WO2023097665A1 - 一种数据接收方法及装置、终端设备 - Google Patents

一种数据接收方法及装置、终端设备 Download PDF

Info

Publication number
WO2023097665A1
WO2023097665A1 PCT/CN2021/135385 CN2021135385W WO2023097665A1 WO 2023097665 A1 WO2023097665 A1 WO 2023097665A1 CN 2021135385 W CN2021135385 W CN 2021135385W WO 2023097665 A1 WO2023097665 A1 WO 2023097665A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdsch
priority
pdschs
terminal device
multicast
Prior art date
Application number
PCT/CN2021/135385
Other languages
English (en)
French (fr)
Inventor
王淑坤
付喆
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/135385 priority Critical patent/WO2023097665A1/zh
Priority to CN202180101937.6A priority patent/CN117897921A/zh
Publication of WO2023097665A1 publication Critical patent/WO2023097665A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the technical field of mobile communications, and in particular to a data receiving method and device, and a terminal device.
  • the terminal equipment supports the reception of multiple service types, which will result in the terminal equipment possibly receiving multiple service data in one time slot.
  • the receiving capability of the terminal device is limited, and how the terminal device receives service data when its capability is limited is a problem that needs to be solved.
  • Embodiments of the present application provide a data receiving method and device, a terminal device, a chip, a computer-readable storage medium, a computer program product, and a computer program.
  • the terminal device determines the number of physical downlink shared channels (Physical Downlink Shared Channel, PDSCH) scheduled in the first time slot, wherein the PDSCH scheduled in the first time slot includes at least one of the following: PDSCH of multicast service, broadcast service PDSCH for unicast services and PDSCH for unicast services;
  • PDSCH Physical Downlink Shared Channel
  • the terminal device receives the PDSCH based on a priority policy.
  • the data receiving device provided in the embodiment of the present application is applied to a terminal device, and the device includes:
  • a determining unit configured to determine the number of PDSCHs scheduled in the first time slot, wherein the PDSCHs scheduled in the first time slot include at least one of the following: PDSCH for multicast services, PDSCH for broadcast services, and PDSCH for unicast services ;
  • a receiving unit configured to, if the number of scheduled PDSCHs is greater than the number indicated by the first capability of the terminal device, receive PDSCHs based on a priority policy.
  • the terminal device provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to call and run the computer programs stored in the memory to execute the above data receiving method.
  • the chip provided in the embodiment of the present application is used to implement the above data receiving method.
  • the chip includes: a processor, configured to invoke and run a computer program from the memory, so that the device installed with the chip executes the above data receiving method.
  • the computer-readable storage medium provided by the embodiment of the present application is used for storing a computer program, and the computer program causes a computer to execute the above data receiving method.
  • the computer program product provided by the embodiments of the present application includes computer program instructions, and the computer program instructions cause a computer to execute the above data receiving method.
  • the computer program provided in the embodiment of the present application when running on a computer, enables the computer to execute the above data receiving method.
  • the terminal device determines the number of PDSCHs scheduled in the first time slot, wherein the PDSCHs scheduled in the first time slot include at least one of the following: PDSCH for multicast services, PDSCH for broadcast services, and PDSCH for unicast services PDSCHs; if the number of scheduled PDSCHs is greater than the number indicated by the first capability of the terminal device, the terminal device receives the PDSCHs based on a priority policy. In this way, it is realized that the terminal device can receive the PDSCH based on the priority policy when its capability is limited, so that the PDSCH with high priority can be received preferentially.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application
  • Fig. 2 is the schematic diagram of the protocol stack corresponding to the PTM mode and the PTP mode of the embodiment of the present application;
  • FIG. 3 is a schematic flowchart of a data receiving method provided in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the structure and composition of the data receiving device provided by the embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • Fig. 7 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • a communication system 100 may include a terminal device 110 and a network device 120 .
  • the network device 120 may communicate with the terminal device 110 through an air interface. Multi-service transmission is supported between the terminal device 110 and the network device 120 .
  • the embodiment of the present application is only described by using the communication system 100 as an example, but the embodiment of the present application is not limited thereto. That is to say, the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: Long Term Evolution (Long Term Evolution, LTE) system, LTE Time Division Duplex (Time Division Duplex, TDD), Universal Mobile Communication System (Universal Mobile Telecommunication System, UMTS), Internet of Things (Internet of Things, IoT) system, Narrow Band Internet of Things (NB-IoT) system, enhanced Machine-Type Communications (eMTC) system, 5G communication system (also known as New Radio (NR) communication system), or future communication systems, etc.
  • LTE Long Term Evolution
  • LTE Time Division Duplex Time Division Duplex
  • TDD Time Division Duplex
  • Universal Mobile Telecommunication System Universal Mobile Telecommunication System
  • UMTS Universal Mobile Communication System
  • Internet of Things Internet of Things
  • NB-IoT Narrow Band Internet of Things
  • eMTC enhanced Machine-Type Communications
  • the network device 120 may be an access network device that communicates with the terminal device 110 .
  • the access network device can provide communication coverage for a specific geographic area, and can communicate with terminal devices 110 (such as UEs) located in the coverage area.
  • the network device 120 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in a long-term evolution (Long Term Evolution, LTE) system, or a next-generation radio access network (Next Generation Radio Access Network, NG RAN) device, Either a base station (gNB) in the NR system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the network device 120 can be a relay station, an access point, a vehicle-mounted device, a wearable Devices, hubs, switches, bridges, routers, or network devices in the future evolution of the Public Land Mobile Network (Public Land Mobile Network, PLMN), etc.
  • Evolutional Node B, eNB or eNodeB in a long-term evolution (Long Term Evolution, LTE) system
  • NG RAN next-generation radio access network
  • gNB base station
  • CRAN Cloud Radio Access Network
  • the network device 120 can be a relay station, an access point,
  • the terminal device 110 may be any terminal device, including but not limited to a terminal device connected to the network device 120 or other terminal devices by wire or wirelessly.
  • the terminal equipment 110 may refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, user agent, or user device.
  • Access terminals can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, IoT devices, satellite handheld terminals, Wireless Local Loop (WLL) stations, Personal Digital Assistant , PDA), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolution networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device 110 can be used for device-to-device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the wireless communication system 100 may also include a core network device 130 that communicates with the base station.
  • the core network device 130 may be a 5G core network (5G Core, 5GC) device, for example, Access and Mobility Management Function (Access and Mobility Management Function , AMF), and for example, authentication server function (Authentication Server Function, AUSF), and for example, user plane function (User Plane Function, UPF), and for example, session management function (Session Management Function, SMF).
  • the core network device 130 may also be a packet core evolution (Evolved Packet Core, EPC) device of the LTE network, for example, a data gateway (Session Management Function+Core Packet Gateway, SMF+PGW- C) equipment.
  • EPC packet core evolution
  • SMF+PGW-C can realize the functions of SMF and PGW-C at the same time.
  • the above-mentioned core network equipment may be called by other names, or a new network entity may be formed by dividing functions of the core network, which is not limited in this embodiment of the present application.
  • Various functional units in the communication system 100 may also establish a connection through a next generation network (next generation, NG) interface to implement communication.
  • NG next generation network
  • the terminal device establishes an air interface connection with the access network device through the NR interface to transmit user plane data and control plane signaling; the terminal device can establish a control plane signaling connection with the AMF through the NG interface 1 (N1 for short); access Network equipment such as the next generation wireless access base station (gNB), can establish a user plane data connection with UPF through NG interface 3 (abbreviated as N3); access network equipment can establish control plane signaling with AMF through NG interface 2 (abbreviated as N2) connection; UPF can establish a control plane signaling connection with SMF through NG interface 4 (abbreviated as N4); UPF can exchange user plane data with the data network through NG interface 6 (abbreviated as N6); AMF can communicate with SMF through NG interface 11 (abbreviated as N11) The SMF establishes a control plane signaling connection; the SMF may establish a control plane signaling connection with the PCF through an NG interface 7 (N7 for short).
  • gNB next generation wireless access base station
  • Figure 1 exemplarily shows a base station, a core network device, and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and each base station may include other numbers of terminals within the coverage area.
  • the device is not limited in the embodiment of this application.
  • FIG. 1 is only an illustration of a system applicable to this application, and of course, the method shown in the embodiment of this application may also be applicable to other systems.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is just an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B can mean: A exists alone, A and B exist simultaneously, and there exists alone B these three situations.
  • the character "/" in this article generally indicates that the contextual objects are an "or” relationship.
  • the "indication” mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • A indicates B, which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the "correspondence” mentioned in the embodiments of the present application may mean that there is a direct correspondence or an indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated. , configuration and configured relationship.
  • the "predefined” or “predefined rules” mentioned in the embodiments of this application can be used by pre-saving corresponding codes, tables or other It is implemented by indicating related information, and this application does not limit the specific implementation.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, and this application does not limit this .
  • 5G 3rd Generation Partnership Project
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra-Reliable Low-Latency Communications
  • mMTC Massive Machine-Type Communications
  • eMBB still aims at users obtaining multimedia content, services and data, and its demand is growing rapidly.
  • eMBB may be deployed in different scenarios, such as indoors, urban areas, and rural areas, the capabilities and requirements vary greatly, so it cannot be generalized, and detailed analysis must be combined with specific deployment scenarios.
  • Typical applications of URLLC include: industrial automation, electric power automation, telemedicine operations (surgery), traffic safety guarantee, etc.
  • the typical characteristics of mMTC include: high connection density, small data volume, delay-insensitive services, low cost and long service life of modules, etc.
  • MBMS is a technology that transmits data from one data source to multiple terminal devices by sharing network resources. This technology can effectively use network resources while providing multimedia services, and realize broadcasting of multimedia services at a higher rate (such as 256kbps) and multicast.
  • 3GPP clearly proposed to enhance the ability to support downlink high-speed MBMS services, and determined the design requirements for the physical layer and air interface.
  • eMBMS evolved MBMS
  • eMBMS evolved MBMS
  • MBSFN Single Frequency Network
  • MBSFN uses a unified frequency to transmit service data in all cells at the same time, but To ensure the synchronization between cells. This method can greatly improve the overall signal-to-noise ratio distribution of the cell, and the spectrum efficiency will also be greatly improved accordingly.
  • eMBMS implements broadcast and multicast of services based on the IP multicast protocol.
  • MBMS In LTE or LTE-Advanced (LTE-Advanced, LTE-A), MBMS only has a broadcast bearer mode, but no multicast bearer mode. In addition, the reception of MBMS service is applicable to terminal equipments in idle state or connected state.
  • 3GPP R13 introduced the concept of Single Cell Point To Multiploint (SC-PTM), and SC-PTM is based on the MBMS network architecture.
  • MBMS introduces new logical channels, including Single Cell-Multicast Control Channel (Single Cell-Multicast Control Channel, SC-MCCH) and Single Cell-Multicast Transport Channel (Single Cell-Multicast Transport Channel, SC-MTCH).
