WO2022120837A1 - Mbs业务的半静态调度方法及装置、终端设备、网络设备 - Google Patents

Mbs业务的半静态调度方法及装置、终端设备、网络设备 Download PDF

Info

Publication number
WO2022120837A1
WO2022120837A1 PCT/CN2020/135920 CN2020135920W WO2022120837A1 WO 2022120837 A1 WO2022120837 A1 WO 2022120837A1 CN 2020135920 W CN2020135920 W CN 2020135920W WO 2022120837 A1 WO2022120837 A1 WO 2022120837A1
Authority
WO
WIPO (PCT)
Prior art keywords
sps
mbs
configuration
information
dci
Prior art date
Application number
PCT/CN2020/135920
Other languages
English (en)
French (fr)
Inventor
王淑坤
张世昌
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/135920 priority Critical patent/WO2022120837A1/zh
Priority to CN202311381803.1A priority patent/CN117295171A/zh
Priority to CN202080107425.6A priority patent/CN116530168A/zh
Priority to EP20964773.4A priority patent/EP4243528A4/en
Publication of WO2022120837A1 publication Critical patent/WO2022120837A1/zh
Priority to US18/206,724 priority patent/US11963199B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/11Semi-persistent scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the embodiments of the present application relate to the field of mobile communication technologies, and in particular, to a semi-static scheduling method and device, terminal equipment, and network equipment for a Multicast Broadcast Service (MBS) service.
  • MBS Multicast Broadcast Service
  • a terminal device In a new radio (New Radio, NR) system, a terminal device needs to receive an MBS service in a radio resource control (Radio Resource Control, RRC) connection state, which puts forward higher requirements for the reliability of the MBS service.
  • RRC Radio Resource Control
  • SPS Semi-persistent Scheduling
  • Embodiments of the present application provide a semi-static scheduling method and device, terminal equipment, and network equipment for an MBS service.
  • the terminal device receives first configuration information sent by the network device, where the first configuration information is used to determine N SPS configurations, where N is a positive integer, and all or part of the N SPS configurations are used to transmit MBS services.
  • the network device sends first configuration information to the terminal device, where the first configuration information is used to determine N SPS configurations, where N is a positive integer, and all or part of the N SPS configurations are used to transmit MBS services.
  • the apparatus for semi-static scheduling of MBS services provided by the embodiments of the present application is applied to terminal equipment, and the apparatus includes:
  • a receiving unit configured to receive first configuration information sent by a network device, where the first configuration information is used to determine N SPS configurations, N is a positive integer, and all or part of the N SPS configurations are used to transmit MBS services .
  • the apparatus for semi-static scheduling of MBS services provided by the embodiments of the present application is applied to network equipment, and the apparatus includes:
  • the sending unit is configured to send first configuration information to the terminal device, where the first configuration information is used to determine N SPS configurations, where N is a positive integer, and all or part of the N SPS configurations are used for transmitting MBS services.
  • the terminal device provided by the embodiments of the present application includes a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory to execute the above-mentioned semi-static scheduling method of the MBS service.
  • the network device provided by the embodiments of the present application includes a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory to execute the above-mentioned semi-static scheduling method of the MBS service.
  • the chip provided by the embodiment of the present application is used to implement the above-mentioned semi-static scheduling method of the MBS service.
  • the chip includes: a processor for invoking and running a computer program from the memory, so that the device installed with the chip executes the above-mentioned semi-static scheduling method of the MBS service.
  • the computer-readable storage medium provided by the embodiment of the present application is used for storing a computer program, and the computer program enables a computer to execute the above-mentioned semi-static scheduling method for an MBS service.
  • the computer program product provided by the embodiments of the present application includes computer program instructions, and the computer program instructions cause a computer to execute the above-mentioned semi-static scheduling method for MBS services.
  • the computer program provided by the embodiment of the present application when it runs on the computer, enables the computer to execute the above-mentioned semi-static scheduling method of the MBS service.
  • the network device configures the terminal device with one or more SPS configurations for transmitting MBS services, so that frequency hopping and/or repeated transmission of the MBS services can be implemented, thereby improving the transmission reliability of the MBS services.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a semi-static scheduling method for an MBS service provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram 1 of TB transmission in an MBS service provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram 2 of TB transmission in the MBS service provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram 3 of TB transmission in the MBS service provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram 1 of the structure and composition of a semi-persistent scheduling apparatus for MBS services provided by an embodiment of the present application;
  • FIG. 7 is a schematic diagram 2 of the structure and composition of a semi-persistent scheduling apparatus for MBS services provided by an embodiment of the present application;
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • 5G communication systems or future communication systems etc.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal 120 (or referred to as a communication terminal, a terminal).
  • the network device 110 may provide communication coverage for a particular geographic area and may communicate with terminals located within the coverage area.
  • the network device 110 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the
  • the network device can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, a wearable device, a hub, a switch, a bridge, a router, a network-side device in a 5G network, or a network device in a future communication system.
  • the communication system 100 also includes at least one terminal 120 located within the coverage of the network device 110 .
  • Terminal includes, but is not limited to, connections via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connections; and/or another data connection/network; and/or via a wireless interface, e.g. for cellular networks, Wireless Local Area Networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter; and/or a device of another terminal configured to receive/transmit a communication signal; and/or an Internet of Things (IoT) device.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN Wireless Local Area Networks
  • WLAN Wireless Local Area Networks
  • digital television networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter
  • IoT Internet of Things
  • a terminal arranged to communicate through a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal” or “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular telephones; Personal Communications System (PCS) terminals that may combine cellular radio telephones with data processing, facsimile, and data communication capabilities; may include radio telephones, pagers, Internet/Intranet PDAs with networking access, web browsers, memo pads, calendars, and/or Global Positioning System (GPS) receivers; and conventional laptop and/or palmtop receivers or others including radiotelephone transceivers electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • a terminal may refer to an access terminal, user equipment (UE), subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks or terminals in future evolved PLMNs, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal (Device to Device, D2D) communication may be performed between the terminals 120 .
  • the 5G communication system or the 5G network may also be referred to as a new radio (New Radio, NR) system or an NR network.
  • New Radio NR
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices, and the coverage of each network device may include other numbers of terminals. This embodiment of the present application This is not limited.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal 120 with a communication function, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here;
  • the device may further include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • 5G 3rd Generation Partnership Project
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra-Reliable Low-Latency Communications
  • mMTC Massive Machine-Type Communications
  • eMBB still aims at users' access to multimedia content, services and data, and its demand is growing rapidly.
  • eMBB since eMBB may be deployed in different scenarios, such as indoor, urban, rural, etc., its capabilities and requirements are also quite different, so it cannot be generalized and must be analyzed in detail in combination with specific deployment scenarios.
  • Typical applications of URLLC include: industrial automation, power automation, telemedicine operations (surgery), traffic safety assurance, etc.
  • Typical features of mMTC include: high connection density, small data volume, latency-insensitive services, low cost and long service life of the module.
  • RRC_INACTIVE Radio Resource Control
  • RRC_INACTIVE Radio Resource Control
  • RRC_IDLE state (referred to as idle state): mobility is UE-based cell selection reselection, paging is initiated by the core network (Core Network, CN), and the paging area is configured by the CN. There is no UE context and no RRC connection on the base station side.
  • RRC_CONNECTED state (referred to as connected state): there is an RRC connection, and a UE context exists on the base station side and the UE side.
  • the network side knows that the location of the UE is at the specific cell level. Mobility is the mobility controlled by the network side. Unicast data can be transmitted between the UE and the base station.
  • RRC_INACTIVE state (referred to as inactive state): mobility is UE-based cell selection reselection, there is a connection between CN-NR, UE context exists on a certain base station, paging is triggered by RAN, based on The paging area of the RAN is managed by the RAN, and the network side knows the location of the UE based on the paging area level of the RAN.
  • MBMS Multimedia Broadcast Multicast Service
  • MBMS is a technology that transmits data from a data source to multiple terminal devices by sharing network resources. This technology can effectively utilize network resources while providing multimedia services, and realize the broadcast of multimedia services at higher rates (such as 256kbps). and multicast.
  • 3GPP clearly proposes to enhance the support capability for downlink high-speed MBMS services, and determines the design requirements for the physical layer and air interface.
  • eMBMS evolved MBMS
  • SFN Single Frequency Network
  • MBSFN Multimedia Broadcast Multicast Service Single Frequency Network
  • MBSFN uses a uniform frequency to send service data in all cells at the same time, but To ensure synchronization between cells. In this way, the overall signal-to-noise ratio distribution of the cell can be greatly improved, and the spectral efficiency will also be greatly improved accordingly.
  • eMBMS implements service broadcast and multicast based on IP multicast protocol.
  • MBMS has only a broadcast bearer mode and no multicast bearer mode.
  • the reception of the MBMS service is applicable to the terminal equipment in the idle state or the connected state.
  • SC-PTM Single Cell Point To Multiploint
  • SC-MCCH Single Cell Multicast Control Channel
  • SC-MTCH Single Cell Multicast Transport Channel
  • SC-MCCH and SC-MTCH are mapped to downlink shared channel (Downlink-Shared Channel, DL-SCH), further, DL-SCH is mapped to physical downlink shared channel (Physical Downlink Shared Channel, PDSCH), wherein, SC - MCCH and SC-MTCH belong to logical channels, DL-SCH belongs to transport channels, and PDSCH belongs to physical channels.
  • SC-MCCH and SC-MTCH do not support hybrid automatic repeat request (Hybrid Automatic Repeat reQuest, HARQ) operations.
  • Hybrid Automatic Repeat reQuest Hybrid Automatic Repeat reQuest
  • MBMS introduces a new system information block (System Information Block, SIB) type, namely SIB20.
  • SIB System Information Block
  • the configuration information of the SC-MCCH includes the modification period of the SC-MCCH, the repetition period of the SC-MCCH, and information such as the radio frame and subframe in which the SC-MCCH is scheduled.
  • SFN represents the system frame number of the radio frame
  • mcch-RepetitionPeriod represents the repetition period of SC-MCCH
  • mcch-Offset represents SC-MCCH offset.
  • the SC-MCCH is scheduled through the Physical Downlink Control Channel (PDCCH).
  • PDCCH Physical Downlink Control Channel
  • RNTI Radio Network Tempory Identity
  • SC-RNTI Single Cell RNTI
  • the fixed value of SC-RNTI is FFFC.
  • a new RNTI is introduced, that is, a single cell notification RNTI (Single Cell Notification RNTI, SC-N-RNTI) to identify the PDCCH (such as the notification PDCCH) used to indicate the change notification of the SC-MCCH, optionally, the SC
  • the fixed value of -N-RNTI is FFFB; further, one of the 8 bits (bits) of DCI 1C can be used to indicate the change notification.
  • the configuration information of the SC-PTM is based on the SC-MCCH configured by the SIB20, and then the SC-MCCH configures the SC-MTCH, and the SC-MTCH is used to transmit service data.
  • the SC-MCCH only transmits one message (ie, SCPTMConfiguration), which is used to configure the configuration information of the SC-PTM.
  • the configuration information of SC-PTM includes: Temporary Mobile Group Identity (TMGI), session identifier (session id), group RNTI (Group RNTI, G-RNTI), discontinuous reception (Discontinuous Reception, DRX) configuration information And the SC-PTM service information of neighboring cells, etc.
  • TMGI Temporary Mobile Group Identity
  • session id session identifier
  • group RNTI Group RNTI, G-RNTI
  • discontinuous reception discontinuous Reception
  • DRX discontinuous Reception
  • Downlink discontinuous reception of SC-PTM is controlled by the following parameters: onDurationTimerSCPTM, drx-InactivityTimerSCPTM, SC-MTCH-SchedulingCycle, and SC-MTCH-SchedulingOffset.
  • the downstream SC-PTM service is received only when the timer onDurationTimerSCPTM or drx-InactivityTimerSCPTM is running.
  • SC-PTM business continuity adopts the concept of MBMS business continuity based on SIB15, namely "SIB15+MBMSInterestIndication" mode.
  • SIB15 namely "SIB15+MBMSInterestIndication" mode.
  • the service continuity of terminal equipment in idle state is based on the concept of frequency priority.
  • MBMS services in the above solution include but are not limited to multicast services, multicast services, and MBS services.
  • MBS service the description of "MBS service” may also be replaced with "multicast service” or “multicast service” or "MBMS service”.
  • the terminal equipment needs to receive the MBS service in the RRC connection state, which puts forward higher requirements for the reliability of the MBS service.
  • How to use SPS to transmit MBS services and improve the reliability of MBS service transmission is a problem that needs to be clarified. To this end, the following technical solutions of the embodiments of the present application are proposed.
  • the information of the SPS configuration can be referred to as shown in Table 1 below, including periodicity (periodicity) information, HARQ process (nrofHARQ-Processes, periodicityExt) information, PUCCH feedback resource (n1PUCCH-AN) information, MCS (mcs- Table) information, SPS configuration index (sps-ConfigIndex) information, HARQ process identification offset (harq-ProcID-Offset) information, HARQ feedback codebook (harq-CodebookID) information, PDSCH aggregation factor (pdsch-AggregationFactor) information, etc.
  • the information of the SPS configuration may also include other information, for details, please refer to the following description about the embodiments of the present application.
  • FIG. 2 is a schematic flowchart of a semi-persistent scheduling method for an MBS service provided by an embodiment of the present application. As shown in FIG. 2 , the semi-persistent scheduling method for an MBS service includes the following steps:
  • Step 201 The network device sends first configuration information to the terminal device, and the terminal device receives the first configuration information sent by the network device, where the first configuration information is used to determine N semi-persistent scheduling SPS configurations, where N is a positive integer, and the All or part of the N SPS configurations are used to transmit MBS services.
  • the network device may be a base station, such as a gNB.
  • the SPS configuration for MBS transmission may be implemented through the first configuration information.
  • the first configuration information is carried in RRC signaling.
  • the first configuration information is carried in the BWP configuration or the serving cell configuration.
  • the BWP configuration is, for example, a BWP-DownlinkDedicated configuration
  • the serving cell configuration is, for example, ServingCellConfig.
  • the network device configures the first configuration information with BWP as the granularity (per BWP). If the first configuration information is carried in the serving cell configuration, it means that the network device configures the first configuration information with a cell as a granularity (per cell).
  • the first configuration information is used to determine N SPS configurations, where N is a positive integer, and all or part of the N SPS configurations are used to transmit MBS services.
  • the implementation of the first configuration information may be as follows:
  • the first configuration information includes a first SPS configuration list
  • the first SPS configuration list includes N SPS configurations
  • the first SPS configuration list is a dedicated SPS configuration list for transmitting MBS services.
  • each SPS configuration in the N SPS configurations includes second indication information, where the second indication information is used to indicate MBS identification information associated with the SPS configuration.
  • the first SPS configuration list is a dedicated SPS configuration list for transmitting MBS services, all SPS configurations in the first SPS configuration list are used for transmitting MBS services.
  • the first configuration information includes a first SPS configuration list, the first SPS configuration list includes N SPS configurations, and each SPS configuration in the N SPS configurations includes first indication information, the The first indication information is used to indicate whether the SPS configuration is used to transmit MBS services and/or MBS identification information associated with the SPS configuration.
  • each SPS configuration in the N SPS configurations includes second indication information, where the second indication information is used to indicate MBS identification information associated with the SPS configuration.
  • the network device configures SPS configuration information (ie, the first configuration information) for transmitting the MBS service through RRC signaling, where the SPS configuration information can be implemented through the above-mentioned manner 1 or manner 2.
  • the network device may configure a dedicated SPS configuration list (ie, the first SPS configuration list) for transmitting MBS services in the BWP-DownlinkDedicated configuration or the ServingCellConfig configuration, the dedicated SPS configuration list
  • the list contains N SPS configurations, where N is a positive integer.
  • the N SPS configurations are associated with one MBS identification information, or each SPS configuration in the N SPS configurations is associated with one MBS identification information (which can be implemented by adding second indication information in the SPS configuration. ).
  • the MBS identification information may identify the MBS service to be received, and the MBS identification information includes at least one of the following: TMGI, G-RNTI, and SPS G-RNTI.
  • an SPS configuration list (ie, the first SPS configuration list) is configured in the BWP-DownlinkDedicated configuration, and the SPS configuration list includes N SPS configurations, where N is a positive integer.
  • each SPS configuration in the SPS configuration list includes an indication information (that is, the first indication information), and the indication information is used to indicate whether the SPS configuration is used to transmit MBS services (in other words, The indication information is used to indicate whether the SPS configuration is used for MBS reception purpose).
  • each SPS configuration in the N SPS configurations is associated with one MBS identification information (which may be implemented by adding second indication information to the SPS configuration).
  • the MBS identification information may identify the MBS service to be received, and the MBS identification information includes at least one of the following: TMGI, G-RNTI, and SPS G-RNTI.
