WO2022021235A1 - 一种mbs业务的传输方法及装置、通信设备 - Google Patents

一种mbs业务的传输方法及装置、通信设备 Download PDF

Info

Publication number
WO2022021235A1
WO2022021235A1 PCT/CN2020/105924 CN2020105924W WO2022021235A1 WO 2022021235 A1 WO2022021235 A1 WO 2022021235A1 CN 2020105924 W CN2020105924 W CN 2020105924W WO 2022021235 A1 WO2022021235 A1 WO 2022021235A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
mbs service
service data
target base
pdcp
Prior art date
Application number
PCT/CN2020/105924
Other languages
English (en)
French (fr)
Inventor
王淑坤
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080101102.6A priority Critical patent/CN115668994A/zh
Priority to CN202310505913.8A priority patent/CN116546443A/zh
Priority to PCT/CN2020/105924 priority patent/WO2022021235A1/zh
Publication of WO2022021235A1 publication Critical patent/WO2022021235A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services

Definitions

  • the embodiments of the present application relate to the field of mobile communication technologies, and in particular, to a method and apparatus for transmitting a Multimedia Broadcast Service (MBS) service, and a communication device.
  • MMS Multimedia Broadcast Service
  • Radio Resource Control Radio Resource Control
  • MBS Multimedia Broadcast Service
  • MBS services transmitted by different cells may be time differences in the transmission of MBS services in different cells, that is, the MBS services transmitted by different cells are not synchronized.
  • the MBS services transmitted by cell 1 are earlier or later than those transmitted by cell 2.
  • the transmission time of different cells is sooner or later, so how to ensure the continuity of the MBS service in the handover process is a problem that needs to be clarified.
  • Embodiments of the present application provide a method and apparatus for transmitting an MBS service, and a communication device.
  • the target base station receives the MBS service data forwarded by the original base station, and the target base station sends the MBS service data forwarded by the original base station to the terminal device in a unicast manner;
  • the target base station sends first indication information to the terminal equipment, where the first indication information is used to instruct the terminal equipment to reset the receiving window, and the reset receiving window is used for the terminal equipment to receive in a multicast manner MBS service data sent by the target base station.
  • the original base station sends first auxiliary information to the target base station, where the first auxiliary information is used by the target base station to determine whether the original base station needs to forward the MBS service data to the target base station;
  • the source base station forwards the MBS service data to the target base station, and sends a handover command to the terminal device, where the handover command is used to trigger the terminal device to switch from the original base station to the target base station, and receive the target base station
  • the MBS service data sent by the base station according to the unicast mode and the MBS service data sent according to the multicast mode are used to trigger the terminal device to switch from the original base station to the target base station.
  • the terminal device receives the handover command sent by the original base station, and switches from the source base station to the target base station;
  • the terminal device sends sixth indication information to the target base station, where the sixth indication information is used to indicate the second PDCP SN list, and the second PDCP SN list refers to the communication between the original base station and the target base station. List of missing PDCP SNs;
  • the terminal device receives the MBS service data sent by the target base station in a unicast manner and the MBS service data sent in a multicast manner.
  • the MBS service transmission apparatus provided in the embodiment of the present application is applied to a target base station, and the apparatus includes:
  • a receiving unit configured to receive the MBS service data forwarded by the original base station
  • a sending unit configured to send the MBS service data forwarded by the original base station to a terminal device in a unicast manner; send first indication information to the terminal device, where the first indication information is used to instruct the terminal device to reset A receiving window, where the reset receiving window is used for the terminal device to receive the MBS service data sent by the target base station in a multicast manner.
  • the MBS service transmission device provided in the embodiment of the present application is applied to the original base station, and the device includes:
  • a sending unit configured to send first auxiliary information to a target base station, where the first auxiliary information is used by the target base station to determine whether the original base station needs to forward the MBS service data to the target base station;
  • a receiving unit configured to receive third indication information sent by the target base station, where the third indication information is used to instruct the source base station to forward MBS service data to the target base station;
  • the sending unit is further configured to forward MBS service data to the target base station, and send a handover command to a terminal device, where the handover command is used to trigger the terminal device to switch from the original base station to the target base station, and
  • the MBS service data sent by the target base station in a unicast manner and the MBS service data sent in a multicast manner are received.
  • the MBS service transmission apparatus provided in the embodiment of the present application is applied to terminal equipment, and the apparatus includes:
  • a receiving unit configured to receive a handover command sent by the original base station, and switch from the source base station to the target base station;
  • a sending unit configured to send sixth indication information to the target base station, where the sixth indication information is used to indicate a second PDCP SN list, and the second PDCP SN list refers to the connection between the original base station and the target base station A list of missing PDCP SNs;
  • the receiving unit is further configured to receive the MBS service data sent by the target base station in a unicast manner and the MBS service data sent in a multicast manner.
  • the communication device includes a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory to execute the above-mentioned transmission method of the MBS service.
  • the chip provided by the embodiment of the present application is used to implement the above-mentioned transmission method of the MBS service.
  • the chip includes: a processor for invoking and running a computer program from the memory, so that the device installed with the chip executes the above-mentioned MBS service transmission method.
  • the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program, and the computer program enables a computer to execute the above-mentioned method for transmitting an MBS service.
  • the computer program product provided by the embodiments of the present application includes computer program instructions, and the computer program instructions cause a computer to execute the above-mentioned method for transmitting an MBS service.
  • the computer program provided by the embodiment of the present application when it runs on the computer, causes the computer to execute the above-mentioned MBS service transmission method.
  • the above technical solutions of the embodiments of the present application propose a method for transmitting MBS services, which ensures the continuity of MBS service data in the handover process, avoids the loss of MBS service data, and improves the transmission efficiency of MBS service data in the process of mobility. reliability.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the transmission of MBS services provided by an embodiment of the present application in a multicast mode and a unicast mode;
  • FIG. 3 is a schematic diagram of a cell handover provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart 1 of a method for transmitting an MBS service provided by an embodiment of the present application
  • 5-1 is a schematic diagram of a receiving window before reset provided by an embodiment of the present application.
  • 5-2 is a schematic diagram of a reset receiving window provided by an embodiment of the present application.
  • FIG. 6 is a second schematic flowchart of a method for transmitting an MBS service provided by an embodiment of the present application
  • FIG. 7 is a schematic flowchart 3 of a method for transmitting an MBS service provided by an embodiment of the present application.
  • FIG. 8 is a network architecture diagram provided by an embodiment of the present application.
  • FIG. 9 is a fourth schematic flowchart of a method for transmitting an MBS service provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart 5 of a method for transmitting an MBS service provided by an embodiment of the present application
  • FIG. 11 is a sixth schematic flowchart of a method for transmitting an MBS service provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram 1 of the structure and composition of an apparatus for transmitting an MBS service provided by an embodiment of the present application;
  • FIG. 13 is a schematic diagram 2 of the structure and composition of an apparatus for transmitting an MBS service provided by an embodiment of the present application;
  • FIG. 14 is a schematic diagram 3 of the structure and composition of an apparatus for transmitting an MBS service provided by an embodiment of the present application;
  • FIG. 15 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 17 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • 5G communication systems or future communication systems etc.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal 120 (or referred to as a communication terminal, a terminal).
  • the network device 110 may provide communication coverage for a particular geographic area and may communicate with terminals located within the coverage area.
  • the network device 110 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the
  • the network device can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, a wearable device, a hub, a switch, a bridge, a router, a network-side device in a 5G network, or a network device in a future communication system.
  • the communication system 100 also includes at least one terminal 120 located within the coverage of the network device 110 .
  • Terminal includes, but is not limited to, connections via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connections; and/or another data connection/network; and/or via a wireless interface, e.g. for cellular networks, Wireless Local Area Networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter; and/or a device of another terminal configured to receive/transmit a communication signal; and/or an Internet of Things (IoT) device.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN Wireless Local Area Networks
  • WLAN Wireless Local Area Networks
  • digital television networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter
  • IoT Internet of Things
  • a terminal arranged to communicate through a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal” or “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular telephones; Personal Communications System (PCS) terminals that may combine cellular radio telephones with data processing, facsimile, and data communication capabilities; may include radio telephones, pagers, Internet/Intranet PDAs with networking access, web browsers, memo pads, calendars, and/or Global Positioning System (GPS) receivers; and conventional laptop and/or palmtop receivers or others including radiotelephone transceivers electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • a terminal may refer to an access terminal, user equipment (UE), subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks or terminals in future evolved PLMNs, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal (Device to Device, D2D) communication may be performed between the terminals 120 .
  • the 5G communication system or the 5G network may also be referred to as a new radio (New Radio, NR) system or an NR network.
  • New Radio NR
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices, and the coverage of each network device may include other numbers of terminals. This embodiment of the present application This is not limited.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal 120 with a communication function, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here;
  • the device may further include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • 5G 3rd Generation Partnership Project
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra-Reliable Low-Latency Communications
  • mMTC Massive Machine-Type Communications
  • eMBB still aims at users' access to multimedia content, services and data, and its demand is growing rapidly.
  • eMBB since eMBB may be deployed in different scenarios, such as indoor, urban, rural, etc., its capabilities and requirements are also quite different, so it cannot be generalized and must be analyzed in detail in combination with specific deployment scenarios.
  • Typical applications of URLLC include: industrial automation, power automation, telemedicine operations (surgery), traffic safety assurance, etc.
  • Typical features of mMTC include: high connection density, small data volume, latency-insensitive services, low cost and long service life of the module.
  • RRC_INACTIVE Radio Resource Control
  • RRC_INACTIVE Radio Resource Control
  • RRC_IDLE state (referred to as idle state): mobility is based on terminal device cell selection and reselection, paging is initiated by the core network (Core Network, CN), and the paging area is configured by the CN. There is no terminal device context and no RRC connection on the base station side.
  • RRC_CONNECTED state (referred to as connected (connected) state for short): there is an RRC connection, and a terminal device context exists on the base station side and the terminal device side.
  • the network side knows that the location of the terminal equipment is at the specific cell level. Mobility is the mobility controlled by the network side. Unicast data can be transmitted between the terminal equipment and the base station.
  • RRC_INACTIVE state (referred to as inactive state): mobility is based on terminal equipment cell selection reselection, there is a connection between CN-NR, terminal equipment context exists on a certain base station, paging is triggered by RAN , the RAN-based paging area is managed by the RAN, and the network side knows the location of the terminal device is based on the RAN-based paging area level.
  • MBMS is a technology that transmits data from a data source to multiple terminal devices by sharing network resources. This technology can effectively utilize network resources while providing multimedia services, and realize the broadcast of multimedia services at higher rates (such as 256kbps). and multicast.
  • 3GPP clearly proposes to enhance the support capability for downlink high-speed MBMS services, and determines the design requirements for the physical layer and air interface.
  • eMBMS evolved MBMS
  • SFN Single Frequency Network
  • MBSFN Multimedia Broadcast Multicast Service Single Frequency Network
  • MBSFN uses a uniform frequency to send service data in all cells at the same time, but To ensure synchronization between cells. In this way, the overall signal-to-noise ratio distribution of the cell can be greatly improved, and the spectral efficiency will also be greatly improved accordingly.
  • eMBMS implements service broadcast and multicast based on IP multicast protocol.
  • MBMS has only a broadcast bearer mode and no multicast bearer mode.
  • the reception of the MBMS service is applicable to the terminal equipment in the idle state or the connected state.
  • SC-PTM Single Cell Point To Multiploint
  • SC-MCCH Single Cell Multicast Control Channel
  • SC-MTCH Single Cell Multicast Transport Channel
  • SC-MCCH and SC-MTCH are mapped to downlink shared channel (Downlink-Shared Channel, DL-SCH), further, DL-SCH is mapped to physical downlink shared channel (Physical Downlink Shared Channel, PDSCH), wherein, SC - MCCH and SC-MTCH belong to logical channels, DL-SCH belongs to transport channels, and PDSCH belongs to physical channels.
  • SC-MCCH and SC-MTCH do not support hybrid automatic repeat request (Hybrid Automatic Repeat reQuest, HARQ) operations.
  • Hybrid Automatic Repeat reQuest Hybrid Automatic Repeat reQuest
  • MBMS introduces a new system information block (System Information Block, SIB) type, namely SIB20.
  • SIB System Information Block
  • the configuration information of the SC-MCCH includes the modification period of the SC-MCCH, the repetition period of the SC-MCCH, and information such as the radio frame and subframe in which the SC-MCCH is scheduled.
  • SFN represents the system frame number of the radio frame
  • mcch-RepetitionPeriod represents the repetition period of SC-MCCH
  • mcch-Offset represents SC-MCCH offset.
  • the SC-MCCH is scheduled through the Physical Downlink Control Channel (PDCCH).
  • PDCCH Physical Downlink Control Channel
  • RNTI Radio Network Tempory Identity
  • SC-RNTI Single Cell RNTI
  • the fixed value of SC-RNTI is FFFC.
  • a new RNTI is introduced, that is, a single cell notification RNTI (Single Cell Notification RNTI, SC-N-RNTI) to identify the PDCCH (such as the notification PDCCH) used to indicate the change notification of the SC-MCCH, optionally, the SC
  • the fixed value of -N-RNTI is FFFB; further, one of the 8 bits (bits) of DCI 1C can be used to indicate the change notification.
  • the configuration information of the SC-PTM is based on the SC-MCCH configured by the SIB20, and then the SC-MCCH configures the SC-MTCH, and the SC-MTCH is used to transmit service data.
  • the SC-MCCH only transmits one message (ie, SCPTMConfiguration), which is used to configure the configuration information of the SC-PTM.
  • the configuration information of SC-PTM includes: Temporary Mobile Group Identity (TMGI), session identifier (session id), group RNTI (Group RNTI, G-RNTI), discontinuous reception (Discontinuous Reception, DRX) configuration information And the SC-PTM service information of neighboring cells, etc.