  • SC-MCCH and SC-MTCH are mapped to the downlink shared channel (Downlink-Shared Channel, DL-SCH), and further, DL-SCH is mapped to the physical downlink shared channel (Physical Downlink Shared Channel, PDSCH), wherein, SC - MCCH and SC-MTCH belong to logical channels, DL-SCH belongs to transport channels, and PDSCH belongs to physical channels.
  • SC-MCCH and SC-MTCH do not support Hybrid Automatic Repeat reQuest (HARQ) operation.
  • HARQ Hybrid Automatic Repeat reQuest
  • SIB20 System Information Block
  • SIB20 is used to transmit SC-MCCH configuration information, and one cell has only one SC-MCCH.
  • the SC-MCCH configuration information includes: SC-MCCH modification period, SC-MCCH repetition period, and information such as radio frames and subframes for scheduling SC-MCCH.
  • the SC-MCCH is scheduled through a Physical Downlink Control Channel (PDCCH).
  • a new radio network temporary identity Radio Network Tempory Identity, RNTI
  • RNTI Radio Network Tempory Identity
  • SC-RNTI Single Cell RNTI
  • the fixed value of SC-RNTI is FFFC.
  • a new RNTI is introduced, that is, a single cell notification RNTI (Single Cell Notification RNTI, SC-N-RNTI) to identify the PDCCH used to indicate the change notification of the SC-MCCH (such as notifying the PDCCH).
  • the SC The fixed value of -N-RNTI is FFFB; further, one of the 8 bits (bits) of DCI 1C can be used to indicate the change notification.
  • SC-PTM configuration information is based on SC-MCCH configured by SIB20, and then SC-MCCH configures SC-MTCH, and SC-MTCH is used to transmit service data.
  • the SC-MCCH only transmits one message (that is, SCPTMConfiguration), which is used to configure configuration information of the SC-PTM.
  • the configuration information of SC-PTM includes: temporary mobile group identity (Temporary Mobile Group Identity, TMGI), session identification (seession id), group RNTI (Group RNTI, G-RNTI), discontinuous reception (Discontinuous Reception, DRX) configuration information And the SC-PTM service information of the neighboring cell, etc.
  • TMGI Temporal Mobile Group Identity
  • TMGI Temporal Mobile Group Identity
  • session identification seession id
  • group RNTI Group RNTI, G-RNTI
  • discontinuous reception Discontinuous Reception, DRX
  • SC-PTM service information of the neighboring cell etc.
  • SC-PTM in R13 does not support Robust Header Compression (Robust Header Compression, ROHC) function.
  • the downlink discontinuous reception of SC-PTM is controlled by the following parameters: onDurationTimerSCPTM, drx-InactivityTimerSCPTM, SC-MTCH-SchedulingCycle, and SC-MTCH-SchedulingOffset.
  • the downlink SC-PTM service is received only when the timer onDurationTimerSCPTM or drx-InactivityTimerSCPTM is running.
  • SC-PTM business continuity adopts the concept of MBMS business continuity based on SIB15, that is, "SIB15+MBMSInterestIndication" mode.
  • SIB15 MBMS business continuity
  • the service continuity of terminal equipment in idle state is based on the concept of frequency priority.
  • a new SIB (called the first SIB) is defined, and the first SIB includes the configuration information of the first MCCH.
  • the first MCCH is the control channel of the MBMS service.
  • the first SIB includes the configuration information of the first MCCH.
  • One SIB is used to configure the configuration information of the NR MBMS control channel.
  • the NR MBMS control channel may also be called NR MCCH (that is, the first MCCH).
  • the first MCCH is used to carry the first signaling.
  • the embodiment of the present application does not limit the name of the first signaling.
  • the first signaling is signaling A
  • the first signaling includes at least one first MTCH configuration information
  • the first MTCH is a traffic channel (also referred to as a data channel or a transmission channel) of the MBMS service
  • the first MTCH is used to transmit MBMS service data (such as NR MBMS service data).
  • the first MCCH is used to configure the configuration information of the traffic channel of NR MBMS.
  • the traffic channel of NR MBMS may also be called NR MTCH (that is, the first MTCH).
  • the first signaling is used to configure an NR MBMS traffic channel, service information corresponding to the traffic channel, and scheduling information corresponding to the traffic channel.
  • the service information corresponding to the service channel such as TMGI, session id and other identification information for identifying services.
  • the scheduling information corresponding to the traffic channel for example, the RNTI used when the MBMS service data corresponding to the traffic channel is scheduled, such as G-RNTI, DRX configuration information, and the like.
  • both the transmission of the first MCCH and the first MTCH are scheduled based on the PDCCH.
  • the RNTI used by the PDCCH for scheduling the first MCCH uses a network-wide unique identifier, that is, a fixed value.
  • the RNTI used by the PDCCH for scheduling the first MTCH is configured through the first MCCH.
  • the first SIB can also be referred to as the SIB for short
  • the first MCCH can also be referred to as the MCCH for short
  • the first MTCH can also be referred to as the MTCH for short
  • the PDCCH ie, the MCCH PDCCH
  • the PDSCH ie MCCH PDSCH
  • the PDSCH used to transmit the MCCH is scheduled by the DCI carried by the MCCH PDCCH.
  • M PDCCHs for scheduling MTCH (i.e. MTCH 1PDCCH, MTCH 2PDCCH, ..., MTCH M PDCCH) through MCCH, wherein, the DCI scheduling carried by MTCH n PDCCH is used to transmit the PDSCH of MTCH n (i.e. MTCH n PDSCH) , n is an integer greater than or equal to 1 and less than or equal to M.
  • MCCH and MTCH are mapped to DL-SCH, and further, DL-SCH is mapped to PDSCH, wherein MCCH and MTCH belong to logical channels, DL-SCH belongs to transport channel, and PDSCH belongs to physical channel.
  • the multicast-type MBS service refers to the MBS service transmitted in a multicast manner.
  • the broadcast-type MBS service refers to the MBS service transmitted by broadcasting.
  • the MBS service is sent to all terminal devices in a certain group.
  • the terminal device receives the multicast type MBS service in the RRC connection state, and the terminal device can receive the multicast type in the point-to-multipoint (Point-To-Multipoint, PTM) mode or point-to-point (Point-To-Point, PTP) mode MBS business data.
  • PTM point-to-multipoint
  • PTP point-to-point
  • the MBS service data in the PTM mode scrambles the corresponding scheduling information through the G-RNTI configured on the network side
  • the MBS service data in the PTP mode scrambles the corresponding scheduling information through the C-RNTI.
  • the base station can deliver the MBS service to all terminal devices in a group through the air interface.
  • the base station may deliver the MBS service to all terminal devices in a group through PTP and/or PTM.
  • a group includes Terminal 1, Terminal 2, and Terminal 3.
  • the base station can deliver the MBS service to Terminal 1 through PTP, deliver the MBS service to Terminal 2 through PTP, and deliver the MBS
  • the service is delivered to terminal equipment 3; or, the base station can deliver the MBS service to terminal equipment 1 through PTP, and the MBS service can be delivered to terminal equipment 2 and terminal equipment 3 through PTM; or, the base station can deliver the MBS service to terminal equipment 3 through PTM.
  • the MBS service is delivered to terminal device 1, terminal device 2 and terminal device 3.
  • a shared GTP tunnel (Shared GTP tunnel) is used between the core network and the base station to transmit the MBS service, that is, both the PTM MBS service and the PTP MBS service share the GTP tunnel.
  • the base station delivers MBS service data to UE1 and UE2 in a PTM manner, and delivers MBS service data to UE3 in a PTP manner.
  • PTP is used for PTM retransmission, that is, a transport block (Transport Block, TB) of an MBS service
  • the network side uses the PTM method (that is, the scheduling information corresponding to G-RNTI scrambling).
  • initial transmission if the terminal device fails to receive and feeds back a negative acknowledgment (NACK), the network side performs retransmission (referred to as retransmission) through PTP (that is, scheduling information corresponding to C-RNTI scrambling).
  • NACK negative acknowledgment
  • the initial transmission of the PTM mode and the retransmission of the PTP mode correspond to the same HARQ process ID and NDI, that is, the HARQ process ID and NDI carried in the scheduling signaling of the initial transmission are the same as the HARQ process ID and NDI carried in the scheduling signaling of the retransmission.
  • Process ID and NDI are the same.
  • Terminal equipment has limited ability to receive PDSCH. According to the capability of terminal equipment, some terminal equipment can only receive one PDSCH in one time slot, and some terminal equipment can receive multiple PDSCH in one time slot. As an example, Table 1 and Table 2 below show the receiving capability of the terminal equipment for the PDSCH. It can be seen from Table 1 and Table 2 that some terminal equipment can only receive one PDSCH in one time slot, and some terminal equipment can receive multiple 2, 4, and 7 PDSCHs in one time slot.
  • the terminal equipment supports the reception of multiple service types, which will result in the terminal equipment possibly receiving multiple service data in one time slot.
  • the receiving capability of the terminal device is limited, and how the terminal device receives service data when its capability is limited is a problem that needs to be solved. To this end, the following technical solutions of the embodiments of the present application are proposed.
  • Fig. 3 is a schematic flow chart of the data receiving method provided by the embodiment of the present application. As shown in Fig. 3, the data receiving method includes the following steps:
  • Step 301 The terminal device determines the number of PDSCHs scheduled in the first time slot, wherein the PDSCHs scheduled in the first time slot include at least one of the following: PDSCH for multicast services, PDSCH for broadcast services, and PDSCH for unicast services .
  • Step 302 If the number of scheduled PDSCHs is greater than the number indicated by the first capability of the terminal device, the terminal device receives the PDSCH based on a priority policy.
  • the terminal device determines the number of PDSCHs scheduled in the first time slot. In some optional implementation manners, the terminal device may determine the number of PDSCHs scheduled in the first time slot according to the scheduling information and/or pre-configuration information delivered by the network side.
  • the scheduling information is carried in DCI
  • the pre-configuration information is carried in RRC signaling.
  • the PDSCH scheduled in the first time slot includes at least one of the following: a PDSCH of a multicast service, a PDSCH of a broadcast service, and a PDSCH of a unicast service.
  • the terminal device receives the PDSCH based on a priority policy.
  • the priority policy is configured by the network side (for example, configured by the network side through RRC signaling), or predefined by a protocol. The priority policy is described below.
  • the priority policy includes at least one of the following:
  • the PDSCH priority of the unicast service is higher than the PDSCH priority of the multicast service
  • the priority of the PDSCH of the multicast service is higher than that of the PDSCH of the broadcast service.
  • the PDSCH of the multicast service includes a PDSCH of multicast dynamic scheduling and/or a PDSCH of multicast semi-persistent scheduling (Semi-Persistent Scheduling, SPS), and the priority policy further includes: group The priority of the dynamically scheduled PDSCH is higher than that of the multicast SPS PDSCH.
  • SPS semi-persistent Scheduling
  • the PDSCH of the unicast service includes a PDSCH of unicast dynamic scheduling and/or a PDSCH of unicast SPS
  • the priority policy further includes: the priority of the PDSCH of unicast dynamic scheduling is higher than that of PDSCH priority of unicast SPS.
  • the terminal device can specify the priority relationship of PDSCHs of different service types and the priority relationship of PDSCHs of different scheduling modes.
  • the priority policy also includes:
  • the priority of the PDSCH associated with the larger SPS index is higher than the priority of the PDSCH associated with the smaller SPS index;
  • a PDSCH associated with a smaller SPS index has a higher priority than a PDSCH associated with a larger SPS index.
  • the priority policy also includes:
  • the priority of the PDSCH associated with the larger G-RNTI is higher than the priority of the PDSCH associated with the smaller G-RNTI; or,
  • the priority of the PDSCH associated with the smaller G-RNTI is higher than the priority of the PDSCH associated with the larger G-RNTI.
  • the priority policy also includes:
  • the PDSCH associated with a larger TMGI has a higher priority than the PDSCH associated with a smaller TMGI; or,
  • a PDSCH associated with a smaller TMGI has a higher priority than a PDSCH associated with a larger TMGI.
  • the priority policy also includes:
  • the priority of the PDSCH associated with the TMGI with higher priority is higher than the priority of the PDSCH associated with the TMGI with lower priority.
  • the terminal device receives the first configuration information sent by the network device, where the first configuration information is used to configure the priority of the TMGI of the multicast service.
  • the terminal device can determine the corresponding PDSCH priority according to the TMGI priority. For example: for different MBS services in the multicast, the network side configures a priority for the TMGI of each MBS service.
  • the PDSCH may be associated with at least one of the following: SPS index, G-RNTI, and TMGI.
  • SPS index For example: for the PDSCH of the multicast SPS, it may be associated with an SPS index, a G-RNTI and a TMGI.
  • TMGI For the PDSCH dynamically scheduled by multicast, it may be associated with one G-RNTI and one TMGI.
  • SPS index For the PDSCH of unicast SPS, it may be associated with an SPS index.