  • the SPS configuration since the SPS configuration is used for MBS service transmission, the SPS configuration may be referred to as "MBS SPS configuration".
  • the SPS configuration for transmitting the MBS service is activated or deactivated through the DCI, and the DCI is hereinafter referred to as the first DCI, and the name of the DCI is not limited in the embodiment of the present application.
  • the network device sends the first DCI to the terminal device
  • the terminal device receives the first DCI sent by the network device
  • the first DCI is used to activate the N SPS configuration of at least one SPS configuration.
  • the activated SPS configuration is used for MBS service transmission.
  • the first DCI may also be used to deactivate at least one SPS configuration in the N SPS configurations.
  • the deactivated SPS configuration can no longer be used for MBS service transmission.
  • the first DCI is used to activate at least one SPS configuration. For this reason, some information needs to be carried in the first DCI, or in the MAC CE, or in the RRC signaling to indicate at least one SPS configuration.
  • the first DCI or MAC CE or RRC signaling carries a first SPS identification list, and the first SPS identification list is used to determine at least one SPS configuration that needs to be activated.
  • the first DCI or MAC CE or RRC signaling carries a first MBS identifier, where the first MBS identifier is used to determine at least one SPS configuration that needs to be activated.
  • the scrambling manner of the first DCI includes the following two:
  • the first scrambling mode the first DCI is scrambled by the first configuration scheduling wireless network temporary identifier (Configured Scheduling Radio Network Temporary Identifier, CS-RNTI) configured by the RRC signaling.
  • the first CS-RNTI may be understood as an existing CS-RNTI.
  • the first DCI carries third indication information, where the third indication information is used to indicate at least one of the following:
  • the second scrambling mode the first DCI is scrambled by the second CS-RNTI configured by the RRC signaling, and the second CS-RNTI is the CS-RNTI used by the MBS SPS.
  • the second CS-RNTI may be understood as a CS-RNTI dedicated to the MBS SPS.
  • the second CS-RNTI is the CS-RNTI used by the MBS SPS
  • the second CS-RNTI is used to indicate that the activated SPS is configured to transmit MBS services
  • the second CS-RNTI is associated with An MBS identification message.
  • the first DCI carries fourth indication information, where the fourth indication information is used to indicate MBS identification information associated with the activated SPS configuration.
  • a DCI (ie, the first DCI) is scrambled using a CS-RNTI configured by RRC signaling (ie, the first CS-RNTI), and at least one SPS configuration is activated or deactivated through the DCI.
  • CS-RNTI can be configured per cell group or per UE.
  • the DCI carries an SPS identification list (ie, the first SPS identification list) or an MBS identification (ie, the first MBS identification), and indicates the target SPS configuration that needs to be activated through the SPS identification list or the MBS identification.
  • the DCI carries indication information (that is, the third indication information), and the indication information is used to indicate whether the activated SPS configuration is used to transmit MBS services (in other words, the indication information is used to indicate the activated SPS configuration). Whether the SPS configuration is used for MBS reception purposes).
  • the indication information is also used to indicate the MBS identification information associated with the activated SPS configuration, the MBS identification information can identify the MBS service to be received, and the MBS identification information includes at least one of the following: TMGI, G-RNTI, SPS G -RNTI.
  • the dedicated SPS configuration list (ie the first SPS configuration list) configured in the BWP-DownlinkDedicated configuration is used to transmit MBS services
  • the dedicated CS-RNTI configured through RRC signaling ie the second CS -RNTI
  • scrambles the DCI ie the first DCI
  • the dedicated CS-RNTI refers to the CS-RNTI used by the MBS SPS, which may be referred to as the MBS CS-RNTI
  • the MBS CS-RNTI is associated with MBS identification information, such as TMGI, G-RNTI.
  • the DCI carries an SPS identification list (ie, the first SPS identification list) or an MBS identification (ie, the first MBS identification), and indicates the target SPS configuration that needs to be activated through the SPS identification list or the MBS identification.
  • the DCI carries indication information (that is, the fourth indication information), and the indication information is used to indicate the MBS identification information associated with the activated SPS configuration.
  • the MBS identification information may identify the MBS service to be received, and the MBS identification information includes: At least one of the following: TMGI, G-RNTI, SPS G-RNTI.
  • the network device sends second configuration information to the terminal device, and the terminal device receives the second configuration information sent by the network device, where the second configuration information is used to determine the first PUCCH resource configuration of the pool, where the PUCCH resources in the first PUCCH resource pool are used to transmit feedback information of MBS services; and/or, the network device sends third configuration information to the terminal device, and the terminal device receives the The third configuration information sent by the network device, where the third configuration information is used to determine the PUCCH resource of the terminal device, and the PUCCH resource is used for the feedback information of the MBS service transmitted by the terminal device.
  • the PUCCH resource is associated with one or more SPS configurations.
  • the PUCCH resource is associated with one MBS identification information.
  • the second configuration information and the third configuration information may be configured through RRC signaling.
  • the network device configures a PUCCH resource pool for MBS service feedback through RRC signaling, and/or configures a PUCCH resource for MBS service feedback of each terminal device through RRC dedicated signaling.
  • the PUCCH resource is associated with one or more SPS configurations, or the PUCCH resource is associated with one MBS identification information, such as TMGI, G-RNTI.
  • the first DCI may activate one SPS configuration or multiple SPS configurations, and the following describes the case of activating one SPS configuration and the case of activating multiple SPS configurations respectively.
  • the first DCI is used to activate one SPS configuration, and the one SPS configuration is used to transmit the first MBS service.
  • the first MBS service may also be referred to as an SPS MBS service, that is, the first MBS service is an MBS service transmitted in a semi-persistent scheduling manner.
  • the one SPS configuration is associated with MBS identification information of the first MBS service.
  • the first DCI includes first resource allocation information, and the first resource allocation information is used to determine one or more PDSCH resource allocations corresponding to one SPS configuration.
  • the one SPS configuration is associated with fifth indication information, where the fifth indication information is used to indicate at least one of the following:
  • the number of repeated transmissions associated with the one SPS configuration is the number of repeated transmissions associated with the one SPS configuration.
  • the transmission times of one service data in the first MBS service may be determined by the PDSCH aggregation factor, that is, the pdsch-AggregationFactor in Table 1 above.
  • the PDSCH aggregation factor may also be referred to as a repetition factor of a service data, through which the number of times of transmission of a service data can be determined.
  • the fifth indication information is used to indicate at least one of the following: the frequency hopping mode adopted by the first MBS service, the frequency hopping mode adopted by the first MBS service The frequency hopping pattern of , and the number of PDSCH resource allocations associated with an SPS configuration.
  • the fifth indication information is used to indicate at least one of the following: a frequency hopping mode used by the first MBS service, and a frequency hopping pattern used by the first MBS service , the repeated transmission mode adopted by the first MBS service, the number of PDSCH resource allocations associated with one SPS configuration, the number of repeated transmissions associated with one SPS configuration, and the transmission times of one service data in the first MBS service.
  • the fifth indication information is used to indicate at least one of the following: the frequency hopping mode adopted by the first MBS service, the first The frequency hopping pattern used by one MBS service, the number of PDSCH resource allocations associated with one SPS configuration, and the transmission times of one service data in the first MBS service.
  • the first DCI is used to activate multiple SPS configurations, and the multiple SPS configurations are used to transmit the first MBS service.
  • the first MBS service may also be referred to as an SPS MBS service, that is, the first MBS service is an MBS service transmitted in a semi-persistent scheduling manner.
  • the multiple SPS configurations are associated with MBS identification information of the first MBS service.
  • the multiple SPS configurations are associated with the same HARQ feedback codebook.
  • the association between the multiple SPS configurations and the HARQ feedback codebook is configured through RRC signaling, and the RRC signaling further configures PUCCH resources corresponding to the HARQ feedback codebook.
  • the first DCI includes second resource allocation information, and the second resource allocation information is used to determine one or more PDSCH resource allocations corresponding to each of the multiple SPS configurations.
  • the multiple SPS configurations or each SPS configuration in the multiple SPS configurations is associated with sixth indication information, where the sixth indication information is used to indicate at least one of the following:
  • the transmission associated with the SPS configuration is for the initial transmission of a service data or the M-th retransmission, where M is a positive integer.
  • the first DCI includes a frequency hopping mode of MBS transmission and/or a frequency hopping pattern of MBS transmission; wherein, the frequency hopping mode of MBS transmission includes a mode of retransmission and frequency hopping transmission of the same service data, and different service data frequency hopping transmission modes; the frequency hopping pattern of the MBS transmission is the frequency hopping pattern represented by the SPS configuration index list, or the index associated with each radio resource allocation in the first DCI is from small to large or Frequency hopping in descending order.
  • the frequency hopping manner and the frequency hopping pattern described in the above solutions in the embodiments of the present application can be understood with reference to the descriptions herein.
  • the sixth indication information is used to indicate at least one of the following: the frequency hopping mode adopted by the first MBS service, the frequency hopping mode adopted by the first MBS service frequency hopping pattern.
  • the sixth indication information is used to indicate at least one of the following: a frequency hopping mode used by the first MBS service, and a frequency hopping pattern used by the first MBS service .
  • a frequency hopping mode used by the first MBS service used by the first MBS service.
  • M is a positive integer.
  • the sixth indication information is used to indicate at least one of the following: the frequency hopping mode adopted by the first MBS service, the first The frequency hopping pattern used by one MBS service, the number of PDSCH resource allocations associated with one SPS configuration, and the transmission times of one service data in the first MBS service.
  • the network device configures the SPS configuration for MBS service transmission through RRC signaling.
  • the network device configures an SPS configuration for transmitting an MBS service.
  • the SPS configuration is associated with MBS identification information of an MBS service, such as TMGI or G-RNTI.
  • the information of the SPS configuration may additionally include fifth indication information in addition to the information given in Table 1.
  • the fifth indication information is used to indicate at least one of the following: the MBS service adopts The frequency hopping mode of the MBS service, the frequency hopping pattern used by the MBS service, and the number of PDSCH resource allocations associated with an SPS configuration.
  • the network device configures multiple SPS configurations (hereinafter referred to as a group of SPS configurations) for transmitting one MBS service.
  • the set of SPS configurations is associated with MBS identification information of an MBS service, such as TMGI or G-RNTI.
  • a group of SPS configurations is associated with sixth indication information, or each SPS configuration in a group of SPS configurations is associated with sixth indication information.
  • the information of each SPS configuration in a group of SPS configurations may additionally include sixth indication information.
  • the sixth indication information is used for Indicates at least one of the following: the frequency hopping mode used by the MBS service, and the frequency hopping pattern used by the MBS service.
  • all SPS configurations corresponding to one MBS service correspond to one HARQ feedback codebook ID or HARQ feedback codebook, that is to say, this group of SPS configurations corresponds to one HARQ feedback codebook, and the network device can configure this group of SPS through RRC signaling
  • the association relationship between the configuration and the HARQ feedback codebook (or the HARQ feedback codebook ID), and at the same time, the RRC signaling can also configure the PHCCH resource corresponding to the HARQ feedback codebook for feedback.
  • the terminal device receives the DCI for activating the SPS configuration, and in an optional manner, the DCI at least includes multiple time-frequency resource allocations corresponding to one SPS. In another optional manner, the DCI at least includes time-frequency resource allocations corresponding to multiple SPS configurations, and optionally, the DCI also includes a frequency hopping manner used by the MBS service and/or a frequency hopping pattern used by the MBS service (that is, the frequency hopping manner of MBS transmission and/or the frequency hopping pattern of MBS transmission), here, the description of the frequency hopping manner and the frequency hopping pattern can be understood with reference to the above-mentioned related descriptions.
  • the terminal device receives the MBS service according to the SPS configuration corresponding to the MBS service configured in the RRC signaling and the time-frequency resource allocation corresponding to the activation of the SPS configuration.
  • the time-frequency resource allocation is also the PDSCH resource allocation, that is, the time-frequency resource allocation of the PDSCH.
  • the SPS configuration for transmitting the MBS service includes SPS configuration 1 and SPS configuration 2, and these two SPS configurations are activated by DCI.
  • the service data of the MBS service is not repeatedly transmitted within and between frequencies, but the service data of the MBS service has frequency hopping between frequencies, such as MBS
  • the service data of the service is transmitted in the order shown in Figure 3: TB1, TB2, TB3, TB4, ..., where TB1 is transmitted on the PDSCH resource associated with SPS configuration 1, and TB2 is transmitted on the SPS Transmission is performed on the PDSCH resources associated with configuration 2, and thus frequency hopping transmission.
  • one TB refers to one service data of the MBS service, which may also be referred to as MBS service data.
  • the network device configures the SPS configuration for MBS transmission through RRC signaling.
  • the network device configures an SPS configuration for transmitting an MBS service.
  • the SPS configuration is associated with MBS identification information of an MBS service, such as TMGI or G-RNTI.
  • the information of the SPS configuration may additionally include fifth indication information in addition to the information given in Table 1.
  • the fifth indication information is used to indicate at least one of the following: the MBS service adopts The number of PDSCH resource allocations associated with an SPS configuration, the number of repeated transmissions associated with an SPS configuration, and the number of times of service data transmission.
  • the network device configures multiple SPS configurations (hereinafter referred to as a group of SPS configurations) for transmitting one MBS service.
  • the set of SPS configurations is associated with MBS identification information of an MBS service, such as TMGI or G-RNTI.
  • a group of SPS configurations is associated with sixth indication information, or each SPS configuration in a group of SPS configurations is associated with sixth indication information.
  • the network device configures through RRC signaling that each SPS configuration in the group of SPS configurations is associated with a transmission indication information (that is, the sixth indication information), and the transmission indication information is used to indicate that the SPS configuration is associated.
  • a transmission indication information that is, the sixth indication information
  • all SPS configurations corresponding to one MBS service correspond to one HARQ feedback codebook ID or HARQ feedback codebook, that is to say, this group of SPS configurations corresponds to one HARQ feedback codebook, and the network device can configure this group of SPS through RRC signaling
  • the association relationship between the configuration and the HARQ feedback codebook (or the HARQ feedback codebook ID), and at the same time, the RRC signaling can also configure the PHCCH resource corresponding to the HARQ feedback codebook for feedback.
  • the terminal device receives the DCI for activating the SPS configuration, and in an optional manner, the DCI at least includes multiple time-frequency resource allocations corresponding to one SPS. In another optional manner, the DCI at least includes time-frequency resource allocations corresponding to multiple SPS configurations.
  • the DCI also includes a transmission indication information (that is, the sixth indication information), and the transmission indication information is used to indicate whether the transmission associated with the SPS configuration is for the initial transmission of a service data or the Mth retransmission ( It can also be said that it is the T-th transmission for a service data).
  • the DCI further includes feedback indication information, where the feedback indication information is used to indicate whether HARQ feedback is required for the MBS service.
  • the terminal device receives the MBS service according to the SPS configuration corresponding to the MBS service configured in the RRC signaling and the time-frequency resource allocation corresponding to the activation of the SPS configuration.
  • the time-frequency resource allocation is also the PDSCH resource allocation, that is, the time-frequency resource allocation of the PDSCH.
  • the SPS configuration for transmitting the MBS service includes SPS configuration 1 and SPS configuration 2, and these two SPS configurations are activated by DCI.
  • the service data of the MBS service is not repeatedly transmitted within the frequency, but there is repeated transmission between the frequencies.
  • the service data of the MBS service is transmitted in the order shown in Figure 4. : TB1, TB1', TB2, TB2',..., where TB1 is transmitted on PDSCH resources associated with SPS configuration 1, TB1' is transmitted on PDSCH resources associated with SPS configuration 2, and TB1 ' is the first retransmission of TB1, so frequency hopping repeats transmission.
  • one TB refers to one service data of the MBS service, which may also be referred to as MBS service data.
  • the network device configures the SPS configuration for MBS service transmission through RRC signaling.
  • the network device configures an SPS configuration for transmitting an MBS service.
  • the SPS configuration is associated with MBS identification information of an MBS service, such as TMGI or G-RNTI.
  • the information of the SPS configuration may additionally include fifth indication information in addition to the information given in Table 1.
  • the fifth indication information is used to indicate at least one of the following: the MBS service adopts , the frequency hopping pattern used by the MBS service, the number of PDSCH resource allocations associated with an SPS configuration, and the number of repeated transmissions associated with an SPS configuration.
  • the network device configures multiple SPS configurations (hereinafter referred to as a group of SPS configurations) for transmitting one MBS service.
  • the set of SPS configurations is associated with MBS identification information of an MBS service, such as TMGI or G-RNTI.