  • TMGI Temporary Mobile Group Identity
  • session id session identifier
  • group RNTI Group RNTI, G-RNTI
  • discontinuous reception discontinuous Reception
  • DRX discontinuous Reception
  • Downlink discontinuous reception of SC-PTM is controlled by the following parameters: onDurationTimerSCPTM, drx-InactivityTimerSCPTM, SC-MTCH-SchedulingCycle, and SC-MTCH-SchedulingOffset.
  • the downstream SC-PTM service is received only when the timer onDurationTimerSCPTM or drx-InactivityTimerSCPTM is running.
  • SC-PTM business continuity adopts the concept of MBMS business continuity based on SIB15, namely "SIB15+MBMSInterestIndication" mode.
  • SIB15 namely "SIB15+MBMSInterestIndication" mode.
  • the service continuity of terminal equipment in idle state is based on the concept of frequency priority.
  • a new SIB (called the first SIB) is defined, and the first SIB includes the configuration information of the first MCCH.
  • the first MCCH is the control channel of the MBMS service.
  • An SIB is used to configure the configuration information of the control channel of the NR MBMS.
  • the control channel of the NR MBMS may also be called the NR MCCH (that is, the first MCCH).
  • the first MCCH is used to carry the first signaling, and the embodiment of this application does not limit the name of the first signaling.
  • the first signaling is signaling A
  • the first signaling includes at least one first MTCH.
  • the first MTCH is a service channel (also called a data channel or a transmission channel) of the MBMS service
  • the first MTCH is used to transmit MBMS service data (such as NR MBMS service data).
  • the first MCCH is used to configure the configuration information of the traffic channel of the NR MBMS.
  • the traffic channel of the NR MBMS may also be called the NR MTCH (that is, the first MTCH).
  • the first signaling is used to configure a service channel of the NR MBMS, service information corresponding to the service channel, and scheduling information corresponding to the service channel.
  • the service information corresponding to the service channel such as TMGI, session id and other identification information for identifying services.
  • the scheduling information corresponding to the traffic channel for example, the RNTI used when the MBMS service data corresponding to the traffic channel is scheduled, such as G-RNTI, DRX configuration information, and the like.
  • the transmissions of the first MCCH and the first MTCH are both scheduled based on the PDCCH.
  • the RNTI used for scheduling the PDCCH of the first MCCH uses a network-wide unique identifier, that is, a fixed value.
  • the RNTI used by the PDCCH for scheduling the first MTCH is configured through the first MCCH.
  • this embodiment of the present application does not limit the naming of the first SIB, the first MCCH, and the first MTCH.
  • the first SIB may also be abbreviated as SIB
  • the first MCCH may also be abbreviated as MCCH
  • the first MTCH may also be abbreviated as MTCH.
  • M PDCCHs for scheduling MTCH through MCCH (ie MTCH 1 PDCCH, MTCH 2 PDCCH, ..., MTCH M PDCCH), wherein the DCI carried by MTCH n PDCCH schedules the PDSCH used for transmitting MTCH n (ie MTCH n PDSCH), n is an integer greater than or equal to 1 and less than or equal to M.
  • MCCH and MTCH are mapped to DL-SCH, and further, DL-SCH is mapped to PDSCH, wherein MCCH and MTCH belong to logical channels, DL-SCH belongs to transport channels, and PDSCH belongs to physical channels.
  • MBMS services in the above solution include but are not limited to multicast services and multicast services.
  • the embodiments of the present application are described by taking the MBS service as an example, and the description of "MBS service” may also be replaced with "multicast service” or “multicast service” or "MBMS service”.
  • the same cell needs to deliver the MBS service in the multicast mode, and may also transmit the MBS service in the unicast mode for a specific user.
  • the MBS service is transmitted for the user in a unicast manner.
  • the base station sends the MBS service to each user in unicast mode. For example, when there are few users receiving MBS service in the cell, the unicast mode is used. Sending MBS service to each user can effectively improve service transmission efficiency.
  • a shared GTP tunnel (Shared GTP tunnel) may be used between the 5G core network (5G Core network, 5GC) and the gNB.
  • the transmission of the MBS service that is, the MBS service in the unicast mode or the MBS service in the multicast mode, all share the GTP tunnel.
  • the gNB delivers MBS services to a multicast group in a multicast (multicast) manner, and delivers MBS services to a certain UE in a unicast (unicast) manner (UE3 is taken as an example in FIG. 2 ).
  • the multicast group includes one or more UEs (in FIG. 2 , the multicast group includes UE1 and UE2 as an example).
  • UE1 receives the MBS service sent by gNB1 in the multicast mode in the first cell, and after handover from cell 1 to cell 2, UE1 receives the MBS service sent by gNB2 in the multicast mode in the second cell.
  • Different base stations such as gNB1 and gNB2 may have time differences for the transmission of MBS services, that is, the MBS services transmitted by different base stations are not synchronized. For example, the MBS services transmitted by gNB1 are earlier or later than those transmitted by gNB2.
  • FIG. 4 is a schematic flowchart 1 of a method for transmitting an MBS service provided by an embodiment of the present application. As shown in FIG. 4 , the method for transmitting an MBS service includes the following steps:
  • Step 401 The target base station receives the MBS service data forwarded by the original base station, and the target base station sends the MBS service data forwarded by the original base station to the terminal device in a unicast manner.
  • the terminal device may be handed over from one base station (ie, the original base station) to another base station (ie, the target base station).
  • the original base station is the original gNB (Source gNB)
  • the target base station is the target gNB (Target gNB).
  • the MBS service data on the original base station side is sent by the core network to the original base station through the first tunnel
  • the MBS service data on the target base station side is sent by the core network to the target through the second tunnel base station. That is, the original base station receives the MBS service data sent by the core network through the first tunnel, and delivers the MBS service data through unicast and/or multicast.
  • the target base station receives the MBS service data sent by the core network through the second tunnel, and delivers the MBS service data through unicast and/or multicast.
  • the MBS service data on the original base station side and the MBS service data on the target base station side are not synchronized.
  • the terminal device may receive the MBS service data delivered by the original base station in a multicast manner or a unicast manner.
  • the method before the target base station receives the MBS service data forwarded by the original base station, the method further includes:
  • the target base station receives a handover request (HANDOVER REQUEST) message sent by the original base station, where the handover request message carries the relevant information of the first MBS service, and the first MBS service refers to the terminal equipment receiving at the original base station the MBS business;
  • HANDOVER REQUEST handover request
  • the target base station sends a handover request acknowledgment (HANDOVER REQUEST ACKNOWLEDGE) message to the original base station, where the handover request acknowledgment message carries a first tunnel identifier, and the first tunnel identifier is used by the original base station to forward to the target base station MBS business data.
  • HANDOVER REQUEST ACKNOWLEDGE handover request acknowledgment
  • the relevant information of the first MBS service includes at least one of the following: a service identifier, a session identifier, physical channel configuration information, and logical channel configuration information.
  • the service identifier may be, for example, the MBS TMGI of the MBS service.
  • the session identifier refers to the MBS session identifier (MBS session id) of the MBS service.
  • the physical channel configuration information refers to the configuration information of the MBS physical channel of the MBS service.
  • the logical channel configuration information refers to configuration information of MBS logical channel allocation of the MBS service.
  • the first tunnel identifier is allocated by the target base station side to the original base station, and is used by the original base station to forward the MBS service data to the target base station.
  • the first tunnel identifier is a GTP tunnel identifier (GTP TEID).
  • the original base station forwards the MBS service data to the target base station based on the first tunnel identifier, and sends a handover command (HO-Command) to the terminal device.
  • HO-Command a handover command
  • the target base station receiving the MBS service data forwarded by the original base station may be:
  • the target base station receives the Packet Data Convergence Protocol (PDCP) service data unit (Service Data Unit, SDU) and serial number (Serial Number, SN) forwarded by the original base station, and the PDCP SDU carries the MBS service data; or,
  • PDCP Packet Data Convergence Protocol
  • SDU Service Data Unit
  • SDU Serial Number
  • SN Serial Number
  • the target base station receives the PDCP protocol data unit (Protocol Data Unit, PDU) forwarded by the original base station, where the PDCP PDU carries SN and MBS service data; or,
  • PDU Protocol Data Unit
  • the target base station receives the IP data packet and SN forwarded by the original base station, and the IP data packet carries the MBS service data; or,
  • the target base station receives the Service Data Adaptation Protocol (SDAP) SDU and SN forwarded by the original base station, where the SDAP SDU carries the MBS service data.
  • SDAP Service Data Adaptation Protocol
  • the target base station receives an IP data packet forwarded by the original base station, where the IP data packet carries MBS service data.
  • the target base station transmits the MBS service data forwarded by the original base station to the terminal device in a unicast manner.
  • the MBS service data transmitted to the terminal equipment is processed as follows:
  • the target base station adds a PDCP SN to the MBS service data forwarded from the original base station, and the PDCP SN is determined based on the PDCP SN of the MBS service data transmitted by multicast.
  • the added PDCP SN is determined based on the PDCP SN of the first MBS service data transmitted to the terminal device in a multicast manner and the total number of the forwarded MBS service data. For example: if the target base station expects the terminal equipment to receive the first MBS service data in the multicast mode, the PDCP SN is n, and the forwarded MBS service data waiting for unicast transmission is m, then the unicast transmission of the MBS service data is m.
  • the PDCP SNs of the data are nm, n-m+1...n-1 in sequence, and the target base station will sequentially add these PDCP SNs to the MBS service data corresponding to the unicast mode. At this time, the receiving window of the terminal device will not be reset during the switching process. or,
  • the target base station adds a PDCP SN to the MBS service data forwarded from the original base station, and the PDCP SN is set from the initial value.
  • the time when the target base station sends the first indication information to the terminal device is after the first time and before the second time, and the first time refers to the time when the terminal device has received the unicast MBS service data.
  • the second time refers to the time when the terminal device starts to receive the MBS service data in the multicast mode.
  • the target base station sends instruction information to tell the terminal device to reset the receiving window, and optionally, it can also tell the terminal device about The size of the initial value of the variable that receives the window.
  • the target base station may determine whether to trigger the original base station to stop forwarding the MBS service data in one of the following manners.
  • the target base station determines whether the MBS service data forwarded by the original base station has been transmitted on the air interface on the target base station side; if the MBS service data forwarded by the original base station has not been transmitted on the air interface on the target base station side upload, the target base station sends second indication information to the original base station, where the second indication information is used to instruct the original base station to stop forwarding the MBS service data.
  • the target base station determines whether there is MBS service data forwarded by the original base station in the memory of the target base station; if there is MBS service data forwarded by the original base station in the memory of the target base station, the target base station The base station sends second indication information to the original base station, where the second indication information is used to instruct the original base station to stop forwarding the MBS service data.
  • Step 402 The target base station sends first indication information to the terminal equipment, where the first indication information is used to instruct the terminal equipment to reset the receiving window, and the reset receiving window is used for the terminal equipment to follow the multiple
  • the MBS service data sent by the target base station is received in the broadcast mode.
  • the terminal device after receiving the handover command sent by the original base station, switches from the original base station to the target base station, that is, initiates a random access procedure to the target base station.
  • the terminal device sends a handover complete (HO Complete) message to the target base station, and after receiving the handover complete message sent by the terminal device, the target base station sends the MBS service data forwarded by the original base station to the terminal device in a unicast manner.
  • the target base station sends first indication information to the terminal device, where the first indication information is used to instruct the terminal device to reset the receiving window, and further, the first indication information is further used to instruct the terminal
  • the device updates the value of at least one variable of the reset receiving window to a default value.
  • the first indication information is further used to instruct the terminal device to deliver all PDCP SDUs in the receiving window before reset to the upper layer.
  • the receiving window before reset is used for the terminal device to receive the MBS service data of the original base station side, wherein the MBS service data of the original base station side includes the MBS service data sent by the original base station and/or the MBS service data forwarded by the original base station and sent by the target base station.
  • the reset receiving window is used for the terminal device to receive the MBS service data sent by the target base station in a multicast manner.
  • the receiving window before the terminal device receives the first indication information is the receiving window before resetting.
  • the receiving window after the terminal device receives the first indication information is the reset receiving window.
  • at least one variable of the receiving window includes at least one of the following:
  • RX_DELIV this variable is used to indicate the COUNT value associated with the first MBS service data in the receiving window that has not been delivered to the upper layer.
  • the COUNT value is determined based on the SN.
  • this variable is used to indicate the COUNT value corresponding to the MBS service data for which the t-Reordering timer is started in the receiving window, and the COUNT value is determined based on the SN.
  • this variable is used to indicate the COUNT value corresponding to the next MBS service data expected to be received, and the COUNT value is determined based on the SN.
  • the first indication information instructs the terminal device to update the value of at least one variable of the reset receiving window to a default value, which may be implemented in the following ways:
  • the default value is the set initial value, such as 0.
  • the first indication information instructs the terminal device to update the value of at least one variable of the reset receiving window to an initial value.
  • Mode b The default value is indicated by displaying the first indication information.
  • the first indication information instructs the terminal device to update the value of at least one variable of the reset receiving window to a given default value.
  • the first indication information is carried in a media access control control element (Media Access Control Element, MAC CE), or in the PDCCH, or in the RRC signaling.
  • Media Access Control Element Media Access Control Element, MAC CE
  • PDCCH Physical Downlink Control Channel
  • RRC Radio Resource Control
  • the terminal device after the terminal device resets the receiving window after receiving the first indication information, it receives the MBS service data sent by the target base station in a multicast manner based on the reset receiving window. So far, the terminal device can receive the target base station from the target base station. MBS service data on the base station side.
  • the receiving window in the above solution refers to the receiving window of the PDCP layer.