  • both PDSCH 1 and PDSCH 2 are multicast SPS PDSCHs, the G-RNTIs associated with these two PDSCHs are the same, the TMGIs are the same, and the SPS indexes are different, then, if the SPS index associated with PDSCH 1 is greater than the SPS index associated with PDSCH 2 , it is considered that the priority of PDSCH 1 is higher than that of PDSCH 2, or conversely, if the SPS index associated with PDSCH 1 is smaller than the SPS index associated with PDSCH 2, it is considered that the priority of PDSCH 1 is higher than that of PDSCH 2.
  • both PDSCH 1 and PDSCH 2 are PDSCHs dynamically scheduled by multicast.
  • the G-RNTIs associated with these two PDSCHs are the same and the TMGIs are different. If the TMGI associated with PDSCH 1 is greater than the TMGI associated with PDSCH 2, PDSCH 1 is considered The priority of PDSCH 2 is higher than that of PDSCH 2, or conversely, if the TMGI associated with PDSCH 1 is smaller than the TMGI associated with PDSCH 2, it is considered that the priority of PDSCH 1 is higher than that of PDSCH 2.
  • both PDSCH 1 and PDSCH 2 are PDSCHs dynamically scheduled by multicast, and the G-RNTIs associated with these two PDSCHs are different. If the G-RNTI associated with PDSCH 1 is greater than the G-RNTI associated with PDSCH 2, it is considered that PDSCH The priority of 1 is higher than the priority of PDSCH 2, or conversely, if the G-RNTI associated with PDSCH 1 is smaller than the G-RNTI associated with PDSCH 2, the priority of PDSCH 1 is considered to be higher than that of PDSCH 2.
  • both PDSCH 1 and PDSCH 2 are PDSCHs dynamically scheduled by multicast, and the G-RNTIs associated with these two PDSCHs are the same, but the TMGIs are different. Then, if the TMGI associated with PDSCH 1 has a higher priority than the TMGI associated with PDSCH 2 Priority, it is considered that the priority of PDSCH 1 is higher than the priority of PDSCH 2.
  • the terminal device receives the PDSCH according to the size of the SPS index associated with the PDSCH, or according to the size of the TMGI associated with the PDSCH Receive the PDSCH, or receive the PDSCH according to the size of the G-RNTI associated with the PDSCH.
  • the terminal device can explicitly associate the priority relationship of PDSCHs with different SPS indexes and/or G-RNTIs and/or TMGIs.
  • the receiving of the PDSCH by the terminal device based on a priority strategy includes: for the multiple PDSCHs scheduled in the first time slot, the terminal device receives a part of the PDSCHs in the multiple PDSCHs, Another part of the PDSCHs among the plurality of PDSCHs is discarded, wherein the priority of the received part of the PDSCHs is higher than the priority of the discarded other part of the PDSCHs.
  • the number of received partial PDSCHs is equal to or less than the number of first capability indications of the terminal device.
  • 5 PDSCHs are scheduled in the first time slot, respectively PDSCH 1, PDSCH 2, PDSCH 3, PDSCH 4 and PDSCH 5, and the terminal device can receive at most 2 PDSCHs in one time slot, then the terminal device can follow the above priority
  • the priority order of the five PDSCHs determined by the level strategy is: PDSCH 3, PDSCH 2, PDSCH 5, PDSCH 1, PDSCH 4, the terminal device receives PDSCH 3 and PDSCH 2, and discards PDSCH 5, PDSCH 1 and PDSCH 4.
  • the terminal device feeds back a negative acknowledgment (NACK) for the discarded PDSCH to the network device, and stops the DRX timer associated with the HARQ process identifier corresponding to the discarded PDSCH or Waiting for the DRX timer to expire, wherein the DRX timer includes a DRX retransmission timer and/or a DRX inactivation timer.
  • NACK negative acknowledgment
  • the running period of the DRX retransmission timer is the DRX activation time
  • the running period of the DRX inactivation timer is the DRX activation time
  • the terminal device monitors the PDCCH during the DRX activation time.
  • the terminal device reports the first capability of the terminal device to the network device, and the first capability is used to indicate at least one of the following:
  • the maximum number of PDSCHs of the multicast service that the terminal device can receive in the same time slot is the maximum number of PDSCHs of the multicast service that the terminal device can receive in the same time slot
  • the maximum number of PDSCHs of the broadcast service that the terminal device can receive in the same time slot is the maximum number of PDSCHs of the broadcast service that the terminal device can receive in the same time slot
  • the maximum number of PDSCHs of unicast services that the terminal device can receive in the same time slot is the maximum number of PDSCHs of unicast services that the terminal device can receive in the same time slot
  • the maximum number of PDSCHs of the broadcast service and the unicast service that the terminal device can receive in the same time slot are the maximum number of PDSCHs of the broadcast service and the unicast service that the terminal device can receive in the same time slot.
  • the network device schedules the PDSCH for the terminal device according to the first capability reported by the terminal device, and tries to ensure that the number of PDSCHs scheduled by the terminal device in one time slot does not exceed the number indicated by the first capability.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the order of execution of the processes should be determined by their functions and internal logic, and should not be used in this application.
  • the implementation of the examples constitutes no limitation.
  • the terms “downlink”, “uplink” and “sidelink” are used to indicate the transmission direction of signals or data, wherein “downlink” is used to indicate that the transmission direction of signals or data is sent from the station The first direction to the user equipment in the cell, “uplink” is used to indicate that the signal or data transmission direction is the second direction sent from the user equipment in the cell to the station, and “side line” is used to indicate that the signal or data transmission direction is A third direction sent from UE1 to UE2.
  • “downlink signal” indicates that the transmission direction of the signal is the first direction.
  • the term “and/or” is only an association relationship describing associated objects, indicating that there may be three relationships. Specifically, A and/or B may mean: A exists alone, A and B exist simultaneously, and B exists alone. In addition, the character "/" in this article generally indicates that the contextual objects are an "or” relationship.
  • Fig. 4 is a schematic diagram of the structure and composition of the data receiving device provided by the embodiment of the present application, which is applied to terminal equipment. As shown in Fig. 4, the data receiving device includes:
  • the determining unit 401 is configured to determine the number of PDSCHs scheduled in the first time slot, wherein the PDSCHs scheduled in the first time slot include at least one of the following: PDSCH for multicast services, PDSCH for broadcast services, and PDSCH for unicast services PDSCH;
  • the receiving unit 402 is configured to receive the PDSCH based on a priority strategy if the number of the scheduled PDSCH is greater than the number indicated by the first capability of the terminal device.
  • the priority policy includes at least one of the following:
  • the PDSCH priority of the unicast service is higher than the PDSCH priority of the multicast service
  • the priority of the PDSCH of the multicast service is higher than that of the PDSCH of the broadcast service.
  • the PDSCH of the multicast service includes a PDSCH of multicast dynamic scheduling and/or a PDSCH of multicast SPS, and the priority policy further includes:
  • the priority of the PDSCH dynamically scheduled by multicast is higher than that of the PDSCH of multicast SPS.
  • the PDSCH of the unicast service includes a unicast dynamically scheduled PDSCH and/or a unicast SPS PDSCH
  • the priority policy further includes:
  • the priority of the unicast dynamically scheduled PDSCH is higher than that of the unicast SPS PDSCH.
  • the priority policy also includes:
  • the priority of the PDSCH associated with the larger SPS index is higher than the priority of the PDSCH associated with the smaller SPS index;
  • a PDSCH associated with a smaller SPS index has a higher priority than a PDSCH associated with a larger SPS index.
  • the priority policy also includes:
  • the priority of the PDSCH associated with the larger G-RNTI is higher than the priority of the PDSCH associated with the smaller G-RNTI; or,
  • the priority of the PDSCH associated with the smaller G-RNTI is higher than the priority of the PDSCH associated with the larger G-RNTI.
  • the priority policy also includes:
  • the PDSCH associated with a larger TMGI has a higher priority than the PDSCH associated with a smaller TMGI; or,
  • a PDSCH associated with a smaller TMGI has a higher priority than a PDSCH associated with a larger TMGI.
  • the priority policy also includes:
  • the priority of the PDSCH associated with the TMGI with higher priority is higher than the priority of the PDSCH associated with the TMGI with lower priority.
  • the receiving unit 402 is further configured to receive first configuration information sent by the network device, where the first configuration information is used to configure the priority of the TMGI of the multicast service.
  • the receiving unit 402 is configured to, for the multiple PDSCHs scheduled in the first time slot, receive a part of the PDSCHs in the multiple PDSCHs, and discard the other PDSCHs in the multiple PDSCHs A part of PDSCH, wherein the priority of the received part of PDSCH is higher than the priority of the discarded part of PDSCH.
  • the device also includes:
  • a feedback unit 403, configured to feed back a NACK for the discarded PDSCH to the network device;
  • the terminal device stops the discontinuous reception DRX timer associated with the HARQ process identifier corresponding to the discarded PDSCH or waits for the DRX timer to expire, wherein the DRX timer includes a DRX retransmission timer and /or DRX inactivity timer.
  • the device also includes:
  • a reporting unit configured to report the first capability of the terminal device to the network device, where the first capability is used to indicate at least one of the following:
  • the maximum number of PDSCHs of the multicast service that the terminal device can receive in the same time slot is the maximum number of PDSCHs of the multicast service that the terminal device can receive in the same time slot
  • the maximum number of PDSCHs of the broadcast service that the terminal device can receive in the same time slot is the maximum number of PDSCHs of the broadcast service that the terminal device can receive in the same time slot
  • the maximum number of PDSCHs of unicast services that the terminal device can receive in the same time slot is the maximum number of PDSCHs of unicast services that the terminal device can receive in the same time slot
  • the maximum number of PDSCHs of the broadcast service and the unicast service that the terminal device can receive in the same time slot are the maximum number of PDSCHs of the broadcast service and the unicast service that the terminal device can receive in the same time slot.
  • FIG. 5 is a schematic structural diagram of a communication device 500 provided in an embodiment of the present application.
  • the communication device may be a terminal device.
  • the communication device 500 shown in FIG. 5 includes a processor 510, and the processor 510 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 500 may further include a memory 520 .
  • the processor 510 can call and run a computer program from the memory 520, so as to implement the method in the embodiment of the present application.
  • the memory 520 may be an independent device independent of the processor 510 , or may be integrated in the processor 510 .
  • the communication device 500 may further include a transceiver 530, and the processor 510 may control the transceiver 530 to communicate with other devices, specifically, to send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include antennas, and the number of antennas may be one or more.
  • the communication device 500 may specifically be the terminal device of the embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the terminal device in the methods of the embodiment of the present application. For the sake of brevity, details are not repeated here.
  • FIG. 6 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 600 shown in FIG. 6 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 600 may further include a memory 620 .
  • the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the chip 600 may also include an input interface 630 .
  • the processor 610 can control the input interface 630 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 600 may also include an output interface 640 .
  • the processor 610 can control the output interface 640 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the terminal device in the various methods of the embodiment of the present application. For the sake of brevity, details are not repeated here.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • FIG. 7 is a schematic block diagram of a communication system 700 provided by an embodiment of the present application. As shown in FIG. 7 , the communication system 700 includes a terminal device 710 and a network device 720 .
  • the terminal device 710 can be used to realize the corresponding functions realized by the terminal device in the above method
  • the network device 720 can be used to realize the corresponding functions realized by the network device in the above method.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application. For the sake of brevity, details are not repeated here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the various methods of the embodiments of the present application. For the sake of brevity, details are not repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program executes the corresponding processes implemented by the terminal device in the various methods of the embodiment of the present application. For the sake of brevity, the Let me repeat.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to realize the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种数据接收方法及装置、终端设备,该方法包括:终端设备确定第一时隙内调度的PDSCH数量,其中,所述第一时隙内调度的PDSCH包括以下至少之一:组播业务的PDSCH、广播业务的PDSCH、单播业务的PDSCH;若所述调度的PDSCH数量大于所述终端设备的第一能力指示的数量,则所述终端设备基于优先级策略进行PDSCH的接收。