  • a group of SPS configurations is associated with sixth indication information, or each SPS configuration in a group of SPS configurations is associated with sixth indication information.
  • the information of each SPS configuration in a group of SPS configurations may additionally include sixth indication information.
  • the sixth indication information is used for Indicates at least one of the following: the frequency hopping mode used by the MBS service, the frequency hopping pattern used by the MBS service, and the number of repeated transmissions associated with the SPS configuration.
  • all SPS configurations corresponding to one MBS service correspond to one HARQ feedback codebook ID or HARQ feedback codebook, that is to say, this group of SPS configurations corresponds to one HARQ feedback codebook, and the network device can configure this group of SPS through RRC signaling
  • the association relationship between the configuration and the HARQ feedback codebook (or the HARQ feedback codebook ID), and at the same time, the RRC signaling can also configure the PHCCH resource corresponding to the HARQ feedback codebook for feedback.
  • the terminal device receives the DCI for activating the SPS configuration, and in an optional manner, the DCI at least includes multiple time-frequency resource allocations corresponding to one SPS. In another optional manner, the DCI at least includes time-frequency resource allocations corresponding to multiple SPS configurations, and optionally, the DCI also includes a frequency hopping manner used by the MBS service and/or a frequency hopping pattern used by the MBS service (that is, the frequency hopping manner of MBS transmission and/or the frequency hopping pattern of MBS transmission), here, the description of the frequency hopping manner and the frequency hopping pattern can be understood with reference to the above-mentioned related descriptions.
  • the terminal device receives the MBS service according to the SPS configuration corresponding to the MBS service configured in the RRC signaling and the time-frequency resource allocation corresponding to the activation of the SPS configuration.
  • the time-frequency resource allocation is also the PDSCH resource allocation, that is, the time-frequency resource allocation of the PDSCH.
  • the SPS configuration for transmitting the MBS service includes SPS configuration 1 and SPS configuration 2, and these two SPS configurations are activated by DCI.
  • the service data of the MBS service is repeatedly transmitted within the frequency, but there is no repeated transmission between the frequencies.
  • the service data of the MBS service is transmitted
  • the sequence is as shown in Figure 5: TB1, TB1', TB2, TB2',..., where the number of repeated transmissions associated with SPS configuration 1 is 2, and TB1 and TB1' are associated with SPS configuration 1
  • the number of repeated transmissions associated with SPS configuration 2 is 2, and TB2 and TB2' are transmitted on the PDSCH resources associated with SPS configuration 2, thus repeating transmission with frequency hopping.
  • one TB refers to one service data of the MBS service, which may also be referred to as MBS service data.
  • the scrambling mode of the PDSCH scheduled by the first DCI is configured by RRC signaling or indicated by the first DCI.
  • the PDSCH scheduled by the first DCI is scrambled using CS-RNTI. In another optional manner, the PDSCH scheduled by the first DCI is scrambled using G-RNTI.
  • CS-RNTI is used to scramble the PDSCH, where the PDSCH refers to the PDSCH used to transmit the SPS MBS service, and the SPS MBS service refers to the MBS service transmitted in a semi-persistent scheduling manner (that is, the transmission based on the SPS configuration MBS business).
  • the CS-RNTI associated with the SPS MBS service can be configured through RRC signaling.
  • G-RNTI is used to scramble the PDSCH, where the PDSCH refers to the PDSCH used to transmit the SPS MBS service, and the SPS MBS service refers to the MBS service transmitted in a semi-persistent scheduling manner (that is, the transmission based on the SPS configuration MBS business).
  • the SPS MBS service or the G-RNTI associated with the CS-RNTI can be configured through RRC signaling.
  • whether to use CS-RNTI to scramble the PDSCH or use G-RNTI to scramble the PDSCH is indicated by the DCI (ie the first DCI) or RRC signaling for activating the SPS configuration, here, the PDSCH It refers to the PDSCH used to transmit the SPS MBS service, and the SPS MBS service refers to the MBS service transmitted in the semi-persistent scheduling mode (that is, the MBS service transmitted based on the SPS configuration).
  • FIG. 6 is a schematic structural diagram 1 of a semi-persistent scheduling apparatus for MBS services provided by an embodiment of the present application, which is applied to terminal equipment.
  • the semi-persistent scheduling apparatus for MBS services includes:
  • a receiving unit 601 configured to receive first configuration information sent by a network device, where the first configuration information is used to determine N SPS configurations, N is a positive integer, and all or part of the N SPS configurations are used to transmit MBS business.
  • the first configuration information includes a first SPS configuration list
  • the first SPS configuration list includes N SPS configurations
  • the first SPS configuration list is a dedicated SPS for transmitting MBS services Configuration list.
  • the first configuration information includes a first SPS configuration list
  • the first SPS configuration list includes N SPS configurations
  • each SPS configuration in the N SPS configurations includes a first indication information, where the first indication information is used to indicate whether the SPS configuration is used to transmit MBS services and/or the MBS identification information associated with the SPS configuration.
  • each SPS configuration in the N SPS configurations includes second indication information, where the second indication information is used to indicate MBS identification information associated with the SPS configuration.
  • the first configuration information is carried in the BWP configuration or the serving cell configuration.
  • the first configuration information is carried in RRC signaling.
  • the receiving unit 601 is further configured to receive a first DCI sent by the network device, where the first DCI is used to activate at least one SPS configuration in the N SPS configurations.
  • the at least one SPS configuration that needs to be activated is determined based on the first SPS identifier list or is determined based on at least the first MBS identifier;
  • the first SPS identification list or the at least first MBS identification is carried in the first DCI, or in the MAC CE, or in the RRC signaling.
  • the first DCI is scrambled by the first CS-RNTI configured by RRC signaling.
  • the first DCI carries third indication information, where the third indication information is used to indicate at least one of the following:
  • the first DCI is scrambled by a second CS-RNTI configured by RRC signaling, and the second CS-RNTI is the CS-RNTI used by the MBS SPS.
  • the second CS-RNTI is used to indicate that the activated SPS is configured to transmit MBS services, and the second CS-RNTI is associated with MBS identification information.
  • the first DCI carries fourth indication information, where the fourth indication information is used to indicate MBS identification information associated with the activated SPS configuration.
  • the receiving unit 601 is further configured to receive second configuration information sent by the network device, where the second configuration information is used to determine the configuration of the first PUCCH resource pool, the first PUCCH The PUCCH resources in the resource pool are used for transmitting feedback information of the MBS service; and/or, receiving third configuration information sent by the network device, where the third configuration information is used to determine the PUCCH resources of the terminal device, the The PUCCH resource is used for the feedback information of the MBS service transmitted by the terminal device.
  • the PUCCH resource is associated with one or more SPS configurations.
  • the PUCCH resource is associated with one MBS identification information.
  • the first DCI is used to activate an SPS configuration
  • the one SPS configuration is used to transmit the first MBS service.
  • the one SPS configuration is associated with MBS identification information of the first MBS service.
  • the one SPS configuration is associated with fifth indication information, where the fifth indication information is used to indicate at least one of the following:
  • the number of repeated transmissions associated with the one SPS configuration is the number of repeated transmissions associated with the one SPS configuration.
  • the first DCI is used to activate multiple SPS configurations, and the multiple SPS configurations are used to transmit the first MBS service.
  • the multiple SPS configurations are associated with MBS identification information of the first MBS service.
  • the multiple SPS configurations are associated with the same HARQ feedback codebook.
  • the association between the multiple SPS configurations and the HARQ feedback codebook is configured through RRC signaling, and the RRC signaling further configures PUCCH resources corresponding to the HARQ feedback codebook.
  • the multiple SPS configurations or each SPS configuration in the multiple SPS configurations is associated with sixth indication information, where the sixth indication information is used to indicate at least one of the following:
  • the transmission associated with the SPS configuration is for the initial transmission of a service data or the M-th retransmission, where M is a positive integer.
  • the first DCI includes first resource allocation information, and the first resource allocation information is used to determine one or more PDSCH resource allocations corresponding to one SPS configuration.
  • the first DCI includes second resource allocation information, and the second resource allocation information is used to determine one or more PDSCH resource allocations corresponding to each of the multiple SPS configurations.
  • the first DCI includes a frequency hopping manner of MBS transmission and/or a frequency hopping pattern of MBS transmission;
  • the frequency hopping mode of the MBS transmission includes the same service data retransmission frequency hopping transmission mode and the frequency hopping transmission mode of different service data;
  • the frequency hopping pattern of the MBS transmission is the frequency hopping pattern represented by the SPS configuration index list, or the index associated with each radio resource allocation in the first DCI is frequency hopping in order from small to large or from large to small.
  • the scrambling manner of the PDSCH scheduled by the first DCI is configured by RRC signaling or indicated by the first DCI.
  • the PDSCH scheduled by the first DCI is scrambled using CS-RNTI; or,
  • the PDSCH scheduled by the first DCI is scrambled using G-RNTI.
  • the MBS identification information includes at least one of the following: TMGI, G-RNTI, and SPS G-RNTI.
  • FIG. 7 is a schematic diagram 2 of the structure and composition of an apparatus for semi-persistent scheduling of MBS services provided by an embodiment of the present application, which is applied to network equipment.
  • the apparatus for semi-persistent scheduling of MBS services includes:
  • a sending unit 701 configured to send first configuration information to a terminal device, where the first configuration information is used to determine N SPS configurations, N is a positive integer, and all or part of the N SPS configurations are used to transmit MBS services .
  • the first configuration information includes a first SPS configuration list
  • the first SPS configuration list includes N SPS configurations
  • the first SPS configuration list is a dedicated SPS for transmitting MBS services Configuration list.
  • the first configuration information includes a first SPS configuration list
  • the first SPS configuration list includes N SPS configurations
  • each SPS configuration in the N SPS configurations includes a first indication information, where the first indication information is used to indicate whether the SPS configuration is used to transmit MBS services and/or the MBS identification information associated with the SPS configuration.
  • each SPS configuration in the N SPS configurations includes second indication information, where the second indication information is used to indicate MBS identification information associated with the SPS configuration.
  • the first configuration information is carried in the BWP configuration or the serving cell configuration.
  • the first configuration information is carried in RRC signaling.
  • the sending unit is further configured to send a first DCI to the terminal device, where the first DCI is used to activate at least one SPS configuration in the N SPS configurations.
  • the at least one SPS configuration that needs to be activated is determined based on the first SPS identifier list or is determined based on at least the first MBS identifier;
  • the first SPS identification list or the at least first MBS identification is carried in the first DCI, or in the MAC CE, or in the RRC signaling.
  • the first DCI is scrambled by the first CS-RNTI configured by RRC signaling.
  • the first DCI carries third indication information, where the third indication information is used to indicate at least one of the following:
  • the first DCI is scrambled by a second CS-RNTI configured by RRC signaling, and the second CS-RNTI is the CS-RNTI used by the MBS SPS.
  • the second CS-RNTI is used to indicate that the activated SPS is configured to transmit MBS services, and the second CS-RNTI is associated with MBS identification information.
  • the first DCI carries fourth indication information, where the fourth indication information is used to indicate MBS identification information associated with the activated SPS configuration.
  • the sending unit 701 is further configured to send second configuration information to the terminal device, where the second configuration information is used to determine the configuration of the first PUCCH resource pool, the first PUCCH resource
  • the PUCCH resources in the pool are used for transmitting feedback information of the MBS service; and/or, sending third configuration information to the terminal equipment, where the third configuration information is used to determine the PUCCH resources of the terminal equipment, the PUCCH resources Feedback information for the MBS service transmitted by the terminal device.
  • the PUCCH resource is associated with one or more SPS configurations.
  • the PUCCH resource is associated with one MBS identification information.
  • the first DCI is used to activate an SPS configuration
  • the one SPS configuration is used to transmit the first MBS service.
  • the one SPS configuration is associated with MBS identification information of the first MBS service.
  • the one SPS configuration is associated with fifth indication information, where the fifth indication information is used to indicate at least one of the following:
  • the number of repeated transmissions associated with the one SPS configuration is the number of repeated transmissions associated with the one SPS configuration.
  • the first DCI is used to activate multiple SPS configurations, and the multiple SPS configurations are used to transmit the first MBS service.
  • the multiple SPS configurations are associated with MBS identification information of the first MBS service.
  • the multiple SPS configurations are associated with the same HARQ feedback codebook.
  • the association between the multiple SPS configurations and the HARQ feedback codebook is configured through RRC signaling, and the RRC signaling further configures PUCCH resources corresponding to the HARQ feedback codebook.
  • the multiple SPS configurations or each SPS configuration in the multiple SPS configurations is associated with sixth indication information, where the sixth indication information is used to indicate at least one of the following:
  • the transmission associated with the SPS configuration is for the initial transmission of a service data or the M-th retransmission, where M is a positive integer.
  • the first DCI includes first resource allocation information, and the first resource allocation information is used to determine one or more PDSCH resource allocations corresponding to one SPS configuration.
  • the first DCI includes second resource allocation information, and the second resource allocation information is used to determine one or more PDSCH resource allocations corresponding to each of the multiple SPS configurations.
  • the first DCI includes a frequency hopping manner of MBS transmission and/or a frequency hopping pattern of MBS transmission;
  • the frequency hopping mode of the MBS transmission includes the same service data retransmission frequency hopping transmission mode and the frequency hopping transmission mode of different service data;
  • the frequency hopping pattern of the MBS transmission is the frequency hopping pattern represented by the SPS configuration index list, or the index associated with each radio resource allocation in the first DCI is frequency hopping in order from small to large or from large to small.
  • the scrambling manner of the PDSCH scheduled by the first DCI is configured by RRC signaling or indicated by the first DCI.
  • the PDSCH scheduled by the first DCI is scrambled using CS-RNTI; or,
  • the PDSCH scheduled by the first DCI is scrambled using G-RNTI.
  • the MBS identification information includes at least one of the following: TMGI, G-RNTI, and SPS G-RNTI.
  • FIG. 8 is a schematic structural diagram of a communication device 800 provided by an embodiment of the present application.
  • the communication device may be a terminal device or a network device.
  • the communication device 800 shown in FIG. 8 includes a processor 810, and the processor 810 may call and run a computer program from a memory to implement the methods in the embodiments of the present application.
  • the communication device 800 may further include a memory 820 .
  • the processor 810 may call and run a computer program from the memory 820 to implement the methods in the embodiments of the present application.
  • the memory 820 may be a separate device independent of the processor 810 , or may be integrated in the processor 810 .
  • the communication device 800 may further include a transceiver 830, and the processor 810 may control the transceiver 830 to communicate with other devices, specifically, may send information or data to other devices, or receive other Information or data sent by a device.
  • the transceiver 830 may include a transmitter and a receiver.
  • the transceiver 830 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 800 may specifically be the network device in this embodiment of the present application, and the communication device 800 may implement the corresponding processes implemented by the network device in each method in the embodiment of the present application. For brevity, details are not repeated here. .
  • the communication device 800 may specifically be the mobile terminal/terminal device in the embodiments of the present application, and the communication device 800 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method in the embodiments of the present application. , and will not be repeated here.
  • FIG. 9 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 900 shown in FIG. 9 includes a processor 910, and the processor 910 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 900 may further include a memory 920 .
  • the processor 910 may call and run a computer program from the memory 920 to implement the methods in the embodiments of the present application.
  • the memory 920 may be a separate device independent of the processor 910 , or may be integrated in the processor 910 .
  • the chip 900 may further include an input interface 930 .
  • the processor 910 may control the input interface 930 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 900 may further include an output interface 940 .
  • the processor 910 may control the output interface 940 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • FIG. 10 is a schematic block diagram of a communication system 1000 provided by an embodiment of the present application. As shown in FIG. 10 , the communication system 1000 includes a terminal device 1010 and a network device 1020 .
  • the terminal device 1010 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 1020 can be used to implement the corresponding functions implemented by the network device in the above method. For brevity, details are not repeated here. .
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • Embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. Repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, For the sake of brevity, details are not repeated here.
  • the embodiments of the present application also provide a computer program.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. For the sake of brevity. , and will not be repeated here.
  • the computer program may be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program is run on the computer, the mobile terminal/terminal device implements the various methods of the computer program in the embodiments of the present application.
  • the corresponding process for the sake of brevity, will not be repeated here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Abstract

