service
  • the state index indicated by the seventh information field corresponds to the Index of M SPS configurations.
  • the SPS configuration index associated with the unicast service is L, 0 ⁇ L ⁇ R-1, and the SPS configuration index associated with the MBS service is K, R ⁇ K ⁇ R+Q-1; wherein, L and K are integers.
  • the third SPS configuration state list is stipulated by a protocol, or, the third SPS configuration state list is configured by a network device.
  • the seventh information field is the HPN information field in the first DCI.
  • the first DCI includes an eighth information field
  • the M SPS configurations only include the third SPS configuration
  • the eighth information field is used to indicate the index of the third SPS configuration among the indexes of N SPS configurations
  • the N SPS configurations include n 1 associated with the unicast service n 2 SPS configurations associated with the SPS configuration and the MBS service
  • the third SPS configuration is the SPS configuration associated with the unicast service
  • the third SPS configuration is the SPS configuration associated with the MBS service
  • the indices of the N SPS configurations are numbered uniformly.
  • the indexes of the N SPS configurations and the corresponding SPS configuration types are stipulated by the protocol, or the indexes of the N SPS configurations and the corresponding SPS configuration types are configured by the network device.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the network device 400 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 400 are for realizing the method shown in FIG. 5
  • the corresponding processes of the network devices in 200 will not be repeated here.
  • FIG. 8 is a schematic structural diagram of a communication device 500 provided by an embodiment of the present application.
  • the communication device 500 shown in FIG. 8 includes a processor 510, and the processor 510 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 500 may further include a memory 520 .
  • the processor 510 can invoke and run a computer program from the memory 520, so as to implement the method in the embodiment of the present application.
  • the memory 520 may be an independent device independent of the processor 510 , or may be integrated in the processor 510 .
  • the communication device 500 may further include a transceiver 530, and the processor 510 may control the transceiver 530 to communicate with other devices, specifically, to send information or data to other devices, or Receive messages or data from other devices.
  • the transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include antennas, and the number of antennas may be one or more.
  • the communication device 500 may specifically be the network device of the embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, the Let me repeat.
  • the communication device 500 may specifically be the terminal device in the embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application.
  • the Let me repeat the Let me repeat.
  • Fig. 9 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 600 shown in FIG. 9 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the device 600 may further include a memory 620 .
  • the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the device 600 may further include an input interface 630 .
  • the processor 610 can control the input interface 630 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the device 600 may further include an output interface 640 .
  • the processor 610 can control the output interface 640 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the device can be applied to the network device in the embodiments of the present application, and the device can implement the corresponding processes implemented by the network device in the methods of the embodiments of the present application. For the sake of brevity, details are not repeated here.
  • the device can be applied to the terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it may be a system-on-a-chip, a system-on-a-chip, a system-on-a-chip, or a system-on-a-chip.
  • FIG. 10 is a schematic block diagram of a communication system 700 provided by an embodiment of the present application. As shown in FIG. 10 , the communication system 700 includes a terminal device 710 and a network device 720 .
  • the terminal device 710 can be used to realize the corresponding functions realized by the terminal device in the above method
  • the network device 720 can be used to realize the corresponding functions realized by the network device in the above method, for the sake of brevity, no longer repeat.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, I won't repeat them here.
  • the computer-readable storage medium can be applied to the terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the terminal device in the various methods of the embodiments of the present application. For the sake of brevity, I won't repeat them here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For brevity, This will not be repeated here.
