WO2022141088A1 - 一种mbs业务的传输方法及装置、终端设备 - Google Patents

一种mbs业务的传输方法及装置、终端设备 Download PDF

Info

Publication number
WO2022141088A1
WO2022141088A1 PCT/CN2020/140989 CN2020140989W WO2022141088A1 WO 2022141088 A1 WO2022141088 A1 WO 2022141088A1 CN 2020140989 W CN2020140989 W CN 2020140989W WO 2022141088 A1 WO2022141088 A1 WO 2022141088A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
index
time window
mbs data
mbs
Prior art date
Application number
PCT/CN2020/140989
Other languages
English (en)
French (fr)
Inventor
王淑坤
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080106967.1A priority Critical patent/CN116349309A/zh
Priority to PCT/CN2020/140989 priority patent/WO2022141088A1/zh
Priority to EP20967436.5A priority patent/EP4240063A4/en
Publication of WO2022141088A1 publication Critical patent/WO2022141088A1/zh
Priority to US18/203,793 priority patent/US20230309121A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of mobile communication technologies, and in particular, to a method and apparatus for transmitting a Multicast Broadcast Service (MBS) service, and a terminal device.
  • MMS Multicast Broadcast Service
  • NR New Radio
  • RRC Radio Resource Control
  • the terminal equipment can receive broadcasts in the radio resource control (Radio Resource Control, RRC) idle state, the RRC inactive state, or the RRC connection state.
  • RRC Radio Resource Control
  • the broadcasted MBS service can be transmitted by beam sweeping on the air interface.
  • the beam sweeping scenario it needs to be clarified how the terminal device correctly receives the broadcast MBS service.
  • Embodiments of the present application provide a method and apparatus for transmitting an MBS service, and a terminal device.
  • the terminal device determines the correspondence between the physical downlink control channel (Physical Downlink Control Channel, PDCCH) opportunity and the synchronization signal block (SS/PBCH Block, SSB) index, and the PDCCH opportunity is used to transmit the MBS PDCCH;
  • PDCCH Physical Downlink Control Channel
  • SSB synchronization signal block
  • the terminal device receives the MBS PDCCH based on the correspondence between the PDCCH occasion and the SSB index.
  • the MBS service transmission apparatus provided in the embodiment of the present application is applied to terminal equipment, and the apparatus includes:
  • a determining unit configured to determine the correspondence between the PDCCH occasion and the SSB index, where the PDCCH occasion is used to transmit the MBS PDCCH;
  • a receiving unit configured to receive the MBS PDCCH based on the correspondence between the PDCCH timing and the SSB index.
  • the terminal device provided by the embodiments of the present application includes a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory to execute the above-mentioned transmission method of the MBS service.
  • the chip provided by the embodiment of the present application is used to implement the above-mentioned transmission method of the MBS service.
  • the chip includes: a processor for invoking and running a computer program from the memory, so that the device installed with the chip executes the above-mentioned MBS service transmission method.
  • the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program, and the computer program enables a computer to execute the above-mentioned method for transmitting an MBS service.
  • the computer program product provided by the embodiments of the present application includes computer program instructions, and the computer program instructions cause a computer to execute the above-mentioned method for transmitting an MBS service.
  • the computer program provided by the embodiment of the present application when it runs on the computer, causes the computer to execute the above-mentioned MBS service transmission method.
  • the terminal equipment determines the correspondence between the PDCCH timing and the SSB index. Since the SSB index and the beam are associated, the terminal equipment can determine the PDCCH timing and The corresponding relationship between the beams, so that the MBS PDCCH is received based on the corresponding relationship, which ensures that the terminal device receives the MBS PDCCH in the correct position (that is, through the correct beam), and provides a guarantee for the subsequent correct reception of the MBS data.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Fig. 2 is the schematic diagram of the Beam sweeping that the embodiment of this application provides;
  • FIG. 3 is a schematic diagram of an SSB provided by an embodiment of the present application.
  • Fig. 4 is the schematic diagram of the SSB burst set cycle that the embodiment of this application provides;
  • FIG. 5 is a schematic flowchart of a method for transmitting an MBS service provided by an embodiment of the present application
  • FIG. 6 is a schematic diagram 1 of the correspondence between the index of the PDCCH and the SSB index provided by the embodiment of the present application;
  • FIG. 7 is a schematic diagram 2 of the correspondence between the PDCCH index and the SSB index provided by the embodiment of the present application;
  • FIG. 8 is a schematic diagram 3 of the correspondence between the PDCCH index and the SSB index provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram 4 of the correspondence between the PDCCH index and the SSB index provided by the embodiment of the present application.
  • FIG. 10 is a schematic diagram 5 of the correspondence between the index of the PDCCH and the SSB index provided by the embodiment of the present application;
  • 11 is a schematic diagram 6 of the correspondence between the PDCCH index and the SSB index provided by the embodiment of the present application;
  • FIG. 12 is a schematic diagram 7 of the correspondence between the PDCCH index and the SSB index provided by the embodiment of the present application;
  • FIG. 13 is a schematic diagram 8 of the correspondence between the PDCCH index and the SSB index provided by the embodiment of the present application;
  • FIG. 14 is a schematic diagram 9 of the correspondence between the index of the PDCCH and the SSB index provided by the embodiment of the present application;
  • FIG. 15 is a schematic diagram ten of the correspondence between the index of the PDCCH and the SSB index provided by the embodiment of the present application;
  • FIG. 16 is a schematic structural composition diagram of an apparatus for transmitting an MBS service provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 19 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • 5G communication systems or future communication systems etc.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal 120 (or referred to as a communication terminal, a terminal).
  • the network device 110 may provide communication coverage for a particular geographic area and may communicate with terminals located within the coverage area.
  • the network device 110 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the
  • the network device can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, a wearable device, a hub, a switch, a bridge, a router, a network-side device in a 5G network, or a network device in a future communication system.
  • the communication system 100 also includes at least one terminal 120 located within the coverage of the network device 110 .
  • Terminal includes, but is not limited to, connections via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connections; and/or another data connection/network; and/or via a wireless interface, e.g. for cellular networks, Wireless Local Area Networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter; and/or a device of another terminal configured to receive/transmit a communication signal; and/or an Internet of Things (IoT) device.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN Wireless Local Area Networks
  • WLAN Wireless Local Area Networks
  • digital television networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter
  • IoT Internet of Things
  • a terminal arranged to communicate through a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal” or “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular telephones; Personal Communications System (PCS) terminals that may combine cellular radio telephones with data processing, facsimile, and data communication capabilities; may include radio telephones, pagers, Internet/Intranet PDAs with networking access, web browsers, memo pads, calendars, and/or Global Positioning System (GPS) receivers; and conventional laptop and/or palmtop receivers or others including radiotelephone transceivers electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • a terminal may refer to an access terminal, user equipment (UE), subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks or terminals in future evolved PLMNs, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal (Device to Device, D2D) communication may be performed between the terminals 120 .
  • the 5G communication system or the 5G network may also be referred to as a new radio (New Radio, NR) system or an NR network.
  • New Radio NR
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices, and the coverage of each network device may include other numbers of terminals. This embodiment of the present application This is not limited.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal 120 with a communication function, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here;
  • the device may further include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • 5G 3rd Generation Partnership Project
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra-Reliable Low-Latency Communications
  • mMTC Massive Machine-Type Communications
  • eMBB still aims at users' access to multimedia content, services and data, and its demand is growing rapidly.
  • eMBB since eMBB may be deployed in different scenarios, such as indoor, urban, rural, etc., its capabilities and requirements are also quite different, so it cannot be generalized and must be analyzed in detail in combination with specific deployment scenarios.
  • Typical applications of URLLC include: industrial automation, power automation, telemedicine operations (surgery), traffic safety assurance, etc.
  • Typical features of mMTC include: high connection density, small data volume, latency-insensitive services, low cost and long service life of the module.
  • RRC_INACTIVE Radio Resource Control
  • RRC_INACTIVE Radio Resource Control
  • RRC_IDLE state (referred to as idle state): mobility is UE-based cell selection reselection, paging is initiated by the core network (Core Network, CN), and the paging area is configured by the CN. There is no UE context and no RRC connection on the base station side.
  • RRC_CONNECTED state (referred to as connected state): there is an RRC connection, and a UE context exists on the base station side and the UE side.
  • the network side knows that the location of the UE is at the specific cell level. Mobility is the mobility controlled by the network side. Unicast data can be transmitted between the UE and the base station.
  • RRC_INACTIVE state (referred to as inactive state): mobility is UE-based cell selection reselection, there is a connection between CN-NR, UE context exists on a certain base station, paging is triggered by RAN, based on The paging area of the RAN is managed by the RAN, and the network side knows the location of the UE based on the paging area level of the RAN.
  • the synchronization signal of 5G is given in the form of SSB, including the primary synchronization signal (Primary Synchronisation Signal, PSS) and the secondary synchronization signal (Secondary Synchronisation Signal, SSS) , and a physical broadcast channel (Physica Broadcast Channel, PBCH), as shown in Figure 3.
  • PSS Primary Synchronisation Signal
  • SSS Secondary Synchronisation Signal
  • PBCH Physical Broadcast Channel
  • the 5G synchronization signal appears periodically in the time domain in the form of a synchronization signal burst set (SS burst set), as shown in Figure 4.
  • MBMS Multimedia Broadcast Multicast Service
  • MBMS is a technology that transmits data from a data source to multiple terminal devices by sharing network resources. This technology can effectively utilize network resources while providing multimedia services, and realize the broadcast of multimedia services at higher rates (such as 256kbps). and multicast.
  • 3GPP clearly proposes to enhance the support capability for downlink high-speed MBMS services, and determines the design requirements for the physical layer and air interface.
  • eMBMS evolved MBMS
  • SFN Single Frequency Network
  • MBSFN Multimedia Broadcast Multicast Service Single Frequency Network
  • MBSFN uses a uniform frequency to send service data in all cells at the same time, but To ensure synchronization between cells. In this way, the overall signal-to-noise ratio distribution of the cell can be greatly improved, and the spectral efficiency will also be greatly improved accordingly.
  • eMBMS implements service broadcast and multicast based on IP multicast protocol.
  • MBMS has only a broadcast bearer mode and no multicast bearer mode.
  • the reception of the MBMS service is applicable to the terminal equipment in the idle state or the connected state.
  • SC-PTM Single Cell Point To Multiploint
  • SC-MCCH Single Cell Multicast Control Channel
  • SC-MTCH Single Cell Multicast Transport Channel
  • SC-MCCH and SC-MTCH are mapped to downlink shared channel (Downlink-Shared Channel, DL-SCH), further, DL-SCH is mapped to physical downlink shared channel (Physical Downlink Shared Channel, PDSCH), wherein, SC - MCCH and SC-MTCH belong to logical channels, DL-SCH belongs to transport channels, and PDSCH belongs to physical channels.
  • SC-MCCH and SC-MTCH do not support hybrid automatic repeat request (Hybrid Automatic Repeat reQuest, HARQ) operations.
  • Hybrid Automatic Repeat reQuest Hybrid Automatic Repeat reQuest
  • MBMS introduces a new system information block (System Information Block, SIB) type, namely SIB20.
  • SIB System Information Block
  • the configuration information of the SC-MCCH includes the modification period of the SC-MCCH, the repetition period of the SC-MCCH, and information such as the radio frame and subframe in which the SC-MCCH is scheduled.
  • SFN represents the system frame number of the radio frame
  • mcch-RepetitionPeriod represents the repetition period of SC-MCCH
  • mcch-Offset represents SC-MCCH offset.
  • the SC-MCCH is scheduled through the Physical Downlink Control Channel (PDCCH).
  • PDCCH Physical Downlink Control Channel
  • RNTI Radio Network Tempory Identity
  • SC-RNTI Single Cell RNTI
  • the fixed value of SC-RNTI is FFFC.
  • a new RNTI is introduced, that is, a single cell notification RNTI (Single Cell Notification RNTI, SC-N-RNTI) to identify the PDCCH (such as the notification PDCCH) used to indicate the change notification of the SC-MCCH, optionally, the SC
  • the fixed value of -N-RNTI is FFFB; further, one of the 8 bits (bits) of DCI 1C can be used to indicate the change notification.
  • the configuration information of the SC-PTM is based on the SC-MCCH configured by the SIB20, and then the SC-MCCH configures the SC-MTCH, and the SC-MTCH is used to transmit service data.
  • the SC-MCCH only transmits one message (ie, SCPTMConfiguration), which is used to configure the configuration information of the SC-PTM.
  • the configuration information of SC-PTM includes: Temporary Mobile Group Identity (TMGI), session identifier (session id), group RNTI (Group RNTI, G-RNTI), discontinuous reception (Discontinuous Reception, DRX) configuration information And the SC-PTM service information of neighboring cells, etc.
  • TMGI Temporary Mobile Group Identity
  • session id session identifier
  • group RNTI Group RNTI, G-RNTI
  • discontinuous reception discontinuous Reception
  • DRX discontinuous Reception
  • Downlink discontinuous reception of SC-PTM is controlled by the following parameters: onDurationTimerSCPTM, drx-InactivityTimerSCPTM, SC-MTCH-SchedulingCycle, and SC-MTCH-SchedulingOffset.
  • the downstream SC-PTM service is received only when the timer onDurationTimerSCPTM or drx-InactivityTimerSCPTM is running.
  • SC-PTM business continuity adopts the concept of MBMS business continuity based on SIB15, namely "SIB15+MBMSInterestIndication" mode.
  • SIB15 namely "SIB15+MBMSInterestIndication" mode.
  • the service continuity of terminal equipment in idle state is based on the concept of frequency priority.
  • the configuration of SC-PTM is to configure SC-MCCH based on SIB20, and then configure SC-MTCH based on SC-MCCH.
  • a cell has one and only one SC-MCCH, that is, the terminal equipment needs to re-acquire the SC-MCCH after cell reselection, which will cause service interruption.
  • the MBMS services in the above solution include but are not limited to multicast services, multicast services, and MBS services.
  • the embodiments of the present application take the MBS service as an example for description, and the description of "MBS service” may also be replaced with "multicast service” or “multicast service” or “broadcast service” or "MBMS service”.
  • the broadcast MBS service is supported, and the terminal equipment can receive the broadcast MBS service in the RRC idle state or the RRC inactive state or the RRC connected state.
  • the broadcast MBS service can be transmitted by beam sweeping on the air interface.
  • the following technical solutions of the embodiments of the present application are proposed.
  • a new SIB (called the first SIB) is defined, and the first SIB includes the configuration information of the first MCCH.
  • the first MCCH is the control channel of the MBS service.
  • An SIB is used to configure the configuration information of the control channel of the NR MBS.
  • the control channel of the NR MBS may also be called the NR MCCH (that is, the first MCCH).
  • the first MCCH is used to carry the first signaling, and the embodiment of this application does not limit the name of the first signaling.
  • the first signaling is signaling A
  • the first signaling includes at least one first MTCH.
  • the first MTCH is a service channel (also called a data channel or a transmission channel) of the MBS service
  • the first MTCH is used to transmit MBS service data (such as NR MBS service data).
  • the first MCCH is used to configure configuration information of the traffic channel of the NR MBS.
  • the traffic channel of the NR MBS may also be called an NR MTCH (that is, the first MTCH).
  • the first signaling is used to configure a service channel of the NR MBS, service information corresponding to the service channel, and scheduling information corresponding to the service channel.
  • the service information corresponding to the service channel such as TMGI, session id and other identification information for identifying services.
  • the scheduling information corresponding to the traffic channel for example, the RNTI used when the MBS service data corresponding to the traffic channel is scheduled, such as G-RNTI, DRX configuration information, and the like.
  • the transmissions of the first MCCH and the first MTCH are both scheduled based on the PDCCH.
  • the RNTI used for scheduling the PDCCH of the first MCCH uses a network-wide unique identifier, that is, a fixed value.
  • the RNTI used by the PDCCH for scheduling the first MTCH is configured through the first MCCH.
  • the first SIB may also be abbreviated as SIB
  • the first MCCH may also be abbreviated as MCCH
  • the first MTCH may also be abbreviated as MTCH.
  • MCCH and MTCH are mapped to DL-SCH, and further, DL-SCH is mapped to PDSCH, wherein MCCH and MTCH belong to logical channels, DL-SCH belongs to transport channels, and PDSCH belongs to physical channels.