Description

一种数据接收方法及装置、终端设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种数据接收方法及装置、终端设备。
背景技术
终端设备支持多种业务类型的接收,这将导致终端设备可能在一个时隙上接收多种业务数据。然而,终端设备的接收能力是有限的,终端设备在其能力受限的情况下如何接收业务数据是个需要解决的问题。
发明内容
本申请实施例提供一种数据接收方法及装置、终端设备、芯片、计算机可读存储介质、计算机程序产品、计算机程序。
本申请实施例提供的数据接收方法,包括:
终端设备确定第一时隙内调度的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)数量,其中,所述第一时隙内调度的PDSCH包括以下至少之一:组播业务的PDSCH、广播业务的PDSCH、单播业务的PDSCH;
若所述调度的PDSCH数量大于所述终端设备的第一能力指示的数量,则所述终端设备基于优先级策略进行PDSCH的接收。
本申请实施例提供的数据接收装置,应用于终端设备,所述装置包括:
确定单元,用于确定第一时隙内调度的PDSCH数量,其中,所述第一时隙内调度的PDSCH包括以下至少之一:组播业务的PDSCH、广播业务的PDSCH、单播业务的PDSCH;
接收单元,用于若所述调度的PDSCH数量大于所述终端设备的第一能力指示的数量,则基于优先级策略进行PDSCH的接收。
本申请实施例提供的终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的数据接收方法。
本申请实施例提供的芯片,用于实现上述的数据接收方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的数据接收方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的数据接收方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的数据接收方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的数据接收方法。
通过上述技术方案,终端设备确定第一时隙内调度的PDSCH数量,其中,所述第一时隙内调度的PDSCH包括以下至少之一:组播业务的PDSCH、广播业务的 PDSCH、单播业务的PDSCH;若所述调度的PDSCH数量大于所述终端设备的第一能力指示的数量,则所述终端设备基于优先级策略进行PDSCH的接收。如此,实现了终端设备在其能力受限的情况下可以基于优先级策略进行PDSCH的接收,使得优先级高的PDSCH可以被优先接收。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例的一个应用场景的示意图;
图2是本申请实施例的PTM方式和PTP方式对应的协议栈的示意图;
图3是本申请实施例提供的数据接收方法的流程示意图;
图4是本申请实施例提供的数据接收装置的结构组成示意图;
图5是本申请实施例提供的一种通信设备示意性结构图;
图6是本申请实施例的芯片的示意性结构图;
图7是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、物联网(Internet of Things,IoT)系统、窄带物联网(Narrow Band Internet of Things,NB-IoT)系统、增强的机器类型通信(enhanced Machine-Type Communications,eMTC)系统、5G通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备120可以是与终端设备110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110(例如UE)进行通信。
网络设备120可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端设备110可以是任意终端设备,其包括但不限于与网络设备120或其它终端设备采用有线或者无线连接的终端设备。
例如,所述终端设备110可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、IoT设备、卫星手持终端、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进网络中的终端设备等。
终端设备110可以用于设备到设备(Device to Device,D2D)的通信。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过NR接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,可选地,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
需要说明的是,图1只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”或“预定义规则”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实 现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性、复杂性,为此第三代合作伙伴计划(3 rd Generation Partnership Project,3GPP)国际标准组织开始研发5G。5G的主要应用场景为:增强移动超宽带(enhanced Mobile Broadband,eMBB)、低时延高可靠通信(Ultra-Reliable Low-Latency Communications,URLLC)、大规模机器类通信(massive Machine-Type Communications,mMTC)。
一方面,eMBB仍然以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。另一方面,由于eMBB可能部署在不同的场景中,例如室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而论,必须结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
MBMS
MBMS是一种通过共享网络资源从一个数据源向多个终端设备传送数据的技术,该技术在提供多媒体业务的同时能有效地利用网络资源,实现较高速率(如256kbps)的多媒体业务的广播和组播。
由于MBMS频谱效率较低,不足以有效地承载和支撑手机电视类型业务的运营。因此在LTE中,3GPP明确提出增强对下行高速MBMS业务的支持能力,并确定了对物理层和空中接口的设计要求。
3GPP R9将演进的MBMS(evolved MBMS,eMBMS)引入到LTE中。eMBMS提出了单频率网络(Single Frequency Network,SFN)的概念,即多媒体广播多播服务单频率网络(Multimedia Broadcast multicast service Single Frequency Network,MBSFN),MBSFN采用统一频率在所有小区同时发送业务数据,但是要保证小区间的同步。这种方式可以极大的提高小区整体信噪比分布,频谱效率也会相应的大幅提高。eMBMS基于IP多播协议实现业务的广播和多播。
在LTE或增强的LTE(LTE-Advanced,LTE-A)中,MBMS只有广播承载模式,没有多播承载模式。此外,MBMS业务的接收适用于空闲态或者连接态的终端设备。
3GPP R13中引入了单小区点对多点(Single Cell Point To Multiploint,SC-PTM)概念,SC-PTM基于MBMS网络架构。
MBMS引入了新的逻辑信道,包括单小区多播控制信道(Single Cell-Multicast Control Channel,SC-MCCH)和单小区多播传输信道(Single Cell-Multicast Transport Channel,SC-MTCH)。SC-MCCH和SC-MTCH被映射到下行共享信道(Downlink-Shared Channel,DL-SCH)上,进一步,DL-SCH被映射到物理下行共享信道(Physical Downlink Shared Channel,PDSCH)上,其中,SC-MCCH和SC-MTCH属于逻辑信道,DL-SCH属于传输信道,PDSCH属于物理信道。SC-MCCH和SC-MTCH不支持混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)操作。
MBMS引入了新的系统信息块(System Information Block,SIB)类型,即SIB20。具体地,通过SIB20来传输SC-MCCH的配置信息,一个小区只有一个SC-MCCH。SC-MCCH的配置信息包括:SC-MCCH的修改周期、SC-MCCH的重复周期、以及调度SC-MCCH的无线帧和子帧等信息。进一步,1)SC-MCCH的修改周期的边界满足SFN  mod m=0,其中,SFN代表边界的系统帧号,m是SIB20中配置的SC-MCCH的修改周期(即sc-mcch-ModificationPeriod)。2)调度SC-MCCH的无线帧满足:SFN mod mcch-RepetitionPeriod=mcch-Offset,其中,SFN代表无线帧的系统帧号,mcch-RepetitionPeriod代表SC-MCCH的重复周期,mcch-Offset代表SC-MCCH的偏移量。3)调度SC-MCCH的子帧通过sc-mcch-Subframe指示。
SC-MCCH通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)调度。一方面,引入新的无线网络临时标识(Radio Network Tempory Identity,RNTI),即单小区RNTI(Single Cell RNTI,SC-RNTI)来识别用于调度SC-MCCH的PDCCH(如SC-MCCH PDCCH),可选地,SC-RNTI固定取值为FFFC。另一方面,引入新的RNTI,即单小区通知RNTI(Single Cell Notification RNTI,SC-N-RNTI)来识别用于指示SC-MCCH的变更通知的PDCCH(如通知PDCCH),可选地,SC-N-RNTI固定取值为FFFB;进一步,可以用DCI 1C的8个比特(bit)中的一个bit来指示变更通知。在LTE中,SC-PTM的配置信息基于SIB20配置的SC-MCCH,然后SC-MCCH配置SC-MTCH,SC-MTCH用于传输业务数据。
具体地,SC-MCCH只传输一个消息(即SCPTMConfiguration),该消息用于配置SC-PTM的配置信息。SC-PTM的配置信息包括:临时移动组标识(Temporary Mobile Group Identity,TMGI)、会话标识(seession id)、组RNTI(Group RNTI,G-RNTI)、非连续接收(Discontinuous Reception,DRX)配置信息以及邻区的SC-PTM业务信息等。需要说明的是,R13中的SC-PTM不支持健壮性包头压缩(Robust Header Compression,ROHC)功能。