  • the computer program product can be applied to the terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application, and when the computer program is run on the computer, the computer executes the corresponding process implemented by the network device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the terminal device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信的方法、终端设备和网络设备,通信系统能够同时支持单播业务关联的SPS配置和MBS业务关联的SPS配置同时工作,并且相互之间没有限制和影响,更进一步,单播业务关联的SPS配置和MBS业务关联的SPS配置能够协同工作,提高了通信系统的兼容性能。该无线通信的方法,包括:终端设备接收第一DCI;其中,该第一DCI用于激活或去激活M个SPS配置,M为正整数;其中,该M个SPS配置的类型包括以下至少之一:单播业务关联的SPS配置,MBS业务关联的SPS配置。

Description

无线通信的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信的方法、终端设备和网络设备。
背景技术
在新无线(New Radio,NR)系统中,可以支持单播业务和多播广播服务(Multicast Broadcast Service,MBS)业务,如何激活或去激活不同业务关联的半持续调度(Semi-Persistent Scheduling,SPS)配置,是一个需要解决的问题。
发明内容
本申请实施例提供了一种无线通信的方法、终端设备和网络设备,通信系统能够同时支持单播业务关联的SPS配置和MBS业务关联的SPS配置同时工作,并且相互之间没有限制和影响,更进一步,单播业务关联的SPS配置和MBS业务关联的SPS配置能够协同工作,提高了通信系统的兼容性能。
第一方面,提供了一种无线通信的方法,该方法包括:
终端设备接收第一DCI;
其中,该第一DCI用于激活或去激活M个SPS配置,M为正整数;
其中,该M个SPS配置的类型包括以下至少之一:单播业务关联的SPS配置,MBS业务关联的SPS配置。
第二方面,提供了一种无线通信的方法,该方法包括:
网络设备发送第一DCI;
其中,该第一DCI用于激活或去激活M个SPS配置,M为正整数;
其中,该M个SPS配置的类型包括以下至少之一:单播业务关联的SPS配置,MBS业务关联的SPS配置。
第三方面,提供了一种终端设备,用于执行上述第一方面中的方法。
具体地,该终端设备包括用于执行上述第一方面中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面中的方法。
具体地,该网络设备包括用于执行上述第二方面中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中的任一方面中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
通过上述技术方案,网络设备可以通过第一DCI激活或去激活M个SPS配置,M个SPS配置的类型包括以下至少之一:单播业务关联的SPS配置,MBS业务关联的SPS配置。从而,通信系统能够同时支持单播业务关联的SPS配置和MBS业务关联的SPS配置同时工作,并且相互之间没有限制和影响,更进一步,单播业务关联的SPS配置和MBS业务关联的SPS配置能够协同工作,提高了通信系统的兼容性能。
附图说明
图1是本申请实施例应用的一种通信系统架构的示意性图。
图2是本申请提供的一种BWP的示意性图。
图3是本申请提供的一种SC-PTM信道及其映射的示意性图。
图4是本申请提供的一种MBS下行调度方式的示意性图。
图5是根据本申请实施例提供的一种无线通信的方法的示意性交互流程图。
图6是根据本申请实施例提供的一种终端设备的示意性框图。
图7是根据本申请实施例提供的一种网络设备的示意性框图。
图8是根据本申请实施例提供的一种通信设备的示意性框图。
图9是根据本申请实施例提供的一种装置的示意性框图。
图10是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、物联网(internet of things,IoT)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
在一些实施例中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景,或者应用于非独立(Non-Standalone,NSA)布网场景。
在一些实施例中,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
在一些实施例中,本申请实施例中的通信系统可以应用于FR1频段(对应频段范围410MHz到7.125GHz),也可以应用于FR2频段(对应频段范围24.25GHz到52.6GHz),还可以应用于新的频段例如对应52.6GHz到71GHz频段范围或对应71GHz到114.25GHz频段范围的高频频段。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备、车载通信设备、无线通信芯片/专用集成电路(application specific integrated circuit,ASIC)/系统级芯片(System on Chip,SoC)等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称, 如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。在一些实施例中,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。在一些实施例中,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,在一些实施例中,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
在一些实施例中,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,本文涉及第一通信设备和第二通信设备,第一通信设备可以是终端设备,例如手机,机器设施,用户前端设备(Customer Premise Equipment,CPE),工业设备,车辆等;第二通信设备可以是第一通信设备的对端通信设备,例如网络设备,手机,工业设备,车辆等。本文中以第一通信设备是终端设备和第二通信设备是网络设备为具体实例进行描述。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
当前,随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性、复杂性,引入了5G通信网络。5G的主要应用场景为:增强移动超宽带(Enhance Mobile Broadband,eMBB)、低时延高可靠通信(Ultra-Reliable and Low Latency Communication,URLLC)、大规模机器类通信(massive machine type of communication,mMTC)。
eMBB仍然以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。另一方面,由于eMBB可能部署在不同的场景中,便如室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而论,必须结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
NR也可以独立部署,5G网络环境中为了降低空口信令和快速恢复无线连接,快速恢复数据业务的目的,引入了一个新的无线资源控制(Radio Resource Control,RRC)状态,即RRC去激活(RRC_INACTIVE)状态。RRC_INACTIVE状态有别于RRC空闲(RRC_IDLE)状态和RRC激活(RRC_ACTIVE)状态。
RRC_IDLE:移动性为基于终端的小区选择重选,寻呼由核心网(Core Network,CN)发起,寻呼区域由CN配置。基站侧不存在终端的接入层(Access Stratum,AS)上下文。不存在RRC连接。
RRC_CONNECTED:存在RRC连接,基站和终端存在终端的AS上下文。网络侧知道终端的位置是具体小区级别的。移动性是网络侧控制的移动性。终端和基站之间可以传输单播数据。
RRC_INACTIVE:移动性为基于终端的小区选择重选,存在核心网与NR(CN-NR)之间的连接,终端的AS上下文存在某个基站上,寻呼由无线接入网(Radio Access Network,RAN)触发,基于RAN的寻呼区域由RAN管理,网络侧知道终端的位置是基于RAN的寻呼区域级别的。
在5G中,最大的信道带宽可以是400MHz(如宽带载波(wideband carrier)),相比于LTE最大20M带宽来说,带宽很大。如果终端设备保持工作在宽带载波上,则终端设备的功率消耗是很大的。因此,终端设备的射频(RF)带宽可以根据终端设备实际的吞吐量来调整。并引入带宽部分(Band Width Part,BWP)来优化终端设备的功率消耗。例如终端设备的速率很低,可以给终端设备配置小一点的带宽(如图2中的(a)所示),如果终端设备的速率要求很高,则可以给终端设备配置大一点的带宽(如图2中的(b)所示)。如果终端设备支持高速率,或者操作在载波聚合(Carrier Aggregation,CA)模式下,可以给终端设备配置多个BWP(如图2中的(c)所示)。BWP的另一个目的就是触发一个小区中多个基础参数集(numerology)共存。
在一些实施例中,RRC空闲态或者RRC去激活态的终端驻留在初始(initial)BWP上,这个BWP对于RRC空闲态或者RRC去激活态的终端是可见的,在这个BWP里面可以获取主信息块(Master Information Block,MIB),剩余系统信息(Remaining System Information,RMSI),其他系统信息(Other System Information,OSI)以及填充(paging)等信息。
为便于更好的理解本申请实施例,对本申请相关的LTE中的MBMS和SC-PTM系统进行说明。
多媒体广播多播服务(Multimedia Broadcast Multicast Service,MBMS)是一种通过共享网络资源从一个数据源向多个用户设备传送数据的技术,在提供多媒体业务的同时能有效地利用网络资源,实现较高速率(256kbps)的多媒体业务广播和组播。
由于MBMS频谱效率较低,不足以有效地承载和支撑手机电视类型业务的运营。增强的MBMS(Enhanced MBMS,E-MBMS)引入了单频网络(Single Frequency Network,SFN)的概念,即采用统一频率在所有小区同时发送数据,但是要保证小区间的同步。这种方式可以极大的提高小区整体信噪比分布,频谱效率也会相应的大幅提高。并基于互联网协议(Internet Protocol,IP)多播协议实现业务的广播和多播。
在LTE/LTE-A中,MBMS只有广播承载模式,没有多播承载模式。
MBMS业务的接收适用于RRC连接态或者RRC空闲态的UE。
单小区点对多点传输(Single Cell Point To Multipoint,SC-PTM)基于MBMS网络架构,多小区/多播协作单元(Multi-cell/multicast Coordination Entity,MCE)决定采用SC-PTM传输方式还是多媒体广播多播服务单频网络(Multimedia Broadcast multicast service Single Frequency Network,MBSFN)传输方式。