  • FIG. 5 is a schematic flowchart of a method for transmitting an MBS service provided by an embodiment of the present application. As shown in FIG. 5 , the method for transmitting an MBS service includes the following steps:
  • Step 501 The terminal device determines the correspondence between the PDCCH occasion and the SSB index, and the PDCCH occasion is used to transmit the MBS PDCCH.
  • Step 502 The terminal device receives the MBS PDCCH based on the correspondence between the PDCCH timing and the SSB index.
  • the PDCCH occasion is used to transmit the MBS PDCCH
  • the MBS PDCCH is used to schedule the MBS service transmission
  • the MBS PDCCH is used to carry the scheduling information of the MBS service transmission.
  • the MBS PDCCH may be the MCCH PDCCH in the above solution, or the notification PDCCH, or the MTCH PDCCH.
  • the PDCCH occasion in this embodiment of the present application may also be referred to as a PDCCH monitor occasion (PDCCH monitor occasion).
  • PDCCH monitor occasion PDCCH monitor occasion
  • the MBS service is transmitted in a beam sweep mode, and optionally, the MBS service is transmitted in a broadcast mode.
  • the terminal equipment correctly receives the MBS service, it needs to correctly receive the MBS PDCCH that schedules the transmission of the MBS service. Therefore, it is necessary to determine the corresponding relationship between the PDCCH timing and the SSB.
  • the terminal device acquires first configuration information, where the first configuration information is used to determine a first time window; wherein, within the first time window, the PDCCH occasions corresponding to the MBS service are numbered from 0.
  • the first configuration information is defined by a protocol; or, the first configuration information is configured by the network device through the MCCH; or, the first configuration information is configured by the network device through a system broadcast message (such as SIB) .
  • SIB system broadcast message
  • the first configuration information includes first indication information, where the first indication information is used to determine the length and/or period of the first time window and to determine the start of the first time window Location.
  • K can be set by the protocol.
  • K may be configured through network equipment, such as through SIB or MCCH.
  • the first configuration information includes first indication information and second indication information
  • the first indication information is used to determine the length and/or period of the first time window
  • the second indication information is used to determine the length and/or period of the first time window A starting position of the first time window is determined.
  • the first indication information is used to indicate T, where T is a positive integer greater than or equal to 1; the second indication information is used to indicate an offset value (offset);
  • the length is T radio frames; at least one of the radio frame, subframe, time slot and symbol where the start position of the first time window is located is determined based on the offset.
  • the network device may configure configuration information of the time window, the configuration information of the time window includes first indication information and second indication information, and the first indication information is used to indicate that the length and/or period of the first time window is T, the second indication information is used to indicate the offset of the first time window, through which the start position of the first time window can be determined.
  • the granularity for determining the starting position of the first time window may be radio frame granularity (ie, SFN granularity), or subframe granularity, or time slot granularity, or symbol granularity, or the like.
  • the radio frame where the starting position of the first time window is located satisfies the following formula:
  • SFN represents the number of the radio frame where the start position of the first time window is located, and mod represents the remainder operation.
  • the radio frame and subframe where the starting position of the first time window is located satisfy the following formula:
  • subframe offset mod 10
  • SFN represents the number of the radio frame where the starting position of the first time window is located
  • subframe represents the number of the subframe where the starting position of the first time window is located
  • mod represents the remainder operation
  • floor represents downward Rounding operation
  • the first configuration information includes DRX configuration information
  • the DRX configuration information is used to determine a DRX cycle
  • the DRX cycle includes a first time period and a second time period
  • the first time period is the DRX activation time
  • the second time period is the time period in which the DRX inactive time is located; the first time window is the first time period; or the first time window is the DRX cycle.
  • the network device may configure DRX configuration information, where the DRX configuration information is used to determine the DRX cycle, and is further used to determine the first time period and the second time period in the DRX cycle.
  • the first time period is the time period in which the DRX is activated, and the first time period may also be called DRX on duration; the time period other than the first time period in the DRX cycle is the second time period, and the second time period
  • the segment is the time segment in which the DRX inactive time is located. It should be noted that the terminal device needs to monitor the MBS PDCCH on the PDCCH opportunity during the first time period.
  • the PDCCH occasions are numbered from 0 from the start time of the first time period until the DRX inactivation time (that is, the start time of the second time period) or until the next first time period Stop numbering until the start time of .
  • the index of the first PDCCH opportunity in the first time window is 0, and the index of the second PDCCH opportunity is 1. analogy.
  • the correspondence between the PDCCH occasions and the SSB indices may be determined in any one of the following manners.
  • the index of the PDCCH opportunity corresponding to the kth actually transmitted SSB is:
  • n is a positive integer greater than or equal to 1 and less than or equal to N
  • k is a positive integer greater than or equal to 1 and less than or equal to S
  • S is the number of SSBs actually transmitted
  • N is the MBS transmitted within the first time window the number of data.
  • the terminal device can determine the value of N in the following ways:
  • N (the total number of PDCCH opportunities in the first time window/S), where floor represents a round-down operation; or,
  • N is configured by the network device.
  • the corresponding relationship between the actually transmitted SSB and the index of the PDCCH opportunity is: for the first MBS data in the first time window, the index number is 0.
  • the PDCCH opportunity corresponds to the first SSB actually transmitted
  • the PDCCH opportunity with index number 1 corresponds to the second SSB actually transmitted
  • so on until all the actually transmitted SSBs have an index of the PDCCH opportunity for the first MBS data correspond.
  • the PDCCH opportunity with the index number of (n-1)*S+(k-1) corresponds to the k-th actually transmitted SSB.
  • the number of SSBs actually transmitted is S, wherein each SSB actually transmitted has a corresponding SSB index.
  • the index of the first SSB actually transmitted is 1
  • the index of the second SSB actually transmitted is 2
  • the index of the third SSB actually transmitted is 3
  • the index of the fourth SSB actually transmitted is 4.
  • the network device may configure a parameter N through the MCCH or a system broadcast message, where N represents the number of MBS data transmitted within the first time window.
  • Case 1 in the above-mentioned way 1 is for the case where the MBS data is not repeatedly transmitted.
  • the MBS data is repeatedly transmitted for H times, and H is a positive integer; here, the value of H is a network device It is configured, for example, through MCCH or a system broadcast message; or, the value of H is 1 by default.
  • the index of the PDCCH opportunity corresponding to the k-th actually transmitted SSB is:
  • h is a positive integer greater than or equal to 1 and less than or equal to H.
  • the terminal device can determine the value of N in the following ways:
  • N floor (the total number of PDCCH opportunities in the first time window/(S*H)), where floor represents a round-down operation; or,
  • N is configured by the network device.
  • the number of SSBs actually transmitted is S, wherein each SSB actually transmitted has a corresponding SSB index.
  • the index of the first SSB actually transmitted is 1
  • the index of the second SSB actually transmitted is 2
  • the index of the third SSB actually transmitted is 3
  • the index of the fourth SSB actually transmitted is 4.
  • the MBS data has 2 repeated transmissions.
  • the network device may configure a parameter N through the MCCH or a system broadcast message, where N represents the number of MBS data transmitted within the first time window.
  • the terminal device receives the second configuration information sent by the network device, where the second configuration information is used to determine a PDCCH occasion index list, the PDCCH occasion index list includes N PDCCH occasion indices, and N is a positive integer greater than 1; Each PDCCH occasion index in the N PDCCH occasion indices is used to indicate the first PDCCH occasion corresponding to one MBS data;
  • the index of the PDCCH occasion corresponding to the kth actually transmitted SSB is:
  • k is a positive integer greater than or equal to 1 and less than or equal to S; S is the number of SSBs actually transmitted.
  • the N is the number of MBS data transmitted within the first time window.
  • the network device configures a PDCCH occasion index list through the MCCH or a system broadcast message (such as SIB), and each PDCCH occasion index in the PDCCH occasion index list is used to indicate the first number of MBS data transmitted in beam sweeping mode.
  • a PDCCH occasion (first PDCCH occasion), where the first PDCCH occasion corresponds to the first actually transmitted SSB. It can be seen that for any MBS data in the first time window, the index of the PDCCH opportunity corresponding to the kth actually transmitted SSB of the MBS data is: the index of the first PDCCH opportunity corresponding to the MBS data+(k -1). It should be noted that the number of PDCCH occasion indices in the PDCCH occasion index list is the number of MBS data transmitted within the first time window.
  • the index of the PDCCH occasion corresponding to the third actually transmitted SSB of the MBS data is: the first PDCCH corresponding to the MBS data
  • Case 1 in the above-mentioned mode 2 is for the case that the MBS data is not repeatedly transmitted.
  • the MBS data is repeatedly transmitted for H times, and H is a positive integer; here, the value of H is a network device. It is configured, for example, through MCCH or a system broadcast message; or, the value of H is 1 by default.
  • the index of the PDCCH occasion corresponding to the k-th actually transmitted SSB is:
  • h is a positive integer greater than or equal to 1 and less than or equal to H.
  • the N is the number of MBS data transmitted within the first time window.
  • the number of SSBs actually transmitted is S, wherein each SSB actually transmitted has a corresponding SSB index.
  • the index of the first SSB actually transmitted is 1
  • the index of the second SSB actually transmitted is 2
  • the index of the third SSB actually transmitted is 3
  • the index of the fourth SSB actually transmitted is 4.
  • the indices of the PDCCH time for H repeated transmissions of the same MBS data are allocated consecutively.
  • the MBS data has 2 repeated transmissions.
  • Case 1 in the above-mentioned mode 2 is for the case that the MBS data is not repeatedly transmitted.
  • the MBS data is repeatedly transmitted for H times, and H is a positive integer; here, the value of H is a network device. It is configured, for example, through MCCH or a system broadcast message; or, the value of H is 1 by default.
  • the index of the PDCCH occasion corresponding to the k-th actually transmitted SSB is:
  • h is a positive integer greater than or equal to 1 and less than or equal to H.
  • the index of the first PDCCH occasion corresponding to the h-th repeated transmission is configured by the network device.
  • the N is the number of MBS data transmitted within the first time window.
  • the number of SSBs actually transmitted is S, wherein each SSB actually transmitted has a corresponding SSB index.
  • the index of the first SSB actually transmitted is 1
  • the index of the second SSB actually transmitted is 2
  • the index of the third SSB actually transmitted is 3
  • the index of the fourth SSB actually transmitted is 4.
  • the network device in addition to configuring the PDCCH occasion index list in the above solution, the network device also configures, for each MBS data, the index of the first PDCCH occasion that is repeatedly transmitted each time.
  • the MBS data has 2 repeated transmissions.
  • the terminal device receives third configuration information sent by the network device, where the third configuration information is used to determine an MBS data interval, and the MBS data interval is used to indicate the number of PDCCH occasions in the interval between two adjacent MBS data ;
  • the index of the PDCCH occasion corresponding to the k-th actually transmitted SSB is:
  • the first PDCCH opportunity index is used to indicate the first PDCCH opportunity corresponding to the first MBS data in the first time window, n is a positive integer greater than or equal to 1 and less than or equal to N, and k is greater than or equal to A positive integer of 1 and less than or equal to S; S is the number of SSBs actually transmitted, and N is the number of MBS data transmitted within the first time window.
  • the first PDCCH occasion index is configured by the network device; or, the first PDCCH occasion index is 0 by default.
  • the terminal device can determine the value of N in the following ways:
  • Mode 1 the value of N satisfies the following formula: the first PDCCH occasion index+N*MBS data interval ⁇ the total number of PDCCH occasions in the first time window-1; or,
  • Mode II the value of N is configured by the network device.
  • the network device configures a PDCCH occasion index (called the first PDCCH occasion index) through the MCCH or a system broadcast message (such as SIB), and the first PDCCH occasion index is used to indicate the first PDCCH occasion index in the first time window.
  • the first PDCCH opportunity transmitted in beam sweeping mode of MBS data here, the first PDCCH opportunity corresponds to the first actually transmitted SSB.
  • the network device is not configured with the first PDCCH occasion index, in this case, the first PDCCH occasion index is 0 by default.
  • the network device also configures an MBS data interval (MBS data interval) through the MCCH or a system broadcast message (such as SIB), and the MBS data interval is used to indicate the number of PDCCH occasions between two adjacent MBS data.
  • MBS data interval MBS data interval
  • SIB system broadcast message
  • the index of the first PDCCH occasion of other MBS data other than the first MBS data may be determined according to the first PDCCH occasion index and the MBS data interval.
  • the number of PDCCH opportunities in the interval between two adjacent MBS data may refer to: the number of PDCCH opportunities in the interval between the first PDCCH occasions of two adjacent MBS data, or, two adjacent MBS data.
  • the number of PDCCH occasions in the last PDCCH occasion interval of MBS data may refer to: the number of PDCCH opportunities in the interval between the first PDCCH occasions of two adjacent MBS data, or, two adjacent MBS data.
  • the network device configures the first PDCCH occasion index to be 1.
  • the value of the number N of MBS data transmitted in the first time window satisfies the following formula: the first PDCCH occasion index+N*MBS data interval ⁇ the total number of PDCCH occasions in the first time window -1, it can be seen that 1+N*6 ⁇ 20-1, and the value of N is 3.
  • the first PDCCH occasion index is 0 by default.
  • the value of the number N of MBS data transmitted in the first time window satisfies the following formula: the first PDCCH occasion index+N*MBS data interval ⁇ the total number of PDCCH occasions in the first time window -1, it can be seen that 0+N*6 ⁇ 19-1, the value of N is 3.
  • the network device may configure a parameter N through the MCCH or a system broadcast message, where N represents the number of MBS data transmitted within the first time window.
  • Case 1 in the above-mentioned way 3 is for the case that the MBS data is not repeatedly transmitted.
  • the MBS data is repeatedly transmitted for H times, and H is a positive integer; here, the value of the H is a network device It is configured, for example, through MCCH or a system broadcast message; or, the value of H is 1 by default.
  • the index of the PDCCH opportunity corresponding to the k-th actually transmitted SSB is:
  • h is a positive integer greater than or equal to 1 and less than or equal to H.
  • the number of SSBs actually transmitted is S, wherein each SSB actually transmitted has a corresponding SSB index.
  • the index of the first SSB actually transmitted is 1
  • the index of the second SSB actually transmitted is 2
  • the index of the third SSB actually transmitted is 3
  • the index of the fourth SSB actually transmitted is 4.
  • the terminal device can determine the value of N in the following ways:
  • Mode 1 the value of N satisfies the following formula: the first PDCCH occasion index+N*MBS data interval ⁇ the total number of PDCCH occasions in the first time window-1; or,
  • Mode II the value of N is configured by the network device.
  • the number of PDCCH opportunities in the interval between two adjacent MBS data may refer to: the number of PDCCH opportunities in the interval between the first PDCCH occasions of two adjacent MBS data, or, two adjacent MBS data.
  • the number of PDCCH occasions in the last PDCCH occasion interval of MBS data is understood as the number of PDCCH opportunities in the first PDCCH opportunity interval of two adjacent MBS data. It can be seen that one MBS data interval contains PDCCH opportunity for all repeated transmissions (ie, H repeated transmissions) corresponding to one MBS data.
  • the indices of the PDCCH time for H repeated transmissions of the same MBS data are allocated consecutively.
  • the indices of PDCCH occasions of all repeated transmissions (ie, H repeated transmissions) corresponding to one MBS data included in one MBS data interval are allocated continuously.
  • the MBS data has 2 repeated transmissions.
  • Case 1 in the above-mentioned way 3 is for the case that the MBS data is not repeatedly transmitted.
  • the MBS data is repeatedly transmitted for H times, and H is a positive integer; here, the value of the H is a network device It is configured, for example, through MCCH or a system broadcast message; or, the value of H is 1 by default.
  • the index of the PDCCH opportunity corresponding to the k-th actually transmitted SSB is:
  • h is a positive integer greater than or equal to 1 and less than or equal to H.
  • the number of SSBs actually transmitted is S, wherein each SSB actually transmitted has a corresponding SSB index.
  • the index of the first SSB actually transmitted is 1
  • the index of the second SSB actually transmitted is 2
  • the index of the third SSB actually transmitted is 3
  • the index of the fourth SSB actually transmitted is 4.