  • FIG. 6 is a second schematic flowchart of a method for transmitting an MBS service provided by an embodiment of the present application, wherein the UE corresponds to the terminal device in the embodiment of the present application. As shown in FIG. 6 , the method for transmitting an MBS service includes the following steps:
  • the UE is in the RRC connection state at the original base station, and receives the MBS service data delivered by the original base station on the air interface through unicast or multicast.
  • the GTP tunnel from the core network (such as UPF) to the original base station for sending MBS service data may be a shared GTP tunnel (that is, shared GTP tunnel 1) or a UE-specific GTP tunnel (that is, unicast GTP tunnel).
  • the shared GTP tunnel refers to the transmission of MBS service data of one MBS service from the UPF to the base station, and the base station transmits the MBS service data on the air interface according to the unicast mode and the multicast mode respectively.
  • Step 601 The original base station makes a decision handover, and sends a handover request message to the target base station, where the handover request message carries the relevant information of the MBS service that the UE is receiving in the original cell.
  • the original base station may decide to switch based on the measurement result reported by the UE.
  • the relevant information of the MBS service being received by the UE in the original cell includes at least one of the following: MBS TMGI, MBS session id, configuration information of MBS physical channels, and configuration information of MBS logical channels.
  • Step 602 The target base station replies with a handover confirmation message, where the handover confirmation message carries the GTP tunnel identifier allocated by the target base station for the original base station to forward the MBS service data to the target base station.
  • Step 603.1 The original base station forwards the MBS service data to the target base station on the GTP tunnel indicated by the GTP tunnel identifier.
  • the MBS service data forwarded on the GTP tunnel may be: PDCP SDU+SN, or PDCP PDU, or IP data packet+SN, or SDAP SDU+SN, or IP data packet.
  • the PDCP SDU carries the MBS service data
  • the PDCP PDU carries the MBS service data and the SN
  • the IP data packet carries the MBS service data
  • the SDAP SDU carries the MBS service data.
  • the target base station transmits the MBS service data forwarded by the original base station to the UE in a unicast manner. Perform the following processing on the UE's MBS service data:
  • the target base station adds a PDCP SN to the MBS service data forwarded from the original base station, and the PDCP SN is determined based on the PDCP SN of the MBS service data transmitted by multicast. For example: if the target base station expects the UE to receive the first MBS service data in multicast mode with PDCP SN of n, and the forwarded MBS service data waiting for unicast transmission is m, then the MBS service data transmitted in unicast mode
  • the PDCP SNs are nm, n-m+1...n-1 in sequence, and the target base station will sequentially add these PDCP SNs to the MBS service data corresponding to the unicast mode. At this point, the UE's receive window will not be reset during the handover process. or,
  • the target base station adds a PDCP SN to the MBS service data forwarded from the original base station, and the PDCP SN is set from the initial value.
  • the target base station sends the instruction information to tell the UE to reset the receiving window, and optionally, can also tell the UE about the initial value of the variable of the receiving window. the size of the value.
  • Step 603.2 The original base station sends a handover command to the UE.
  • the handover command is an RRC reconfiguration (RRCReconfiguration) message in the NR system.
  • step 603.1 and step 603.2 do not limit the sequence.
  • Step 604 The target base station caches the MBS service data forwarded by the original base station, and judges whether the forwarded MBS service data has been transmitted on the air interface of the target base station, or whether the MBS service data exists in the memory of the target base station; If the data has not been transmitted on the air interface of the target base station or the MBS service data exists in the memory of the target base station, the target base station determines that the original base station stops forwarding the MBS service data.
  • Step 605 The target base station sends an indication message to the original base station, where the indication information is used to instruct the original base station to stop forwarding the MBS service data.
  • Step 606 After receiving the handover command, the UE initiates a random access procedure to the target base station, and sends a handover complete message to the target base station.
  • the handover complete message is an RRC reconfiguration complete (RRCReconfigurationComplete) message.
  • the receiving window and its variables of the PDCP layer remain the same as before the handover, and the receiving window and/or the variables of the receiving window are not reset until the UE receives new MBS service data at the target base station side. That is, the receiving window and the variables of the receiving window are not reset or changed during the switching process.
  • Step 607 The target base station sends the MBS service data forwarded by the original base station to the UE in a unicast manner, and the UE receives the MBS service data sent by the target base station in a unicast manner.
  • Step 608 If the target base station has completed the transmission of the MBS service data forwarded by the original base station, the target base station sends an indication message to the UE, and the indication message is used to instruct the UE to submit all PDCP SDUs in the receiving window to the upper layer, and reset the reception. The value of the variables of the window and the receiving window.
  • the value of the variable of the receiving window is given in the indication information or is a default value.
  • the indication information may be carried in the MAC CE, or in the PDCCH, or in the RRC signaling. If it is carried in the MAC CE, the protocol defines the logical channel ID (ie LCID) of the MAC CE to identify the MAC CE.
  • the protocol defines the logical channel ID (ie LCID) of the MAC CE to identify the MAC CE.
  • the UE After receiving the above-mentioned indication information, the UE submits all PDCP SDUs in the receiving window to the upper layer, and resets the values of the receiving window and the variables of the receiving window.
  • Step 609 After receiving the above-mentioned indication information, the UE starts to receive the MBS service data delivered by the target base station in a multicast manner.
  • the target base station determines the stopping condition of the forwarding of the MBS service data, thereby triggering the forwarding and stopping of the MBS service data.
  • the target base station controls the UE to reset the receiving window to achieve continuity and reliability of service reception.
  • FIG. 7 is a schematic flow chart 3 of a method for transmitting an MBS service provided by an embodiment of the present application. As shown in FIG. 7 , the method for transmitting an MBS service includes the following steps:
  • Step 701 The original base station sends first auxiliary information to the target base station, where the first auxiliary information is used by the target base station to determine whether the original base station needs to forward the MBS service data to the target base station.
  • the terminal device may be handed over from one base station (ie, the original base station) to another base station (ie, the target base station).
  • the original base station is the original gNB (Source gNB)
  • the target base station is the target gNB (Target gNB).
  • the MBS service data on the original base station side is sent by the core network to the original base station through the first tunnel
  • the MBS service data on the target base station side is sent by the original base station to the original base station through the second tunnel the target base station. That is, the original base station receives the MBS service data sent by the core network through the first tunnel, and delivers the MBS service data through unicast and/or multicast.
  • the target base station receives the MBS service data from the core network forwarded by the original base station through the second tunnel, and delivers the MBS service data through unicast and/or multicast.
  • the MBS service data on the original base station side and the MBS service data on the target base station side are not synchronized.
  • the original base station and the target base station may adopt one of the following network architectures:
  • the original base station and the target base station have independent overall protocol stacks, wherein the overall protocol stack includes a first protocol stack and a second protocol stack, wherein the first protocol stack;
  • the first protocol stack refers to the protocol stack corresponding to the DU, and the second protocol stack refers to the protocol stack corresponding to the CU.
  • the protocol stack corresponding to the DU includes an RLC layer, a MAC layer, and a PHY layer.
  • the protocol stack corresponding to the CU includes the SDAP layer and the PDCP layer.
  • the original base station has a set of general protocol stacks: SDAP layer, PDCP layer, RLC layer, MAC layer, and PHY layer.
  • the target base station also has a set of general protocol stacks: SDAP layer, PDCP layer, RLC layer, MAC layer, PHY layer (FIG. 8 does not show SDAP layer and PDCP layer on the side of the target base station).
  • the overall protocol stack of the original base station and the target base station of the target base station are independent. After the original base station receives the MBS service data sent by the core network, it copies a copy of the RLC layer sent to the target base station through the PDCP layer, and sends the original MBS service data to its own (or original base station) RLC layer.
  • a distributed unit (DU) and a centralized unit (CU) separate architecture specifically, the original base station and the target base station have an independent first protocol stack, and have a shared second protocol stack, wherein the first The first protocol stack refers to the protocol stack corresponding to the distribution unit DU, and the second protocol stack refers to the protocol stack corresponding to the centralization unit CU.
  • the protocol stack corresponding to the DU includes an RLC layer, a MAC layer, and a PHY layer.
  • the protocol stack corresponding to the CU includes the SDAP layer and the PDCP layer.
  • the original base station is equivalent to the original DU
  • the target base station is equivalent to the target DU
  • the original DU and the target DU are connected to the same CU.
  • the signaling between the two base stations is equivalent to the signaling between the two DUs.
  • the signaling between the two DUs can be directly transmitted between the two DUs, or indirectly transmitted by means of CU forwarding.
  • Most of the following embodiments are described with the DU and CU integrated architecture as the network background, but the DU and CU separation architecture is also applicable to the technical solutions of the embodiments of the present application.
  • the terminal device may receive the MBS service data delivered by the original base station in a multicast manner or a unicast manner.
  • the original base station sends a handover request message to the target base station, where the handover request message carries the relevant information of the first MBS service and the first auxiliary information, and the first MBS service refers to the terminal equipment MBS services received at the original base station.
  • the relevant information of the first MBS service includes at least one of the following: a service identifier, a session identifier, physical channel configuration information, and logical channel configuration information.
  • the service identifier may be, for example, the MBS TMGI of the MBS service.
  • the session identifier refers to the MBS session identifier (MBS session id) of the MBS service.
  • the physical channel configuration information refers to the configuration information of the MBS physical channel of the MBS service.
  • the logical channel configuration information refers to configuration information of MBS logical channel allocation of the MBS service.
  • the first auxiliary information is used to determine the first PDCP SN, and the first PDCP SN is the PDCP SN of the last MBS service data sent by the original base station to the terminal device or the next PDCP SN to be sent.
  • PDCP SN of MBS service data is used to determine the first PDCP SN.
  • the target base station may determine whether the original base station needs to forward the MBS service data in one of the following manners.
  • Manner 1 The first PDCP SN and the PDCP SN of the MBS service data existing in the memory of the target base station are used by the target base station to determine whether the original base station needs to forward the MBS service data to the target base station.
  • Mode 2 The first PDCP SN and the PDCP SN of the MBS service data being sent by the target base station are used by the target base station to determine whether the original base station needs to forward the MBS service data to the target base station.
  • the target base station may determine the first PDCP according to the first PDCP SN and the PDCP SN of the MBS service data existing in the memory of the target base station or the PDCP SN of the MBS service data being sent by the target base station Whether the MBS service data corresponding to the SN has been sent on the target base station side, if not, it is determined that the original base station does not need to forward the MBS service data to the target base station; if it has been sent, it is determined that the original base station is required forwarding MBS service data to the target base station.
  • whether the MBS service data corresponding to the first PDCP SN has been sent on the target base station side can be determined based on the following manner: if the first PDCP SN is less than or equal to the MBS existing in the memory of the target base station The PDCP SN of the service data or the PDCP SN of the MBS service data being sent by the target base station, then it is determined that the MBS service data corresponding to the first PDCP SN has been sent on the side of the target base station.
  • the first PDCP SN is greater than or equal to the PDCP SN of the MBS service data existing in the memory of the target base station or the PDCP SN of the MBS service data being sent by the target base station, determine the corresponding first PDCP SN The MBS service data has not been sent on the target base station side.
  • the first PDCP SN and the PDCP SN of the MBS service data being sent by the target base station are used by the target base station to determine the MBS service data forwarded by the original base station to the target base station.
  • the PDCP SN between the PDCP SN of the MBS service data being sent by the target base station and the first PDCP SN forms a first PDCP SN list.
  • Step 702 The source base station receives third indication information sent by the target base station, where the third indication information is used to instruct the source base station to forward MBS service data to the target base station.
  • the original base station receives a handover request confirmation message sent by the target base station; wherein, in the case that the original base station needs to forward the MBS service data to the target base station, the handover request confirmation message carries the first A tunnel identifier, where the first tunnel identifier is used by the original base station to forward MBS service data to the target base station.
  • the first tunnel identifier is allocated by the target base station side to the original base station for the original base station to forward the MBS service data to the target base station.
  • the first tunnel identifier is a GTP tunnel identifier (GTP TEID).
  • the first tunnel identifier may also implicitly instruct the source base station to forward the MBS service data to the target base station. That is, the first tunnel identifier can be understood as the third indication information.
  • the handover request confirmation message carries an explicit third indication information, where the third indication information is used to instruct the source base station to forward the MBS service data to the target base station.
  • the handover request confirmation message also carries fourth indication information, where the fourth indication information is used to indicate the first PDCP SN list or the first number, the first number and the first PDCP SN It is used to determine the first PDCP SN list, where the first PDCP SN list refers to the PDCP SN list of the MBS service data forwarded by the original base station to the target base station.
  • the first PDCP SN of the first PDCP SN list is the first PDCP SN
  • the last PDCP SN of the first PDCP SN list is the second PDCP SN.
  • the second PDCP SN the first PDCP SN+the first number.
  • Step 703 The source base station forwards the MBS service data to the target base station, and sends a handover command to the terminal device, where the handover command is used to trigger the terminal device to switch from the original base station to the target base station, and receive The target base station sends the MBS service data according to the unicast mode and the MBS service data according to the multicast mode.
  • the source base station forwards the MBS service data to the target base station on the tunnel indicated by the first tunnel identifier.
  • the PDCP SN of the MBS service data forwarded by the original base station to the target base station The list is the first PDCP SN list.
  • the source base station sends a handover command to the terminal device.
  • the steps of the original base station forwarding the MBS service data to the target base station and the steps of sending the handover command to the terminal device do not limit the execution sequence.
  • the target base station receiving the MBS service data forwarded by the original base station may be: the target base station receives the PDCP PDU forwarded by the original base station, where the PDCP PDU carries the SN and the MBS service data.
  • the handover command carries fifth indication information, where the fifth indication information is used to instruct the terminal device to simultaneously receive the MBS service data sent by the target base station in a unicast manner and the MBS service data sent by multicast.