具体的,如图3所示,SC-PTM引入了单小区多播控制信道(Single Cell Multicast Control Channel,SC-MCCH)和单小区多播传输信道(Single Cell Multicast Transport Channel,SC-MTCH),SC-MCCH的逻辑信道标识(Logical Channel Identity,LCID)=11001,SC-MTCH的LCID=11001。SC-MCCH和SC-MCCH可以映射到下行共享信道(Downlink Shared Channel,DL-SCH)传输信道,物理下行共享信道(Physical Downlink Shared Channel,PDSCH)物理信道上。SC-MCCH和SC-MTCH不支持混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)操作。
SC-PTM引入了新的系统信息块(System Information Block,SIB)类型,SIB20来传输SC-MCCH的配置信息,一个小区只有一个SC-MCCH。配置信息包括:SC-MCCH的修改周期,重复周期,以及无线帧和子帧配置信息。
SC-MCCH调度的无线帧:系统帧号(SFN)mod MCCH重复周期(mcch-RepetitionPeriod)=MCCH偏移(mcch-Offset)。
SC-MCCH调度的子帧通过SC-MCCH子帧(sc-mcch-Subframe)字段指示。
SC-MCCH只传输一个消息SC-PTM配置(SC-PTMConfiguration),该消息用于配置SC-PTM的配置信息。引入新的无线网络临时标识(Radio Network Temporary Identity,RNTI),单小区RNTI(Single Cell RNTI,SC-RNTI)(固定取值FFFC)来识别SC-MCCH在物理下行控制信道(Physical Downlink Control Channel,PDCCH)上的调度信息。
SC-PTM引入了新的RNTI,单小区通知RNTI(Single Cell Notification RNTI,SC-N-RNTI)(固定取值FFFB),来识别SC-MCCH的变更通知的PDCCH。用下行控制信息格式(Downlink Control Information Format,DCI Format)1C中8个比特(bit)中的一个bit来指示变更通知。修改周期边界定义为SFN mod m=0,其中m是SIB20中配置的修改周期(sc-mcch-ModificationPeriod)。
在NR中,无线链路控制(Radio Link Control,RLC)确认模式(Acknowledged Mode,AM)模式是带有自动重传请求(Automatic Repeat reQuest,ARQ)反馈机制的。接收端发送RLC状态报告来反馈RLC包的接收状态为肯定应答(Acknowledgement,ACK)或者否定应答(Negative Acknowledgement,NACK)。发送端可以重复传输反馈NACK的序列号(sequence number,SN)号的RLC包的重复发送。
为便于更好的理解本申请实施例,对本申请相关的下行BWP配置进行说明。
下行BWP通过BWP-Downlink参数配置,如下面第一段ASN.1编码所示,该参数中包括bwp-Id域标识当前BWP的标识(ID),bwp-Common用于配置该下行BWP的公共参数,如下面第二段ASN.1编码所示,其中BWP-DownlinkCommon中的genericParameters用于配置该下行BWP的频域起点和包含的物理资源块(physical resource block,PRB)个数。对于一个终端专用单播BWP,BWP-Downlink中的bwp-Dedicated参数将配置该下行BWP上的下行接收参数,如下面第三段ASN.1编码所示,至少包括pdcch-Config,pdsch-Config,和sps-Config,第二段ASN.1编码所示,pdcch-Config用于指示该下行BWP上的PDCCH发送方式,pdsch-Config用于指示该下行BWP上的PDSCH发送方式,sps-Config用于指示该下行BWP上的半持续调度(Semi-Persistent Scheduling,SPS)配置。
第一段ASN.1编码:
Figure PCTCN2022076880-appb-000001
第三段ASN.1编码:
Figure PCTCN2022076880-appb-000002
为便于更好的理解本申请实施例,对本申请相关的NR MBS的传播方式进行说明。
对于MBS业务,基站调度发送的方式由如下几种:
广播(Broadcast):通过广播的方式发送MBS业务,适用于终端处于RRC_IDLE/RRC_INACTIVE(非连接)态,以及终端设备处于RRC_CONNECTED(连接)态。也即是说,通过广播发送的MBS业务,终端无论处于哪种链接状态,只要在覆盖范围内能够接收到就行。
组播/多播(Multicast):通过组播的方式向一组终端发送MBS业务,适用于组内终端都处于RRC_CONNECTED态,基站通过一对多PTM的发送方式,向一组终端发送相同的MBS业务。
单播(Unicast):通过单播的方式向每一个终端发送MBS业务,适用于终端处于RRC_CONNECTED态,基站通过一对一PTP的发送方式,向每一个终端发送相同的MBS业务。
为便于更好的理解本申请实施例,对本申请相关的NR MBS组调度方式进行说明。
在NR MBS中需要支持一对多的组播传输,在这种传输方式中,基站需要通过发送公共的下行控制信道调度公共的PDSCH,所述公共PDCCH和公共PDSCH在一段公共频域资源(Common Frequency Resource,CFR)内发送。在一些实施例中,存在两种备选CFR配置方式:
第一种:CFR配置为MBS专用的BWP,MBS专用BWP和终端的专用单播BWP关联,而且CFR上配置的子载波间隔和循环前缀和终端专用单播BWP上的配置相同。
第二种:CFR配置为终端专用单播BWP范围内连续的多个PRB。
第一种方式的优点在于CFR可以沿用BWP信令配置,有利于减少标准的工作量,但问题在于,由于CFR定义为BWP,如果要求终端同时在专用单播BWP接收单播和在CFR内接收组播,意味着终端需要同时在两个BWP上接收下行传输,然而终端在既定时刻只有能力在一个BWP上接收下行,另外,即使终端在不同的时间接收单播和组播,由于两者位于不同的BWP,也会引入BWP切换时延。第二种方式可以避免BWP切换的问题,但是由于这一方式中CFR是连续的多个PRB,无法沿用目前以BWP为基础的信令配置,需要重新设计CFR的资源范围和上下行传输参数等的配置方式,对标准影响较大。
此外,由于调度公共PDSCH的公共PDCCH需要同时发送给多个接收终端,为了保证所述多个终端确定的公共PDCCH中承载的公共下行控制信息(Downlink Control Information,DCI)的比特数相同,终端不能根据各自的专用单播BWP的配置确定公共DCI的比特数,另外,由于CFR的PRB个数可能和终端当前配置的初始BWP或控制资源集#0(Control Resource Set 0,CORESET#0)不同,终端也无法通过初始BWP或CORESET#0确定公共DCI的比特数。所以,不可避免的,公共DCI的比特数可能和终端在终端设备专属搜索空间(UE Search Space,USS)或公共搜索空间(Common Search Space,CSS)中接收的DCI比特数不同。然后,为了降低终端的实现复杂度,目前终端在一个小区内最多只能接收4个不同比特数的DCI,其中,由小区无线网络临时标识(Cell Radio Network Temporary Identity,C-RNTI)加扰的DCI比特数不超过3种。
在一些实施例中,如图4所示,可以有如下三种调度传输MBS业务的方式,其中PTM1和点对点传输(Point to Point,PTP)已经支持。组共享PDCCH(GC-PDCCH)或组共享PDSCH(GC-PDSCH)是指基站在一套时频资源上发送的PDCCH/PDSCH,能够被同一组的多个UE接收。本方案中提及的点对多点传输(Point to Multi-point,PTM)调度方式均指PTM1。
PTM 1:对于连接态的同一组的多个UE,使用组共享PDCCH(GC-PDCCH)调度组共享PDSCH(GC-PDSCH),其中,组共享PDCCH(GC-PDCCH)的循环冗余码校验(Cyclical Redundancy Check,CRC)使用组共享RNTI(G-RNTI)加扰,组共享PDSCH(GC-PDSCH)使用同一个组共享RNTI(G-RNTI)加扰。
PTM 2:对于连接态的同一组的多个UE,对每个UE使用UE专属PDCCH调度组共享PDSCH(GC-PDSCH),其中UE专属PDCCH的CRC使用UE专属RNTI(即C-RNTI)加扰,组共享PDSCH(GC-PDSCH)使用组共享RNTI(G-RNTI)加扰。
PTP:对于连接态UE,对每个UE使用UE专属PDCCH调度UE专属PDSCH,其中,UE专属 PDCCH的CRC使用UE专属RNTI(即C-RNTI)加扰,UE专属PDSCH使用UE专属RNTI(即C-RNTI)加扰。
在一些实施例中,MBS业务在连接态基于混合自动重传请求-应答(Hybrid Automatic Repeat request Acknowledgement,HARQ-ACK)反馈的重传机制支持如下几种方式:
方式一:初传PTM1+重传PTM1;
方式二:初传PTM1+重传PTP。
为便于更好的理解本申请实施例,对本申请相关的NR MBS组播和单播使用HARQ进程标识(HARQ process ID,HPID)的方式进行说明。
组播/多播和单播之间共享系统的HPID(HARQ process ID:0~15),具体如何分配HPID由基站实现决定。
HPID和新数据指示(New Data Indicator,NDI)共同确定了当前传输的传输块(Transmission block,TB)是初传还是重传。例如,当前接收到的HPID#1,对应DCI中携带的NDI=0。
对比前一个收到的HPID#1对应的NDI=1,此时可以确定当前收到的TB为一个新TB的初传;UE会将缓存中存储的上一个TB的数据信息清空,然后将新收到的TB的初传以及潜在收到的重传存入缓存中,以供软合并使用。
对比前一个收到的HPID#1对应的NDI=0,此时可以确定当前收到的TB为重传。
为便于更好的理解本申请实施例,对本申请所解决的技术问题进行说明。
对于单播业务的SPS PDSCH,SPS激活(activation)和去激活(deactivation)的技术方案如下:
DCI的CRC通过CS-RNTI加扰,用于指示激活和去激活SPS配置(SPS configuration)。
激活:单个DCI一次激活单个SPS配置,DCI中的HPN信息域指示要激活的SPS配置索引。
去激活:a)单个DCI一次可以去激活单个SPS配置,DCI中的混合自动重传请求进程号(Hybrid Automatic Repeat request process number,HPN)信息域指示要去激活的SPS配置索引;b)单个DCI一次可以去激活多个SPS配置,高层通过配置参数SPS配置去激活状态列表(sps-ConfigDeactivationStateList)这个列表,列表每一行对应一个列表索引值,每一个索引值对应一个或多个SPS配置索引,DCI中的HPN信息域指示一个列表索引值,对应去激活这个列表索引值对应的一个/多个SPS配置索引。
单播业务支持的SPS配置为最多8个,SPS配置索引由0~7表示;
DCI中HPN信息域为4比特长度,使用前8位(即0000~0111)来指示激活/去激活所对应的SPS配置索引或列表索引。
组共享DCI的CRC通过组预配置调度无线网络临时标识(Group Configured Scheduling Radio Network Temporary Identity,G-CS-RNTI)加扰,用于指示激活或去激活一组终端共同的SPS配置。
激活:单个组共享DCI一次激活一组UE的单个SPS配置,DCI中的HPN信息域指示要激活的SPS配置索引;