本申请实施例提供一种MBS业务的半静态调度方法及装置、终端设备、网络设备,该方法包括:终端设备接收网络设备发送的第一配置信息,所述第一配置信息用于确定N个半静态调度SPS配置,N为正整数,所述N个SPS配置中的全部或部分用于传输MBS业务。

Description

MBS业务的半静态调度方法及装置、终端设备、网络设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种多播组播服务(Multicast Broadcast Service,MBS)业务的半静态调度方法及装置、终端设备、网络设备。
背景技术
在新无线(New Radio,NR)系统中,终端设备需要在无线资源控制(Radio Resource Control,RRC)连接态下接收MBS业务,针对MBS业务的可靠性提出了更高的需求。如何使用半静态调度(Semi-Persistent Scheduling,SPS)的方式来传输MBS业务,提高MBS业务传输的可靠性是个需要明确的问题。
发明内容
本申请实施例提供一种MBS业务的半静态调度方法及装置、终端设备、网络设备。
本申请实施例提供的MBS业务的半静态调度方法,包括:
终端设备接收网络设备发送的第一配置信息,所述第一配置信息用于确定N个SPS配置,N为正整数,所述N个SPS配置中的全部或部分用于传输MBS业务。
本申请实施例提供的MBS业务的半静态调度方法,包括:
网络设备向终端设备发送第一配置信息,所述第一配置信息用于确定N个SPS配置,N为正整数,所述N个SPS配置中的全部或部分用于传输MBS业务。
本申请实施例提供的MBS业务的半静态调度装置,应用于终端设备,所述装置包括:
接收单元,用于接收网络设备发送的第一配置信息,所述第一配置信息用于确定N个SPS配置,N为正整数,所述N个SPS配置中的全部或部分用于传输MBS业务。
本申请实施例提供的MBS业务的半静态调度装置,应用于网络设备,所述装置包括:
发送单元,用于向终端设备发送第一配置信息,所述第一配置信息用于确定N个SPS配置,N为正整数,所述N个SPS配置中的全部或部分用于传输MBS业务。
本申请实施例提供的终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的MBS业务的半静态调度方法。
本申请实施例提供的网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的MBS业务的半静态调度方法。
本申请实施例提供的芯片,用于实现上述的MBS业务的半静态调度方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的MBS业务的半静态调度方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的MBS业务的半静态调度方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的MBS业务的半静态调度方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的MBS业务的半静态调度方法。
通过上述技术方案,网络设备给终端设备配置用于传输MBS业务的一个或多个SPS配置,从而可以实现MBS业务采用跳频和/或重复传输的方式,提高了MBS业务的传输可靠性。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实 施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信系统架构的示意性图;
图2是本申请实施例提供的MBS业务的半静态调度方法的流程示意图;
图3是本申请实施例提供的MBS业务中的TB传输示意图一;
图4是本申请实施例提供的MBS业务中的TB传输示意图二;
图5是本申请实施例提供的MBS业务中的TB传输示意图三;
图6是本申请实施例提供的MBS业务的半静态调度装置的结构组成示意图一;
图7是本申请实施例提供的MBS业务的半静态调度装置的结构组成示意图二;
图8是本申请实施例提供的一种通信设备示意性结构图;
图9是本申请实施例的芯片的示意性结构图;
图10是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、系统、5G通信系统或未来的通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来通信系统中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G通信系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信 系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例相关的技术方案进行说明。
随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性、复杂性,为此第三代合作伙伴计划(3 rd Generation Partnership Project,3GPP)国际标准组织开始研发5G。5G的主要应用场景为:增强移动超宽带(enhanced Mobile Broadband,eMBB)、低时延高可靠通信(Ultra-Reliable Low-Latency Communications,URLLC)、大规模机器类通信(massive Machine-Type Communications,mMTC)。
一方面,eMBB仍然以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。另一方面,由于eMBB可能部署在不同的场景中,例如室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而论,必须结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
在NR早期部署时,完整的NR覆盖很难获取,所以典型的网络覆盖是广域的LTE覆盖和NR的孤岛覆盖模式。而且大量的LTE部署在6GHz以下,可用于5G的6GHz以下频谱很少。所以NR必须研究6GHz以上的频谱应用,而高频段覆盖有限、信号衰落快。同时为了保护移动运营商前期在LTE投资,提出了LTE和NR之间紧耦合(tight interworking)的工作模式。
Figure PCTCN2020135920-appb-000001
RRC状态
5G为了降低空口信令和快速恢复无线连接,快速恢复数据业务的目的,定义了一个新的无线资源控制(Radio Resource Control,RRC)状态,即RRC非激活(RRC_INACTIVE)状态。这种状态有别于RRC空闲(RRC_IDLE)状态和RRC激活(RRC_ACTIVE)状态。其中,
1)RRC_IDLE状态(简称为空闲(idle)态):移动性为基于UE的小区选择重选,寻呼由核心网(Core Network,CN)发起,寻呼区域由CN配置。基站侧不存在UE上下文,不存在RRC连接。
2)RRC_CONNECTED状态(简称为连接(connected)态):存在RRC连接,基站侧和UE侧存在UE上下文。网络侧知道UE的位置是具体小区级别的。移动性是网络侧控制的移动性。UE和基站之间可以传输单播数据。
3)RRC_INACTIVE状态(简称为非激活(inactive)态):移动性为基于UE的小区选择重选,存在CN-NR之间的连接,UE上下文存在某个基站上,寻呼由RAN触发,基于RAN的寻呼区域由RAN管理,网络侧知道UE的位置是基于RAN的寻呼区域级别的。
Figure PCTCN2020135920-appb-000002
多媒体广播多播服务(Multimedia Broadcast Multicast Service,MBMS)
MBMS是一种通过共享网络资源从一个数据源向多个终端设备传送数据的技术,该技术在提供多媒体业务的同时能有效地利用网络资源,实现较高速率(如256kbps)的多媒体业务的广播和组播。
由于MBMS频谱效率较低,不足以有效地承载和支撑手机电视类型业务的运营。因此在LTE中,3GPP明确提出增强对下行高速MBMS业务的支持能力,并确定了对物理层和空中接口的设计要求。
3GPP R9将演进的MBMS(evolved MBMS,eMBMS)引入到LTE中。eMBMS提出了单频率网络(Single Frequency Network,SFN)的概念,即多媒体广播多播服务单频率网络(Multimedia Broadcast multicast service Single Frequency Network,MBSFN),MBSFN采用统一频率在所有小区同时发送业务数据,但是要保证小区间的同步。这种方式可以极大的提高小区整体信噪比分布,频谱效率也会相应的大幅提高。eMBMS基于IP多播协议实现业务的广播和多播。
在LTE或增强的LTE(LTE-Advanced,LTE-A)中,MBMS只有广播承载模式,没有多播承载模式。此外,MBMS业务的接收适用于空闲态或者连接态的终端设备。
3GPP R13中引入了单小区点对多点(Single Cell Point To Multiploint,SC-PTM)概念,SC-PTM基于MBMS网络架构。
MBMS引入了新的逻辑信道,包括单小区多播控制信道(Single Cell-Multicast Control Channel, SC-MCCH)和单小区多播传输信道(Single Cell-Multicast Transport Channel,SC-MTCH)。SC-MCCH和SC-MTCH被映射到下行共享信道(Downlink-Shared Channel,DL-SCH)上,进一步,DL-SCH被映射到物理下行共享信道(Physical Downlink Shared Channel,PDSCH)上,其中,SC-MCCH和SC-MTCH属于逻辑信道,DL-SCH属于传输信道,PDSCH属于物理信道。SC-MCCH和SC-MTCH不支持混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)操作。
MBMS引入了新的系统信息块(System Information Block,SIB)类型,即SIB20。具体地,通过SIB20来传输SC-MCCH的配置信息,一个小区只有一个SC-MCCH。SC-MCCH的配置信息包括:SC-MCCH的修改周期、SC-MCCH的重复周期、以及调度SC-MCCH的无线帧和子帧等信息。进一步,1)SC-MCCH的修改周期的边界满足SFN mod m=0,其中,SFN代表边界的系统帧号,m是SIB20中配置的SC-MCCH的修改周期(即sc-mcch-ModificationPeriod)。2)调度SC-MCCH的无线帧满足:SFN mod mcch-RepetitionPeriod=mcch-Offset,其中,SFN代表无线帧的系统帧号,mcch-RepetitionPeriod代表SC-MCCH的重复周期,mcch-Offset代表SC-MCCH的偏移量。3)调度SC-MCCH的子帧通过sc-mcch-Subframe指示。
SC-MCCH通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)调度。一方面,引入新的无线网络临时标识(Radio Network Tempory Identity,RNTI),即单小区RNTI(Single Cell RNTI,SC-RNTI)来识别用于调度SC-MCCH的PDCCH(如SC-MCCH PDCCH),可选地,SC-RNTI固定取值为FFFC。另一方面,引入新的RNTI,即单小区通知RNTI(Single Cell Notification RNTI,SC-N-RNTI)来识别用于指示SC-MCCH的变更通知的PDCCH(如通知PDCCH),可选地,SC-N-RNTI固定取值为FFFB;进一步,可以用DCI 1C的8个比特(bit)中的一个bit来指示变更通知。在LTE中,SC-PTM的配置信息基于SIB20配置的SC-MCCH,然后SC-MCCH配置SC-MTCH,SC-MTCH用于传输业务数据。
具体地,SC-MCCH只传输一个消息(即SCPTMConfiguration),该消息用于配置SC-PTM的配置信息。SC-PTM的配置信息包括:临时移动组标识(Temporary Mobile Group Identity,TMGI)、会话标识(seession id)、组RNTI(Group RNTI,G-RNTI)、非连续接收(Discontinuous Reception,DRX)配置信息以及邻区的SC-PTM业务信息等。需要说明的是,R13中的SC-PTM不支持健壮性包头压缩(Robust Header Compression,ROHC)功能。
SC-PTM的下行非连续的接收是通过以下参数控制的:onDurationTimerSCPTM、drx-InactivityTimerSCPTM、SC-MTCH-SchedulingCycle、以及SC-MTCH-SchedulingOffset。
当满足[(SFN*10)+subframe number]modulo(SC-MTCH-SchedulingCycle)=SC-MTCH-SchedulingOffset时,启动定时器onDurationTimerSCPTM;
当接收到下行PDCCH调度时,启动定时器drx-InactivityTimerSCPTM;
只有当定时器onDurationTimerSCPTM或drx-InactivityTimerSCPTM运行时才接收下行SC-PTM业务。
SC-PTM业务连续性采用基于SIB15的MBMS业务连续性概念,即“SIB15+MBMSInterestIndication”方式。空闲态的终端设备的业务连续性基于频率优先级的概念。
需要说明的是,上述方案中的MBMS业务包括但不局限于多播业务、组播业务、MBS业务。本申请实施例以MBS业务为例进行说明,“MBS业务”的描述也可以被替换为“多播业务”或者“组播业务”或者“MBMS业务”。
在NR中,终端设备需要在RRC连接态下接收MBS业务,针对MBS业务的可靠性提出了更高的需求。如何使用SPS的方式来传输MBS业务,提高MBS业务传输的可靠性是个需要明确的问题。为此,提出了本申请实施例的以下技术方案。
本申请实施例中,SPS配置的信息可以参照如下表1所示,包括周期(periodicity)信息、HARQ进程(nrofHARQ-Processes,periodicityExt)信息、PUCCH反馈资源(n1PUCCH-AN)信息、MCS(mcs-Table)信息、SPS配置索引(sps-ConfigIndex)信息、HARQ进程标识偏移(harq-ProcID-Offset)信息、HARQ反馈码本(harq-CodebookID)信息、PDSCH聚合因子(pdsch-AggregationFactor)信息等。此外,SPS配置的信息还可以包括其他信息,详见以下关于本申请实施例的描述。
Figure PCTCN2020135920-appb-000003
Figure PCTCN2020135920-appb-000004
表1
图2是本申请实施例提供的MBS业务的半静态调度方法的流程示意图,如图2所示,所述MBS业务的半静态调度方法包括以下步骤:
步骤201:网络设备向终端设备发送第一配置信息,终端设备接收网络设备发送的第一配置信息,所述第一配置信息用于确定N个半静态调度SPS配置,N为正整数,所述N个SPS配置中的全部或部分用于传输MBS业务。
本申请实施例中,所述网络设备可以是基站,如gNB。
(一)MBS传输的SPS配置
本申请实施例中,MBS传输的SPS配置可以通过第一配置信息来实现。
在一可选方式中,所述第一配置信息携带在RRC信令中。
在一可选方式中,所述第一配置信息携带在BWP配置中或者服务小区配置中。这里,BWP配置例如是BWP-DownlinkDedicated配置,服务小区配置例如是ServingCellConfig。
需要说明的是,如果第一配置信息携带在BWP配置中,则代表网络设备是以BWP为粒度(per BWP)对第一配置信息进行配置。如果第一配置信息携带在服务小区配置中,则代表网络设备是以小区为粒度(per cell)对第一配置信息进行配置。
本申请实施例中,所述第一配置信息用于确定N个SPS配置,N为正整数,所述N个SPS配置中的全部或部分用于传输MBS业务。这里,所述第一配置信息的实现可以有如下方式:
方式一:所述第一配置信息包括第一SPS配置列表,所述第一SPS配置列表中包括N个SPS配置,所述第一SPS配置列表为用于传输MBS业务的专用SPS配置列表。
进一步,可选地,所述N个SPS配置中的每个SPS配置包含第二指示信息,所述第二指示信息用于指示所述SPS配置关联的MBS标识信息。
这里,由于所述第一SPS配置列表为用于传输MBS业务的专用SPS配置列表,因而所述第一SPS配置列表中的全部SPS配置均用于传输MBS业务。
方式二:所述第一配置信息包括第一SPS配置列表,所述第一SPS配置列表中包括N个SPS配置,所述N个SPS配置中的每个SPS配置包含第一指示信息,所述第一指示信息用于指示所述SPS配置是否用于传输MBS业务和/或所述SPS配置关联的MBS标识信息。
进一步,可选地,所述N个SPS配置中的每个SPS配置包含第二指示信息,所述第二指示信息用于指示所述SPS配置关联的MBS标识信息。
在一个示例中,网络设备通过RRC信令配置用于传输MBS业务的SPS配置信息(即所述第一配置信息),其中,SPS配置信息的实现可以通过上述方式一或者方式二。