  • the terminal device after receiving the handover command sent by the original base station, switches from the original base station to the target base station, that is, initiates a random access procedure to the target base station.
  • the terminal device sends a handover complete message to the target base station, and after receiving the handover complete message sent by the terminal device, the target base station sends the MBS service data forwarded by the original base station to the terminal device in a unicast manner.
  • the MBS service data sent by the target base station in a unicast manner refers to the MBS service data forwarded from the source base station.
  • the terminal device receives, based on the fifth indication information in the handover command, the MBS service data sent by the target base station in a unicast manner and the MBS service data sent by the target base station in a multicast manner.
  • the receiving window and its variables of the PDCP layer remain the same as before the handover, and the receiving window and/or receiving window will not be reset until the terminal device receives new MBS service data at the target base station side. window variables. That is, the receiving window and the variables of the receiving window are not reset or changed during the switching process.
  • the receiving window in the above solution refers to the receiving window of the PDCP layer.
  • FIG. 9 is a schematic flowchart of the MBS service transmission method provided by the embodiment of the present application.
  • the UE corresponds to the terminal device of the embodiment of the present application.
  • the MBS service transmission method includes the following steps:
  • the UE is in the RRC connection state at the original base station, and receives the MBS service data delivered by the original base station on the air interface through unicast or multicast.
  • the GTP tunnel from the core network (such as UPF) to the original base station for sending MBS service data may be a shared GTP tunnel (that is, shared GTP tunnel 1) or a UE-specific GTP tunnel (that is, unicast GTP tunnel).
  • the shared GTP tunnel refers to the transmission of MBS service data of one MBS service from the UPF to the base station, and the base station transmits the MBS service data on the air interface according to the unicast mode and the multicast mode respectively.
  • the original base station forwards the MBS service data (ie PDCP PDU) from the core network to the target base station through the GTP tunnel.
  • Step 901 The original base station makes a decision handover, and sends a handover request message to the target base station, where the handover request message carries the relevant information of the MBS service that the UE is receiving in the original cell and the first PDCP SN.
  • the original base station may decide to switch based on the measurement result reported by the UE.
  • the relevant information of the MBS service being received by the UE in the original cell includes at least one of the following: MBS TMGI, MBS session id, configuration information of MBS physical channels, and configuration information of MBS logical channels.
  • the first PDCP SN is the PDCP SN of the last MBS service data received by the UE at the original base station or the PDCP SN of the next MBS service data to be received.
  • Step 902 The target base station determines, according to the first PDCP SN, whether the original base station needs to forward the MBS service data.
  • the target base station determines according to the first PDCP SN that the MBS service data corresponding to the first PDCP SN has not been sent by the target base station, the original base station does not need to forward the MBS service data, otherwise the original base station needs to forward the MBS service data.
  • the target base station determines that the original base station needs to forward the MBS service data, the target base station allocates a GTP tunnel identifier to the original base station for the original base station to forward the MBS service data to the target base station. Further, the target base station also judges which PDCP SN (that is, the first PDCP SN list) MBS service data needs to be forwarded according to the PDCP SN of the MBS service data in the current memory or the PDCP SN of the MBS service data currently being sent, or judges the forwarding. The MBS service data corresponding to the number of PDCP SNs (that is, the first value) after the first PDCP SN.
  • Step 903 The target base station replies with a handover confirmation message, where the handover confirmation message carries the GTP tunnel identifier allocated by the target base station for the original base station to forward the MBS service data to the target base station.
  • the reply handover confirmation message also carries indication information, and the indication information is used to indicate the PDCP SN of the MBS service data that needs to be forwarded, such as indicating N PDCP SNs starting from the first PDCP SN, where N is positive integer. For example, a list of PDCP SNs is indicated.
  • Step 904.1 The original base station forwards the MBS service data to the target base station on the GTP tunnel indicated by the GTP tunnel identifier.
  • the MBS service data forwarded on the GTP tunnel may be: PDCP PDU.
  • PDCP PDU carries MBS service data and SN.
  • Step 904.2 The original base station sends a handover command to the UE.
  • the handover command is an RRC reconfiguration (RRCReconfiguration) message in the NR system.
  • step 904.1 and step 9034.2 do not limit the sequence.
  • the handover command carries indication information, and the indication information is used to instruct the UE to simultaneously receive the unicast MBS service and the multicast MBS service at the target base station.
  • Step 905 After receiving the handover command, the UE initiates a random access procedure to the target base station, and sends a handover complete message to the target base station.
  • the handover complete message is an RRC reconfiguration complete (RRCReconfigurationComplete) message.
  • the receiving window and its variables of the PDCP layer remain the same as before the handover, and the receiving window and/or the variables of the receiving window are not reset until the UE receives new MBS service data at the target base station side. That is, the receiving window and the variables of the receiving window are not reset or changed during the switching process.
  • Step 906 The target base station sends the MBS service data forwarded by the original base station to the UE in a unicast manner.
  • Step 907 The target base station sends the MBS service data to the UE in a multicast manner.
  • steps 906 and 907 may be performed simultaneously, and the UE receives the MBS service data of the unicast mode and the MBS service data of the multicast mode at the same time according to the indication information in the handover command.
  • the target base station determines, based on the assistance of the original base station, whether to trigger the original base station to forward the MBS service data and which MBS service data is forwarded.
  • the continuity and reliability of service reception are realized based on whether the network side (ie, the original base station) controls whether the UE simultaneously receives MBS service data in multicast mode and MBS service data in unicast mode on the target base station side.
  • FIG. 10 is a schematic flow chart 5 of a method for transmitting an MBS service provided by an embodiment of the present application. As shown in FIG. 10 , the method for transmitting an MBS service includes the following steps:
  • Step 1001 The terminal device receives the handover command sent by the original base station, and switches from the source base station to the target base station.
  • the terminal device may be handed over from one base station (ie, the original base station) to another base station (ie, the target base station).
  • the original base station is the original gNB (Source gNB)
  • the target base station is the target gNB (Target gNB).
  • the MBS service data on the original base station side is sent by the core network to the original base station through the first tunnel
  • the MBS service data on the target base station side is sent by the original base station to the original base station through the second tunnel the target base station. That is, the original base station receives the MBS service data sent by the core network through the first tunnel, and delivers the MBS service data through unicast and/or multicast.
  • the target base station receives the MBS service data from the core network forwarded by the original base station through the second tunnel, and delivers the MBS service data through unicast and/or multicast.
  • the MBS service data on the original base station side and the MBS service data on the target base station side are not synchronized.
  • the original base station and the target base station may adopt one of the following network architectures:
  • the original base station and the target base station have independent overall protocol stacks, wherein the overall protocol stack includes a first protocol stack and a second protocol stack, wherein the first protocol stack;
  • the first protocol stack refers to the protocol stack corresponding to the DU, and the second protocol stack refers to the protocol stack corresponding to the CU.
  • the protocol stack corresponding to the DU includes an RLC layer, a MAC layer, and a PHY layer.
  • the protocol stack corresponding to the CU includes the SDAP layer and the PDCP layer.
  • the original base station has a set of general protocol stacks: SDAP layer, PDCP layer, RLC layer, MAC layer, and PHY layer.
  • the target base station also has a set of general protocol stacks: SDAP layer, PDCP layer, RLC layer, MAC layer, PHY layer (FIG. 8 does not show SDAP layer and PDCP layer on the side of the target base station).
  • the overall protocol stack of the original base station and the target base station of the target base station are independent.
  • the original base station copies a copy of the RLC layer sent to the target base station through the PDCP layer, and sends the original MBS service data to its own (or original base station) RLC layer.
  • a distributed unit (DU) and a centralized unit (CU) separate architecture specifically, the original base station and the target base station have an independent first protocol stack, and have a shared second protocol stack, wherein the first The first protocol stack refers to the protocol stack corresponding to the distribution unit DU, and the second protocol stack refers to the protocol stack corresponding to the centralization unit CU.
  • the protocol stack corresponding to the DU includes an RLC layer, a MAC layer, and a PHY layer.
  • the protocol stack corresponding to the CU includes the SDAP layer and the PDCP layer.
  • the original base station is equivalent to the original DU
  • the target base station is equivalent to the target DU
  • the original DU and the target DU are connected to the same CU.
  • the signaling between the two base stations is equivalent to the signaling between the two DUs.
  • the signaling between the two DUs can be directly transmitted between the two DUs, or indirectly transmitted by means of CU forwarding.
  • Most of the following embodiments are described with the DU and CU integrated architecture as the network background, but the DU and CU separation architecture is also applicable to the technical solutions of the embodiments of the present application.
  • the terminal device may receive the MBS service data delivered by the original base station in a multicast manner or a unicast manner.
  • the original base station before the terminal device receives the handover command sent by the original base station, the original base station sends a handover request message to the target base station, where the handover request message carries relevant information of the first MBS service.
  • the original base station receives the handover request confirmation message sent by the target base station. Then, the terminal device receives the handover command sent by the original base station.
  • the relevant information of the first MBS service includes at least one of the following: a service identifier, a session identifier, physical channel configuration information, and logical channel configuration information.
  • the service identifier may be, for example, the MBS TMGI of the MBS service.
  • the session identifier refers to the MBS session identifier (MBS session id) of the MBS service.
  • the physical channel configuration information refers to the configuration information of the MBS physical channel of the MBS service.
  • the logical channel configuration information refers to configuration information of MBS logical channel allocation of the MBS service.
  • the handover command carries seventh indication information
  • the seventh indication information is used to indicate whether the terminal device reports the second PDCP SN list to the target base station.
  • the The second PDCP SN list refers to the missing PDCP SN list between the original base station and the target base station (that is, the missing PDCP SN list is used to determine the SN gap).
  • Step 1002 The terminal device sends sixth indication information to the target base station, where the sixth indication information is used to indicate a second PDCP SN list, and the second PDCP SN list refers to the original base station and the target base station List of missing PDCP SNs in between.
  • the terminal device after receiving the handover command sent by the original base station, switches from the original base station to the target base station, that is, initiates a random access procedure to the target base station.
  • the terminal device sends a handover complete message to the target base station, where the handover complete message carries the sixth indication information, and the sixth indication information is used to indicate the missing PDCP SN list between the original base station and the target base station.
  • Step 1003 The terminal device receives the MBS service data sent by the target base station in a unicast manner and the MBS service data sent in a multicast manner.
  • the target base station after receiving the handover complete message sent by the terminal device, the target base station sends MBS service data to the terminal device in a unicast mode, and also sends MBS service data to the terminal device in a multicast mode.
  • the MBS service data sent by the target base station in a unicast manner is determined based on the second PDCP SN list.
  • the receiving window and its variables of the PDCP layer remain the same as before the handover, and the receiving window and/or receiving window will not be reset until the terminal device receives new MBS service data at the target base station side. window variables. That is, the receiving window and the variables of the receiving window are not reset or changed during the switching process.
  • the receiving window in the above solution refers to the receiving window of the PDCP layer.
  • FIG. 11 is a schematic flow chart 6 of a method for transmitting an MBS service provided by an embodiment of the present application.
  • the UE corresponds to the terminal device in the embodiment of the present application.
  • the method for transmitting an MBS service includes the following steps:
  • the UE is in the RRC connection state at the original base station, and receives the MBS service data delivered by the original base station on the air interface through unicast or multicast.
  • the GTP tunnel from the core network (such as UPF) to the original base station for sending MBS service data may be a shared GTP tunnel (that is, shared GTP tunnel 1) or a UE-specific GTP tunnel (that is, unicast GTP tunnel).
  • the shared GTP tunnel refers to the transmission of MBS service data of one MBS service from the UPF to the base station, and the base station transmits the MBS service data on the air interface according to the unicast mode and the multicast mode respectively.
  • the original base station forwards the MBS service data (ie PDCP PDU) from the core network to the target base station through the GTP tunnel.
  • Step 1101 the original base station makes a decision handover, and sends a handover request message to the target base station, where the handover request message carries the relevant information of the MBS service that the UE is receiving in the original cell.
  • the original base station may decide to switch based on the measurement result reported by the UE.
  • the relevant information of the MBS service being received by the UE in the original cell includes at least one of the following: MBS TMGI, MBS session id, configuration information of MBS physical channels, and configuration information of MBS logical channels.
  • Step 1102 The target base station replies with a handover confirmation message.
  • Step 1103 The original base station sends a handover command to the UE.
  • the handover command is an RRC reconfiguration (RRCReconfiguration) message in the NR system.
  • the handover command carries an indication information, and the indication information is used to indicate whether the UE can report the gap of the PDCP PDU between the original base station and the target base station to the target base station, that is, the list of PDCP SNs missing between the original base station and the target base station. .
  • Step 1104 After receiving the handover command, the UE initiates a random access procedure to the target base station, and sends a handover complete message to the target base station.
  • the handover complete message is an RRC reconfiguration complete (RRCReconfigurationComplete) message.
  • the handover complete message carries an indication information, and the indication information is used to indicate the missing PDCP SN list between the original base station and the target base station.
  • the receiving window and its variables of the PDCP layer remain the same as before the handover, and the receiving window and/or the variables of the receiving window are not reset until the UE receives new MBS service data at the target base station side. That is, the receiving window and the variables of the receiving window are not reset or changed during the switching process.
  • Step 1105 The target base station sends the MBS service data corresponding to the missing PDCP SN list to the UE in a unicast manner.
  • Step 1106 The target base station sends the MBS service data to the UE in a multicast manner.
  • steps 1105 and 1106 may be performed simultaneously, and the UE simultaneously receives the MBS service data in the unicast mode and the MBS service data in the multicast mode.
  • the network side controls the UE to report the missing PDCP SN list, and triggers the target base station to send the missing MBS service data, so as to realize the continuity and reliability of service reception. reliability.
