WO2022198415A1 - 提高mbs业务可靠性的方法及装置、终端设备、网络设备 - Google Patents

提高mbs业务可靠性的方法及装置、终端设备、网络设备 Download PDF

Info

Publication number
WO2022198415A1
WO2022198415A1 PCT/CN2021/082195 CN2021082195W WO2022198415A1 WO 2022198415 A1 WO2022198415 A1 WO 2022198415A1 CN 2021082195 W CN2021082195 W CN 2021082195W WO 2022198415 A1 WO2022198415 A1 WO 2022198415A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
terminal device
harq process
service
scheduling information
Prior art date
Application number
PCT/CN2021/082195
Other languages
English (en)
French (fr)
Inventor
王淑坤
石聪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180074715.XA priority Critical patent/CN116569569A/zh
Priority to PCT/CN2021/082195 priority patent/WO2022198415A1/zh
Priority to EP21932047.0A priority patent/EP4228293A4/en
Publication of WO2022198415A1 publication Critical patent/WO2022198415A1/zh
Priority to US18/317,658 priority patent/US20230283498A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/1863Arrangements for providing special services to substations for broadcast or conference, e.g. multicast comprising mechanisms for improved reliability, e.g. status reports
    • H04L12/1868Measures taken after transmission, e.g. acknowledgments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/1863Arrangements for providing special services to substations for broadcast or conference, e.g. multicast comprising mechanisms for improved reliability, e.g. status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/1881Arrangements for providing special services to substations for broadcast or conference, e.g. multicast with schedule organisation, e.g. priority, sequence management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/189Arrangements for providing special services to substations for broadcast or conference, e.g. multicast in combination with wireless systems