SC-PTM的下行非连续的接收是通过以下参数控制的:onDurationTimerSCPTM、drx-InactivityTimerSCPTM、SC-MTCH-SchedulingCycle、以及SC-MTCH-SchedulingOffset。
当满足[(SFN*10)+subframe number]modulo(SC-MTCH-SchedulingCycle)=SC-MTCH-SchedulingOffset时,启动定时器onDurationTimerSCPTM;
当接收到下行PDCCH调度时,启动定时器drx-InactivityTimerSCPTM;
只有当定时器onDurationTimerSCPTM或drx-InactivityTimerSCPTM运行时才接收下行SC-PTM业务。
SC-PTM业务连续性采用基于SIB15的MBMS业务连续性概念,即“SIB15+MBMSInterestIndication”方式。空闲态的终端设备的业务连续性基于频率优先级的概念。
本申请实施例的技术方案中,定义一个新的SIB(称为第一SIB),第一SIB包括第一MCCH的配置信息,这里,第一MCCH为MBMS业务的控制信道,换句话说,第一SIB用于配置NR MBMS的控制信道的配置信息,可选地,NR MBMS的控制信道也可以叫做NR MCCH(即所述第一MCCH)。
进一步,第一MCCH用于承载第一信令,本申请实施例对第一信令的名称不做限定,如第一信令为信令A,所述第一信令包括至少一个第一MTCH的配置信息,这里,第一MTCH为MBMS业务的业务信道(也称为数据信道或传输信道),第一MTCH用于传输MBMS业务数据(如NR MBMS的业务数据)。换句话说,第一MCCH用于配置NR MBMS的业务信道的配置信息,可选地,NR MBMS的业务信道也可以叫做NR MTCH(即所述第一MTCH)。
具体地,所述第一信令用于配置NR MBMS的业务信道、该业务信道对应的业务信息以及该业务信道对应的调度信息。进一步,可选地,所述业务信道对应的业务信息,例如TMGI、session id等标识业务的标识信息。所述业务信道对应的调度信息,例如业务信道对应的MBMS业务数据被调度时使用的RNTI,例如G-RNTI、DRX配置信息等。
需要说明的是,第一MCCH和第一MTCH的传输都是基于PDCCH调度的。其中,用于调度第一MCCH的PDCCH使用的RNTI使用全网唯一标识,即是一个固定值。用于调度第一MTCH的PDCCH使用的RNTI通过第一MCCH进行配置。
需要说明的是,本申请实施例对所述第一SIB、所述第一MCCH和所述第一MTCH的命名不做限制。为便于描述,所述第一SIB也可以简称为SIB,所述第一MCCH也可以简称为MCCH,所述第一MTCH也可以简称为MTCH,通过SIB配置用于调度MCCH的PDCCH(即MCCH PDCCH)以及通知PDCCH,其中,通过MCCH PDCCH携带的DCI调度用于传输MCCH的PDSCH(即MCCH PDSCH)。进一步,通过MCCH配置M个用于调度MTCH的PDCCH(即MTCH 1PDCCH、MTCH 2PDCCH、…、MTCH M PDCCH),其中,MTCH n PDCCH携带的DCI调度用于传输MTCH n的PDSCH(即MTCH n PDSCH),n为大于等于1且小于等于M的整数。MCCH和MTCH被映射到DL-SCH上,进一步,DL-SCH被映射到PDSCH上,其中,MCCH和MTCH属于逻辑信道,DL-SCH属于传输信道,PDSCH属于物理信道。
需要说明的是,虽然上述方案是以MBMS为例进行说明的,但“MBMS”的描述也可以替换为“MBS”。本申请实施例以MBS为例进行说明,“MBS”的描述也可以被替换为“MBMS”。
在NR系统中,很多场景需要支持组播类型和广播类型的业务需求,例如车联网中,工业互联网中等。所以在NR中引入组播类型和广播类型的MBS业务是有必要的。需要说明的是,组播类型的MBS业务是指通过组播方式传输的MBS业务。广播类型的MBS业务是指通过广播方式传输的MBS业务。
在NR系统中,对于组播类型的MBS业务来说,MBS业务是发给某个组中的所有终端设备。终端设备在RRC连接状态下接收组播类型的MBS业务,终端设备可以通过点对多点(Point-To-Multipoint,PTM)方式或者点对点(Point-To-Point,PTP)方式接收组播类型的MBS业务数据。其中,参照图2,PTM方式的MBS业务数据通过网络侧配置的G-RNTI来加扰对应的调度信息,PTP方式的MBS业务数据通过C-RNTI来加扰对应的调度信息。
对于组播类型的MBS业务来说,基站从共享隧道(tunnel)接收核心网下发的MBS业务后,可以将该MBS业务通过空口下发给一个组中的所有终端设备。这里,基站可以通过PTP方式和/或PTM方式将MBS业务下发给一个组中的所有终端设备。例如:一个组包括终端设备1、终端设备2和终端设备3,基站可以通过PTP方式将MBS业务下发给终端设备1,通过PTP方式将MBS业务下发给终端设备2,通过PTP方式将MBS业务下发给终端设备3;或者,基站可以通过PTP方式将MBS业务下发给终端设备1,通过PTM方式将MBS业务下发给终端设备2和终端设备3;或者,基站可以通过PTM方式将MBS业务下发给终端设备1,终端设备2以及终端设备3。在核心网到基站之间采用一个共享的GTP隧道(Shared GTP tunnel)来传输MBS业务,即无论是PTM方式的MBS业务还是PTP方式的MBS业务都是共享这个GTP隧道的。基站按照PTM方式下发MBS业务数据给UE1和UE2,以及按照PTP方式下发MBS业务数据给UE3。
在MBS业务传输过程中,存在PTP用于PTM重传的场景,即一个MBS业务的传输块(Transport Block,TB),网络侧通过PTM方式(也即G-RNTI加扰对应的调度信息)进行初始传输(简称为初传),如果终端设备接收失败反馈否定应答(NACK),网络侧通过PTP方式(也即C-RNTI加扰对应的调度信息)进行重传输(简称为重传)。此时PTM方式的初传和PTP方式的重传对应相同的HARQ进程标识和NDI,即初传的调度信令中携带的的HARQ进程标识和NDI,与重传的调度信令中携带的HARQ进程 标识和NDI是相同的。
终端设备对于PDSCH的接收能力是有限的,根据终端设备的能力,有些终端设备在一个时隙上只能接收一个PDSCH,有些终端设备在一个时隙上可以接收多个PDSCH。作为示例,以下表1和表2给出了终端设备对于PDSCH的接收能力。从表1和表2可以看出,有些终端设备在一个时隙上只能接收一个PDSCH,有些终端设备在一个时隙上可以接收多个2,4,7个PDSCH。
Figure PCTCN2021135385-appb-000001
表1
Figure PCTCN2021135385-appb-000002
表2
终端设备支持多种业务类型的接收,这将导致终端设备可能在一个时隙上接收多种业务数据。然而,终端设备的接收能力是有限的,终端设备在其能力受限的情况下如何接收业务数据是个需要解决的问题。为此,提出了本申请实施例的以下技术方案。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图3是本申请实施例提供的数据接收方法的流程示意图,如图3所述,所述数据接收方法包括以下步骤:
步骤301:终端设备确定第一时隙内调度的PDSCH数量,其中,所述第一时隙内调度的PDSCH包括以下至少之一:组播业务的PDSCH、广播业务的PDSCH、单播业务的PDSCH。
步骤302:若所述调度的PDSCH数量大于所述终端设备的第一能力指示的数量,则所述终端设备基于优先级策略进行PDSCH的接收。
本申请实施例中,终端设备确定第一时隙内调度的PDSCH数量。在一些可选实施方式中,终端设备可以根据网络侧下发的调度信息和/或预配置信息确定第一时隙内调度的PDSCH数量。这里,所述调度信息携带在DCI中,所述预配置信息携带在RRC信令中。其中,所述第一时隙内调度的PDSCH包括以下至少之一:组播业务的PDSCH、广播业务的PDSCH、单播业务的PDSCH。
需要说明的是,本申请实施例中关于“PDSCH”的描述也可以替换为“数据”或“TB”。
本申请实施例中,若所述调度的PDSCH数量大于所述终端设备的第一能力指示的数量,则所述终端设备基于优先级策略进行PDSCH的接收。在一些可选实施方式中,所述优先级策略为网络侧配置的(例如网络侧通过RRC信令配置),或者为协议预定义的。以下对优先级策略进行说明。
方案一
在一些可选实施方式中,所述优先级策略包括以下至少之一:
单播业务的PDSCH的优先级大于组播业务的PDSCH的优先级;
组播业务的PDSCH的优先级大于广播业务的PDSCH的优先级。
在一些可选实施方式中,所述组播业务的PDSCH包括组播动态调度的PDSCH和/或组播半持续调度(Semi-Persistent Scheduling,SPS)的PDSCH,所述优先级策略还包括:组播动态调度的PDSCH的优先级高于组播SPS的PDSCH的优先级。
在一些可选实施方式中,所述单播业务的PDSCH包括单播动态调度的PDSCH和/或单播SPS的PDSCH,所述优先级策略还包括:单播动态调度的PDSCH的优先级高于单播SPS的PDSCH的优先级。
通过上述方案,终端设备可以明确不同业务类型的PDSCH的优先级关系,以及不同调度方式的PDSCH的优先级关系。
方案二
在一些可选实施方式中,所述优先级策略还包括:
较大SPS索引关联的PDSCH的优先级高于较小SPS索引关联的PDSCH的优先级;或者,
较小SPS索引关联的PDSCH的优先级高于较大SPS索引关联的PDSCH的优先级。
在一些可选实施方式中,所述优先级策略还包括:
较大G-RNTI关联的PDSCH的优先级高于较小G-RNTI关联的PDSCH的优先级;或者,
较小G-RNTI关联的PDSCH的优先级高于较大G-RNTI关联的PDSCH的优先级。
在一些可选实施方式中,所述优先级策略还包括:
较大TMGI关联的PDSCH的优先级高于较小TMGI关联的PDSCH的优先级;或者,
较小TMGI关联的PDSCH的优先级高于较大TMGI关联的PDSCH的优先级。
在一些可选实施方式中,所述优先级策略还包括:
优先级较高的TMGI关联的PDSCH的优先级,高于优先级较较低的TMGI关联的PDSCH的优先级。
这里,所述终端设备接收网络设备发送的第一配置信息,所述第一配置信息用于配置所述组播业务的TMGI的优先级。如此,终端设备可以根据TMGI的优先级,确定对应的PDSCH的优先级。例如:对于组播内不同MBS业务,网络侧为每个MBS业务的TMGI配置一个优先级。
上述方案中,PDSCH可能与以下至少之一具有关联关系:SPS索引、G-RNTI、TMGI。例如:对于组播SPS的PDSCH来说,其可能关联一个SPS索引、一个G-RNTI以及一个TMGI。对于组播动态调度的PDSCH来说,其可能关联一个G-RNTI以及一个TMGI。对于单播SPS的PDSCH来说,其可能关联一个SPS索引。