  • FIG. 12 is a schematic diagram 1 of a structure and composition of an apparatus for transmitting an MBS service provided by an embodiment of the present application, which is applied to a target base station, and the apparatus includes:
  • a receiving unit 1201 configured to receive the MBS service data forwarded by the original base station
  • the sending unit 1202 is configured to send the MBS service data forwarded by the original base station to a terminal device in a unicast manner; and send first indication information to the terminal device, where the first indication information is used to instruct the terminal device to re-run.
  • a receiving window is set, and the reset receiving window is used for the terminal device to receive the MBS service data sent by the target base station in a multicast manner.
  • the receiving unit 1201 is further configured to receive a handover request message sent by the original base station, where the handover request message carries relevant information of a first MBS service, and the first MBS service refers to the the MBS service received by the terminal device at the original base station;
  • the sending unit 1202 is further configured to send a handover request confirmation message to the original base station, where the handover request confirmation message carries a first tunnel identifier, and the first tunnel identifier is used for the original base station to forward to the target base station MBS business data.
  • the related information of the first MBS service includes at least one of the following: a service identifier, a session identifier, physical channel configuration information, and logical channel configuration information.
  • the receiving unit 1201 is configured to receive the PDCP SDU and SN forwarded by the original base station, where the PDCP SDU carries MBS service data; or, receive the PDCP PDU forwarded by the original base station, where the PDCP PDU carries the SN and the SN.
  • MBS service data or, receive the IP data packet and SN forwarded by the original base station, where the IP data packet carries the MBS service data; or, receive the SDAP SDU and SN forwarded by the original base station, where the SDAP SDU carries the MBS service data; or, Receive an IP data packet forwarded by the original base station, where the IP data packet carries MBS service data.
  • the apparatus when the receiving unit 1201 receives the IP data packet forwarded by the original base station, the apparatus further includes:
  • a processing unit (not shown in the figure), configured to add a PDCP SN to the forwarded MBS service data, where the added PDCP SN is determined based on the PDCP SN of the MBS service data transmitted in a multicast manner.
  • the added PDCP SN is determined based on the PDCP SN of the first MBS service data transmitted to the terminal device in a multicast manner and the total number of the forwarded MBS service data.
  • the apparatus when the receiving unit 1201 receives the IP data packet forwarded by the original base station, the apparatus further includes:
  • a processing unit configured to add a PDCP SN to the forwarded MBS service data, where the added PDCP SN is set from an initial value.
  • the time when the sending unit 1202 sends the first indication information to the terminal device is after the first time and before the second time, and the first time means that the terminal device has finished receiving the unicast.
  • the time of the MBS service data in the multicast mode, and the second time refers to the time when the terminal device starts to receive the MBS service data of the multicast mode.
  • the device further includes:
  • a processing unit configured to judge whether the MBS service data forwarded by the original base station has been transmitted on the air interface on the side of the target base station;
  • the sending unit 1202 is further configured to send second indication information to the original base station if the MBS service data forwarded by the original base station has not been transmitted on the air interface on the side of the target base station, the second indication information It is used to instruct the original base station to stop forwarding the MBS service data.
  • the device further includes:
  • a processing unit configured to determine whether there is MBS service data forwarded by the original base station in the memory of the target base station
  • the sending unit 1202 is further configured to send second indication information to the original base station if there is MBS service data forwarded by the original base station in the memory of the target base station, where the second indication information is used to indicate the target base station.
  • the original base station stops forwarding the MBS service data.
  • the receiving unit 1201 is further configured to receive a handover complete message sent by the terminal device.
  • the first indication information is further used to instruct the terminal device to submit all PDCP SDUs in the receiving window before reset to the upper layer, and the receiving window before reset is used for the terminal.
  • the device receives the MBS service data on the original base station side, wherein the MBS service data on the original base station side includes the MBS service data sent by the original base station and/or the data sent by the target base station and forwarded from the original base station MBS business data.
  • the first indication information is further used to instruct the terminal device to update the value of at least one variable of the reset receiving window to a default value.
  • the first indication information is carried in the MAC CE, or in the PDCCH, or in the RRC signaling.
  • the MBS service data of the original base station side is sent by the core network to the original base station through a first tunnel
  • the MBS service data of the target base station side is sent by the core network to the original base station through a second tunnel. target base station.
  • FIG. 13 is a schematic diagram 2 of the structure and composition of an apparatus for transmitting an MBS service provided by an embodiment of the present application, which is applied to an original base station, and the apparatus includes:
  • a sending unit 1301, configured to send first auxiliary information to a target base station, where the first auxiliary information is used by the target base station to determine whether the original base station needs to forward the MBS service data to the target base station;
  • a receiving unit 1302 configured to receive third indication information sent by the target base station, where the third indication information is used to instruct the source base station to forward MBS service data to the target base station;
  • the sending unit 1301 is further configured to forward MBS service data to the target base station, and send a handover command to a terminal device, where the handover command is used to trigger the terminal device to switch from the original base station to the target base station, and receive the MBS service data sent by the target base station in a unicast manner and the MBS service data sent in a multicast manner.
  • the sending unit 1301 is configured to send a handover request message to the target base station, where the handover request message carries the relevant information of the first MBS service and the first auxiliary information, the first MBS service Refers to the MBS service received by the terminal device at the original base station.
  • the related information of the first MBS service includes at least one of the following: a service identifier, a session identifier, physical channel configuration information, and logical channel configuration information.
  • the first auxiliary information is used to determine the first PDCP SN, and the first PDCP SN is the PDCP SN of the last MBS service data sent by the original base station to the terminal device or the next PDCP SN. PDCP SN of the MBS service data to be sent.
  • the first PDCP SN and the PDCP SN of the MBS service data existing in the memory of the target base station are used by the target base station to determine whether the original base station needs to forward the MBS service data to the target base station. base station; or,
  • the first PDCP SN and the PDCP SN of the MBS service data being sent by the target base station are used by the target base station to determine whether the original base station needs to forward the MBS service data to the target base station.
  • the first PDCP SN and the PDCP SN of the MBS service data being sent by the target base station are used by the target base station to determine the first position of the MBS service data forwarded by the original base station to the target base station.
  • the receiving unit 1302 is further configured to receive a handover request confirmation message sent by the target base station; wherein, in the case that the original base station needs to forward the MBS service data to the target base station, the The handover request confirmation message carries a first tunnel identifier, and the first tunnel identifier is used by the original base station to forward the MBS service data to the target base station.
  • the handover request confirmation message also carries fourth indication information, where the fourth indication information is used to indicate the first PDCP SN list or the first number, the first number and the first PDCP
  • the SN is used to determine the first PDCP SN list, where the first PDCP SN list refers to the PDCP SN list of the MBS service data forwarded by the original base station to the target base station.
  • the handover command carries fifth indication information
  • the fifth indication information is used to instruct the terminal device to simultaneously receive the MBS service data sent by the target base station in a unicast manner and in a multicast manner. Sent MBS service data.
  • the MBS service data sent by the target base station in a unicast manner refers to the MBS service data forwarded from the source base station.
  • the MBS service data on the original base station side is sent by the core network to the original base station through the first tunnel
  • the MBS service data on the target base station side is sent by the original base station through the second tunnel to the original base station. the target base station.
  • the original base station and the target base station have an independent first protocol stack and a shared second protocol stack, wherein the first protocol stack refers to the protocol stack corresponding to the DU, and the The second protocol stack refers to the protocol stack corresponding to the CU; or,
  • the original base station and the target base station have independent overall protocol stacks, wherein the overall protocol stack includes the first protocol stack and the second protocol stack.
  • FIG. 14 is a schematic diagram 3 of the structure and composition of an apparatus for transmitting an MBS service provided by an embodiment of the present application, which is applied to a terminal device, and the apparatus includes:
  • a receiving unit 1401 configured to receive a handover command sent by the original base station, and switch from the source base station to the target base station;
  • the sending unit 1402 is configured to send sixth indication information to the target base station, where the sixth indication information is used to indicate a second PDCP SN list, and the second PDCP SN list refers to the relationship between the original base station and the target base station. List of missing PDCP SNs between;
  • the receiving unit 1401 is further configured to receive the MBS service data sent by the target base station in a unicast manner and the MBS service data sent in a multicast manner.
  • the handover command carries seventh indication information, where the seventh indication information is used to indicate whether the terminal device reports the second PDCP SN list to the target base station.
  • the sending unit 1402 is configured to send a handover complete message to the target base station, where the handover complete message carries the sixth indication information.
  • the MBS service data sent by the target base station in a unicast manner is determined based on the second PDCP SN list.
  • the MBS service data on the original base station side is sent by the core network to the original base station through the first tunnel
  • the MBS service data on the target base station side is sent by the original base station through the second tunnel to the original base station. the target base station.
  • the original base station and the target base station have an independent first protocol stack and a shared second protocol stack, wherein the first protocol stack refers to the protocol stack corresponding to the DU, and the The second protocol stack refers to the protocol stack corresponding to the CU; or,
  • the original base station and the target base station have independent overall protocol stacks, wherein the overall protocol stack includes the first protocol stack and the second protocol stack.
  • FIG. 15 is a schematic structural diagram of a communication device 1500 provided by an embodiment of the present application.
  • the communication device can be a terminal device or a network device.
  • the communication device 1500 shown in FIG. 15 includes a processor 1510, and the processor 1510 can call and run a computer program from a memory to implement the methods in the embodiments of the present application.
  • the communication device 1500 may further include a memory 1520 .
  • the processor 1510 may call and run a computer program from the memory 1520 to implement the methods in the embodiments of the present application.
  • the memory 1520 may be a separate device independent of the processor 1510, or may be integrated in the processor 1510.
  • the communication device 1500 may further include a transceiver 1530, and the processor 1510 may control the transceiver 1530 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by a device.
  • the transceiver 1530 may include a transmitter and a receiver.
  • the transceiver 1530 may further include an antenna, and the number of the antenna may be one or more.
  • the communication device 1500 may specifically be the network device in this embodiment of the present application, and the communication device 1500 may implement the corresponding processes implemented by the network device in each method in the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • the communication device 1500 may specifically be the mobile terminal/terminal device of the embodiments of the present application, and the communication device 1500 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and will not be repeated here.
  • FIG. 16 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1600 shown in FIG. 16 includes a processor 1610, and the processor 1610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 1600 may further include a memory 1620 .
  • the processor 1610 may call and run a computer program from the memory 1620 to implement the methods in the embodiments of the present application.
  • the memory 1620 may be a separate device independent of the processor 1610, or may be integrated in the processor 1610.
  • the chip 1600 may further include an input interface 1630 .
  • the processor 1610 can control the input interface 1630 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1600 may further include an output interface 1640 .
  • the processor 1610 can control the output interface 1640 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • FIG. 17 is a schematic block diagram of a communication system 1700 provided by an embodiment of the present application. As shown in FIG. 17 , the communication system 1700 includes a terminal device 1710 and a network device 1720 .
  • the terminal device 1710 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 1720 can be used to implement the corresponding functions implemented by the network device in the above method. For brevity, details are not repeated here. .
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • Embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. Repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, For brevity, details are not repeated here.
  • the embodiments of the present application also provide a computer program.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. For the sake of brevity. , and will not be repeated here.
  • the computer program may be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program is run on the computer, the mobile terminal/terminal device implements the various methods of the computer program in the embodiments of the present application.