去激活:a)单个组共享DCI一次可以去激活一组UE的单个SPS配置,DCI中的HPN信息域指示待去激活的SPS配置索引;b)单个UE专属DCI(CRC使用预配置调度无线网络临时标识(Configured Scheduling Radio Network Temporary Identity,CS-RNTI)加扰)一次可以去激活一个UE的单个SPS配置,DCI中的HPN信息域指示待去激活的SPS配置索引;c)单个组共享DCI一次可以去激活一组UE的多个SPS配置;或单个UE专属DCI一次可以去激活一个UE的多个SPS配置。
MBS业务支持的SPS配置为最多8个,SPS配置索引未定;DCI中HPN信息域为4比特长度,使用哪些状态位指示激活/去激活所对应的SPS配置索引或列表索引未定。
考虑了系统只有单播业务时候的SPS配置设计,当系统支持MBS业务的SPS配置以后,单播业务与MBS业务的SPS同时存在,会产生一系列的问题,并且下列问题尚未得到解决。
在使用终端专属DCI去激活SPS配置时,由于DCI的CRC采用CS-RNTI加扰,终端无法区分这个DCI去激活的时单播业务的SPS还是MBS业务的SPS配置,因为DCI中只有HPN信息域用于指示对应的SPS配置索引,没有其他信息用于指示区分单播和MBS业务。
MBS业务的SPS配置索引尚未确定,使用0~7来表示SPS配置索引,或者其他数值表示。
如何映射HPN信息域中的比特状态位和MBS SPS配置索引之间的对应关系。
如何设计配置MBS业务的SPS配置列表,能够使用单个DCI去激活多个SPS配置,而且能够区分这些去激活的SPS配置索引,哪些属于单播业务的SPS配置,哪些属于MBS业务的SPS配置。
基于上述技术问题,本申请提出了一种激活或去激活SPS配置的方案,通信系统能够同时支持单播业务关联的SPS配置和MBS业务关联的SPS配置同时工作,并且相互之间没有限制和影响,更进一步,单播业务关联的SPS配置和MBS业务关联的SPS配置能够协同工作,提高了通信系统的兼容 性能。
以下通过具体实施例详述本申请的技术方案。
图5是根据本申请实施例的无线通信的方法200的示意性流程图,如图5所示,该无线通信的方法200可以包括如下内容中的至少部分内容:
S210,网络设备向终端设备发送第一DCI;其中,该第一DCI用于激活或去激活M个SPS配置,M为正整数;其中,该M个SPS配置的类型包括以下至少之一:单播业务关联的SPS配置,MBS业务关联的SPS配置;
S220,该终端设备接收该第一DCI。
在本申请实施例中,用于激活SPS配置的DCI与用于去激活SPS配置的DCI为不同的DCI。
在一些实施例中,本申请实施例所述的MBS业务也可以是MBMS业务,本申请对此并不限定。
在一些实施例中,M=1,即该第一DCI可以激活或去激活单个SPS配置,此种情况下,单播业务关联的SPS配置或MBS业务关联的SPS配置。
在一些实施例中,M>1,即该第一DCI可以激活或去激活多个SPS配置,此种情况下,多个SPS配置均为单播业务关联的SPS配置,或者,多个SPS配置均为MBS业务关联的SPS配置,或者,多个SPS配置中的一部分SPS配置为单播业务关联的SPS配置,另一部分SPS配置为MBS业务关联的SPS配置。
在一些实施例中,该M个SPS配置可以是该终端设备的SPS配置,或者,该M个SPS配置可以是该终端设备所属的终端组的SPS配置。
在一些实施例中,该第一DCI的CRC采用CS-RNTI加扰。也即,该第一DCI为该终端设备专属的DCI。
在一些实施例中,针对单播业务配置有R个SPS配置,和/或,针对MBS业务配置有Q个SPS配置;其中,1≤R≤R max,1≤Q≤Q max,R、Q、R max和Q max均为正整数。也即,网络设备可以针对单播业务为终端设备配置R个SPS配置,以及针对MBS业务为终端设备配置Q个SPS配置。
具体的,R与Q的取值可以相同,也可以不同。R max与Q max的取值可以相同,也可以不同。
在一些实现方式中,R的取值也可以为0(R=0),即针对单播业务未配置SPS配置。同理,Q的取值也可以为0(Q=0),即针对MBS业务未配置SPS配置。
在一些实施例中,R max的取值为以下之一:8、16、32。当然,R max也可以有其他取值,本申请对此并不限定。
例如,R=8,即单播业务关联的SPS配置索引(SPS-ConfigIndex)取值范围为0~7。
在一些实施例中,Q max的取值为以下之一:8、16、32。当然,Q max也可以有其他取值,本申请对此并不限定。
例如,Q=8,即MBS业务关联的SPS配置索引(SPS-ConfigIndex)取值范围为0~7。
实施例1,该第一DCI包括第一信息域;其中,该M个SPS配置中MBS业务关联的SPS配置的数量为1,该第一信息域用于指示该M个SPS配置中MBS业务关联的SPS配置索引。
在一些实现方式中,M=1,也即,该M个SPS配置仅包括一个MBS业务关联的SPS配置。
在一些实现方式中,该M个SPS配置中也可以包括一个或多个单播业务关联的SPS配置,具体可以通过该第一DCI中的其他信息域指示单播业务关联的SPS配置索引。
在一些实现方式中,该第一信息域的不同状态位分别对应不同的MBS业务关联的SPS配置索引。
在实施例1的一些实现方式中,该第一信息域的状态位与MBS业务关联的SPS配置索引之间的对应关系由协议约定,或者,该第一信息域的状态位与MBS业务关联的SPS配置索引之间的对应关系由网络设备配置。
在一些实现方式中,该第一信息域的长度大于或等于3比特,且该第一信息域指示的MBS业务关联的SPS配置索引为K;其中,K为整数,0≤K≤Q-1。
在实施例1的一些实现方式中,该第一信息域为该第一DCI中除HPN信息域之外的信息域,或者,该第一信息域为该第一DCI中专门用于指示MBS业务关联的SPS配置索引的信息域。
具体例如,该第一信息域为时域资源分配(Time domain resource assignment,TDRA)信息域,或者,该第一信息域为调制编码方案(Modulation and Coding Scheme,MCS)信息域,或者,该第一信息域为物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源指示信息域,或者,该第一信息域为PDSCH至HARQ反馈定时指示信息域。
在实施例1的一些实现方式中,假设第一信息域的长度为3比特,Q=8,即MBS业务关联的SPS配置索引(SPS-ConfigIndex)取值范围为0~7,该第一DCI中的该第一信息域的8个状态位所指示的MBS业务关联的SPS配置索引具体可以如表1所示。
表1
Figure PCTCN2022076880-appb-000003
需要说明的是,上述表1仅仅只是示例,并不对本申请构成限定。
实施例2,该第一DCI包括第二信息域和第三信息域;
其中,该M个SPS配置仅包括第一SPS配置(即M=1),该第二信息域用于指示该第一SPS配置的索引,该第三信息域用于指示该第一SPS配置为单播业务关联的SPS配置,或者,该第三信息域用于指示该第一SPS配置为MBS业务关联的SPS配置。
具体例如,该第二信息域用于指示第一SPS配置的索引(如SPS-ConfigIndex=1)。该第三信息域占用1比特;其中,比特状态0对应指示第一SPS配置为单播业务关联的SPS配置,比特状态1对应指示第一SPS配置为MBS业务关联的SPS配置;或者,比特状态1对应指示第一SPS配置为单播业务关联的SPS配置,比特状态0对应指示第一SPS配置为MBS业务关联的SPS配置。
在一些实现方式中,该第二信息域的不同状态位分别对应不同的SPS配置索引。
在实施例2的一些实现方式中,该第二信息域的状态位与SPS配置索引之间的对应关系由协议约定,或者,该第二信息域的状态位与SPS配置索引之间的对应关系由网络设备配置。
在实施例2的一些实现方式中,单播业务关联的SPS配置索引为L,0≤L≤R-1;和/或,MBS业务关联的SPS配置索引为K,0≤K≤Q-1;其中,L和K均为整数。
在一些实现方式中,该第二信息域为该第一DCI中的HPN信息域,例如,该第二信息域为该第一DCI中的HPN信息域的4个比特。
在一些实现方式中,该第三信息域为该第一DCI中的虚拟资源块(virtual resource block,VRB)到PRB映射(VRB-to-PRB mapping)信息域,或者,该第三信息域为该第一DCI中的冗余版本(Redundancy version)信息域,具体可以如表2所示。可选地,该第三信息域也可以为新数据指示(New Data Indicator,NDI)信息域,或者,其他信息域,本申请对此并不限定。
表2
Figure PCTCN2022076880-appb-000004
在实施例2的一些实现方式中,假设该第一DCI中的第二信息域的长度为4比特,该第一DCI中的该第三信息域的长度为1比特。R=8,即单播业务关联的SPS配置索引(SPS-ConfigIndex)取值范围为0~7;Q=8,即MBS业务关联的SPS配置索引(SPS-ConfigIndex)取值范围为0~7。具体的,如表3和表4所示,该第一DCI中的该第二信息域的8个状态位分别指示8个SPS配置索引,该第一DCI中的该第三信息域的状态0指示MBS关联的SPS配置索引,状态1指示单播业务关联的SPS配置索引。
表3
Figure PCTCN2022076880-appb-000005
Figure PCTCN2022076880-appb-000006
表4
Figure PCTCN2022076880-appb-000007
需要说明的是,上述表3和表4中序号9至16对应的状态位预留。此外,上述表3和表4仅仅只是示例,并不对本申请构成限定。
实施例3,该第一DCI包括第四信息域;其中,该M个SPS配置仅包括第二SPS配置(即M=1),该第四信息域用于指示该第二SPS配置的索引,且该第四信息域用于指示该第二SPS配置为单播业务关联的SPS配置,或者,该第四信息域用于指示该第二SPS配置为MBS业务关联的SPS配置。
具体的,可以通过该第四信息域的状态位来区分单播业务关联的SPS配置与MBS业务关联的SPS配置。
在一些实现方式中,该第四信息域为该第一DCI中的HPN信息域。
在实施例3的一些实现方式中,单播业务关联的SPS配置索引为L,0≤L≤R-1,MBS业务关联的SPS配置索引为K,0≤K≤Q-1,其中,L和K均为整数;其中,该第四信息域中的第1个状态位至第R个状态位分别用于指示一个单播业务关联的SPS配置索引,且该第四信息域中的第R+1个状态位至第Q+R个状态位分别用于指示一个MBS业务关联的SPS配置索引。
具体例如,假设该第一DCI中的第四信息域的长度为4比特。R=8,即单播业务关联的SPS配置索引(SPS-ConfigIndex)取值范围为0~7;Q=8,即MBS业务关联的SPS配置索引(SPS-ConfigIndex)取值范围为0~7。具体的,如表5所示,该第一DCI中的该第四信息域的前8个状态位分别指示8个单播业务关联的SPS配置索引,该第一DCI中的该第四信息域的后8个状态位分别指示8个MBS业务关联的SPS配置索引。
表5
Figure PCTCN2022076880-appb-000008
Figure PCTCN2022076880-appb-000009
在实施例3的一些实现方式中,单播业务关联的SPS配置索引为L,0≤L≤R-1,MBS业务关联的SPS配置索引为K,R≤K≤R+Q-1;其中,L和K均为整数;其中,该第四信息域中的第1个状态位至第R个状态位分别用于指示单播业务关联的SPS配置索引,且该第四信息域中的第R+1个状态位至第Q+R个状态位分别用于指示MBS业务关联的SPS配置索引。
具体例如,假设该第一DCI中的第四信息域的长度为4比特。R=8,即单播业务关联的SPS配置索引(SPS-ConfigIndex)取值范围为0~7;Q=8,即MBS业务关联的SPS配置索引(SPS-ConfigIndex)取值范围为8~15。具体的,如表6所示,该第一DCI中的该第四信息域的前8个状态位分别指示8个单播业务关联的SPS配置索引,该第一DCI中的该第四信息域的后8个状态位分别指示8个MBS业务关联的SPS配置索引。
表6