在一个示例中,对应于上述方式一,网络设备可以在BWP-DownlinkDedicated配置或者ServingCellConfig配置中配置用于传输MBS业务的专用SPS配置列表(即所述第一SPS配置列表),所述专用SPS配置列表中包含N个SPS配置,N为正整数。可选地,所述N个SPS配置关联一个MBS标识信息,或者,所述N个SPS配置中的每个SPS配置均关联一个MBS标识信息(可以通过在SPS配置中添加第二指示信息来实现)。MBS标识信息可以标识需要接收的MBS业务,MBS标识信息包括以下至少之一:TMGI、G-RNTI、SPS G-RNTI。
在一个示例中,对应于上述方式二,BWP-DownlinkDedicated配置中配置一个SPS配置列表(即所述第一SPS配置列表),所述SPS配置列表中包含N个SPS配置,N为正整数。可选地,所述SPS配置列表中的每个SPS配置中包含一个指示信息(即所述第一指示信息),该指示信息 用于指示该SPS配置是否用于传输MBS业务(换句话说,该指示信息用于指示该SPS配置是否用于MBS接收目的)。可选地,所述N个SPS配置中的每个SPS配置均关联一个MBS标识信息(可以通过在SPS配置中添加第二指示信息来实现)。MBS标识信息可以标识需要接收的MBS业务,MBS标识信息包括以下至少之一:TMGI、G-RNTI、SPS G-RNTI。
需要说明的是,由于SPS配置用于MBS业务传输,因此可以将SPS配置称为“MBS SPS配置”。
(二)激活去激活SPS配置
本申请实施例中,通过DCI激活或者去激活用于传输MBS业务的SPS配置,以下将该DCI称为第一DCI,本申请实施例对DCI的名称不做限制。
本申请实施例中,所述网络设备向所述终端设备发送第一DCI,所述终端设备接收所述网络设备发送的第一DCI,所述第一DCI用于激活所述N个SPS配置中的至少一个SPS配置。这里,在MBS业务传输的场景中,被激活的SPS配置是用于MBS业务传输的。
需要说明的是,第一DCI还可以用于去激活所述N个SPS配置中的至少一个SPS配置。在MBS业务传输的场景中,被去激活的SPS配置不能再继续用于MBS业务传输。
本申请实施例中,所述第一DCI用于激活至少一个SPS配置,为此,所述第一DCI中,或者MAC CE中,或者RRC信令中需要携带一些信息来指示至少一个SPS配置。在一可选方式中,所述第一DCI或者MAC CE中或者RRC信令携带第一SPS标识列表,所述第一SPS标识列表用于确定需要激活的至少一个SPS配置。在另一可选方式中,所述第一DCI或者MAC CE中或者RRC信令携带第一MBS标识,所述第一MBS标识用于确定需要激活的至少一个SPS配置。
本申请实施例中,所述第一DCI的加扰方式有如下两种:
第一种加扰方式:所述第一DCI通过RRC信令配置的第一配置调度无线网络临时标识(Configured Scheduling Radio Network Temporary Identifier,CS-RNTI)加扰。这里,第一CS-RNTI可以理解为现有的CS-RNTI。
可选地,所述第一DCI携带第三指示信息,所述第三指示信息用于指示以下至少之一:
激活的SPS配置是否用于传输MBS业务;
激活的SPS配置关联的MBS标识信息。
第二种加扰方式:所述第一DCI通过RRC信令配置的第二CS-RNTI加扰,所述第二CS-RNTI为MBS SPS使用的CS-RNTI。这里,第二CS-RNTI可以理解为MBS SPS专用的CS-RNTI。
可选地,由于所述第二CS-RNTI为MBS SPS使用的CS-RNTI,因此所述第二CS-RNTI用于指示激活的SPS配置用于传输MBS业务,所述第二CS-RNTI关联一个MBS标识信息。
可选地,所述第一DCI携带第四指示信息,所述第四指示信息用于指示激活的SPS配置关联的MBS标识信息。
在一个示例中,使用RRC信令配置的CS-RNTI(即所述第一CS-RNTI)加扰DCI(即所述第一DCI),通过该DCI激活或者去激活至少一个SPS配置。这里,CS-RNTI可以是per cell group配置的或者per UE配置的。DCI携带SPS标识列表(即所述第一SPS标识列表)或者MBS标识(即所述第一MBS标识),通过SPS标识列表或者MBS标识来指示需要激活的目标SPS配置。可选地,DCI中携带指示信息(即所述第三指示信息),该指示信息用于指示该激活的SPS配置是否用于传输MBS业务(换句话说,该指示信息用于指示该激活的SPS配置是否用于MBS接收目的)。可选地,该指示信息还用于指示该激活的SPS配置关联的MBS标识信息,MBS标识信息可以标识需要接收的MBS业务,MBS标识信息包括以下至少之一:TMGI、G-RNTI、SPS G-RNTI。
在一个示例中,使用BWP-DownlinkDedicated配置中配置的专用SPS配置列表(即所述第一SPS配置列表)用于传输MBS业务,通过RRC信令配置的专用CS-RNTI(即所述第二CS-RNTI)加扰DCI(即所述第一DCI),通过该DCI激活或者去激活专用SPS配置列表中的至少一个SPS配置。这里,专用CS-RNTI是指MBS SPS使用的CS-RNTI,可以称为MBS CS-RNTI,MBS CS-RNTI关联一个MBS标识信息,例如TMGI,G-RNTI。DCI携带SPS标识列表(即所述第一SPS标识列表)或者MBS标识(即所述第一MBS标识),通过SPS标识列表或者MBS标识来指示需要激活的目标SPS配置。可选地,DCI中携带指示信息(即所述第四指示信息),该指示信息用于指示该激活SPS配置关联的MBS标识信息,MBS标识信息可以标识需要接收的MBS业务,MBS标识信息包括以下至少之一:TMGI、G-RNTI、SPS G-RNTI。
(三)MBS业务的PUCCH反馈资源配置
本申请实施例中,所述网络设备向所述终端设备发送第二配置信息,所述终端设备接收所述网络设备发送的第二配置信息,所述第二配置信息用于确定第一PUCCH资源池的配置,所述第一PUCCH资源池中的PUCCH资源用于传输MBS业务的反馈信息;和/或,所述网络设备向所述终端设备发送第三配置信息,所述终端设备接收所述网络设备发送的第三配置信息,所述第三配置信息用于确定所述终端设备的PUCCH资源,所述PUCCH资源用于所述终端设备传输的MBS业务的反馈信息。
在一可选方式中,所述PUCCH资源关联一个或者多个SPS配置。
在一可选方式中,所述PUCCH资源关联一个MBS标识信息。
上述方案中,可选地,所述第二配置信息和所述第三配置信息可以通过RRC信令配置。
在一个示例中,网络设备通过RRC信令配置用于MBS业务反馈的PUCCH资源池,和/或通过RRC专用信令配置每个终端设备的MBS业务反馈的PUCCH资源。这里,所述PUCCH资源关联一个或者多个SPS配置,或者所述PUCCH资源关联一个MBS标识信息,例如TMGI,G-RNTI。
(四)MBS业务的跳频传输和/或重复传输
所述第一DCI可以激活一个SPS配置或者多个SPS配置,以下分别针对激活一个SPS配置的情况和激活多个SPS配置的情况进行说明。
A)所述第一DCI用于激活一个SPS配置,所述一个SPS配置用于传输第一MBS业务。这里,第一MBS业务也可以称为SPS MBS业务,即所述第一MBS业务是采用半静态调度方式传输的MBS业务。
在一可选方式中,所述一个SPS配置关联所述第一MBS业务的MBS标识信息。
在一可选方式中,所述第一DCI包括第一资源分配信息,所述第一资源分配信息用于确定一个SPS配置对应的一个或多个PDSCH资源分配。
在一可选方式中,所述一个SPS配置关联第五指示信息,所述第五指示信息用于指示以下至少之一:
所述第一MBS业务采用的跳频方式;
所述第一MBS业务采用的跳频图样;
所述第一MBS业务采用的重复传输方式;
所述第一MBS业务中的一个业务数据的传输次数;
所述一个SPS配置关联的PDSCH资源分配的个数;
所述一个SPS配置关联的重复传输的个数。
上述方案中,第一MBS业务中的一个业务数据的传输次数,可以通过PDSCH聚合因子来确定,即上述表1中的pdsch-AggregationFactor。PDSCH聚合因子也可以称为一个业务数据的重复因子,通过该因子可以确定一个业务数据的传输次数。
在一个示例中,对于有跳频传输且没有重复传输的SPS MBS业务来说,所述第五指示信息用于指示以下至少之一:第一MBS业务采用的跳频方式、第一MBS业务采用的跳频图样、一个SPS配置关联的PDSCH资源分配的个数。
在一个示例中,对于跳频重复传输的SPS MBS业务来说,所述第五指示信息用于指示以下至少之一:第一MBS业务采用的跳频方式、第一MBS业务采用的跳频图样、第一MBS业务采用的重复传输方式、一个SPS配置关联的PDSCH资源分配的个数、一个SPS配置关联的重复传输的个数、第一MBS业务中的一个业务数据的传输次数。
在一个示例中,对于没有跳频重复传输但跳频传输不同业务数据的SPS MBS业务来说,所述第五指示信息用于指示以下至少之一:第一MBS业务采用的跳频方式、第一MBS业务采用的跳频图样、一个SPS配置关联的PDSCH资源分配的个数、第一MBS业务中的一个业务数据的传输次数。
B)所述第一DCI用于激活多个SPS配置,所述多个SPS配置用于传输第一MBS业务。这里,第一MBS业务也可以称为SPS MBS业务,即所述第一MBS业务是采用半静态调度方式传输的MBS业务。
在一可选方式中,所述多个SPS配置关联所述第一MBS业务的MBS标识信息。
在一可选方式中,所述多个SPS配置关联同一HARQ反馈码本。
在一可选方式中,所述多个SPS配置与所述HARQ反馈码本之间的关联关系通过RRC信令配置,所述RRC信令还配置所述HARQ反馈码本对应的PUCCH资源。
在一可选方式中,所述第一DCI包括第二资源分配信息,所述第二资源分配信息用于确定多个SPS配置中每个SPS配置对应的一个或多个PDSCH资源分配。
在一可选方式中,所述多个SPS配置或者所述多个SPS配置中每个SPS配置关联第六指示信息,所述第六指示信息用于指示以下至少之一:
所述第一MBS业务采用的跳频方式;
所述第一MBS业务采用的跳频图样;
所述SPS配置关联的PDSCH资源分配的个数;
所述SPS配置关联的重复传输的个数;
所述SPS配置关联的传输是针对一个业务数据的初传还是第M次重传,M为正整数。
本申请实施例中,所述第一DCI包括MBS传输的跳频方式和/或MBS传输的跳频图样;其中,所述MBS传输的跳频方式包括同一业务数据重传跳频传输的方式,和不同业务数据跳频传输的方式;所述MBS传输的跳频图样是按照SPS配置索引列表表示的跳频图样,或者所述第一DCI中每个无线资源分配关联的索引按照从小到大或者从大到小顺序跳频。需要说明的是,本申请实施例上述方案中描述的跳频方式和跳频图样均可以参照这里的描述进行理解。
在一个示例中,对于有跳频传输且没有重复传输的SPS MBS业务来说,所述第六指示信息用于指示以下至少之一:第一MBS业务采用的跳频方式、第一MBS业务采用的跳频图样。
在一个示例中,对于跳频重复传输的SPS MBS业务来说,所述第六指示信息用于指示以下至少之一:第一MBS业务采用的跳频方式、第一MBS业务采用的跳频图样、所述SPS配置关联的传输是针对一个业务数据的初传还是第M次重传,M为正整数。
在一个示例中,对于没有跳频重复传输但跳频传输不同业务数据的SPS MBS业务来说,所述第六指示信息用于指示以下至少之一:第一MBS业务采用的跳频方式、第一MBS业务采用的跳频图样、一个SPS配置关联的PDSCH资源分配的个数、第一MBS业务中的一个业务数据的传输次数。
以下结合具体应用实例对上述技术方案进行举例说明。
实例一
网络设备通过RRC信令配置用于MBS业务传输的SPS配置。
1)网络设备配置一个SPS配置用于传输一个MBS业务。所述SPS配置关联一个MBS业务的MBS标识信息,例如TMGI或者G-RNTI。其中,该SPS配置的信息除了包含上述表1中给出的信息之外,还可以额外包含第五指示信息,可选的,所述第五指示信息用于指示以下至少之一:MBS业务采用的跳频方式,MBS业务采用的跳频图样,一个SPS配置关联的PDSCH资源分配的个数。
2)网络设备配置多个SPS配置(以下称为一组SPS配置)用于传输一个MBS业务。所述一组SPS配置关联一个MBS业务的MBS标识信息,例如TMGI或者G-RNTI。其中,一组SPS配置关联第六指示信息,或者一组SPS配置中的每个SPS配置均关联第六指示信息。可选地,一组SPS配置中的每个SPS配置的信息除了包含上述表1中给出的信息之外,还可以额外包含第六指示信息,可选的,所述第六指示信息用于指示以下至少之一:MBS业务采用的跳频方式,MBS业务采用的跳频图案。
这里,一个MBS业务对应的全部SPS配置对应一个HARQ反馈码本ID或者HARQ反馈码本,也就是说这一组SPS配置对应一个HARQ反馈码本,网络设备可以通过RRC信令配置这一组SPS配置和HARQ反馈码本(或HARQ反馈码本ID)之间的关联关系,同时该RRC信令还可以配置反馈该HARQ反馈码本对应的PHCCH资源。
本申请实施例中,终端设备接收用于激活SPS配置的DCI,在一可选方式中,DCI中至少包含了一个SPS对应的多个时频资源分配。在另一可选方式中,DCI中至少包含了多个SPS配置对应的时频资源分配,可选地,DCI中还包含了MBS业务采用的跳频方式和/或MBS业务采用的跳频图案(即MBS传输的跳频方式和/或MBS传输的跳频图样),这里,跳频方式和跳频图案的描述可以参照上述相关描述理解。终端设备按照RRC信令中配置的MBS业务对应的SPS配置以及激活该SPS配置对应的时频资源分配进行MBS业务的接收。这里,时频资源分配也即是PDSCH资源分配,即PDSCH的时频资源分配。
参照图3,用于传输MBS业务的SPS配置包括SPS配置1和SPS配置2,且这两个SPS配置被DCI激活。对于有跳频传输且没有重复传输的MBS业务来说,MBS业务的业务数据在频内和频间都是没有重复传输的,但是MBS业务的业务数据在频间是有跳频的,例如MBS业务的业务数据是传输顺序是如图3所示的:TB1、TB2、TB3、TB4,......,其中,TB1是在SPS配置1关联的PDSCH资源上进行传输,TB2是在SPS配置2关联的PDSCH资源上进行传输,如此跳频传输。
需要说明的是,一个TB是指MBS业务的一个业务数据,也可以称为MBS业务数据。
实例二
网络设备通过RRC信令配置用于MBS传输的SPS配置。
1)网络设备配置一个SPS配置用于传输一个MBS业务。所述SPS配置关联一个MBS业务的MBS标识信息,例如TMGI或者G-RNTI。其中,该SPS配置的信息除了包含上述表1中给出的信息之外,还可以额外包含第五指示信息,可选的,所述第五指示信息用于指示以下至少之一:MBS业务采用的重复传输方式,一个SPS配置关联的PDSCH资源分配的个数,一个SPS配置关联的重复传输个数,一个业务数据的传输次数。
2)网络设备配置多个SPS配置(以下称为一组SPS配置)用于传输一个MBS业务。所述一组SPS配置关联一个MBS业务的MBS标识信息,例如TMGI或者G-RNTI。其中,一组SPS配置关联第六指示信息,或者一组SPS配置中的每个SPS配置均关联第六指示信息。可选地,网络设备通过RRC信令配置所述一组SPS配置中的每个SPS配置关联一个传输指示信息(即所述第六指示信息),该传输指示信息用于指示该SPS配置关联的传输是针对一个业务数据的初传还是第M次重传(也可以说是针对一个业务数据的第T次传输)。
这里,一个MBS业务对应的全部SPS配置对应一个HARQ反馈码本ID或者HARQ反馈码本,也就是说这一组SPS配置对应一个HARQ反馈码本,网络设备可以通过RRC信令配置这一组SPS配置和HARQ反馈码本(或HARQ反馈码本ID)之间的关联关系,同时该RRC信令还可以配置反馈该HARQ反馈码本对应的PHCCH资源。
针对多个SPS反馈一个HARQ-ACK/NACK的PUCCH资源配置。
本申请实施例中,终端设备接收用于激活SPS配置的DCI,在一可选方式中,DCI中至少包含了一个SPS对应的多个时频资源分配。在另一可选方式中,DCI中至少包含了多个SPS配置对应的时频资源分配。可选地,DCI中还包含一传输指示信息(即所述第六指示信息),该传输指示信息用于指示该SPS配置关联的传输是针对一个业务数据的初传还是第M次重传(也可以说是针对一个业务数据的第T次传输)。可选地,DCI中还包含一反馈指示信息,该反馈指示信息用于指示MBS业务是否需要进行HARQ反馈。终端设备按照RRC信令中配置的MBS业务对应的SPS配置以及激活该SPS配置对应的时频资源分配进行MBS业务的接收。这里,时频资源分配也即是PDSCH资源分配,即PDSCH的时频资源分配。
参照图4,用于传输MBS业务的SPS配置包括SPS配置1和SPS配置2,且这两个SPS配置被DCI激活。对于跳频重复传输的SPS MBS业务来说,MBS业务的业务数据在频内没有重复传输,但是在频间是有重复传输的,例如MBS业务的业务数据是传输顺序是如图4所示的:TB1、TB1’、TB2、TB2’,......,其中,TB1是在SPS配置1关联的PDSCH资源上进行传输,TB1’是在SPS配置2关联的PDSCH资源上进行传输,TB1’是TB1的第一次重传,如此跳频重复传输。
需要说明的是,一个TB是指MBS业务的一个业务数据,也可以称为MBS业务数据。
实例三
网络设备通过RRC信令配置用于MBS业务传输的SPS配置。