  • the corresponding process for the sake of brevity, will not be repeated here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种MBS业务的传输方法及装置、通信设备,该方法包括:目标基站接收原基站转发的MBS业务数据,所述目标基站按照单播方式将所述原基站转发的MBS业务数据发送给终端设备;所述目标基站向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备重置接收窗口,重置后的接收窗口用于所述终端设备按照多播方式接收所述目标基站发送的MBS业务数据。

Description

一种MBS业务的传输方法及装置、通信设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种多媒体多播服务(Multimedia Broadcast Service,MBS)业务的传输方法及装置、通信设备。
背景技术
终端设备进入无线资源控制(Radio Resource Control,RRC)连接态后,才能接收多媒体多播服务(Multimedia Broadcast Service,MBS)业务。
不同小区对于MBS业务的传输可能有时间差,即不同小区传输的MBS业务不同步,例如小区1传输的MBS业务相对于小区2传输的MBS业务早一些或者晚一些,也就是说,同一MBS业务在不同小区的传输时刻有早有晚,所以在切换过程中如何保证MBS业务的连续性是个需要明确的问题。
发明内容
本申请实施例提供一种MBS业务的传输方法及装置、通信设备。
本申请实施例提供的MBS业务的传输方法,包括:
目标基站接收原基站转发的MBS业务数据,所述目标基站按照单播方式将所述原基站转发的MBS业务数据发送给终端设备;
所述目标基站向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备重置接收窗口,重置后的接收窗口用于所述终端设备按照多播方式接收所述目标基站发送的MBS业务数据。
本申请实施例提供的MBS业务的传输方法,包括:
原基站向目标基站发送第一辅助信息,所述第一辅助信息用于所述目标基站确定是否需要所述原基站转发MBS业务数据给所述目标基站;
所述源基站接收所述目标基站发送的第三指示信息,所述第三指示信息用于指示所述源基站转发MBS业务数据给所述目标基站;
所述源基站向所述目标基站转发MBS业务数据,以及向终端设备发送切换命令,所述切换命令用于触发所述终端设备从所述原基站切换至所述目标基站,并接收所述目标基站按照单播方式发送的MBS业务数据以及按照多播方式发送的MBS业务数据。
本申请实施例提供的MBS业务的传输方法,所述方法包括:
终端设备接收原基站发送的切换命令,从所述源基站切换至目标基站;
所述终端设备向所述目标基站发送第六指示信息,所述第六指示信息用于指示第二PDCP SN列表,所述第二PDCP SN列表指所述原基站和所述目标基站之间的缺失的PDCP SN列表;
所述终端设备接收目标基站按照单播方式发送的MBS业务数据以及按照多播方式发送的MBS业务数据。
本申请实施例提供的MBS业务的传输装置,应用于目标基站,所述装置包括:
接收单元,用于接收原基站转发的MBS业务数据;
发送单元,用于按照单播方式将所述原基站转发的MBS业务数据发送给终端设备;向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备重置接收窗口,重置后的接收窗口用于所述终端设备按照多播方式接收所述目标基站发送的MBS业务数据。
本申请实施例提供的MBS业务的传输装置,应用于原基站,所述装置包括:
发送单元,用于向目标基站发送第一辅助信息,所述第一辅助信息用于所述目标基站确定是否需要所述原基站转发MBS业务数据给所述目标基站;
接收单元,用于接收所述目标基站发送的第三指示信息,所述第三指示信息用于指示所述源基站转发MBS业务数据给所述目标基站;
所述发送单元,还用于向所述目标基站转发MBS业务数据,以及向终端设备发送切换命令,所述切换命令用于触发所述终端设备从所述原基站切换至所述目标基站,并接收所述目标基站按照单播方式发送的MBS业务数据以及按照多播方式发送的MBS业务数据。
本申请实施例提供的MBS业务的传输装置,应用于终端设备,所述装置包括:
接收单元,用于接收原基站发送的切换命令,从所述源基站切换至目标基站;
发送单元,用于向所述目标基站发送第六指示信息,所述第六指示信息用于指示第二PDCP SN列表,所述第二PDCP SN列表指所述原基站和所述目标基站之间的缺失的PDCP SN列表;
所述接收单元,还用于接收目标基站按照单播方式发送的MBS业务数据以及按照多播方式发送的MBS业务数据。
本申请实施例提供的通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的MBS业务的传输方法。
本申请实施例提供的芯片,用于实现上述的MBS业务的传输方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的MBS业务的传输方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的MBS业务的传输方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的MBS业务的传输方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的MBS业务的传输方法。
本申请实施例的上述技术方案提出了一种MBS业务的传输方法,保证在切换过程中MBS业务数据的连续性,避免了MBS业务数据的丢失,提高了MBS业务数据在移动性过程中传输的可靠性。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信系统架构的示意性图;
图2是本申请实施例提供的MBS业务按照多播方式和单播方式传输的示意图;
图3是本申请实施例提供的小区切换的示意图;
图4是本申请实施例提供的MBS业务的传输方法的流程示意图一;
图5-1是本申请实施例提供的重置前的接收窗口的示意图;
图5-2是本申请实施例提供的重置后的接收窗口的示意图;
图6是本申请实施例提供的MBS业务的传输方法的流程示意图二;
图7是本申请实施例提供的MBS业务的传输方法的流程示意图三;
图8是本申请实施例提供的网络架构图;
图9是本申请实施例提供的MBS业务的传输方法的流程示意图四;
图10是本申请实施例提供的MBS业务的传输方法的流程示意图五;
图11是本申请实施例提供的MBS业务的传输方法的流程示意图六;
图12是本申请实施例提供的MBS业务的传输装置的结构组成示意图一;
图13是本申请实施例提供的MBS业务的传输装置的结构组成示意图二;
图14是本申请实施例提供的MBS业务的传输装置的结构组成示意图三;
图15是本申请实施例提供的一种通信设备示意性结构图;
图16是本申请实施例的芯片的示意性结构图;
图17是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、系统、5G通信系统或未来的通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来通信系统中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G通信系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例相关的技术方案进行说明。
随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性、复杂性,为此第三代合作伙伴计划(3 rd Generation Partnership Project,3GPP)国际标准组织开始研发5G。5G的主要应用场景为:增强移动超宽带(enhanced Mobile Broadband,eMBB)、低时延高可靠通信(Ultra-Reliable Low-Latency Communications,URLLC)、大规模机器类通信(massive Machine-Type  Communications,mMTC)。
一方面,eMBB仍然以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。另一方面,由于eMBB可能部署在不同的场景中,例如室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而论,必须结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
在NR早期部署时,完整的NR覆盖很难获取,所以典型的网络覆盖是广域的LTE覆盖和NR的孤岛覆盖模式。而且大量的LTE部署在6GHz以下,可用于5G的6GHz以下频谱很少。所以NR必须研究6GHz以上的频谱应用,而高频段覆盖有限、信号衰落快。同时为了保护移动运营商前期在LTE投资,提出了LTE和NR之间紧耦合(tight interworking)的工作模式。
Figure PCTCN2020105924-appb-000001
RRC状态
5G为了降低空口信令和快速恢复无线连接,快速恢复数据业务的目的,定义了一个新的无线资源控制(Radio Resource Control,RRC)状态,即RRC非激活(RRC_INACTIVE)状态。这种状态有别于RRC空闲(RRC_IDLE)状态和RRC激活(RRC_ACTIVE)状态。其中,
1)RRC_IDLE状态(简称为空闲(idle)态):移动性为基于终端设备的小区选择重选,寻呼由核心网(Core Network,CN)发起,寻呼区域由CN配置。基站侧不存在终端设备上下文,不存在RRC连接。
2)RRC_CONNECTED状态(简称为连接(connected)态):存在RRC连接,基站侧和终端设备侧存在终端设备上下文。网络侧知道终端设备的位置是具体小区级别的。移动性是网络侧控制的移动性。终端设备和基站之间可以传输单播数据。
3)RRC_INACTIVE状态(简称为非激活(inactive)态):移动性为基于终端设备的小区选择重选,存在CN-NR之间的连接,终端设备上下文存在某个基站上,寻呼由RAN触发,基于RAN的寻呼区域由RAN管理,网络侧知道终端设备的位置是基于RAN的寻呼区域级别的。
Figure PCTCN2020105924-appb-000002
MBMS
MBMS是一种通过共享网络资源从一个数据源向多个终端设备传送数据的技术,该技术在提供多媒体业务的同时能有效地利用网络资源,实现较高速率(如256kbps)的多媒体业务的广播和组播。
由于MBMS频谱效率较低,不足以有效地承载和支撑手机电视类型业务的运营。因此在LTE中,3GPP明确提出增强对下行高速MBMS业务的支持能力,并确定了对物理层和空中接口的设计要求。
3GPP R9将演进的MBMS(evolved MBMS,eMBMS)引入到LTE中。eMBMS提出了单频率网络(Single Frequency Network,SFN)的概念,即多媒体广播多播服务单频率网络(Multimedia Broadcast multicast service Single Frequency Network,MBSFN),MBSFN采用统一频率在所有小区同时发送业务数据,但是要保证小区间的同步。这种方式可以极大的提高小区整体信噪比分布,频谱效率也会相应的大幅提高。eMBMS基于IP多播协议实现业务的广播和多播。
在LTE或增强的LTE(LTE-Advanced,LTE-A)中,MBMS只有广播承载模式,没有多播承载模式。此外,MBMS业务的接收适用于空闲态或者连接态的终端设备。
3GPP R13中引入了单小区点对多点(Single Cell Point To Multiploint,SC-PTM)概念,SC-PTM基于MBMS网络架构。
MBMS引入了新的逻辑信道,包括单小区多播控制信道(Single Cell-Multicast Control Channel,SC-MCCH)和单小区多播传输信道(Single Cell-Multicast Transport Channel,SC-MTCH)。SC-MCCH和SC-MTCH被映射到下行共享信道(Downlink-Shared Channel,DL-SCH)上,进一步,DL-SCH被映射到物理下行共享信道(Physical Downlink Shared Channel,PDSCH)上,其中,SC-MCCH和SC-MTCH属于逻辑信道,DL-SCH属于传输信道,PDSCH属于物理信道。SC-MCCH和SC-MTCH不支持混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)操作。
MBMS引入了新的系统信息块(System Information Block,SIB)类型,即SIB20。具体地,通过SIB20来传输SC-MCCH的配置信息,一个小区只有一个SC-MCCH。SC-MCCH的配置信息包括:SC-MCCH的修改周期、SC-MCCH的重复周期、以及调度SC-MCCH的无线帧和子帧等信息。进一步,1)SC-MCCH的修改周期的边界满足SFN mod m=0,其中,SFN代表边界的系统帧号,m是SIB20中配置的SC-MCCH的修改周期(即sc-mcch-ModificationPeriod)。2)调度SC-MCCH的无线帧满足:SFN mod mcch-RepetitionPeriod=mcch-Offset,其中,SFN代表无线帧的系统帧号, mcch-RepetitionPeriod代表SC-MCCH的重复周期,mcch-Offset代表SC-MCCH的偏移量。3)调度SC-MCCH的子帧通过sc-mcch-Subframe指示。
SC-MCCH通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)调度。一方面,引入新的无线网络临时标识(Radio Network Tempory Identity,RNTI),即单小区RNTI(Single Cell RNTI,SC-RNTI)来识别用于调度SC-MCCH的PDCCH(如SC-MCCH PDCCH),可选地,SC-RNTI固定取值为FFFC。另一方面,引入新的RNTI,即单小区通知RNTI(Single Cell Notification RNTI,SC-N-RNTI)来识别用于指示SC-MCCH的变更通知的PDCCH(如通知PDCCH),可选地,SC-N-RNTI固定取值为FFFB;进一步,可以用DCI 1C的8个比特(bit)中的一个bit来指示变更通知。在LTE中,SC-PTM的配置信息基于SIB20配置的SC-MCCH,然后SC-MCCH配置SC-MTCH,SC-MTCH用于传输业务数据。
具体地,SC-MCCH只传输一个消息(即SCPTMConfiguration),该消息用于配置SC-PTM的配置信息。SC-PTM的配置信息包括:临时移动组标识(Temporary Mobile Group Identity,TMGI)、会话标识(seession id)、组RNTI(Group RNTI,G-RNTI)、非连续接收(Discontinuous Reception,DRX)配置信息以及邻区的SC-PTM业务信息等。需要说明的是,R13中的SC-PTM不支持健壮性包头压缩(Robust Header Compression,ROHC)功能。