Definitions

  • the embodiments of the present application relate to the field of mobile communication technologies, and in particular, to a method and apparatus, terminal equipment, and network equipment for improving the reliability of a multicast broadcast service (Multicast Broadcast Service, MBS).
  • MBS Multicast Broadcast Service
  • a multicast MBS service is supported.
  • the terminal device receives the MBS service of multicast type in the radio resource control (Radio Resource Control, RRC) connection state.
  • RRC Radio Resource Control
  • the reliability requirements of multicast MBS services are relatively high, and it needs to be clarified how to ensure the high reliability of MBS services.
  • the embodiments of the present application provide a method and apparatus, terminal equipment, and network equipment for improving the reliability of an MBS service.
  • the terminal equipment determines the transmission mode of the MBS service
  • the terminal device determines whether the first transmission is a new transmission or a retransmission based on the transmission mode of the MBS service.
  • the network device determines that the transmission mode of the MBS service is: new transmission is transmitted by PTM mode, and retransmission is transmitted by PTP mode;
  • the network device schedules the transmission of the MBS service based on the transmission mode of the MBS service.
  • the apparatus for improving the reliability of the MBS service provided by the embodiment of the present application is applied to terminal equipment, and the apparatus includes:
  • the determining unit is used for the transmission mode of the MBS service; based on the transmission mode of the MBS service, it is determined whether the first transmission is a new transmission or a retransmission.
  • the apparatus for improving the reliability of the MBS service provided by the embodiment of the present application is applied to network equipment, and the apparatus includes:
  • a determining unit used for determining the transmission mode of the MBS service: new transmission is transmitted by PTM mode, and retransmission is transmitted by PTP mode;
  • a scheduling unit configured to schedule the transmission of the MBS service based on the transmission mode of the MBS service.
  • the terminal device provided by the embodiments of the present application includes a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory to execute the above-mentioned method for improving the reliability of the MBS service.
  • the network device provided by the embodiments of the present application includes a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory to execute the above-mentioned method for improving the reliability of the MBS service.
  • the chip provided by the embodiment of the present application is used to implement the above-mentioned method for improving the reliability of the MBS service.
  • the chip includes: a processor for invoking and running a computer program from the memory, so that the device installed with the chip executes the above-mentioned method for improving the reliability of the MBS service.
  • the computer-readable storage medium provided by the embodiment of the present application is used for storing a computer program, and the computer program enables a computer to execute the above-mentioned method for improving the reliability of an MBS service.
  • the computer program product provided by the embodiments of the present application includes computer program instructions, and the computer program instructions enable a computer to execute the above-mentioned method for improving MBS service reliability.
  • the computer program provided by the embodiment of the present application when it runs on the computer, enables the computer to execute the above-mentioned method for improving the reliability of the MBS service.
  • the transmission mode of the MBS service is: new transmission is transmitted in a point-to-multipoint (Point To Multipoint, PTM) manner, and retransmission is transmitted in a point-to-point (Point To Point, PTP) manner.
  • the network device schedules the transmission of the MBS service based on the transmission mode of the MBS service; the terminal device determines whether the first transmission is a new transmission or a retransmission according to the transmission mode of the MBS service, so as to ensure the reliability of the MBS service reception to the greatest extent.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the transmission of MBS services provided by an embodiment of the present application in a PTM manner and a PTP manner;
  • FIG. 3 is a schematic flowchart 1 of a method for improving the reliability of an MBS service provided by an embodiment of the present application
  • FIG. 4 is a schematic diagram of a first protocol stack architecture provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a second protocol stack architecture provided by an embodiment of the present application.
  • FIG. 6 is a second schematic flowchart of a method for improving the reliability of an MBS service provided by an embodiment of the present application
  • FIG. 7 is a schematic structural diagram 1 of a structure of an apparatus for improving MBS service reliability provided by an embodiment of the present application.
  • FIG. 8 is a second schematic diagram of the structure and composition of an apparatus for improving MBS service reliability provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • 5G communication systems or future communication systems etc.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal 120 (or referred to as a communication terminal, a terminal).
  • the network device 110 may provide communication coverage for a particular geographic area and may communicate with terminals located within the coverage area.
  • the network device 110 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the
  • the network device can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, a wearable device, a hub, a switch, a bridge, a router, a network-side device in a 5G network, or a network device in a future communication system.
  • the communication system 100 also includes at least one terminal 120 located within the coverage of the network device 110 .
  • Terminal includes, but is not limited to, connections via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connections; and/or another data connection/network; and/or via a wireless interface, e.g. for cellular networks, Wireless Local Area Networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter; and/or a device of another terminal configured to receive/transmit a communication signal; and/or an Internet of Things (IoT) device.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN Wireless Local Area Networks
  • WLAN Wireless Local Area Networks
  • digital television networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter
  • IoT Internet of Things
  • a terminal arranged to communicate through a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal” or “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular telephones; Personal Communications System (PCS) terminals that may combine cellular radio telephones with data processing, facsimile, and data communications capabilities; may include radio telephones, pagers, Internet/Intranet PDAs with networking access, web browsers, memo pads, calendars, and/or Global Positioning System (GPS) receivers; and conventional laptop and/or palmtop receivers or others including radiotelephone transceivers electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • a terminal may refer to an access terminal, user equipment (UE), subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks or terminals in future evolved PLMNs, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal (Device to Device, D2D) communication may be performed between the terminals 120 .
  • the 5G communication system or the 5G network may also be referred to as a new radio (New Radio, NR) system or an NR network.
  • New Radio NR
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices, and the coverage of each network device may include other numbers of terminals. This embodiment of the present application This is not limited.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal 120 with a communication function, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here;
  • the device may further include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • 5G 3rd Generation Partnership Project
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra-Reliable Low-Latency Communications
  • mMTC Massive Machine-Type Communications
  • eMBB still aims at users' access to multimedia content, services and data, and its demand is growing rapidly.
  • eMBB since eMBB may be deployed in different scenarios, such as indoor, urban, rural, etc., its capabilities and requirements are also quite different, so it cannot be generalized and must be analyzed in detail in combination with specific deployment scenarios.
  • Typical applications of URLLC include: industrial automation, power automation, telemedicine operations (surgery), traffic safety assurance, etc.
  • Typical features of mMTC include: high connection density, small data volume, latency-insensitive services, low cost and long service life of the module.
  • RRC_INACTIVE Radio Resource Control
  • RRC_INACTIVE Radio Resource Control
  • RRC_IDLE state (referred to as idle state): mobility is UE-based cell selection reselection, paging is initiated by the core network (Core Network, CN), and the paging area is configured by the CN. There is no UE context and no RRC connection on the base station side.
  • RRC_CONNECTED state (referred to as connected state): there is an RRC connection, and a UE context exists on the base station side and the UE side.
  • the network side knows that the location of the UE is at the specific cell level. Mobility is the mobility controlled by the network side. Unicast data can be transmitted between the UE and the base station.
  • RRC_INACTIVE state (referred to as inactive state): mobility is UE-based cell selection reselection, there is a connection between CN-NR, UE context exists on a certain base station, paging is triggered by RAN, based on The paging area of the RAN is managed by the RAN, and the network side knows the location of the UE based on the paging area level of the RAN.
  • MBMS Multimedia Broadcast Multicast Service
  • MBMS is a technology that transmits data from a data source to multiple terminal devices by sharing network resources. This technology can effectively utilize network resources while providing multimedia services, and realize the broadcast of multimedia services at higher rates (such as 256kbps). and multicast.
  • 3GPP clearly proposes to enhance the support capability for downlink high-speed MBMS services, and determines the design requirements for the physical layer and air interface.
  • eMBMS evolved MBMS
  • SFN Single Frequency Network
  • MBSFN Multimedia Broadcast Multicast Service Single Frequency Network
  • MBSFN uses a uniform frequency to send service data in all cells at the same time, but To ensure synchronization between cells. In this way, the overall signal-to-noise ratio distribution of the cell can be greatly improved, and the spectral efficiency will also be greatly improved accordingly.
  • eMBMS implements service broadcast and multicast based on IP multicast protocol.
  • MBMS has only a broadcast bearer mode and no multicast bearer mode.
  • the reception of the MBMS service is applicable to the terminal equipment in the idle state or the connected state.
  • SC-PTM Single Cell Point To Multiploint
  • SC-MCCH Single Cell Multicast Control Channel
  • SC-MTCH Single Cell Multicast Transport Channel
  • SC-MCCH and SC-MTCH are mapped to downlink shared channel (Downlink-Shared Channel, DL-SCH), further, DL-SCH is mapped to physical downlink shared channel (Physical Downlink Shared Channel, PDSCH), wherein, SC - MCCH and SC-MTCH belong to logical channels, DL-SCH belongs to transport channels, and PDSCH belongs to physical channels.
  • SC-MCCH and SC-MTCH do not support hybrid automatic repeat request (Hybrid Automatic Repeat reQuest, HARQ) operations.
  • Hybrid Automatic Repeat reQuest Hybrid Automatic Repeat reQuest
  • MBMS introduces a new system information block (System Information Block, SIB) type, namely SIB20.
  • SIB System Information Block
  • the configuration information of the SC-MCCH includes the modification period of the SC-MCCH, the repetition period of the SC-MCCH, and information such as the radio frame and subframe in which the SC-MCCH is scheduled.
  • SFN represents the system frame number of the radio frame
  • mcch-RepetitionPeriod represents the repetition period of SC-MCCH
  • mcch-Offset represents SC-MCCH offset.
  • the SC-MCCH is scheduled through the Physical Downlink Control Channel (PDCCH).
  • PDCCH Physical Downlink Control Channel
  • RNTI Radio Network Tempory Identity
  • SC-RNTI Single Cell RNTI
  • the fixed value of SC-RNTI is FFFC.
  • a new RNTI is introduced, that is, a single cell notification RNTI (Single Cell Notification RNTI, SC-N-RNTI) to identify the PDCCH (such as the notification PDCCH) used to indicate the change notification of the SC-MCCH, optionally, the SC
  • the fixed value of -N-RNTI is FFFB; further, one of the 8 bits (bits) of DCI 1C can be used to indicate the change notification.
  • the configuration information of the SC-PTM is based on the SC-MCCH configured by the SIB20, and then the SC-MCCH configures the SC-MTCH, and the SC-MTCH is used to transmit service data.
  • the SC-MCCH only transmits one message (ie, SCPTMConfiguration), which is used to configure the configuration information of the SC-PTM.
  • the configuration information of SC-PTM includes: Temporary Mobile Group Identity (TMGI), session identifier (session id), group RNTI (Group RNTI, G-RNTI), discontinuous reception (Discontinuous Reception, DRX) configuration information And the SC-PTM service information of neighboring cells, etc.
  • TMGI Temporary Mobile Group Identity
  • session id session identifier
  • group RNTI Group RNTI, G-RNTI
  • discontinuous reception discontinuous Reception
  • DRX discontinuous Reception
  • Downlink discontinuous reception of SC-PTM is controlled by the following parameters: onDurationTimerSCPTM, drx-InactivityTimerSCPTM, SC-MTCH-SchedulingCycle, and SC-MTCH-SchedulingOffset.
  • the downstream SC-PTM service is received only when the timer onDurationTimerSCPTM or drx-InactivityTimerSCPTM is running.
  • SC-PTM business continuity adopts the concept of MBMS business continuity based on SIB15, namely "SIB15+MBMSInterestIndication" mode.
  • SIB15 namely "SIB15+MBMSInterestIndication" mode.
  • the service continuity of terminal equipment in idle state is based on the concept of frequency priority.
  • the MBS service of the multicast type refers to the MBS service transmitted in a multicast manner.
  • the broadcast-type MBS service refers to the MBS service transmitted in a broadcast manner.
  • the MBS service is sent to all terminal devices in a certain group.
  • the terminal device receives the multicast MBS service in the RRC connection state, and the terminal device can receive the multicast MBS service data in the PTM mode or the PTP mode.
  • the MBS service data in the PTM mode scrambles the corresponding scheduling information through the G-RNTI configured on the network side
  • the MBS service data in the PTP mode scrambles the corresponding scheduling information through the C-RNTI.
  • the technical solution of the embodiment of the present application proposes a transmission mode of MBS services, that is, new transmission is transmitted in PTM mode, and retransmission is transmitted in PTP mode.
  • PTP transmission can be used as a retransmission of PTM transmission. It needs to be clarified how to support this transmission mode so that the terminal equipment can correctly perform soft combining of new transmission and retransmission to achieve the maximum receiving gain.
  • the MSB service is transmitted in a multicast manner, in other words, the MSB service is a multicast MBS service.
  • the base station can deliver the MSB service to all terminal devices in a group through an air interface.
  • the base station may deliver the MSB service to all terminal devices in a group in a PTP manner and/or a PTM manner.
  • a group includes terminal equipment 1, terminal equipment 2 and terminal equipment 3.
  • the base station can deliver the MBS service to terminal equipment 1 through PTP, deliver the MBS service to terminal equipment 2 through PTP, and deliver the MBS service through PTP to terminal equipment 2.
  • the service is delivered to the terminal device 3; alternatively, the base station can deliver the MBS service to the terminal device 1 through the PTP mode, and the MBS service can be delivered to the terminal device 2 and the terminal device 3 through the PTM mode;
  • the MBS service is delivered to terminal equipment 1, terminal equipment 2 and terminal equipment 3.
  • a shared GTP tunnel (Shared GTP tunnel) is used between the core network and the base station to transmit the MBS service, that is, whether it is the MBS service of the PTM mode or the MBS service of the PTP mode, this GTP tunnel is shared.
  • the base station delivers the MBS service data to UE1 and UE2 according to the PTM mode, and delivers the MBS service data to the UE3 according to the PTP mode.
  • FIG. 3 is a schematic flowchart 1 of a method for improving MBS service reliability provided by an embodiment of the present application. As shown in FIG. 3 , the method for MBS service reliability includes the following steps:
  • Step 301 The terminal device determines the transmission mode of the MBS service.
  • the transmission mode of the MBS service is: the new transmission is transmitted in the PTM mode, and the retransmission is transmitted in the PTP mode.
  • the transmission mode of the MBS service is: PTP transmission is used for retransmission of PTM transmission.
  • the scheduling information of the transmission corresponding to the PTM mode is scrambled by the G-RNTI
  • the scheduling information of the transmission corresponding to the PTP mode is scrambled by the C-RNTI.
  • the terminal device may determine the transmission mode of the MBS service in the following manner:
  • the terminal device receives the configuration information of the MBS service sent by the network device, and determines the transmission mode of the MBS service based on the configuration information of the MBS service; wherein the configuration information of the MBS service includes first information, and the first information is used to indicate
  • the transmission mode of MBS service is: new transmission is transmitted by PTM mode, and retransmission is transmitted by PTP mode.
  • the configuration information of the MBS service is configured through RRC dedicated signaling.
  • the configuration information of the MBS service includes at least one of the following: identification information of the MBS service, and channel configuration information of the MBS service.
  • the terminal device can receive MBS service data based on the configuration information of the MBS service.
  • the identification information of the MBS service in the configuration information of the MBS service is used for the terminal device to determine which MBS service to receive.
  • the identification information of the MBS service may be TMGI, G-RNTI, or the like.
  • the channel configuration information of the MBS service in the configuration information of the MBS service is used for the terminal device to determine the channel information for receiving the MBS service.
  • the channel configuration information of the MBS service may include at least one of the following: configuration information of a control channel of the MBS service (eg, configuration information of an MCCH), a traffic channel of the MBS service (also referred to as a data channel or a transport channel) Configuration information (such as MTCH configuration information).
  • the configuration information of the MBS service further includes second information, where the second information is used to indicate that the protocol stack architecture of the MBS service is the first protocol stack architecture or the second protocol stack architecture.
  • the terminal device determines the protocol stack architecture of the MBS service based on the configuration information of the MBS service.
  • the terminal device determines, based on predefined information, that the protocol stack architecture of the MBS service is the default protocol stack architecture; wherein the default protocol The stack architecture is the first protocol stack architecture or the second protocol stack architecture.
  • the first protocol stack architecture and the second protocol stack architecture in the above solution will be described below. It should be noted that the following protocol stack architecture is only an exemplary description, and any protocol stack architecture capable of implementing the PTM manner and the PTP manner may be applied to the embodiments of the present application.
  • the first protocol stack architecture The first protocol stack architecture
  • the PTM mode and the PTP mode correspond to independent physical (PHY) entities; the PTM mode and the PTP mode correspond to the shared Packet Data Convergence Protocol (PDCP) entity, radio link control (Radio Link Control, RLC) entity, and Media Access Control (Media Access Control, MAC) entity.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media Access Control
  • the PTM mode and the PTP mode correspond to a shared Service Data Adaptation Protocol (Service Data Adaptation Protocol, SDAP) entity.
  • SDAP Service Data Adaptation Protocol
  • FIG. 4 is a schematic diagram of the architecture of the first protocol stack, and the description of “entity” is omitted in FIG. 4 , for example, “PHY” in FIG. 4 represents a “PHY entity”.
  • the PDU session of the MBS service includes one or more QoS flows, and the one or more QoS flows of the PDU session can be mapped to one or more DRBs through the SDAP entity, wherein the mapping relationship between the QoS flow and the DRB can be a pair of One, or many-to-one.
  • Each DRB corresponds to a logical channel, wherein different DRBs are transmitted through different PDCP entities and RLC entities, that is, different logical channels correspond to different PDCP entities and RLC entities.
  • each DRB there may be no SDAP entity. That is, for each DRB, there may be a PDCP entity, or a PDCP entity+SDAP entity.
  • the MAC entity sends the MAC PDU (that is, one TB of data) to the PHY1 entity, and the PHY1 entity sends it in the PTM mode; or the MAC entity sends the MAC PDU to the PHY2 entity, and the PHY2 entity sends it in the PTP mode.
  • the PTM mode and the PTP mode correspond to the independent PHY entity and the RLC entity; the PTM mode and the PTP mode correspond to the shared PDCP entity and the MAC entity.
  • the PTM mode and the PTP mode correspond to a shared SDAP entity.
  • FIG. 5 is a schematic diagram of the architecture of the second protocol stack.
  • entity is omitted in FIG. 4-3.
  • PHY in FIG. 4-3 represents “PHY entity”.
  • the PDU session of the MBS service includes one or more QoS flows, and the one or more QoS flows of the PDU session can be mapped to one or more DRBs through the SDAP entity, wherein the mapping relationship between the QoS flow and the DRB can be a pair of One, or many-to-one.
  • Each DRB corresponds to a logical channel, wherein different DRBs are transmitted through different PDCP entities and RLC entities, that is, different logical channels correspond to different PDCP entities and RLC entities.
  • each DRB there may be no PDCP entity. That is, for each DRB, there may be a PDCP entity, or a PDCP entity+SDAP entity.
  • the PDCP entity sends the PDCP PDU to the RLC1 entity, the RLC1 entity transmits the corresponding RLC PDU to the MAC entity, and the MAC entity transmits the corresponding MAC PDU to the PHY1 entity, and sends the PDCP PDU through the PHY1 entity in the PTM mode; or, the PDCP entity sends the PDCP PDU To the RLC2 entity, the RLC2 entity transmits the corresponding RLC PDU to the MAC entity, and the MAC entity transmits the corresponding MAC PDU to the PHY2 entity, and sends it through the PHY2 entity in a PTP manner.
  • RLC1 entities in FIG. 5 include RLC11 entities, RLC12 entities, . . . , RLC1n entities, wherein different RLC entities correspond to different DRBs (ie, correspond to different logical channels).
  • the RLC2 entities in FIG. 5 include RLC21 entities, RLC22 entities, . . . , RLC2n entities, wherein different RLC entities correspond to different DRBs (ie, correspond to different logical channels).
  • Step 302 The terminal device determines whether the first transmission is a new transmission or a retransmission based on the transmission mode of the MBS service.
  • the terminal device receives MBS service data based on the MBS service configuration. Specifically, the terminal device receives first downlink scheduling information scrambled by the first RNTI, the first downlink scheduling information is used to schedule the first transmission, and the first downlink scheduling information carries the first new Data Indication (New Data Indication, NDI); wherein, when the transmission mode of the MBS service is that new transmission is transmitted by PTM and retransmission is transmitted by PTP, the terminal device is based on the first RNTI and/or The first NDI determines whether the first transmission is a new transmission or a retransmission. The following describes how and what type of transmission the first transmission is. It should be noted that, in this embodiment of the present application, the description about "downlink scheduling information" may also be replaced with "DL grant”.
  • NDI new Data Indication
  • Case 1 If the first RNTI is a G-RNTI, the terminal device determines that the first transmission is a new transmission.
  • the terminal device receives the first downlink scheduling information scrambled by the G-RNTI, wherein the first downlink scheduling information carries the first hybrid automatic repeat request (Hybrid Automatic Repeat reQuest, HARQ) process identifier and the first NDI.
  • the terminal device receives the first transmission according to the first downlink scheduling information.
  • receiving the first transmission may also be understood as receiving the MBS service data carried on the PDSCH.
  • the first transmission scheduled by the first downlink scheduling information is a new transmission.
  • the first transmission scheduled by the first downlink scheduling information is considered to be a new transmission, that is, it is considered that the occurrence of up the NDI flip.
  • downlink scheduling information For example, replace the description of downlink scheduling information with DL Grant.
  • the transmission scheduled by the downlink scheduling information can be equivalently replaced with a Transport Block (TB) scheduled by the DL Grant.
  • TB Transport Block
  • the network side sends DL Grant 1 scrambled by G-RNTI, and sends TB1 scheduled by DL Grant 1; the terminal device receives DL Grant 1 scrambled by G-RNTI, receives TB1 based on DL Grant 1, and successfully decodes TB1 , feed back HARQ-ACK information; after receiving the HARQ-ACK information, the network side sends DL Grant 2 scrambled by G-RNTI, and sends TB2 scheduled by DL Grant 2; the terminal device receives DL Grant 2 scrambled by G-RNTI, A TB2 is received based on DL Grant 2, and the TB2 is considered a new transmission.
  • the network side sends DL Grant 1 scrambled by G-RNTI, and sends TB1 scheduled by DL Grant 1; the terminal device receives DL Grant 1 scrambled by G-RNTI, receives TB1 based on DL Grant 1, and fails to decode TB1 , and feed back the HARQ-NACK information; after receiving the HARQ-NACK information, the network side switches the PTM mode to the PTP mode, sends the DL Grant 2 scrambled by C-RNTI, and sends the TB1 scheduled by the DL Grant 2; the terminal device receives the C- The RNTI scrambled DL Grant 2 receives the retransmission of TB1 based on the DL Grant 2, successfully decodes the TB1, and feeds back the HARQ-ACK information; after the network side receives the HARQ-ACK information, it sends the G-RNTI scrambled DL Grant 3, And send TB2 scheduled by DL Grant 3; the terminal device receives DL Grant
  • the network side sends DL Grant 1 scrambled by G-RNTI, and sends TB1 scheduled by DL Grant 1; the terminal device does not receive DL Grant 1 and does not feed back any HARQ feedback information; the network side is sending DL Grant 1
  • the PTM mode is switched to the PTP mode, the DL Grant 2 scrambled by C-RNTI is sent, and the TB1 scheduled by DL Grant 2 is sent;
  • the terminal device receives the C-RNTI scrambled DL Grant 2, based on DL Grant 2, receives the retransmission of TB1, successfully decodes TB1, and feeds back HARQ-ACK information; after receiving the HARQ-ACK information, the network side sends DL Grant 3 scrambled by G-RNTI, and sends DL Grant 3 Scheduled TB2; the terminal device receives DL Grant 3 scrambled by G-RNTI, receives TB2 based on DL Grant 3, and
  • the network side sends TB1 scheduled by unicast or semi-persistent scheduling (SPS), then sends DL Grant 1 scrambled by G-RNTI, and sends TB1 scheduled by DL Grant 1; the terminal device receives the G-RNTI plus The disturbed DL Grant 1 receives TB1 based on the DL Grant 1, and considers TB1 as a new transmission.
  • SPS semi-persistent scheduling
  • the corresponding HARQ process identifiers are the same, and the HARQ process identifiers are carried in the DL Grant of the scheduling TB.
  • the TB scheduled by the DL Grant is transmitted by PTM; if the DL Grant is scrambled by C-RNTI, the TB scheduled by the DL Grant is transmitted by PTP Transmission.
  • Case 2 If the first RNTI is a C-RNTI, and the first NDI is different from the second NDI, the terminal device determines that the first transmission is a new transmission; wherein the second NDI is carried in the In the second downlink scheduling information, the second downlink scheduling information is the downlink scheduling information received by the terminal device before the first downlink scheduling information, and the second downlink scheduling information is used to schedule the second transmission, Both the second transmission and the first transmission correspond to the first HARQ process identifier of the HARQ.
  • the second downlink scheduling information is scrambled by G-RNTI; or, the second downlink scheduling information is scrambled by C-RNTI.
  • the terminal device receives the first downlink scheduling information scrambled by the C-RNTI, where the first downlink scheduling information carries the first HARQ process identifier and the first NDI.
  • the terminal device receives the first transmission according to the first downlink scheduling information.
  • receiving the first transmission may also be understood as receiving the MBS service data carried on the PDSCH.
  • the first downlink scheduling information for scheduling the first transmission is scrambled by the C-RNTI, it is necessary to combine the first NDI carried in the first downlink scheduling information with the second NDI carried in the previously received second downlink scheduling information If the first NDI is different from the second NDI, no matter whether the second downlink scheduling information is scrambled by C-RNTI or by G-RNTI, it is considered that the first transmission scheduled by the first downlink scheduling information is For new transmission, it is considered that NDI inversion has occurred; if the first NDI is the same as the second NDI, it is considered that the first transmission scheduled by the first downlink scheduling information is a retransmission, that is, it is considered that the NDI is not inverted.
  • downlink scheduling information For example, replace the description of downlink scheduling information with DL Grant.
  • the transmission scheduled by the downlink scheduling information can be equivalently replaced with the TB scheduled by the DL Grant.
  • the network side sends DL Grant 1 scrambled by G-RNTI, and sends TB1 scheduled by DL Grant 1; the terminal device receives DL Grant 1 scrambled by G-RNTI, receives TB1 based on DL Grant 1, and successfully decodes TB1 , feed back HARQ-ACK information; after receiving the HARQ-ACK information, the network side sends DL Grant 2 scrambled by C-RNTI, and sends TB2 scheduled by DL Grant 2; the terminal device receives DL Grant 2 scrambled by C-RNTI, Based on DL Grant 2 receiving a TB2, since the NDI carried in DL Grant 2 is different from the NDI carried in DL Grant 1, TB2 is considered as a new transmission.
  • the network side sends DL Grant 1 scrambled by G-RNTI, and sends TB1 scheduled by DL Grant 1; the terminal device receives DL Grant 1 scrambled by G-RNTI, receives TB1 based on DL Grant 1, and fails to decode TB1 , and feed back the HARQ-NACK information; after receiving the HARQ-NACK information, the network side switches the PTM mode to the PTP mode, sends the DL Grant 2 scrambled by C-RNTI, and sends the TB1 scheduled by the DL Grant 2; the terminal device receives the C- The RNTI scrambled DL Grant 2 receives the retransmission of TB1 based on the DL Grant 2, successfully decodes the TB1, and feeds back the HARQ-ACK information; after the network side receives the HARQ-ACK information, it sends the C-RNTI scrambled DL Grant 3, And send TB2 scheduled by DL Grant 3; the terminal device receives DL Grant
  • the network side sends DL Grant 1 scrambled by G-RNTI, and sends TB1 scheduled by DL Grant 1; the terminal device does not receive DL Grant 1 and does not feed back any HARQ feedback information; the network side is sending DL Grant 1
  • the PTM mode is switched to the PTP mode, the DL Grant 2 scrambled by C-RNTI is sent, and the TB1 scheduled by DL Grant 2 is sent; the terminal device receives the C-RNTI scrambled DL Grant 2, based on DL Grant 2, receives the retransmission of TB1, successfully decodes TB1, and feeds back HARQ-ACK information; after receiving the HARQ-ACK information, the network side sends DL Grant 3 scrambled by C-RNTI, and sends DL Grant 3 Scheduled TB2; the terminal device receives DL Grant 3 scrambled by C-RNTI, and receives TB2 based on DL Grant 3.
  • the network side sends TB1 scheduled by unicast or semi-persistent scheduling (SPS), then sends DL Grant 1 scrambled by C-RNTI, and sends TB1 scheduled by DL Grant 1; the terminal device receives the C-RNTI plus The disturbed DL Grant 1 receives TB1 based on the DL Grant 1, and considers TB1 as a new transmission.
  • SPS semi-persistent scheduling
  • Case 3 If the first RNTI is a C-RNTI and there is no second NDI associated with the first NDI, the terminal device determines that the first transmission is a new transmission; wherein the second The association between the NDI and the first NDI means that the HARQ process identifier corresponding to the second NDI is the same as the HARQ process identifier corresponding to the first NDI.
  • the terminal device receives the first downlink scheduling information scrambled by the C-RNTI, where the first downlink scheduling information carries the first HARQ process identifier and the first NDI.
  • the terminal device receives the first transmission according to the first downlink scheduling information.
  • receiving the first transmission may also be understood as receiving the MBS service data carried on the PDSCH.
  • the first downlink scheduling information for scheduling the first transmission is scrambled by the C-RNTI, it is necessary to combine the first NDI carried in the first downlink scheduling information with the second NDI carried in the previously received second downlink scheduling information The NDI is compared.
  • the downlink scheduling information associated with the same HARQ process identifier as the first downlink scheduling information has been received before, and there is no NDI that can be compared with the first NDI. Therefore, it is considered that the first downlink scheduling information scheduled by the first downlink scheduling information is the first The transfer is a new transfer.
  • the technical solutions of the embodiments of the present application further include:
  • the terminal device decodes the first transmission to obtain a decoding result
  • the terminal equipment feeds back HARQ ACK information
  • the terminal device feeds back HARQ NACK information, and stores the data corresponding to the first transmission in the buffer.
  • decoding is implemented through the physical layer of the terminal device, and the terminal device feeds back HARQ NACK information or HARQ ACK information to the network side according to the decoding result of the physical layer. Further, if the terminal equipment feeds back HARQ NACK information, the terminal equipment stores the received data soft bits in the HARQ buffer (buffer).
  • the base station After the base station sends a TB through PTM, if the base station receives the HARQ NACK information for the TB fed back by a certain terminal device or does not receive any HARQ feedback information for the TB fed back by a certain terminal device, then, The base station will switch the terminal device to the PTP mode, and retransmit the TB to the terminal device through the PTP mode.
  • the scheduling information of the TB In the retransmission scheduling in the PTP mode, the scheduling information of the TB is scrambled by the C-RNTI.
  • the HARQ process identifier carried in the scheduling information of the TB is the same as the HARQ process identifier carried in the scheduling information corresponding to the previous PTM mode.
  • the value of the NDI carried in the scheduling information of the TB is also the same as the value of the NDI carried in the scheduling information corresponding to the previous PTM mode.
  • the terminal equipment For the terminal equipment side, if the terminal equipment does not feed back the HARQ ACK information, the terminal equipment receives the third downlink scheduling information scrambled by the C-RNTI, and the third downlink scheduling information is used to schedule the third transmission, so The third transmission and the first transmission both correspond to the first HARQ process identifier; the terminal device performs soft-combination and decoding on the data corresponding to the third transmission and the data corresponding to the first transmission in the buffer, to obtain Decoding result; if the decoding result is that decoding is successful, the terminal equipment feeds back HARQ ACK information; if the decoding result is decoding failure, the terminal equipment feeds back HARQ NACK information, and stores the data corresponding to the third transmission to the in the cache.
  • the terminal device receives the third downlink scheduling information scrambled by the C-RNTI, the first HARQ process identifier indicated in the third downlink scheduling information, and the HARQ process corresponding to the first HARQ process identifier has buffered data, Then, the terminal device performs soft combination of the received data scheduled by the third downlink scheduling information and the buffered data, and then decodes it, and judges whether to feed back HARQ ACK information or HARQ NACK information based on the decoding result.
  • the HARQ feedback corresponding to the PTM mode and the HARQ feedback corresponding to the PTP mode are comprehensively considered. If the HARQ feedback of all terminal devices in the MBS group for the TB is HARQ ACK information, the base station for the TB The HARQ process identifies the new transmission to perform the next TB.
  • the terminal device when the decoding result in the above solution is that the decoding is successful, the terminal device obtains the first TB, and it can be understood that the first TB corresponds to the first HARQ process identifier; Obtain the first MAC SDU and the first LCID corresponding to the MAC SDU in the first TB; the terminal device determines the first MAC SDU to be submitted based on the first LCID and the first HARQ process identifier RLC entity.
  • the first HARQ process identifier belongs to the first HARQ process identifier set, and the first LCID belongs to the first LCID set; the first HARQ process identifier set and the second HARQ process identifier set do not overlap, The first LCID set and the second LCID set at least partially overlap; wherein the first HARQ process identification set and the first LCID set are used for MBS services, and the second HARQ process identification set and the second HARQ process identification set
  • the LCID set is used for unicast services.
  • the unicast service is, for example, the eMBB unicast service.
  • the HARQ process identifier set for MBS service and the HARQ process identifier set for unicast service do not overlap, and the network side can configure the HARQ process identifier set dedicated to MBS service for the terminal device through dedicated signaling.
  • the HARQ process identifiers in the HARQ process identifier set range from 0 to N, where N is a positive integer
  • the HARQ process identifiers can be reserved for the MBS service from 0 to k, where k is a positive integer greater than or equal to 0 and less than or equal to N, and other
  • the HARQ process identifier is used for unicast services.
  • the terminal device determines that the first HARQ process identifier is used for the MBS service based on the first HARQ process identifier belonging to the first HARQ process identifier set; the terminal device determines from the RLC entity corresponding to the MBS service The RLC entity corresponding to the first LCID is used as the RLC entity to be submitted by the first MAC SDU.
  • RLC entity 1 and RLC entity 2 are RLC entities corresponding to MBS services
  • RLC entity 3 and RLC entity 4 are RLC entities corresponding to unicast services
  • RLC entity 1 corresponds to LCID1
  • RLC entity 2 corresponds to LCID2
  • RLC entity 3 corresponds to LCID1
  • RLC entity 4 corresponds to LCID2.
  • the terminal device decodes to obtain the TB, obtains the MAC SDU and the corresponding LCID1 from the TB, and determines the TB belonging to the MBS service according to the HARQ process identifier corresponding to the TB, and determines from the RLC entity 1 and the RLC entity 2 that the LCID1 corresponds to the RLC entity 1 , submit the MAC SDU to RLC entity 1.
  • the first HARQ process identifier belongs to the first HARQ process identifier set, and the first LCID belongs to the first LCID set; the first HARQ process identifier set and the second HARQ process identifier set at least partially overlap , the first LCID set and the second LCID set do not overlap; wherein, the first HARQ process identification set and the first LCID set are used for MBS services, and the second HARQ process identification set and the second HARQ process identification set The LCID set is used for unicast services.
  • the set of HARQ process identities for the MBS service and the set of HARQ process identities for the unicast service overlap at least partially, eg completely.
  • the LCID set used for the MBS service and the LCID set used for the unicast service do not overlap, and the network side can configure the LCID set dedicated to the MBS service for the terminal device through dedicated signaling.
  • the terminal device determines the RLC entity corresponding to the first LCID from the RLC entity corresponding to the MBS service and the RLC entity corresponding to the unicast service, as the RLC entity to be delivered by the first MAC SDU.
  • RLC entity 1 and RLC entity 2 are RLC entities corresponding to MBS services
  • RLC entity 3 and RLC entity 4 are RLC entities corresponding to unicast services
  • RLC entity 1 corresponds to LCID1
  • RLC entity 2 corresponds to LCID2
  • RLC entity 3 corresponds to LCID3
  • RLC entity 4 corresponds to LCID4.
  • the terminal device decodes to obtain the TB, obtains the MAC SDU and the corresponding LCID1 from the TB, and cannot determine which MBS service it belongs to according to the HARQ process identifier corresponding to the TB, and can directly determine the RLC entity 1 corresponding to LCID1 from all RLC entities according to the LCID1 , submit the MAC SDU to RLC entity 1.
  • FIG. 6 is a second schematic flowchart of a method for improving MBS service reliability provided by an embodiment of the present application. As shown in FIG. 6 , the method for MBS service reliability includes the following steps:
  • Step 601 The network device determines that the transmission mode of the MBS service is: the new transmission is transmitted in the PTM mode, and the retransmission is transmitted in the PTP mode.
  • Step 602 The network device schedules the transmission of the MBS service based on the transmission mode of the MBS service.
  • the network device schedules the new transmission of the first service data in a PTM manner; and/or the network device schedules the retransmission of the first service data in a PTP manner; wherein, the first service data is the service data of the MBS service.
  • the network device sends first downlink scheduling information scrambled by G-RNTI, where the first downlink scheduling information is used to schedule new transmission of the first service data, and the first downlink scheduling information is used to schedule new transmission of the first service data.
  • the row scheduling information carries the first HARQ process identifier.
  • the network device sends third downlink scheduling information scrambled by C-RNTI, where the third downlink scheduling information is used to schedule retransmission of the first service data, and the third downlink scheduling information is used to schedule retransmission of the first service data.
  • the scheduling information carries the first HARQ process identifier.
  • the NDI carried in the third downlink scheduling information is the same as the NDI carried in the first downlink scheduling information.
  • the MBS group multiple terminal devices that receive the MBS service are called an MBS group.
  • some terminal devices need to perform retransmission, while some terminal devices do not need to perform retransmission.
  • the transmission is performed in the PTP mode.
  • the network device schedules the retransmission of the first service data to each terminal device in the at least one terminal device in a PTP manner, wherein the at least one terminal device is at least one terminal device in the MBS group .
  • the at least one terminal device includes: at least one terminal device that feeds back HARQ NACK information for the first service data; and/or at least one terminal device that does not feed back HARQ feedback information for the first service data.
  • the MBS group includes 4 UE1, UE2, UE3 and UE4.
  • the base station sends TB1 to the MBS group through PTM.
  • the base station receives the HARQ ACK information for TB1 fed back by UE1 and UE4, and receives the HARQ for TB1 fed back by UE2.
  • NACK information any HARQ feedback information for TB1 fed back by UE3 has not been received.
  • the base station performs retransmission scheduling of TB1 to UE2 and UE3 respectively through PTP. Specifically, the base station sends scheduling information scrambled by C-RNTI to UE2 and UE2 respectively, and the scheduling information is used to schedule retransmission of TB1.
  • the network device when the network device receives the HARQ ACK information for the first service data fed back by all terminal devices in the MBS group, the network device schedules new transmission of the second service data in a PTM manner.
  • the second service data is the next data to be transmitted of the first service data.
  • the MBS group includes 4 UE1, UE2, UE3 and UE4.
  • the base station sends TB1 to the MBS group through PTM.
  • the base station receives the HARQ ACK information for TB1 fed back by UE1 and UE4, and receives the HARQ for TB1 fed back by UE2.
  • NACK information any HARQ feedback information for TB1 fed back by UE3 has not been received.
  • the base station performs TB1 retransmission scheduling to UE2 and UE3 respectively through PTP, and then the base station receives the HARQ ACK information for TB1 fed back by UE2 and UE3.
  • the base station has received the HARQ ACK information for TB1 fed back by all UEs in the MBS group, and performs new transmission of the next TB2.
  • the HARQ of TB2 can be used to identify the HARQ of TB1.
  • the new transmission of TB2 can adopt PTM way.
  • FIG. 7 is a schematic structural diagram 1 of an apparatus for improving MBS service reliability provided by an embodiment of the present application, which is applied to terminal equipment.
  • the apparatus for improving MBS service reliability includes:
  • the determining unit 701 is used for the transmission mode of the MBS service; based on the transmission mode of the MBS service, determine whether the first transmission is a new transmission or a retransmission.
  • the apparatus further comprises:
  • a receiving unit 702 configured to receive configuration information of an MBS service sent by a network device; wherein, the configuration information of the MBS service includes first information, and the first information is used to indicate a transmission mode of the MBS service: new transmission through PTM mode transmission, retransmission is transmitted through PTP mode;
  • the determining unit 701 is configured to determine the transmission mode of the MBS service based on the configuration information of the MBS service.
  • the determining unit 701 is further configured to determine the protocol stack architecture of the MBS service based on the configuration information of the MBS service;
  • the configuration information of the MBS service further includes second information, where the second information is used to indicate that the protocol stack architecture of the MBS service is the first protocol stack architecture or the second protocol stack architecture.
  • the determining unit 701 is further configured to determine the protocol stack architecture of the MBS service as the default protocol stack architecture based on predefined information;
  • the default protocol stack architecture is the first protocol stack architecture or the second protocol stack architecture.
  • PTM mode and PTP mode correspond to independent PHY entities
  • the PTM mode and the PTP mode correspond to the shared PDCP entity, RLC entity, and MAC entity.
  • PTM mode and PTP mode correspond to independent PHY entities and RLC entities
  • the PTM mode and the PTP mode correspond to shared PDCP entities and MAC entities.
  • the apparatus further comprises:
  • a receiving unit 702 configured to receive the first downlink scheduling information scrambled by the first RNTI, the first downlink scheduling information is used to schedule the first transmission, and the first downlink scheduling information carries the first NDI;
  • the determining unit 701 is configured to determine, based on the first RNTI and/or the first NDI, when the transmission mode of the MBS service is that new transmission is transmitted by PTM and retransmission is transmitted by PTP. Whether the first transmission is a new transmission or a retransmission.
  • the determining unit 701 is configured to determine that the first transmission is a new transmission if the first RNTI is a group wireless network temporary identifier G-RNTI.
  • the determining unit 701 is configured to determine that the first transmission is a new transmission if the first RNTI is a C-RNTI and the first NDI is different from the second NDI;
  • the second NDI is carried in second downlink scheduling information, where the second downlink scheduling information is downlink scheduling information received by the terminal device before the first downlink scheduling information, and the second downlink scheduling information is The scheduling information is used to schedule a second transmission, and both the second transmission and the first transmission correspond to the first HARQ process identifier.
  • the second downlink scheduling information is scrambled by G-RNTI; or,
  • the second downlink scheduling information is scrambled by C-RNTI.
  • the determining unit 701 is configured to, if the first RNTI is a C-RNTI and there is no second NDI associated with the first NDI, determine that the first transmission is new transmission;
  • the association between the second NDI and the first NDI means that the HARQ process identifier corresponding to the second NDI is the same as the HARQ process identifier corresponding to the first NDI.
  • the apparatus further comprises:
  • a decoding unit configured to decode the first transmission if the first transmission is a new transmission to obtain a decoding result
  • a feedback unit used for feeding back HARQ ACK information if the decoding result is that the decoding is successful; if the decoding result is that the decoding fails, feeding back the HARQ NACK information;
  • a storage unit configured to store the data corresponding to the first transmission in the buffer if the decoding result is that the decoding fails.
  • the receiving unit 701 is further configured to receive third downlink scheduling information scrambled by the C-RNTI, where the third downlink scheduling information is used to schedule a third transmission, the third transmission and The first transmission corresponds to the first HARQ process identifier;
  • the decoding unit is further configured to perform soft-combination decoding on the data corresponding to the third transmission and the data corresponding to the first transmission in the buffer to obtain a decoding result;
  • the feedback unit is further configured to feed back the HARQ ACK information by the terminal device if the decoding result is that the decoding is successful; if the decoding result is that the decoding fails, the terminal device feeds back the HARQ NACK information;
  • the storage unit is further configured to store the data corresponding to the third transmission in the buffer if the decoding result is that the decoding fails.
  • the decoding unit acquires the first TB, and the first TB corresponds to the first HARQ process identifier
  • the decoding unit is further configured to obtain the first MAC SDU and the first LCID corresponding to the MAC SDU from the first TB;
  • the determining unit 701 is further configured to determine the RLC entity to which the first MAC SDU is to be delivered based on the first LCID and the first HARQ process identifier.
  • the first HARQ process identifier belongs to a first HARQ process identifier set, and the first LCID belongs to a first LCID set;
  • the first HARQ process identifier set and the second HARQ process identifier set do not overlap, and the first LCID set and the second LCID set at least partially overlap;
  • the first set of HARQ process identifiers and the first set of LCIDs are used for MBS services, and the second set of HARQ process identifiers and the second set of LCIDs are used for unicast services.
  • the determining unit 701 is configured to determine that the first HARQ process identifier is used for the MBS service based on the first HARQ process identifier belonging to the first HARQ process identifier set; from the MBS service Among the corresponding RLC entities, the RLC entity corresponding to the first LCID is determined as the RLC entity to which the first MAC SDU is to be submitted.
  • the first HARQ process identifier belongs to a first HARQ process identifier set, and the first LCID belongs to a first LCID set;
  • the first HARQ process identifier set and the second HARQ process identifier set at least partially overlap, and the first LCID set and the second LCID set do not overlap;
  • the first set of HARQ process identifiers and the first set of LCIDs are used for MBS services, and the second set of HARQ process identifiers and the second set of LCIDs are used for unicast services.
  • the determining unit 701 is configured to determine, from the RLC entities corresponding to the MBS service and the RLC entities corresponding to the unicast service, the RLC entity corresponding to the first LCID as the first The RLC entity to which the MAC SDU is to be delivered.
  • FIG. 8 is a schematic structural diagram 2 of an apparatus for improving MBS service reliability provided by an embodiment of the present application, which is applied to network equipment.
  • the apparatus for improving MBS service reliability includes:
  • a determining unit 801 configured to determine the transmission mode of the MBS service: new transmission is transmitted by PTM mode, and retransmission is transmitted by PTP mode;
  • the scheduling unit 802 is configured to schedule the transmission of the MBS service based on the transmission mode of the MBS service.
  • the scheduling unit 802 is configured to schedule new transmission of the first service data in a PTM manner; and/or schedule retransmission of the first service data in a PTP manner;
  • the first service data is service data of the MBS service.
  • the scheduling unit 802 is configured to send first downlink scheduling information scrambled by G-RNTI, where the first downlink scheduling information is used to schedule new transmission of the first service data, so The first downlink scheduling information carries the first HARQ process identifier.
  • the scheduling unit 802 is configured to send third downlink scheduling information scrambled by C-RNTI, where the third downlink scheduling information is used to schedule retransmission of the first service data, so The third downlink scheduling information carries the first HARQ process identifier.
  • the NDI carried in the third downlink scheduling information is the same as the NDI carried in the first downlink scheduling information.
  • the scheduling unit 802 is configured to schedule the retransmission of the first service data to each terminal device in the at least one terminal device in a PTP manner; wherein, the at least one terminal device It is at least one terminal device in the MBS group.
  • the at least one terminal device includes:
  • At least one terminal device that has fed back HARQ NACK information for the first service data; and/or,
  • At least one terminal device that does not feed back HARQ feedback information for the first service data.
  • the scheduling unit 802 is further configured to schedule the second service data in a PTM manner in the case of receiving HARQ ACK information for the first service data fed back by all terminal devices in the MBS group New transmission of service data, the second service data is the next data to be transmitted of the first service data.
  • FIG. 9 is a schematic structural diagram of a communication device 900 provided by an embodiment of the present application.
  • the communication device may be a terminal device or a network device.
  • the communication device 900 shown in FIG. 9 includes a processor 910, and the processor 910 can call and run a computer program from a memory to implement the methods in the embodiments of the present application.
  • the communication device 900 may further include a memory 920 .
  • the processor 910 may call and run a computer program from the memory 920 to implement the methods in the embodiments of the present application.
  • the memory 920 may be a separate device independent of the processor 910 , or may be integrated in the processor 910 .
  • the communication device 900 may further include a transceiver 930, and the processor 910 may control the transceiver 930 to communicate with other devices, specifically, may send information or data to other devices, or receive other Information or data sent by a device.
  • the transceiver 930 may include a transmitter and a receiver.
  • the transceiver 930 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 900 may specifically be a network device in this embodiment of the present application, and the communication device 900 may implement the corresponding processes implemented by the network device in each method in the embodiment of the present application. For brevity, details are not repeated here. .
  • the communication device 900 may specifically be the mobile terminal/terminal device in the embodiments of the present application, and the communication device 900 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method in the embodiments of the present application. , and will not be repeated here.
  • FIG. 10 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1000 shown in FIG. 10 includes a processor 1010, and the processor 1010 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 1000 may further include a memory 1020 .
  • the processor 1010 may call and run a computer program from the memory 1020, so as to implement the methods in the embodiments of the present application.
  • the memory 1020 may be a separate device independent of the processor 1010, or may be integrated in the processor 1010.
  • the chip 1000 may further include an input interface 1030 .
  • the processor 1010 can control the input interface 1030 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1000 may further include an output interface 1040 .
  • the processor 1010 can control the output interface 1040 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • FIG. 11 is a schematic block diagram of a communication system 1100 provided by an embodiment of the present application. As shown in FIG. 11 , the communication system 1100 includes a terminal device 1110 and a network device 1120 .
  • the terminal device 1110 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 1120 can be used to implement the corresponding functions implemented by the network device in the above method. For brevity, details are not repeated here. .
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • Embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. Repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, For brevity, details are not repeated here.
  • the embodiments of the present application also provide a computer program.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. For the sake of brevity. , and will not be repeated here.
  • the computer program may be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program is run on the computer, the mobile terminal/terminal device implements the various methods of the computer program in the embodiments of the present application.
  • the corresponding process for the sake of brevity, will not be repeated here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Abstract

本申请实施例提供一种提高MBS业务可靠性的方法及装置、终端设备、网络设备,该方法包括:终端设备确定MBS业务的传输方式;所述终端设备基于所述MBS业务的传输方式,确定第一传输为新传输还是重新传输。

Description

提高MBS业务可靠性的方法及装置、终端设备、网络设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种提高多播广播服务(Multicast Broadcast Service,MBS)业务可靠性的方法及装置、终端设备、网络设备。
背景技术
在新无线(New Radio,NR)系统中,支持组播类型的MBS业务。终端设备在无线资源控制(Radio Resource Control,RRC)连接状态下接收组播类型的MBS业务。一般,组播类型的MBS业务的可靠性要求比较高,如何保障MBS业务的高可靠性需要明确。
发明内容
本申请实施例提供一种提高MBS业务可靠性的方法及装置、终端设备、网络设备。
本申请实施例提供的提高MBS业务可靠性的方法,包括:
终端设备确定MBS业务的传输方式;
所述终端设备基于所述MBS业务的传输方式,确定第一传输为新传输还是重新传输。
本申请实施例提供的提高MBS业务可靠性的方法,包括:
网络设备确定MBS业务的传输方式为:新传输通过PTM方式传输,重新传输通过PTP方式传输;
所述网络设备基于所述MBS业务的传输方式,调度所述MBS业务的传输。
本申请实施例提供的提高MBS业务可靠性的装置,应用于终端设备,所述装置包括:
确定单元,用于MBS业务的传输方式;基于所述MBS业务的传输方式,确定第一传输为新传输还是重新传输。
本申请实施例提供的提高MBS业务可靠性的装置,应用于网络设备,所述装置包括:
确定单元,用于确定MBS业务的传输方式为:新传输通过PTM方式传输,重新传输通过PTP方式传输;
调度单元,用于基于所述MBS业务的传输方式,调度所述MBS业务的传输。
本申请实施例提供的终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的提高MBS业务可靠性的方法。
本申请实施例提供的网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的提高MBS业务可靠性的方法。
本申请实施例提供的芯片,用于实现上述的提高MBS业务可靠性的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的提高MBS业务可靠性的方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的提高MBS业务可靠性的方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的提高MBS业务可靠性的方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的提高MBS业务可靠性的方法。
通过上述技术方案,明确了MBS业务的传输方式为:新传输通过点对多点(Point To Multipoint,PTM)方式传输,重新传输通过点对点(Point To Point,PTP)方式传输。网络设备基于MBS业务的传输方式调度MBS业务的传输;终端设备根据MBS业务的传输方式明确第一传输为新传输还是重新传输,从而最大程度的保障MBS业务接收的可靠性。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信系统架构的示意性图;
图2是本申请实施例提供的MBS业务按照PTM方式和PTP方式传输的示意图;
图3是本申请实施例提供的提高MBS业务可靠性的方法的流程示意图一;
图4是本申请实施例提供的第一协议栈架构示意图;
图5是本申请实施例提供的第二协议栈架构示意图;
图6是本申请实施例提供的提高MBS业务可靠性的方法的流程示意图二;
图7是本申请实施例提供的提高MBS业务可靠性的装置的结构组成示意图一;
图8是本申请实施例提供的提高MBS业务可靠性的装置的结构组成示意图二;
图9是本申请实施例提供的一种通信设备示意性结构图;
图10是本申请实施例的芯片的示意性结构图;
图11是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、系统、5G通信系统或未来的通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来通信系统中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G通信系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设 备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例相关的技术方案进行说明。
随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性、复杂性,为此第三代合作伙伴计划(3 rd Generation Partnership Project,3GPP)国际标准组织开始研发5G。5G的主要应用场景为:增强移动超宽带(enhanced Mobile Broadband,eMBB)、低时延高可靠通信(Ultra-Reliable Low-Latency Communications,URLLC)、大规模机器类通信(massive Machine-Type Communications,mMTC)。
一方面,eMBB仍然以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。另一方面,由于eMBB可能部署在不同的场景中,例如室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而论,必须结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
在NR早期部署时,完整的NR覆盖很难获取,所以典型的网络覆盖是广域的LTE覆盖和NR的孤岛覆盖模式。而且大量的LTE部署在6GHz以下,可用于5G的6GHz以下频谱很少。所以NR必须研究6GHz以上的频谱应用,而高频段覆盖有限、信号衰落快。同时为了保护移动运营商前期在LTE投资,提出了LTE和NR之间紧耦合(tight interworking)的工作模式。
Figure PCTCN2021082195-appb-000001
RRC状态
5G为了降低空口信令和快速恢复无线连接,快速恢复数据业务的目的,定义了一个新的无线资源控制(Radio Resource Control,RRC)状态,即RRC非激活(RRC_INACTIVE)状态。这种状态有别于RRC空闲(RRC_IDLE)状态和RRC激活(RRC_ACTIVE)状态。其中,
1)RRC_IDLE状态(简称为空闲(idle)态):移动性为基于UE的小区选择重选,寻呼由核心网(Core Network,CN)发起,寻呼区域由CN配置。基站侧不存在UE上下文,不存在RRC连接。
2)RRC_CONNECTED状态(简称为连接(connected)态):存在RRC连接,基站侧和UE侧存在UE上下文。网络侧知道UE的位置是具体小区级别的。移动性是网络侧控制的移动性。UE和基站之间可以传输单播数据。
3)RRC_INACTIVE状态(简称为非激活(inactive)态):移动性为基于UE的小区选择重选,存在CN-NR之间的连接,UE上下文存在某个基站上,寻呼由RAN触发,基于RAN的寻呼区域由RAN管理,网络侧知道UE的位置是基于RAN的寻呼区域级别的。
Figure PCTCN2021082195-appb-000002
多媒体广播多播服务(Multimedia Broadcast Multicast Service,MBMS)
MBMS是一种通过共享网络资源从一个数据源向多个终端设备传送数据的技术,该技术在提供多媒体业务的同时能有效地利用网络资源,实现较高速率(如256kbps)的多媒体业务的广播和组播。
由于MBMS频谱效率较低,不足以有效地承载和支撑手机电视类型业务的运营。因此在LTE中,3GPP明确提出增强对下行高速MBMS业务的支持能力,并确定了对物理层和空中接口的设计要求。
3GPP R9将演进的MBMS(evolved MBMS,eMBMS)引入到LTE中。eMBMS提出了单频率网络(Single Frequency Network,SFN)的概念,即多媒体广播多播服务单频率网络(Multimedia Broadcast multicast service Single Frequency Network,MBSFN),MBSFN采用统一频率在所有小区同时发送业务数据,但是要保证小区间的同步。这种方式可以极大的提高小区整体信噪比分布,频谱效率也会相应的大幅提高。eMBMS基于IP多播协议实现业务的广播和多播。
在LTE或增强的LTE(LTE-Advanced,LTE-A)中,MBMS只有广播承载模式,没有多播承载 模式。此外,MBMS业务的接收适用于空闲态或者连接态的终端设备。
3GPP R13中引入了单小区点对多点(Single Cell Point To Multiploint,SC-PTM)概念,SC-PTM基于MBMS网络架构。
MBMS引入了新的逻辑信道,包括单小区多播控制信道(Single Cell-Multicast Control Channel,SC-MCCH)和单小区多播传输信道(Single Cell-Multicast Transport Channel,SC-MTCH)。SC-MCCH和SC-MTCH被映射到下行共享信道(Downlink-Shared Channel,DL-SCH)上,进一步,DL-SCH被映射到物理下行共享信道(Physical Downlink Shared Channel,PDSCH)上,其中,SC-MCCH和SC-MTCH属于逻辑信道,DL-SCH属于传输信道,PDSCH属于物理信道。SC-MCCH和SC-MTCH不支持混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)操作。
MBMS引入了新的系统信息块(System Information Block,SIB)类型,即SIB20。具体地,通过SIB20来传输SC-MCCH的配置信息,一个小区只有一个SC-MCCH。SC-MCCH的配置信息包括:SC-MCCH的修改周期、SC-MCCH的重复周期、以及调度SC-MCCH的无线帧和子帧等信息。进一步,1)SC-MCCH的修改周期的边界满足SFN mod m=0,其中,SFN代表边界的系统帧号,m是SIB20中配置的SC-MCCH的修改周期(即sc-mcch-ModificationPeriod)。2)调度SC-MCCH的无线帧满足:SFN mod mcch-RepetitionPeriod=mcch-Offset,其中,SFN代表无线帧的系统帧号,mcch-RepetitionPeriod代表SC-MCCH的重复周期,mcch-Offset代表SC-MCCH的偏移量。3)调度SC-MCCH的子帧通过sc-mcch-Subframe指示。
SC-MCCH通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)调度。一方面,引入新的无线网络临时标识(Radio Network Tempory Identity,RNTI),即单小区RNTI(Single Cell RNTI,SC-RNTI)来识别用于调度SC-MCCH的PDCCH(如SC-MCCH PDCCH),可选地,SC-RNTI固定取值为FFFC。另一方面,引入新的RNTI,即单小区通知RNTI(Single Cell Notification RNTI,SC-N-RNTI)来识别用于指示SC-MCCH的变更通知的PDCCH(如通知PDCCH),可选地,SC-N-RNTI固定取值为FFFB;进一步,可以用DCI 1C的8个比特(bit)中的一个bit来指示变更通知。在LTE中,SC-PTM的配置信息基于SIB20配置的SC-MCCH,然后SC-MCCH配置SC-MTCH,SC-MTCH用于传输业务数据。
具体地,SC-MCCH只传输一个消息(即SCPTMConfiguration),该消息用于配置SC-PTM的配置信息。SC-PTM的配置信息包括:临时移动组标识(Temporary Mobile Group Identity,TMGI)、会话标识(seession id)、组RNTI(Group RNTI,G-RNTI)、非连续接收(Discontinuous Reception,DRX)配置信息以及邻区的SC-PTM业务信息等。需要说明的是,R13中的SC-PTM不支持健壮性包头压缩(Robust Header Compression,ROHC)功能。
SC-PTM的下行非连续的接收是通过以下参数控制的:onDurationTimerSCPTM、drx-InactivityTimerSCPTM、SC-MTCH-SchedulingCycle、以及SC-MTCH-SchedulingOffset。
当满足[(SFN*10)+subframe number]modulo(SC-MTCH-SchedulingCycle)=SC-MTCH-SchedulingOffset时,启动定时器onDurationTimerSCPTM;
当接收到下行PDCCH调度时,启动定时器drx-InactivityTimerSCPTM;
只有当定时器onDurationTimerSCPTM或drx-InactivityTimerSCPTM运行时才接收下行SC-PTM业务。
SC-PTM业务连续性采用基于SIB15的MBMS业务连续性概念,即“SIB15+MBMSInterestIndication”方式。空闲态的终端设备的业务连续性基于频率优先级的概念。
需要说明的是,上述方案虽然是以MBMS业务为例进行说明的,但本申请实施例的技术方案不局限于此。本申请实施例以MBS业务为例进行说明,“MBS业务”的描述也可以被替换为“多播业务”或者“组播业务”或者“MBMS业务”。
在NR系统中,很多场景需要支持组播类型和广播类型的业务需求,例如车联网中,工业互联网中等。所以在NR中引入组播类型和广播类型的MBS业务是有必要的。需要说明的是,组播类型的MBS业务是指通过组播方式传输的MBS业务。广播类型的MBS业务是指通过广播方式传输的MBS业务。
在NR系统中,对于组播类型的MBS业务来说,MBS业务是发给某个组中的所有终端设备。终端设备在RRC连接状态下接收组播类型的MBS业务,终端设备可以通过PTM方式或者PTP方式接收组播类型的MBS业务数据。其中,PTM方式的MBS业务数据通过网络侧配置的G-RNTI来加扰对应的调度信息,PTP方式的MBS业务数据通过C-RNTI来加扰对应的调度信息。
组播类型的MBS业务的可靠性要求比较高,如何保障MBS业务的高可靠性需要明确。为此, 提出了本申请实施例的以下技术方案。
本申请实施例的技术方案,提出了MBS业务的传输方式,即新传输通过PTM方式传输,重新传输通过PTP方式传输,换句话说,PTP传输可以作为PTM传输的重传。如何支持这种传输方式,使得终端设备可以正确对新传输和重新传输进行软合并从而达到最大接收增益需要明确。
需要说明的是,本申请实施例中,关于“新传输”的描述也可以替换为“初传”,关于“重新传输”的描述也可以替换为“重传”。
本申请实施例中,MSB业务通过组播方式传输,换句话说,MSB业务为组播类型的MBS业务。具体地,基站从共享隧道(tunnel)接收核心网下发的MBS业务后,可以将该MSB业务通过空口下发给一个组中的所有终端设备。这里,基站可以通过PTP方式和/或PTM方式将MSB业务下发给一个组中的所有终端设备。例如:一个组包括终端设备1、终端设备2和终端设备3,基站可以通过PTP方式将MBS业务下发给终端设备1,通过PTP方式将MBS业务下发给终端设备2,通过PTP方式将MBS业务下发给终端设备3;或者,基站可以通过PTP方式将MBS业务下发给终端设备1,通过PTM方式将MBS业务下发给终端设备2和终端设备3;或者,基站可以通过PTM方式将MBS业务下发给终端设备1,终端设备2以及终端设备3。参照图2,在核心网到基站之间采用一个共享的GTP隧道(Shared GTP tunnel)来传输MBS业务,即无论是PTM方式的MBS业务还是PTP方式的MBS业务都是共享这个GTP隧道的。基站按照PTM方式下发MBS业务数据给UE1和UE2,以及按照PTP方式下发MBS业务数据给UE3。
图3是本申请实施例提供的提高MBS业务可靠性的方法的流程示意图一,如图3所示,所述MBS业务可靠性的方法包括以下步骤:
步骤301:终端设备确定MBS业务的传输方式。
本申请实施例中,MBS业务的传输方式为:新传输通过PTM方式传输,重新传输通过PTP方式传输。换句话说,MBS业务的传输方式为:PTP传输用于PTM传输的重传。
这里,PTM方式对应的传输的调度信息通过G-RNTI加扰,PTP方式对应的传输的调度信息通过C-RNTI加扰。
本申请实施例中,终端设备可以通过以下方式确定MBS业务的传输方式:
终端设备接收网络设备发送的MBS业务的配置信息,基于所述MBS业务的配置信息确定MBS业务的传输方式;其中,所述MBS业务的配置信息包括第一信息,所述第一信息用于指示MBS业务的传输方式为:新传输通过PTM方式传输,重新传输通过PTP方式传输。
在本申请一些可选实施例中,所述MBS业务的配置信息通过RRC专用信令进行配置。
在一些可选实施方式中,所述MBS业务的配置信息包括以下至少之一:MBS业务的标识信息、MBS业务的信道配置信息。如此,终端设备可以基于MBS业务的配置信息,接收MBS业务数据。
在本申请一些可选实施例中,所述MBS业务的配置信息中的MBS业务的标识信息,用于所述终端设备确定接收哪个MBS业务。在一些示例中,MBS业务的标识信息可以是TMGI、G-RNTI等。
在本申请一些可选实施例中,所述MBS业务的配置信息中的MBS业务的信道配置信息,用于所述终端设备确定接收MBS业务的信道信息。在一些示例中,MBS业务的信道配置信息可以包括以下至少之一:MBS业务的控制信道的配置信息(如MCCH的配置信息)、MBS业务的业务信道(也称为数据信道或传输信道)的配置信息(如MTCH的配置信息)。
在本申请一些可选实施例中,所述MBS业务的配置信息还包括第二信息,所述第二信息用于指示MBS业务的协议栈架构为第一协议栈架构或者第二协议栈架构。如此,所述终端设备基于所述MBS业务的配置信息确定MBS业务的协议栈架构。
在本申请一些可选实施例中,如果网络侧未配置MBS业务的协议栈架构,则所述终端设备基于预定义信息确定MBS业务的协议栈架构为默认协议栈架构;其中,所述默认协议栈架构为第一协议栈架构或者第二协议栈架构。
以下对上述方案中的第一协议栈架构和第二协议栈架构进行说明。需要说明的是,以下协议栈架构仅为示例性说明,任何能够实现PTM方式和PTP方式的协议栈架构均可以应用于本申请实施例中。
第一协议栈架构
在所述第一协议栈架构中,PTM方式和PTP方式对应独立的物理(PHY)实体;PTM方式和PTP方式对应共享的分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)实体、无线链路控制(Radio Link Control,RLC)实体、以及媒体接入控制(Media Access Control,MAC) 实体。
进一步,可选地,PTM方式和PTP方式对应共享的服务数据适配协议(Service Data Adaptation Protocol,SDAP)实体。
在一个示例中,参照图4,图4为第一协议栈架构示意图,图4中省略了“实体”的描述,例如图4中的“PHY”表示的是“PHY实体”。MBS业务的PDU会话包括一个或多个Qos流,PDU会话的一个或多个Qos流可以通过SDAP实体映射到一个或者多个DRB上,其中,Qos流与DRB之间的映射关系可以是一对一,也可以是多对一。每个DRB对应一个逻辑信道,其中,不同的DRB通过不同的PDCP实体和RLC实体传输,也即不同的逻辑信道对应不同的PDCP实体和RLC实体。
需要说明的是,图4中,对于每个DRB,也可以不存在SDAP实体。也就是说,对于每个DRB,可以存在PDCP实体、或者存在PDCP实体+SDAP实体。MAC实体将MAC PDU(即一个TB数据)发送给PHY1实体,通过PHY1实体按照PTM方式发送;或者,MAC实体将MAC PDU发送给PHY2实体,通过PHY2实体按照PTP方式发送。
第二协议栈架构
在所述第二协议栈架构中,PTM方式和PTP方式对应独立的PHY实体以及RLC实体;PTM方式和PTP方式对应共享的PDCP实体以及MAC实体。
进一步,可选地,PTM方式和PTP方式对应共享的SDAP实体。
参照图5,图5为第二协议栈架构示意图,图4-3中省略了“实体”的描述,例如图4-3中的“PHY”表示的是“PHY实体”。MBS业务的PDU会话包括一个或多个Qos流,PDU会话的一个或多个Qos流可以通过SDAP实体映射到一个或者多个DRB上,其中,Qos流与DRB之间的映射关系可以是一对一,也可以是多对一。每个DRB对应一个逻辑信道,其中,不同的DRB通过不同的PDCP实体和RLC实体传输,也即不同的逻辑信道对应不同的PDCP实体和RLC实体。
需要说明的是,图5中,对于每个DRB,也可以不存在PDCP实体。也就是说,对于每个DRB,可以存在PDCP实体、或者存在PDCP实体+SDAP实体。PDCP实体将PDCP PDU发送给RLC1实体,RLC1实体将相应的RLC PDU传输给MAC实体,MAC实体将相应的MAC PDU传输给PHY1实体,通过PHY1实体按照PTM方式发送;或者,PDCP实体将PDCP PDU发送给RLC2实体,RLC2实体将相应的RLC PDU传输给MAC实体,MAC实体将相应的MAC PDU传输给PHY2实体,通过PHY2实体按照PTP方式发送。
需要说明的是,图5中的RLC1实体包括RLC11实体,RLC12实体,…,RLC1n实体,其中,不同的RLC实体对应不同的DRB(也即对应不同的逻辑信道)。图5中的RLC2实体包括RLC21实体,RLC22实体,…,RLC2n实体,其中,不同的RLC实体对应不同的DRB(也即对应不同的逻辑信道)。
步骤302:所述终端设备基于所述MBS业务的传输方式,确定第一传输为新传输还是重新传输。
本申请实施例中,终端设备基于MBS的业务配置接收MBS业务数据。具体地,所述终端设备接收第一RNTI加扰的第一下行调度信息,所述第一下行调度信息用于调度所述第一传输,所述第一下行调度信息携带第一新数据指示(New Data Indication,NDI);其中,所述MBS业务的传输方式为新传输通过PTM方式传输且重新传输通过PTP方式传输的情况下,所述终端设备基于所述第一RNTI和/或所述第一NDI,确定所述第一传输为新传输还是重新传输。以下对如何第一传输是何种类型的传输分情况进行说明。需要说明的是,本申请实施例中,关于“下行调度信息”的描述也可以替换为“DL grant”。
情况一:若所述第一RNTI为G-RNTI,则所述终端设备确定所述第一传输为新传输。
具体地,终端设备接收到G-RNTI加扰的第一下行调度信息,其中,第一下行调度信息中携带第一混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)进程标识和第一NDI。作为示例,第一HARQ进程标识可以表述为HARQ process id=k,即第一HARQ进程标识的取值为k。终端设备根据第一下行调度信息接收第一传输,这里,接收第一传输也可以理解为接收PDSCH上承载的MBS业务数据。由于调度第一传输的第一下行调度信息通过G-RNTI加扰,因而第一下行调度信息调度的第一传输为新传输。这里,无论第一下行调度信息之前的下行调度信息是通过C-RNTI加扰还是通过G-RNTI加扰,都认第一下行调度信息调度的第一传输为新传输,也即认为发生了NDI翻转。
举个例子:将下行调度信息的描述等效替换为DL Grant。此外,下行调度信息调度的传输,可以等效替换为DL Grant调度的传输块(Transport Block,TB)。
一个示例中,网络侧发送G-RNTI加扰的DL Grant 1,并发送DL Grant 1调度的TB1;终端 设备接收G-RNTI加扰的DL Grant 1,基于DL Grant 1接收TB1,对TB1解码成功,反馈HARQ-ACK信息;网络侧接收到HARQ-ACK信息后,发送G-RNTI加扰的DL Grant 2,并发送DL Grant 2调度的TB2;终端设备接收G-RNTI加扰的DL Grant 2,基于DL Grant 2接收一个TB2,认为TB2为新传输。
一个示例中,网络侧发送G-RNTI加扰的DL Grant 1,并发送DL Grant 1调度的TB1;终端设备接收G-RNTI加扰的DL Grant 1,基于DL Grant 1接收TB1,对TB1解码失败,反馈HARQ-NACK信息;网络侧接收到HARQ-NACK信息后,将PTM方式切换至PTP方式,发送C-RNTI加扰的DL Grant 2,并发送DL Grant 2调度的TB1;终端设备接收C-RNTI加扰的DL Grant 2,基于DL Grant 2接收TB1的重传,对TB1解码成功,反馈HARQ-ACK信息;网络侧接收到HARQ-ACK信息后,发送G-RNTI加扰的DL Grant 3,并发送DL Grant 3调度的TB2;终端设备接收G-RNTI加扰的DL Grant 3,基于DL Grant 3接收TB2,认为TB2为新传输。
在一个示例中,网络侧发送G-RNTI加扰的DL Grant 1,并发送DL Grant 1调度的TB1;终端设备没有接收到DL Grant 1且没有反馈任何HARQ反馈信息;网络侧在发送DL Grant 1后的一定时长内未接收到任何HARQ反馈信息,将PTM方式切换至PTP方式,发送C-RNTI加扰的DL Grant 2,并发送DL Grant 2调度的TB1;终端设备接收C-RNTI加扰的DL Grant 2,基于DL Grant 2接收TB1的重传,对TB1解码成功,反馈HARQ-ACK信息;网络侧接收到HARQ-ACK信息后,发送G-RNTI加扰的DL Grant 3,并发送DL Grant 3调度的TB2;终端设备接收G-RNTI加扰的DL Grant 3,基于DL Grant 3接收TB2,认为TB2为新传输。
在一个示例中,网络侧发送单播调度或者半持续调度(SPS)的TB1,而后,发送G-RNTI加扰的DL Grant 1,并发送DL Grant 1调度的TB1;终端设备接收G-RNTI加扰的DL Grant 1,基于DL Grant 1接收TB1,认为TB1为新传输。
需要说明的是,针对同一TB(或者说同一MBS业务数据)的传输(包括新传输和重新传输),对应的HARQ进程标识是相同的,HARQ进程标识携带在调度TB的DL Grant中。
需要说明的是,如果DL Grant通过G-RNTI加扰,则该DL Grant调度的TB是通过PTM方式传输的;如果DL Grant通过C-RNTI加扰,则该DL Grant调度的TB是通过PTP方式传输的。
情况二:若所述第一RNTI为C-RNTI,且所述第一NDI与第二NDI不同,则所述终端设备确定所述第一传输为新传输;其中,所述第二NDI携带在第二下行调度信息中,所述第二下行调度信息是所述终端设备在所述第一下行调度信息之前接收到的下行调度信息,所述第二下行调度信息用于调度第二传输,所述第二传输和所述第一传输均对应第一混合自动重传请求HARQ进程标识。
这里,所述第二下行调度信息通过G-RNTI加扰;或者,所述第二下行调度信息通过C-RNTI加扰。
具体地,终端设备接收到C-RNTI加扰的第一下行调度信息,其中,第一下行调度信息中携带第一HARQ进程标识和第一NDI。作为示例,第一HARQ进程标识可以表述为HARQ process id=k,即第一HARQ进程标识的取值为k。终端设备根据第一下行调度信息接收第一传输,这里,接收第一传输也可以理解为接收PDSCH上承载的MBS业务数据。由于调度第一传输的第一下行调度信息通过C-RNTI加扰,因而需要将第一下行调度信息中携带的第一NDI与之前接收到的第二下行调度信息中的携带的第二NDI进行比较,若第一NDI与第二NDI不同,则无论第二下行调度信息是通过C-RNTI加扰还是通过G-RNTI加扰,都认为第一下行调度信息调度的第一传输为新传输,也即认为发生了NDI翻转;若第一NDI与第二NDI相同,则认为第一下行调度信息调度的第一传输为重新传输,也即认为NDI不翻转。
举个例子:将下行调度信息的描述等效替换为DL Grant。此外,下行调度信息调度的传输,可以等效替换为DL Grant调度的TB。
一个示例中,网络侧发送G-RNTI加扰的DL Grant 1,并发送DL Grant 1调度的TB1;终端设备接收G-RNTI加扰的DL Grant 1,基于DL Grant 1接收TB1,对TB1解码成功,反馈HARQ-ACK信息;网络侧接收到HARQ-ACK信息后,发送C-RNTI加扰的DL Grant 2,并发送DL Grant 2调度的TB2;终端设备接收C-RNTI加扰的DL Grant 2,基于DL Grant 2接收一个TB2,由于DL Grant 2中携带的NDI与DL Grant 1中携带的NDI不同,因而认为TB2为新传输。
一个示例中,网络侧发送G-RNTI加扰的DL Grant 1,并发送DL Grant 1调度的TB1;终端设备接收G-RNTI加扰的DL Grant 1,基于DL Grant 1接收TB1,对TB1解码失败,反馈HARQ-NACK信息;网络侧接收到HARQ-NACK信息后,将PTM方式切换至PTP方式,发送C-RNTI加扰的DL Grant 2,并发送DL Grant 2调度的TB1;终端设备接收C-RNTI加扰的DL Grant 2,基于DL Grant 2 接收TB1的重传,对TB1解码成功,反馈HARQ-ACK信息;网络侧接收到HARQ-ACK信息后,发送C-RNTI加扰的DL Grant 3,并发送DL Grant 3调度的TB2;终端设备接收C-RNTI加扰的DL Grant 3,基于DL Grant 3接收TB2,由于DL Grant 3中携带的NDI与DL Grant 2中携带的NDI不同,因而认为TB2为新传输。
在一个示例中,网络侧发送G-RNTI加扰的DL Grant 1,并发送DL Grant 1调度的TB1;终端设备没有接收到DL Grant 1且没有反馈任何HARQ反馈信息;网络侧在发送DL Grant 1后的一定时长内未接收到任何HARQ反馈信息,将PTM方式切换至PTP方式,发送C-RNTI加扰的DL Grant 2,并发送DL Grant 2调度的TB1;终端设备接收C-RNTI加扰的DL Grant 2,基于DL Grant 2接收TB1的重传,对TB1解码成功,反馈HARQ-ACK信息;网络侧接收到HARQ-ACK信息后,发送C-RNTI加扰的DL Grant 3,并发送DL Grant 3调度的TB2;终端设备接收C-RNTI加扰的DL Grant 3,基于DL Grant 3接收TB2,由于DL Grant 3中携带的NDI与DL Grant 2中携带的NDI不同,因而认为TB2为新传输。
在一个示例中,网络侧发送单播调度或者半持续调度(SPS)的TB1,而后,发送C-RNTI加扰的DL Grant 1,并发送DL Grant 1调度的TB1;终端设备接收C-RNTI加扰的DL Grant 1,基于DL Grant 1接收TB1,认为TB1为新传输。
情况三:若所述第一RNTI为C-RNTI,且不存在与所述第一NDI关联的第二NDI,则所述终端设备确定所述第一传输为新传输;其中,所述第二NDI与所述第一NDI关联是指:所述第二NDI对应的HARQ进程标识和所述第一NDI对应的HARQ进程标识相同。
具体地,终端设备接收到C-RNTI加扰的第一下行调度信息,其中,第一下行调度信息中携带第一HARQ进程标识和第一NDI。作为示例,第一HARQ进程标识可以表述为HARQ process id=k,即第一HARQ进程标识的取值为k。终端设备根据第一下行调度信息接收第一传输,这里,接收第一传输也可以理解为接收PDSCH上承载的MBS业务数据。由于调度第一传输的第一下行调度信息通过C-RNTI加扰,因而需要将第一下行调度信息中携带的第一NDI与之前接收到的第二下行调度信息中的携带的第二NDI进行比较,然而,之前并接收到与第一下行调度信息关联同一HARQ进程标识的下行调度信息,没有能够与第一NDI进行比较的NDI,因而认为第一下行调度信息调度的第一传输为新传输。
在一些可选实施方式中,本申请实施例的技术方案还包括:
若所述第一传输为新传输,则所述终端设备对所述第一传输进行解码,得到解码结果;
若解码结果为解码成功,则所述终端设备反馈HARQ ACK信息;
若解码结果为解码失败,则所述终端设备反馈HARQ NACK信息,并将所述第一传输对应的数据存储到缓存中。
这里,解码是通过终端设备的物理层来实现的,终端设备根据物理层的解码结果向网络侧反馈HARQ NACK信息或者HARQ ACK信息。进一步,如果终端设备反馈的是HARQ NACK信息,那么终端设备存储所接收的数据软比特到HARQ缓存(buffer)内。
对于网络侧,基站通过PTM方式发送TB后,如果基站接收到某个终端设备反馈的针对该TB的HARQ NACK信息或者未接收到某个终端设备反馈的针对该TB的任何HARQ反馈信息,那么,基站会将该终端设备切换到PTP方式,通过PTP方式向该终端设备重传该TB。在PTP方式的重传调度中,TB的调度信息通过C-RNTI加扰,此外,TB的调度信息中携带的HARQ进程标识与之前PTM方式对应的调度信息中携带的HARQ进程标识相同,此外,TB的调度信息中携带的NDI的值与之前PTM方式对应的调度信息中携带的NDI的值也相同。
对于终端设备侧,所述终端设备未反馈HARQ ACK信息的情况下,所述终端设备接收C-RNTI加扰的第三下行调度信息,所述第三下行调度信息用于调度第三传输,所述第三传输和所述第一传输均对应第一HARQ进程标识;所述终端设备将所述第三传输对应的数据和缓存中的所述第一传输对应的数据进行软合并后解码,得到解码结果;若解码结果为解码成功,则所述终端设备反馈HARQ ACK信息;若解码结果为解码失败,则所述终端设备反馈HARQ NACK信息,并将所述第三传输对应的数据存储到所述缓存中。
举个例子:终端设备接收到C-RNTI加扰的第三下行调度信息,该第三下行调度信息中指示的第一HARQ进程标识,且第一HARQ进程标识对应的HARQ进程有缓存的数据,则终端设备将接收到的第三下行调度信息调度的数据和缓存的数据进行软合并后进行解码,基于解码结果判断是反馈HARQ ACK信息还是HARQ NACK信息。
对于网络侧,对于一个TB来说,综合考虑PTM方式对应的HARQ反馈和PTP方式对应的 HARQ反馈,如果MBS组中的全部终端设备针对该TB的HARQ反馈都是HARQ ACK信息,基站针对该TB的HARQ进程标识执行下一个TB的新传输。
本申请实施例中,上述方案中的解码结果为解码成功的情况下,所述终端设备获取到第一TB,可以理解,所述第一TB对应第一HARQ进程标识;所述终端设备从所述第一TB中获取第一MAC SDU以及所述MAC SDU对应的第一LCID;所述终端设备基于所述第一LCID和所述第一HARQ进程标识,确定所述第一MAC SDU待递交的RLC实体。
情况一
在一种情况下,所述第一HARQ进程标识属于第一HARQ进程标识集合,所述第一LCID属于第一LCID集合;所述第一HARQ进程标识集合与第二HARQ进程标识集合不重叠,所述第一LCID集合与第二LCID集合至少部分重叠;其中,所述第一HARQ进程标识集合和所述第一LCID集合用于MBS业务,所述第二HARQ进程标识集合和所述第二LCID集合用于单播业务。这里,单播业务例如是eMBB单播业务。
对于这种情况,用于MBS业务的HARQ进程标识集合和用于单播业务的HARQ进程标识集合不重叠,网络侧可以通过专用信令为终端设备配置专用于MBS业务的HARQ进程标识集合。
作为示例,HARQ进程标识集合中的HARQ进程标识从0到N,N为正整数,可以为MBS业务预留HARQ进程标识从0到k,k为大于等于0小于等于N的正整数,而其他HARQ进程标识用于单播业务。
终端设备基于所述第一HARQ进程标识属于所述第一HARQ进程标识集合,确定所述第一HARQ进程标识用于MBS业务;所述终端设备从MBS业务对应的RLC实体中,确定与所述第一LCID对应的RLC实体,作为所述第一MAC SDU待递交的RLC实体。
例如:总共有4个RLC实体,其中,RLC实体1和RLC实体2为MBS业务对应的RLC实体,RLC实体3和RLC实体4为单播业务对应的RLC实体,RLC实体1对应LCID1,RLC实体2对应LCID2,RLC实体3对应LCID1,RLC实体4对应LCID2。终端设备解码得到TB,从该TB中获取MAC SDU以及对应的LCID1,根据该TB对应的HARQ进程标识可以确定其属于MBS业务的TB,从RLC实体1和RLC实体2中确定LCID1对应RLC实体1,将MAC SDU递交给RLC实体1。
情况二
在一种情况下,所述第一HARQ进程标识属于第一HARQ进程标识集合,所述第一LCID属于第一LCID集合;所述第一HARQ进程标识集合与第二HARQ进程标识集合至少部分重叠,所述第一LCID集合与第二LCID集合不重叠;其中,所述第一HARQ进程标识集合和所述第一LCID集合用于MBS业务,所述第二HARQ进程标识集合和所述第二LCID集合用于单播业务。
对于这种情况,用于MBS业务的HARQ进程标识集合和用于单播业务的HARQ进程标识集合至少部分重叠,例如完全重叠。但是,用于MBS业务的LCID集合和用于单播业务的LCID集合不重叠,网络侧可以通过专用信令为终端设备配置专用于MBS业务的LCID集合。
终端设备从MBS业务对应的RLC实体以及单播业务对应的RLC实体中,确定与所述第一LCID对应的RLC实体,作为所述第一MAC SDU待递交的RLC实体。
例如:总共有4个RLC实体,其中,RLC实体1和RLC实体2为MBS业务对应的RLC实体,RLC实体3和RLC实体4为单播业务对应的RLC实体,RLC实体1对应LCID1,RLC实体2对应LCID2,RLC实体3对应LCID3,RLC实体4对应LCID4。终端设备解码得到TB,从该TB中获取MAC SDU以及对应的LCID1,根据该TB对应的HARQ进程标识无法确定其属于哪个MBS业务,可以直接根据LCID1从全部的RLC实体中确定LCID1对应RLC实体1,将MAC SDU递交给RLC实体1。
图6是本申请实施例提供的提高MBS业务可靠性的方法的流程示意图二,如图6所示,所述MBS业务可靠性的方法包括以下步骤:
步骤601:网络设备确定MBS业务的传输方式为:新传输通过PTM方式传输,重新传输通过PTP方式传输。
步骤602:所述网络设备基于所述MBS业务的传输方式,调度所述MBS业务的传输。
本申请实施例中,所述网络设备通过PTM方式调度第一业务数据的新传输;和/或,所述网络设备通过PTP方式调度第一业务数据的重传输;其中,所述第一业务数据为所述MBS业务的业务数据。
在一些可选实施方式中,所述网络设备发送G-RNTI加扰的第一下行调度信息,所述第一下行 调度信息用于调度第一业务数据的新传输,所述第一下行调度信息携带第一HARQ进程标识。
在一些可选实施方式中,所述网络设备发送C-RNTI加扰的第三下行调度信息,所述第三下行调度信息用于调度所述第一业务数据的重传输,所述第三下行调度信息携带所述第一HARQ进程标识。进一步,所述第三下行调度信息中携带的NDI与所述第一下行调度信中携带的NDI相同。
本申请实施例中,对于MBS业务来说,接收该MBS业务的多个终端设备称为MBS组,在MBS组中,有些终端设备需要进行重传,而有些终端设备不需要进行重传,对于需要进行重传的终端设备来说,采用PTP方式进行传输。具体地,所述网络设备向至少一个终端设备中的每个终端设备分别通过PTP方式调度所述第一业务数据的重传输;其中,所述至少一个终端设备为MBS组中的至少一个终端设备。
这里,所述至少一个终端设备包括:针对所述第一业务数据反馈了HARQ NACK信息的至少一个终端设备;和/或,针对所述第一业务数据未反馈HARQ反馈信息的至少一个终端设备。
作为示例,MBS组包括4个UE1、UE2、UE3和UE4,基站通过PTM方式向MBS组发送TB1,基站接收到UE1和UE4反馈的针对TB1的HARQ ACK信息,接收到UE2反馈的针对TB1的HARQ NACK信息,未接收到UE3反馈的针对TB1的任何HARQ反馈信息。基站通过PTP方式分别向UE2和UE3进行TB1的重传调度,具体地,基站向UE2和UE2分别发送C-RNTI加扰的调度信息,该调度信息用于调度TB1的重新传输。
本申请实施例中,所述网络设备接收到MBS组中的全部终端设备反馈的针对所述第一业务数据的HARQ ACK信息的情况下,通过PTM方式调度第二业务数据的新传输,所述第二业务数据是所述第一业务数据的下一个待传输的数据。
作为示例,MBS组包括4个UE1、UE2、UE3和UE4,基站通过PTM方式向MBS组发送TB1,基站接收到UE1和UE4反馈的针对TB1的HARQ ACK信息,接收到UE2反馈的针对TB1的HARQ NACK信息,未接收到UE3反馈的针对TB1的任何HARQ反馈信息。基站通过PTP方式分别向UE2和UE3进行TB1的重传调度,而后,基站接收到UE2和UE3反馈的针对TB1的HARQ ACK信息。至此,基站接收到MBS组中的全部UE反馈的针对TB1的HARQ ACK信息,进行下一个TB2的新传输。这里,TB2的HARQ进行标识可以采用之前TB1的HARQ进行标识。TB2的新传输可以采用PTM方式。
需要说明的是,上述图6相关的技术方案可以与图3相关的技术方案进行任何结合来实施。
图7是本申请实施例提供的提高MBS业务可靠性的装置的结构组成示意图一,应用于终端设备,如图7所示,所述提高MBS业务可靠性的装置包括:
确定单元701,用于MBS业务的传输方式;基于所述MBS业务的传输方式,确定第一传输为新传输还是重新传输。
在一些可选实施方式中,所述装置还包括:
接收单元702,用于接收网络设备发送的MBS业务的配置信息;其中,所述MBS业务的配置信息包括第一信息,所述第一信息用于指示MBS业务的传输方式为:新传输通过PTM方式传输,重新传输通过PTP方式传输;
所述确定单元701,用于基于所述MBS业务的配置信息确定MBS业务的传输方式。
在一些可选实施方式中,所述确定单元701,还用于基于所述MBS业务的配置信息确定MBS业务的协议栈架构;
其中,所述MBS业务的配置信息还包括第二信息,所述第二信息用于指示MBS业务的协议栈架构为第一协议栈架构或者第二协议栈架构。
在一些可选实施方式中,所述确定单元701,还用于基于预定义信息确定MBS业务的协议栈架构为默认协议栈架构;
其中,所述默认协议栈架构为第一协议栈架构或者第二协议栈架构。
在一些可选实施方式中,在所述第一协议栈架构中,
PTM方式和PTP方式对应独立的PHY实体;
PTM方式和PTP方式对应共享的PDCP实体、RLC实体、以及MAC实体。
在一些可选实施方式中,在所述第二协议栈架构中,
PTM方式和PTP方式对应独立的PHY实体以及RLC实体;
PTM方式和PTP方式对应共享的PDCP实体以及MAC实体。
在一些可选实施方式中,所述装置还包括:
接收单元702,用于接收第一RNTI加扰的第一下行调度信息,所述第一下行调度信息用于 调度所述第一传输,所述第一下行调度信息携带第一NDI;
所述确定单元701,用于在所述MBS业务的传输方式为新传输通过PTM方式传输且重新传输通过PTP方式传输的情况下,基于所述第一RNTI和/或所述第一NDI,确定所述第一传输为新传输还是重新传输。
在一些可选实施方式中,所述确定单元701,用于若所述第一RNTI为组无线网络临时标识G-RNTI,则确定所述第一传输为新传输。
在一些可选实施方式中,所述确定单元701,用于若所述第一RNTI为C-RNTI,且所述第一NDI与第二NDI不同,则确定所述第一传输为新传输;
其中,所述第二NDI携带在第二下行调度信息中,所述第二下行调度信息是所述终端设备在所述第一下行调度信息之前接收到的下行调度信息,所述第二下行调度信息用于调度第二传输,所述第二传输和所述第一传输均对应第一HARQ进程标识。
在一些可选实施方式中,所述第二下行调度信息通过G-RNTI加扰;或者,
所述第二下行调度信息通过C-RNTI加扰。
在一些可选实施方式中,所述确定单元701,用于若所述第一RNTI为C-RNTI,且不存在与所述第一NDI关联的第二NDI,则确定所述第一传输为新传输;
其中,所述第二NDI与所述第一NDI关联是指:所述第二NDI对应的HARQ进程标识和所述第一NDI对应的HARQ进程标识相同。
在一些可选实施方式中,所述装置还包括:
解码单元,用于若所述第一传输为新传输,则对所述第一传输进行解码,得到解码结果;
反馈单元,用于若解码结果为解码成功,则反馈HARQ ACK信息;若解码结果为解码失败,则反馈HARQ NACK信息;
存储单元,用于若解码结果为解码失败,则将所述第一传输对应的数据存储到缓存中。
在一些可选实施方式中,所述接收单元701,还用于接收C-RNTI加扰的第三下行调度信息,所述第三下行调度信息用于调度第三传输,所述第三传输和所述第一传输均对应第一HARQ进程标识;
所述解码单元,还用于将所述第三传输对应的数据和缓存中的所述第一传输对应的数据进行软合并后解码,得到解码结果;
所述反馈单元,还用于若解码结果为解码成功,则所述终端设备反馈HARQ ACK信息;若解码结果为解码失败,则所述终端设备反馈HARQ NACK信息;
所述存储单元,还用于若解码结果为解码失败,则将所述第三传输对应的数据存储到所述缓存中。
在一些可选实施方式中,所述解码结果为解码成功的情况下,所述解码单元获取到第一TB,所述第一TB对应第一HARQ进程标识;
所述解码单元,还用于从所述第一TB中获取第一MAC SDU以及所述MAC SDU对应的第一LCID;
所述确定单元701,还用于基于所述第一LCID和所述第一HARQ进程标识,确定所述第一MAC SDU待递交的RLC实体。
在一些可选实施方式中,所述第一HARQ进程标识属于第一HARQ进程标识集合,所述第一LCID属于第一LCID集合;
所述第一HARQ进程标识集合与第二HARQ进程标识集合不重叠,所述第一LCID集合与第二LCID集合至少部分重叠;
其中,所述第一HARQ进程标识集合和所述第一LCID集合用于MBS业务,所述第二HARQ进程标识集合和所述第二LCID集合用于单播业务。
在一些可选实施方式中,所述确定单元701,用于基于所述第一HARQ进程标识属于所述第一HARQ进程标识集合,确定所述第一HARQ进程标识用于MBS业务;从MBS业务对应的RLC实体中,确定与所述第一LCID对应的RLC实体,作为所述第一MAC SDU待递交的RLC实体。
在一些可选实施方式中,所述第一HARQ进程标识属于第一HARQ进程标识集合,所述第一LCID属于第一LCID集合;
所述第一HARQ进程标识集合与第二HARQ进程标识集合至少部分重叠,所述第一LCID集合与第二LCID集合不重叠;
其中,所述第一HARQ进程标识集合和所述第一LCID集合用于MBS业务,所述第二HARQ 进程标识集合和所述第二LCID集合用于单播业务。
在一些可选实施方式中,所述确定单元701,用于从MBS业务对应的RLC实体以及单播业务对应的RLC实体中,确定与所述第一LCID对应的RLC实体,作为所述第一MAC SDU待递交的RLC实体。
本领域技术人员应当理解,本申请实施例的上述提高MBS业务可靠性的装置的相关描述可以参照本申请实施例的提高MBS业务可靠性的方法的相关描述进行理解。
图8是本申请实施例提供的提高MBS业务可靠性的装置的结构组成示意图二,应用于网络设备,如图8所示,所述提高MBS业务可靠性的装置包括:
确定单元801,用于确定MBS业务的传输方式为:新传输通过PTM方式传输,重新传输通过PTP方式传输;
调度单元802,用于基于所述MBS业务的传输方式,调度所述MBS业务的传输。
在一些可选实施方式中,所述调度单元802,用于通过PTM方式调度第一业务数据的新传输;和/或,通过PTP方式调度第一业务数据的重传输;
其中,所述第一业务数据为所述MBS业务的业务数据。
在一些可选实施方式中,所述调度单元802,用于发送G-RNTI加扰的第一下行调度信息,所述第一下行调度信息用于调度第一业务数据的新传输,所述第一下行调度信息携带第一HARQ进程标识。
在一些可选实施方式中,所述调度单元802,用于发送C-RNTI加扰的第三下行调度信息,所述第三下行调度信息用于调度所述第一业务数据的重传输,所述第三下行调度信息携带所述第一HARQ进程标识。
在一些可选实施方式中,所述第三下行调度信息中携带的NDI与所述第一下行调度信中携带的NDI相同。
在一些可选实施方式中,所述调度单元802,用于向至少一个终端设备中的每个终端设备分别通过PTP方式调度所述第一业务数据的重传输;其中,所述至少一个终端设备为MBS组中的至少一个终端设备。
在一些可选实施方式中,所述至少一个终端设备包括:
针对所述第一业务数据反馈了HARQ NACK信息的至少一个终端设备;和/或,
针对所述第一业务数据未反馈HARQ反馈信息的至少一个终端设备。
在一些可选实施方式中,所述调度单元802,还用于在接收到MBS组中的全部终端设备反馈的针对所述第一业务数据的HARQ ACK信息的情况下,通过PTM方式调度第二业务数据的新传输,所述第二业务数据是所述第一业务数据的下一个待传输的数据。
本领域技术人员应当理解,本申请实施例的上述提高MBS业务可靠性的装置的相关描述可以参照本申请实施例的提高MBS业务可靠性的方法的相关描述进行理解。
图9是本申请实施例提供的一种通信设备900示意性结构图。该通信设备可以是终端设备,也可以是网络设备,图9所示的通信设备900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,通信设备900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
可选地,如图9所示,通信设备900还可以包括收发器930,处理器910可以控制该收发器930与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器930可以包括发射机和接收机。收发器930还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备900具体可为本申请实施例的网络设备,并且该通信设备900可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备900具体可为本申请实施例的移动终端/终端设备,并且该通信设备900可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图10是本申请实施例的芯片的示意性结构图。图10所示的芯片1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,芯片1000还可以包括存储器1020。其中,处理器1010可以从存储器 1020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,该芯片1000还可以包括输入接口1030。其中,处理器1010可以控制该输入接口1030与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1000还可以包括输出接口1040。其中,处理器1010可以控制该输出接口1040与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图11是本申请实施例提供的一种通信系统1100的示意性框图。如图11所示,该通信系统1100包括终端设备1110和网络设备1120。
其中,该终端设备1110可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1120可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (62)

  1. 一种提高多播广播服务提高MBS业务可靠性的方法,所述方法包括:
    终端设备确定MBS业务的传输方式;
    所述终端设备基于所述MBS业务的传输方式,确定第一传输为新传输还是重新传输。
  2. 根据权利要求1所述的方法,其中,所述终端设备确定MBS业务的传输方式,包括:
    终端设备接收网络设备发送的MBS业务的配置信息,基于所述MBS业务的配置信息确定MBS业务的传输方式;
    其中,所述MBS业务的配置信息包括第一信息,所述第一信息用于指示MBS业务的传输方式为:新传输通过点对多点PTM方式传输,重新传输通过点对点PTP方式传输。
  3. 根据权利要求2所述的方法,其中,所述方法还包括:
    所述终端设备基于所述MBS业务的配置信息确定MBS业务的协议栈架构;
    其中,所述MBS业务的配置信息还包括第二信息,所述第二信息用于指示MBS业务的协议栈架构为第一协议栈架构或者第二协议栈架构。
  4. 根据权利要求2所述的方法,其中,所述方法还包括:
    所述终端设备基于预定义信息确定MBS业务的协议栈架构为默认协议栈架构;
    其中,所述默认协议栈架构为第一协议栈架构或者第二协议栈架构。
  5. 根据权利要求3或4所述的方法,其中,在所述第一协议栈架构中,
    PTM方式和PTP方式对应独立的物理PHY实体;
    PTM方式和PTP方式对应共享的分组数据汇聚协议PDCP实体、无线链路控制RLC实体、以及媒体接入控制MAC实体。
  6. 根据权利要求3或4所述的方法,其中,在所述第二协议栈架构中,
    PTM方式和PTP方式对应独立的PHY实体以及RLC实体;
    PTM方式和PTP方式对应共享的PDCP实体以及MAC实体。
  7. 根据权利要求1至6中任一项所述的方法,其中,
    所述方法还包括:所述终端设备接收第一无线网络临时标识RNTI加扰的第一下行调度信息,所述第一下行调度信息用于调度所述第一传输,所述第一下行调度信息携带第一新数据指示NDI;
    所述终端设备基于所述MBS业务的传输方式,确定第一传输为新传输还是重新传输,包括:所述MBS业务的传输方式为新传输通过PTM方式传输且重新传输通过PTP方式传输的情况下,所述终端设备基于所述第一RNTI和/或所述第一NDI,确定所述第一传输为新传输还是重新传输。
  8. 根据权利要求7所述的方法,其中,所述终端设备基于所述第一RNTI和/或所述第一NDI,确定所述第一传输为新传输还是重新传输,包括:
    若所述第一RNTI为G-RNTI,则所述终端设备确定所述第一传输为新传输。
  9. 根据权利要求7所述的方法,其中,所述终端设备基于所述第一RNTI和/或所述第一NDI,确定所述第一传输为新传输还是重新传输,包括:
    若所述第一RNTI为C-RNTI,且所述第一NDI与第二NDI不同,则所述终端设备确定所述第一传输为新传输;
    其中,所述第二NDI携带在第二下行调度信息中,所述第二下行调度信息是所述终端设备在所述第一下行调度信息之前接收到的下行调度信息,所述第二下行调度信息用于调度第二传输,所述第二传输和所述第一传输均对应第一混合自动重传请求HARQ进程标识。
  10. 根据权利要求9所述的方法,其中,
    所述第二下行调度信息通过G-RNTI加扰;或者,
    所述第二下行调度信息通过小区无线网络临时标识C-RNTI加扰。
  11. 根据权利要求7所述的方法,其中,所述终端设备基于所述第一RNTI和/或所述第一NDI,确定所述第一传输为新传输还是重新传输,包括:
    若所述第一RNTI为C-RNTI,且不存在与所述第一NDI关联的第二NDI,则所述终端设备确定所述第一传输为新传输;
    其中,所述第二NDI与所述第一NDI关联是指:所述第二NDI对应的HARQ进程标识和所述第一NDI对应的HARQ进程标识相同。
  12. 根据权利要求8至11中任一项所述的方法,其中,所述方法还包括:
    若所述第一传输为新传输,则所述终端设备对所述第一传输进行解码,得到解码结果;
    若解码结果为解码成功,则所述终端设备反馈HARQ ACK信息;
    若解码结果为解码失败,则所述终端设备反馈HARQ NACK信息,并将所述第一传输对应的数据存储到缓存中。
  13. 根据权利要求12所述的方法,其中,所述终端设备未反馈HARQ ACK信息的情况下,所述方法还包括:
    所述终端设备接收C-RNTI加扰的第三下行调度信息,所述第三下行调度信息用于调度第三传输,所述第三传输和所述第一传输均对应第一HARQ进程标识;
    所述终端设备将所述第三传输对应的数据和缓存中的所述第一传输对应的数据进行软合并后解码,得到解码结果;
    若解码结果为解码成功,则所述终端设备反馈HARQ ACK信息;
    若解码结果为解码失败,则所述终端设备反馈HARQ NACK信息,并将所述第三传输对应的数据存储到所述缓存中。
  14. 根据权利要求12或13所述的方法,其中,所述解码结果为解码成功的情况下,所述终端设备获取到第一传输块TB,所述第一TB对应第一HARQ进程标识;所述方法还包括:
    所述终端设备从所述第一TB中获取第一MAC业务数据单元SDU以及所述MAC SDU对应的第一逻辑信道标识LCID;
    所述终端设备基于所述第一LCID和所述第一HARQ进程标识,确定所述第一MAC SDU待递交的RLC实体。
  15. 根据权利要求14所述的方法,其中,所述第一HARQ进程标识属于第一HARQ进程标识集合,所述第一LCID属于第一LCID集合;
    所述第一HARQ进程标识集合与第二HARQ进程标识集合不重叠,所述第一LCID集合与第二LCID集合至少部分重叠;
    其中,所述第一HARQ进程标识集合和所述第一LCID集合用于MBS业务,所述第二HARQ进程标识集合和所述第二LCID集合用于单播业务。
  16. 根据权利要求15所述的方法,其中,所述终端设备基于所述第一LCID和所述第一HARQ进程标识,确定所述第一MAC SDU待递交的RLC实体,包括:
    所述终端设备基于所述第一HARQ进程标识属于所述第一HARQ进程标识集合,确定所述第一HARQ进程标识用于MBS业务;
    所述终端设备从MBS业务对应的RLC实体中,确定与所述第一LCID对应的RLC实体,作为所述第一MAC SDU待递交的RLC实体。
  17. 根据权利要求14所述的方法,其中,所述第一HARQ进程标识属于第一HARQ进程标识集合,所述第一LCID属于第一LCID集合;
    所述第一HARQ进程标识集合与第二HARQ进程标识集合至少部分重叠,所述第一LCID集合与第二LCID集合不重叠;
    其中,所述第一HARQ进程标识集合和所述第一LCID集合用于MBS业务,所述第二HARQ进程标识集合和所述第二LCID集合用于单播业务。
  18. 根据权利要求17所述的方法,其中,所述终端设备基于所述第一LCID和所述第一HARQ进程标识,确定所述第一MAC SDU待递交的RLC实体,包括:
    所述终端设备从MBS业务对应的RLC实体以及单播业务对应的RLC实体中,确定与所述第一LCID对应的RLC实体,作为所述第一MAC SDU待递交的RLC实体。
  19. 一种提高MBS业务可靠性的方法,所述方法包括:
    网络设备确定MBS业务的传输方式为:新传输通过PTM方式传输,重新传输通过PTP方式传输;
    所述网络设备基于所述MBS业务的传输方式,调度所述MBS业务的传输。
  20. 根据权利要求19所述的方法,其中,所述网络设备基于所述MBS业务的传输方式,调度所述MBS业务的传输,包括:
    所述网络设备通过PTM方式调度第一业务数据的新传输;和/或,
    所述网络设备通过PTP方式调度第一业务数据的重传输;
    其中,所述第一业务数据为所述MBS业务的业务数据。
  21. 根据权利要求20所述的方法,其中,所述网络设备通过PTM方式调度第一业务数据的新传输,包括:
    所述网络设备发送G-RNTI加扰的第一下行调度信息,所述第一下行调度信息用于调度第一业务数据的新传输,所述第一下行调度信息携带第一HARQ进程标识。
  22. 根据权利要求21所述的方法,其中,所述网络设备通过PTP方式调度第一业务数据的重传输,包括:
    所述网络设备发送C-RNTI加扰的第三下行调度信息,所述第三下行调度信息用于调度所述第一业务数据的重传输,所述第三下行调度信息携带所述第一HARQ进程标识。
  23. 根据权利要求22所述的方法,其中,所述第三下行调度信息中携带的NDI与所述第一下行调度信中携带的NDI相同。
  24. 根据权利要求20至23中任一项所述的方法,其中,所述网络设备通过PTP方式调度第一业务数据的重传输,包括:
    所述网络设备向至少一个终端设备中的每个终端设备分别通过PTP方式调度所述第一业务数据的重传输;其中,所述至少一个终端设备为MBS组中的至少一个终端设备。
  25. 根据权利要求24所述的方法,其中,所述至少一个终端设备包括:
    针对所述第一业务数据反馈了HARQ NACK信息的至少一个终端设备;和/或,
    针对所述第一业务数据未反馈HARQ反馈信息的至少一个终端设备。
  26. 根据权利要求20至25中任一项所述的方法,其中,所述方法还包括:
    所述网络设备接收到MBS组中的全部终端设备反馈的针对所述第一业务数据的HARQ ACK信息的情况下,通过PTM方式调度第二业务数据的新传输,所述第二业务数据是所述第一业务数据的下一个待传输的数据。
  27. 一种提高MBS业务可靠性的装置,应用于终端设备,所述装置包括:
    确定单元,用于MBS业务的传输方式;基于所述MBS业务的传输方式,确定第一传输为新传输还是重新传输。
  28. 根据权利要求27所述的装置,其中,所述装置还包括:
    接收单元,用于接收网络设备发送的MBS业务的配置信息;其中,所述MBS业务的配置信息包括第一信息,所述第一信息用于指示MBS业务的传输方式为:新传输通过PTM方式传输,重新传输通过PTP方式传输;
    所述确定单元,用于基于所述MBS业务的配置信息确定MBS业务的传输方式。
  29. 根据权利要求28所述的装置,其中,所述确定单元,还用于基于所述MBS业务的配置信息确定MBS业务的协议栈架构;
    其中,所述MBS业务的配置信息还包括第二信息,所述第二信息用于指示MBS业务的协议栈架构为第一协议栈架构或者第二协议栈架构。
  30. 根据权利要求28所述的装置,其中,所述确定单元,还用于基于预定义信息确定MBS业务的协议栈架构为默认协议栈架构;
    其中,所述默认协议栈架构为第一协议栈架构或者第二协议栈架构。
  31. 根据权利要求29或30所述的装置,其中,在所述第一协议栈架构中,
    PTM方式和PTP方式对应独立的PHY实体;
    PTM方式和PTP方式对应共享的PDCP实体、RLC实体、以及MAC实体。
  32. 根据权利要求29或30所述的装置,其中,在所述第二协议栈架构中,
    PTM方式和PTP方式对应独立的PHY实体以及RLC实体;
    PTM方式和PTP方式对应共享的PDCP实体以及MAC实体。
  33. 根据权利要求27至32中任一项所述的装置,其中,所述装置还包括:
    接收单元,用于接收第一RNTI加扰的第一下行调度信息,所述第一下行调度信息用于调度所述第一传输,所述第一下行调度信息携带第一NDI;
    所述确定单元,用于在所述MBS业务的传输方式为新传输通过PTM方式传输且重新传输通过PTP方式传输的情况下,基于所述第一RNTI和/或所述第一NDI,确定所述第一传输为新传输还是重新传输。
  34. 根据权利要求33所述的装置,其中,所述确定单元,用于若所述第一RNTI为组无线网络临时标识G-RNTI,则确定所述第一传输为新传输。
  35. 根据权利要求33所述的装置,其中,所述确定单元,用于若所述第一RNTI为C-RNTI, 且所述第一NDI与第二NDI不同,则确定所述第一传输为新传输;
    其中,所述第二NDI携带在第二下行调度信息中,所述第二下行调度信息是所述终端设备在所述第一下行调度信息之前接收到的下行调度信息,所述第二下行调度信息用于调度第二传输,所述第二传输和所述第一传输均对应第一HARQ进程标识。
  36. 根据权利要求35所述的装置,其中,
    所述第二下行调度信息通过G-RNTI加扰;或者,
    所述第二下行调度信息通过C-RNTI加扰。
  37. 根据权利要求33所述的装置,其中,所述确定单元,用于若所述第一RNTI为C-RNTI,且不存在与所述第一NDI关联的第二NDI,则确定所述第一传输为新传输;
    其中,所述第二NDI与所述第一NDI关联是指:所述第二NDI对应的HARQ进程标识和所述第一NDI对应的HARQ进程标识相同。
  38. 根据权利要求34至37中任一项所述的装置,其中,所述装置还包括:
    解码单元,用于若所述第一传输为新传输,则对所述第一传输进行解码,得到解码结果;
    反馈单元,用于若解码结果为解码成功,则反馈HARQ ACK信息;若解码结果为解码失败,则反馈HARQ NACK信息;
    存储单元,用于若解码结果为解码失败,则将所述第一传输对应的数据存储到缓存中。
  39. 根据权利要求38所述的装置,其中,
    所述接收单元,还用于接收C-RNTI加扰的第三下行调度信息,所述第三下行调度信息用于调度第三传输,所述第三传输和所述第一传输均对应第一HARQ进程标识;
    所述解码单元,还用于将所述第三传输对应的数据和缓存中的所述第一传输对应的数据进行软合并后解码,得到解码结果;
    所述反馈单元,还用于若解码结果为解码成功,则所述终端设备反馈HARQ ACK信息;若解码结果为解码失败,则所述终端设备反馈HARQ NACK信息;
    所述存储单元,还用于若解码结果为解码失败,则将所述第三传输对应的数据存储到所述缓存中。
  40. 根据权利要求38或39所述的装置,其中,所述解码结果为解码成功的情况下,所述解码单元获取到第一TB,所述第一TB对应第一HARQ进程标识;
    所述解码单元,还用于从所述第一TB中获取第一MAC SDU以及所述MAC SDU对应的第一LCID;
    所述确定单元,还用于基于所述第一LCID和所述第一HARQ进程标识,确定所述第一MAC SDU待递交的RLC实体。
  41. 根据权利要求40所述的装置,其中,所述第一HARQ进程标识属于第一HARQ进程标识集合,所述第一LCID属于第一LCID集合;
    所述第一HARQ进程标识集合与第二HARQ进程标识集合不重叠,所述第一LCID集合与第二LCID集合至少部分重叠;
    其中,所述第一HARQ进程标识集合和所述第一LCID集合用于MBS业务,所述第二HARQ进程标识集合和所述第二LCID集合用于单播业务。
  42. 根据权利要求41所述的装置,其中,所述确定单元,用于基于所述第一HARQ进程标识属于所述第一HARQ进程标识集合,确定所述第一HARQ进程标识用于MBS业务;从MBS业务对应的RLC实体中,确定与所述第一LCID对应的RLC实体,作为所述第一MAC SDU待递交的RLC实体。
  43. 根据权利要求40所述的装置,其中,所述第一HARQ进程标识属于第一HARQ进程标识集合,所述第一LCID属于第一LCID集合;
    所述第一HARQ进程标识集合与第二HARQ进程标识集合至少部分重叠,所述第一LCID集合与第二LCID集合不重叠;
    其中,所述第一HARQ进程标识集合和所述第一LCID集合用于MBS业务,所述第二HARQ进程标识集合和所述第二LCID集合用于单播业务。
  44. 根据权利要求43所述的装置,其中,所述确定单元,用于从MBS业务对应的RLC实体以及单播业务对应的RLC实体中,确定与所述第一LCID对应的RLC实体,作为所述第一MAC SDU待递交的RLC实体。
  45. 一种提高MBS业务可靠性的装置,应用于网络设备,所述装置包括:
    确定单元,用于确定MBS业务的传输方式为:新传输通过PTM方式传输,重新传输通过PTP方式传输;
    调度单元,用于基于所述MBS业务的传输方式,调度所述MBS业务的传输。
  46. 根据权利要求45所述的装置,其中,所述调度单元,用于通过PTM方式调度第一业务数据的新传输;和/或,通过PTP方式调度第一业务数据的重传输;
    其中,所述第一业务数据为所述MBS业务的业务数据。
  47. 根据权利要求46所述的装置,其中,所述调度单元,用于发送G-RNTI加扰的第一下行调度信息,所述第一下行调度信息用于调度第一业务数据的新传输,所述第一下行调度信息携带第一HARQ进程标识。
  48. 根据权利要求47所述的装置,其中,所述调度单元,用于发送C-RNTI加扰的第三下行调度信息,所述第三下行调度信息用于调度所述第一业务数据的重传输,所述第三下行调度信息携带所述第一HARQ进程标识。
  49. 根据权利要求48所述的装置,其中,所述第三下行调度信息中携带的NDI与所述第一下行调度信中携带的NDI相同。
  50. 根据权利要求46至49中任一项所述的装置,其中,所述调度单元,用于向至少一个终端设备中的每个终端设备分别通过PTP方式调度所述第一业务数据的重传输;其中,所述至少一个终端设备为MBS组中的至少一个终端设备。
  51. 根据权利要求50所述的装置,其中,所述至少一个终端设备包括:
    针对所述第一业务数据反馈了HARQ NACK信息的至少一个终端设备;和/或,
    针对所述第一业务数据未反馈HARQ反馈信息的至少一个终端设备。
  52. 根据权利要求46至51中任一项所述的装置,其中,所述调度单元,还用于在接收到MBS组中的全部终端设备反馈的针对所述第一业务数据的HARQ ACK信息的情况下,通过PTM方式调度第二业务数据的新传输,所述第二业务数据是所述第一业务数据的下一个待传输的数据。
  53. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至18中任一项所述的方法。
  54. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求19至26中任一项所述的方法。
  55. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至18中任一项所述的方法。
  56. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求19至26中任一项所述的方法。
  57. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至18中任一项所述的方法。
  58. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求19至26中任一项所述的方法。
  59. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至18中任一项所述的方法。
  60. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求19至26中任一项所述的方法。
  61. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至18中任一项所述的方法。
  62. 一种计算机程序,所述计算机程序使得计算机执行如权利要求19至26中任一项所述的方法。
PCT/CN2021/082195 2021-03-22 2021-03-22 提高mbs业务可靠性的方法及装置、终端设备、网络设备 WO2022198415A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180074715.XA CN116569569A (zh) 2021-03-22 2021-03-22 提高mbs业务可靠性的方法及装置、终端设备、网络设备
PCT/CN2021/082195 WO2022198415A1 (zh) 2021-03-22 2021-03-22 提高mbs业务可靠性的方法及装置、终端设备、网络设备
EP21932047.0A EP4228293A4 (en) 2021-03-22 2021-03-22 METHOD AND DEVICE FOR IMPROVING THE RELIABILITY OF MBS AND TERMINAL DEVICE AND NETWORK DEVICE
US18/317,658 US20230283498A1 (en) 2021-03-22 2023-05-15 Method for improving reliability of mbs service and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/082195 WO2022198415A1 (zh) 2021-03-22 2021-03-22 提高mbs业务可靠性的方法及装置、终端设备、网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/317,658 Continuation US20230283498A1 (en) 2021-03-22 2023-05-15 Method for improving reliability of mbs service and network device

Publications (1)

Publication Number Publication Date
WO2022198415A1 true WO2022198415A1 (zh) 2022-09-29

Family

ID=83396191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082195 WO2022198415A1 (zh) 2021-03-22 2021-03-22 提高mbs业务可靠性的方法及装置、终端设备、网络设备

Country Status (4)

Country Link
US (1) US20230283498A1 (zh)
EP (1) EP4228293A4 (zh)
CN (1) CN116569569A (zh)
WO (1) WO2022198415A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368684A (ja) * 2001-06-11 2002-12-20 Mitsubishi Electric Corp Cdma無線マルチキャスト再送制御方法および無線通信システム
CN1627725A (zh) * 2003-12-10 2005-06-15 联想(北京)有限公司 一种保证一点到多点传输数据可靠性的方法
CN101056186A (zh) * 2006-04-13 2007-10-17 华为技术有限公司 用户网络中的组播方法及其系统
CN101883325A (zh) * 2009-05-04 2010-11-10 财团法人工业技术研究院 用于无线通信系统中的多播和广播重发的方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368684A (ja) * 2001-06-11 2002-12-20 Mitsubishi Electric Corp Cdma無線マルチキャスト再送制御方法および無線通信システム
CN1627725A (zh) * 2003-12-10 2005-06-15 联想(北京)有限公司 一种保证一点到多点传输数据可靠性的方法
CN101056186A (zh) * 2006-04-13 2007-10-17 华为技术有限公司 用户网络中的组播方法及其系统
CN101883325A (zh) * 2009-05-04 2010-11-10 财团法人工业技术研究院 用于无线通信系统中的多播和广播重发的方法和设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS INC.: "Support of group scheduling for RRC_CONNECTED UEs", 3GPP DRAFT; R1-2100906, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Online; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051971258 *
MEDIATEK INC.: "HARQ operation to improve reliability for PTM transmission", 3GPP DRAFT; R2-2100172, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20210125 - 20210205, 15 January 2021 (2021-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051973385 *
See also references of EP4228293A4 *

Also Published As

Publication number Publication date
CN116569569A (zh) 2023-08-08
US20230283498A1 (en) 2023-09-07
EP4228293A1 (en) 2023-08-16
EP4228293A4 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
WO2021056152A1 (zh) 一种信息配置方法及装置、终端设备、网络设备
US11949598B2 (en) Window adjustment method and apparatus, network device, terminal device
WO2021134316A1 (zh) 一种业务调度方法及装置、终端设备、网络设备
WO2021056155A1 (zh) 一种反馈资源配置方法及通信方法、装置、通信设备
WO2021051320A1 (zh) 一种业务数据传输方法及装置、网络设备、终端设备
WO2022006849A1 (zh) Mbs业务的tci状态管理方法及装置、终端设备
US20230361923A1 (en) Mbs service configuration method and terminal device
WO2022120837A1 (zh) Mbs业务的半静态调度方法及装置、终端设备、网络设备
WO2022141545A1 (zh) 一种mcch调度传输方法及装置、终端设备
WO2022006875A1 (zh) 建立mbs业务的方法及装置、终端设备、网络设备
WO2022198415A1 (zh) 提高mbs业务可靠性的方法及装置、终端设备、网络设备
WO2021051321A1 (zh) 一种业务数据传输方法及装置、终端设备
WO2021051322A1 (zh) 一种bwp配置方法及装置、终端设备、网络设备
WO2022165720A1 (zh) 提高mbs业务可靠性的方法及装置、终端设备、网络设备
WO2022021410A1 (zh) 一种mbs业务传输方法及装置、终端设备、网络设备
WO2022006888A1 (zh) 一种mbs业务的接收方法及装置、终端设备
WO2022056859A1 (zh) Mbs业务传输进度的控制方法及装置、通信设备
WO2023097665A1 (zh) 一种数据接收方法及装置、终端设备
WO2022006882A1 (zh) Mbs业务的传输方法及装置、网络设备、终端设备
WO2022021235A1 (zh) 一种mbs业务的传输方法及装置、通信设备
WO2022087990A1 (zh) 一种多播业务的重传方法及装置、终端设备、网络设备
WO2022126658A1 (zh) 一种mbs配置变更的方法及装置、终端设备、网络设备
WO2022227071A1 (zh) 一种承载配置方法及装置、终端设备、网络设备
WO2022056669A1 (zh) 一种mbs业务的管理方法及装置、终端设备、网络设备
WO2022120749A1 (zh) 一种多播业务的调度方法及装置、终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932047

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180074715.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021932047

Country of ref document: EP

Effective date: 20230510

NENP Non-entry into the national phase

Ref country code: DE