1)网络设备配置一个SPS配置用于传输一个MBS业务。所述SPS配置关联一个MBS业务的MBS标识信息,例如TMGI或者G-RNTI。其中,该SPS配置的信息除了包含上述表1中给出的信息之外,还可以额外包含第五指示信息,可选的,所述第五指示信息用于指示以下至少之一:MBS业务采用的跳频方式,MBS业务采用的跳频图样,一个SPS配置关联的PDSCH资源分配的个数,SPS配置关联的重复传输的个数。
2)网络设备配置多个SPS配置(以下称为一组SPS配置)用于传输一个MBS业务。所述一组SPS配置关联一个MBS业务的MBS标识信息,例如TMGI或者G-RNTI。其中,一组SPS配置关联第六指示信息,或者一组SPS配置中的每个SPS配置均关联第六指示信息。可选地,一组SPS配置中的每个SPS配置的信息除了包含上述表1中给出的信息之外,还可以额外包含第六指示信息,可选的,所述第六指示信息用于指示以下至少之一:MBS业务采用的跳频方式,MBS业务采用的跳频图案,SPS配置关联的重复传输的个数。
这里,一个MBS业务对应的全部SPS配置对应一个HARQ反馈码本ID或者HARQ反馈码本,也就是说这一组SPS配置对应一个HARQ反馈码本,网络设备可以通过RRC信令配置这一组SPS配置和HARQ反馈码本(或HARQ反馈码本ID)之间的关联关系,同时该RRC信令还可以配置反馈该HARQ反馈码本对应的PHCCH资源。
本申请实施例中,终端设备接收用于激活SPS配置的DCI,在一可选方式中,DCI中至少包含 了一个SPS对应的多个时频资源分配。在另一可选方式中,DCI中至少包含了多个SPS配置对应的时频资源分配,可选地,DCI中还包含了MBS业务采用的跳频方式和/或MBS业务采用的跳频图案(即MBS传输的跳频方式和/或MBS传输的跳频图样),这里,跳频方式和跳频图案的描述可以参照上述相关描述理解。终端设备按照RRC信令中配置的MBS业务对应的SPS配置以及激活该SPS配置对应的时频资源分配进行MBS业务的接收。这里,时频资源分配也即是PDSCH资源分配,即PDSCH的时频资源分配。
参照图5,用于传输MBS业务的SPS配置包括SPS配置1和SPS配置2,且这两个SPS配置被DCI激活。对于没有跳频重复传输但跳频传输不同业务数据的SPS MBS业务来说,MBS业务的业务数据在频内有重复传输,但在频间是没有重复传输的,例如MBS业务的业务数据是传输顺序是如图5所示:TB1、TB1’、TB2、TB2’,......,其中,SPS配置1关联的重复传输的个数为2,TB1和TB1’是在SPS配置1关联的PDSCH资源上进行传输,SPS配置2关联的重复传输的个数为2,TB2和TB2’是在SPS配置2关联的PDSCH资源上进行传输,如此跳频重复传输。
需要说明的是,一个TB是指MBS业务的一个业务数据,也可以称为MBS业务数据。
(五)MBS业务的PDSCH的加扰方式
本申请实施例中,所述第一DCI调度的PDSCH的加扰方式通过RRC信令配置或者通过所述第一DCI指示。
在一可选方式中,所述第一DCI调度的PDSCH使用CS-RNTI加扰。在另一可选方式中,所述第一DCI调度的PDSCH使用G-RNTI加扰。
在一个示例中,采用CS-RNTI对PDSCH进行加扰,这里,PDSCH是指用于传输SPS MBS业务的PDSCH,SPS MBS业务是指采用半静态调度方式传输的MBS业务(即基于SPS配置传输的MBS业务)。可以通过RRC信令配置SPS MBS业务关联的CS-RNTI。
在一个示例中,采用G-RNTI对PDSCH进行加扰,这里,PDSCH是指用于传输SPS MBS业务的PDSCH,SPS MBS业务是指采用半静态调度方式传输的MBS业务(即基于SPS配置传输的MBS业务)。可以通过RRC信令配置SPS MBS业务或者CS-RNTI关联的G-RNTI。
在一个示例中,通过用于激活SPS配置的DCI(即所述第一DCI)或者RRC信令指示是采用CS-RNTI对PDSCH进行加扰还是采用G-RNTI对PDSCH进行加扰,这里,PDSCH是指用于传输SPS MBS业务的PDSCH,SPS MBS业务是指采用半静态调度方式传输的MBS业务(即基于SPS配置传输的MBS业务)。
图6是本申请实施例提供的MBS业务的半静态调度装置的结构组成示意图一,应用于终端设备,如图6所示,所述MBS业务的半静态调度装置包括:
接收单元601,用于接收网络设备发送的第一配置信息,所述第一配置信息用于确定N个SPS配置,N为正整数,所述N个SPS配置中的全部或部分用于传输MBS业务。
在一可选方式中,所述第一配置信息包括第一SPS配置列表,所述第一SPS配置列表中包括N个SPS配置,所述第一SPS配置列表为用于传输MBS业务的专用SPS配置列表。
在一可选方式中,所述第一配置信息包括第一SPS配置列表,所述第一SPS配置列表中包括N个SPS配置,所述N个SPS配置中的每个SPS配置包含第一指示信息,所述第一指示信息用于指示所述SPS配置是否用于传输MBS业务和/或所述SPS配置关联的MBS标识信息。
在一可选方式中,所述N个SPS配置中的每个SPS配置包含第二指示信息,所述第二指示信息用于指示所述SPS配置关联的MBS标识信息。
在一可选方式中,述第一配置信息携带在BWP配置中或者服务小区配置中。
在一可选方式中,所述第一配置信息携带在RRC信令中。
在一可选方式中,所述接收单元601,还用于接收所述网络设备发送的第一DCI,所述第一DCI用于激活所述N个SPS配置中的至少一个SPS配置。
在一可选方式中,需要激活的所述至少一个SPS配置基于第一SPS标识列表确定或者基于至少第一MBS标识确定;
其中,所述第一SPS标识列表或者所述至少第一MBS标识携带在所述第一DCI中,或者MAC CE中,或者RRC信令中。
在一可选方式中,所述第一DCI通过RRC信令配置的第一CS-RNTI加扰。
在一可选方式中,所述第一DCI携带第三指示信息,所述第三指示信息用于指示以下至少之一:
激活的SPS配置是否用于传输MBS业务;
激活的SPS配置关联的MBS标识信息。
在一可选方式中,所述第一DCI通过RRC信令配置的第二CS-RNTI加扰,所述第二CS-RNTI为MBS SPS使用的CS-RNTI。
在一可选方式中,所述第二CS-RNTI用于指示激活的SPS配置用于传输MBS业务,所述第二CS-RNTI关联一个MBS标识信息。
在一可选方式中,所述第一DCI携带第四指示信息,所述第四指示信息用于指示激活的SPS配置关联的MBS标识信息。
在一可选方式中,所述接收单元601,还用于接收所述网络设备发送的第二配置信息,所述第二配置信息用于确定第一PUCCH资源池的配置,所述第一PUCCH资源池中的PUCCH资源用于传输MBS业务的反馈信息;和/或,接收所述网络设备发送的第三配置信息,所述第三配置信息用于确定所述终端设备的PUCCH资源,所述PUCCH资源用于所述终端设备传输的MBS业务的反馈信息。
在一可选方式中,所述PUCCH资源关联一个或者多个SPS配置。
在一可选方式中,所述PUCCH资源关联一个MBS标识信息。
在一可选方式中,所述第一DCI用于激活一个SPS配置,所述一个SPS配置用于传输第一MBS业务。
在一可选方式中,所述一个SPS配置关联所述第一MBS业务的MBS标识信息。
在一可选方式中,所述一个SPS配置关联第五指示信息,所述第五指示信息用于指示以下至少之一:
所述第一MBS业务采用的跳频方式;
所述第一MBS业务采用的跳频图样;
所述第一MBS业务采用的重复传输方式;
所述第一MBS业务中的一个业务数据的传输次数;
所述一个SPS配置关联的PDSCH资源分配的个数;
所述一个SPS配置关联的重复传输的个数。
在一可选方式中,所述第一DCI用于激活多个SPS配置,所述多个SPS配置用于传输第一MBS业务。
在一可选方式中,所述多个SPS配置关联所述第一MBS业务的MBS标识信息。
在一可选方式中,所述多个SPS配置关联同一HARQ反馈码本。
在一可选方式中,所述多个SPS配置与所述HARQ反馈码本之间的关联关系通过RRC信令配置,所述RRC信令还配置所述HARQ反馈码本对应的PUCCH资源。
在一可选方式中,所述多个SPS配置或者所述多个SPS配置中每个SPS配置关联第六指示信息,所述第六指示信息用于指示以下至少之一:
所述第一MBS业务采用的跳频方式;
所述第一MBS业务采用的跳频图样;
所述SPS配置关联的PDSCH资源分配的个数;
所述SPS配置关联的重复传输的个数;
所述SPS配置关联的传输是针对一个业务数据的初传还是第M次重传,M为正整数。
在一可选方式中,所述第一DCI包括第一资源分配信息,所述第一资源分配信息用于确定一个SPS配置对应的一个或多个PDSCH资源分配。
在一可选方式中,所述第一DCI包括第二资源分配信息,所述第二资源分配信息用于确定多个SPS配置中每个SPS配置对应的一个或多个PDSCH资源分配。
在一可选方式中,所述第一DCI包括MBS传输的跳频方式和/或MBS传输的跳频图样;
所述MBS传输的跳频方式包括同一业务数据重传跳频传输的方式,和不同业务数据跳频传输的方式;
所述MBS传输的跳频图样是按照SPS配置索引列表表示的跳频图样,或者所述第一DCI中每个无线资源分配关联的索引按照从小到大或者从大到小顺序跳频。
在一可选方式中,所述第一DCI调度的PDSCH的加扰方式通过RRC信令配置或者通过所述第一DCI指示。
在一可选方式中,所述第一DCI调度的PDSCH使用CS-RNTI加扰;或者,
所述第一DCI调度的PDSCH使用G-RNTI加扰。
在一可选方式中,MBS标识信息包括以下至少之一:TMGI、G-RNTI、SPS G-RNTI。
本领域技术人员应当理解,本申请实施例的上述MBS业务的半静态调度装置的相关描述可以参照本申请实施例的MBS业务的半静态调度方法的相关描述进行理解。
图7是本申请实施例提供的MBS业务的半静态调度装置的结构组成示意图二,应用于网络设备,如图7所示,所述MBS业务的半静态调度装置包括:
发送单元701,用于向终端设备发送第一配置信息,所述第一配置信息用于确定N个SPS配置,N为正整数,所述N个SPS配置中的全部或部分用于传输MBS业务。
在一可选方式中,所述第一配置信息包括第一SPS配置列表,所述第一SPS配置列表中包括N个SPS配置,所述第一SPS配置列表为用于传输MBS业务的专用SPS配置列表。
在一可选方式中,所述第一配置信息包括第一SPS配置列表,所述第一SPS配置列表中包括N个SPS配置,所述N个SPS配置中的每个SPS配置包含第一指示信息,所述第一指示信息用于指示所述SPS配置是否用于传输MBS业务和/或所述SPS配置关联的MBS标识信息。
在一可选方式中,所述N个SPS配置中的每个SPS配置包含第二指示信息,所述第二指示信息用于指示所述SPS配置关联的MBS标识信息。
在一可选方式中,所述第一配置信息携带在BWP配置中或者服务小区配置中。
在一可选方式中,所述第一配置信息携带在RRC信令中。
在一可选方式中,所述发送单元,还用于向所述终端设备发送第一DCI,所述第一DCI用于激活所述N个SPS配置中的至少一个SPS配置。
在一可选方式中,需要激活的所述至少一个SPS配置基于第一SPS标识列表确定或者基于至少第一MBS标识确定;
其中,所述第一SPS标识列表或者所述至少第一MBS标识携带在所述第一DCI中,或者MAC CE中,或者RRC信令中。
在一可选方式中,所述第一DCI通过RRC信令配置的第一CS-RNTI加扰。
在一可选方式中,所述第一DCI携带第三指示信息,所述第三指示信息用于指示以下至少之一:
激活的SPS配置是否用于传输MBS业务;
激活的SPS配置关联的MBS标识信息。
在一可选方式中,所述第一DCI通过RRC信令配置的第二CS-RNTI加扰,所述第二CS-RNTI为MBS SPS使用的CS-RNTI。
在一可选方式中,所述第二CS-RNTI用于指示激活的SPS配置用于传输MBS业务,所述第二CS-RNTI关联一个MBS标识信息。
在一可选方式中,所述第一DCI携带第四指示信息,所述第四指示信息用于指示激活的SPS配置关联的MBS标识信息。
在一可选方式中,所述发送单元701,还用于向所述终端设备发送第二配置信息,所述第二配置信息用于确定第一PUCCH资源池的配置,所述第一PUCCH资源池中的PUCCH资源用于传输MBS业务的反馈信息;和/或,向所述终端设备发送第三配置信息,所述第三配置信息用于确定所述终端设备的PUCCH资源,所述PUCCH资源用于所述终端设备传输的MBS业务的反馈信息。
在一可选方式中,所述PUCCH资源关联一个或者多个SPS配置。
在一可选方式中,所述PUCCH资源关联一个MBS标识信息。
在一可选方式中,所述第一DCI用于激活一个SPS配置,所述一个SPS配置用于传输第一MBS业务。
在一可选方式中,所述一个SPS配置关联所述第一MBS业务的MBS标识信息。
在一可选方式中,所述一个SPS配置关联第五指示信息,所述第五指示信息用于指示以下至少之一:
所述第一MBS业务采用的跳频方式;
所述第一MBS业务采用的跳频图样;
所述第一MBS业务采用的重复传输方式;
所述第一MBS业务中的一个业务数据的传输次数;
所述一个SPS配置关联的PDSCH资源分配的个数;
所述一个SPS配置关联的重复传输的个数。
在一可选方式中,所述第一DCI用于激活多个SPS配置,所述多个SPS配置用于传输第一MBS业务。
在一可选方式中,所述多个SPS配置关联所述第一MBS业务的MBS标识信息。
在一可选方式中,所述多个SPS配置关联同一HARQ反馈码本。
在一可选方式中,所述多个SPS配置与所述HARQ反馈码本之间的关联关系通过RRC信令配置,所述RRC信令还配置所述HARQ反馈码本对应的PUCCH资源。
在一可选方式中,所述多个SPS配置或者所述多个SPS配置中每个SPS配置关联第六指示信息,所述第六指示信息用于指示以下至少之一:
所述第一MBS业务采用的跳频方式;
所述第一MBS业务采用的跳频图样;
所述SPS配置关联的PDSCH资源分配的个数;
所述SPS配置关联的重复传输的个数;
所述SPS配置关联的传输是针对一个业务数据的初传还是第M次重传,M为正整数。
在一可选方式中,所述第一DCI包括第一资源分配信息,所述第一资源分配信息用于确定一个SPS配置对应的一个或多个PDSCH资源分配。
在一可选方式中,所述第一DCI包括第二资源分配信息,所述第二资源分配信息用于确定多个SPS配置中每个SPS配置对应的一个或多个PDSCH资源分配。
在一可选方式中,所述第一DCI包括MBS传输的跳频方式和/或MBS传输的跳频图样;
所述MBS传输的跳频方式包括同一业务数据重传跳频传输的方式,和不同业务数据跳频传输的方式;
所述MBS传输的跳频图样是按照SPS配置索引列表表示的跳频图样,或者所述第一DCI中每个无线资源分配关联的索引按照从小到大或者从大到小顺序跳频。
在一可选方式中,所述第一DCI调度的PDSCH的加扰方式通过RRC信令配置或者通过所述第一DCI指示。
在一可选方式中,所述第一DCI调度的PDSCH使用CS-RNTI加扰;或者,
所述第一DCI调度的PDSCH使用G-RNTI加扰。
在一可选方式中,MBS标识信息包括以下至少之一:TMGI、G-RNTI、SPS G-RNTI。
本领域技术人员应当理解,本申请实施例的上述MBS业务的半静态调度装置的相关描述可以参照本申请实施例的MBS业务的半静态调度方法的相关描述进行理解。
图8是本申请实施例提供的一种通信设备800示意性结构图。该通信设备可以是终端设备,也可以是网络设备,图8所示的通信设备800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图8所示,通信设备800还可以包括存储器820。其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
可选地,如图8所示,通信设备800还可以包括收发器830,处理器810可以控制该收发器830与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器830可以包括发射机和接收机。收发器830还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备800具体可为本申请实施例的网络设备,并且该通信设备800可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备800具体可为本申请实施例的移动终端/终端设备,并且该通信设备800可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图9是本申请实施例的芯片的示意性结构图。图9所示的芯片900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,芯片900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
可选地,该芯片900还可以包括输入接口930。其中,处理器910可以控制该输入接口930与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片900还可以包括输出接口940。其中,处理器910可以控制该输出接口940与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图10是本申请实施例提供的一种通信系统1000的示意性框图。如图10所示,该通信系统1000包括终端设备1010和网络设备1020。
其中,该终端设备1010可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1020可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁, 在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (130)