SC-PTM的下行非连续的接收是通过以下参数控制的:onDurationTimerSCPTM、drx-InactivityTimerSCPTM、SC-MTCH-SchedulingCycle、以及SC-MTCH-SchedulingOffset。
当满足[(SFN*10)+subframe number]modulo(SC-MTCH-SchedulingCycle)=SC-MTCH-SchedulingOffset时,启动定时器onDurationTimerSCPTM;
当接收到下行PDCCH调度时,启动定时器drx-InactivityTimerSCPTM;
只有当定时器onDurationTimerSCPTM或drx-InactivityTimerSCPTM运行时才接收下行SC-PTM业务。
SC-PTM业务连续性采用基于SIB15的MBMS业务连续性概念,即“SIB15+MBMSInterestIndication”方式。空闲态的终端设备的业务连续性基于频率优先级的概念。
本申请实施例的技术方案中,定义一个新的SIB(称为第一SIB),第一SIB包括第一MCCH的配置信息,这里,第一MCCH为MBMS业务的控制信道,换句话说,第一SIB用于配置NR MBMS的控制信道的配置信息,可选地,NR MBMS的控制信道也可以叫做NR MCCH(即所述第一MCCH)。
进一步,第一MCCH用于承载第一信令,本申请实施例对第一信令的名称不做限定,如第一信令为信令A,所述第一信令包括至少一个第一MTCH的配置信息,这里,第一MTCH为MBMS业务的业务信道(也称为数据信道或传输信道),第一MTCH用于传输MBMS业务数据(如NR MBMS的业务数据)。换句话说,第一MCCH用于配置NR MBMS的业务信道的配置信息,可选地,NR MBMS的业务信道也可以叫做NR MTCH(即所述第一MTCH)。
具体地,所述第一信令用于配置NR MBMS的业务信道、该业务信道对应的业务信息以及该业务信道对应的调度信息。进一步,可选地,所述业务信道对应的业务信息,例如TMGI、session id等标识业务的标识信息。所述业务信道对应的调度信息,例如业务信道对应的MBMS业务数据被调度时使用的RNTI,例如G-RNTI、DRX配置信息等。
需要说明的是,第一MCCH和第一MTCH的传输都是基于PDCCH调度的。其中,用于调度第一MCCH的PDCCH使用的RNTI使用全网唯一标识,即是一个固定值。用于调度第一MTCH的PDCCH使用的RNTI通过第一MCCH进行配置。
需要说明的是,本申请实施例对所述第一SIB、所述第一MCCH和所述第一MTCH的命名不做限制。为便于描述,所述第一SIB也可以简称为SIB,所述第一MCCH也可以简称为MCCH,所述第一MTCH也可以简称为MTCH,通过SIB配置用于调度MCCH的PDCCH(即MCCH PDCCH)以及通知PDCCH,其中,通过MCCH PDCCH携带的DCI调度用于传输MCCH的PDSCH(即MCCH PDSCH)。进一步,通过MCCH配置M个用于调度MTCH的PDCCH(即MTCH 1 PDCCH、MTCH 2 PDCCH、…、MTCH M PDCCH),其中,MTCH n PDCCH携带的DCI调度用于传输MTCH n的PDSCH(即MTCH n PDSCH),n为大于等于1且小于等于M的整数。MCCH和MTCH被映射到DL-SCH上,进一步,DL-SCH被映射到PDSCH上,其中,MCCH和MTCH属于逻辑信道,DL-SCH属于传输信道,PDSCH属于物理信道。
需要说明的是,上述方案中的MBMS业务包括但不局限于多播业务、组播业务。本申请实施例以MBS业务为例进行说明,“MBS业务”的描述也可以被替换为“多播业务”或者“组播业务”或者“MBMS业务”。
NR MBS业务中,同一个小区需要下发组播传播方式的MBS业务外,可能还会为某个特定的用户按照单播方式传输该MBS业务,例如该用户的信道比较差的情况下就需要为该用户按照单播方式传输该MBS业务。在一个小区中,也可能存在几个用户同时接收某MBS业务,但是基站都是按照单播方式发送MBS业务给每个用户,例如小区内接收MBS业务的用户比较少的情况下使用单播方式发送MBS业务给每个用户可以有效提高业务传输效率。
参照图2,针对某个MBS业务的分组数据单元(Packet Data Unit,PDU)会话,在5G核心网(5G Core network,5GC)到gNB之间可能采用一个共享的GTP隧道(Shared GTP tunnel)来传输MBS业务,即无论是单播方式的MBS业务还是多播方式的MBS业务都是共享这个GTP隧道的。gNB按照多播(multicast)方式下发MBS业务给多播组(multicast group),以及按照单播(unicast)方式下发MBS业务给某个UE(图2以UE3为例)。其中,多播组包括一个或多个UE(图2以多播组包括UE1和UE2为例)。
考虑到终端设备的移动性,会出现终端设备从一个小区切换到另一个小区的场景。如图3所示,UE1在第一小区接收gNB1按照多播方式发送的MBS业务,UE1从小区1切换到小区2后,在第二小区接收gNB2按照多播方式发送的MBS业务。不同基站(如gNB1和gNB2)对于MBS业务的传输可能有时间差,即不同基站传输的MBS业务不同步,例如gNB1传输的MBS业务相对于gNB2传输的MBS业务早一些或者晚一些,也就是说,同一MBS业务在不同gNB的传输时刻有早有晚,所以在切换过程中如何保证MBS业务的连续性是个需要明确的问题。为此,提出了本申请实施例的以下技术方案。
图4是本申请实施例提供的MBS业务的传输方法的流程示意图一,如图4所示,所述MBS业务的传输方法包括以下步骤:
步骤401:目标基站接收原基站转发的MBS业务数据,所述目标基站按照单播方式将所述原基站转发的MBS业务数据发送给终端设备。
本申请实施例中,考虑到终端设备的移动性场景,终端设备可能会从一个基站(即原基站)切换到另一个基站(即目标基站)。例如:原基站为原gNB(Source gNB),目标基站为目标gNB(Target gNB)。
本申请实施例中,所述原基站侧的MBS业务数据由核心网通过第一隧道发送给所述原基站,所述目标基站侧的MBS业务数据由核心网通过第二隧道发送给所述目标基站。也就是说,原基站通过第一隧道接收核心网发送的MBS业务数据,通过单播和/或多播方式下发该MBS业务数据。目标基站通过第二隧道接收核心网发送的MBS业务数据,通过单播和/或多播方式下发该MBS业务数据。原基站侧的MBS业务数据和目标基站侧的MBS业务数据存在不同步的情况。
本申请实施例中,在切换之前,终端设备可以按照多播方式或者单播方式接收原基站下发的MBS业务数据。
本申请实施例中,所述目标基站接收原基站转发的MBS业务数据之前,所述方法还包括:
所述目标基站接收所述原基站发送的切换请求(HANDOVER REQUEST)消息,所述切换请求消息携带第一MBS业务的相关信息,所述第一MBS业务指所述终端设备在所述原基站接收的MBS业务;
所述目标基站向所述原基站发送切换请求确认(HANDOVER REQUEST ACKNOWLEDGE)消息,所述切换请求确认消息携带第一隧道标识,所述第一隧道标识用于所述原基站向所述目标基站转发MBS业务数据。
上述方案中,可选地,所述第一MBS业务的相关信息包括以下至少之一:业务标识、会话标识、物理信道配置信息、逻辑信道配置信息。
这里,业务标识例如可以是MBS业务的MBS TMGI。
这里,会话标识是指MBS业务的MBS会话标识(MBS session id)。
这里,物理信道配置信息是指MBS业务的MBS物理信道的配置信息。
这里,逻辑信道配置信息是指MBS业务的MBS逻辑信道配的配置信息。
上述方案中,所述第一隧道标识由目标基站侧分配给原基站,用于原基站转发MBS业务数据给目标基站。可选地,所述第一隧道标识为GTP隧道标识(GTP TEID)。
本申请实施例中,原基站基于第一隧道标识向目标基站转发MBS业务数据,以及向终端设备发送切换命令(HO-Command)。这里,需要说明的是,原基站向目标基站转发MBS业务数据的步骤和向终端设备发送切换命令的步骤不限制执行先后顺序。
本申请实施例中,所述目标基站接收原基站转发的MBS业务数据,可以是:
i)所述目标基站接收原基站转发的分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)业务数据单元(Service Data Unit,SDU)和序列号(Serial Number,SN),所述PDCP SDU携带MBS业务数据;或者,
ii)所述目标基站接收原基站转发的PDCP协议数据单元(Protocol Data Unit,PDU),所述PDCP PDU携带SN和MBS业务数据;或者,
iii)所述目标基站接收原基站转发的IP数据包和SN,所述IP数据包携带MBS业务数据;或者,
iv)所述目标基站接收原基站转发的业务数据适配协议(Service Data Adaptation Protocol,SDAP)SDU和SN,所述SDAP SDU携带MBS业务数据。
v)所述目标基站接收原基站转发的IP数据包,所述IP数据包携带MBS业务数据。
本申请实施例中,对于原基站向目标基站转发的MBS业务数据是IP数据包的场景,目标基站按照单播方式将原基站转发的MBS业务数据传输给终端设备,此时,目标基站会对传输给终端设备的MBS业务数据做如下处理:
1)目标基站给来自原基站转发的MBS业务数据添加PDCP SN,该PDCP SN基于多播方式传输的MBS业务数据的PDCP SN确定。可选地,所述添加的PDCP SN基于多播方式传输给所述终端设备的第一个MBS业务数据的PDCP SN和所述转发的MBS业务数据的总数确定。例如:如果目标基站期待终端设备接收多播方式的第一个MBS业务数据的PDCP SN为n,而等待单播方式传输的转发过来的MBS业务数据为m个,则单播方式传输的MBS业务数据的PDCP SN依次为n-m,n-m+1……n-1,目标基站会将这些PDCP SN依次添加至单播方式对应的MBS业务数据中。此时,终端设备的接收窗口在切换过程中不会重置。或者,
2)目标基站给来自原基站转发的MBS业务数据添加PDCP SN,该PDCP SN从初始值开始设置。这里,所述目标基站向所述终端设备发送第一指示信息的时刻位于第一时刻之后且位于第二时刻之前,所述第一时刻指所述终端设备接收完单播方式的MBS业务数据的时刻,所述第二时刻指所述终端设备开始接收组播方式的MBS业务数据的时刻。具体地,当单播方式的MBS业务数据传输之后,终端设备接收组播方式的MBS业务数据之前,目标基站下发指示信息告诉终端设备重置接收窗口,可选地,还可以告诉终端设备关于接收窗口的变量的初始值的大小。
本申请实施例中,目标基站接收原基站转发的MBS业务数据后,可以通过以下其中一种方式判定是否触发原基站停止转发MBS业务数据。
方式一:所述目标基站判断所述原基站转发的MBS业务数据是否已经在所述目标基站侧的空口上传输;若所述原基站转发的MBS业务数据还未在所述目标基站侧的空口上传输,则所述目标基站向所述原基站发送第二指示信息,所述第二指示信息用于指示所述原基站停止继续转发MBS业务数据。
方式二:所述目标基站判断所述目标基站的内存中是否存在所述原基站转发的MBS业务数据;若所述目标基站的内存中存在所述原基站转发的MBS业务数据,则所述目标基站向所述原基站发送第二指示信息,所述第二指示信息用于指示所述原基站停止继续转发MBS业务数据。
步骤402:所述目标基站向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备重置接收窗口,重置后的接收窗口用于所述终端设备按照多播方式接收所述目标基站发送的MBS业务数据。
本申请实施例中,终端设备接收到原基站发送的切换命令后,从原基站切换至目标基站,即发起向目标基站的随机接入过程。终端设备向目标基站发送切换完成(HO Complete)消息,所述目标基站接收到所述终端设备发送的切换完成消息后,按照单播方式将所述原基站转发的MBS业务数据发送给终端设备。之后,所述目标基站向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备重置接收窗口,进一步,所述第一指示信息还用于指示所述终端设备将所述重置后的接收窗口的至少一个变量的取值更新为默认值。
可选地,所述第一指示信息还用于指示所述终端设备将重置前的接收窗口中的全部PDCP SDU递交至高层。
需要说明的是,重置前的接收窗口用于所述终端设备接收所述原基站侧的MBS业务数据,其中,所述原基站侧的MBS业务数据包括由所述原基站发送的MBS业务数据和/或由所述目标基站发送的来自所述原基站转发的MBS业务数据。重置后的接收窗口用于所述终端设备按照多播方式接收所述目标基站发送的MBS业务数据。
参照图5-1,终端设备接收到第一指示信息之前的接收窗口即为重置前的接收窗口。参照图5-2, 终端设备接收到第一指示信息之后的接收窗口即为重置后的接收窗口。其中,接收窗口的至少一个变量包括以下至少之一:
RX_DELIV,该变量用于指示接收窗口中还没有递交到上层的第一个MBS业务数据关联的COUNT值,COUNT值基于SN确定。
RX_REORD,该变量用于指示接收窗口中启动t-Reordering定时器的MBS业务数据对应的COUNT值,COUNT值基于SN确定。
RX_Next,该变量用于指示期望接收的下一个MBS业务数据对应的COUNT值,COUNT值基于SN确定。
本申请实施例中,所述第一指示信息指示所述终端设备将所述重置后的接收窗口的至少一个变量的取值更新为默认值,可以有以下实现方式:
方式a)默认值为设置好的初始值,例如为0。所述第一指示信息指示所述终端设备将所述重置后的接收窗口的至少一个变量的取值更新为初始值。
方式b)默认值通过第一指示信息显示指示。所述第一指示信息指示所述终端设备将所述重置后的接收窗口的至少一个变量的取值更新为给定的默认值。
本申请实施例中,所述第一指示信息承载在媒体接入控制控制单元(Media Access Control Control Element,MAC CE)中、或者PDCCH中、或者RRC信令中。
本申请实施例中,终端设备接收到第一指示信息重置接收窗口后,基于重置后的接收窗口接收目标基站按照多播方式发送的MBS业务数据,至此,终端设备可以从目标基站接收目标基站侧的MBS业务数据。
本申请实施例中,上述方案中的接收窗口是指PDCP层的接收窗口。
图6是本申请实施例提供的MBS业务的传输方法的流程示意图二,其中,UE对应于本申请实施例的终端设备,如图6所示,所述MBS业务的传输方法包括以下步骤:
UE在原基站处于RRC连接态,通过单播方式或者多播方式在空口上接收原基站下发的MBS业务数据。其中,从核心网(例如UPF)到原基站的用于发送MBS业务数据的GTP隧道可以是共享的GTP隧道(即共享的GTP隧道1)也可以是UE专用的GTP隧道(即单播的GTP隧道)。共享的GTP隧道是指从UPF到基站传输一个MBS业务的MBS业务数据,在基站处分别按照单播方式和多播方式在空口上传输该MBS业务数据。
步骤601:原基站做判决切换,向目标基站发送切换请求消息,所述切换请求消息携带UE在原小区正在接收的MBS业务的相关信息。
这里,可选地,原基站可以基于UE上报的测量结果做判决切换。
这里,可选地,UE在原小区正在接收的MBS业务的相关信息包括以下至少之一:MBS TMGI、MBS session id、MBS物理信道的配置信息、MBS逻辑信道的配置信息。