Figure PCTCN2022076880-appb-000010
需要说明的是,上述表5和表6仅仅只是示例,并不对本申请构成限定。
在实施例3的一些实现方式中,在上述表5和表6中,前8个状态位分别指示8个单播业务关联的SPS配置索引,以及后8个状态位分别指示8个MBS业务关联的SPS配置索引。在一些实现方式中,也可以是奇数位的8个状态位分别指示8个单播业务关联的SPS配置索引,偶数位的8个状态位分别指示8个MBS业务关联的SPS配置索引。或者,其他状态位的组合来区分单播业务关联的SPS配置与MBS业务关联的SPS配置。
实施例4,该第一DCI包括第五信息域和第六信息域;其中,该第五信息域用于指示第一状态索引,该第一状态索引对应该M个SPS配置的索引;该第六信息域用于指示该第一状态索引为第一SPS配置状态列表中的状态索引,或者,该第六信息域用于指示该第一状态索引为第二SPS配置状态列表中的状态索引。
在实施例4中,M≥1。
在一些实现方式中,假设第一DCI中的第五信息域的长度为4比特。R=8,即单播业务关联的 SPS配置索引(SPS-ConfigIndex)取值范围为0~7;Q=8,即MBS业务关联的SPS配置索引(SPS-ConfigIndex)取值范围为0~7。具体的,该第一SPS配置状态列表可以如下表7所示,该第二SPS配置状态列表可以如下表8所示。
具体例如,该第六信息域可以占用1比特。例如,比特状态是0对应指示第一SPS配置状态列表,即如表7所示;比特状态是1对应指示第二SPS配置状态列表,即如表8所示。
表7
Figure PCTCN2022076880-appb-000011
表8
Figure PCTCN2022076880-appb-000012
Figure PCTCN2022076880-appb-000013
需要说明的是,上述表7和表8仅仅只是示例,表7和表8中的每个状态索引所对应的SPS配置索引可以随机组合,并不对本申请构成限定。
在实施例4中,该第一SPS配置状态列表(sps-ConfigStateList-1)中的一个状态索引对应一个或多个单播业务关联的SPS配置索引,该第二SPS配置状态列表(sps-ConfigStateList-2)中的一个状态索引对应一个或多个MBS业务关联的SPS配置索引。
在一些实现方式中,该第一SPS配置状态列表由协议约定,或者,该第一SPS配置状态列表由网络设备配置。
在一些实现方式中,该第二SPS配置状态列表由协议约定,或者,该第二SPS配置状态列表由网络设备配置。
可选地,该第一SPS配置状态列表与该第二SPS配置状态列表可以是网络设备通过一条信令配置的,或者,该第一SPS配置状态列表与该第二SPS配置状态列表可以是网络设备通过不同的信令配置的。
在实施例4的一些实现方式中,该第五信息域为该第一DCI中的HPN信息域。例如,该第五信息域为HPN 4比特。
在实施例4的一些实现方式中,该第六信息域为该第一DCI中的VRB到PRB映射信息域,或者,该第六信息域为该第一DCI中的冗余版本信息域。具体可以参见上述如表2所示。可选地,该第六信息域也可以为NDI信息域,或者,其他信息域,本申请对此并不限定。
实施例5,该第一DCI包括第七信息域;其中,该第七信息域用于指示第三SPS配置状态列表中的一个状态索引,该第七信息域所指示的状态索引对应该M个SPS配置的索引。
在实施例5中,该第三SPS配置状态列表中的一个状态索引对应单播业务关联的至少一个SPS配置索引和/或MBS业务关联的至少一个SPS配置索引。
在实施例5中,M≥1。
在实施例5的一些实现方式中,单播业务关联的SPS配置索引为L,0≤L≤R-1,MBS业务关联的SPS配置索引为K,R≤K≤R+Q-1;其中,L和K均为整数。
具体例如,假设R=8,即单播业务关联的SPS配置索引(SPS-ConfigIndex)取值范围为0~7;Q=8,即MBS业务关联的SPS配置索引(SPS-ConfigIndex)取值范围为8~15,如表9所示。
表9
Figure PCTCN2022076880-appb-000014
需要说明的是,上述表9仅仅只是示例,并不对本申请构成限定。
在一些实现方式中,假设第一DCI中的第七信息域的长度为4比特。R=8,即单播业务关联的SPS配置索引(SPS-ConfigIndex)取值范围为0~7;Q=8,即MBS业务关联的SPS配置索引(SPS-ConfigIndex)取值范围为0~7。具体的,该第三SPS配置状态列表可以如下表10所示。
表10
Figure PCTCN2022076880-appb-000015
Figure PCTCN2022076880-appb-000016
需要说明的是,上述表10仅仅只是示例,表10中的每个状态索引所对应的SPS配置索引可以随机组合,并不对本申请构成限定。
在一些实现方式中,该第三SPS配置状态列表由协议约定,或者,该第三SPS配置状态列表由网络设备配置。
在实施例5的一些实现方式中,该第七信息域为该第一DCI中的HPN信息域。
实施例6,该第一DCI包括第八信息域;
其中,该M个SPS配置仅包括第三SPS配置(即M=1),该第八信息域用于指示N个SPS配置的索引中该第三SPS配置的索引,该N个SPS配置包括单播业务关联的n 1个SPS配置和MBS业务关联的n 2个SPS配置,该第三SPS配置为单播业务关联的SPS配置,或者,该第三SPS配置为MBS业务关联的SPS配置;
其中,N,n 1,n 2均为正整数,且n 1+n 2=N。
在一些实现方式中,1≤N≤N max,N max的取值为以下之一:8、16、32。
具体例如,N=8,0≤n 1≤8,0≤n 2≤8,且n 1+n 2=8。
在一些实现方式中,该第八信息域的长度≥3比特。
在实施例6的一些实现方式中,该N个SPS配置的索引统一编号。
在实施例6的一些实现方式中,该N个SPS配置的索引及对应的SPS配置类型由协议约定,或者,该N个SPS配置的索引及对应的SPS配置类型由该网络设备配置。
在实施例6的一些实现方式中,该第八信息域为该第一DCI中的HPN信息域(4比特)。
在一些实现方式中,假设第一DCI中的第八信息域的长度为4比特,N=8。n 1=5,SPS配置索引(SPS-ConfigIndex)为0,2,3,5,7为单播业务关联的SPS配置;n 2=3,SPS配置索引(SPS-ConfigIndex)为1,4,6为MBS业务关联的SPS配置。具体的,8个SPS配置的索引及对应的SPS配置类型可以如下表11所示。
表11
Figure PCTCN2022076880-appb-000017
Figure PCTCN2022076880-appb-000018
在本申请实施例中,使用终端专属的DCI激活/去激活SPS配置,有效避免了终端专属的DCI用于激活/去激活SPS配置的混淆问题,清晰明确地将DCI在单播业务和MBS业务之间区分开来,不仅没有影响到单播业务的设计机制,也没有增加额外的信令开销或冗余设计;此外,支持了MBS业务中单个DCI激活/去激活多个SPS配置的设计,大大节省了下行控制信令的开销,提升了系统在SPS动态控制上的灵活性。
因此,在本申请实施例中,网络设备可以通过第一DCI激活或去激活M个SPS配置,M个SPS配置的类型包括以下至少之一:单播业务关联的SPS配置,MBS业务关联的SPS配置。从而,通信系统能够同时支持单播业务关联的SPS配置和MBS业务关联的SPS配置同时工作,并且相互之间没有限制和影响,更进一步,单播业务关联的SPS配置和MBS业务关联的SPS配置能够协同工作,提高了通信系统的兼容性能。
上文结合图5,详细描述了本申请的方法实施例,下文结合图6至图7,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图6示出了根据本申请实施例的终端设备300的示意性框图。如图6所示,该终端设备300包括:
通信单元310,用于接收第一下行控制信息DCI;
其中,该第一DCI用于激活或去激活M个半持续调度SPS配置,M为正整数;
其中,该M个SPS配置的类型包括以下至少之一:单播业务关联的SPS配置,多播广播服务MBS业务关联的SPS配置。
在一些实施例中,该第一DCI的循环冗余码校验CRC采用预配置调度无线网络临时标识CS-RNTI加扰。
在一些实施例中,针对单播业务配置有R个SPS配置,和/或,针对MBS业务配置有Q个SPS配置;
其中,1≤R≤R max,1≤Q≤Q max,R、Q、R max和Q max均为正整数。
在一些实施例中,R max的取值为以下之一:8、16、32;和/或,Q max的取值为以下之一:8、16、32。
在一些实施例中,该第一DCI包括第一信息域;
其中,该M个SPS配置中MBS业务关联的SPS配置的数量为1,该第一信息域用于指示该M个SPS配置中MBS业务关联的SPS配置索引。
在一些实施例中,该第一信息域的不同状态位分别对应不同的MBS业务关联的SPS配置索引。
在一些实施例中,该第一信息域的状态位与MBS业务关联的SPS配置索引之间的对应关系由协议约定,或者,该第一信息域的状态位与MBS业务关联的SPS配置索引之间的对应关系由网络设备配置。
在一些实施例中,该第一信息域的长度大于或等于3比特,且该第一信息域指示的MBS业务关联的SPS配置索引为K;其中,K为整数,0≤K≤Q-1。
在一些实施例中,该第一信息域为该第一DCI中除混合自动重传请求进程号HPN信息域之外的信息域,或者,该第一信息域为该第一DCI中专门用于指示MBS业务关联的SPS配置索引的信息域。
在一些实施例中,该第一DCI包括第二信息域和第三信息域;
其中,该M个SPS配置仅包括第一SPS配置,该第二信息域用于指示该第一SPS配置的索引,该第三信息域用于指示该第一SPS配置为单播业务关联的SPS配置,或者,该第三信息域用于指示该第一SPS配置为MBS业务关联的SPS配置。
在一些实施例中,该第二信息域的不同状态位分别对应不同的SPS配置索引。
在一些实施例中,该第二信息域的状态位与SPS配置索引之间的对应关系由协议约定,或者,该第二信息域的状态位与SPS配置索引之间的对应关系由网络设备配置。
在一些实施例中,单播业务关联的SPS配置索引为L,0≤L≤R-1;和/或,MBS业务关联的SPS配置索引为K,0≤K≤Q-1;其中,L和K均为整数。
在一些实施例中,该第二信息域为该第一DCI中的HPN信息域。
在一些实施例中,该第三信息域为该第一DCI中的虚拟资源块VRB到物理资源块PRB映射信息域,或者,该第三信息域为该第一DCI中的冗余版本信息域。
在一些实施例中,该第一DCI包括第四信息域;
其中,该M个SPS配置仅包括第二SPS配置,该第四信息域用于指示该第二SPS配置的索引,且该第四信息域用于指示该第二SPS配置为单播业务关联的SPS配置,或者,该第四信息域用于指示该第二SPS配置为MBS业务关联的SPS配置。
在一些实施例中,单播业务关联的SPS配置索引为L,0≤L≤R-1,MBS业务关联的SPS配置索引为K,0≤K≤Q-1;或者,单播业务关联的SPS配置索引为L,0≤L≤R-1,MBS业务关联的SPS配置索引为K,R≤K≤R+Q-1;其中,L和K均为整数;
其中,该第四信息域中的第1个状态位至第R个状态位分别用于指示单播业务关联的SPS配置索引,且该第四信息域中的第R+1个状态位至第Q+R个状态位分别用于指示MBS业务关联的SPS配置索引。
在一些实施例中,该第四信息域为该第一DCI中的HPN信息域。
在一些实施例中,该第一DCI包括第五信息域和第六信息域;
其中,该第五信息域用于指示第一状态索引,该第六信息域用于指示该第一状态索引为第一SPS配置状态列表中的状态索引,或者,该第六信息域用于指示该第一状态索引为第二SPS配置状态列表中的状态索引;
其中,该第一SPS配置状态列表中的一个状态索引对应一个或多个单播业务关联的SPS配置索引,该第二SPS配置状态列表中的一个状态索引对应一个或多个MBS业务关联的SPS配置索引,该第一状态索引对应该M个SPS配置的索引。
在一些实施例中,该第一SPS配置状态列表由协议约定,或者,该第一SPS配置状态列表由网络设备配置。
在一些实施例中,该第二SPS配置状态列表由协议约定,或者,该第二SPS配置状态列表由网络设备配置。
在一些实施例中,该第五信息域为该第一DCI中的HPN信息域。