  • the MBS transmission interval is used to indicate the number of PDCCH occasions spaced between two adjacent transmissions, where the two adjacent transmissions belong to two transmissions of the same MBS data or two transmissions of different MBS data. For example, there are 2 MBS data in the first time window, and these 2 MBS data have 2 repeated transmissions respectively, that is, MBS data 1 has the first repeated transmission and the second repeated transmission, and MBS data 2 has the first repeated transmission. transmission and the second repeated transmission, then, the number of PDCCH opportunities in the interval between the first repeated transmission of MBS data 1 and the second repeated transmission is D1, and the first repeated transmission of MBS data 2 and the second repeated transmission are D1.
  • the number of PDCCH opportunities in the interval between repeated transmissions is D2
  • the number of PDCCH opportunities in the interval between the second repeated transmission of MBS data 1 and the first repeated transmission of MBS data 2 is D3, D1, D2, and D3 are equal and both are indicated by the MBS transmission interval.
  • the number of PDCCH opportunities spaced between two adjacent transmissions may refer to: the number of PDCCH opportunities spaced between the first PDCCH opportunities of two adjacent transmissions, or the number of PDCCH opportunities spaced between two adjacent transmissions The number of PDCCH occasions in the last PDCCH occasion interval.
  • the terminal device can determine the value of N in the following ways:
  • Mode 1 the value of N satisfies the following formula: the first PDCCH opportunity index+N*MBS transmission interval*H ⁇ the total number of PDCCH opportunities in the first time window-1; or,
  • Mode II the value of N is configured by the network device.
  • the MBS data has 2 repeated transmissions.
  • Case 1 in the above-mentioned way 3 is for the case that the MBS data is not repeatedly transmitted.
  • the MBS data is repeatedly transmitted for H times, and H is a positive integer; here, the value of the H is a network device It is configured, for example, through MCCH or a system broadcast message; or, the value of H is 1 by default.
  • the index of the PDCCH opportunity corresponding to the k-th actually transmitted SSB is:
  • h is a positive integer greater than or equal to 1 and less than or equal to H.
  • the MBS repetition interval is used to indicate the number of PDCCH occasions in the interval between two adjacent transmissions of the same MBS data. For example, there are 2 MBS data in the first time window, and these 2 MBS data have 2 repeated transmissions respectively, that is, MBS data 1 has the first repeated transmission and the second repeated transmission, and MBS data 2 has the first repeated transmission. transmission and the second repeated transmission, then, the number of PDCCH opportunities in the interval between the first repeated transmission of MBS data 1 and the second repeated transmission is D1, and the first repeated transmission of MBS data 2 and the second repeated transmission are D1.
  • the number of PDCCH occasions in the interval between repeated transmissions is D2, and both D1 and D2 are equal, and both are indicated by the MBS repetition interval.
  • the number of PDCCH opportunities in the interval between two adjacent MBS data may refer to: the number of PDCCH opportunities in the interval between the first PDCCH occasions of two adjacent MBS data, or, two adjacent MBS data.
  • the number of PDCCH occasions in the last PDCCH occasion interval of MBS data For example, there are 2 MBS data in the first time window, and these 2 MBS data have 2 repeated transmissions respectively, that is, MBS data 1 has the first repeated transmission and the second repeated transmission, and MBS data 2 has the first repeated transmission. transmission and the second repeated transmission, then, the number of PDCCH opportunities between the first PDCCH occasion of the first repeated transmission of MBS data 1 and the first PDCCH occasion of the first repeated transmission of MBS data 2 Indicated by the MBS data interval.
  • the MBS data interval may be an integral multiple of the MBS repetition interval, or the MBS data interval and the MBS repetition interval have no integral multiple relationship.
  • the number of SSBs actually transmitted is S, wherein each SSB actually transmitted has a corresponding SSB index.
  • the index of the first SSB actually transmitted is 1
  • the index of the second SSB actually transmitted is 2
  • the index of the third SSB actually transmitted is 3
  • the index of the fourth SSB actually transmitted is 4.
  • the terminal device can determine the value of N in the following ways:
  • Manner 1 the value of N satisfies the following formula: the first PDCCH occasion index+N*MBS data interval ⁇ the total number of PDCCH occasions in the first time window-1; or,
  • Mode II the value of N is configured by the network device.
  • the MBS data interval is 10 PDCCH occasions
  • the MBS repetition interval is 5 PDCCH occasions
  • the MBS data interval is twice the MBS repetition interval.
  • the MBS data interval is not limited to this. There may be no integral multiple relationship with the MBS repetition interval.
  • H 2
  • MBS data has 2 repeated transmissions.
  • the network device configures the first PDCCH opportunity index as 1 is exemplified, and is not limited to this, and the network device may not configure the first PDCCH opportunity.
  • index in this case, the first PDCCH occasion index is 0 by default.
  • S is the number of SSBs actually transmitted
  • N is the number of MBS data transmitted in the first time window
  • H is the number of repeated transmissions of MBS data
  • n is a positive integer greater than or equal to 1 and less than or equal to N
  • k is A positive integer greater than or equal to 1 and less than or equal to S
  • h is a positive integer greater than or equal to 1 and less than or equal to H.
  • the terminal device can monitor the PDCCH opportunity at a corresponding position (for example, a corresponding beam) according to the SSB index, thereby effectively Receiving the MBS PDCCH provides a guarantee for the subsequent further correct reception of the MBS PDSCH.
  • FIG. 16 is a schematic diagram of the structure and composition of an apparatus for transmitting an MBS service provided by an embodiment of the present application, which is applied to a terminal device.
  • the apparatus for transmitting an MBS service includes:
  • a determining unit 1601 configured to determine the correspondence between the PDCCH occasion and the SSB index, where the PDCCH occasion is used to transmit the MBS PDCCH;
  • a receiving unit 1602 configured to receive the MBS PDCCH based on the correspondence between the PDCCH timing and the SSB index.
  • the device further includes:
  • an obtaining unit (not shown in the figure), configured to obtain first configuration information, where the first configuration information is used to determine a first time window;
  • the PDCCH occasions corresponding to the MBS service are numbered from 0.
  • the first configuration information includes first indication information, and the first indication information is used to determine the length and/or period of the first time window and to determine the first time The starting position of the window.
  • the first indication information is used to indicate K, where K is a positive integer greater than or equal to 1;
  • the length of the first time window is K radio frames
  • the first configuration information includes first indication information and second indication information
  • the first indication information is used to determine the length and/or period of the first time window
  • the second indication information is used to determine the length and/or period of the first time window.
  • the indication information is used to determine the starting position of the first time window.
  • the first indication information is used to indicate T, where T is a positive integer greater than or equal to 1;
  • the second indication information is used to indicate the offset value offset;
  • the length of the first time window is T radio frames
  • At least one of the radio frame, subframe, time slot and symbol where the start position of the first time window is located is determined based on the offset.
  • the radio frame where the starting position of the first time window is located satisfies the following formula:
  • SFN represents the number of the radio frame where the start position of the first time window is located, and mod represents the remainder operation.
  • the radio frame and subframe where the starting position of the first time window is located satisfies the following formula:
  • subframe offset mod 10
  • SFN represents the number of the radio frame where the starting position of the first time window is located
  • subframe represents the number of the subframe where the starting position of the first time window is located
  • mod represents the remainder operation
  • floor represents downward Rounding operation
  • the first configuration information includes DRX configuration information
  • the DRX configuration information is used to determine a DRX cycle
  • the DRX cycle includes a first time period and a second time period
  • the first time period is the time period in which the DRX activation time is located
  • the second time period is the time period in which the DRX inactivation time is located
  • the first time window is the first time period; or,
  • the first time window is the DRX cycle.
  • the first configuration information is defined by a protocol; or,
  • the first configuration information is configured by the network device through the MCCH; or,
  • the first configuration information is configured by the network device through a system broadcast message.
  • the index of the PDCCH opportunity corresponding to the k-th actually transmitted SSB is:
  • n is a positive integer greater than or equal to 1 and less than or equal to N
  • k is a positive integer greater than or equal to 1 and less than or equal to S
  • S is the number of SSBs actually transmitted
  • N is the MBS transmitted within the first time window the number of data.
  • N floor (the total number of PDCCH opportunities in the first time window/S), where floor represents a round-down operation; or,
  • the value of N is configured by the network device.
  • the MBS data has H repeated transmissions, and H is a positive integer
  • the index of the PDCCH opportunity corresponding to the k-th actually transmitted SSB is:
  • h is a positive integer greater than or equal to 1 and less than or equal to H.
  • N floor (the total number of PDCCH opportunities in the first time window/(S*H)), where floor represents a round-down operation; or,
  • the value of N is configured by the network device.
  • the receiving unit 1602 is further configured to receive second configuration information sent by the network device, where the second configuration information is used to determine a PDCCH occasion index list, and the PDCCH occasion index list includes N PDCCHs opportunity index, where N is a positive integer greater than 1; each PDCCH opportunity index in the N PDCCH opportunity indexes is used to indicate the first PDCCH opportunity corresponding to one MBS data;
  • the index of the PDCCH occasion corresponding to the kth actually transmitted SSB is:
  • k is a positive integer greater than or equal to 1 and less than or equal to S; S is the number of SSBs actually transmitted.
  • the MBS data has H repeated transmissions, and H is a positive integer
  • the index of the PDCCH occasion corresponding to the k-th actually transmitted SSB is:
  • h is a positive integer greater than or equal to 1 and less than or equal to H.
  • the MBS data has H repeated transmissions, and H is a positive integer
  • the index of the PDCCH occasion corresponding to the k-th actually transmitted SSB is:
  • h is a positive integer greater than or equal to 1 and less than or equal to H.
  • the index of the first PDCCH occasion corresponding to the h-th repeated transmission is configured by the network device.
  • the N is the number of MBS data transmitted within the first time window.
  • the receiving unit 1602 is further configured to receive third configuration information sent by the network device, where the third configuration information is used to determine the MBS data interval, and the MBS data interval is used to indicate the adjacent two The number of PDCCH occasions spaced between MBS data;
  • the index of the PDCCH occasion corresponding to the k-th actually transmitted SSB is:
  • the first PDCCH opportunity index is used to indicate the first PDCCH opportunity corresponding to the first MBS data in the first time window, n is a positive integer greater than or equal to 1 and less than or equal to N, and k is greater than or equal to A positive integer of 1 and less than or equal to S; S is the number of SSBs actually transmitted, and N is the number of MBS data transmitted within the first time window.
  • the first PDCCH occasion index is configured by the network device; or,
  • the first PDCCH occasion index is 0 by default.
  • the value of N satisfies the following formula: the first PDCCH occasion index+N*MBS data interval ⁇ the total number of PDCCH occasions in the first time window-1; or,
  • the value of N is configured by the network device.
  • the MBS data has H repeated transmissions, and H is a positive integer
  • the index of the PDCCH opportunity corresponding to the k-th actually transmitted SSB is:
  • h is a positive integer greater than or equal to 1 and less than or equal to H.
  • the value of N satisfies the following formula: the first PDCCH occasion index+N*MBS data interval ⁇ the total number of PDCCH occasions in the first time window-1; or,
  • the value of N is configured by the network device.
  • the MBS data has H repeated transmissions, and H is a positive integer
  • the index of the PDCCH opportunity corresponding to the k-th actually transmitted SSB is:
  • h is a positive integer greater than or equal to 1 and less than or equal to H.
  • the value of N satisfies the following formula: the first PDCCH occasion index+N*MBS transmission interval*H ⁇ the total number of PDCCH occasions in the first time window-1; or,
  • the value of N is configured by the network device.
  • the MBS transmission interval is used to indicate the number of PDCCH occasions spaced between two adjacent transmissions, and the two adjacent transmissions belong to two transmissions of the same MBS data or two transmissions of different MBS data. two transfers.
  • the MBS data has H repeated transmissions, and H is a positive integer
  • the index of the PDCCH opportunity corresponding to the k-th actually transmitted SSB is:
  • h is a positive integer greater than or equal to 1 and less than or equal to H.
  • the value of N satisfies the following formula: the first PDCCH occasion index+N*MBS data interval ⁇ the total number of PDCCH occasions in the first time window-1; or,
  • the value of N is configured by the network device.
  • the MBS repetition interval is used to indicate the number of PDCCH occasions spaced between two adjacent transmissions of the same MBS data.
  • the value of the H is configured by the network device; or,
  • the value of the H is 1 by default.
  • the technical solutions of the embodiments of the present application can be applied not only to the terminal device side, but also to the network device side, such as a base station.
  • the network device determines the correspondence between the PDCCH occasion and the SSB index, and the PDCCH occasion is used to transmit the MBS PDCCH; the network device sends the MBS PDCCH based on the correspondence between the PDCCH occasion and the SSB index.
  • the network device determines the correspondence between the PDCCH timing and the SSB index, reference may be made to the foregoing related description on the terminal device side, and details are not repeated here.
  • FIG. 17 is a schematic structural diagram of a communication device 1700 provided by an embodiment of the present application.
  • the communication device may be a terminal device or a network device.
  • the communication device 1700 shown in FIG. 17 includes a processor 1710, and the processor 1710 can call and run a computer program from a memory to implement the methods in the embodiments of the present application.
  • the communication device 1700 may further include a memory 1720 .
  • the processor 1710 may call and run a computer program from the memory 1720 to implement the methods in the embodiments of the present application.
  • the memory 1720 may be a separate device independent of the processor 1710, or may be integrated in the processor 1710.
  • the communication device 1700 may further include a transceiver 1730, and the processor 1710 may control the transceiver 1730 to communicate with other devices, specifically, may send information or data to other devices, or receive other devices Information or data sent by a device.
  • the transceiver 1730 may include a transmitter and a receiver.
  • the transceiver 1730 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 1700 may specifically be the network device of the embodiment of the present application, and the communication device 1700 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • the communication device 1700 may specifically be the mobile terminal/terminal device of the embodiments of the present application, and the communication device 1700 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and will not be repeated here.
  • FIG. 18 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1800 shown in FIG. 18 includes a processor 1810, and the processor 1810 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 1800 may further include a memory 1820 .
  • the processor 1810 may call and run a computer program from the memory 1820 to implement the methods in the embodiments of the present application.
  • the memory 1820 may be a separate device independent of the processor 1810, or may be integrated in the processor 1810.
  • the chip 1800 may further include an input interface 1830 .
  • the processor 1810 can control the input interface 1830 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1800 may further include an output interface 1840 .
  • the processor 1810 can control the output interface 1840 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • FIG. 19 is a schematic block diagram of a communication system 1900 provided by an embodiment of the present application. As shown in FIG. 119 , the communication system 1900 includes a terminal device 1910 and a network device 1920 .
  • the terminal device 1910 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 1920 can be used to implement the corresponding functions implemented by the network device in the above method. For brevity, details are not repeated here. .
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • Embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. Repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, For brevity, details are not repeated here.
  • the embodiments of the present application also provide a computer program.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. For the sake of brevity. , and will not be repeated here.
  • the computer program may be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program is run on the computer, the mobile terminal/terminal device implements the various methods of the computer program in the embodiments of the present application.
  • the corresponding process for the sake of brevity, will not be repeated here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种MBS业务的传输方法及装置、终端设备,该方法包括:终端设备确定物理下行控制信道PDCCH时机和同步信号块SSB索引之间的对应关系,所述PDCCH时机用于传输MBS PDCCH;所述终端设备基于所述PDCCH时机和SSB索引之间的对应关系,接收MBS PDCCH。