作为示例:PDSCH 1和PDSCH 2都是组播SPS的PDSCH,这两个PDSCH关联的G-RNTI相同,TMGI相同,SPS索引不同,那么,若PDSCH 1关联的SPS索引大于PDSCH 2关联的SPS索引,就认为PDSCH 1的优先级高于PDSCH 2的优先级,或者反之,若PDSCH 1关联的SPS索引小于PDSCH 2关联的SPS索引,就认为PDSCH 1 的优先级高于PDSCH 2的优先级。
作为示例:PDSCH 1和PDSCH 2都是组播动态调度的PDSCH,这两个PDSCH关联的G-RNTI相同,TMGI不同,那么,若PDSCH 1关联的TMGI大于PDSCH 2关联的TMGI,就认为PDSCH 1的优先级高于PDSCH 2的优先级,或者反之,若PDSCH 1关联的TMGI小于PDSCH 2关联的TMGI,就认为PDSCH 1的优先级高于PDSCH 2的优先级。
作为示例:PDSCH 1和PDSCH 2都是组播动态调度的PDSCH,这两个PDSCH关联的G-RNTI不同,那么,若PDSCH 1关联的G-RNTI大于PDSCH 2关联的G-RNTI,就认为PDSCH 1的优先级高于PDSCH 2的优先级,或者反之,若PDSCH 1关联的G-RNTI小于PDSCH 2关联的G-RNTI,就认为PDSCH 1的优先级高于PDSCH 2的优先级。
作为示例:PDSCH 1和PDSCH 2都是组播动态调度的PDSCH,这两个PDSCH关联的G-RNTI相同,TMGI不同,那么,若PDSCH 1关联的TMGI的优先级高于PDSCH 2关联的TMGI的优先级,就认为PDSCH 1的优先级高于PDSCH 2的优先级。
作为示例:如果组播SPS的多个PDSCH位于同一个时隙,而终端设备不能同时接收这多个PDSCH,那么终端设备按照PDSCH关联的SPS索引的大小接收PDSCH,或者按照PDSCH关联的TMGI的大小接收PDSCH,或者按照PDSCH关联的G-RNTI的大小接收PDSCH。
通过上述方案,终端设备可以明确关联不同SPS索引和/或G-RNTI和/或TMGI的PDSCH的优先级关系。
需要说明的是,上述方案一和方案二可以单独实施,也可以结合起来实施。
本申请实施例中,所述终端设备基于优先级策略进行PDSCH的接收,包括:对于所述第一时隙内调度的多个PDSCH,所述终端设备接收所述多个PDSCH中的一部分PDSCH,丢弃所述多个PDSCH中的另一部分PDSCH,其中,被接收的一部分PDSCH的优先级高于被丢弃的另一部分PDSCH的优先级。这里,可选地,被接收的一部分PDSCH的数量等于或小于终端设备的第一能力指示的数量。
作为示例:第一时隙内调度5个PDSCH,分别PDSCH 1,PDSCH 2,PDSCH 3,PDSCH 4和PDSCH 5,终端设备在一个时隙内最多接收2个PDSCH,那么,终端设备可以按照前述优先级策略确定出这5个PDSCH的优先级顺序从高到低依次为:PDSCH 3、PDSCH 2、PDSCH 5、PDSCH 1、PDSCH 4,终端设备接收PDSCH 3和PDSCH 2,丢弃PDSCH 5、PDSCH 1以及PDSCH 4。
进一步,在一些可选实施方式中,所述终端设备向网络设备反馈针对被丢弃的PDSCH的否定应答(NACK),并停止所述被丢弃的PDSCH所对应的HARQ进程标识关联的DRX定时器或者等待所述DRX定时器超时,其中,所述DRX定时器包括DRX重传定时器和/或DRX非激活定时器。这里,DRX重传定时器运行期间为DRX激活时间,DRX非激活定时器运行期间为DRX激活时间,终端设备在DRX激活时间监听PDCCH。
在一些可选实施方式中,所述终端设备向网络设备上报所述终端设备的第一能力,所述第一能力用于指示以下至少之一:
所述终端设备在同一时隙内能够接收的全部业务的PDSCH的最大数量;
所述终端设备在同一时隙内能够接收的组播业务的PDSCH的最大数量;
所述终端设备在同一时隙内能够接收的广播业务的PDSCH的最大数量;
所述终端设备在同一时隙内能够接收的单播业务的PDSCH的最大数量;
所述终端设备在同一时隙内能够接收的组播业务和广播业务的PDSCH的最大数量;
所述终端设备在同一时隙内能够接收的组播业务和单播业务的PDSCH的最大数量;
所述终端设备在同一时隙内能够接收的广播业务和单播业务的PDSCH的最大数量。
这里,网络设备根据终端设备上报的第一能力为该终端设备进行PDSCH的调度,尽可能保证终端设备在一个时隙内调度的PDSCH数量不超过第一能力指示的数量。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。又例如,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以和现有技术任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”、“上行”和“侧行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,“侧行”用于表示信号或数据的传输方向为从用户设备1发送至用户设备2的第三方向。例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图4是本申请实施例提供的数据接收装置的结构组成示意图,应用于终端设备,如图4所示,所述数据接收装置包括:
确定单元401,用于确定第一时隙内调度的PDSCH数量,其中,所述第一时隙内调度的PDSCH包括以下至少之一:组播业务的PDSCH、广播业务的PDSCH、单播业务的PDSCH;
接收单元402,用于若所述调度的PDSCH数量大于所述终端设备的第一能力指示的数量,则基于优先级策略进行PDSCH的接收。
在一些可选实施方式中,所述优先级策略包括以下至少之一:
单播业务的PDSCH的优先级大于组播业务的PDSCH的优先级;
组播业务的PDSCH的优先级大于广播业务的PDSCH的优先级。
在一些可选实施方式中,所述组播业务的PDSCH包括组播动态调度的PDSCH和/或组播SPS的PDSCH,所述优先级策略还包括:
组播动态调度的PDSCH的优先级高于组播SPS的PDSCH的优先级。
在一些可选实施方式中,所述单播业务的PDSCH包括单播动态调度的PDSCH和/或单播SPS的PDSCH,所述优先级策略还包括:
单播动态调度的PDSCH的优先级高于单播SPS的PDSCH的优先级。
在一些可选实施方式中,所述优先级策略还包括:
较大SPS索引关联的PDSCH的优先级高于较小SPS索引关联的PDSCH的优先级;或者,
较小SPS索引关联的PDSCH的优先级高于较大SPS索引关联的PDSCH的优先 级。
在一些可选实施方式中,所述优先级策略还包括:
所述优先级策略还包括:
较大G-RNTI关联的PDSCH的优先级高于较小G-RNTI关联的PDSCH的优先级;或者,
较小G-RNTI关联的PDSCH的优先级高于较大G-RNTI关联的PDSCH的优先级。
在一些可选实施方式中,所述优先级策略还包括:
较大TMGI关联的PDSCH的优先级高于较小TMGI关联的PDSCH的优先级;或者,
较小TMGI关联的PDSCH的优先级高于较大TMGI关联的PDSCH的优先级。
在一些可选实施方式中,所述优先级策略还包括:
优先级较高的TMGI关联的PDSCH的优先级,高于优先级较较低的TMGI关联的PDSCH的优先级。
在一些可选实施方式中,所述接收单元402,还用于接收网络设备发送的第一配置信息,所述第一配置信息用于配置所述组播业务的TMGI的优先级。
在一些可选实施方式中,所述接收单元402,用于对于所述第一时隙内调度的多个PDSCH,接收所述多个PDSCH中的一部分PDSCH,丢弃所述多个PDSCH中的另一部分PDSCH,其中,被接收的一部分PDSCH的优先级高于被丢弃的另一部分PDSCH的优先级。
在一些可选实施方式中,所述装置还包括:
反馈单元403,用于向网络设备反馈针对被丢弃的PDSCH的NACK;
其中,所述终端设备停止所述被丢弃的PDSCH所对应的HARQ进程标识关联的非连续接收DRX定时器或者等待所述DRX定时器超时,其中,所述DRX定时器包括DRX重传定时器和/或DRX非激活定时器。
在一些可选实施方式中,所述装置还包括:
上报单元,用于向网络设备上报所述终端设备的第一能力,所述第一能力用于指示以下至少之一:
所述终端设备在同一时隙内能够接收的全部业务的PDSCH的最大数量;
所述终端设备在同一时隙内能够接收的组播业务的PDSCH的最大数量;
所述终端设备在同一时隙内能够接收的广播业务的PDSCH的最大数量;
所述终端设备在同一时隙内能够接收的单播业务的PDSCH的最大数量;
所述终端设备在同一时隙内能够接收的组播业务和广播业务的PDSCH的最大数量;
所述终端设备在同一时隙内能够接收的组播业务和单播业务的PDSCH的最大数量;
所述终端设备在同一时隙内能够接收的广播业务和单播业务的PDSCH的最大数量。
本领域技术人员应当理解,本申请实施例的上述数据接收装置的相关描述可以参照本申请实施例的数据接收方法的相关描述进行理解。
图5是本申请实施例提供的一种通信设备500示意性结构图。该通信设备可以终端设备。图5所示的通信设备500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图5所示,通信设备500还可以包括存储器520。其中,处理器510可 以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
可选地,如图5所示,通信设备500还可以包括收发器530,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
该通信设备500具体可为本申请实施例的终端设备,并且该通信设备500可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图6是本申请实施例的芯片的示意性结构图。图6所示的芯片600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图6所示,芯片600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,该芯片600还可以包括输入接口630。其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片600还可以包括输出接口640。其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图7是本申请实施例提供的一种通信系统700的示意性框图。如图7所示,该通信系统700包括终端设备710和网络设备720。
其中,该终端设备710可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备720可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器 (Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的 目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (29)