在一些实施例中,该第六信息域为该第一DCI中的VRB到PRB映射信息域,或者,该第六信息域为该第一DCI中的冗余版本信息域。
在一些实施例中,该第一DCI包括第七信息域;
其中,该第七信息域用于指示第三SPS配置状态列表中的一个状态索引;
其中,该第三SPS配置状态列表中的一个状态索引对应单播业务关联的至少一个SPS配置索引和/或MBS业务关联的至少一个SPS配置索引,该第七信息域所指示的状态索引对应该M个SPS配置的索引。
在一些实施例中,单播业务关联的SPS配置索引为L,0≤L≤R-1,MBS业务关联的SPS配置索引为K,R≤K≤R+Q-1;其中,L和K均为整数。
在一些实施例中,该第三SPS配置状态列表由协议约定,或者,该第三SPS配置状态列表由网络设备配置。
在一些实施例中,该第七信息域为该第一DCI中的HPN信息域。
在一些实施例中,该第一DCI包括第八信息域;
其中,该M个SPS配置仅包括第三SPS配置,该第八信息域用于指示N个SPS配置的索引中该第三SPS配置的索引,该N个SPS配置包括单播业务关联的n 1个SPS配置和MBS业务关联的n 2个SPS配置,该第三SPS配置为单播业务关联的SPS配置,或者,该第三SPS配置为MBS业务关联的SPS配置;
其中,N,n 1,n 2均为正整数,且n 1+n 2=N。
在一些实施例中,该N个SPS配置的索引统一编号。
在一些实施例中,该N个SPS配置的索引及对应的SPS配置类型由协议约定,或者,该N个SPS配置的索引及对应的SPS配置类型由网络设备配置。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入 输出接口。
应理解,根据本申请实施例的终端设备300可对应于本申请方法实施例中的终端设备,并且终端设备300中的各个单元的上述和其它操作和/或功能分别为了实现图5所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图7示出了根据本申请实施例的网络设备400的示意性框图。如图7所示,该网络设备400包括:
通信单元410,用于发送第一下行控制信息DCI;
其中,该第一DCI用于激活或去激活M个半持续调度SPS配置,M为正整数;
其中,该M个SPS配置的类型包括以下至少之一:单播业务关联的SPS配置,多播广播服务MBS业务关联的SPS配置。
在一些实施例中,该第一DCI的循环冗余码校验CRC采用预配置调度无线网络临时标识CS-RNTI加扰。
在一些实施例中,针对单播业务配置有R个SPS配置,和/或,针对MBS业务配置有Q个SPS配置;
其中,1≤R≤R max,1≤Q≤Q max,R、Q、R max和Q max均为正整数。
在一些实施例中,R max的取值为以下之一:8、16、32;和/或,Q max的取值为以下之一:8、16、32。
在一些实施例中,该第一DCI包括第一信息域;
其中,该M个SPS配置中MBS业务关联的SPS配置的数量为1,该第一信息域用于指示该M个SPS配置中MBS业务关联的SPS配置索引。
在一些实施例中,该第一信息域的不同状态位分别对应不同的MBS业务关联的SPS配置索引。
在一些实施例中,该第一信息域的状态位与MBS业务关联的SPS配置索引之间的对应关系由协议约定,或者,该第一信息域的状态位与MBS业务关联的SPS配置索引之间的对应关系由网络设备配置。
在一些实施例中,该第一信息域的长度大于或等于3比特,且该第一信息域指示的MBS业务关联的SPS配置索引为K;其中,K为整数,0≤K≤Q-1。
在一些实施例中,该第一信息域为该第一DCI中除混合自动重传请求进程号HPN信息域之外的信息域,或者,该第一信息域为该第一DCI中专门用于指示MBS业务关联的SPS配置索引的信息域。
在一些实施例中,该第一DCI包括第二信息域和第三信息域;
其中,该M个SPS配置仅包括第一SPS配置,该第二信息域用于指示该第一SPS配置的索引,该第三信息域用于指示该第一SPS配置为单播业务关联的SPS配置,或者,该第三信息域用于指示该第一SPS配置为MBS业务关联的SPS配置。
在一些实施例中,该第二信息域的不同状态位分别对应不同的SPS配置索引。
在一些实施例中,该第二信息域的状态位与SPS配置索引之间的对应关系由协议约定,或者,该第二信息域的状态位与SPS配置索引之间的对应关系由网络设备配置。
在一些实施例中,单播业务关联的SPS配置索引为L,0≤L≤R-1;和/或,MBS业务关联的SPS配置索引为K,0≤K≤Q-1;其中,L和K均为整数。
在一些实施例中,该第二信息域为该第一DCI中的HPN信息域。
在一些实施例中,该第三信息域为该第一DCI中的虚拟资源块VRB到物理资源块PRB映射信息域,或者,该第三信息域为该第一DCI中的冗余版本信息域。
在一些实施例中,该第一DCI包括第四信息域;
其中,该M个SPS配置仅包括第二SPS配置,该第四信息域用于指示该第二SPS配置的索引,且该第四信息域用于指示该第二SPS配置为单播业务关联的SPS配置,或者,该第四信息域用于指示该第二SPS配置为MBS业务关联的SPS配置。
在一些实施例中,单播业务关联的SPS配置索引为L,0≤L≤R-1,MBS业务关联的SPS配置索引为K,0≤K≤Q-1;或者,单播业务关联的SPS配置索引为L,0≤L≤R-1,MBS业务关联的SPS配置索引为K,R≤K≤R+Q-1;其中,L和K均为整数;
其中,该第四信息域中的第1个状态位至第R个状态位分别用于指示单播业务关联的SPS配置索引,且该第四信息域中的第R+1个状态位至第Q+R个状态位分别用于指示MBS业务关联的SPS配置索引。
在一些实施例中,该第四信息域为该第一DCI中的HPN信息域。
在一些实施例中,该第一DCI包括第五信息域和第六信息域;
其中,该第五信息域用于指示第一状态索引,该第六信息域用于指示该第一状态索引为第一SPS 配置状态列表中的状态索引,或者,该第六信息域用于指示该第一状态索引为第二SPS配置状态列表中的状态索引;
其中,该第一SPS配置状态列表中的一个状态索引对应一个或多个单播业务关联的SPS配置索引,该第二SPS配置状态列表中的一个状态索引对应一个或多个MBS业务关联的SPS配置索引,该第一状态索引对应该M个SPS配置的索引。
在一些实施例中,该第一SPS配置状态列表由协议约定,或者,该第一SPS配置状态列表由网络设备配置。
在一些实施例中,该第二SPS配置状态列表由协议约定,或者,该第二SPS配置状态列表由网络设备配置。
在一些实施例中,该第五信息域为该第一DCI中的HPN信息域。
在一些实施例中,该第六信息域为该第一DCI中的VRB到PRB映射信息域,或者,该第六信息域为该第一DCI中的冗余版本信息域。
在一些实施例中,该第一DCI包括第七信息域;
其中,该第七信息域用于指示第三SPS配置状态列表中的一个状态索引;
其中,该第三SPS配置状态列表中的一个状态索引对应单播业务关联的至少一个SPS配置索引和/或MBS业务关联的至少一个SPS配置索引,该第七信息域所指示的状态索引对应该M个SPS配置的索引。
在一些实施例中,单播业务关联的SPS配置索引为L,0≤L≤R-1,MBS业务关联的SPS配置索引为K,R≤K≤R+Q-1;其中,L和K均为整数。
在一些实施例中,该第三SPS配置状态列表由协议约定,或者,该第三SPS配置状态列表由网络设备配置。
在一些实施例中,该第七信息域为该第一DCI中的HPN信息域。
在一些实施例中,该第一DCI包括第八信息域;
其中,该M个SPS配置仅包括第三SPS配置,该第八信息域用于指示N个SPS配置的索引中该第三SPS配置的索引,该N个SPS配置包括单播业务关联的n 1个SPS配置和MBS业务关联的n 2个SPS配置,该第三SPS配置为单播业务关联的SPS配置,或者,该第三SPS配置为MBS业务关联的SPS配置;
其中,N,n 1,n 2均为正整数,且n 1+n 2=N。
在一些实施例中,该N个SPS配置的索引统一编号。
在一些实施例中,该N个SPS配置的索引及对应的SPS配置类型由协议约定,或者,该N个SPS配置的索引及对应的SPS配置类型由该网络设备配置。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。
应理解,根据本申请实施例的网络设备400可对应于本申请方法实施例中的网络设备,并且网络设备400中的各个单元的上述和其它操作和/或功能分别为了实现图5所示方法200中网络设备的相应流程,为了简洁,在此不再赘述。
图8是本申请实施例提供的一种通信设备500示意性结构图。图8所示的通信设备500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图8所示,通信设备500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
在一些实施例中,如图8所示,通信设备500还可以包括收发器530,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,该通信设备500具体可为本申请实施例的网络设备,并且该通信设备500可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备500具体可为本申请实施例的终端设备,并且该通信设备500可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图9是本申请实施例的装置的示意性结构图。图9所示的装置600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图9所示,装置600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
在一些实施例中,该装置600还可以包括输入接口630。其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一些实施例中,该装置600还可以包括输出接口640。其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一些实施例中,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图10是本申请实施例提供的一种通信系统700的示意性框图。如图10所示,该通信系统700包括终端设备710和网络设备720。
其中,该终端设备710可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备720可以用于实现上述方法中由网络设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指 令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
在一些实施例中,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (72)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备接收第一下行控制信息DCI;
    其中,所述第一DCI用于激活或去激活M个半持续调度SPS配置,M为正整数;
    其中,所述M个SPS配置的类型包括以下至少之一:单播业务关联的SPS配置,多播广播服务MBS业务关联的SPS配置。
  2. 如权利要求1所述的方法,其特征在于,所述第一DCI的循环冗余码校验CRC采用预配置调度无线网络临时标识CS-RNTI加扰。
  3. 如权利要求1或2所述的方法,其特征在于,
    针对单播业务配置有R个SPS配置,和/或,针对MBS业务配置有Q个SPS配置;
    其中,1≤R≤R max,1≤Q≤Q max,R、Q、R max和Q max均为正整数。
  4. 如权利要求3所述的方法,其特征在于,
    R max的取值为以下之一:8、16、32;和/或,Q max的取值为以下之一:8、16、32。
  5. 如权利要求3或4所述的方法,其特征在于,
    所述第一DCI包括第一信息域;
    其中,所述M个SPS配置中MBS业务关联的SPS配置的数量为1,所述第一信息域用于指示所述M个SPS配置中MBS业务关联的SPS配置索引。