Description

一种MBS业务的传输方法及装置、终端设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种多播组播服务(Multicast Broadcast Service,MBS)业务的传输方法及装置、终端设备。
背景技术
在新无线(New Radio,NR)系统中,支持广播类型的MBS业务,终端设备在无线资源控制(Radio Resource Control,RRC)空闲状态或者RRC非激活状态或者RRC连接状态下,都可以接收广播的MBS业务。
在NR系统中,广播的MBS业务在空口上可以采用波束扫描(beam sweeping)的方式传输。在beam sweeping场景下,终端设备如何正确接收广播的MBS业务需要明确。
发明内容
本申请实施例提供一种MBS业务的传输方法及装置、终端设备。
本申请实施例提供的MBS业务的传输方法,包括:
终端设备确定物理下行控制信道(Physical Downlink Control Channel,PDCCH)时机和同步信号块(SS/PBCH Block,SSB)索引之间的对应关系,所述PDCCH时机用于传输MBS PDCCH;
所述终端设备基于所述PDCCH时机和SSB索引之间的对应关系,接收MBS PDCCH。
本申请实施例提供的MBS业务的传输装置,应用于终端设备,所述装置包括:
确定单元,用于确定PDCCH时机和SSB索引之间的对应关系,所述PDCCH时机用于传输MBS PDCCH;
接收单元,用于基于所述PDCCH时机和SSB索引之间的对应关系,接收MBS PDCCH。
本申请实施例提供的终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的MBS业务的传输方法。
本申请实施例提供的芯片,用于实现上述的MBS业务的传输方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的MBS业务的传输方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的MBS业务的传输方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的MBS业务的传输方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的MBS业务的传输方法。
通过上述技术方案,MBS业务以beam sweeping方式传输的场景下,终端设备确定PDCCH时机和SSB索引之间的对应关系,由于SSB索引与波束之间具有关联关系,因而终端设备可以确定出PDCCH时机和波束之间的对应关系,从而基于该对应关系接收MBS PDCCH,确保了终端设备在正确的位置(即通过正确的波束)接收MBS PDCCH,为后续正确接收MBS数据提供了保障。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信系统架构的示意性图;
图2为本申请实施例提供的Beam sweeping的示意图;
图3为本申请实施例提供的SSB的示意图;
图4为本申请实施例提供的SSB burst set周期的示意图;
图5是本申请实施例提供的MBS业务的传输方法的流程示意图;
图6是本申请实施例提供的PDCCH的索引与SSB索引之间的对应关系示意图一;
图7是本申请实施例提供的PDCCH的索引与SSB索引之间的对应关系示意图二;
图8是本申请实施例提供的PDCCH的索引与SSB索引之间的对应关系示意图三;
图9是本申请实施例提供的PDCCH的索引与SSB索引之间的对应关系示意图四;
图10是本申请实施例提供的PDCCH的索引与SSB索引之间的对应关系示意图五;
图11是本申请实施例提供的PDCCH的索引与SSB索引之间的对应关系示意图六;
图12是本申请实施例提供的PDCCH的索引与SSB索引之间的对应关系示意图七;
图13是本申请实施例提供的PDCCH的索引与SSB索引之间的对应关系示意图八;
图14是本申请实施例提供的PDCCH的索引与SSB索引之间的对应关系示意图九;
图15是本申请实施例提供的PDCCH的索引与SSB索引之间的对应关系示意图十;
图16是本申请实施例提供的MBS业务的传输装置的结构组成示意图;
图17是本申请实施例提供的一种通信设备示意性结构图;
图18是本申请实施例的芯片的示意性结构图;
图19是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、系统、5G通信系统或未来的通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来通信系统中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G通信系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例相关的技术方案进行说明。
随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性、复杂性,为此第三代合作伙伴计划(3 rd Generation Partnership Project,3GPP)国际标准组织开始研发5G。5G的主要应用场景为:增强移动超宽带(enhanced Mobile Broadband,eMBB)、低时延高可靠通信(Ultra-Reliable Low-Latency Communications,URLLC)、大规模机器类通信(massive Machine-Type Communications,mMTC)。
一方面,eMBB仍然以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。另一方面,由于eMBB可能部署在不同的场景中,例如室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而论,必须结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
在NR早期部署时,完整的NR覆盖很难获取,所以典型的网络覆盖是广域的LTE覆盖和NR的孤岛覆盖模式。而且大量的LTE部署在6GHz以下,可用于5G的6GHz以下频谱很少。所以NR必须研究6GHz以上的频谱应用,而高频段覆盖有限、信号衰落快。同时为了保护移动运营商前期在LTE投资,提出了LTE和NR之间紧耦合(tight interworking)的工作模式。
Figure PCTCN2020140989-appb-000001
RRC状态
5G为了降低空口信令和快速恢复无线连接,快速恢复数据业务的目的,定义了一个新的无线资源控制(Radio Resource Control,RRC)状态,即RRC非激活(RRC_INACTIVE)状态。这种状态有别于RRC空闲(RRC_IDLE)状态和RRC激活(RRC_ACTIVE)状态。其中,
1)RRC_IDLE状态(简称为空闲(idle)态):移动性为基于UE的小区选择重选,寻呼由核心网(Core Network,CN)发起,寻呼区域由CN配置。基站侧不存在UE上下文,不存在RRC连接。
2)RRC_CONNECTED状态(简称为连接(connected)态):存在RRC连接,基站侧和UE侧存在UE上下文。网络侧知道UE的位置是具体小区级别的。移动性是网络侧控制的移动性。UE和基站之间可以传输单播数据。
3)RRC_INACTIVE状态(简称为非激活(inactive)态):移动性为基于UE的小区选择重选,存在CN-NR之间的连接,UE上下文存在某个基站上,寻呼由RAN触发,基于RAN的寻呼区域由RAN管理,网络侧知道UE的位置是基于RAN的寻呼区域级别的。
Figure PCTCN2020140989-appb-000002
beam sweeping
NR将来会部署在高频上,为了提高覆盖,在5G中,通过引入beam sweeping的机制来满足覆盖的需求(用空间换覆盖,用时间换空间),如图2所示。在引入beam sweeping后,每个波束方向上都需要发送同步信号,5G的同步信号以SSB的形式给出,包含主同步信号(Primary Synchronisation Signal,PSS)、辅同步信号(Secondary Synchronisation Signal,SSS)、和物理广播信道(Physica Broadcast Channel,PBCH),如图3所示。5G的同步信号以同步信号突发组(SS burst set)的形式在时域上周期性出现,如图4所示。
Figure PCTCN2020140989-appb-000003
多媒体广播多播服务(Multimedia Broadcast Multicast Service,MBMS)
MBMS是一种通过共享网络资源从一个数据源向多个终端设备传送数据的技术,该技术在提供多媒体业务的同时能有效地利用网络资源,实现较高速率(如256kbps)的多媒体业务的广播和组 播。
由于MBMS频谱效率较低,不足以有效地承载和支撑手机电视类型业务的运营。因此在LTE中,3GPP明确提出增强对下行高速MBMS业务的支持能力,并确定了对物理层和空中接口的设计要求。
3GPP R9将演进的MBMS(evolved MBMS,eMBMS)引入到LTE中。eMBMS提出了单频率网络(Single Frequency Network,SFN)的概念,即多媒体广播多播服务单频率网络(Multimedia Broadcast multicast service Single Frequency Network,MBSFN),MBSFN采用统一频率在所有小区同时发送业务数据,但是要保证小区间的同步。这种方式可以极大的提高小区整体信噪比分布,频谱效率也会相应的大幅提高。eMBMS基于IP多播协议实现业务的广播和多播。
在LTE或增强的LTE(LTE-Advanced,LTE-A)中,MBMS只有广播承载模式,没有多播承载模式。此外,MBMS业务的接收适用于空闲态或者连接态的终端设备。
3GPP R13中引入了单小区点对多点(Single Cell Point To Multiploint,SC-PTM)概念,SC-PTM基于MBMS网络架构。
MBMS引入了新的逻辑信道,包括单小区多播控制信道(Single Cell-Multicast Control Channel,SC-MCCH)和单小区多播传输信道(Single Cell-Multicast Transport Channel,SC-MTCH)。SC-MCCH和SC-MTCH被映射到下行共享信道(Downlink-Shared Channel,DL-SCH)上,进一步,DL-SCH被映射到物理下行共享信道(Physical Downlink Shared Channel,PDSCH)上,其中,SC-MCCH和SC-MTCH属于逻辑信道,DL-SCH属于传输信道,PDSCH属于物理信道。SC-MCCH和SC-MTCH不支持混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)操作。
MBMS引入了新的系统信息块(System Information Block,SIB)类型,即SIB20。具体地,通过SIB20来传输SC-MCCH的配置信息,一个小区只有一个SC-MCCH。SC-MCCH的配置信息包括:SC-MCCH的修改周期、SC-MCCH的重复周期、以及调度SC-MCCH的无线帧和子帧等信息。进一步,1)SC-MCCH的修改周期的边界满足SFN mod m=0,其中,SFN代表边界的系统帧号,m是SIB20中配置的SC-MCCH的修改周期(即sc-mcch-ModificationPeriod)。2)调度SC-MCCH的无线帧满足:SFN mod mcch-RepetitionPeriod=mcch-Offset,其中,SFN代表无线帧的系统帧号,mcch-RepetitionPeriod代表SC-MCCH的重复周期,mcch-Offset代表SC-MCCH的偏移量。3)调度SC-MCCH的子帧通过sc-mcch-Subframe指示。
SC-MCCH通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)调度。一方面,引入新的无线网络临时标识(Radio Network Tempory Identity,RNTI),即单小区RNTI(Single Cell RNTI,SC-RNTI)来识别用于调度SC-MCCH的PDCCH(如SC-MCCH PDCCH),可选地,SC-RNTI固定取值为FFFC。另一方面,引入新的RNTI,即单小区通知RNTI(Single Cell Notification RNTI,SC-N-RNTI)来识别用于指示SC-MCCH的变更通知的PDCCH(如通知PDCCH),可选地,SC-N-RNTI固定取值为FFFB;进一步,可以用DCI 1C的8个比特(bit)中的一个bit来指示变更通知。在LTE中,SC-PTM的配置信息基于SIB20配置的SC-MCCH,然后SC-MCCH配置SC-MTCH,SC-MTCH用于传输业务数据。
具体地,SC-MCCH只传输一个消息(即SCPTMConfiguration),该消息用于配置SC-PTM的配置信息。SC-PTM的配置信息包括:临时移动组标识(Temporary Mobile Group Identity,TMGI)、会话标识(seession id)、组RNTI(Group RNTI,G-RNTI)、非连续接收(Discontinuous Reception,DRX)配置信息以及邻区的SC-PTM业务信息等。需要说明的是,R13中的SC-PTM不支持健壮性包头压缩(Robust Header Compression,ROHC)功能。
SC-PTM的下行非连续的接收是通过以下参数控制的:onDurationTimerSCPTM、drx-InactivityTimerSCPTM、SC-MTCH-SchedulingCycle、以及SC-MTCH-SchedulingOffset。
当满足[(SFN*10)+subframe number]modulo(SC-MTCH-SchedulingCycle)=SC-MTCH-SchedulingOffset时,启动定时器onDurationTimerSCPTM;
当接收到下行PDCCH调度时,启动定时器drx-InactivityTimerSCPTM;
只有当定时器onDurationTimerSCPTM或drx-InactivityTimerSCPTM运行时才接收下行SC-PTM业务。
SC-PTM业务连续性采用基于SIB15的MBMS业务连续性概念,即“SIB15+MBMSInterestIndication”方式。空闲态的终端设备的业务连续性基于频率优先级的概念。
根据上述描述可知,SC-PTM的配置是基于SIB20配置SC-MCCH,然后基于SC-MCCH配置SC-MTCH。一个小区有且仅有一个SC-MCCH,也就是说,在终端设备进行小区重选后需要重新获 取SC-MCCH,这将会导致业务中断。
在NR系统中,很多场景需要支持组播和广播的业务需求,例如车联网中,工业互联网中等。所以在NR中引入MBMS是有必要的。
需要说明的是,上述方案中的MBMS业务包括但不局限于多播业务、组播业务、MBS业务等。本申请实施例以MBS业务为例进行说明,“MBS业务”的描述也可以被替换为“多播业务”或者“组播业务”或者“广播业务”或者“MBMS业务”。
在NR系统中,支持广播类型的MBS业务,终端设备在RRC空闲状态或者RRC非激活状态或者RRC连接状态下,都可以接收广播的MBS业务。
在NR系统中,广播的MBS业务在空口上可以采用beam sweeping的方式传输。按照beam sweeping方式传输广播性质的MBS业务,需要关联MBS PDCCH和SSB索引(SSB index)之间的关联关系(也即对应关系),以便于终端设备能够正确接收广播的MBS业务。为此,提出了本申请实施例的以下技术方案。
本申请实施例的技术方案中,定义一个新的SIB(称为第一SIB),第一SIB包括第一MCCH的配置信息,这里,第一MCCH为MBS业务的控制信道,换句话说,第一SIB用于配置NR MBS的控制信道的配置信息,可选地,NR MBS的控制信道也可以叫做NR MCCH(即所述第一MCCH)。
进一步,第一MCCH用于承载第一信令,本申请实施例对第一信令的名称不做限定,如第一信令为信令A,所述第一信令包括至少一个第一MTCH的配置信息,这里,第一MTCH为MBS业务的业务信道(也称为数据信道或传输信道),第一MTCH用于传输MBS业务数据(如NR MBS的业务数据)。换句话说,第一MCCH用于配置NR MBS的业务信道的配置信息,可选地,NR MBS的业务信道也可以叫做NR MTCH(即所述第一MTCH)。
具体地,所述第一信令用于配置NR MBS的业务信道、该业务信道对应的业务信息以及该业务信道对应的调度信息。进一步,可选地,所述业务信道对应的业务信息,例如TMGI、session id等标识业务的标识信息。所述业务信道对应的调度信息,例如业务信道对应的MBS业务数据被调度时使用的RNTI,例如G-RNTI、DRX配置信息等。
需要说明的是,第一MCCH和第一MTCH的传输都是基于PDCCH调度的。其中,用于调度第一MCCH的PDCCH使用的RNTI使用全网唯一标识,即是一个固定值。用于调度第一MTCH的PDCCH使用的RNTI通过第一MCCH进行配置。
需要说明的是,本申请实施例对所述第一SIB、所述第一MCCH和所述第一MTCH的命名不做限制。为便于描述,所述第一SIB也可以简称为SIB,所述第一MCCH也可以简称为MCCH,所述第一MTCH也可以简称为MTCH,通过SIB配置用于调度MCCH的PDCCH(即MCCH PDCCH)以及通知PDCCH,其中,通过MCCH PDCCH携带的DCI调度用于传输MCCH的PDSCH(即MCCH PDSCH)。进一步,通过MCCH配置M个用于调度MTCH的PDCCH(即MTCH 1PDCCH、MTCH 2 PDCCH、…、MTCH M PDCCH),其中,MTCH n PDCCH携带的DCI调度用于传输MTCH n的PDSCH(即MTCH n PDSCH),n为大于等于1且小于等于M的整数。MCCH和MTCH被映射到DL-SCH上,进一步,DL-SCH被映射到PDSCH上,其中,MCCH和MTCH属于逻辑信道,DL-SCH属于传输信道,PDSCH属于物理信道。
图5是本申请实施例提供的MBS业务的传输方法的流程示意图,如图5所示,所述MBS业务的传输方法包括以下步骤:
步骤501:终端设备确定PDCCH时机和SSB索引之间的对应关系,所述PDCCH时机用于传输MBS PDCCH。
步骤502:所述终端设备基于所述PDCCH时机和SSB索引之间的对应关系,接收MBS PDCCH。
本申请实施例中,PDCCH时机用于传输MBS PDCCH,MBS PDCCH用于调度MBS业务传输,或者说MBS PDCCH用于承载MBS业务传输的调度信息。在一可选方式中,MBS PDCCH可以是上述方案中的MCCH PDCCH、或者通知PDCCH、或者MTCH PDCCH。
需要说明的是,本申请实施例中的PDCCH时机也可以称为PDCCH监听时机(PDCCH monitor occasion)。
本申请实施例中,MBS业务传输采用beam sweep方式传输,可选地,MBS业务采用广播方式传输。为了保证终端设备正确接收MBS业务,需要正确接收调度MBS业务传输的MBS PDCCH,因此,需要确定PDCCH时机与SSB之间的对应关系。
本申请实施例中,在确定PDCCH时机与SSB之间的对应关系之前,需要确定PDCCH时机 是如何进行编号的(即需要确定PDCCH时机的索引)。为此,所述终端设备获取第一配置信息,所述第一配置信息用于确定第一时间窗口;其中,在所述第一时间窗口内,MBS业务对应的PDCCH时机从0开始编号。
这里,所述第一配置信息为协议定义的;或者,所述第一配置信息为网络设备通过MCCH配置的;或者,所述第一配置信息为网络设备通过系统广播消息(如SIB)配置的。
以下给出几种PDCCH时机的编号方式。
方式A:所述第一配置信息包括第一指示信息,所述第一指示信息用于确定所述第一时间窗口的长度和/或周期,以及用于确定所述第一时间窗口的起始位置。