  1. 一种多播组播服务MBS业务的半静态调度方法,所述方法包括:
    终端设备接收网络设备发送的第一配置信息,所述第一配置信息用于确定N个半静态调度SPS配置,N为正整数,所述N个SPS配置中的全部或部分用于传输MBS业务。
  2. 根据权利要求1所述的方法,其中,所述第一配置信息包括第一SPS配置列表,所述第一SPS配置列表中包括N个SPS配置,所述第一SPS配置列表为用于传输MBS业务的专用SPS配置列表。
  3. 根据权利要求1所述的方法,其中,所述第一配置信息包括第一SPS配置列表,所述第一SPS配置列表中包括N个SPS配置,所述N个SPS配置中的每个SPS配置包含第一指示信息,所述第一指示信息用于指示所述SPS配置是否用于传输MBS业务和/或所述SPS配置关联的MBS标识信息。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述N个SPS配置中的每个SPS配置包含第二指示信息,所述第二指示信息用于指示所述SPS配置关联的MBS标识信息。
  5. 根据权利要求1至4中任一项所述的方法,其中,所述第一配置信息携带在带宽部分BWP配置中或者服务小区配置中。
  6. 根据权利要求1至5中任一项所述的方法,其中,所述第一配置信息携带在无线资源控制RRC信令中。
  7. 根据权利要求1至6中任一项所述的方法,其中,所述方法还包括:
    所述终端设备接收所述网络设备发送的第一下行控制信息DCI,所述第一DCI用于激活所述N个SPS配置中的至少一个SPS配置。
  8. 根据权利要求7所述的方法,其中,需要激活的所述至少一个SPS配置基于第一SPS标识列表确定或者基于至少第一MBS标识确定;
    其中,所述第一SPS标识列表或者所述至少第一MBS标识携带在所述第一DCI中,或者MAC CE中,或者RRC信令中。
  9. 根据权利要求7或8所述的方法,其中,所述第一DCI通过RRC信令配置的第一CS-RNTI加扰。
  10. 根据权利要求9所述的方法,其中,所述第一DCI携带第三指示信息,所述第三指示信息用于指示以下至少之一:
    激活的SPS配置是否用于传输MBS业务;
    激活的SPS配置关联的MBS标识信息。
  11. 根据权利要求7或8所述的方法,其中,所述第一DCI通过RRC信令配置的第二CS-RNTI加扰,所述第二CS-RNTI为MBS SPS使用的CS-RNTI。
  12. 根据权利要求11所述的方法,其中,所述第二CS-RNTI用于指示激活的SPS配置用于传输MBS业务,所述第二CS-RNTI关联一个MBS标识信息。
  13. 根据权利要求11或12所述的方法,其中,所述第一DCI携带第四指示信息,所述第四指示信息用于指示激活的SPS配置关联的MBS标识信息。
  14. 根据权利要求1至13中任一项所述的方法,其中,所述方法还包括:
    所述终端设备接收所述网络设备发送的第二配置信息,所述第二配置信息用于确定第一PUCCH资源池的配置,所述第一PUCCH资源池中的PUCCH资源用于传输MBS业务的反馈信息;和/或,
    所述终端设备接收所述网络设备发送的第三配置信息,所述第三配置信息用于确定所述终端设备的PUCCH资源,所述PUCCH资源用于所述终端设备传输的MBS业务的反馈信息。
  15. 根据权利要求14所述的方法,其中,所述PUCCH资源关联一个或者多个SPS配置。
  16. 根据权利要求14或15所述的方法,其中,所述PUCCH资源关联一个MBS标识信息。
  17. 根据权利要求7至16中任一项所述的方法,其中,所述第一DCI用于激活一个SPS配置,所述一个SPS配置用于传输第一MBS业务。
  18. 根据权利要求17所述的方法,其中,所述一个SPS配置关联所述第一MBS业务的MBS标识信息。
  19. 根据权利要求17或18所述的方法,其中,所述一个SPS配置关联第五指示信息,所述第五指示信息用于指示以下至少之一:
    所述第一MBS业务采用的跳频方式;
    所述第一MBS业务采用的跳频图样;
    所述第一MBS业务采用的重复传输方式;
    所述第一MBS业务中的一个业务数据的传输次数;
    所述一个SPS配置关联的PDSCH资源分配的个数;
    所述一个SPS配置关联的重复传输的个数。
  20. 根据权利要求7至16中任一项所述的方法,其中,所述第一DCI用于激活多个SPS配置,所述多个SPS配置用于传输第一MBS业务。
  21. 根据权利要求20所述的方法,其中,所述多个SPS配置关联所述第一MBS业务的MBS标识信息。
  22. 根据权利要求20或21所述的方法,其中,所述多个SPS配置关联同一HARQ反馈码本。
  23. 根据权利要求22所述的方法,其中,所述多个SPS配置与所述HARQ反馈码本之间的关联关系通过RRC信令配置,所述RRC信令还配置所述HARQ反馈码本对应的PUCCH资源。
  24. 根据权利要求20至23中任一项所述的方法,其中,所述多个SPS配置或者所述多个SPS配置中每个SPS配置关联第六指示信息,所述第六指示信息用于指示以下至少之一:
    所述第一MBS业务采用的跳频方式;
    所述第一MBS业务采用的跳频图样;
    所述SPS配置关联的PDSCH资源分配的个数;
    所述SPS配置关联的重复传输的个数;
    所述SPS配置关联的传输是针对一个业务数据的初传还是第M次重传,M为正整数。
  25. 根据权利要求7至24中任一项所述的方法,其中,所述第一DCI包括第一资源分配信息,所述第一资源分配信息用于确定一个SPS配置对应的一个或多个PDSCH资源分配。
  26. 根据权利要求7至24中任一项所述的方法,其中,所述第一DCI包括第二资源分配信息,所述第二资源分配信息用于确定多个SPS配置中每个SPS配置对应的一个或多个PDSCH资源分配。
  27. 根据权利要求7至26中任一项所述的方法,其中,所述第一DCI包括MBS传输的跳频方式和/或MBS传输的跳频图样;
    所述MBS传输的跳频方式包括同一业务数据重传跳频传输的方式,和不同业务数据跳频传输的方式;
    所述MBS传输的跳频图样是按照SPS配置索引列表表示的跳频图样,或者所述第一DCI中每个无线资源分配关联的索引按照从小到大或者从大到小顺序跳频。
  28. 根据权利要求7至27中任一项所述的方法,其中,所述第一DCI调度的PDSCH的加扰方式通过RRC信令配置或者通过所述第一DCI指示。
  29. 根据权利要求28所述的方法,其中,
    所述第一DCI调度的PDSCH使用CS-RNTI加扰;或者,
    所述第一DCI调度的PDSCH使用G-RNTI加扰。
  30. 根据权利要求4、10、12、13、16、18、21中任一项所述的方法,其中,所述MBS标识信息包括以下至少之一:TMGI、G-RNTI、SPS G-RNTI。
  31. 一种MBS业务的半静态调度方法,所述方法包括:
    网络设备向终端设备发送第一配置信息,所述第一配置信息用于确定N个SPS配置,N为正整数,所述N个SPS配置中的全部或部分用于传输MBS业务。
  32. 根据权利要求31所述的方法,其中,所述第一配置信息包括第一SPS配置列表,所述第一SPS配置列表中包括N个SPS配置,所述第一SPS配置列表为用于传输MBS业务的专用SPS配置列表。
  33. 根据权利要求31所述的方法,其中,所述第一配置信息包括第一SPS配置列表,所述第一SPS配置列表中包括N个SPS配置,所述N个SPS配置中的每个SPS配置包含第一指示信息,所述第一指示信息用于指示所述SPS配置是否用于传输MBS业务和/或所述SPS配置关联的MBS标识信息。
  34. 根据权利要求31至33中任一项所述的方法,其中,所述N个SPS配置中的每个SPS配置包含第二指示信息,所述第二指示信息用于指示所述SPS配置关联的MBS标识信息。
  35. 根据权利要求31至34中任一项所述的方法,其中,所述第一配置信息携带在BWP配置中或者服务小区配置中。
  36. 根据权利要求31至35中任一项所述的方法,其中,所述第一配置信息携带在RRC信令中。
  37. 根据权利要求31至36中任一项所述的方法,其中,所述方法还包括:
    所述网络设备向所述终端设备发送第一DCI,所述第一DCI用于激活所述N个SPS配置中的至少一个SPS配置。
  38. 根据权利要求37所述的方法,其中,需要激活的所述至少一个SPS配置基于第一SPS标识列表确定或者基于至少第一MBS标识确定;
    其中,所述第一SPS标识列表或者所述至少第一MBS标识携带在所述第一DCI中,或者MAC CE中,或者RRC信令中。
  39. 根据权利要求37或38所述的方法,其中,所述第一DCI通过RRC信令配置的第一CS-RNTI加扰。
  40. 根据权利要求39所述的方法,其中,所述第一DCI携带第三指示信息,所述第三指示信息用于指示以下至少之一:
    激活的SPS配置是否用于传输MBS业务;
    激活的SPS配置关联的MBS标识信息。
  41. 根据权利要求37或38所述的方法,其中,所述第一DCI通过RRC信令配置的第二CS-RNTI加扰,所述第二CS-RNTI为MBS SPS使用的CS-RNTI。
  42. 根据权利要求41所述的方法,其中,所述第二CS-RNTI用于指示激活的SPS配置用于传输MBS业务,所述第二CS-RNTI关联一个MBS标识信息。
  43. 根据权利要求41或42所述的方法,其中,所述第一DCI携带第四指示信息,所述第四指示信息用于指示激活的SPS配置关联的MBS标识信息。
  44. 根据权利要求31至43中任一项所述的方法,其中,所述方法还包括:
    所述网络设备向所述终端设备发送第二配置信息,所述第二配置信息用于确定第一PUCCH资源池的配置,所述第一PUCCH资源池中的PUCCH资源用于传输MBS业务的反馈信息;和/或,
    所述网络设备向所述终端设备发送第三配置信息,所述第三配置信息用于确定所述终端设备的PUCCH资源,所述PUCCH资源用于所述终端设备传输的MBS业务的反馈信息。
  45. 根据权利要求44所述的方法,其中,所述PUCCH资源关联一个或者多个SPS配置。
  46. 根据权利要求44或45所述的方法,其中,所述PUCCH资源关联一个MBS标识信息。
  47. 根据权利要求37至46中任一项所述的方法,其中,所述第一DCI用于激活一个SPS配置,所述一个SPS配置用于传输第一MBS业务。
  48. 根据权利要求47所述的方法,其中,所述一个SPS配置关联所述第一MBS业务的MBS标识信息。
  49. 根据权利要求47或48所述的方法,其中,所述一个SPS配置关联第五指示信息,所述第五指示信息用于指示以下至少之一:
    所述第一MBS业务采用的跳频方式;
    所述第一MBS业务采用的跳频图样;
    所述第一MBS业务采用的重复传输方式;
    所述第一MBS业务中的一个业务数据的传输次数;
    所述一个SPS配置关联的PDSCH资源分配的个数;
    所述一个SPS配置关联的重复传输的个数。
  50. 根据权利要求37至46中任一项所述的方法,其中,所述第一DCI用于激活多个SPS配置,所述多个SPS配置用于传输第一MBS业务。
  51. 根据权利要求50所述的方法,其中,所述多个SPS配置关联所述第一MBS业务的MBS标识信息。
  52. 根据权利要求50或51所述的方法,其中,所述多个SPS配置关联同一HARQ反馈码本。
  53. 根据权利要求52所述的方法,其中,所述多个SPS配置与所述HARQ反馈码本之间的关联关系通过RRC信令配置,所述RRC信令还配置所述HARQ反馈码本对应的PUCCH资源。
  54. 根据权利要求50至53中任一项所述的方法,其中,所述多个SPS配置或者所述多个SPS配置中每个SPS配置关联第六指示信息,所述第六指示信息用于指示以下至少之一:
    所述第一MBS业务采用的跳频方式;
    所述第一MBS业务采用的跳频图样;
    所述SPS配置关联的PDSCH资源分配的个数;
    所述SPS配置关联的重复传输的个数;
    所述SPS配置关联的传输是针对一个业务数据的初传还是第M次重传,M为正整数。
  55. 根据权利要求37至54中任一项所述的方法,其中,所述第一DCI包括第一资源分配信息,所述第一资源分配信息用于确定一个SPS配置对应的一个或多个PDSCH资源分配。
  56. 根据权利要求37至54中任一项所述的方法,其中,所述第一DCI包括第二资源分配信息,所述第二资源分配信息用于确定多个SPS配置中每个SPS配置对应的一个或多个PDSCH资源分配。
  57. 根据权利要求37至56中任一项所述的方法,其中,所述第一DCI包括MBS传输的跳频方式和/或MBS传输的跳频图样;
    所述MBS传输的跳频方式包括同一业务数据重传跳频传输的方式,和不同业务数据跳频传输的方式;
    所述MBS传输的跳频图样是按照SPS配置索引列表表示的跳频图样,或者所述第一DCI中每个无线资源分配关联的索引按照从小到大或者从大到小顺序跳频。
  58. 根据权利要求37至57中任一项所述的方法,其中,所述第一DCI调度的PDSCH的加扰方式通过RRC信令配置或者通过所述第一DCI指示。
  59. 根据权利要求58所述的方法,其中,
    所述第一DCI调度的PDSCH使用CS-RNTI加扰;或者,
    所述第一DCI调度的PDSCH使用G-RNTI加扰。
  60. 根据权利要求34、40、42、43、46、48、51中任一项所述的方法,其中,所述MBS标识信息包括以下至少之一:TMGI、G-RNTI、SPS G-RNTI。
  61. 一种MBS业务的半静态调度装置,应用于终端设备,所述装置包括:
    接收单元,用于接收网络设备发送的第一配置信息,所述第一配置信息用于确定N个SPS配置,N为正整数,所述N个SPS配置中的全部或部分用于传输MBS业务。
  62. 根据权利要求61所述的装置,其中,所述第一配置信息包括第一SPS配置列表,所述第一SPS配置列表中包括N个SPS配置,所述第一SPS配置列表为用于传输MBS业务的专用SPS配置列表。
  63. 根据权利要求61所述的装置,其中,所述第一配置信息包括第一SPS配置列表,所述第一SPS配置列表中包括N个SPS配置,所述N个SPS配置中的每个SPS配置包含第一指示信息,所述第一指示信息用于指示所述SPS配置是否用于传输MBS业务和/或所述SPS配置关联的MBS标识信息。
  64. 根据权利要求61至63中任一项所述的装置,其中,所述N个SPS配置中的每个SPS配置包含第二指示信息,所述第二指示信息用于指示所述SPS配置关联的MBS标识信息。
  65. 根据权利要求61至64中任一项所述的装置,其中,述第一配置信息携带在BWP配置中或者服务小区配置中。
  66. 根据权利要求61至65中任一项所述的装置,其中,所述第一配置信息携带在RRC信令中。
  67. 根据权利要求61至66中任一项所述的装置,其中,所述接收单元,还用于接收所述网络设备发送的第一DCI,所述第一DCI用于激活所述N个SPS配置中的至少一个SPS配置。
  68. 根据权利要求67所述的装置,其中,需要激活的所述至少一个SPS配置基于第一SPS标识列表确定或者基于至少第一MBS标识确定;
    其中,所述第一SPS标识列表或者所述至少第一MBS标识携带在所述第一DCI中,或者MAC CE中,或者RRC信令中。
  69. 根据权利要求67或68所述的装置,其中,所述第一DCI通过RRC信令配置的第一CS-RNTI加扰。
  70. 根据权利要求69所述的装置,其中,所述第一DCI携带第三指示信息,所述第三指示信息用于指示以下至少之一:
    激活的SPS配置是否用于传输MBS业务;
    激活的SPS配置关联的MBS标识信息。
  71. 根据权利要求67或68所述的装置,其中,所述第一DCI通过RRC信令配置的第二CS-RNTI加扰,所述第二CS-RNTI为MBS SPS使用的CS-RNTI。
  72. 根据权利要求71所述的装置,其中,所述第二CS-RNTI用于指示激活的SPS配置用于传输MBS业务,所述第二CS-RNTI关联一个MBS标识信息。
  73. 根据权利要求71或72所述的装置,其中,所述第一DCI携带第四指示信息,所述第四指示信息用于指示激活的SPS配置关联的MBS标识信息。
  74. 根据权利要求61至73中任一项所述的装置,其中,所述接收单元,还用于接收所述网络设备发送的第二配置信息,所述第二配置信息用于确定第一PUCCH资源池的配置,所述第一PUCCH资源池中的PUCCH资源用于传输MBS业务的反馈信息;和/或,接收所述网络设备发送的第三配置信息,所述第三配置信息用于确定所述终端设备的PUCCH资源,所述PUCCH资源用于所述终端设备传输的MBS业务的反馈信息。
  75. 根据权利要求74所述的装置,其中,所述PUCCH资源关联一个或者多个SPS配置。
  76. 根据权利要求74或75所述的装置,其中,所述PUCCH资源关联一个MBS标识信息。
  77. 根据权利要求67至76中任一项所述的装置,其中,所述第一DCI用于激活一个SPS配置,所述一个SPS配置用于传输第一MBS业务。
  78. 根据权利要求77所述的装置,其中,所述一个SPS配置关联所述第一MBS业务的MBS标识信息。
  79. 根据权利要求77或78所述的装置,其中,所述一个SPS配置关联第五指示信息,所述第五指示信息用于指示以下至少之一:
    所述第一MBS业务采用的跳频方式;
    所述第一MBS业务采用的跳频图样;
    所述第一MBS业务采用的重复传输方式;
    所述第一MBS业务中的一个业务数据的传输次数;
    所述一个SPS配置关联的PDSCH资源分配的个数;
    所述一个SPS配置关联的重复传输的个数。
  80. 根据权利要求67至76中任一项所述的装置,其中,所述第一DCI用于激活多个SPS配置,所述多个SPS配置用于传输第一MBS业务。
  81. 根据权利要求80所述的装置,其中,所述多个SPS配置关联所述第一MBS业务的MBS标识信息。
  82. 根据权利要求80或81所述的装置,其中,所述多个SPS配置关联同一HARQ反馈码本。
  83. 根据权利要求82所述的装置,其中,所述多个SPS配置与所述HARQ反馈码本之间的关联关系通过RRC信令配置,所述RRC信令还配置所述HARQ反馈码本对应的PUCCH资源。
  84. 根据权利要求81至83中任一项所述的装置,其中,所述多个SPS配置或者所述多个SPS配置中每个SPS配置关联第六指示信息,所述第六指示信息用于指示以下至少之一:
    所述第一MBS业务采用的跳频方式;
    所述第一MBS业务采用的跳频图样;
    所述SPS配置关联的PDSCH资源分配的个数;
    所述SPS配置关联的重复传输的个数;
    所述SPS配置关联的传输是针对一个业务数据的初传还是第M次重传,M为正整数。
  85. 根据权利要求67至84中任一项所述的装置,其中,所述第一DCI包括第一资源分配信息,所述第一资源分配信息用于确定一个SPS配置对应的一个或多个PDSCH资源分配。
  86. 根据权利要求67至84中任一项所述的装置,其中,所述第一DCI包括第二资源分配信息,所述第二资源分配信息用于确定多个SPS配置中每个SPS配置对应的一个或多个PDSCH资源分配。
  87. 根据权利要求67至86中任一项所述的装置,其中,所述第一DCI包括MBS传输的跳频方式和/或MBS传输的跳频图样;
    所述MBS传输的跳频方式包括同一业务数据重传跳频传输的方式,和不同业务数据跳频传输的方式;
    所述MBS传输的跳频图样是按照SPS配置索引列表表示的跳频图样,或者所述第一DCI中每个无线资源分配关联的索引按照从小到大或者从大到小顺序跳频。
  88. 根据权利要求67至87中任一项所述的装置,其中,所述第一DCI调度的PDSCH的加扰方式通过RRC信令配置或者通过所述第一DCI指示。
  89. 根据权利要求88所述的装置,其中,
    所述第一DCI调度的PDSCH使用CS-RNTI加扰;或者,
    所述第一DCI调度的PDSCH使用G-RNTI加扰。
  90. 根据权利要求64、70、72、73、76、78、81中任一项所述的装置,其中,所述MBS标识信息包括以下至少之一:TMGI、G-RNTI、SPS G-RNTI。
  91. 一种MBS业务的半静态调度装置,应用于网络设备,所述装置包括:
    发送单元,用于向终端设备发送第一配置信息,所述第一配置信息用于确定N个SPS配置,N为正整数,所述N个SPS配置中的全部或部分用于传输MBS业务。
  92. 根据权利要求91所述的装置,其中,所述第一配置信息包括第一SPS配置列表,所述第一SPS配置列表中包括N个SPS配置,所述第一SPS配置列表为用于传输MBS业务的专用SPS配置列表。
  93. 根据权利要求91所述的装置,其中,所述第一配置信息包括第一SPS配置列表,所述第一SPS配置列表中包括N个SPS配置,所述N个SPS配置中的每个SPS配置包含第一指示信息,所述第一指示信息用于指示所述SPS配置是否用于传输MBS业务和/或所述SPS配置关联的MBS标识信息。
  94. 根据权利要求91至93中任一项所述的装置,其中,所述N个SPS配置中的每个SPS配置包含第二指示信息,所述第二指示信息用于指示所述SPS配置关联的MBS标识信息。
  95. 根据权利要求91至94中任一项所述的装置,其中,所述第一配置信息携带在BWP配置中或者服务小区配置中。
  96. 根据权利要求91至95中任一项所述的装置,其中,所述第一配置信息携带在RRC信令中。
  97. 根据权利要求91至96中任一项所述的装置,其中,所述发送单元,还用于向所述终端设备发送第一DCI,所述第一DCI用于激活所述N个SPS配置中的至少一个SPS配置。
  98. 根据权利要求97所述的装置,其中,需要激活的所述至少一个SPS配置基于第一SPS标识列表确定或者基于至少第一MBS标识确定;
    其中,所述第一SPS标识列表或者所述至少第一MBS标识携带在所述第一DCI中,或者MAC CE中,或者RRC信令中。
  99. 根据权利要求97或98所述的装置,其中,所述第一DCI通过RRC信令配置的第一CS-RNTI加扰。
  100. 根据权利要求99所述的装置,其中,所述第一DCI携带第三指示信息,所述第三指示信息用于指示以下至少之一:
    激活的SPS配置是否用于传输MBS业务;
    激活的SPS配置关联的MBS标识信息。
  101. 根据权利要求97或98所述的装置,其中,所述第一DCI通过RRC信令配置的第二CS-RNTI加扰,所述第二CS-RNTI为MBS SPS使用的CS-RNTI。
  102. 根据权利要求101所述的装置,其中,所述第二CS-RNTI用于指示激活的SPS配置用于传输MBS业务,所述第二CS-RNTI关联一个MBS标识信息。
  103. 根据权利要求101或102所述的装置,其中,所述第一DCI携带第四指示信息,所述第四指示信息用于指示激活的SPS配置关联的MBS标识信息。
  104. 根据权利要求91至103中任一项所述的装置,其中,所述发送单元,还用于向所述终端设备发送第二配置信息,所述第二配置信息用于确定第一PUCCH资源池的配置,所述第一PUCCH资源池中的PUCCH资源用于传输MBS业务的反馈信息;和/或,向所述终端设备发送第三配置信息,所述第三配置信息用于确定所述终端设备的PUCCH资源,所述PUCCH资源用于所述终端设备传输的MBS业务的反馈信息。
  105. 根据权利要求104所述的装置,其中,所述PUCCH资源关联一个或者多个SPS配置。
  106. 根据权利要求104或105所述的装置,其中,所述PUCCH资源关联一个MBS标识信息。
  107. 根据权利要求97至106中任一项所述的装置,其中,所述第一DCI用于激活一个SPS配置,所述一个SPS配置用于传输第一MBS业务。
  108. 根据权利要求107所述的装置,其中,所述一个SPS配置关联所述第一MBS业务的MBS标识信息。
  109. 根据权利要求107或108所述的装置,其中,所述一个SPS配置关联第五指示信息,所述第五指示信息用于指示以下至少之一:
    所述第一MBS业务采用的跳频方式;
    所述第一MBS业务采用的跳频图样;
    所述第一MBS业务采用的重复传输方式;
    所述第一MBS业务中的一个业务数据的传输次数;
    所述一个SPS配置关联的PDSCH资源分配的个数;
    所述一个SPS配置关联的重复传输的个数。
  110. 根据权利要求97至106中任一项所述的装置,其中,所述第一DCI用于激活多个SPS配置,所述多个SPS配置用于传输第一MBS业务。
  111. 根据权利要求110所述的装置,其中,所述多个SPS配置关联所述第一MBS业务的MBS标识信息。
  112. 根据权利要求110或111所述的装置,其中,所述多个SPS配置关联同一HARQ反馈码本。
  113. 根据权利要求112所述的装置,其中,所述多个SPS配置与所述HARQ反馈码本之间的关联关系通过RRC信令配置,所述RRC信令还配置所述HARQ反馈码本对应的PUCCH资源。
  114. 根据权利要求110至113中任一项所述的装置,其中,所述多个SPS配置或者所述多个SPS配置中每个SPS配置关联第六指示信息,所述第六指示信息用于指示以下至少之一:
    所述第一MBS业务采用的跳频方式;
    所述第一MBS业务采用的跳频图样;
    所述SPS配置关联的PDSCH资源分配的个数;
    所述SPS配置关联的重复传输的个数;
    所述SPS配置关联的传输是针对一个业务数据的初传还是第M次重传,M为正整数。
  115. 根据权利要求97至114中任一项所述的装置,其中,所述第一DCI包括第一资源分配信息,所述第一资源分配信息用于确定一个SPS配置对应的一个或多个PDSCH资源分配。
  116. 根据权利要求97至114中任一项所述的装置,其中,所述第一DCI包括第二资源分配信息,所述第二资源分配信息用于确定多个SPS配置中每个SPS配置对应的一个或多个PDSCH资源分配。
  117. 根据权利要求97至114中任一项所述的装置,其中,所述第一DCI包括MBS传输的跳频方式和/或MBS传输的跳频图样;
    所述MBS传输的跳频方式包括同一业务数据重传跳频传输的方式,和不同业务数据跳频传输的方式;
    所述MBS传输的跳频图样是按照SPS配置索引列表表示的跳频图样,或者所述第一DCI中每个无线资源分配关联的索引按照从小到大或者从大到小顺序跳频。
  118. 根据权利要求97至117中任一项所述的装置,其中,所述第一DCI调度的PDSCH的加扰方式通过RRC信令配置或者通过所述第一DCI指示。
  119. 根据权利要求118所述的装置,其中,
    所述第一DCI调度的PDSCH使用CS-RNTI加扰;或者,
    所述第一DCI调度的PDSCH使用G-RNTI加扰。
  120. 根据权利要求94、100、102、103、106、108、111中任一项所述的装置,其中,所述MBS标识信息包括以下至少之一:TMGI、G-RNTI、SPS G-RNTI。
  121. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至30中任一项所述的方法。
  122. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求31至60中任一项所述的方法。
  123. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至30中任一项所述的方法。
  124. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求31至60中任一项所述的方法。
  125. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至30中任一项所述的方法。
  126. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求31至60中任一项所述的方法。
  127. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至30中任一项所述的方法。
  128. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求31至60中任一项所述的方法。
  129. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至30中任一项所述的方法。
  130. 一种计算机程序,所述计算机程序使得计算机执行如权利要求31至60中任一项所述的方法。
PCT/CN2020/135920 2020-12-11 2020-12-11 Mbs业务的半静态调度方法及装置、终端设备、网络设备 WO2022120837A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2020/135920 WO2022120837A1 (zh) 2020-12-11 2020-12-11 Mbs业务的半静态调度方法及装置、终端设备、网络设备
CN202311381803.1A CN117295171A (zh) 2020-12-11 2020-12-11 Mbs业务的半静态调度方法及装置、终端、网络设备
CN202080107425.6A CN116530168A (zh) 2020-12-11 2020-12-11 Mbs业务的半静态调度方法及装置、终端设备、网络设备
EP20964773.4A EP4243528A4 (en) 2020-12-11 2020-12-11 SEMI-PERSISTENT PLANNING METHOD AND DEVICE FOR MBS SERVICE AS WELL AS TERMINAL DEVICE AND NETWORK DEVICE
US18/206,724 US11963199B2 (en) 2020-12-11 2023-06-07 Semi-persistent scheduling method and apparatus for MBS service, and terminal device and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/135920 WO2022120837A1 (zh) 2020-12-11 2020-12-11 Mbs业务的半静态调度方法及装置、终端设备、网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/206,724 Continuation US11963199B2 (en) 2020-12-11 2023-06-07 Semi-persistent scheduling method and apparatus for MBS service, and terminal device and network device