  6. 如权利要求5所述的方法,其特征在于,
    所述第一信息域的不同状态位分别对应不同的MBS业务关联的SPS配置索引。
  7. 如权利要求6所述的方法,其特征在于,
    所述第一信息域的状态位与MBS业务关联的SPS配置索引之间的对应关系由协议约定,或者,所述第一信息域的状态位与MBS业务关联的SPS配置索引之间的对应关系由网络设备配置。
  8. 如权利要求5至7中任一项所述的方法,其特征在于,
    所述第一信息域的长度大于或等于3比特,且所述第一信息域指示的MBS业务关联的SPS配置索引为K;其中,K为整数,0≤K≤Q-1。
  9. 如权利要求5至8中任一项所述的方法,其特征在于,
    所述第一信息域为所述第一DCI中除混合自动重传请求进程号HPN信息域之外的信息域,或者,所述第一信息域为所述第一DCI中专门用于指示MBS业务关联的SPS配置索引的信息域。
  10. 如权利要求3或4所述的方法,其特征在于,
    所述第一DCI包括第二信息域和第三信息域;
    其中,所述M个SPS配置仅包括第一SPS配置,所述第二信息域用于指示所述第一SPS配置的索引,所述第三信息域用于指示所述第一SPS配置为单播业务关联的SPS配置,或者,所述第三信息域用于指示所述第一SPS配置为MBS业务关联的SPS配置。
  11. 如权利要求10所述的方法,其特征在于,
    所述第二信息域的不同状态位分别对应不同的SPS配置索引。
  12. 如权利要求11所述的方法,其特征在于,
    所述第二信息域的状态位与SPS配置索引之间的对应关系由协议约定,或者,所述第二信息域的状态位与SPS配置索引之间的对应关系由网络设备配置。
  13. 如权利要求10至12中任一项所述的方法,其特征在于,
    单播业务关联的SPS配置索引为L,0≤L≤R-1;和/或,MBS业务关联的SPS配置索引为K,0≤K≤Q-1;其中,L和K均为整数。
  14. 如权利要求11至13中任一项所述的方法,其特征在于,
    所述第二信息域为所述第一DCI中的HPN信息域。
  15. 如权利要求11至14中任一项所述的方法,其特征在于,
    所述第三信息域为所述第一DCI中的虚拟资源块VRB到物理资源块PRB映射信息域,或者,所述第三信息域为所述第一DCI中的冗余版本信息域。
  16. 如权利要求3或4所述的方法,其特征在于,
    所述第一DCI包括第四信息域;
    其中,所述M个SPS配置仅包括第二SPS配置,所述第四信息域用于指示所述第二SPS配置的索引,且所述第四信息域用于指示所述第二SPS配置为单播业务关联的SPS配置,或者,所述第四信息域用于指示所述第二SPS配置为MBS业务关联的SPS配置。
  17. 如权利要求16所述的方法,其特征在于,
    单播业务关联的SPS配置索引为L,0≤L≤R-1,MBS业务关联的SPS配置索引为K,0≤K≤Q-1;或者,单播业务关联的SPS配置索引为L,0≤L≤R-1,MBS业务关联的SPS配置索引为K,R≤K≤R+Q-1;其中,L和K均为整数;
    其中,所述第四信息域中的第1个状态位至第R个状态位分别用于指示单播业务关联的SPS配置索引,且所述第四信息域中的第R+1个状态位至第Q+R个状态位分别用于指示MBS业务关联的SPS配置索引。
  18. 如权利要求16或17所述的方法,其特征在于,
    所述第四信息域为所述第一DCI中的HPN信息域。
  19. 如权利要求3或4所述的方法,其特征在于,
    所述第一DCI包括第五信息域和第六信息域;
    其中,所述第五信息域用于指示第一状态索引,所述第六信息域用于指示所述第一状态索引为第一SPS配置状态列表中的状态索引,或者,所述第六信息域用于指示所述第一状态索引为第二SPS配置状态列表中的状态索引;
    其中,所述第一SPS配置状态列表中的一个状态索引对应一个或多个单播业务关联的SPS配置索引,所述第二SPS配置状态列表中的一个状态索引对应一个或多个MBS业务关联的SPS配置索引,所述第一状态索引对应所述M个SPS配置的索引。
  20. 如权利要求19所述的方法,其特征在于,
    所述第一SPS配置状态列表由协议约定,或者,所述第一SPS配置状态列表由网络设备配置。
  21. 如权利要求19或20所述的方法,其特征在于,
    所述第二SPS配置状态列表由协议约定,或者,所述第二SPS配置状态列表由网络设备配置。
  22. 如权利要求19至21中任一项所述的方法,其特征在于,
    所述第五信息域为所述第一DCI中的HPN信息域。
  23. 如权利要求19至22中任一项所述的方法,其特征在于,
    所述第六信息域为所述第一DCI中的VRB到PRB映射信息域,或者,所述第六信息域为所述第一DCI中的冗余版本信息域。
  24. 如权利要求3或4所述的方法,其特征在于,
    所述第一DCI包括第七信息域;
    其中,所述第七信息域用于指示第三SPS配置状态列表中的一个状态索引;
    其中,所述第三SPS配置状态列表中的一个状态索引对应单播业务关联的至少一个SPS配置索引和/或MBS业务关联的至少一个SPS配置索引,所述第七信息域所指示的状态索引对应所述M个SPS配置的索引。
  25. 如权利要求24所述的方法,其特征在于,
    单播业务关联的SPS配置索引为L,0≤L≤R-1,MBS业务关联的SPS配置索引为K,R≤K≤R+Q-1;其中,L和K均为整数。
  26. 如权利要求24或25所述的方法,其特征在于,
    所述第三SPS配置状态列表由协议约定,或者,所述第三SPS配置状态列表由网络设备配置。
  27. 如权利要求24至26中任一项所述的方法,其特征在于,
    所述第七信息域为所述第一DCI中的HPN信息域。
  28. 如权利要求1或2所述的方法,其特征在于,
    所述第一DCI包括第八信息域;
    其中,所述M个SPS配置仅包括第三SPS配置,所述第八信息域用于指示N个SPS配置的索引中所述第三SPS配置的索引,所述N个SPS配置包括单播业务关联的n 1个SPS配置和MBS业务关联的n 2个SPS配置,所述第三SPS配置为单播业务关联的SPS配置,或者,所述第三SPS配置为MBS业务关联的SPS配置;
    其中,N,n 1,n 2均为正整数,且n 1+n 2=N。
  29. 如权利要求28所述的方法,其特征在于,所述N个SPS配置的索引统一编号。
  30. 如权利要求28或29所述的方法,其特征在于,
    所述N个SPS配置的索引及对应的SPS配置类型由协议约定,或者,所述N个SPS配置的索引及对应的SPS配置类型由网络设备配置。
  31. 一种无线通信的方法,其特征在于,包括:
    网络设备发送第一下行控制信息DCI;
    其中,所述第一DCI用于激活或去激活M个半持续调度SPS配置,M为正整数;
    其中,所述M个SPS配置的类型包括以下至少之一:单播业务关联的SPS配置,多播广播服务MBS业务关联的SPS配置。
  32. 如权利要求31所述的方法,其特征在于,所述第一DCI的循环冗余码校验CRC采用预配置调度无线网络临时标识CS-RNTI加扰。
  33. 如权利要求31或32所述的方法,其特征在于,
    针对单播业务配置有R个SPS配置,和/或,针对MBS业务配置有Q个SPS配置;
    其中,1≤R≤R max,1≤Q≤Q max,R、Q、R max和Q max均为正整数。
  34. 如权利要求33所述的方法,其特征在于,
    R max的取值为以下之一:8、16、32;和/或,Q max的取值为以下之一:8、16、32。
  35. 如权利要求33或34所述的方法,其特征在于,
    所述第一DCI包括第一信息域;
    其中,所述M个SPS配置中MBS业务关联的SPS配置的数量为1,所述第一信息域用于指示所述M个SPS配置中MBS业务关联的SPS配置索引。
  36. 如权利要求35所述的方法,其特征在于,
    所述第一信息域的不同状态位分别对应不同的MBS业务关联的SPS配置索引。
  37. 如权利要求36所述的方法,其特征在于,
    所述第一信息域的状态位与MBS业务关联的SPS配置索引之间的对应关系由协议约定,或者,所述第一信息域的状态位与MBS业务关联的SPS配置索引之间的对应关系由所述网络设备配置。
  38. 如权利要求35至37中任一项所述的方法,其特征在于,
    所述第一信息域的长度大于或等于3比特,且所述第一信息域指示的MBS业务关联的SPS配置索引为K;其中,K为整数,0≤K≤Q-1。
  39. 如权利要求35至38中任一项所述的方法,其特征在于,
    所述第一信息域为所述第一DCI中除混合自动重传请求进程号HPN信息域之外的信息域,或者,所述第一信息域为所述第一DCI中专门用于指示MBS业务关联的SPS配置索引的信息域。
  40. 如权利要求33或34所述的方法,其特征在于,
    所述第一DCI包括第二信息域和第三信息域;
    其中,所述M个SPS配置仅包括第一SPS配置,所述第二信息域用于指示所述第一SPS配置的索引,所述第三信息域用于指示所述第一SPS配置为单播业务关联的SPS配置,或者,所述第三信息域用于指示所述第一SPS配置为MBS业务关联的SPS配置。
  41. 如权利要求40所述的方法,其特征在于,
    所述第二信息域的不同状态位分别对应不同的SPS配置索引。
  42. 如权利要求41所述的方法,其特征在于,
    所述第二信息域的状态位与SPS配置索引之间的对应关系由协议约定,或者,所述第二信息域的状态位与SPS配置索引之间的对应关系由所述网络设备配置。
  43. 如权利要求40至42中任一项所述的方法,其特征在于,
    单播业务关联的SPS配置索引为L,0≤L≤R-1;和/或,MBS业务关联的SPS配置索引为K,0≤K≤Q-1;其中,L和K均为整数。
  44. 如权利要求41至43中任一项所述的方法,其特征在于,
    所述第二信息域为所述第一DCI中的HPN信息域。
  45. 如权利要求41至44中任一项所述的方法,其特征在于,
    所述第三信息域为所述第一DCI中的虚拟资源块VRB到物理资源块PRB映射信息域,或者,所述第三信息域为所述第一DCI中的冗余版本信息域。
  46. 如权利要求33或34所述的方法,其特征在于,
    所述第一DCI包括第四信息域;
    其中,所述M个SPS配置仅包括第二SPS配置,所述第四信息域用于指示所述第二SPS配置的索引,且所述第四信息域用于指示所述第二SPS配置为单播业务关联的SPS配置,或者,所述第四信息域用于指示所述第二SPS配置为MBS业务关联的SPS配置。
  47. 如权利要求46所述的方法,其特征在于,
    单播业务关联的SPS配置索引为L,0≤L≤R-1,MBS业务关联的SPS配置索引为K,0≤K≤Q-1;或者,单播业务关联的SPS配置索引为L,0≤L≤R-1,MBS业务关联的SPS配置索引为K,R≤K≤R+Q-1;其中,L和K均为整数;
    其中,所述第四信息域中的第1个状态位至第R个状态位分别用于指示单播业务关联的SPS配 置索引,且所述第四信息域中的第R+1个状态位至第Q+R个状态位分别用于指示MBS业务关联的SPS配置索引。
  48. 如权利要求46或47所述的方法,其特征在于,
    所述第四信息域为所述第一DCI中的HPN信息域。
  49. 如权利要求33或34所述的方法,其特征在于,
    所述第一DCI包括第五信息域和第六信息域;
    其中,所述第五信息域用于指示第一状态索引,所述第六信息域用于指示所述第一状态索引为第一SPS配置状态列表中的状态索引,或者,所述第六信息域用于指示所述第一状态索引为第二SPS配置状态列表中的状态索引;
    其中,所述第一SPS配置状态列表中的一个状态索引对应一个或多个单播业务关联的SPS配置索引,所述第二SPS配置状态列表中的一个状态索引对应一个或多个MBS业务关联的SPS配置索引,所述第一状态索引对应所述M个SPS配置的索引。
  50. 如权利要求49所述的方法,其特征在于,所述第一SPS配置状态列表由协议约定,或者,所述第一SPS配置状态列表由所述网络设备配置。