  1. 一种数据接收方法,所述方法包括:
    终端设备确定第一时隙内调度的物理下行共享信道PDSCH数量,其中,所述第一时隙内调度的PDSCH包括以下至少之一:组播业务的PDSCH、广播业务的PDSCH、单播业务的PDSCH;
    若所述调度的PDSCH数量大于所述终端设备的第一能力指示的数量,则所述终端设备基于优先级策略进行PDSCH的接收。
  2. 根据权利要求1所述的方法,其中,所述优先级策略包括以下至少之一:
    单播业务的PDSCH的优先级大于组播业务的PDSCH的优先级;
    组播业务的PDSCH的优先级大于广播业务的PDSCH的优先级。
  3. 根据权利要求1或2所述的方法,其中,所述组播业务的PDSCH包括组播动态调度的PDSCH和/或组播半静态调度SPS的PDSCH,所述优先级策略还包括:
    组播动态调度的PDSCH的优先级高于组播SPS的PDSCH的优先级。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述单播业务的PDSCH包括单播动态调度的PDSCH和/或单播SPS的PDSCH,所述优先级策略还包括:
    单播动态调度的PDSCH的优先级高于单播SPS的PDSCH的优先级。
  5. 根据权利要求1至4中任一项所述的方法,其中,所述优先级策略还包括:
    较大SPS索引关联的PDSCH的优先级高于较小SPS索引关联的PDSCH的优先级;或者,
    较小SPS索引关联的PDSCH的优先级高于较大SPS索引关联的PDSCH的优先级。
  6. 根据权利要求1至5中任一项所述的方法,其中,所述优先级策略还包括:
    较大组-无线网络临时标识G-RNTI关联的PDSCH的优先级高于较小G-RNTI关联的PDSCH的优先级;或者,
    较小G-RNTI关联的PDSCH的优先级高于较大G-RNTI关联的PDSCH的优先级。
  7. 根据权利要求1至6中任一项所述的方法,其中,所述优先级策略还包括:
    较大临时移动组标识TMGI关联的PDSCH的优先级高于较小TMGI关联的PDSCH的优先级;或者,
    较小TMGI关联的PDSCH的优先级高于较大TMGI关联的PDSCH的优先级。
  8. 根据权利要求1至6中任一项所述的方法,其中,所述优先级策略还包括:
    优先级较高的TMGI关联的PDSCH的优先级,高于优先级较较低的TMGI关联的PDSCH的优先级。
  9. 根据权利要求8所述的方法,其中,所述方法还包括:
    所述终端设备接收网络设备发送的第一配置信息,所述第一配置信息用于配置所述组播业务的TMGI的优先级。
  10. 根据权利要求1至9中任一项所述的方法,其中,所述终端设备基于优先级策略进行PDSCH的接收,包括:
    对于所述第一时隙内调度的多个PDSCH,所述终端设备接收所述多个PDSCH中的一部分PDSCH,丢弃所述多个PDSCH中的另一部分PDSCH,其中,被接收的一部分PDSCH的优先级高于被丢弃的另一部分PDSCH的优先级。
  11. 根据权利要求1至10中任一项所述的方法,其中,所述方法还包括:
    所述终端设备向网络设备反馈针对被丢弃的PDSCH的否定应答NACK,并停止所述被丢弃的PDSCH所对应的HARQ进程标识关联的非连续接收DRX定时器或者等待所述DRX定时器超时,其中,所述DRX定时器包括DRX重传定时器和/或DRX非激活定时器。
  12. 根据权利要求1至11中任一项所述的方法,其中,所述方法还包括:
    所述终端设备向网络设备上报所述终端设备的第一能力,所述第一能力用于指示以下至少之一:
    所述终端设备在同一时隙内能够接收的全部业务的PDSCH的最大数量;
    所述终端设备在同一时隙内能够接收的组播业务的PDSCH的最大数量;
    所述终端设备在同一时隙内能够接收的广播业务的PDSCH的最大数量;
    所述终端设备在同一时隙内能够接收的单播业务的PDSCH的最大数量;
    所述终端设备在同一时隙内能够接收的组播业务和广播业务的PDSCH的最大数量;
    所述终端设备在同一时隙内能够接收的组播业务和单播业务的PDSCH的最大数量;
    所述终端设备在同一时隙内能够接收的广播业务和单播业务的PDSCH的最大数量。
  13. 一种数据接收装置,应用于终端设备,所述装置包括:
    确定单元,用于确定第一时隙内调度的PDSCH数量,其中,所述第一时隙内调度的PDSCH包括以下至少之一:组播业务的PDSCH、广播业务的PDSCH、单播业务的PDSCH;
    接收单元,用于若所述调度的PDSCH数量大于所述终端设备的第一能力指示的数量,则基于优先级策略进行PDSCH的接收。
  14. 根据权利要求13所述的装置,其中,所述优先级策略包括以下至少之一:
    单播业务的PDSCH的优先级大于组播业务的PDSCH的优先级;
    组播业务的PDSCH的优先级大于广播业务的PDSCH的优先级。
  15. 根据权利要求13或14所述的装置,其中,所述组播业务的PDSCH包括组播动态调度的PDSCH和/或组播SPS的PDSCH,所述优先级策略还包括:
    组播动态调度的PDSCH的优先级高于组播SPS的PDSCH的优先级。
  16. 根据权利要求13至15中任一项所述的装置,其中,所述单播业务的PDSCH包括单播动态调度的PDSCH和/或单播SPS的PDSCH,所述优先级策略还包括:
    单播动态调度的PDSCH的优先级高于单播SPS的PDSCH的优先级。
  17. 根据权利要求13至16中任一项所述的装置,其中,所述优先级策略还包括:
    较大SPS索引关联的PDSCH的优先级高于较小SPS索引关联的PDSCH的优先级;或者,
    较小SPS索引关联的PDSCH的优先级高于较大SPS索引关联的PDSCH的优先级。
  18. 根据权利要求13至17中任一项所述的装置,其中,所述优先级策略还包括:
    所述优先级策略还包括:
    较大G-RNTI关联的PDSCH的优先级高于较小G-RNTI关联的PDSCH的优先级;或者,
    较小G-RNTI关联的PDSCH的优先级高于较大G-RNTI关联的PDSCH的优先级。
  19. 根据权利要求13至18中任一项所述的装置,其中,所述优先级策略还包括:
    较大TMGI关联的PDSCH的优先级高于较小TMGI关联的PDSCH的优先级;或者,
    较小TMGI关联的PDSCH的优先级高于较大TMGI关联的PDSCH的优先级。
  20. 根据权利要求13至18中任一项所述的装置,其中,所述优先级策略还包括:
    优先级较高的TMGI关联的PDSCH的优先级,高于优先级较较低的TMGI关联的PDSCH的优先级。
  21. 根据权利要求20所述的装置,其中,所述接收单元,还用于接收网络设备发送的第一配置信息,所述第一配置信息用于配置所述组播业务的TMGI的优先级。
  22. 根据权利要求13至21中任一项所述的装置,其中,所述接收单元,用于对于所述第一时隙内调度的多个PDSCH,接收所述多个PDSCH中的一部分PDSCH,丢弃所述多个PDSCH中的另一部分PDSCH,其中,被接收的一部分PDSCH的优先级高于被丢弃的另一部分PDSCH的优先级。
  23. 根据权利要求13至22中任一项所述的装置,其中,所述装置还包括:
    反馈单元,用于向网络设备反馈针对被丢弃的PDSCH的NACK;
    其中,所述终端设备停止所述被丢弃的PDSCH所对应的HARQ进程标识关联的非连续接收DRX定时器或者等待所述DRX定时器超时,其中,所述DRX定时器包括DRX重传定时器和/或DRX非激活定时器。
  24. 根据权利要求13至23中任一项所述的装置,其中,所述装置还包括:
    上报单元,用于向网络设备上报所述终端设备的第一能力,所述第一能力用于指示以下至少之一:
    所述终端设备在同一时隙内能够接收的全部业务的PDSCH的最大数量;
    所述终端设备在同一时隙内能够接收的组播业务的PDSCH的最大数量;
    所述终端设备在同一时隙内能够接收的广播业务的PDSCH的最大数量;
    所述终端设备在同一时隙内能够接收的单播业务的PDSCH的最大数量;
    所述终端设备在同一时隙内能够接收的组播业务和广播业务的PDSCH的最大数量;
    所述终端设备在同一时隙内能够接收的组播业务和单播业务的PDSCH的最大数量;
    所述终端设备在同一时隙内能够接收的广播业务和单播业务的PDSCH的最大数量。
  25. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至12中任一项所述的方法。
  26. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至12中任一项所述的方法。
  27. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至12中任一项所述的方法。
  28. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至12中任一项所述的方法。
  29. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至12中任一项所述的方法。
PCT/CN2021/135385 2021-12-03 2021-12-03 一种数据接收方法及装置、终端设备 WO2023097665A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/135385 WO2023097665A1 (zh) 2021-12-03 2021-12-03 一种数据接收方法及装置、终端设备
CN202180101937.6A CN117897921A (zh) 2021-12-03 2021-12-03 一种数据接收方法及装置、终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/135385 WO2023097665A1 (zh) 2021-12-03 2021-12-03 一种数据接收方法及装置、终端设备