Publications (1)

Publication Number Publication Date
WO2022120837A1 true WO2022120837A1 (zh) 2022-06-16

Family

ID=81974142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135920 WO2022120837A1 (zh) 2020-12-11 2020-12-11 Mbs业务的半静态调度方法及装置、终端设备、网络设备

Country Status (4)

Country Link
US (1) US11963199B2 (zh)
EP (1) EP4243528A4 (zh)
CN (2) CN117295171A (zh)
WO (1) WO2022120837A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023155151A1 (zh) * 2022-02-18 2023-08-24 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771939A (zh) * 2008-12-30 2010-07-07 中兴通讯股份有限公司 单播业务控制信息的发送方法和装置
WO2018174664A1 (en) * 2017-03-24 2018-09-27 Samsung Electronics Co., Ltd. Apparatus and method for semi-persistent scheduling and power control in wireless communication system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3412096B1 (en) * 2016-02-03 2023-04-05 LG Electronics Inc. Method and wireless device for performing user equipment triggered semi-persistent scheduling activation in wireless communication system
US10887876B2 (en) * 2016-02-03 2021-01-05 Lg Electronics Inc. Method and apparatus for performing semi persistent scheduling reactivation between sidelink and uplink in wireless communication system
US10390331B2 (en) * 2016-04-20 2019-08-20 Convida Wireless, Llc System information provisioning and light weight connection signaling
EP3451774B1 (en) * 2016-05-13 2020-11-04 Huawei Technologies Co., Ltd. Service data transmission method and user equipment
KR20180017893A (ko) * 2016-08-11 2018-02-21 남정길 V2x를 위한 준영구적 스케줄링 방법 및 장치
US10798726B2 (en) * 2016-08-12 2020-10-06 Lg Electronics Inc. Method and apparatus for transmitting SPS assistance information in wireless communication system
CN109246766B (zh) * 2017-06-15 2023-05-30 夏普株式会社 无线配置方法和相应的用户设备
EP4064780A4 (en) * 2019-12-20 2023-12-20 Samsung Electronics Co., Ltd. METHOD AND DEVICE FOR PERIODICALLY SENDING AND RECEIVING DATA IN A WIRELESS COMMUNICATIONS SYSTEM
US20230155744A1 (en) * 2020-03-26 2023-05-18 Lg Electronics Inc. Harq-ack transmission method, user equipment and storage medium, and harq-ack reception method and base station
EP4150996A1 (en) * 2020-05-14 2023-03-22 InterDigital Patent Holdings, Inc. Mechanism of scheduling for broadcast and groupcast on new radio uu interface
CN116686352A (zh) * 2020-11-19 2023-09-01 欧芬诺有限责任公司 多播和广播服务的半持久调度

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771939A (zh) * 2008-12-30 2010-07-07 中兴通讯股份有限公司 单播业务控制信息的发送方法和装置
WO2018174664A1 (en) * 2017-03-24 2018-09-27 Samsung Electronics Co., Ltd. Apparatus and method for semi-persistent scheduling and power control in wireless communication system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion on group scheduling mechanism for RRC_CONNECTED UEs in MBS", 3GPP DRAFT; R1-2007835, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946516 *
See also references of EP4243528A4 *
VIVO: "Other issues for Rel-17 MBS", 3GPP DRAFT; R1-2006658, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051918172 *
VIVO: "Other issues for Rel-17 MBS", 3GPP DRAFT; R1-2007694, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946485 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023155151A1 (zh) * 2022-02-18 2023-08-24 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备

Also Published As

Publication number Publication date
US11963199B2 (en) 2024-04-16
CN117295171A (zh) 2023-12-26
EP4243528A1 (en) 2023-09-13
EP4243528A4 (en) 2023-11-29
CN116530168A (zh) 2023-08-01
US20230319854A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
WO2021134298A1 (zh) 一种资源指示方法及装置、通信设备
WO2021056152A1 (zh) 一种信息配置方法及装置、终端设备、网络设备
WO2021134316A1 (zh) 一种业务调度方法及装置、终端设备、网络设备
CN113678500B (zh) 一种反馈资源配置方法及通信方法、装置、通信设备
WO2021138805A1 (zh) 一种业务同步调度方法及装置、通信设备
WO2021051320A1 (zh) 一种业务数据传输方法及装置、网络设备、终端设备
US11963199B2 (en) Semi-persistent scheduling method and apparatus for MBS service, and terminal device and network device
WO2022006849A1 (zh) Mbs业务的tci状态管理方法及装置、终端设备
US20230361923A1 (en) Mbs service configuration method and terminal device
WO2021051319A1 (zh) 一种drx配置方法及装置、终端设备、网络设备
WO2021051312A1 (zh) 一种信息配置方法及装置、终端设备、网络设备
WO2022141545A1 (zh) 一种mcch调度传输方法及装置、终端设备
WO2022141088A1 (zh) 一种mbs业务的传输方法及装置、终端设备
WO2022006875A1 (zh) 建立mbs业务的方法及装置、终端设备、网络设备
WO2021051322A1 (zh) 一种bwp配置方法及装置、终端设备、网络设备
WO2021134291A1 (zh) 一种资源配置方法及装置、终端设备、网络设备
WO2021051321A1 (zh) 一种业务数据传输方法及装置、终端设备
WO2022120749A1 (zh) 一种多播业务的调度方法及装置、终端设备、网络设备
WO2022165720A1 (zh) 提高mbs业务可靠性的方法及装置、终端设备、网络设备
WO2022126658A1 (zh) 一种mbs配置变更的方法及装置、终端设备、网络设备
WO2022056669A1 (zh) 一种mbs业务的管理方法及装置、终端设备、网络设备
WO2022021024A1 (zh) 一种bwp切换的方法及装置、终端设备
WO2022198415A1 (zh) 提高mbs业务可靠性的方法及装置、终端设备、网络设备
WO2022056859A1 (zh) Mbs业务传输进度的控制方法及装置、通信设备
US20230370299A1 (en) Bearer configuration method and apparatus, terminal device, and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964773

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107425.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2020964773

Country of ref document: EP

Effective date: 20230609

NENP Non-entry into the national phase

Ref country code: DE