  51. 如权利要求49或50所述的方法,其特征在于,所述第二SPS配置状态列表由协议约定,或者,所述第二SPS配置状态列表由所述网络设备配置。
  52. 如权利要求49至51中任一项所述的方法,其特征在于,
    所述第五信息域为所述第一DCI中的HPN信息域。
  53. 如权利要求49至52中任一项所述的方法,其特征在于,
    所述第六信息域为所述第一DCI中的VRB到PRB映射信息域,或者,所述第六信息域为所述第一DCI中的冗余版本信息域。
  54. 如权利要求33或34所述的方法,其特征在于,
    所述第一DCI包括第七信息域;
    其中,所述第七信息域用于指示第三SPS配置状态列表中的一个状态索引;
    其中,所述第三SPS配置状态列表中的一个状态索引对应单播业务关联的至少一个SPS配置索引和/或MBS业务关联的至少一个SPS配置索引,所述第七信息域所指示的状态索引对应所述M个SPS配置的索引。
  55. 如权利要求54所述的方法,其特征在于,
    单播业务关联的SPS配置索引为L,0≤L≤R-1,MBS业务关联的SPS配置索引为K,R≤K≤R+Q-1;其中,L和K均为整数。
  56. 如权利要求54或55所述的方法,其特征在于,所述第三SPS配置状态列表由协议约定,或者,所述第三SPS配置状态列表由所述网络设备配置。
  57. 如权利要求54至56中任一项所述的方法,其特征在于,
    所述第七信息域为所述第一DCI中的HPN信息域。
  58. 如权利要求31或32所述的方法,其特征在于,
    所述第一DCI包括第八信息域;
    其中,所述M个SPS配置仅包括第三SPS配置,所述第八信息域用于指示N个SPS配置的索引中所述第三SPS配置的索引,所述N个SPS配置包括单播业务关联的n 1个SPS配置和MBS业务关联的n 2个SPS配置,所述第三SPS配置为单播业务关联的SPS配置,或者,所述第三SPS配置为MBS业务关联的SPS配置;
    其中,N,n 1,n 2均为正整数,且n 1+n 2=N。
  59. 如权利要求58所述的方法,其特征在于,所述N个SPS配置的索引统一编号。
  60. 如权利要求58或59所述的方法,其特征在于,
    所述N个SPS配置的索引及对应的SPS配置类型由协议约定,或者,所述N个SPS配置的索引及对应的SPS配置类型由所述网络设备配置。
  61. 一种终端设备,其特征在于,包括:
    通信单元,用于接收第一下行控制信息DCI;
    其中,所述第一DCI用于激活或去激活M个半持续调度SPS配置,M为正整数;
    其中,所述M个SPS配置的类型包括以下至少之一:单播业务关联的SPS配置,多播广播服务MBS业务关联的SPS配置。
  62. 一种网络设备,其特征在于,包括:
    通信单元,用于发送第一下行控制信息DCI;
    其中,所述第一DCI用于激活或去激活M个半持续调度SPS配置,M为正整数;
    其中,所述M个SPS配置的类型包括以下至少之一:单播业务关联的SPS配置,多播广播服务MBS业务关联的SPS配置。
  63. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述终端设备执行如权利要求1至30中任一项所述的方法。
  64. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述网络设备执行如权利要求31至60中任一项所述的方法。
  65. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至30中任一项所述的方法。
  66. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求31至60中任一项所述的方法。
  67. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至30中任一项所述的方法。
  68. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求31至60中任一项所述的方法。
  69. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至30中任一项所述的方法。
  70. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求31至60中任一项所述的方法。
  71. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至30中任一项所述的方法。
  72. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求31至60中任一项所述的方法。
PCT/CN2022/076880 2022-02-18 2022-02-18 无线通信的方法、终端设备和网络设备 WO2023155151A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/076880 WO2023155151A1 (zh) 2022-02-18 2022-02-18 无线通信的方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/076880 WO2023155151A1 (zh) 2022-02-18 2022-02-18 无线通信的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2023155151A1 true WO2023155151A1 (zh) 2023-08-24

Family

ID=87577405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076880 WO2023155151A1 (zh) 2022-02-18 2022-02-18 无线通信的方法、终端设备和网络设备

Country Status (1)

Country Link
WO (1) WO2023155151A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210243782A1 (en) * 2020-04-21 2021-08-05 Honglei Miao Methods of enhanced sps transmission and harq feedback
WO2022014992A1 (ko) * 2020-07-13 2022-01-20 삼성전자 주식회사 Mbs 수신을 위한 sps의 동작 방법 및 장치
WO2022120837A1 (zh) * 2020-12-11 2022-06-16 Oppo广东移动通信有限公司 Mbs业务的半静态调度方法及装置、终端设备、网络设备
US20220322406A1 (en) * 2021-04-01 2022-10-06 Qualcomm Incorporated Activation and release for group-common downlink channels with repetitions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210243782A1 (en) * 2020-04-21 2021-08-05 Honglei Miao Methods of enhanced sps transmission and harq feedback
WO2022014992A1 (ko) * 2020-07-13 2022-01-20 삼성전자 주식회사 Mbs 수신을 위한 sps의 동작 방법 및 장치
WO2022120837A1 (zh) * 2020-12-11 2022-06-16 Oppo广东移动通信有限公司 Mbs业务的半静态调度方法及装置、终端设备、网络设备
US20220322406A1 (en) * 2021-04-01 2022-10-06 Qualcomm Incorporated Activation and release for group-common downlink channels with repetitions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Other issues for Rel-17 MBS", 3GPP DRAFT; R1-2007694, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 1 November 2020 (2020-11-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052349048 *

Similar Documents

Publication Publication Date Title
WO2021134298A1 (zh) 一种资源指示方法及装置、通信设备
WO2021138805A1 (zh) 一种业务同步调度方法及装置、通信设备
CN113678500B (zh) 一种反馈资源配置方法及通信方法、装置、通信设备
WO2022134076A1 (zh) 无线通信的方法和终端设备
US11963199B2 (en) Semi-persistent scheduling method and apparatus for MBS service, and terminal device and network device
WO2023155151A1 (zh) 无线通信的方法、终端设备和网络设备
CN115243384B (zh) 业务冲突的解决方法、装置、设备及存储介质
WO2022021008A1 (zh) 确定侧行链路配置授权资源的方法和终端设备
WO2022021312A1 (zh) 无线通信方法、终端设备和网络设备
WO2021134291A1 (zh) 一种资源配置方法及装置、终端设备、网络设备
WO2023050319A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023004584A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024031395A1 (zh) 重复传输方法、终端设备和网络设备
WO2023115491A1 (zh) 通信方法、终端设备和网络设备
US20240163045A1 (en) Wireless communication method, terminal device, and network device
WO2023115492A1 (zh) 信息发送方法、信息接收方法、终端设备和网络设备
WO2022205436A1 (zh) 无线通信的方法及终端设备
WO2024031307A1 (zh) 混合自动重传请求harq反馈方法、装置、设备及介质
WO2022061548A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023102833A1 (zh) 一种反馈状态的指示方法及装置、终端设备、网络设备
WO2023060559A1 (zh) 无线通信的方法和终端设备
WO2023097665A1 (zh) 一种数据接收方法及装置、终端设备
WO2023272619A1 (zh) 一种传输方式的确定方法及装置、终端设备、网络设备
WO2022027669A1 (zh) 传输反馈信息的方法、终端设备和网络设备
WO2023097613A1 (zh) 一种信息确定方法及装置、终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926479

Country of ref document: EP

Kind code of ref document: A1