在一可选方式中,所述第一指示信息用于指示K,K为大于等于1的正整数;所述第一时间窗口的长度为K个无线帧;所述第一时间窗口的起始位置所在的无线帧满足以下公式:SFN mod K=0,其中,SFN代表所述第一时间窗口的起始位置所在的无线帧的编号,mod代表取余运算。
这里,K可以通过协议设定。或者,K可以通过网络设备配置,例如通过SIB或者MCCH配置。对于MBS业务的PDCCH时机来说,从SFN mod K=0的无线帧开始对K个无线帧内的PDCCH时机从0开始编号。
方式B:所述第一配置信息包括第一指示信息和第二指示信息,所述第一指示信息用于确定所述第一时间窗口的长度和/或周期,所述第二指示信息用于确定所述第一时间窗口的起始位置。
在一可选方式中,所述第一指示信息用于指示T,T为大于等于1的正整数;所述第二指示信息用于指示偏置值(offset);所述第一时间窗口的长度为T个无线帧;所述第一时间窗口的起始位置所在的无线帧、子帧、时隙和符号中的至少之一基于所述offset确定。
这里,网络设备可以配置时间窗口的配置信息,时间窗口的配置信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示所述第一时间窗口的长度和/或周期为T,所述第二指示信息用于指示所述第一时间窗口的offset,通过该offset可以确定所述第一时间窗口的起始位置。
本申请实施例中,确定所述第一时间窗口的起始位置的粒度可以是无线帧粒度(即SFN粒度)、或者子帧粒度、或者时隙粒度、或者符号粒度等。
在一个示例中,以SFN粒度为例,所述第一时间窗口的起始位置所在的无线帧满足以下公式:
SFN mod T=offset;
其中,SFN代表所述第一时间窗口的起始位置所在的无线帧的编号,mod代表取余运算。
在一个示例中,以子帧为例,所述第一时间窗口的起始位置所在的无线帧和子帧满足以下公式:
SFN mod T=floor(offset/10);
subframe=offset mod 10;
其中,SFN代表所述第一时间窗口的起始位置所在的无线帧的编号,subframe代表所述第一时间窗口的起始位置所在的子帧的编号,mod代表取余运算,floor代表向下取整运算。
方式C:所述第一配置信息包括DRX配置信息,所述DRX配置信息用于确定DRX周期,所述DRX周期包括第一时间段和第二时间段,所述第一时间段为DRX激活时间所在的时间段,所述第二时间段为DRX非激活时间所在的时间段;所述第一时间窗口为所述第一时间段;或者,所述第一时间窗口为所述DRX周期。
这里,网络设备可以配置DRX配置信息,DRX配置信息用于确定DRX周期,进一步还用于确定DRX周期中的第一时间段和第二时间段。其中,第一时间段为DRX激活时间所在的时间段,第一时间段也可以称为DRX on duration;DRX周期中除了第一时间段以外的时间段为第二时间段,所述第二时间段为DRX非激活时间所在的时间段。需要说明的是,终端设备在第一时间段需要在PDCCH时机上监听MBS PDCCH。对于MBS业务的PDCCH时机来说,从第一时间段的起始时刻对PDCCH时机从0开始编号直到进入DRX非激活时刻(即第二时间段的起始时刻)或者直到下一个第一时间段的开始时刻为止停止编号。
本申请实施例中,通过上述方案对第一时间窗口内的PDCCH时机进行编号之后,第一时间窗口内的第一个PDCCH时机的索引为0,第二个PDCCH时机的索引为1,此次类推。基于第一时间窗口内的各个PDCCH时机的索引,可以通过以下任意一种方式确定PDCCH时机和SSB索引之间的对应关系。
方式一
1)情况一
对于所述第一时间窗口内的第n个MBS数据,第k个实际传输的SSB对应的PDCCH时机 的索引为:
(n-1)*S+(k-1);
其中,n为大于等于1且小于等于N的正整数,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,N为所述第一时间窗口内传输的MBS数据的个数。
对于方式一中的情况一来说,终端设备可以通过以下方式确定所述N的取值:
方式I)所述N的取值满足以下公式:N=floor(第一时间窗口内的PDCCH时机的总数/S),floor代表向下取整运算;或者,
方式II)所述N的取值为网络设备配置的。
本申请实施例中,针对第一时间窗口内的PDCCH时机,实际传输的SSB和PDCCH时机的索引之间的对应关系为:对于第一时间窗口内的第一个MBS数据,索引号为0的PDCCH时机对应实际传输的第1个SSB,索引号为1的PDCCH时机对应实际传输的第2个SSB,以此类推,直到所有实际传输的SSB针对第一个MBS数据都有一个PDCCH时机的索引对应。对于第一时间窗口内的第n个MBS数据来说,索引号为(n-1)*S+(k-1)的PDCCH时机对应第k个实际传输的SSB。
需要说明的是,实际传输的SSB的个数为S,其中,每个实际传输的SSB都有一个对应的SSB索引。例如S=4,实际传输的SSB的个数为4,实际传输的第一个SSB的索引为1,实际传输的第二个SSB的索引为2,实际传输的第三个SSB的索引为3,实际传输的第四个SSB的索引为4。
在一个示例中,参照图6,对于第一时间窗口内的第1个MBS数据(即MBS数据1),第2个实际传输的SSB对应的PDCCH时机的索引为:(n-1)*S+(k-1)=(1-1)*4+(2-1)=1。对于第一时间窗口内的第2个MBS数据(即MBS数据2),第3个实际传输的SSB对应的PDCCH时机的索引为:(n-1)*S+(k-1)=(2-1)*4+(3-1)=6。
在一个示例中,参照图6,第一时间窗口内传输的MBS数据的个数为:N=floor(第一时间窗口内的PDCCH时机的总数/S)=floor(14/4)=3。
在一个示例中,网络设备可以通过MCCH或者系统广播消息配置一个参数N,N表示第一时间窗口内传输的MBS数据的个数。
2)情况二
上述方式一中的情况一是针对MBS数据没有重复传输的情况,在一可选方式中,所述MBS数据具有H次重复传输,H为正整数;这里,所述H的取值为网络设备配置的,例如通过MCCH或者系统广播消息配置;或者,所述H的取值默认为1。
需要说明的是,所述MBS数据具有H次重复传输是指:所述MBS数据的总传输次数为H次。例如:H=2,表示MBS数据具有2次重复传输,第1次重复传输是指初传,第2次重复传输是指重传。
对于所述第一时间窗口内的第n个MBS数据的第h次重复传输,第k个实际传输的SSB对应的PDCCH时机的索引为:
(n-1)*S*H+S*(h-1)+(k-1);
其中,h为大于等于1且小于等于H的正整数。
对于方式一中的情况二来说,终端设备可以通过以下方式确定所述N的取值:
方式I)所述N的取值满足以下公式:N=floor(第一时间窗口内的PDCCH时机的总数/(S*H)),floor代表向下取整运算;或者,
方式II)所述N的取值为网络设备配置的。
需要说明的是,实际传输的SSB的个数为S,其中,每个实际传输的SSB都有一个对应的SSB索引。例如S=4,实际传输的SSB的个数为4,实际传输的第一个SSB的索引为1,实际传输的第二个SSB的索引为2,实际传输的第三个SSB的索引为3,实际传输的第四个SSB的索引为4。
在一个示例中,参照图7,H=2,MBS数据具有2次重复传输。对于第一时间窗口内的第1个MBS数据(即MBS数据1)的第2次重复传输,第2个实际传输的SSB对应的PDCCH时机的索引为:(n-1)*S*H+S*(h-1)+(k-1)=(1-1)*4*2+4*(2-1)+(2-1)=5。对于第一时间窗口内的第2个MBS数据(即MBS数据2)的第1次重复传输,第2个实际传输的SSB对应的PDCCH时机的索引为:(n-1)*S*H+S*(h-1)+(k-1)=(2-1)*4*2+4*(1-1)+(2-1)=9。
在一个示例中,参照图7,第一时间窗口内传输的MBS数据的个数为:N=floor(第一时间窗口内的PDCCH时机的总数/(S*H))=floor(20/(4*2))=2。
在一个示例中,网络设备可以通过MCCH或者系统广播消息配置一个参数N,N表示第一时间窗口内传输的MBS数据的个数。
方式二
1)情况一
所述终端设备接收网络设备发送的第二配置信息,所述第二配置信息用于确定PDCCH时机索引列表,所述PDCCH时机索引列表包括N个PDCCH时机索引,N为大于1的正整数;所述N个PDCCH时机索引中的每个PDCCH时机索引用于指示一个MBS数据对应的第一个PDCCH时机;
对于所述MBS数据,第k个实际传输的SSB对应的PDCCH时机的索引为:
该MBS数据对应的第一个PDCCH时机的索引+(k-1);
其中,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数。
上述方案中,所述N为所述第一时间窗口内传输的MBS数据的个数。
本申请实施例中,网络设备通过MCCH或者系统广播消息(如SIB)配置一个PDCCH时机索引列表,该PDCCH时机索引列表中的每个PDCCH时机索引用于指示一个MBS数据的beam sweeping方式传输的第一个PDCCH时机(first PDCCH occasion),这里,第一个PDCCH时机对应第一个实际传输的SSB。可见,对于第一时间窗口内的任何一个MBS数据来说,该MBS数据的第k个实际传输的SSB对应的PDCCH时机的索引为:该MBS数据对应的第一个PDCCH时机的索引+(k-1)。需要说明的是,PDCCH时机索引列表中的PDCCH时机索引的个数为第一时间窗口内传输的MBS数据的个数。
在一个示例中,参照图8,对于第一时间窗口内的MBS数据1来说,该MBS数据的第3个实际传输的SSB对应的PDCCH时机的索引为:该MBS数据对应的第一个PDCCH时机的索引+(k-1)=2+(3-1)=4。对于第一时间窗口内的MBS数据2来说,该MBS数据的第2个实际传输的SSB对应的PDCCH时机的索引为:该MBS数据对应的第一个PDCCH时机的索引+(k-1)=7+(2-1)=8。对于第一时间窗口内的MBS数据3来说,该MBS数据的第1个实际传输的SSB对应的PDCCH时机的索引为:该MBS数据对应的第一个PDCCH时机的索引+(k-1)=13+(1-1)=13。
2)情况二
上述方式二中的情况一是针对MBS数据没有重复传输的情况,在一可选方式中,所述MBS数据具有H次重复传输,H为正整数;这里,所述H的取值为网络设备配置的,例如通过MCCH或者系统广播消息配置;或者,所述H的取值默认为1。
需要说明的是,所述MBS数据具有H次重复传输是指:所述MBS数据的总传输次数为H次。例如:H=2,表示MBS数据具有2次重复传输,第1次重复传输是指初传,第2次重复传输是指重传。
对于所述MBS数据的第h次重复传输,第k个实际传输的SSB对应的PDCCH时机的索引为:
该MBS数据对应的第一个PDCCH时机的索引+S*(h-1)+(k-1);
其中,h为大于等于1且小于等于H的正整数。
上述方案中,所述N为所述第一时间窗口内传输的MBS数据的个数。
需要说明的是,实际传输的SSB的个数为S,其中,每个实际传输的SSB都有一个对应的SSB索引。例如S=4,实际传输的SSB的个数为4,实际传输的第一个SSB的索引为1,实际传输的第二个SSB的索引为2,实际传输的第三个SSB的索引为3,实际传输的第四个SSB的索引为4。
对于方式二中的情况二来说,对于同一MBS数据的H次重复传输的PDCCH时间的索引是连续分配的。
在一个示例中,参照图9,H=2,MBS数据具有2次重复传输。对于第一时间窗口内的MBS数据1的第2次重复传输,第2个实际传输的SSB对应的PDCCH时机的索引为:该MBS数据对应的第一个PDCCH时机的索引+S*(h-1)+(k-1)=2+4*(2-1)+(2-1)=7。对于第一时间窗口内的MBS数据2的第1次重复传输,第3个实际传输的SSB对应的PDCCH时机的索引为:该MBS数据对应的第一个PDCCH时机的索引+S*(h-1)+(k-1)=12+4*(1-1)+(3-1)=14。
3)情况三
上述方式二中的情况一是针对MBS数据没有重复传输的情况,在一可选方式中,所述MBS数据具有H次重复传输,H为正整数;这里,所述H的取值为网络设备配置的,例如通过MCCH或者系统广播消息配置;或者,所述H的取值默认为1。
需要说明的是,所述MBS数据具有H次重复传输是指:所述MBS数据的总传输次数为H次。 例如:H=2,表示MBS数据具有2次重复传输,第1次重复传输是指初传,第2次重复传输是指重传。
对于所述MBS数据的第h次重复传输,第k个实际传输的SSB对应的PDCCH时机的索引为:
该MBS数据的第h次重复传输对应的第一个PDCCH时机的索引+(k-1);
其中,h为大于等于1且小于等于H的正整数。
上述方案中,所述第h次重复传输对应的第一个PDCCH时机的索引通过网络设备配置。
上述方案中,所述N为所述第一时间窗口内传输的MBS数据的个数。
需要说明的是,实际传输的SSB的个数为S,其中,每个实际传输的SSB都有一个对应的SSB索引。例如S=4,实际传输的SSB的个数为4,实际传输的第一个SSB的索引为1,实际传输的第二个SSB的索引为2,实际传输的第三个SSB的索引为3,实际传输的第四个SSB的索引为4。
对于方式二中的情况三来说,网络设备除了配置上述方案中的PDCCH时机索引列表以外,还针对每个MBS数据配置每次重复传输的第一个PDCCH时机的索引。
在一个示例中,参照图10,H=2,MBS数据具有2次重复传输。对于第一时间窗口内的MBS数据1的第2次重复传输,第2个实际传输的SSB对应的PDCCH时机的索引为:该MBS数据的第h次重复传输对应的第一个PDCCH时机的索引+(k-1)=7+(2-1)=8。对于第一时间窗口内的MBS数据2的第1次重复传输,第3个实际传输的SSB对应的PDCCH时机的索引为:该MBS数据的第h次重复传输对应的第一个PDCCH时机的索引+(k-1)=12+(3-1)=14。
方式三
1)情况一
所述终端设备接收网络设备发送的第三配置信息,所述第三配置信息用于确定MBS数据间隔,所述MBS数据间隔用于指示相邻两个MBS数据之间间隔的PDCCH时机的个数;
对于所述第一时间窗口内的第n个MBS数据,第k个实际传输的SSB对应的PDCCH时机的索引为:
第一PDCCH时机索引+(n-1)*MBS数据间隔+(k-1);
其中,所述第一PDCCH时机索引用于指示所述第一时间窗口内的第一个MBS数据对应的第一个PDCCH时机,n为大于等于1且小于等于N的正整数,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,N为所述第一时间窗口内传输的MBS数据的个数。
上述方案中,所述第一PDCCH时机索引为网络设备配置的;或者,所述第一PDCCH时机索引默认为0。
对于方式三中的情况一来说,终端设备可以通过以下方式确定所述N的取值:
方式I):所述N的取值满足以下公式:第一PDCCH时机索引+N*MBS数据间隔≤第一时间窗口内的PDCCH时机总数-1;或者,
方式II):所述N的取值为网络设备配置的。
本申请实施例中,网络设备通过MCCH或者系统广播消息(如SIB)配置一个PDCCH时机索引(称为第一PDCCH时机索引),第一PDCCH时机索引用于指示第一时间窗口内的第一个MBS数据的beam sweeping方式传输的第一个PDCCH时机,这里,第一个PDCCH时机对应第一个实际传输的SSB。或者,网络设备没有配置第一PDCCH时机索引,这种情况下,第一PDCCH时机索引默认为0。此外,网络设备通过MCCH或者系统广播消息(如SIB)还配置一个MBS数据间隔(MBS data interval),MBS数据间隔用于指示相邻两个MBS数据之间间隔的PDCCH时机的个数,例如第一时间窗口内的第一个MBS数据和第二个MBS数据间隔的PDCCH时机的个数。这里,根据第一PDCCH时机索引和MBS数据间隔可以确定出除第一个MBS数据以外的其他MBS数据的第一个PDCCH时机的索引。
需要说明的是,相邻两个MBS数据之间间隔的PDCCH时机的个数可以是指:相邻两个MBS数据的第一个PDCCH时机间隔的PDCCH时机的个数,或者,相邻两个MBS数据的最后一个PDCCH时机间隔的PDCCH时机的个数。
在一个示例中,参照图11,网络设备配置第一PDCCH时机索引为1。对于第一时间窗口内的MBS数据1来说,该MBS数据的第3个实际传输的SSB对应的PDCCH时机的索引为:第一PDCCH时机索引+(n-1)*MBS数据间隔+(k-1)=1+(1-1)*6+(3-1)=3。对于第一时间窗口内的MBS数据2来说,该MBS数据的第2个实际传输的SSB对应的PDCCH时机的索引为:第一PDCCH时机索引+(n-1)*MBS数据间隔+(k-1)=1+(2-1)*6+(2-1)=8。对于第一时间窗口内的MBS数 据3来说,该MBS数据的第4个实际传输的SSB对应的PDCCH时机的索引为:第一PDCCH时机索引+(n-1)*MBS数据间隔+(k-1)=1+(3-1)*6+(4-1)=16。
在一个示例中,参照图11,第一时间窗口内传输的MBS数据的个数N的取值满足以下公式:第一PDCCH时机索引+N*MBS数据间隔≤第一时间窗口内的PDCCH时机总数-1,可见,1+N*6≤20-1,N的取值为3。
在一个示例中,参照图12,第一PDCCH时机索引默认为0。对于第一时间窗口内的MBS数据1来说,该MBS数据的第3个实际传输的SSB对应的PDCCH时机的索引为:第一PDCCH时机索引+(n-1)*MBS数据间隔+(k-1)=0+(1-1)*6+(3-1)=2。对于第一时间窗口内的MBS数据2来说,该MBS数据的第2个实际传输的SSB对应的PDCCH时机的索引为:第一PDCCH时机索引+(n-1)*MBS数据间隔+(k-1)=0+(2-1)*6+(2-1)=7。对于第一时间窗口内的MBS数据3来说,该MBS数据的第4个实际传输的SSB对应的PDCCH时机的索引为:第一PDCCH时机索引+(n-1)*MBS数据间隔+(k-1)=0+(3-1)*6+(4-1)=15。
在一个示例中,参照图12,第一时间窗口内传输的MBS数据的个数N的取值满足以下公式:第一PDCCH时机索引+N*MBS数据间隔≤第一时间窗口内的PDCCH时机总数-1,可见,0+N*6≤19-1,N的取值为3。
在一个示例中,网络设备可以通过MCCH或者系统广播消息配置一个参数N,N表示第一时间窗口内传输的MBS数据的个数。
2)情况二
上述方式三中的情况一是针对MBS数据没有重复传输的情况,在一可选方式中,所述MBS数据具有H次重复传输,H为正整数;这里,所述H的取值为网络设备配置的,例如通过MCCH或者系统广播消息配置;或者,所述H的取值默认为1。
需要说明的是,所述MBS数据具有H次重复传输是指:所述MBS数据的总传输次数为H次。例如:H=2,表示MBS数据具有2次重复传输,第1次重复传输是指初传,第2次重复传输是指重传。
对于所述第一时间窗口内的第n个MBS数据的第h次重复传输,第k个实际传输的SSB对应的PDCCH时机的索引为:
第一PDCCH时机索引+(n-1)*MBS数据间隔+S*(h-1)+(k-1);
其中,h为大于等于1且小于等于H的正整数。
需要说明的是,实际传输的SSB的个数为S,其中,每个实际传输的SSB都有一个对应的SSB索引。例如S=4,实际传输的SSB的个数为4,实际传输的第一个SSB的索引为1,实际传输的第二个SSB的索引为2,实际传输的第三个SSB的索引为3,实际传输的第四个SSB的索引为4。
对于方式三中的情况二来说,终端设备可以通过以下方式确定所述N的取值:
方式I):所述N的取值满足以下公式:第一PDCCH时机索引+N*MBS数据间隔≤第一时间窗口内的PDCCH时机总数-1;或者,
方式II):所述N的取值为网络设备配置的。
需要说明的是,相邻两个MBS数据之间间隔的PDCCH时机的个数可以是指:相邻两个MBS数据的第一个PDCCH时机间隔的PDCCH时机的个数,或者,相邻两个MBS数据的最后一个PDCCH时机间隔的PDCCH时机的个数。为便于描述,将相邻两个MBS数据之间间隔的PDCCH时机的个数理解为相邻两个MBS数据的第一个PDCCH时机间隔的PDCCH时机的个数,可见,一个MBS数据间隔内包含一个MBS数据对应的全部重复传输(即H次重复传输)的PDCCH时机。
对于方式三中的情况二来说,对于同一MBS数据的H次重复传输的PDCCH时间的索引是连续分配的。换句话说,一个MBS数据间隔内包含的一个MBS数据对应的全部重复传输(即H次重复传输)的PDCCH时机的索引是连续分配的。
在一个示例中,参照图13,H=2,MBS数据具有2次重复传输。对于第一时间窗口内的MBS数据1的第2次重复传输,第2个实际传输的SSB对应的PDCCH时机的索引为:第一PDCCH时机索引+(n-1)*MBS数据间隔+S*(h-1)+(k-1)=1+(1-1)*10+4*(2-1)+(2-1)=6。对于第一时间窗口内的MBS数据2的第1次重复传输,第3个实际传输的SSB对应的PDCCH时机的索引为:第一PDCCH时机索引+(n-1)*MBS数据间隔+S*(h-1)+(k-1)=1+(2-1)*10+4*(1-1)+(3-1)=13。
3)情况三
上述方式三中的情况一是针对MBS数据没有重复传输的情况,在一可选方式中,所述MBS数 据具有H次重复传输,H为正整数;这里,所述H的取值为网络设备配置的,例如通过MCCH或者系统广播消息配置;或者,所述H的取值默认为1。
需要说明的是,所述MBS数据具有H次重复传输是指:所述MBS数据的总传输次数为H次。例如:H=2,表示MBS数据具有2次重复传输,第1次重复传输是指初传,第2次重复传输是指重传。
对于所述第一时间窗口内的第n个MBS数据的第h次重复传输,第k个实际传输的SSB对应的PDCCH时机的索引为:
第一PDCCH时机索引+(n-1)*MBS传输间隔*H+(h-1)*MBS传输间隔+(k-1);
其中,h为大于等于1且小于等于H的正整数。
需要说明的是,实际传输的SSB的个数为S,其中,每个实际传输的SSB都有一个对应的SSB索引。例如S=4,实际传输的SSB的个数为4,实际传输的第一个SSB的索引为1,实际传输的第二个SSB的索引为2,实际传输的第三个SSB的索引为3,实际传输的第四个SSB的索引为4。
这里,所述MBS传输间隔用于指示相邻两个传输之间间隔的PDCCH时机的个数,所述相邻两个传输属于同一MBS数据的两个传输或者不同MBS数据的两个传输。例如:第一时间窗口内有2个MBS数据,这2个MBS数据分别具有2次重复传输,即MBS数据1有第1次重复传输和第2次重复传输,MBS数据2有第1次重复传输和第2次重复传输,那么,MBS数据1的第1次重复传输和第2次重复传输之间间隔的PDCCH时机的个数为D1,MBS数据2的第1次重复传输和第2次重复传输之间间隔的PDCCH时机的个数为D2,MBS数据1的第2次重复传输和MBS数据2的第1次重复传输之间间隔的PDCCH时机的个数为D3,D1、D2和D3均相等,且均是通过MBS传输间隔指示的。
需要说明的是,相邻两个传输之间间隔的PDCCH时机的个数可以是指:相邻两个传输的第一个PDCCH时机间隔的PDCCH时机的个数,或者,相邻两个传输的最后一个PDCCH时机间隔的PDCCH时机的个数。
对于方式三中的情况三来说,终端设备可以通过以下方式确定所述N的取值:
方式I):所述N的取值满足以下公式:第一PDCCH时机索引+N*MBS传输间隔*H≤第一时间窗口内的PDCCH时机总数-1;或者,
方式II):所述N的取值为网络设备配置的。
在一个示例中,参照图14,H=2,MBS数据具有2次重复传输。对于第一时间窗口内的MBS数据1的第2次重复传输,第2个实际传输的SSB对应的PDCCH时机的索引为:第一PDCCH时机索引+(n-1)*MBS传输间隔*H+(h-1)*MBS传输间隔+(k-1)=1+(1-1)*5*2+(2-1)*5+(2-1)=7。对于第一时间窗口内的MBS数据2的第2次重复传输,第3个实际传输的SSB对应的PDCCH时机的索引为:第一PDCCH时机索引+(n-1)*MBS传输间隔*H+(h-1)*MBS传输间隔+(k-1)=1+(2-1)*5*2+(2-1)*5+(3-1)=18。
4)情况四
上述方式三中的情况一是针对MBS数据没有重复传输的情况,在一可选方式中,所述MBS数据具有H次重复传输,H为正整数;这里,所述H的取值为网络设备配置的,例如通过MCCH或者系统广播消息配置;或者,所述H的取值默认为1。
需要说明的是,所述MBS数据具有H次重复传输是指:所述MBS数据的总传输次数为H次。例如:H=2,表示MBS数据具有2次重复传输,第1次重复传输是指初传,第2次重复传输是指重传。
对于所述第一时间窗口内的第n个MBS数据的第h次重复传输,第k个实际传输的SSB对应的PDCCH时机的索引为:
第一PDCCH时机索引+(n-1)*MBS数据间隔+(h-1)*MBS重复间隔+(k-1);
其中,h为大于等于1且小于等于H的正整数。
这里,所述MBS重复间隔用于指示同一MBS数据的相邻两个传输之间间隔的PDCCH时机的个数。例如:第一时间窗口内有2个MBS数据,这2个MBS数据分别具有2次重复传输,即MBS数据1有第1次重复传输和第2次重复传输,MBS数据2有第1次重复传输和第2次重复传输,那么,MBS数据1的第1次重复传输和第2次重复传输之间间隔的PDCCH时机的个数为D1,MBS数据2的第1次重复传输和第2次重复传输之间间隔的PDCCH时机的个数为D2,D1和D2均相等,且均是通过MBS重复间隔指示的。
需要说明的是,相邻两个MBS数据之间间隔的PDCCH时机的个数可以是指:相邻两个MBS 数据的第一个PDCCH时机间隔的PDCCH时机的个数,或者,相邻两个MBS数据的最后一个PDCCH时机间隔的PDCCH时机的个数。例如:第一时间窗口内有2个MBS数据,这2个MBS数据分别具有2次重复传输,即MBS数据1有第1次重复传输和第2次重复传输,MBS数据2有第1次重复传输和第2次重复传输,那么,MBS数据1的第1次重复传输的第一个PDCCH时机和MBS数据2的第1次重复传输的第一个PDCCH时机之间间隔的PDCCH时机的个数通过MBS数据间隔指示。
需要说明的是,MBS数据间隔可以是MBS重复间隔的整数倍,或者MBS数据间隔与MBS重复间隔没有整数倍关系。
需要说明的是,实际传输的SSB的个数为S,其中,每个实际传输的SSB都有一个对应的SSB索引。例如S=4,实际传输的SSB的个数为4,实际传输的第一个SSB的索引为1,实际传输的第二个SSB的索引为2,实际传输的第三个SSB的索引为3,实际传输的第四个SSB的索引为4。
对于方式三中的情况四来说,终端设备可以通过以下方式确定所述N的取值:
方式I):所述N的取值满足以下公式:第一PDCCH时机索引+N*MBS数据间隔≤第一时间窗口内的PDCCH时机总数-1;或者,
方式II):所述N的取值为网络设备配置的。
在一个示例中,参照图15,MBS数据间隔为10个PDCCH时机,MBS重复间隔为5个PDCCH时机,MBS数据间隔是MBS重复间隔的2倍,当然,并不局限于此,MBS数据间隔也可以与MBS重复间隔没有整数倍关系。H=2,MBS数据具有2次重复传输。对于第一时间窗口内的MBS数据1的第2次重复传输,第2个实际传输的SSB对应的PDCCH时机的索引为:第一PDCCH时机索引+(n-1)*MBS数据间隔+(h-1)*MBS重复间隔+(k-1)=1+(1-1)*10+(2-1)*5+(2-1)=7。对于第一时间窗口内的MBS数据2的第2次重复传输,第3个实际传输的SSB对应的PDCCH时机的索引为:第一PDCCH时机索引+(n-1)*MBS数据间隔+(h-1)*MBS重复间隔+(k-1)=1+(2-1)*10+(2-1)*5+(3-1)=18。
需要说明的是,上述图13至图15的示例中,均是以网络设备配置第一PDCCH时机索引为1的情况进行举例说明的,不局限于此,网络设备也可以不配置第一PDCCH时机索引,这种情况下,第一PDCCH时机索引默认为0。
需要说明的是,本申请实施例中对于同一参数的含义是相同的。例如S为实际传输的SSB的个数,N为第一时间窗口内传输的MBS数据的个数,H为MBS数据的重复传输次数,n为大于等于1且小于等于N的正整数,k为大于等于1且小于等于S的正整数,h为大于等于1且小于等于H的正整数。
本申请实施例中,通过上述方案确定出PDCCH时机的索引和SSB的索引之间的对应关系后,终端设备可以根据SSB索引通过在相应的位置(例如相应的波束)上监听PDCCH时机,从而有效接收MBS PDCCH,为后续进一步正确接收MBS PDSCH提供了保障。
图16是本申请实施例提供的MBS业务的传输装置的结构组成示意图,应用于终端设备,如图16所示,所述MBS业务的传输装置包括:
确定单元1601,用于确定PDCCH时机和SSB索引之间的对应关系,所述PDCCH时机用于传输MBS PDCCH;
接收单元1602,用于基于所述PDCCH时机和SSB索引之间的对应关系,接收MBS PDCCH。
在一可选方式中,所述装置还包括:
获取单元(图中未示出),用于获取第一配置信息,所述第一配置信息用于确定第一时间窗口;
其中,在所述第一时间窗口内,MBS业务对应的PDCCH时机从0开始编号。
在一可选方式中,所述第一配置信息包括第一指示信息,所述第一指示信息用于确定所述第一时间窗口的长度和/或周期,以及用于确定所述第一时间窗口的起始位置。
在一可选方式中,所述第一指示信息用于指示K,K为大于等于1的正整数;
所述第一时间窗口的长度为K个无线帧;
所述第一时间窗口的起始位置所在的无线帧满足以下公式:SFN mod K=0,其中,SFN代表所述第一时间窗口的起始位置所在的无线帧的编号,mod代表取余运算。
在一可选方式中,所述第一配置信息包括第一指示信息和第二指示信息,所述第一指示信息用于确定所述第一时间窗口的长度和/或周期,所述第二指示信息用于确定所述第一时间窗口的起始位置。
在一可选方式中,所述第一指示信息用于指示T,T为大于等于1的正整数;所述第二指示信息用于指示偏置值offset;
所述第一时间窗口的长度为T个无线帧;
所述第一时间窗口的起始位置所在的无线帧、子帧、时隙和符号中的至少之一基于所述offset确定。
在一可选方式中,所述第一时间窗口的起始位置所在的无线帧满足以下公式:
SFN mod T=offset;
其中,SFN代表所述第一时间窗口的起始位置所在的无线帧的编号,mod代表取余运算。
在一可选方式中,所述第一时间窗口的起始位置所在的无线帧和子帧满足以下公式:
SFN mod T=floor(offset/10);
subframe=offset mod 10;
其中,SFN代表所述第一时间窗口的起始位置所在的无线帧的编号,subframe代表所述第一时间窗口的起始位置所在的子帧的编号,mod代表取余运算,floor代表向下取整运算。
在一可选方式中,所述第一配置信息包括DRX配置信息,所述DRX配置信息用于确定DRX周期,所述DRX周期包括第一时间段和第二时间段,所述第一时间段为DRX激活时间所在的时间段,所述第二时间段为DRX非激活时间所在的时间段;
所述第一时间窗口为所述第一时间段;或者,
所述第一时间窗口为所述DRX周期。
在一可选方式中,所述第一配置信息为协议定义的;或者,
所述第一配置信息为网络设备通过MCCH配置的;或者,
所述第一配置信息为网络设备通过系统广播消息配置的。
在一可选方式中,对于所述第一时间窗口内的第n个MBS数据,第k个实际传输的SSB对应的PDCCH时机的索引为:
(n-1)*S+(k-1);
其中,n为大于等于1且小于等于N的正整数,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,N为所述第一时间窗口内传输的MBS数据的个数。
在一可选方式中,所述N的取值满足以下公式:N=floor(第一时间窗口内的PDCCH时机的总数/S),floor代表向下取整运算;或者,
所述N的取值为网络设备配置的。
在一可选方式中,所述MBS数据具有H次重复传输,H为正整数;
对于所述第一时间窗口内的第n个MBS数据的第h次重复传输,第k个实际传输的SSB对应的PDCCH时机的索引为:
(n-1)*S*H+S*(h-1)+(k-1);
其中,h为大于等于1且小于等于H的正整数。
在一可选方式中,所述N的取值满足以下公式:N=floor(第一时间窗口内的PDCCH时机的总数/(S*H)),floor代表向下取整运算;或者,
所述N的取值为网络设备配置的。
在一可选方式中,所述接收单元1602,还用于接收网络设备发送的第二配置信息,所述第二配置信息用于确定PDCCH时机索引列表,所述PDCCH时机索引列表包括N个PDCCH时机索引,N为大于1的正整数;所述N个PDCCH时机索引中的每个PDCCH时机索引用于指示一个MBS数据对应的第一个PDCCH时机;
对于所述MBS数据,第k个实际传输的SSB对应的PDCCH时机的索引为:
该MBS数据对应的第一个PDCCH时机的索引+(k-1);
其中,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数。
在一可选方式中,所述MBS数据具有H次重复传输,H为正整数;
对于所述MBS数据的第h次重复传输,第k个实际传输的SSB对应的PDCCH时机的索引为:
该MBS数据对应的第一个PDCCH时机的索引+S*(h-1)+(k-1);
其中,h为大于等于1且小于等于H的正整数。
在一可选方式中,所述MBS数据具有H次重复传输,H为正整数;
对于所述MBS数据的第h次重复传输,第k个实际传输的SSB对应的PDCCH时机的索引 为:
该MBS数据的第h次重复传输对应的第一个PDCCH时机的索引+(k-1);
其中,h为大于等于1且小于等于H的正整数。
在一可选方式中,所述第h次重复传输对应的第一个PDCCH时机的索引通过网络设备配置。
在一可选方式中,所述N为所述第一时间窗口内传输的MBS数据的个数。
在一可选方式中,所述接收单元1602,还用于接收网络设备发送的第三配置信息,所述第三配置信息用于确定MBS数据间隔,所述MBS数据间隔用于指示相邻两个MBS数据之间间隔的PDCCH时机的个数;
对于所述第一时间窗口内的第n个MBS数据,第k个实际传输的SSB对应的PDCCH时机的索引为:
第一PDCCH时机索引+(n-1)*MBS数据间隔+(k-1);
其中,所述第一PDCCH时机索引用于指示所述第一时间窗口内的第一个MBS数据对应的第一个PDCCH时机,n为大于等于1且小于等于N的正整数,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,N为所述第一时间窗口内传输的MBS数据的个数。
在一可选方式中,所述第一PDCCH时机索引为网络设备配置的;或者,
所述第一PDCCH时机索引默认为0。
在一可选方式中,所述N的取值满足以下公式:第一PDCCH时机索引+N*MBS数据间隔≤第一时间窗口内的PDCCH时机总数-1;或者,
所述N的取值为网络设备配置的。
在一可选方式中,所述MBS数据具有H次重复传输,H为正整数;
对于所述第一时间窗口内的第n个MBS数据的第h次重复传输,第k个实际传输的SSB对应的PDCCH时机的索引为:
第一PDCCH时机索引+(n-1)*MBS数据间隔+S*(h-1)+(k-1);
其中,h为大于等于1且小于等于H的正整数。
在一可选方式中,所述N的取值满足以下公式:第一PDCCH时机索引+N*MBS数据间隔≤第一时间窗口内的PDCCH时机总数-1;或者,
所述N的取值为网络设备配置的。
在一可选方式中,所述MBS数据具有H次重复传输,H为正整数;
对于所述第一时间窗口内的第n个MBS数据的第h次重复传输,第k个实际传输的SSB对应的PDCCH时机的索引为:
第一PDCCH时机索引+(n-1)*MBS传输间隔*H+(h-1)*MBS传输间隔+(k-1);
其中,h为大于等于1且小于等于H的正整数。
在一可选方式中,所述N的取值满足以下公式:第一PDCCH时机索引+N*MBS传输间隔*H≤第一时间窗口内的PDCCH时机总数-1;或者,
所述N的取值为网络设备配置的。
在一可选方式中,所述MBS传输间隔用于指示相邻两个传输之间间隔的PDCCH时机的个数,所述相邻两个传输属于同一MBS数据的两个传输或者不同MBS数据的两个传输。
在一可选方式中,所述MBS数据具有H次重复传输,H为正整数;
对于所述第一时间窗口内的第n个MBS数据的第h次重复传输,第k个实际传输的SSB对应的PDCCH时机的索引为:
第一PDCCH时机索引+(n-1)*MBS数据间隔+(h-1)*MBS重复间隔+(k-1);
其中,h为大于等于1且小于等于H的正整数。
在一可选方式中,所述N的取值满足以下公式:第一PDCCH时机索引+N*MBS数据间隔≤第一时间窗口内的PDCCH时机总数-1;或者,
所述N的取值为网络设备配置的。
在一可选方式中,所述MBS重复间隔用于指示同一MBS数据的相邻两个传输之间间隔的PDCCH时机的个数。
在一可选方式中,所述H的取值为网络设备配置的;或者,
所述H的取值默认为1。
本领域技术人员应当理解,本申请实施例的上述MBS业务的传输装置的相关描述可以参照本申请实施例的MBS业务的传输方法的相关描述进行理解。
需要说明的是,本申请实施例的技术方案不仅可以应用于终端设备侧,还可以应用于网络设备侧,例如基站。具体地,网络设备确定PDCCH时机和SSB索引之间的对应关系,所述PDCCH时机用于传输MBS PDCCH;所述网络设备基于所述PDCCH时机和SSB索引之间的对应关系,发送MBS PDCCH。这里,网络设备确定PDCCH时机和SSB索引之间的对应关系的方案可以参照前述终端设备侧的相关描述,不再赘述。
图17是本申请实施例提供的一种通信设备1700示意性结构图。该通信设备可以是终端设备,也可以是网络设备,图17所示的通信设备1700包括处理器1710,处理器1710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图17所示,通信设备1700还可以包括存储器1720。其中,处理器1710可以从存储器1720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1720可以是独立于处理器1710的一个单独的器件,也可以集成在处理器1710中。
可选地,如图17所示,通信设备1700还可以包括收发器1730,处理器1710可以控制该收发器1730与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1730可以包括发射机和接收机。收发器1730还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1700具体可为本申请实施例的网络设备,并且该通信设备1700可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1700具体可为本申请实施例的移动终端/终端设备,并且该通信设备1700可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图18是本申请实施例的芯片的示意性结构图。图18所示的芯片1800包括处理器1810,处理器1810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图18所示,芯片1800还可以包括存储器1820。其中,处理器1810可以从存储器1820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1820可以是独立于处理器1810的一个单独的器件,也可以集成在处理器1810中。
可选地,该芯片1800还可以包括输入接口1830。其中,处理器1810可以控制该输入接口1830与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1800还可以包括输出接口1840。其中,处理器1810可以控制该输出接口1840与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图19是本申请实施例提供的一种通信系统1900的示意性框图。如图119所示,该通信系统1900包括终端设备1910和网络设备1920。
其中,该终端设备1910可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1920可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性 和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (67)

  1. 一种多播组播服务MBS业务的传输方法,所述方法包括:
    终端设备确定物理下行控制信道PDCCH时机和同步信号块SSB索引之间的对应关系,所述PDCCH时机用于传输MBS PDCCH;
    所述终端设备基于所述PDCCH时机和SSB索引之间的对应关系,接收MBS PDCCH。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端设备获取第一配置信息,所述第一配置信息用于确定第一时间窗口;
    其中,在所述第一时间窗口内,MBS业务对应的PDCCH时机从0开始编号。
  3. 根据权利要求2所述的方法,其中,所述第一配置信息包括第一指示信息,所述第一指示信息用于确定所述第一时间窗口的长度和/或周期,以及用于确定所述第一时间窗口的起始位置。
  4. 根据权利要求3所述的方法,其中,所述第一指示信息用于指示K,K为大于等于1的正整数;
    所述第一时间窗口的长度为K个无线帧;
    所述第一时间窗口的起始位置所在的无线帧满足以下公式:SFN mod K=0,其中,SFN代表所述第一时间窗口的起始位置所在的无线帧的编号,mod代表取余运算。
  5. 根据权利要求2所述的方法,其中,所述第一配置信息包括第一指示信息和第二指示信息,所述第一指示信息用于确定所述第一时间窗口的长度和/或周期,所述第二指示信息用于确定所述第一时间窗口的起始位置。
  6. 根据权利要求5所述的方法,其中,所述第一指示信息用于指示T,T为大于等于1的正整数;所述第二指示信息用于指示偏置值offset;
    所述第一时间窗口的长度为T个无线帧;
    所述第一时间窗口的起始位置所在的无线帧、子帧、时隙和符号中的至少之一基于所述offset确定。
  7. 根据权利要求6所述的方法,其中,所述第一时间窗口的起始位置所在的无线帧满足以下公式:
    SFN mod T=offset;
    其中,SFN代表所述第一时间窗口的起始位置所在的无线帧的编号,mod代表取余运算。
  8. 根据权利要求6所述的方法,其中,所述第一时间窗口的起始位置所在的无线帧和子帧满足以下公式:
    SFN mod T=floor(offset/10);
    subframe=offset mod 10;
    其中,SFN代表所述第一时间窗口的起始位置所在的无线帧的编号,subframe代表所述第一时间窗口的起始位置所在的子帧的编号,mod代表取余运算,floor代表向下取整运算。
  9. 根据权利要求2所述的方法,其中,所述第一配置信息包括DRX配置信息,所述DRX配置信息用于确定DRX周期,所述DRX周期包括第一时间段和第二时间段,所述第一时间段为DRX激活时间所在的时间段,所述第二时间段为DRX非激活时间所在的时间段;
    所述第一时间窗口为所述第一时间段;或者,
    所述第一时间窗口为所述DRX周期。
  10. 根据权利要求2至9中任一项所述的方法,其中,
    所述第一配置信息为协议定义的;或者,
    所述第一配置信息为网络设备通过多播控制信道MCCH配置的;或者,
    所述第一配置信息为网络设备通过系统广播消息配置的。
  11. 根据权利要求2至10中任一项所述的方法,其中,对于所述第一时间窗口内的第n个MBS数据,第k个实际传输的SSB对应的PDCCH时机的索引为:
    (n-1)*S+(k-1);
    其中,n为大于等于1且小于等于N的正整数,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,N为所述第一时间窗口内传输的MBS数据的个数。
  12. 根据权利要求11所述的方法,其中,
    所述N的取值满足以下公式:N=floor(第一时间窗口内的PDCCH时机的总数/S),floor代表向下取整运算;或者,
    所述N的取值为网络设备配置的。
  13. 根据权利要求11所述的方法,其中,所述MBS数据具有H次重复传输,H为正整数;
    对于所述第一时间窗口内的第n个MBS数据的第h次重复传输,第k个实际传输的SSB对应的PDCCH时机的索引为:
    (n-1)*S*H+S*(h-1)+(k-1);
    其中,h为大于等于1且小于等于H的正整数。
  14. 根据权利要求13所述的方法,其中,
    所述N的取值满足以下公式:N=floor(第一时间窗口内的PDCCH时机的总数/(S*H)),floor代表向下取整运算;或者,
    所述N的取值为网络设备配置的。
  15. 根据权利要求2至10中任一项所述的方法,其中,所述方法还包括:
    所述终端设备接收网络设备发送的第二配置信息,所述第二配置信息用于确定PDCCH时机索引列表,所述PDCCH时机索引列表包括N个PDCCH时机索引,N为大于1的正整数;所述N个PDCCH时机索引中的每个PDCCH时机索引用于指示一个MBS数据对应的第一个PDCCH时机;
    对于所述MBS数据,第k个实际传输的SSB对应的PDCCH时机的索引为:
    该MBS数据对应的第一个PDCCH时机的索引+(k-1);
    其中,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数。
  16. 根据权利要求15所述的方法,其中,所述MBS数据具有H次重复传输,H为正整数;
    对于所述MBS数据的第h次重复传输,第k个实际传输的SSB对应的PDCCH时机的索引为:
    该MBS数据对应的第一个PDCCH时机的索引+S*(h-1)+(k-1);
    其中,h为大于等于1且小于等于H的正整数。
  17. 根据权利要求15所述的方法,其中,所述MBS数据具有H次重复传输,H为正整数;
    对于所述MBS数据的第h次重复传输,第k个实际传输的SSB对应的PDCCH时机的索引为:
    该MBS数据的第h次重复传输对应的第一个PDCCH时机的索引+(k-1);
    其中,h为大于等于1且小于等于H的正整数。
  18. 根据权利要求17所述的方法,其中,所述第h次重复传输对应的第一个PDCCH时机的索引通过网络设备配置。
  19. 根据权利要求15至18中任一项所述的方法,其中,所述N为所述第一时间窗口内传输的MBS数据的个数。
  20. 根据权利要求2至10中任一项所述的方法,其中,所述方法还包括:
    所述终端设备接收网络设备发送的第三配置信息,所述第三配置信息用于确定MBS数据间隔,所述MBS数据间隔用于指示相邻两个MBS数据之间间隔的PDCCH时机的个数;
    对于所述第一时间窗口内的第n个MBS数据,第k个实际传输的SSB对应的PDCCH时机的索引为:
    第一PDCCH时机索引+(n-1)*MBS数据间隔+(k-1);
    其中,所述第一PDCCH时机索引用于指示所述第一时间窗口内的第一个MBS数据对应的第一个PDCCH时机,n为大于等于1且小于等于N的正整数,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,N为所述第一时间窗口内传输的MBS数据的个数。
  21. 根据权利要求20所述的方法,其中,
    所述第一PDCCH时机索引为网络设备配置的;或者,
    所述第一PDCCH时机索引默认为0。
  22. 根据权利要求20或21所述的方法,其中,
    所述N的取值满足以下公式:第一PDCCH时机索引+N*MBS数据间隔≤第一时间窗口内的PDCCH时机总数-1;或者,
    所述N的取值为网络设备配置的。
  23. 根据权利要求20或21所述的方法,其中,所述MBS数据具有H次重复传输,H为正整数;
    对于所述第一时间窗口内的第n个MBS数据的第h次重复传输,第k个实际传输的SSB对应的PDCCH时机的索引为:
    第一PDCCH时机索引+(n-1)*MBS数据间隔+S*(h-1)+(k-1);
    其中,h为大于等于1且小于等于H的正整数。
  24. 根据权利要求23所述的方法,其中,
    所述N的取值满足以下公式:第一PDCCH时机索引+N*MBS数据间隔≤第一时间窗口内的PDCCH时机总数-1;或者,
    所述N的取值为网络设备配置的。
  25. 根据权利要求20或21所述的方法,其中,所述MBS数据具有H次重复传输,H为正整数;
    对于所述第一时间窗口内的第n个MBS数据的第h次重复传输,第k个实际传输的SSB对应的PDCCH时机的索引为:
    第一PDCCH时机索引+(n-1)*MBS传输间隔*H+(h-1)*MBS传输间隔+(k-1);
    其中,h为大于等于1且小于等于H的正整数。
  26. 根据权利要求25所述的方法,其中,
    所述N的取值满足以下公式:第一PDCCH时机索引+N*MBS传输间隔*H≤第一时间窗口内的PDCCH时机总数-1;或者,
    所述N的取值为网络设备配置的。
  27. 根据权利要求25或26所述的方法,其中,所述MBS传输间隔用于指示相邻两个传输之间间隔的PDCCH时机的个数,所述相邻两个传输属于同一MBS数据的两个传输或者不同MBS数据的两个传输。
  28. 根据权利要求20或21所述的方法,其中,所述MBS数据具有H次重复传输,H为正整数;
    对于所述第一时间窗口内的第n个MBS数据的第h次重复传输,第k个实际传输的SSB对应的PDCCH时机的索引为:
    第一PDCCH时机索引+(n-1)*MBS数据间隔+(h-1)*MBS重复间隔+(k-1);
    其中,h为大于等于1且小于等于H的正整数。
  29. 根据权利要求28所述的方法,其中,
    所述N的取值满足以下公式:第一PDCCH时机索引+N*MBS数据间隔≤第一时间窗口内的PDCCH时机总数-1;或者,
    所述N的取值为网络设备配置的。
  30. 根据权利要求28或29所述的方法,其中,所述MBS重复间隔用于指示同一MBS数据的相邻两个传输之间间隔的PDCCH时机的个数。
  31. 根据权利要求13至14、16至18、23至30中任一项所述的方法,其中,
    所述H的取值为网络设备配置的;或者,
    所述H的取值默认为1。
  32. 一种MBS业务的传输装置,应用于终端设备,所述装置包括:
    确定单元,用于确定PDCCH时机和SSB索引之间的对应关系,所述PDCCH时机用于传输MBS PDCCH;
    接收单元,用于基于所述PDCCH时机和SSB索引之间的对应关系,接收MBS PDCCH。
  33. 根据权利要求32所述的装置,其中,所述装置还包括:
    获取单元,用于获取第一配置信息,所述第一配置信息用于确定第一时间窗口;
    其中,在所述第一时间窗口内,MBS业务对应的PDCCH时机从0开始编号。
  34. 根据权利要求33所述的装置,其中,所述第一配置信息包括第一指示信息,所述第一指示信息用于确定所述第一时间窗口的长度和/或周期,以及用于确定所述第一时间窗口的起始位置。
  35. 根据权利要求34所述的装置,其中,所述第一指示信息用于指示K,K为大于等于1的正整数;
    所述第一时间窗口的长度为K个无线帧;
    所述第一时间窗口的起始位置所在的无线帧满足以下公式:SFN mod K=0,其中,SFN代表所述第一时间窗口的起始位置所在的无线帧的编号,mod代表取余运算。
  36. 根据权利要求33所述的装置,其中,所述第一配置信息包括第一指示信息和第二指示信息,所述第一指示信息用于确定所述第一时间窗口的长度和/或周期,所述第二指示信息用于确定所述第一时间窗口的起始位置。
  37. 根据权利要求36所述的装置,其中,所述第一指示信息用于指示T,T为大于等于1的正整数;所述第二指示信息用于指示偏置值offset;
    所述第一时间窗口的长度为T个无线帧;
    所述第一时间窗口的起始位置所在的无线帧、子帧、时隙和符号中的至少之一基于所述offset确定。
  38. 根据权利要求37所述的装置,其中,所述第一时间窗口的起始位置所在的无线帧满足以下公式:
    SFN mod T=offset;
    其中,SFN代表所述第一时间窗口的起始位置所在的无线帧的编号,mod代表取余运算。
  39. 根据权利要求37所述的装置,其中,所述第一时间窗口的起始位置所在的无线帧和子帧满足以下公式:
    SFN mod T=floor(offset/10);
    subframe=offset mod 10;
    其中,SFN代表所述第一时间窗口的起始位置所在的无线帧的编号,subframe代表所述第一时间窗口的起始位置所在的子帧的编号,mod代表取余运算,floor代表向下取整运算。
  40. 根据权利要求33所述的装置,其中,所述第一配置信息包括DRX配置信息,所述DRX配置信息用于确定DRX周期,所述DRX周期包括第一时间段和第二时间段,所述第一时间段为DRX激活时间所在的时间段,所述第二时间段为DRX非激活时间所在的时间段;
    所述第一时间窗口为所述第一时间段;或者,
    所述第一时间窗口为所述DRX周期。
  41. 根据权利要求33至40中任一项所述的装置,其中,
    所述第一配置信息为协议定义的;或者,
    所述第一配置信息为网络设备通过MCCH配置的;或者,
    所述第一配置信息为网络设备通过系统广播消息配置的。
  42. 根据权利要求33至41中任一项所述的装置,其中,对于所述第一时间窗口内的第n个MBS数据,第k个实际传输的SSB对应的PDCCH时机的索引为:
    (n-1)*S+(k-1);
    其中,n为大于等于1且小于等于N的正整数,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,N为所述第一时间窗口内传输的MBS数据的个数。
  43. 根据权利要求42所述的装置,其中,
    所述N的取值满足以下公式:N=floor(第一时间窗口内的PDCCH时机的总数/S),floor代表向下取整运算;或者,
    所述N的取值为网络设备配置的。
  44. 根据权利要求42所述的装置,其中,所述MBS数据具有H次重复传输,H为正整数;
    对于所述第一时间窗口内的第n个MBS数据的第h次重复传输,第k个实际传输的SSB对应的PDCCH时机的索引为:
    (n-1)*S*H+S*(h-1)+(k-1);
    其中,h为大于等于1且小于等于H的正整数。
  45. 根据权利要求44所述的装置,其中,
    所述N的取值满足以下公式:N=floor(第一时间窗口内的PDCCH时机的总数/(S*H)),floor代表向下取整运算;或者,
    所述N的取值为网络设备配置的。
  46. 根据权利要求33至41中任一项所述的装置,其中,所述接收单元,还用于接收网络设备发送的第二配置信息,所述第二配置信息用于确定PDCCH时机索引列表,所述PDCCH时机索引列表包括N个PDCCH时机索引,N为大于1的正整数;所述N个PDCCH时机索引中的每个PDCCH时机索引用于指示一个MBS数据对应的第一个PDCCH时机;
    对于所述MBS数据,第k个实际传输的SSB对应的PDCCH时机的索引为:
    该MBS数据对应的第一个PDCCH时机的索引+(k-1);
    其中,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数。
  47. 根据权利要求46所述的装置,其中,所述MBS数据具有H次重复传输,H为正整数;
    对于所述MBS数据的第h次重复传输,第k个实际传输的SSB对应的PDCCH时机的索引为:
    该MBS数据对应的第一个PDCCH时机的索引+S*(h-1)+(k-1);
    其中,h为大于等于1且小于等于H的正整数。
  48. 根据权利要求46所述的装置,其中,所述MBS数据具有H次重复传输,H为正整数;
    对于所述MBS数据的第h次重复传输,第k个实际传输的SSB对应的PDCCH时机的索引为:
    该MBS数据的第h次重复传输对应的第一个PDCCH时机的索引+(k-1);
    其中,h为大于等于1且小于等于H的正整数。
  49. 根据权利要求48所述的装置,其中,所述第h次重复传输对应的第一个PDCCH时机的索引通过网络设备配置。
  50. 根据权利要求46至49中任一项所述的装置,其中,所述N为所述第一时间窗口内传输的MBS数据的个数。
  51. 根据权利要求33至41中任一项所述的装置,其中,所述接收单元,还用于接收网络设备发送的第三配置信息,所述第三配置信息用于确定MBS数据间隔,所述MBS数据间隔用于指示相邻两个MBS数据之间间隔的PDCCH时机的个数;
    对于所述第一时间窗口内的第n个MBS数据,第k个实际传输的SSB对应的PDCCH时机的索引为:
    第一PDCCH时机索引+(n-1)*MBS数据间隔+(k-1);
    其中,所述第一PDCCH时机索引用于指示所述第一时间窗口内的第一个MBS数据对应的第一个PDCCH时机,n为大于等于1且小于等于N的正整数,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,N为所述第一时间窗口内传输的MBS数据的个数。
  52. 根据权利要求51所述的装置,其中,
    所述第一PDCCH时机索引为网络设备配置的;或者,
    所述第一PDCCH时机索引默认为0。
  53. 根据权利要求51或52所述的装置,其中,
    所述N的取值满足以下公式:第一PDCCH时机索引+N*MBS数据间隔≤第一时间窗口内的PDCCH时机总数-1;或者,
    所述N的取值为网络设备配置的。
  54. 根据权利要求51或52所述的装置,其中,所述MBS数据具有H次重复传输,H为正整数;
    对于所述第一时间窗口内的第n个MBS数据的第h次重复传输,第k个实际传输的SSB对应的PDCCH时机的索引为:
    第一PDCCH时机索引+(n-1)*MBS数据间隔+S*(h-1)+(k-1);
    其中,h为大于等于1且小于等于H的正整数。
  55. 根据权利要求54所述的装置,其中,
    所述N的取值满足以下公式:第一PDCCH时机索引+N*MBS数据间隔≤第一时间窗口内的PDCCH时机总数-1;或者,
    所述N的取值为网络设备配置的。
  56. 根据权利要求51或52所述的装置,其中,所述MBS数据具有H次重复传输,H为正整数;
    对于所述第一时间窗口内的第n个MBS数据的第h次重复传输,第k个实际传输的SSB对应的PDCCH时机的索引为:
    第一PDCCH时机索引+(n-1)*MBS传输间隔*H+(h-1)*MBS传输间隔+(k-1);
    其中,h为大于等于1且小于等于H的正整数。
  57. 根据权利要求56所述的装置,其中,
    所述N的取值满足以下公式:第一PDCCH时机索引+N*MBS传输间隔*H≤第一时间窗口 内的PDCCH时机总数-1;或者,
    所述N的取值为网络设备配置的。
  58. 根据权利要求56或57所述的装置,其中,所述MBS传输间隔用于指示相邻两个传输之间间隔的PDCCH时机的个数,所述相邻两个传输属于同一MBS数据的两个传输或者不同MBS数据的两个传输。
  59. 根据权利要求51或52所述的装置,其中,所述MBS数据具有H次重复传输,H为正整数;
    对于所述第一时间窗口内的第n个MBS数据的第h次重复传输,第k个实际传输的SSB对应的PDCCH时机的索引为:
    第一PDCCH时机索引+(n-1)*MBS数据间隔+(h-1)*MBS重复间隔+(k-1);
    其中,h为大于等于1且小于等于H的正整数。
  60. 根据权利要求59所述的装置,其中,
    所述N的取值满足以下公式:第一PDCCH时机索引+N*MBS数据间隔≤第一时间窗口内的PDCCH时机总数-1;或者,
    所述N的取值为网络设备配置的。
  61. 根据权利要求59或60所述的装置,其中,所述MBS重复间隔用于指示同一MBS数据的相邻两个传输之间间隔的PDCCH时机的个数。
  62. 根据权利要求44至45、47至49、54至61中任一项所述的装置,其中,
    所述H的取值为网络设备配置的;或者,
    所述H的取值默认为1。
  63. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至31中任一项所述的方法。
  64. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至31中任一项所述的方法。
  65. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至31中任一项所述的方法。
  66. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至31中任一项所述的方法。
  67. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至31中任一项所述的方法。
PCT/CN2020/140989 2020-12-29 2020-12-29 一种mbs业务的传输方法及装置、终端设备 WO2022141088A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080106967.1A CN116349309A (zh) 2020-12-29 2020-12-29 一种mbs业务的传输方法及装置、终端设备
PCT/CN2020/140989 WO2022141088A1 (zh) 2020-12-29 2020-12-29 一种mbs业务的传输方法及装置、终端设备
EP20967436.5A EP4240063A4 (en) 2020-12-29 2020-12-29 METHOD AND DEVICE FOR TRANSMITTING AN MBS SERVICE AND TERMINAL DEVICE
US18/203,793 US20230309121A1 (en) 2020-12-29 2023-05-31 Method and apparatus for transmitting mbs service, and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/140989 WO2022141088A1 (zh) 2020-12-29 2020-12-29 一种mbs业务的传输方法及装置、终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/203,793 Continuation US20230309121A1 (en) 2020-12-29 2023-05-31 Method and apparatus for transmitting mbs service, and terminal device

Publications (1)

Publication Number Publication Date
WO2022141088A1 true WO2022141088A1 (zh) 2022-07-07

Family

ID=82258745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140989 WO2022141088A1 (zh) 2020-12-29 2020-12-29 一种mbs业务的传输方法及装置、终端设备

Country Status (4)

Country Link
US (1) US20230309121A1 (zh)
EP (1) EP4240063A4 (zh)
CN (1) CN116349309A (zh)
WO (1) WO2022141088A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116261893A (zh) * 2020-12-31 2023-06-13 Oppo广东移动通信有限公司 一种mcch调度传输方法及装置、终端设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111935807A (zh) * 2020-08-10 2020-11-13 中兴通讯股份有限公司 一种控制信息的传输方法、设备和存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116783958A (zh) * 2020-12-17 2023-09-19 三星电子株式会社 用于无线通信系统中在rrc空闲和rrc非活动状态下进行mbs接收的方法和设备

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111935807A (zh) * 2020-08-10 2020-11-13 中兴通讯股份有限公司 一种控制信息的传输方法、设备和存储介质

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion on group scheduling mechanism for RRC_CONNECTED UEs in MBS", 3GPP DRAFT; R1-2005693, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051917668 *
CMCC: "Discussion on NR MBS in RRC_IDLE RRC_INACTIVE states", 3GPP DRAFT; R1-2006235, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051915273 *
CMCC: "Discussion on NR MBS in RRC_IDLE/RRC_INACTIVE states", 3GPP DRAFT; R1-2008036, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051945324 *
OPPO: "Discussion on MBS reception of idle or inactive mode UE", 3GPP DRAFT; R2-2008869, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20201102 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051941948 *
See also references of EP4240063A4 *
VIVO: "Discussion on basic functions for broadcast/multicast for RRC_IDLE/RRC_INACTIVE UEs", 3GPP DRAFT; R1-2007693, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-Meeting; 20201026 - 20201113, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946484 *

Also Published As

Publication number Publication date
EP4240063A4 (en) 2024-01-03
EP4240063A1 (en) 2023-09-06
CN116349309A (zh) 2023-06-27
US20230309121A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
US20220322049A1 (en) Method and apparatus for scheduling service, terminal device, and network device
WO2021142647A1 (zh) 一种业务传输方法及装置、终端设备、网络设备
WO2021134298A1 (zh) 一种资源指示方法及装置、通信设备
WO2022056806A1 (zh) 一种mbs业务的管理方法及装置、终端设备、网络设备
WO2021138805A1 (zh) 一种业务同步调度方法及装置、通信设备
WO2021051320A1 (zh) 一种业务数据传输方法及装置、网络设备、终端设备
WO2022006849A1 (zh) Mbs业务的tci状态管理方法及装置、终端设备
WO2022006746A1 (zh) 接收本地mbs业务的方法及装置、终端设备、网络设备
US20230309121A1 (en) Method and apparatus for transmitting mbs service, and terminal device
US20230276433A1 (en) Mcch scheduling transmission method and apparatus, and terminal device
WO2021051319A1 (zh) 一种drx配置方法及装置、终端设备、网络设备
WO2021051312A1 (zh) 一种信息配置方法及装置、终端设备、网络设备
US20220329984A1 (en) Resource configuration method, terminal device, and non-transitory computer readable storage medium
US20220210614A1 (en) Service data transmission method and apparatus, and terminal device
WO2023010287A1 (zh) 一种通知信息变更的方法及装置、终端设备、网络设备
WO2022120837A1 (zh) Mbs业务的半静态调度方法及装置、终端设备、网络设备
WO2022155978A1 (zh) Mbs业务的配置方法及装置、终端设备、网络设备
WO2021142646A1 (zh) 一种业务传输方法及装置、通信设备
WO2021051322A1 (zh) 一种bwp配置方法及装置、终端设备、网络设备
WO2022021024A1 (zh) 一种bwp切换的方法及装置、终端设备
US20220210616A1 (en) Data retransmission method and apparatus, and terminal device
WO2022141255A1 (zh) 一种mbs业务的配置方法及装置、网络设备、终端设备
WO2022226937A1 (zh) 一种mbs寻呼方法及装置、网络设备、终端设备
WO2022056669A1 (zh) 一种mbs业务的管理方法及装置、终端设备、网络设备
WO2022205454A1 (zh) 一种指示寻呼的方法及装置、终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967436

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020967436

Country of ref document: EP

Effective date: 20230602

NENP Non-entry into the national phase

Ref country code: DE