Publications (1)

Publication Number Publication Date
WO2023097665A1 true WO2023097665A1 (zh) 2023-06-08

Family

ID=86611375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135385 WO2023097665A1 (zh) 2021-12-03 2021-12-03 一种数据接收方法及装置、终端设备

Country Status (2)

Country Link
CN (1) CN117897921A (zh)
WO (1) WO2023097665A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149174A (zh) * 2018-02-13 2019-08-20 华为技术有限公司 无线通信方法、网络设备、终端设备及可读存储介质
US20200106566A1 (en) * 2018-09-28 2020-04-02 Samsung Electronics Co., Ltd. Method and device for transmitting or receiving groupcast feedback in wireless cellular communication system
CN111800867A (zh) * 2019-08-16 2020-10-20 维沃移动通信有限公司 半持续调度物理下行共享信道的反馈方法及终端设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149174A (zh) * 2018-02-13 2019-08-20 华为技术有限公司 无线通信方法、网络设备、终端设备及可读存储介质
US20200106566A1 (en) * 2018-09-28 2020-04-02 Samsung Electronics Co., Ltd. Method and device for transmitting or receiving groupcast feedback in wireless cellular communication system
CN111800867A (zh) * 2019-08-16 2020-10-20 维沃移动通信有限公司 半持续调度物理下行共享信道的反馈方法及终端设备

Also Published As

Publication number Publication date
CN117897921A (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
CN113678500B (zh) 一种反馈资源配置方法及通信方法、装置、通信设备
WO2021051321A1 (zh) 一种业务数据传输方法及装置、终端设备
US11949598B2 (en) Window adjustment method and apparatus, network device, terminal device
WO2021134298A1 (zh) 一种资源指示方法及装置、通信设备
WO2021056152A1 (zh) 一种信息配置方法及装置、终端设备、网络设备
WO2021138805A1 (zh) 一种业务同步调度方法及装置、通信设备
WO2022155978A1 (zh) Mbs业务的配置方法及装置、终端设备、网络设备
WO2022006849A1 (zh) Mbs业务的tci状态管理方法及装置、终端设备
WO2021134291A1 (zh) 一种资源配置方法及装置、终端设备、网络设备
WO2022198415A1 (zh) 提高mbs业务可靠性的方法及装置、终端设备、网络设备
WO2023010287A1 (zh) 一种通知信息变更的方法及装置、终端设备、网络设备
WO2022205454A1 (zh) 一种指示寻呼的方法及装置、终端设备、网络设备
WO2022141545A1 (zh) 一种mcch调度传输方法及装置、终端设备
WO2022120837A1 (zh) Mbs业务的半静态调度方法及装置、终端设备、网络设备
WO2022141088A1 (zh) 一种mbs业务的传输方法及装置、终端设备
WO2022056669A1 (zh) 一种mbs业务的管理方法及装置、终端设备、网络设备
WO2023097665A1 (zh) 一种数据接收方法及装置、终端设备
WO2021051322A1 (zh) 一种bwp配置方法及装置、终端设备、网络设备
WO2023102833A1 (zh) 一种反馈状态的指示方法及装置、终端设备、网络设备
WO2023097613A1 (zh) 一种信息确定方法及装置、终端设备
WO2023097601A1 (zh) 一种drx定时器的运行方法及装置、终端设备
WO2023102898A1 (zh) 重传方式的确定方法及定时器的控制方法、装置
WO2023050185A1 (zh) 一种变量的维护方法及装置、终端设备
WO2023272619A1 (zh) 一种传输方式的确定方法及装置、终端设备、网络设备
US20240324065A1 (en) Method and apparatus for running drx timer, and terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966091

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180101937.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE