WO2022056859A1 - Mbs业务传输进度的控制方法及装置、通信设备 - Google Patents

Mbs业务传输进度的控制方法及装置、通信设备 Download PDF

Info

Publication number
WO2022056859A1
WO2022056859A1 PCT/CN2020/116272 CN2020116272W WO2022056859A1 WO 2022056859 A1 WO2022056859 A1 WO 2022056859A1 CN 2020116272 W CN2020116272 W CN 2020116272W WO 2022056859 A1 WO2022056859 A1 WO 2022056859A1
Authority
WO
WIPO (PCT)
Prior art keywords
mbs
base station
transmission progress
service data
mbs service
Prior art date
Application number
PCT/CN2020/116272
Other languages
English (en)
French (fr)
Inventor
王淑坤
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080105067.5A priority Critical patent/CN116114375A/zh
Priority to PCT/CN2020/116272 priority patent/WO2022056859A1/zh
Publication of WO2022056859A1 publication Critical patent/WO2022056859A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast

Definitions

  • the embodiments of the present application relate to the field of mobile communication technologies, and in particular, to a method and apparatus for controlling the transmission progress of a Multimedia Broadcast Service (MBS) service, and a communication device.
  • MMS Multimedia Broadcast Service
  • the core network will simultaneously send MBS service data to multiple base stations.
  • different base stations may have different schedules for scheduling MBS service data, which will result in different schedules of MBS service data transmitted by different base stations.
  • a terminal device moves from a cell covered by one base station to a cell covered by another base station, it needs to continue to receive MBS service data. If the progress of MBS data transmission in the two cells is quite different, there will be a problem of MBS service data loss.
  • Embodiments of the present application provide a method and device for controlling the progress of MBS service transmission, and a communication device.
  • the core network element sends an MBS transmission progress request message to at least two base stations, where the MBS transmission progress request message is used to request to report an MBS transmission progress report;
  • the core network element receives the MBS transmission progress reports sent by the at least two base stations, and adjusts the progress of the MBS service data delivered to the at least two base stations based on the MBS transmission progress reports sent by the at least two base stations .
  • the first base station sends an MBS transmission progress request message to at least one second base station, where the MBS transmission progress request message is used to request to report an MBS transmission progress report;
  • the first base station receives the MBS transmission progress report sent by the at least one second base station, and adjusts the progress of the MBS service data scheduled on the air interface based on the MBS transmission progress report sent by the at least one second base station.
  • the device for controlling the progress of MBS service transmission provided by the embodiment of the present application is applied to a core network element, and the device includes:
  • a sending unit configured to send an MBS transmission progress request message to at least two base stations, where the MBS transmission progress request message is used to request to report an MBS transmission progress report;
  • a receiving unit configured to receive MBS transmission progress reports sent by the at least two base stations
  • An adjustment unit configured to adjust the progress of the MBS service data delivered to the at least two base stations based on the MBS transmission progress reports sent by the at least two base stations.
  • the apparatus for controlling the progress of MBS service transmission is applied to the first base station, and the apparatus includes:
  • a sending unit configured to send an MBS transmission progress request message to at least one second base station, where the MBS transmission progress request message is used to request to report an MBS transmission progress report;
  • a receiving unit configured to receive an MBS transmission progress report sent by the at least one second base station
  • An adjustment unit configured to adjust the progress of the MBS service data scheduled on the air interface based on the MBS transmission progress report sent by the at least one second base station.
  • the communication device includes a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory to execute the above-mentioned method for controlling the transmission progress of the MBS service.
  • the chip provided by the embodiment of the present application is used to implement the above-mentioned method for controlling the transmission progress of the MBS service.
  • the chip includes: a processor for invoking and running a computer program from the memory, so that the device installed with the chip executes the above-mentioned method for controlling the transmission progress of the MBS service.
  • the computer-readable storage medium provided by the embodiment of the present application is used for storing a computer program, and the computer program enables a computer to execute the above-mentioned method for controlling the transmission progress of an MBS service.
  • the computer program product provided by the embodiments of the present application includes computer program instructions, and the computer program instructions cause the computer to execute the above-mentioned method for controlling the transmission progress of the MBS service.
  • the computer program provided by the embodiment of the present application when it runs on the computer, enables the computer to execute the above-mentioned method for controlling the transmission progress of the MBS service.
  • the core network element obtains the MBS transmission progress reports of at least two base stations, so as to control the MBS transmission progress according to the MBS transmission progress reports of the at least two base stations, so that the MBS transmission progress between the base stations is determined.
  • the difference in transmission progress is reduced, and the degree of MBS service data loss caused by the terminal equipment moving between base stations is reduced.
  • the base stations exchange MBS transmission progress reports, and the base station can adjust its own MBS service transmission progress according to the MBS service transmission progress of other base stations, so that the difference in the MBS transmission progress between the base stations is reduced, and the difference between the terminal equipment in the base station is reduced.
  • the degree of MBS service data loss caused by inter-movement Through the above technical solutions, the MBS service transmission progress is coordinated among the base stations, so that the MBS service transmission progress between the base stations is synchronized as much as possible, and data loss of the terminal equipment during the mobility process is avoided.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Fig. 2 is a transmission network architecture diagram of an MBS service provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart 1 of a method for controlling MBS service transmission progress provided by an embodiment of the present application
  • FIG. 4 is a schematic diagram of interaction between a core network network element and a base station provided by an embodiment of the present application
  • FIG. 5 is a second schematic flowchart of a method for controlling MBS service transmission progress provided by an embodiment of the present application
  • FIG. 6 is a schematic diagram of interaction between a base station provided by an embodiment of the present application and a base station;
  • FIG. 7 is a schematic diagram 1 of the structure and composition of an apparatus for controlling the transmission progress of an MBS service provided by an embodiment of the present application;
  • FIG. 8 is a schematic diagram 2 of the structure and composition of the apparatus for controlling the transmission progress of the MBS service provided by the embodiment of the present application;
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • 5G communication systems or future communication systems etc.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal 120 (or referred to as a communication terminal, a terminal).
  • the network device 110 may provide communication coverage for a particular geographic area and may communicate with terminals located within the coverage area.
  • the network device 110 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the
  • the network device can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, a wearable device, a hub, a switch, a bridge, a router, a network-side device in a 5G network, or a network device in a future communication system.
  • the communication system 100 also includes at least one terminal 120 located within the coverage of the network device 110 .
  • Terminal includes, but is not limited to, connections via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connections; and/or another data connection/network; and/or via a wireless interface, e.g. for cellular networks, Wireless Local Area Networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter; and/or a device of another terminal configured to receive/transmit a communication signal; and/or an Internet of Things (IoT) device.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN Wireless Local Area Networks
  • WLAN Wireless Local Area Networks
  • digital television networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter
  • IoT Internet of Things
  • a terminal arranged to communicate through a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal” or “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular telephones; Personal Communications System (PCS) terminals that may combine cellular radio telephones with data processing, facsimile, and data communication capabilities; may include radio telephones, pagers, Internet/Intranet PDAs with networking access, web browsers, memo pads, calendars, and/or Global Positioning System (GPS) receivers; and conventional laptop and/or palmtop receivers or others including radiotelephone transceivers electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • a terminal may refer to an access terminal, user equipment (UE), subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks or terminals in future evolved PLMNs, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal (Device to Device, D2D) communication may be performed between the terminals 120 .
  • the 5G communication system or the 5G network may also be referred to as a new radio (New Radio, NR) system or an NR network.
  • New Radio NR
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices, and the coverage of each network device may include other numbers of terminals. This embodiment of the present application This is not limited.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal 120 with a communication function, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here;
  • the device may further include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • 5G 3rd Generation Partnership Project
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra-Reliable Low-Latency Communications
  • mMTC Massive Machine-Type Communications
  • eMBB still aims at users' access to multimedia content, services and data, and its demand is growing rapidly.
  • eMBB since eMBB may be deployed in different scenarios, such as indoor, urban, rural, etc., its capabilities and requirements are also quite different, so it cannot be generalized and must be analyzed in detail in combination with specific deployment scenarios.
  • Typical applications of URLLC include: industrial automation, power automation, telemedicine operations (surgery), traffic safety assurance, etc.
  • Typical features of mMTC include: high connection density, small data volume, latency-insensitive services, low cost and long service life of the module.
  • RRC_INACTIVE Radio Resource Control
  • RRC_INACTIVE Radio Resource Control
  • RRC_IDLE state (referred to as idle state): mobility is UE-based cell selection reselection, paging is initiated by the core network (Core Network, CN), and the paging area is configured by the CN. There is no UE context and no RRC connection on the base station side.
  • RRC_CONNECTED state (referred to as connected state): there is an RRC connection, and a UE context exists on the base station side and the UE side.
  • the network side knows that the location of the UE is at the specific cell level. Mobility is the mobility controlled by the network side. Unicast data can be transmitted between the UE and the base station.
  • RRC_INACTIVE state (referred to as inactive state): mobility is UE-based cell selection reselection, there is a connection between CN-NR, UE context exists on a certain base station, paging is triggered by RAN, based on The paging area of the RAN is managed by the RAN, and the network side knows the location of the UE based on the paging area level of the RAN.
  • MBMS is a technology that transmits data from a data source to multiple terminal devices by sharing network resources. This technology can effectively utilize network resources while providing multimedia services, and realize the broadcast of multimedia services at higher rates (such as 256kbps). and multicast.
  • 3GPP clearly proposes to enhance the support capability for downlink high-speed MBMS services, and determines the design requirements for the physical layer and air interface.
  • eMBMS evolved MBMS
  • SFN Single Frequency Network
  • MBSFN Multimedia Broadcast Multicast Service Single Frequency Network
  • MBSFN uses a uniform frequency to send service data in all cells at the same time, but To ensure synchronization between cells. In this way, the overall signal-to-noise ratio distribution of the cell can be greatly improved, and the spectral efficiency will also be greatly improved accordingly.
  • eMBMS implements service broadcast and multicast based on IP multicast protocol.
  • MBMS has only a broadcast bearer mode and no multicast bearer mode.
  • the reception of the MBMS service is applicable to the terminal equipment in the idle state or the connected state.
  • SC-PTM Single Cell Point To Multiploint
  • SC-MCCH Single Cell Multicast Control Channel
  • SC-MTCH Single Cell Multicast Transport Channel
  • SC-MCCH and SC-MTCH are mapped to downlink shared channel (Downlink-Shared Channel, DL-SCH), further, DL-SCH is mapped to physical downlink shared channel (Physical Downlink Shared Channel, PDSCH), wherein, SC - MCCH and SC-MTCH belong to logical channels, DL-SCH belongs to transport channels, and PDSCH belongs to physical channels.
  • SC-MCCH and SC-MTCH do not support hybrid automatic repeat request (Hybrid Automatic Repeat reQuest, HARQ) operations.
  • Hybrid Automatic Repeat reQuest Hybrid Automatic Repeat reQuest
  • MBMS introduces a new system information block (System Information Block, SIB) type, namely SIB20.
  • SIB System Information Block
  • the configuration information of the SC-MCCH includes the modification period of the SC-MCCH, the repetition period of the SC-MCCH, and information such as the radio frame and subframe in which the SC-MCCH is scheduled.
  • SFN represents the system frame number of the radio frame
  • mcch-RepetitionPeriod represents the repetition period of SC-MCCH
  • mcch-Offset represents SC-MCCH offset.
  • the SC-MCCH is scheduled through the Physical Downlink Control Channel (PDCCH).
  • PDCCH Physical Downlink Control Channel
  • RNTI Radio Network Tempory Identity
  • SC-RNTI Single Cell RNTI
  • the fixed value of SC-RNTI is FFFC.
  • a new RNTI is introduced, that is, a single cell notification RNTI (Single Cell Notification RNTI, SC-N-RNTI) to identify the PDCCH (such as the notification PDCCH) used to indicate the change notification of the SC-MCCH, optionally, the SC
  • the fixed value of -N-RNTI is FFFB; further, one of the 8 bits (bits) of DCI 1C can be used to indicate the change notification.
  • the configuration information of the SC-PTM is based on the SC-MCCH configured by the SIB20, and then the SC-MCCH configures the SC-MTCH, and the SC-MTCH is used to transmit service data.
  • the SC-MCCH only transmits one message (ie, SCPTMConfiguration), which is used to configure the configuration information of the SC-PTM.
  • the configuration information of SC-PTM includes: Temporary Mobile Group Identity (TMGI), session identifier (session id), group RNTI (Group RNTI, G-RNTI), discontinuous reception (Discontinuous Reception, DRX) configuration information And the SC-PTM service information of neighboring cells, etc.
  • TMGI Temporary Mobile Group Identity
  • session id session identifier
  • group RNTI Group RNTI, G-RNTI
  • discontinuous reception discontinuous Reception
  • DRX discontinuous Reception
  • Downlink discontinuous reception of SC-PTM is controlled by the following parameters: onDurationTimerSCPTM, drx-InactivityTimerSCPTM, SC-MTCH-SchedulingCycle, and SC-MTCH-SchedulingOffset.
  • the downstream SC-PTM service is received only when the timer onDurationTimerSCPTM or drx-InactivityTimerSCPTM is running.
  • SC-PTM business continuity adopts the concept of MBMS business continuity based on SIB15, namely "SIB15+MBMSInterestIndication" mode.
  • SIB15 namely "SIB15+MBMSInterestIndication" mode.
  • the service continuity of terminal equipment in idle state is based on the concept of frequency priority.
  • a new SIB (called the first SIB) is defined, and the first SIB includes the configuration information of the first MCCH.
  • the first MCCH is the control channel of the MBMS service.
  • An SIB is used to configure the configuration information of the control channel of the NR MBMS.
  • the control channel of the NR MBMS may also be called the NR MCCH (that is, the first MCCH).
  • the first MCCH is used to carry the first signaling, and the embodiment of this application does not limit the name of the first signaling.
  • the first signaling is signaling A
  • the first signaling includes at least one first MTCH.
  • the first MTCH is a service channel (also called a data channel or a transmission channel) of the MBMS service
  • the first MTCH is used to transmit MBMS service data (such as NR MBMS service data).
  • the first MCCH is used to configure the configuration information of the traffic channel of the NR MBMS.
  • the traffic channel of the NR MBMS may also be called the NR MTCH (that is, the first MTCH).
  • the first signaling is used to configure a service channel of the NR MBMS, service information corresponding to the service channel, and scheduling information corresponding to the service channel.
  • the service information corresponding to the service channel such as TMGI, session id and other identification information for identifying services.
  • the scheduling information corresponding to the traffic channel for example, the RNTI used when the MBMS service data corresponding to the traffic channel is scheduled, such as G-RNTI, DRX configuration information, and the like.
  • the transmissions of the first MCCH and the first MTCH are both scheduled based on the PDCCH.
  • the RNTI used for scheduling the PDCCH of the first MCCH uses a network-wide unique identifier, that is, a fixed value.
  • the RNTI used by the PDCCH for scheduling the first MTCH is configured through the first MCCH.
  • this embodiment of the present application does not limit the naming of the first SIB, the first MCCH, and the first MTCH.
  • the first SIB may also be abbreviated as SIB
  • the first MCCH may also be abbreviated as MCCH
  • the first MTCH may also be abbreviated as MTCH.
  • M PDCCHs for scheduling MTCH through MCCH (ie MTCH 1 PDCCH, MTCH 2 PDCCH, ..., MTCH M PDCCH), wherein the DCI carried by MTCH n PDCCH schedules the PDSCH used for transmitting MTCH n (ie MTCH n PDSCH), n is an integer greater than or equal to 1 and less than or equal to M.
  • MCCH and MTCH are mapped to DL-SCH, and further, DL-SCH is mapped to PDSCH, wherein MCCH and MTCH belong to logical channels, DL-SCH belongs to transport channels, and PDSCH belongs to physical channels.
  • MBMS services in the above solution include but are not limited to multicast services and multicast services.
  • the embodiments of the present application are described by taking the MBS service as an example, and the description of "MBS service” may also be replaced with "multicast service” or “multicast service” or "MBMS service”.
  • the transmission network architecture of MBS service is shown in Figure 2.
  • the 5G core network transmits the MBS service flow to the 5G access network (such as gNB) through the shared GTP tunnel.
  • PTP point-to-multipoint
  • PTM Point To Multipoint
  • the PTP method is also the unicast method
  • the PTM method is also the multicast method.
  • the core network sends MBS service data to multiple base stations at the same time.
  • the core network sends MBS service data to multiple base stations simultaneously through a shared GTP tunnel or a GTP tunnel for terminal equipment (ie, per UE).
  • terminal equipment moves from a cell covered by one base station to a cell covered by another base station, it needs to continue to receive MBS service data.
  • the MBS transmission progress of the two cells is different, for example, one cell transmits faster, and the other cell transmits data. If it is slower, there will be the problem of MBS service data loss. In order to ensure that the MBS service data is not lost during the moving process, it is necessary to perform data forwarding during the handover process.
  • the MBS service that does not require data loss there may be no data forwarding, which will cause the MBS service data to be transmitted due to the progress of the two base stations.
  • the difference results in data loss.
  • the following technical solutions of the embodiments of the present application are proposed.
  • the technical solutions of the embodiments of the present application ensure that the MBS service transmission progress between the two base stations is as consistent as possible, so as to reduce as much as possible the difference between the MBS service transmission progress of the two base stations. MBS service data loss caused by the same.
  • FIG. 3 is a schematic flowchart 1 of a method for controlling the transmission progress of an MBS service provided by an embodiment of the present application. As shown in FIG. 3 , the method for controlling the transmission progress of an MBS service includes the following steps:
  • Step 301 A core network element sends an MBS transmission progress request message to at least two base stations, where the MBS transmission progress request message is used to request to report an MBS transmission progress report.
  • the core network element includes at least one of the following: a session management function network element (Session Management Function, SMF), an access and mobility management function network element (Access and Mobility Management Function, AMF), User Plane Function (UPF) of the core network.
  • SMF Session Management Function
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • the base station is a gNB.
  • a GTP tunnel is established between a core network element and at least two base stations for a certain MBS service.
  • the core network element transmits the MBS service data to at least two base stations through the GTP tunnel.
  • the GTP tunnel can be a shared GTP tunnel or a per UE GTP tunnel.
  • the core network element transmits the MBS service data of a certain MBS service to the base station 1 and the base station 2 at the same time.
  • the core network element centrally controls the MBS transmission progress of each base station.
  • the core network element sends an MBS transmission progress request (MBS transmission progress request) message to at least two base stations, where the MBS transmission progress request message is used to request to report an MBS transmission progress report.
  • MBS transmission progress request MBS transmission progress request
  • the core network element sends an MBS transmission progress request message to base station 1 and sends an MBS transmission progress request message to base station 2 .
  • the MBS transmission progress request message is also used to configure the base station to send the transmission of MBS service data of the base station. It will be specifically described below.
  • the MBS transmission progress request message includes at least one of the following: a service identifier of the MBS service, and a reporting method of the MBS transmission progress report of the MBS service.
  • the service identifier of the MBS service includes at least one of the following: TMGI, G-RNTI, and MBS session identifier.
  • the reporting method of the MBS transmission progress report of the MBS service is a periodic reporting method, a one-time reporting method, or an event-triggered reporting method.
  • the MBS transmission progress request message further includes: a reporting period of the periodic reporting method.
  • the MBS transmission progress request message further includes: the event type and/or the conditions met by the event.
  • the event type is the number of MBS service data to be transmitted stored in the base station.
  • condition satisfied by the event is that the number of MBS service data to be transmitted stored in the base station is greater than or equal to the first threshold; or, the condition satisfied by the event is the storage in the base station to be transmitted.
  • the number of MBS service data is less than or less than or equal to the second threshold.
  • the reporting method of the MBS transmission progress report of the MBS service is the periodic reporting method, and the base station periodically sends the MBS transmission progress report to the core network element according to the reporting period.
  • the reporting method of the MBS transmission progress report of the MBS service is the one-time reporting method.
  • the base station After receiving the MBS transmission progress request message, the base station directly sends the MBS transmission progress report to the core network element.
  • the reporting method of the MBS transmission progress report of the MBS service is the event-triggered reporting method
  • the event type is the number of MBS data to be transmitted stored in the base station, such as the number of PDCP SDUs; the event satisfies
  • the condition is that the number of MBS data to be transmitted stored in the base station is greater than or equal to N1, and N1 is a positive integer. If the number of PDCP SDUs to be transmitted stored in the base station is greater than or greater than or equal to N1, the base station will be triggered. Send MBS transmission progress report to core network element.
  • the condition that the event meets may also be that the number of MBS data to be transmitted stored in the base station is less than or equal to N2, where N2 is a positive integer, if the number of PDCP SDUs to be transmitted stored in the base station is less than or less than or equal to N2 , the base station is triggered to send the MBS transmission progress report to the core network element.
  • N2 is smaller than N1.
  • Step 302 The core network element receives the MBS transmission progress reports sent by the at least two base stations, and adjusts the MBS services delivered to the at least two base stations based on the MBS transmission progress reports sent by the at least two base stations progress of the data.
  • each of the at least two base stations sends an MBS transmission progress report to the core network element based on the MBS transmission progress request message.
  • base station 1 sends an MBS transmission progress report to the core network element
  • base station 2 sends an MBS transmission progress report to the core network element.
  • the content of the MBS transmission progress report sent by each of the at least two base stations may refer to the following description.
  • the MBS transmission progress report includes at least one of the following:
  • the service identifier of the MBS service includes at least one of the following: TMGI, G-RNTI, and MBS session identifier.
  • the service identifier of the MBS service is used to indicate for which MBS service the MBS transmission progress report is the MBS transmission progress report of the MBS service.
  • the number of MBS service data to be transmitted stored in the base station is, for example, the number of PDCP SDUs to be transmitted stored in the base station.
  • the SN is a PDCP SN; or, the SN is an SN added by a core network element (eg, AMF/UPF).
  • a core network element eg, AMF/UPF
  • the MBS transmission progress report further includes at least one of the following: the event type that triggers the MBS transmission progress report, and the conditions that the event meets. .
  • the event type may be represented by an event type identifier (id), and the MBS transmission progress report only needs to carry the event type identifier.
  • the core network element determines the number of MBS services to be transmitted stored in the at least two base stations based on the MBS transmission progress reports of the at least two base stations Take two base stations as an example, if the number of MBS services to be transmitted stored in base station 1 is greater than the number of MBS services to be transmitted stored in base station 2 or the number of MBS services to be transmitted stored in base station 1 If the difference with the number of MBS services to be transmitted stored in base station 2 exceeds a certain threshold, the core network element does not temporarily transmit MBS service data to these two base stations.
  • the MBS services to be transmitted stored in base station 1 The number of MBS services will gradually decrease, thereby shortening the gap with the number of MBS services to be transmitted stored in the base station 2 . If the difference between the number of MBS services to be transmitted stored in base station 1 and the number of MBS services to be transmitted stored in base station 2 is less than a certain threshold, the core network element continues to transmit MBS service data to these two base stations .
  • the number of MBS services to be transmitted stored in base station 1 is 10, and the number of MBS services to be transmitted stored in base station 2 is 3, indicating that the MBS service transmission progress of base station 2 is relative to that of base station 1.
  • the service transmission progress is relatively fast.
  • the core network element does not transmit MBS service data to these two base stations temporarily.
  • Base station 2 and base station 1 continue to schedule their respective MBS service data. After base station 1 is scheduled, it waits for the scheduling of base station 2.
  • the core network element continues to transmit the MBS service data to the two base stations.
  • the MBS transmission progress request message is sent through the first NGAP signaling, and the MBS transmission progress report is sent through the second NGAP signaling; or, the MBS transmission progress request message is sent through the first NGAP signaling.
  • GTP-C signaling is sent, and the MBS transmission progress report is sent through the second GTP-C signaling.
  • the technical solution of the embodiment of the present application is to coordinate the MBS transmission progress between the core network element and the base station, and the core network element to control and coordinate the MBS service transmission progress is basically consistent between each base station, so as to minimize the need for two The MBS service data is lost due to the different transmission progress of the MBS service of the base station.
  • FIG. 5 is a second schematic flowchart of a method for controlling the transmission progress of an MBS service provided by an embodiment of the present application. As shown in FIG. 5 , the method for controlling the transmission progress of an MBS service includes the following steps:
  • Step 501 The first base station sends an MBS transmission progress request message to at least one second base station, where the MBS transmission progress request message is used to request to report an MBS transmission progress report.
  • the types of the first base station and the second base station are gNB.
  • a GTP tunnel is established between a core network element and at least two base stations (including a first base station and at least one second base station) for a certain MBS service.
  • the core network element transmits the MBS service data to at least two base stations through the GTP tunnel.
  • the GTP tunnel can be a shared GTP tunnel or a per UE GTP tunnel.
  • the MBS transmission progress reports of the base stations are exchanged to realize distributed control of the MBS transmission progress of each base station.
  • one of base station 1, base station 2, and base station 3 (referred to as the first base station) sends an MBS transmission progress request message to the other two base stations (referred to as the second base station).
  • the MBS transmission progress request message is also used to configure the second base station to send the data transmission of the MBS service of the base station. It will be specifically described below.
  • the MBS transmission progress request message includes at least one of the following: a service identifier of the MBS service, and a reporting method of the MBS transmission progress report of the MBS service.
  • the service identifier of the MBS service includes at least one of the following: TMGI, G-RNTI, and MBS session identifier.
  • the reporting method of the MBS transmission progress report of the MBS service is a periodic reporting method, a one-time reporting method, or an event-triggered reporting method.
  • the MBS transmission progress request message further includes: a reporting period of the periodic reporting method.
  • the MBS transmission progress request message further includes: the event type and/or the conditions met by the event.
  • the event type is the number of MBS service data to be transmitted stored in the base station.
  • condition satisfied by the event is that the number of MBS service data to be transmitted stored in the base station is greater than or equal to the first threshold; or, the condition satisfied by the event is the storage in the base station to be transmitted.
  • the number of MBS service data is less than or less than or equal to the second threshold.
  • the reporting method of the MBS transmission progress report of the MBS service is the periodic reporting method, and the second base station periodically sends the MBS transmission progress report to the first base station according to the reporting period.
  • the reporting method of the MBS transmission progress report of the MBS service is the one-time reporting method.
  • the second base station After receiving the MBS transmission progress request message, the second base station directly sends the MBS transmission progress report to the first base station.
  • the reporting method of the MBS transmission progress report of the MBS service is the event-triggered reporting method
  • the event type is the number of MBS data to be transmitted stored in the base station, such as the number of PDCP SDUs; the event satisfies
  • the condition is that the number of MBS data to be transmitted stored in the base station is greater than or equal to N1, and N1 is a positive integer. If the number of PDCP SDUs to be transmitted stored in the second base station is greater than or greater than or equal to N1, then Trigger the second base station to send an MBS transmission progress report to the first base station.
  • the condition that the event satisfies can also be that the number of MBS data to be transmitted stored in the base station is less than or equal to N2, where N2 is a positive integer, if the number of PDCP SDUs to be transmitted stored in the second base station is less than or less than or equal to N2, trigger the second base station to send an MBS transmission progress report to the first base station.
  • N2 is smaller than N1.
  • Step 502 The first base station receives the MBS transmission progress report sent by the at least one second base station, and adjusts the progress of the MBS service data scheduled on the air interface based on the MBS transmission progress report sent by the at least one second base station.
  • each of the at least one second base station sends an MBS transmission progress report to the first base station based on the MBS transmission progress request message.
  • base station 2 and base station 3 send MBS transmission progress report to base station 1 (base station 1 is the first base station), and similarly, base station 1 and base station 3 send MBS transmission progress report to base station 2 (base station 2 is the first base station) ), base station 1 and base station 2 send an MBS transmission progress report to base station 3 (base station 3 acts as the first base station).
  • the service identifier of the MBS service includes at least one of the following: TMGI, G-RNTI, and MBS session identifier.
  • the service identifier of the MBS service is used to indicate for which MBS service the MBS transmission progress report is the MBS transmission progress report of the MBS service.
  • the number of MBS service data to be transmitted stored in the base station is, for example, the number of PDCP SDUs to be transmitted stored in the base station.
  • the SN is a PDCP SN; or, the SN is an SN added by a core network element (eg, AMF/UPF).
  • a core network element eg, AMF/UPF
  • the MBS transmission progress report further includes at least one of the following: the event type that triggers the MBS transmission progress report, and the conditions that the event meets. .
  • the event type may be represented by an event type identifier (id), and the MBS transmission progress report only needs to carry the event type identifier.
  • the first base station after receiving the MBS transmission progress report sent by at least one second base station, the first base station adjusts the progress of the MBS service data scheduled on the air interface based on the MBS transmission progress report sent by the at least one second base station .
  • the first base station determines the number of MBS service data to be transmitted stored in the at least one second base station based on the MBS transmission progress report sent by the at least one second base station, and based on the MBS transmission progress report sent by the at least one second base station
  • the number of MBS service data to be transmitted stored in the at least one second base station determines a first reference value; if the number of MBS service data to be transmitted stored in the first base station is greater than the first reference value , the progress of the MBS service data scheduled on the air interface is accelerated; if the number of MBS service data to be transmitted stored in the first base station is less than the first reference value, the MBS service data scheduled on the air interface is slowed down progress.
  • the first reference value is an average value of the number of MBS service data to be transmitted stored in the at least one second base station.
  • the number of MBS service data to be transmitted stored in base station 1 is 14, the number of MBS service data to be transmitted stored in base station 2 is 7, and the number of MBS service data to be transmitted stored in base station 3 is 7.
  • the number of MBS service data to be transmitted stored in base station 1 is 5, the number of MBS service data to be transmitted stored in base station 2 is 7, and the number of MBS service data to be transmitted stored in base station 3 is 7.
  • the first base station determines the number of MBS service data to be transmitted stored in the at least one second base station based on the MBS transmission progress report sent by the at least one second base station, and based on the MBS transmission progress report sent by the at least one second base station
  • the number of MBS service data to be transmitted stored in the first base station and the number of MBS service data to be transmitted stored in the at least one second base station determine a second reference value; if the second reference value If the value is greater than the third threshold, the progress of the MBS service data scheduled on the air interface is accelerated; if the second reference value is less than the third threshold, the progress of the MBS service data scheduled on the air interface is slowed down.
  • the second reference value is a difference between the number of MBS service data to be transmitted stored in the first base station and a first reference value, and the first reference value is based on the at least one second base station.
  • the number of stored MBS service data to be transmitted is determined.
  • the first reference value is an average value of the number of MBS service data to be transmitted stored in the at least one second base station.
  • the number of MBS service data to be transmitted stored in base station 1 is 14, the number of MBS service data to be transmitted stored in base station 2 is 7, and the number of MBS service data to be transmitted stored in base station 3 is 7.
  • the number of MBS service data to be transmitted stored in base station 1 is 5, the number of MBS service data to be transmitted stored in base station 2 is 7, and the number of MBS service data to be transmitted stored in base station 3 is 7.
  • the MBS transmission progress request message is sent through the first XnAP signaling, and the MBS transmission progress report is sent through the second XnAP signaling.
  • the technical solutions of the embodiments of the present application determine to speed up or slow down the MBS transmission progress of the base stations by coordinating the MBS transmission progress between the base stations, so that the MBS transmission progress between the base stations is synchronized as much as possible, so as to reduce as much as possible due to the two base stations.
  • the MBS service data is lost due to different MBS service transmission progress.
  • FIG. 7 is a schematic structural diagram 1 of an apparatus for controlling the transmission progress of an MBS service provided by an embodiment of the present application, which is applied to a core network element.
  • the apparatus for controlling the transmission progress of an MBS service includes:
  • a sending unit 701, configured to send an MBS transmission progress request message to at least two base stations, where the MBS transmission progress request message is used to request to report an MBS transmission progress report;
  • a receiving unit 702 configured to receive MBS transmission progress reports sent by the at least two base stations
  • An adjustment unit 703 configured to adjust the progress of the MBS service data delivered to the at least two base stations based on the MBS transmission progress reports sent by the at least two base stations.
  • the MBS transmission progress request message includes at least one of the following: a service identifier of the MBS service, and a reporting method of the MBS transmission progress report of the MBS service.
  • the reporting method of the MBS transmission progress report of the MBS service is a periodic reporting method, a one-time reporting method, or an event-triggered reporting method.
  • the reporting method of the MBS transmission progress report of the MBS service is the periodic reporting method
  • the MBS transmission progress request message further includes: a reporting period in a periodic reporting manner.
  • the reporting method of the MBS transmission progress report of the MBS service is the event-triggered reporting method
  • the MBS transmission progress request message further includes: an event type and/or a condition satisfied by the event.
  • the event type is the number of MBS service data to be transmitted stored in the base station.
  • condition that the event meets is that the number of MBS service data to be transmitted stored in the base station is greater than or greater than or equal to a first threshold; or,
  • the condition that the event meets is that the number of MBS service data to be transmitted stored in the base station is less than or less than or equal to the second threshold.
  • the MBS transmission progress report includes at least one of the following: a service identifier of the MBS service, a cell identifier of a cell where the MBS service is located, the number of MBS service data to be transmitted stored in the base station, and the base station to be transmitted.
  • the MBS transmission progress report when the reporting method of the MBS transmission progress report is an event-triggered reporting method, the MBS transmission progress report further includes at least one of the following: an event type that triggers the MBS transmission progress report, a condition.
  • the SN is a PDCP SN; or,
  • the SN is the SN added by the core network element.
  • the MBS transmission progress request message is sent through the first NGAP signaling, and the MBS transmission progress report is sent through the second NGAP signaling;
  • the MBS transmission progress request message is sent through the first GTP-C signaling, and the MBS transmission progress report is sent through the second GTP-C signaling.
  • FIG. 8 is a second schematic diagram of the structure and composition of an apparatus for controlling the transmission progress of an MBS service provided by an embodiment of the present application, which is applied to the first base station.
  • the apparatus for controlling the transmission progress of an MBS service includes:
  • a sending unit 801, configured to send an MBS transmission progress request message to at least one second base station, where the MBS transmission progress request message is used to request to report an MBS transmission progress report;
  • a receiving unit 802 configured to receive an MBS transmission progress report sent by the at least one second base station
  • An adjustment unit 803 configured to adjust the progress of the MBS service data scheduled on the air interface based on the MBS transmission progress report sent by the at least one second base station.
  • the MBS transmission progress request message includes at least one of the following: a service identifier of the MBS service, and a reporting method of the MBS transmission progress report of the MBS service.
  • the reporting method of the MBS transmission progress report of the MBS service is a periodic reporting method, a one-time reporting method, or an event-triggered reporting method.
  • the reporting method of the MBS transmission progress report of the MBS service is the periodic reporting method
  • the MBS transmission progress request message further includes: a reporting period in a periodic reporting manner.
  • the reporting method of the MBS transmission progress report of the MBS service is the event-triggered reporting method
  • the MBS transmission progress request message further includes: an event type and/or a condition satisfied by the event.
  • the event type is the number of MBS service data to be transmitted stored in the base station.
  • condition that the event meets is that the number of MBS service data to be transmitted stored in the base station is greater than or greater than or equal to a first threshold; or,
  • the condition that the event meets is that the number of MBS service data to be transmitted stored in the base station is less than or less than or equal to the second threshold.
  • the MBS transmission progress report includes at least one of the following: a service identifier of the MBS service, a cell identifier of a cell where the MBS service is located, the number of MBS service data to be transmitted stored in the base station, and the base station to be transmitted.
  • the MBS transmission progress report when the reporting method of the MBS transmission progress report is an event-triggered reporting method, the MBS transmission progress report further includes at least one of the following: an event type that triggers the MBS transmission progress report, a condition.
  • the SN is a PDCP SN; or,
  • the SN is the SN added by the core network element.
  • the adjustment unit 803 is configured to determine, based on the MBS transmission progress report sent by the at least one second base station, the number of MBS service data to be transmitted stored in the at least one second base station , and determine the first reference value based on the number of MBS service data to be transmitted stored in the at least one second base station; if the number of MBS service data to be transmitted stored in the first base station is greater than the If the number of MBS service data to be transmitted stored in the first base station is less than the first reference value, the schedule of MBS service data scheduled on the air interface is slowed down. The progress of MBS business data.
  • the adjustment unit 803 is configured to determine, based on the MBS transmission progress report sent by the at least one second base station, the number of MBS service data to be transmitted stored in the at least one second base station , and determine the second reference value based on the number of MBS service data to be transmitted stored in the first base station and the number of MBS service data to be transmitted stored in the at least one second base station; If the second reference value is greater than the third threshold, the progress of the MBS service data scheduled on the air interface is accelerated; if the second reference value is less than the third threshold, the progress of the MBS service data scheduled on the air interface is slowed down.
  • the second reference value is a difference between the number of MBS service data to be transmitted stored in the first base station and a first reference value, and the first reference value is based on the at least The number of MBS service data to be transmitted stored in a second base station is determined.
  • the first reference value is an average value of the number of MBS service data to be transmitted stored in the at least one second base station.
  • the MBS transmission progress request message is sent through the first XnAP signaling, and the MBS transmission progress report is sent through the second XnAP signaling.
  • FIG. 9 is a schematic structural diagram of a communication device 900 provided by an embodiment of the present application.
  • the communication device may be a base station or a core network element.
  • the communication device 900 shown in FIG. 9 includes a processor 910, and the processor 910 can call and run a computer program from a memory to implement the method in the embodiment of the present application .
  • the communication device 900 may further include a memory 920 .
  • the processor 910 may call and run a computer program from the memory 920 to implement the methods in the embodiments of the present application.
  • the memory 920 may be a separate device independent of the processor 910 , or may be integrated in the processor 910 .
  • the communication device 900 may further include a transceiver 930, and the processor 910 may control the transceiver 930 to communicate with other devices, specifically, may send information or data to other devices, or receive other Information or data sent by a device.
  • the transceiver 930 may include a transmitter and a receiver.
  • the transceiver 930 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 900 may specifically be the first base station in this embodiment of the present application, and the communication device 900 may implement the corresponding processes implemented by the first base station in each method in the embodiment of the present application. Repeat.
  • the communication device 900 may specifically be the core network element of the embodiment of the present application, and the communication device 900 may implement the corresponding processes implemented by the core network element in each method of the embodiment of the present application. This will not be repeated here.
  • FIG. 10 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1000 shown in FIG. 10 includes a processor 1010, and the processor 1010 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 1000 may further include a memory 1020 .
  • the processor 1010 may call and run a computer program from the memory 1020 to implement the methods in the embodiments of the present application.
  • the memory 1020 may be a separate device independent of the processor 1010, or may be integrated in the processor 1010.
  • the chip 1000 may further include an input interface 1030 .
  • the processor 1010 can control the input interface 1030 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1000 may further include an output interface 1040 .
  • the processor 1010 can control the output interface 1040 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the first base station in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the first base station in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip can be applied to the core network element in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the core network element in each method of the embodiment of the present application. Repeat.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers, and other storage media that are mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the first base station in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the first base station in each method of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the first base station in each method of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the core network elements in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the core network elements in the various methods of the embodiments of the present application, in order to It is concise and will not be repeated here.
  • Embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the first base station in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the first base station in each method of the embodiments of the present application. This will not be repeated here.
  • the computer program product can be applied to the core network network elements in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the core network network elements in the various methods of the embodiments of the present application, for the sake of brevity. , and will not be repeated here.
  • the embodiments of the present application also provide a computer program.
  • the computer program can be applied to the first base station in the embodiment of the present application, and when the computer program is run on the computer, the computer executes the corresponding processes implemented by the first base station in each method of the embodiment of the present application, For brevity, details are not repeated here.
  • the computer program may be applied to the core network element in the embodiments of the present application, and when the computer program runs on the computer, the computer executes the corresponding functions implemented by the core network element in each method of the embodiments of the present application.
  • the process for the sake of brevity, will not be repeated here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种MBS业务传输进度的控制方法及装置、终端设备、网络设备,该方法包括:核心网网元向至少两个基站发送MBS传输进度请求消息,所述MBS传输进度请求消息用于请求上报MBS传输进度报告;所述核心网网元接收所述至少两个基站发送的MBS传输进度报告,基于所述至少两个基站发送的MBS传输进度报告,调整向所述至少两个基站下发的MBS业务数据的进度。

Description

MBS业务传输进度的控制方法及装置、通信设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种多媒体多播服务(Multimedia Broadcast Service,MBS)业务传输进度的控制方法及装置、通信设备。
背景技术
针对同一MBS业务,核心网会同时给多个基站发送MBS业务数据。然而,不同基站各自调度MBS业务数据的进度会存在差异,这将导致不同基站传输的MBS业务数据的进度不一样。当终端设备从一个基站覆盖的小区移动到另一个基站覆盖的小区时,由于需要继续接收MBS业务数据,如果两个小区的MBS传输数据的进度差异较大,会存在MBS业务数据丢失的问题。
发明内容
本申请实施例提供一种MBS业务传输进度的控制方法及装置、通信设备。
本申请实施例提供的MBS业务传输进度的控制方法,包括:
核心网网元向至少两个基站发送MBS传输进度请求消息,所述MBS传输进度请求消息用于请求上报MBS传输进度报告;
所述核心网网元接收所述至少两个基站发送的MBS传输进度报告,基于所述至少两个基站发送的MBS传输进度报告,调整向所述至少两个基站下发的MBS业务数据的进度。
本申请实施例提供的MBS业务传输进度的控制方法,包括:
第一基站向至少一个第二基站发送MBS传输进度请求消息,所述MBS传输进度请求消息用于请求上报MBS传输进度报告;
所述第一基站接收所述至少一个第二基站发送的MBS传输进度报告,基于所述至少一个第二基站发送的MBS传输进度报告,调整在空口上调度的MBS业务数据的进度。
本申请实施例提供的MBS业务传输进度的控制装置,应用于核心网网元,所述装置包括:
发送单元,用于向至少两个基站发送MBS传输进度请求消息,所述MBS传输进度请求消息用于请求上报MBS传输进度报告;
接收单元,用于接收所述至少两个基站发送的MBS传输进度报告;
调整单元,用于基于所述至少两个基站发送的MBS传输进度报告,调整向所述至少两个基站下发的MBS业务数据的进度。
本申请实施例提供的MBS业务传输进度的控制装置,应用于第一基站,所述装置包括:
发送单元,用于向至少一个第二基站发送MBS传输进度请求消息,所述MBS传输进度请求消息用于请求上报MBS传输进度报告;
接收单元,用于接收所述至少一个第二基站发送的MBS传输进度报告;
调整单元,用于基于所述至少一个第二基站发送的MBS传输进度报告,调整在空口上调度的MBS业务数据的进度。
本申请实施例提供的通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的MBS业务传输进度的控制方法。
本申请实施例提供的芯片,用于实现上述的MBS业务传输进度的控制方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的MBS业务传输进度的控制方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的MBS业务传输进度的控制方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的MBS业务传输进度的控制方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的MBS业务传输进度的控制方法。
本申请实施例的技术方案,一方面,核心网网元获取至少两个基站的MBS传输进度报告,从而根据至少两个基站的MBS传输进度报告确定来控制MBS传输进度,使得基站之间的MBS传输进度的差异缩小,降低终端设备在基站之间移动而导致的MBS业务数据丢失的程度。另一方方面,基站之间交互MBS传输进度报告,基站可以根据其他基站的MBS业务传输进度来调节自己的MBS业务传输进度,使得基站之间的MBS传输进度的差异缩小,降低终端设备在基站之间移动而导致的MBS业务数据丢失的程度。通过上述技术方案,MBS业务传输进度在基站之间进行协调,使得各个基站之间的MBS业务传输进度尽可能同步,避免终端设备在移动性过程中的数据丢失。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信系统架构的示意性图;
图2是本申请实施例提供的MBS业务的传输网络架构图;
图3是本申请实施例提供的MBS业务传输进度的控制方法的流程示意图一;
图4是本申请实施例提供的核心网网元与基站之间的交互示意图;
图5是本申请实施例提供的MBS业务传输进度的控制方法的流程示意图二;
图6是本申请实施例提供的基站与基站之间的交互示意图;
图7是本申请实施例提供的MBS业务传输进度的控制装置的结构组成示意图一;
图8是本申请实施例提供的MBS业务传输进度的控制装置的结构组成示意图二;
图9是本申请实施例提供的一种通信设备示意性结构图;
图10是本申请实施例的芯片的示意性结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、系统、5G通信系统或未来的通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来通信系统中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G通信系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”, 仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例相关的技术方案进行说明。
随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性、复杂性,为此第三代合作伙伴计划(3 rd Generation Partnership Project,3GPP)国际标准组织开始研发5G。5G的主要应用场景为:增强移动超宽带(enhanced Mobile Broadband,eMBB)、低时延高可靠通信(Ultra-Reliable Low-Latency Communications,URLLC)、大规模机器类通信(massive Machine-Type Communications,mMTC)。
一方面,eMBB仍然以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。另一方面,由于eMBB可能部署在不同的场景中,例如室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而论,必须结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
在NR早期部署时,完整的NR覆盖很难获取,所以典型的网络覆盖是广域的LTE覆盖和NR的孤岛覆盖模式。而且大量的LTE部署在6GHz以下,可用于5G的6GHz以下频谱很少。所以NR必须研究6GHz以上的频谱应用,而高频段覆盖有限、信号衰落快。同时为了保护移动运营商前期在LTE投资,提出了LTE和NR之间紧耦合(tight interworking)的工作模式。
Figure PCTCN2020116272-appb-000001
RRC状态
5G为了降低空口信令和快速恢复无线连接,快速恢复数据业务的目的,定义了一个新的无线资源控制(Radio Resource Control,RRC)状态,即RRC非激活(RRC_INACTIVE)状态。这种状态有别于RRC空闲(RRC_IDLE)状态和RRC激活(RRC_ACTIVE)状态。其中,
1)RRC_IDLE状态(简称为空闲(idle)态):移动性为基于UE的小区选择重选,寻呼由核心网(Core Network,CN)发起,寻呼区域由CN配置。基站侧不存在UE上下文,不存在RRC连接。
2)RRC_CONNECTED状态(简称为连接(connected)态):存在RRC连接,基站侧和UE侧存在UE上下文。网络侧知道UE的位置是具体小区级别的。移动性是网络侧控制的移动性。UE和基站之间可以传输单播数据。
3)RRC_INACTIVE状态(简称为非激活(inactive)态):移动性为基于UE的小区选择重选,存在CN-NR之间的连接,UE上下文存在某个基站上,寻呼由RAN触发,基于RAN的寻呼区域由RAN管理,网络侧知道UE的位置是基于RAN的寻呼区域级别的。
Figure PCTCN2020116272-appb-000002
MBMS
MBMS是一种通过共享网络资源从一个数据源向多个终端设备传送数据的技术,该技术在提供多媒体业务的同时能有效地利用网络资源,实现较高速率(如256kbps)的多媒体业务的广播和组播。
由于MBMS频谱效率较低,不足以有效地承载和支撑手机电视类型业务的运营。因此在LTE中,3GPP明确提出增强对下行高速MBMS业务的支持能力,并确定了对物理层和空中接口的设计要求。
3GPP R9将演进的MBMS(evolved MBMS,eMBMS)引入到LTE中。eMBMS提 出了单频率网络(Single Frequency Network,SFN)的概念,即多媒体广播多播服务单频率网络(Multimedia Broadcast multicast service Single Frequency Network,MBSFN),MBSFN采用统一频率在所有小区同时发送业务数据,但是要保证小区间的同步。这种方式可以极大的提高小区整体信噪比分布,频谱效率也会相应的大幅提高。eMBMS基于IP多播协议实现业务的广播和多播。
在LTE或增强的LTE(LTE-Advanced,LTE-A)中,MBMS只有广播承载模式,没有多播承载模式。此外,MBMS业务的接收适用于空闲态或者连接态的终端设备。
3GPP R13中引入了单小区点对多点(Single Cell Point To Multiploint,SC-PTM)概念,SC-PTM基于MBMS网络架构。
MBMS引入了新的逻辑信道,包括单小区多播控制信道(Single Cell-Multicast Control Channel,SC-MCCH)和单小区多播传输信道(Single Cell-Multicast Transport Channel,SC-MTCH)。SC-MCCH和SC-MTCH被映射到下行共享信道(Downlink-Shared Channel,DL-SCH)上,进一步,DL-SCH被映射到物理下行共享信道(Physical Downlink Shared Channel,PDSCH)上,其中,SC-MCCH和SC-MTCH属于逻辑信道,DL-SCH属于传输信道,PDSCH属于物理信道。SC-MCCH和SC-MTCH不支持混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)操作。
MBMS引入了新的系统信息块(System Information Block,SIB)类型,即SIB20。具体地,通过SIB20来传输SC-MCCH的配置信息,一个小区只有一个SC-MCCH。SC-MCCH的配置信息包括:SC-MCCH的修改周期、SC-MCCH的重复周期、以及调度SC-MCCH的无线帧和子帧等信息。进一步,1)SC-MCCH的修改周期的边界满足SFN mod m=0,其中,SFN代表边界的系统帧号,m是SIB20中配置的SC-MCCH的修改周期(即sc-mcch-ModificationPeriod)。2)调度SC-MCCH的无线帧满足:SFN mod mcch-RepetitionPeriod=mcch-Offset,其中,SFN代表无线帧的系统帧号,mcch-RepetitionPeriod代表SC-MCCH的重复周期,mcch-Offset代表SC-MCCH的偏移量。3)调度SC-MCCH的子帧通过sc-mcch-Subframe指示。
SC-MCCH通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)调度。一方面,引入新的无线网络临时标识(Radio Network Tempory Identity,RNTI),即单小区RNTI(Single Cell RNTI,SC-RNTI)来识别用于调度SC-MCCH的PDCCH(如SC-MCCH PDCCH),可选地,SC-RNTI固定取值为FFFC。另一方面,引入新的RNTI,即单小区通知RNTI(Single Cell Notification RNTI,SC-N-RNTI)来识别用于指示SC-MCCH的变更通知的PDCCH(如通知PDCCH),可选地,SC-N-RNTI固定取值为FFFB;进一步,可以用DCI 1C的8个比特(bit)中的一个bit来指示变更通知。在LTE中,SC-PTM的配置信息基于SIB20配置的SC-MCCH,然后SC-MCCH配置SC-MTCH,SC-MTCH用于传输业务数据。
具体地,SC-MCCH只传输一个消息(即SCPTMConfiguration),该消息用于配置SC-PTM的配置信息。SC-PTM的配置信息包括:临时移动组标识(Temporary Mobile Group Identity,TMGI)、会话标识(seession id)、组RNTI(Group RNTI,G-RNTI)、非连续接收(Discontinuous Reception,DRX)配置信息以及邻区的SC-PTM业务信息等。需要说明的是,R13中的SC-PTM不支持健壮性包头压缩(Robust Header Compression,ROHC)功能。
SC-PTM的下行非连续的接收是通过以下参数控制的:onDurationTimerSCPTM、drx-InactivityTimerSCPTM、SC-MTCH-SchedulingCycle、以及SC-MTCH-SchedulingOffset。
当满足[(SFN*10)+subframe number]modulo(SC-MTCH-SchedulingCycle)= SC-MTCH-SchedulingOffset时,启动定时器onDurationTimerSCPTM;
当接收到下行PDCCH调度时,启动定时器drx-InactivityTimerSCPTM;
只有当定时器onDurationTimerSCPTM或drx-InactivityTimerSCPTM运行时才接收下行SC-PTM业务。
SC-PTM业务连续性采用基于SIB15的MBMS业务连续性概念,即“SIB15+MBMSInterestIndication”方式。空闲态的终端设备的业务连续性基于频率优先级的概念。
本申请实施例的技术方案中,定义一个新的SIB(称为第一SIB),第一SIB包括第一MCCH的配置信息,这里,第一MCCH为MBMS业务的控制信道,换句话说,第一SIB用于配置NR MBMS的控制信道的配置信息,可选地,NR MBMS的控制信道也可以叫做NR MCCH(即所述第一MCCH)。
进一步,第一MCCH用于承载第一信令,本申请实施例对第一信令的名称不做限定,如第一信令为信令A,所述第一信令包括至少一个第一MTCH的配置信息,这里,第一MTCH为MBMS业务的业务信道(也称为数据信道或传输信道),第一MTCH用于传输MBMS业务数据(如NR MBMS的业务数据)。换句话说,第一MCCH用于配置NR MBMS的业务信道的配置信息,可选地,NR MBMS的业务信道也可以叫做NR MTCH(即所述第一MTCH)。
具体地,所述第一信令用于配置NR MBMS的业务信道、该业务信道对应的业务信息以及该业务信道对应的调度信息。进一步,可选地,所述业务信道对应的业务信息,例如TMGI、session id等标识业务的标识信息。所述业务信道对应的调度信息,例如业务信道对应的MBMS业务数据被调度时使用的RNTI,例如G-RNTI、DRX配置信息等。
需要说明的是,第一MCCH和第一MTCH的传输都是基于PDCCH调度的。其中,用于调度第一MCCH的PDCCH使用的RNTI使用全网唯一标识,即是一个固定值。用于调度第一MTCH的PDCCH使用的RNTI通过第一MCCH进行配置。
需要说明的是,本申请实施例对所述第一SIB、所述第一MCCH和所述第一MTCH的命名不做限制。为便于描述,所述第一SIB也可以简称为SIB,所述第一MCCH也可以简称为MCCH,所述第一MTCH也可以简称为MTCH,通过SIB配置用于调度MCCH的PDCCH(即MCCH PDCCH)以及通知PDCCH,其中,通过MCCH PDCCH携带的DCI调度用于传输MCCH的PDSCH(即MCCH PDSCH)。进一步,通过MCCH配置M个用于调度MTCH的PDCCH(即MTCH 1 PDCCH、MTCH 2 PDCCH、…、MTCH M PDCCH),其中,MTCH n PDCCH携带的DCI调度用于传输MTCH n的PDSCH(即MTCH n PDSCH),n为大于等于1且小于等于M的整数。MCCH和MTCH被映射到DL-SCH上,进一步,DL-SCH被映射到PDSCH上,其中,MCCH和MTCH属于逻辑信道,DL-SCH属于传输信道,PDSCH属于物理信道。
需要说明的是,上述方案中的MBMS业务包括但不局限于多播业务、组播业务。本申请实施例以MBS业务为例进行说明,“MBS业务”的描述也可以被替换为“多播业务”或者“组播业务”或者“MBMS业务”。
在NR MBS中,MBS业务的传输网络架构如图2所示,5G核心网通过共享GTP隧道传递MBS业务流到5G接入网(如gNB),5G接入网可以判断通过点对点(Point To Point,PTP)方式或者点对多点(Point To Multipoint,PTM)方式传递MBS业务流给终端设备。这里,PTP方式也即单播方式,PTM方式也即多播方式。
针对同一MBS业务,核心网会同时给多个基站发送MBS业务数据,例如核心网通过共享GTP隧道或者针对终端设备的(即per UE)的GTP隧道给多个基站同时发送MBS业务数据。当终端设备从一个基站覆盖的小区移动到另一个基站覆盖的小区时, 需要继续接收MBS业务数据,如果两个小区的MBS传输进度不一样,例如一个小区传输的快一点,另一个小区传输的慢一点,会存在MBS业务数据丢失的问题。为了保证MBS业务数据在移动过程中不丢失,需要在切换过程进行数据转发,然而,对于种没有数据不丢失需求的MBS业务,可能没有数据转发,这样会使得MBS业务数据由于两个基站传输进度的差异导致的数据丢失。为此,提出了本申请实施例的以下技术方案,本申请实施例的技术方案保障两个基站之间MBS业务传输进度尽可能的一样,来尽可能降低由于两个基站的MBS业务传输进度不一样而导致的MBS业务数据丢失。
图3是本申请实施例提供的MBS业务传输进度的控制方法的流程示意图一,如图3所示,所述MBS业务传输进度的控制方法包括以下步骤:
步骤301:核心网网元向至少两个基站发送MBS传输进度请求消息,所述MBS传输进度请求消息用于请求上报MBS传输进度报告。
在一可选方式中,所述核心网网元包括以下至少之一:会话管理功能网元(Session Management Function,SMF)、访问和移动性管理功能网元(Access and Mobility Management Function,AMF)、核心网用户面功能网元(User Plane Function,UPF)。
在一可选方式中,所述基站为gNB。
本申请实施例中,核心网网元和至少两个基站之间为某个MBS业务建立GTP隧道。核心网网元通过该GTP隧道将MBS业务数据传递给至少两个基站。这里,GTP隧道可以是共享的GTP隧道或者是per UE的GTP隧道。
例如:核心网网元将某个MBS业务的MBS业务数据同时传递给基站1和基站2。
本申请实施例中,由核心网网元集中式控制各个基站的MBS传输进度。为此,核心网网元向至少两个基站发送MBS传输进度请求(MBS transmission progress request)消息,所述MBS传输进度请求消息用于请求上报MBS传输进度报告。
例如:参照图4,核心网网元向基站1发送MBS传输进度请求消息,以及向基站2发送MBS传输进度请求消息。
这里,所述MBS传输进度请求消息还用于配置基站发送该基站的关于MBS业务数据传输的情况。以下对其进行具体描述。
本申请实施例中,所述MBS传输进度请求消息包括以下至少之一:MBS业务的业务标识、MBS业务的MBS传输进度报告的上报方式。
上述方案中,可选地,所述MBS业务的业务标识包括以下至少之一:TMGI、G-RNTI、MBS会话标识。
上述方案中,可选地,所述MBS业务的MBS传输进度报告的上报方式为周期性上报方式、或者一次性上报方式、或者事件触发上报方式。
A)所述MBS业务的MBS传输进度报告的上报方式为所述周期性上报方式的情况下,所述MBS传输进度请求消息还包括:周期性上报方式的上报周期。
B)所述MBS业务的MBS传输进度报告的上报方式为所述事件触发上报方式的情况下,所述MBS传输进度请求消息还包括:事件类型和/或事件满足的条件。
在一可选方式中,所述事件类型为基站内存储的待传输的MBS业务数据的个数。
在一可选方式中,所述事件满足的条件为基站内存储的待传输的MBS业务数据的个数大于或者大于等于第一门限;或者,所述事件满足的条件为基站内存储的待传输的MBS业务数据的个数小于或者小于等于第二门限。
在一个示例中,所述MBS业务的MBS传输进度报告的上报方式为所述周期性上报方式,基站根据上报周期,周期性的向核心网网元发送MBS传输进度报告。
在一个示例中,所述MBS业务的MBS传输进度报告的上报方式为所述一次性上报方式,基站接收到MBS传输进度请求消息后,直接向核心网网元发送MBS传输进度报 告。
在一个示例中,所述MBS业务的MBS传输进度报告的上报方式为所述事件触发上报方式,事件类型为基站内存储的待传输的MBS数据的个数,例如PDCP SDU的个数;事件满足的条件为基站内存储的待传输的MBS数据的个数大于或者大于等于N1个,N1为正整数,如果基站内存储的待传输的PDCP SDU的个数大于或者大于等于N1个,则触发基站向核心网网元发送MBS传输进度报告。事件满足的条件还可以为基站内存储的待传输的MBS数据的个数小于或者小于等于N2个,N2为正整数,如果基站内存储的待传输的PDCP SDU的个数小于或者小于等于N2个,则触发基站向核心网网元发送MBS传输进度报告。可选地,N2小于N1。
步骤302:所述核心网网元接收所述至少两个基站发送的MBS传输进度报告,基于所述至少两个基站发送的MBS传输进度报告,调整向所述至少两个基站下发的MBS业务数据的进度。
本申请实施例中,所述至少两个基站中的每个基站都会基于MBS传输进度请求消息向核心网网元发送MBS传输进度报告。
例如:参照图4,基站1向核心网网元发送MBS传输进度报告,基站2向核心网网元发送MBS传输进度报告。
本申请实施例中,所述至少两个基站中的每个基站发送的MBS传输进度报告的内容均可以参照以下描述。
所述MBS传输进度报告包括以下至少之一:
1)MBS业务的业务标识。
这里,所述MBS业务的业务标识包括以下至少之一:TMGI、G-RNTI、MBS会话标识。MBS业务的业务标识用于指示所述MBS传输进度报告是针对哪个MBS业务的MBS传输进度报告。
2)MBS业务所在小区的小区标识。
3)基站内存储的待传输的MBS业务数据的个数。
这里,基站内存储的待传输的MBS业务数据的个数例如是基站内存储的待传输的PDCP SDU的个数。
4)基站待传输的下一个MBS业务数据的序列号(Series Number,SN)。
5)基站已传输的最后一个MBS业务数据的SN。
对应上述4)和5)来说,可选地,所述SN为PDCP SN;或者,所述SN为核心网网元(如AMF/UPF)添加的SN。
进一步,可选地,所述MBS传输进度报告的上报方式为事件触发上报方式的情况下,所述MBS传输进度报告还包括以下至少之一:触发MBS传输进度报告的事件类型、事件满足的条件。
本申请实施例的上述方案中,事件类型可以通过事件类型的标识(id)来表示,所述MBS传输进度报告携带事件类型的标识即可。
本申请实施例中,核心网网元收到至少两个基站发送的MBS传输进度报告之后,基于至少两个基站的MBS传输进度报告确定至少两个基站内存储的待传输的MBS业务的个数,以2个基站为例,如果基站1内存储的待传输的MBS业务的个数大于基站2内存储的待传输的MBS业务的个数或者基站1内存储的待传输的MBS业务的个数与基站2内存储的待传输的MBS业务的个数的差值超过一定门限,则核心网网元暂时不传递MBS业务数据给这两个基站,如此,基站1内存储的待传输的MBS业务的个数会逐渐减少,从而缩短与基站2内存储的待传输的MBS业务的个数之间的差距。如果基站1内存储的待传输的MBS业务的个数与基站2内存储的待传输的MBS业务的个数的差 值小于一定门限,则核心网网元继续传递MBS业务数据给这两个基站。
例如:基站1内存储的待传输的MBS业务的个数为10个,基站2内存储的待传输的MBS业务的个数为3个,代表基站2的MBS业务传输进度相对于基站1的MBS业务传输进度较快,核心网网元暂时不传递MBS业务数据给这两个基站,基站2和基站1持续调度各自的MBS业务数据,基站1调度完后等待基站2的调度,基站1内存储的待传输的MBS业务的个数为3个,基站2内存储的待传输的MBS业务的个数为0个的时候,核心网网元继续传递MBS业务数据给这两个基站。
本申请实施例的上述方案中,所述MBS传输进度请求消息通过第一NGAP信令发送,所述MBS传输进度报告通过第二NGAP信令发送;或者,所述MBS传输进度请求消息通过第一GTP-C信令发送,所述MBS传输进度报告通过第二GTP-C信令发送。
本申请实施例的技术方案,通过核心网网元和基站之间协调MBS传输进度,核心网网元来控制和协调MBS业务传输进度在各个基站之间基本保持一致,来尽可能降低由于两个基站的MBS业务传输进度不一样而导致的MBS业务数据丢失。
图5是本申请实施例提供的MBS业务传输进度的控制方法的流程示意图二,如图5所示,所述MBS业务传输进度的控制方法包括以下步骤:
步骤501:第一基站向至少一个第二基站发送MBS传输进度请求消息,所述MBS传输进度请求消息用于请求上报MBS传输进度报告。
在一可选方式中,所述第一基站、第二基站的类型为gNB。
本申请实施例中,核心网网元和至少两个基站(包括第一基站和至少一个第二基站)之间为某个MBS业务建立GTP隧道。核心网网元通过该GTP隧道将MBS业务数据传递给至少两个基站。这里,GTP隧道可以是共享的GTP隧道或者是per UE的GTP隧道。
本申请实施例中,由基站之间交互MBS传输进度报告来实现分布式控制各个基站的MBS传输进度。
例如:参照图6,基站1、基站2、基站3中的其中一个基站(称为第一基站)向另外两个基站(称为第二基站)发送MBS传输进度请求消息。
这里,所述MBS传输进度请求消息还用于配置第二基站发送该基站的关于MBS业务数据传输的情况。以下对其进行具体描述。
本申请实施例中,所述MBS传输进度请求消息包括以下至少之一:MBS业务的业务标识、MBS业务的MBS传输进度报告的上报方式。
上述方案中,可选地,所述MBS业务的业务标识包括以下至少之一:TMGI、G-RNTI、MBS会话标识。
上述方案中,可选地,所述MBS业务的MBS传输进度报告的上报方式为周期性上报方式、或者一次性上报方式、或者事件触发上报方式。
A)所述MBS业务的MBS传输进度报告的上报方式为所述周期性上报方式的情况下,所述MBS传输进度请求消息还包括:周期性上报方式的上报周期。
B)所述MBS业务的MBS传输进度报告的上报方式为所述事件触发上报方式的情况下,所述MBS传输进度请求消息还包括:事件类型和/或事件满足的条件。
在一可选方式中,所述事件类型为基站内存储的待传输的MBS业务数据的个数。
在一可选方式中,所述事件满足的条件为基站内存储的待传输的MBS业务数据的个数大于或者大于等于第一门限;或者,所述事件满足的条件为基站内存储的待传输的MBS业务数据的个数小于或者小于等于第二门限。
在一个示例中,所述MBS业务的MBS传输进度报告的上报方式为所述周期性上报方式,第二基站根据上报周期,周期性的向第一基站发送MBS传输进度报告。
在一个示例中,所述MBS业务的MBS传输进度报告的上报方式为所述一次性上报 方式,第二基站接收到MBS传输进度请求消息后,直接向第一基站发送MBS传输进度报告。
在一个示例中,所述MBS业务的MBS传输进度报告的上报方式为所述事件触发上报方式,事件类型为基站内存储的待传输的MBS数据的个数,例如PDCP SDU的个数;事件满足的条件为基站内存储的待传输的MBS数据的个数大于或者大于等于N1个,N1为正整数,如果第二基站内存储的待传输的PDCP SDU的个数大于或者大于等于N1个,则触发第二基站向第一基站发送MBS传输进度报告。事件满足的条件还可以为基站内存储的待传输的MBS数据的个数小于或者小于等于N2个,N2为正整数,如果第二基站内存储的待传输的PDCP SDU的个数小于或者小于等于N2个,则触发第二基站向第一基站发送MBS传输进度报告。可选地,N2小于N1。
步骤502:所述第一基站接收所述至少一个第二基站发送的MBS传输进度报告,基于所述至少一个第二基站发送的MBS传输进度报告,调整在空口上调度的MBS业务数据的进度。
本申请实施例中,所述至少一个第二基站中的每个基站都会基于MBS传输进度请求消息向第一基站发送MBS传输进度报告。
例如:参照图6,基站2和基站3向基站1发送MBS传输进度报告(基站1作为第一基站),同样,基站1和基站3向基站2发送MBS传输进度报告(基站2作为第一基站),基站1和基站2向基站3发送MBS传输进度报告(基站3作为第一基站)。
本申请实施例中,所述至少一个第二基站中的每个基站发送的MBS传输进度报告的内容均可以参照以下描述。
1)MBS业务的业务标识。
这里,所述MBS业务的业务标识包括以下至少之一:TMGI、G-RNTI、MBS会话标识。MBS业务的业务标识用于指示所述MBS传输进度报告是针对哪个MBS业务的MBS传输进度报告。
2)MBS业务所在小区的小区标识。
3)基站内存储的待传输的MBS业务数据的个数。
这里,基站内存储的待传输的MBS业务数据的个数例如是基站内存储的待传输的PDCP SDU的个数。
4)基站待传输的下一个MBS业务数据的序列号(Series Number,SN)。
5)基站已传输的最后一个MBS业务数据的SN。
对应上述4)和5)来说,可选地,所述SN为PDCP SN;或者,所述SN为核心网网元(如AMF/UPF)添加的SN。
进一步,可选地,所述MBS传输进度报告的上报方式为事件触发上报方式的情况下,所述MBS传输进度报告还包括以下至少之一:触发MBS传输进度报告的事件类型、事件满足的条件。
本申请实施例的上述方案中,事件类型可以通过事件类型的标识(id)来表示,所述MBS传输进度报告携带事件类型的标识即可。
本申请实施例中,第一基站收到至少一个第二基站发送的MBS传输进度报告之后,基于所述至少一个第二基站发送的MBS传输进度报告,调整在空口上调度的MBS业务数据的进度。
在一可选方式中,所述第一基站基于所述至少一个第二基站发送的MBS传输进度报告,确定所述至少一个第二基站内存储的待传输的MBS业务数据的个数,并基于所述至少一个第二基站内存储的待传输的MBS业务数据的个数确定第一参考值;若所述第一基站内存储的待传输的MBS业务数据的个数大于所述第一参考值,则加 快在空口上调度的MBS业务数据的进度;若所述第一基站内存储的待传输的MBS业务数据的个数小于所述第一参考值,则减缓在空口上调度的MBS业务数据的进度。可选地,所述第一个参考值为所述至少一个第二基站内存储的待传输的MBS业务数据的个数的平均值。
例如:基站1内存储的待传输的MBS业务数据的个数为14个,基站2内存储的待传输的MBS业务数据的个数为7个,基站3内存储的待传输的MBS业务数据的个数为9个,第一参考值为(7+9)/2=8,那么,基站1的MBS业务传输进度较慢,基站1加快在空口上调度的MBS业务数据的进度。
例如:基站1内存储的待传输的MBS业务数据的个数为5个,基站2内存储的待传输的MBS业务数据的个数为7个,基站3内存储的待传输的MBS业务数据的个数为9个,第一参考值为(7+9)/2=8,那么,基站1的MBS业务传输进度较快,基站1减缓在空口上调度的MBS业务数据的进度。
在一可选方式中,所述第一基站基于所述至少一个第二基站发送的MBS传输进度报告,确定所述至少一个第二基站内存储的待传输的MBS业务数据的个数,并基于所述第一基站内存储的待传输的MBS业务数据的个数以及所述至少一个第二基站内存储的待传输的MBS业务数据的个数确定第二参考值;若所述第二参考值大于第三门限,则加快在空口上调度的MBS业务数据的进度;若所述第二参考值小于第三门限,则减缓在空口上调度的MBS业务数据的进度。进一步,所述第二参考值为所述第一基站内存储的待传输的MBS业务数据的个数与第一参考值的差值,所述第一参考值基于所述至少一个第二基站内存储的待传输的MBS业务数据的个数确定。可选地,所述第一个参考值为所述至少一个第二基站内存储的待传输的MBS业务数据的个数的平均值。
例如:基站1内存储的待传输的MBS业务数据的个数为14个,基站2内存储的待传输的MBS业务数据的个数为7个,基站3内存储的待传输的MBS业务数据的个数为9个,第一参考值为(7+9)/2=8,第二参考值为14-8=6,第三门限为0或者1,那么,第二参考值大于第三门限,基站1的MBS业务传输进度较慢,基站1加快在空口上调度的MBS业务数据的进度。
例如:基站1内存储的待传输的MBS业务数据的个数为5个,基站2内存储的待传输的MBS业务数据的个数为7个,基站3内存储的待传输的MBS业务数据的个数为9个,第一参考值为(7+9)/2=8,第二参考值为5-8=-3,第三门限为0或者1,那么,第二参考值小于第三门限,基站1的MBS业务传输进度较快,基站1减缓在空口上调度的MBS业务数据的进度。
本申请实施例的上述方案中,所述MBS传输进度请求消息通过第一XnAP信令发送,所述MBS传输进度报告通过第二XnAP信令发送。
本申请实施例的技术方案,通过基站之间协调MBS传输进度,来决定加快或者放缓基站的MBS传输进度,使得各个基站之间的MBS传输进度尽可能同步,来尽可能降低由于两个基站的MBS业务传输进度不一样而导致的MBS业务数据丢失。
图7是本申请实施例提供的MBS业务传输进度的控制装置的结构组成示意图一,应用于核心网网元,如图7所示,所述MBS业务传输进度的控制装置包括:
发送单元701,用于向至少两个基站发送MBS传输进度请求消息,所述MBS传输进度请求消息用于请求上报MBS传输进度报告;
接收单元702,用于接收所述至少两个基站发送的MBS传输进度报告;
调整单元703,用于基于所述至少两个基站发送的MBS传输进度报告,调整向所述至少两个基站下发的MBS业务数据的进度。
在一可选方式中,所述MBS传输进度请求消息包括以下至少之一:MBS业务的业务标识、MBS业务的MBS传输进度报告的上报方式。
在一可选方式中,所述MBS业务的MBS传输进度报告的上报方式为周期性上报方式、或者一次性上报方式、或者事件触发上报方式。
在一可选方式中,所述MBS业务的MBS传输进度报告的上报方式为所述周期性上报方式的情况下,
所述MBS传输进度请求消息还包括:周期性上报方式的上报周期。
在一可选方式中,所述MBS业务的MBS传输进度报告的上报方式为所述事件触发上报方式的情况下,
所述MBS传输进度请求消息还包括:事件类型和/或事件满足的条件。
在一可选方式中,所述事件类型为基站内存储的待传输的MBS业务数据的个数。
在一可选方式中,所述事件满足的条件为基站内存储的待传输的MBS业务数据的个数大于或者大于等于第一门限;或者,
所述事件满足的条件为基站内存储的待传输的MBS业务数据的个数小于或者小于等于第二门限。
在一可选方式中,所述MBS传输进度报告包括以下至少之一:MBS业务的业务标识、MBS业务所在小区的小区标识、基站内存储的待传输的MBS业务数据的个数、基站待传输的下一个MBS业务数据的SN,基站已传输的最后一个MBS业务数据的SN。
在一可选方式中,所述MBS传输进度报告的上报方式为事件触发上报方式的情况下,所述MBS传输进度报告还包括以下至少之一:触发MBS传输进度报告的事件类型、事件满足的条件。
在一可选方式中,所述SN为PDCP SN;或者,
所述SN为核心网网元添加的SN。
在一可选方式中,所述MBS传输进度请求消息通过第一NGAP信令发送,所述MBS传输进度报告通过第二NGAP信令发送;或者,
所述MBS传输进度请求消息通过第一GTP-C信令发送,所述MBS传输进度报告通过第二GTP-C信令发送。
本领域技术人员应当理解,本申请实施例的上述MBS业务传输进度的控制装置的相关描述可以参照本申请实施例的MBS业务传输进度的控制方法的相关描述进行理解。
图8是本申请实施例提供的MBS业务传输进度的控制装置的结构组成示意图二,应用于第一基站,如图8所示,所述MBS业务传输进度的控制装置包括:
发送单元801,用于向至少一个第二基站发送MBS传输进度请求消息,所述MBS传输进度请求消息用于请求上报MBS传输进度报告;
接收单元802,用于接收所述至少一个第二基站发送的MBS传输进度报告;
调整单元803,用于基于所述至少一个第二基站发送的MBS传输进度报告,调整在空口上调度的MBS业务数据的进度。
在一可选方式中,所述MBS传输进度请求消息包括以下至少之一:MBS业务的业务标识、MBS业务的MBS传输进度报告的上报方式。
在一可选方式中,所述MBS业务的MBS传输进度报告的上报方式为周期性上报方式、或者一次性上报方式、或者事件触发上报方式。
在一可选方式中,所述MBS业务的MBS传输进度报告的上报方式为所述周期性上报方式的情况下,
所述MBS传输进度请求消息还包括:周期性上报方式的上报周期。
在一可选方式中,所述MBS业务的MBS传输进度报告的上报方式为所述事件触发上报方式的情况下,
所述MBS传输进度请求消息还包括:事件类型和/或事件满足的条件。
在一可选方式中,所述事件类型为基站内存储的待传输的MBS业务数据的个数。
在一可选方式中,所述事件满足的条件为基站内存储的待传输的MBS业务数据的个数大于或者大于等于第一门限;或者,
所述事件满足的条件为基站内存储的待传输的MBS业务数据的个数小于或者小于等于第二门限。
在一可选方式中,所述MBS传输进度报告包括以下至少之一:MBS业务的业务标识、MBS业务所在小区的小区标识、基站内存储的待传输的MBS业务数据的个数、基站待传输的下一个MBS业务数据的SN,基站已传输的最后一个MBS业务数据的SN。
在一可选方式中,所述MBS传输进度报告的上报方式为事件触发上报方式的情况下,所述MBS传输进度报告还包括以下至少之一:触发MBS传输进度报告的事件类型、事件满足的条件。
在一可选方式中,所述SN为PDCP SN;或者,
所述SN为核心网网元添加的SN。
在一可选方式中,所述调整单元803,用于基于所述至少一个第二基站发送的MBS传输进度报告,确定所述至少一个第二基站内存储的待传输的MBS业务数据的个数,并基于所述至少一个第二基站内存储的待传输的MBS业务数据的个数确定第一参考值;若所述第一基站内存储的待传输的MBS业务数据的个数大于所述第一参考值,则加快在空口上调度的MBS业务数据的进度;若所述第一基站内存储的待传输的MBS业务数据的个数小于所述第一参考值,则减缓在空口上调度的MBS业务数据的进度。
在一可选方式中,所述调整单元803,用于基于所述至少一个第二基站发送的MBS传输进度报告,确定所述至少一个第二基站内存储的待传输的MBS业务数据的个数,并基于所述第一基站内存储的待传输的MBS业务数据的个数以及所述至少一个第二基站内存储的待传输的MBS业务数据的个数确定第二参考值;若所述第二参考值大于第三门限,则加快在空口上调度的MBS业务数据的进度;若所述第二参考值小于第三门限,则减缓在空口上调度的MBS业务数据的进度。
在一可选方式中,所述第二参考值为所述第一基站内存储的待传输的MBS业务数据的个数与第一参考值的差值,所述第一参考值基于所述至少一个第二基站内存储的待传输的MBS业务数据的个数确定。
在一可选方式中,所述第一个参考值为所述至少一个第二基站内存储的待传输的MBS业务数据的个数的平均值。
在一可选方式中,所述MBS传输进度请求消息通过第一XnAP信令发送,所述MBS传输进度报告通过第二XnAP信令发送。
本领域技术人员应当理解,本申请实施例的上述MBS业务传输进度的控制装置的相关描述可以参照本申请实施例的MBS业务传输进度的控制方法的相关描述进行理解。
图9是本申请实施例提供的一种通信设备900示意性结构图。该通信设备可以是基站,也可以是核心网网元,图9所示的通信设备900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,通信设备900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
可选地,如图9所示,通信设备900还可以包括收发器930,处理器910可以控制该收发器930与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器930可以包括发射机和接收机。收发器930还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备900具体可为本申请实施例的第一基站,并且该通信设备900可以实现本申请实施例的各个方法中由第一基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备900具体可为本申请实施例的核心网网元,并且该通信设备900可以实现本申请实施例的各个方法中由核心网网元实现的相应流程,为了简洁,在此不再赘述。
图10是本申请实施例的芯片的示意性结构图。图10所示的芯片1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,芯片1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,该芯片1000还可以包括输入接口1030。其中,处理器1010可以控制该输入接口1030与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1000还可以包括输出接口1040。其中,处理器1010可以控制该输出接口1040与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的第一基站,并且该芯片可以实现本申请实施例的各个方法中由第一基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的核心网网元,并且该芯片可以实现本申请实施例的各个方法中由核心网网元实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等 本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的第一基站,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第一基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的核心网网元,并且该计算机程序使得计算机执行本申请实施例的各个方法中由核心网网元实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的第一基站,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第一基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的核心网网元,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由核心网网元实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的第一基站,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第一基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的核心网网元,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由核心网网元实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (57)

  1. 一种多媒体多播服务MBS业务传输进度的控制方法,所述方法包括:
    核心网网元向至少两个基站发送MBS传输进度请求消息,所述MBS传输进度请求消息用于请求上报MBS传输进度报告;
    所述核心网网元接收所述至少两个基站发送的MBS传输进度报告,基于所述至少两个基站发送的MBS传输进度报告,调整向所述至少两个基站下发的MBS业务数据的进度。
  2. 根据权利要求1所述的方法,其中,所述MBS传输进度请求消息包括以下至少之一:MBS业务的业务标识、MBS业务的MBS传输进度报告的上报方式。
  3. 根据权利要求2所述的方法,其中,所述MBS业务的MBS传输进度报告的上报方式为周期性上报方式、或者一次性上报方式、或者事件触发上报方式。
  4. 根据权利要求3所述的方法,其中,所述MBS业务的MBS传输进度报告的上报方式为所述周期性上报方式的情况下,
    所述MBS传输进度请求消息还包括:周期性上报方式的上报周期。
  5. 根据权利要求3所述的方法,其中,所述MBS业务的MBS传输进度报告的上报方式为所述事件触发上报方式的情况下,
    所述MBS传输进度请求消息还包括:事件类型和/或事件满足的条件。
  6. 根据权利要求5所述的方法,其中,所述事件类型为基站内存储的待传输的MBS业务数据的个数。
  7. 根据权利要求5或6所述的方法,其中,
    所述事件满足的条件为基站内存储的待传输的MBS业务数据的个数大于或者大于等于第一门限;或者,
    所述事件满足的条件为基站内存储的待传输的MBS业务数据的个数小于或者小于等于第二门限。
  8. 根据权利要求1至7中任一项所述的方法,其中,所述MBS传输进度报告包括以下至少之一:MBS业务的业务标识、MBS业务所在小区的小区标识、基站内存储的待传输的MBS业务数据的个数、基站待传输的下一个MBS业务数据的序列号SN,基站已传输的最后一个MBS业务数据的SN。
  9. 根据权利要求8所述的方法,其中,所述MBS传输进度报告的上报方式为事件触发上报方式的情况下,所述MBS传输进度报告还包括以下至少之一:触发MBS传输进度报告的事件类型、事件满足的条件。
  10. 根据权利要求8所述的方法,其中,
    所述SN为分组数据汇聚协议PDCP SN;或者,
    所述SN为核心网网元添加的SN。
  11. 根据权利要求1至10中任一项所述的方法,其中,
    所述MBS传输进度请求消息通过第一NGAP信令发送,所述MBS传输进度报告通过第二NGAP信令发送;或者,
    所述MBS传输进度请求消息通过第一GTP-C信令发送,所述MBS传输进度报告通过第二GTP-C信令发送。
  12. 一种MBS业务传输进度的控制方法,所述方法包括:
    第一基站向至少一个第二基站发送MBS传输进度请求消息,所述MBS传输进度请求消息用于请求上报MBS传输进度报告;
    所述第一基站接收所述至少一个第二基站发送的MBS传输进度报告,基于所述至少一个第二基站发送的MBS传输进度报告,调整在空口上调度的MBS业务数据的进度。
  13. 根据权利要求12所述的方法,其中,所述MBS传输进度请求消息包括以下至少之一:MBS业务的业务标识、MBS业务的MBS传输进度报告的上报方式。
  14. 根据权利要求13所述的方法,其中,所述MBS业务的MBS传输进度报告的上报方式为周期性上报方式、或者一次性上报方式、或者事件触发上报方式。
  15. 根据权利要求14所述的方法,其中,所述MBS业务的MBS传输进度报告的上报方式为所述周期性上报方式的情况下,
    所述MBS传输进度请求消息还包括:周期性上报方式的上报周期。
  16. 根据权利要求14所述的方法,其中,所述MBS业务的MBS传输进度报告的上报方式为所述事件触发上报方式的情况下,
    所述MBS传输进度请求消息还包括:事件类型和/或事件满足的条件。
  17. 根据权利要求16所述的方法,其中,所述事件类型为基站内存储的待传输的MBS业务数据的个数。
  18. 根据权利要求16或17所述的方法,其中,
    所述事件满足的条件为基站内存储的待传输的MBS业务数据的个数大于或者大于等于第一门限;或者,
    所述事件满足的条件为基站内存储的待传输的MBS业务数据的个数小于或者小于等于第二门限。
  19. 根据权利要求12至18中任一项所述的方法,其中,所述MBS传输进度报告包括以下至少之一:MBS业务的业务标识、MBS业务所在小区的小区标识、基站内存储的待传输的MBS业务数据的个数、基站待传输的下一个MBS业务数据的SN,基站已传输的最后一个MBS业务数据的SN。
  20. 根据权利要求19所述的方法,其中,所述MBS传输进度报告的上报方式为事件触发上报方式的情况下,所述MBS传输进度报告还包括以下至少之一:触发MBS传输进度报告的事件类型、事件满足的条件。
  21. 根据权利要求19或20所述的方法,其中,
    所述SN为PDCP SN;或者,
    所述SN为核心网网元添加的SN。
  22. 根据权利要求12至21中任一项所述的方法,其中,所述基于所述至少一个第二基站发送的MBS传输进度报告,调整在空口上调度的MBS业务数据的进度,包括:
    所述第一基站基于所述至少一个第二基站发送的MBS传输进度报告,确定所述至少一个第二基站内存储的待传输的MBS业务数据的个数,并基于所述至少一个第二基站内存储的待传输的MBS业务数据的个数确定第一参考值;
    若所述第一基站内存储的待传输的MBS业务数据的个数大于所述第一参考值,则加快在空口上调度的MBS业务数据的进度;若所述第一基站内存储的待传输的MBS业务数据的个数小于所述第一参考值,则减缓在空口上调度的MBS业务数据的进度。
  23. 根据权利要求12至21中任一项所述的方法,其中,所述基于所述至少一个第二基站发送的MBS传输进度报告,调整在空口上调度的MBS业务数据的进度,包括:
    所述第一基站基于所述至少一个第二基站发送的MBS传输进度报告,确定所述 至少一个第二基站内存储的待传输的MBS业务数据的个数,并基于所述第一基站内存储的待传输的MBS业务数据的个数以及所述至少一个第二基站内存储的待传输的MBS业务数据的个数确定第二参考值;
    若所述第二参考值大于第三门限,则加快在空口上调度的MBS业务数据的进度;若所述第二参考值小于第三门限,则减缓在空口上调度的MBS业务数据的进度。
  24. 根据权利要求23所述的方法,其中,所述第二参考值为所述第一基站内存储的待传输的MBS业务数据的个数与第一参考值的差值,所述第一参考值基于所述至少一个第二基站内存储的待传输的MBS业务数据的个数确定。
  25. 根据权利要求22或24所述的方法,其中,所述第一个参考值为所述至少一个第二基站内存储的待传输的MBS业务数据的个数的平均值。
  26. 根据权利要求12至25中任一项所述的方法,其中,
    所述MBS传输进度请求消息通过第一XnAP信令发送,所述MBS传输进度报告通过第二XnAP信令发送。
  27. 一种MBS业务传输进度的控制装置,应用于核心网网元,所述装置包括:
    发送单元,用于向至少两个基站发送MBS传输进度请求消息,所述MBS传输进度请求消息用于请求上报MBS传输进度报告;
    接收单元,用于接收所述至少两个基站发送的MBS传输进度报告;
    调整单元,用于基于所述至少两个基站发送的MBS传输进度报告,调整向所述至少两个基站下发的MBS业务数据的进度。
  28. 根据权利要求27所述的装置,其中,所述MBS传输进度请求消息包括以下至少之一:MBS业务的业务标识、MBS业务的MBS传输进度报告的上报方式。
  29. 根据权利要求28所述的装置,其中,所述MBS业务的MBS传输进度报告的上报方式为周期性上报方式、或者一次性上报方式、或者事件触发上报方式。
  30. 根据权利要求29所述的装置,其中,所述MBS业务的MBS传输进度报告的上报方式为所述周期性上报方式的情况下,
    所述MBS传输进度请求消息还包括:周期性上报方式的上报周期。
  31. 根据权利要求29所述的装置,其中,所述MBS业务的MBS传输进度报告的上报方式为所述事件触发上报方式的情况下,
    所述MBS传输进度请求消息还包括:事件类型和/或事件满足的条件。
  32. 根据权利要求31所述的装置,其中,所述事件类型为基站内存储的待传输的MBS业务数据的个数。
  33. 根据权利要求31或32所述的装置,其中,
    所述事件满足的条件为基站内存储的待传输的MBS业务数据的个数大于或者大于等于第一门限;或者,
    所述事件满足的条件为基站内存储的待传输的MBS业务数据的个数小于或者小于等于第二门限。
  34. 根据权利要求27至33中任一项所述的装置,其中,所述MBS传输进度报告包括以下至少之一:MBS业务的业务标识、MBS业务所在小区的小区标识、基站内存储的待传输的MBS业务数据的个数、基站待传输的下一个MBS业务数据的SN,基站已传输的最后一个MBS业务数据的SN。
  35. 根据权利要求34所述的装置,其中,所述MBS传输进度报告的上报方式为事件触发上报方式的情况下,所述MBS传输进度报告还包括以下至少之一:触发MBS传输进度报告的事件类型、事件满足的条件。
  36. 根据权利要求34所述的装置,其中,
    所述SN为PDCP SN;或者,
    所述SN为核心网网元添加的SN。
  37. 根据权利要求27至36中任一项所述的装置,其中,
    所述MBS传输进度请求消息通过第一NGAP信令发送,所述MBS传输进度报告通过第二NGAP信令发送;或者,
    所述MBS传输进度请求消息通过第一GTP-C信令发送,所述MBS传输进度报告通过第二GTP-C信令发送。
  38. 一种MBS业务传输进度的控制装置,应用于第一基站,所述装置包括:
    发送单元,用于向至少一个第二基站发送MBS传输进度请求消息,所述MBS传输进度请求消息用于请求上报MBS传输进度报告;
    接收单元,用于接收所述至少一个第二基站发送的MBS传输进度报告;
    调整单元,用于基于所述至少一个第二基站发送的MBS传输进度报告,调整在空口上调度的MBS业务数据的进度。
  39. 根据权利要求38所述的装置,其中,所述MBS传输进度请求消息包括以下至少之一:MBS业务的业务标识、MBS业务的MBS传输进度报告的上报方式。
  40. 根据权利要求39所述的装置,其中,所述MBS业务的MBS传输进度报告的上报方式为周期性上报方式、或者一次性上报方式、或者事件触发上报方式。
  41. 根据权利要求40所述的装置,其中,所述MBS业务的MBS传输进度报告的上报方式为所述周期性上报方式的情况下,
    所述MBS传输进度请求消息还包括:周期性上报方式的上报周期。
  42. 根据权利要求40所述的装置,其中,所述MBS业务的MBS传输进度报告的上报方式为所述事件触发上报方式的情况下,
    所述MBS传输进度请求消息还包括:事件类型和/或事件满足的条件。
  43. 根据权利要求42所述的装置,其中,所述事件类型为基站内存储的待传输的MBS业务数据的个数。
  44. 根据权利要求42或43所述的装置,其中,
    所述事件满足的条件为基站内存储的待传输的MBS业务数据的个数大于或者大于等于第一门限;或者,
    所述事件满足的条件为基站内存储的待传输的MBS业务数据的个数小于或者小于等于第二门限。
  45. 根据权利要求38至44中任一项所述的装置,其中,所述MBS传输进度报告包括以下至少之一:MBS业务的业务标识、MBS业务所在小区的小区标识、基站内存储的待传输的MBS业务数据的个数、基站待传输的下一个MBS业务数据的SN,基站已传输的最后一个MBS业务数据的SN。
  46. 根据权利要求45所述的装置,其中,所述MBS传输进度报告的上报方式为事件触发上报方式的情况下,所述MBS传输进度报告还包括以下至少之一:触发MBS传输进度报告的事件类型、事件满足的条件。
  47. 根据权利要求45或46所述的装置,其中,
    所述SN为PDCP SN;或者,
    所述SN为核心网网元添加的SN。
  48. 根据权利要求38至47中任一项所述的装置,其中,所述调整单元,用于基于所述至少一个第二基站发送的MBS传输进度报告,确定所述至少一个第二基站内存储的待传输的MBS业务数据的个数,并基于所述至少一个第二基站内存储的待传输的MBS业务数据的个数确定第一参考值;若所述第一基站内存储的待传输的MBS 业务数据的个数大于所述第一参考值,则加快在空口上调度的MBS业务数据的进度;若所述第一基站内存储的待传输的MBS业务数据的个数小于所述第一参考值,则减缓在空口上调度的MBS业务数据的进度。
  49. 根据权利要求38至47中任一项所述的装置,其中,所述调整单元,用于基于所述至少一个第二基站发送的MBS传输进度报告,确定所述至少一个第二基站内存储的待传输的MBS业务数据的个数,并基于所述第一基站内存储的待传输的MBS业务数据的个数以及所述至少一个第二基站内存储的待传输的MBS业务数据的个数确定第二参考值;若所述第二参考值大于第三门限,则加快在空口上调度的MBS业务数据的进度;若所述第二参考值小于第三门限,则减缓在空口上调度的MBS业务数据的进度。
  50. 根据权利要求49所述的装置,其中,所述第二参考值为所述第一基站内存储的待传输的MBS业务数据的个数与第一参考值的差值,所述第一参考值基于所述至少一个第二基站内存储的待传输的MBS业务数据的个数确定。
  51. 根据权利要求48或50所述的装置,其中,所述第一个参考值为所述至少一个第二基站内存储的待传输的MBS业务数据的个数的平均值。
  52. 根据权利要求38至51中任一项所述的装置,其中,
    所述MBS传输进度请求消息通过第一XnAP信令发送,所述MBS传输进度报告通过第二XnAP信令发送。
  53. 一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至11中任一项所述的方法,或者权利要求12至26中任一项所述的方法。
  54. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至11中任一项所述的方法,或者权利要求12至26中任一项所述的方法。
  55. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至11中任一项所述的方法,或者权利要求12至26中任一项所述的方法。
  56. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至11中任一项所述的方法,或者权利要求12至26中任一项所述的方法。
  57. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至11中任一项所述的方法,或者权利要求12至26中任一项所述的方法。
PCT/CN2020/116272 2020-09-18 2020-09-18 Mbs业务传输进度的控制方法及装置、通信设备 WO2022056859A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080105067.5A CN116114375A (zh) 2020-09-18 2020-09-18 Mbs业务传输进度的控制方法及装置、通信设备
PCT/CN2020/116272 WO2022056859A1 (zh) 2020-09-18 2020-09-18 Mbs业务传输进度的控制方法及装置、通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/116272 WO2022056859A1 (zh) 2020-09-18 2020-09-18 Mbs业务传输进度的控制方法及装置、通信设备

Publications (1)

Publication Number Publication Date
WO2022056859A1 true WO2022056859A1 (zh) 2022-03-24

Family

ID=80777375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116272 WO2022056859A1 (zh) 2020-09-18 2020-09-18 Mbs业务传输进度的控制方法及装置、通信设备

Country Status (2)

Country Link
CN (1) CN116114375A (zh)
WO (1) WO2022056859A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101090525A (zh) * 2007-08-06 2007-12-19 中兴通讯股份有限公司 多播广播业务调度方法
US20080009319A1 (en) * 2006-07-07 2008-01-10 Samsung Electronics Co., Ltd. Multicast and broadcast service (mbs) apparatus and method in broadband wireless access (bwa) system
WO2020057755A1 (en) * 2018-09-21 2020-03-26 Huawei Technologies Co., Ltd. Devices and methods for communication in a wireless communication network
CN111049829A (zh) * 2019-12-13 2020-04-21 南方科技大学 视频流传输方法、装置、计算机设备和存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080009319A1 (en) * 2006-07-07 2008-01-10 Samsung Electronics Co., Ltd. Multicast and broadcast service (mbs) apparatus and method in broadband wireless access (bwa) system
CN101090525A (zh) * 2007-08-06 2007-12-19 中兴通讯股份有限公司 多播广播业务调度方法
WO2020057755A1 (en) * 2018-09-21 2020-03-26 Huawei Technologies Co., Ltd. Devices and methods for communication in a wireless communication network
CN111049829A (zh) * 2019-12-13 2020-04-21 南方科技大学 视频流传输方法、装置、计算机设备和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "Group scheduling for NR Multicast and Broadcast Services", 3GPP DRAFT; R1-2006013, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051915129 *

Also Published As

Publication number Publication date
CN116114375A (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
WO2021142647A1 (zh) 一种业务传输方法及装置、终端设备、网络设备
WO2021134316A1 (zh) 一种业务调度方法及装置、终端设备、网络设备
WO2022056806A1 (zh) 一种mbs业务的管理方法及装置、终端设备、网络设备
WO2021134298A1 (zh) 一种资源指示方法及装置、通信设备
WO2021138805A1 (zh) 一种业务同步调度方法及装置、通信设备
WO2021051320A1 (zh) 一种业务数据传输方法及装置、网络设备、终端设备
WO2022006875A1 (zh) 建立mbs业务的方法及装置、终端设备、网络设备
WO2022006849A1 (zh) Mbs业务的tci状态管理方法及装置、终端设备
WO2022006746A1 (zh) 接收本地mbs业务的方法及装置、终端设备、网络设备
US20230361923A1 (en) Mbs service configuration method and terminal device
WO2021051319A1 (zh) 一种drx配置方法及装置、终端设备、网络设备
WO2022120837A1 (zh) Mbs业务的半静态调度方法及装置、终端设备、网络设备
WO2022141545A1 (zh) 一种mcch调度传输方法及装置、终端设备
WO2022141088A1 (zh) 一种mbs业务的传输方法及装置、终端设备
WO2022056859A1 (zh) Mbs业务传输进度的控制方法及装置、通信设备
WO2021051321A1 (zh) 一种业务数据传输方法及装置、终端设备
WO2021051322A1 (zh) 一种bwp配置方法及装置、终端设备、网络设备
WO2021134291A1 (zh) 一种资源配置方法及装置、终端设备、网络设备
WO2022165720A1 (zh) 提高mbs业务可靠性的方法及装置、终端设备、网络设备
WO2022205454A1 (zh) 一种指示寻呼的方法及装置、终端设备、网络设备
WO2022126658A1 (zh) 一种mbs配置变更的方法及装置、终端设备、网络设备
WO2022056669A1 (zh) 一种mbs业务的管理方法及装置、终端设备、网络设备
WO2022198415A1 (zh) 提高mbs业务可靠性的方法及装置、终端设备、网络设备
WO2022226937A1 (zh) 一种mbs寻呼方法及装置、网络设备、终端设备
WO2022021024A1 (zh) 一种bwp切换的方法及装置、终端设备

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953717

Country of ref document: EP

Kind code of ref document: A1