步骤602:目标基站回复切换确认消息,所述切换确认消息携带目标基站分配的用于原基站向目标基站转发MBS业务数据的GTP隧道标识。
步骤603.1:原基站在GTP隧道标识指示的GTP隧道上转发MBS业务数据给目标基站。
这里,GTP隧道上转发的MBS业务数据可以是:PDCP SDU+SN、或者PDCP PDU、或者IP数据包+SN、或者SDAP SDU+SN、或者IP数据包。其中,PDCP SDU携带MBS业务数据,PDCP PDU携带MBS业务数据和SN,IP数据包携带MBS业务数据,SDAP SDU携带MBS业务数据。
本申请实施例中,对于原基站向目标基站转发的MBS业务数据是IP数据包的场景,目标基站按照单播方式将原基站转发的MBS业务数据传输给UE,此时,目标基站会对传输给UE的MBS业务数据做如下处理:
1)目标基站给来自原基站转发的MBS业务数据添加PDCP SN,该PDCP SN基于多播方式传输的MBS业务数据的PDCP SN确定。例如:如果目标基站期待UE接收多播方式的第一个MBS业务数据的PDCP SN为n,而等待单播方式传输的转发过来的MBS业务数据为m个,则单播方式传输的MBS业务数据的PDCP SN依次为n-m,n-m+1……n-1,目标基站会将这些PDCP SN依次添加至单播方式对应的MBS业务数据中。此时,UE的接收窗口在切换过程中不会重置。或者,
2)目标基站给来自原基站转发的MBS业务数据添加PDCP SN,该PDCP SN从初始值开始设置。当单播方式的MBS业务数据传输之后,UE接收组播方式的MBS业务数据之前,目标基站下发指示信息告诉UE重置接收窗口,可选地,还可以告诉UE关于接收窗口的变量的初始值的大小。
步骤603.2:原基站向UE发送切换命令。
这里,所述切换命令在NR系统中为RRC重配置(RRCReconfiguration)消息。
需要说明的是,步骤603.1和步骤603.2不限定先后顺序。
步骤604:目标基站缓存原基站转发的MBS业务数据,并判断转发的MBS业务数据是否已经在目标基站的空口上传输,或者是否在目标基站的内存中存在该MBS业务数据;如果转发的MBS业务数据还没在目标基站的空口上传输或者目标基站的内存中存在该MBS业务数据,则目标基站确定原基站停止转发MBS业务数据。
步骤605:目标基站向原基站发送一个指示信息,该指示信息用于指示原基站停止转发MBS业务数据。
步骤606:UE收到切换命令之后向目标基站发起随机接入过程,并向目标基站发送切换完成消息。
这里,在NR系统中,切换完成消息为RRC重配置完成(RRCReconfigurationComplete)消息。
UE在切换过程中,PDCP层的接收窗口及其变量保持和切换前一样,直到在UE在目标基站侧接收到新的MBS业务数据才重置接收窗口和/或接收窗口的变量。也就是说,接收窗口和接收窗口的变量不会在切换过程中重置或者改变。
步骤607:目标基站按照单播方式发送原基站转发的MBS业务数据给UE,UE接收目标基站按照单播方式发送的MBS业务数据。
步骤608:目标基站如果发送完成了原基站转发的MBS业务数据,则目标基站下发一个指示信息给UE,该指示信息用于指示UE递交接收窗口中所有的PDCP SDU到高层,并重置接收窗口和接收窗口的变量的取值。
这里,可选地,接收窗口的变量的取值在所述指示信息中给出或者为默认的取值。
这里,可选地,所述指示信息可以承载在MAC CE中、或者PDCCH中、或者RRC信令中。如果是承载在MAC CE中,则协议定义该MAC CE的逻辑信道ID(即LCID)来标识这个MAC CE。
UE收到上述指示信息后,递交接收窗口中所有的PDCP SDU到高层,并重置接收窗口和接收窗口的变量的取值。
步骤609:UE收到上述指示信息之后,开始按照多播方式接收目标基站下发的MBS业务数据。
本申请实施例的技术方案中,在移动性过程中,目标基站判断MBS业务数据转发的停止条件,从而触发MBS业务数据的转发和停止。目标基站控制UE重置接收窗口来实现业务接收的连续性和可靠性。
图7是本申请实施例提供的MBS业务的传输方法的流程示意图三,如图7所示,所述MBS业务的传输方法包括以下步骤:
步骤701:原基站向目标基站发送第一辅助信息,所述第一辅助信息用于所述目标基站确定是否需要所述原基站转发MBS业务数据给所述目标基站。
本申请实施例中,考虑到终端设备的移动性场景,终端设备可能会从一个基站(即原基站)切换到另一个基站(即目标基站)。例如:原基站为原gNB(Source gNB),目标基站为目标gNB(Target gNB)。
本申请实施例中,所述原基站侧的MBS业务数据由核心网通过第一隧道发送给所述原基站,所述目标基站侧的MBS业务数据由所述原基站通过第二隧道发送给所述目标基站。也就是说,原基站通过第一隧道接收核心网发送的MBS业务数据,通过单播和/或多播方式下发该MBS业务数据。目标基站通过第二隧道接收原基站转发的来自核心网的MBS业务数据,通过单播和/或多播方式下发该MBS业务数据。原基站侧的MBS业务数据和目标基站侧的MBS业务数据存在不同步的情况。
本申请实施例中,所述原基站和所述目标基站可以采用以下其中一种网络架构:
1)DU和CU整合架构,具体地,所述原基站和所述目标基站具有独立的总协议栈,其中,所述总协议栈包括第一协议栈和第二协议栈,其中,所述第一协议栈指DU对应的协议栈,所述第二协议栈指CU对应的协议栈。
这里,DU对应的协议栈包括RLC层、MAC层、PHY层。CU对应的协议栈包括SDAP层、PDCP层。
参照图8,原基站具有一套总协议栈:SDAP层、PDCP层、RLC层、MAC层、PHY层。目标基站也有一套总协议栈:SDAP层、PDCP层、RLC层、MAC层、PHY层(图8没有示意出目标基站侧的SDAP层和PDCP层)。原基站的总协议栈和目标基站的目标基站是独立的。原基站接收到核心网发送的MBS业务数据后,通过PDCP层复制一份发给目标基站的RLC层,原来 的MBS业务数据发给自身(即原基站)的RLC层。
2)分布单元(DU)和集中单元(CU)分离架构,具体地,所述原基站和所述目标基站具有独立的第一协议栈,且具有共享的第二协议栈,其中,所述第一协议栈指分布单元DU对应的协议栈,所述第二协议栈指集中单元CU对应的协议栈。
这里,DU对应的协议栈包括RLC层、MAC层、PHY层。CU对应的协议栈包括SDAP层、PDCP层。DU和CU分离架构相对于DU和CU整合架构来说,原基站相当于原DU,目标基站相当于目标DU,原DU和目标DU连接同一CU。两个基站之间的信令,相当于两个DU之间的信令,进一步,两个DU之间的信令可以在两个DU之间直接传输,或者通过CU转发的方式间接传输。以下实施例大部分以DU和CU整合架构为网络背景进行说明,但DU和CU分离架构同样也适用于本申请实施例的技术方案。
本申请实施例中,在切换之前,终端设备可以按照多播方式或者单播方式接收原基站下发的MBS业务数据。
本申请实施例中,所述原基站向目标基站发送切换请求消息,所述切换请求消息携带第一MBS业务的相关信息和所述第一辅助信息,所述第一MBS业务指所述终端设备在所述原基站接收的MBS业务。
上述方案中,可选地,所述第一MBS业务的相关信息包括以下至少之一:业务标识、会话标识、物理信道配置信息、逻辑信道配置信息。
这里,业务标识例如可以是MBS业务的MBS TMGI。
这里,会话标识是指MBS业务的MBS会话标识(MBS session id)。
这里,物理信道配置信息是指MBS业务的MBS物理信道的配置信息。
这里,逻辑信道配置信息是指MBS业务的MBS逻辑信道配的配置信息。
上述方案中,所述第一辅助信息用于确定第一PDCP SN,所述第一PDCP SN为所述原基站向所述终端设备发送的最后一个MBS业务数据的PDCP SN或者下一个要发送的MBS业务数据的PDCP SN。
本申请实施例中,目标基站接收原基站转发的第一辅助信息后,可以通过以下其中一种方式判定是否需要原基站转发MBS业务数据。
方式一:所述第一PDCP SN和所述目标基站的内存中存在的MBS业务数据的PDCP SN用于所述目标基站确定是否需要所述原基站转发MBS业务数据给所述目标基站。
方式二:所述第一PDCP SN和所述目标基站正在发送的MBS业务数据的PDCP SN用于所述目标基站确定是否需要所述原基站转发MBS业务数据给所述目标基站。
具体地,目标基站根据所述第一PDCP SN和所述目标基站的内存中存在的MBS业务数据的PDCP SN或者所述目标基站正在发送的MBS业务数据的PDCP SN,可以确定所述第一PDCP SN对应的MBS业务数据是否已经在所述目标基站侧发送,如果还没有发送,则确定不需要所述原基站转发MBS业务数据给所述目标基站;如果已经发送,则确定需要所述原基站转发MBS业务数据给所述目标基站。这里,所述第一PDCP SN对应的MBS业务数据是否已经在所述目标基站侧发送,可以基于以下方式来判定:如果所述第一PDCP SN小于或等于所述目标基站的内存中存在的MBS业务数据的PDCP SN或者所述目标基站正在发送的MBS业务数据的PDCP SN,则确定所述第一PDCP SN对应的MBS业务数据已经在所述目标基站侧发送。如果所述第一PDCP SN大于或等于所述目标基站的内存中存在的MBS业务数据的PDCP SN或者所述目标基站正在发送的MBS业务数据的PDCP SN,则确定所述第一PDCP SN对应的MBS业务数据还没有在所述目标基站侧发送。
进一步,在一可选方式中,所述第一PDCP SN和所述目标基站正在发送的MBS业务数据的PDCP SN用于所述目标基站确定所述原基站向所述目标基站转发的MBS业务数据的第一PDCP SN列表。
例如:所述目标基站正在发送的MBS业务数据的PDCP SN与所述第一PDCP SN之间的PDCP SN形成第一PDCP SN列表。
步骤702:所述源基站接收所述目标基站发送的第三指示信息,所述第三指示信息用于指示所述源基站转发MBS业务数据给所述目标基站。
本申请实施例中,所述原基站接收所述目标基站发送的切换请求确认消息;其中,需要所述原基站转发MBS业务数据给所述目标基站的情况下,所述切换请求确认消息携带第一隧道标识,所述第一隧道标识用于所述原基站向所述目标基站转发MBS业务数据。
上述方案中,所述第一隧道标识由目标基站侧分配给原基站,用于原基站转发MBS业务数据给 目标基站。可选地,所述第一隧道标识为GTP隧道标识(GTP TEID)。
需要说明的是,所述第一隧道标识也可以隐式的指示所述源基站转发MBS业务数据给所述目标基站。即可以将所述第一隧道标识理解成第三指示信息。或者,在所述切换请求确认消息中携带一个显式的第三指示信息,该第三指示信息用于指示所述源基站转发MBS业务数据给所述目标基站。
进一步,可选地,所述切换请求确认消息还携带第四指示信息,所述第四指示信息用于指示第一PDCP SN列表或者第一数量,所述第一数量和所述第一PDCP SN用于确定第一PDCP SN列表,所述第一PDCP SN列表指所述原基站向所述目标基站转发的MBS业务数据的PDCP SN列表。
这里,第一PDCP SN列表的首个PDCP SN为第一PDCP SN,第一PDCP SN列表的最后一个PDCP SN为第二PDCP SN。其中,第二PDCP SN=第一PDCP SN+第一数量。
步骤703:所述源基站向所述目标基站转发MBS业务数据,以及向终端设备发送切换命令,所述切换命令用于触发所述终端设备从所述原基站切换至所述目标基站,并接收所述目标基站按照单播方式发送的MBS业务数据以及按照多播方式发送的MBS业务数据。
本申请实施例中,所述源基站在所述第一隧道标识指示的隧道上向所述目标基站转发MBS业务数据,这里,所述原基站向所述目标基站转发的MBS业务数据的PDCP SN列表为所述第一PDCP SN列表。此外,所述源基站向终端设备发送切换命令。这里,需要说明的是,原基站向目标基站转发MBS业务数据的步骤和向终端设备发送切换命令的步骤不限制执行先后顺序。
本申请实施例中,所述目标基站接收原基站转发的MBS业务数据,可以是:所述目标基站接收原基站转发的PDCP PDU,所述PDCP PDU携带SN和MBS业务数据。
本申请实施例中,可选地,所述切换命令携带第五指示信息,所述第五指示信息用于指示所述终端设备同时接收所述目标基站按照单播方式发送的MBS业务数据和按照多播方式发送的MBS业务数据。
本申请实施例中,终端设备接收到原基站发送的切换命令后,从原基站切换至目标基站,即发起向目标基站的随机接入过程。终端设备向目标基站发送切换完成消息,所述目标基站接收到所述终端设备发送的切换完成消息后,按照单播方式将所述原基站转发的MBS业务数据发送给终端设备,这里,所述目标基站按照单播方式发送的MBS业务数据是指来自所述源基站转发的MBS业务数据。终端设备基于切换命令中的第五指示信息接收目标基站按照单播方式发送的MBS业务数据以及目标基站按照多播方式发送的MBS业务数据。
需要说明的是,终端设备在切换过程中,PDCP层的接收窗口及其变量保持和切换前一样,直到在终端设备在目标基站侧接收到新的MBS业务数据才重置接收窗口和/或接收窗口的变量。也就是说,接收窗口和接收窗口的变量不会在切换过程中重置或者改变。
本申请实施例中,上述方案中的接收窗口是指PDCP层的接收窗口。
图9是本申请实施例提供的MBS业务的传输方法的流程示意图四,UE对应于本申请实施例的终端设备,如图9所示,所述MBS业务的传输方法包括以下步骤:
UE在原基站处于RRC连接态,通过单播方式或者多播方式在空口上接收原基站下发的MBS业务数据。其中,从核心网(例如UPF)到原基站的用于发送MBS业务数据的GTP隧道可以是共享的GTP隧道(即共享的GTP隧道1)也可以是UE专用的GTP隧道(即单播的GTP隧道)。共享的GTP隧道是指从UPF到基站传输一个MBS业务的MBS业务数据,在基站处分别按照单播方式和多播方式在空口上传输该MBS业务数据。基于图8所示的网络架构,原基站将将来自核心网的MBS业务数据(即PDCP PDU)通过GTP隧道转发给目标基站。
步骤901:原基站做判决切换,向目标基站发送切换请求消息,所述切换请求消息携带UE在原小区正在接收的MBS业务的相关信息和第一PDCP SN。
这里,可选地,原基站可以基于UE上报的测量结果做判决切换。
这里,可选地,UE在原小区正在接收的MBS业务的相关信息包括以下至少之一:MBS TMGI、MBS session id、MBS物理信道的配置信息、MBS逻辑信道的配置信息。
这里,第一PDCP SN为UE在原基站接收到的最后一个MBS业务数据的PDCP SN或者下一个要接收的MBS业务数据的PDCP SN。
步骤902:目标基站根据第一PDCP SN,判断是否需要原基站转发MBS业务数据。
具体地,目标基站根据第一PDCP SN确定该第一PDCP SN对应的MBS业务数据还没有在目标基站发送,则不需要原基站转发MBS业务数据,否则需要原基站转发MBS业务数据。
如果目标基站判断需要原基站转发MBS业务数据,则目标基站为原基站分配用于原基站向目标基站转发MBS业务数据的GTP隧道标识。进一步,目标基站还根据当前内存中的MBS业务数据的 PDCP SN或当前正在发送的MBS业务数据的PDCP SN,判断需要转发哪些PDCP SN(即第一PDCP SN列表)的MBS业务数据,或者判断转发第一PDCP SN之后的多少个PDCP SN(即第一数值)对应的MBS业务数据。
步骤903:目标基站回复切换确认消息,所述切换确认消息携带目标基站分配的用于原基站向目标基站转发MBS业务数据的GTP隧道标识。
进一步,可选地,所述回复切换确认消息还携带一个指示信息,该指示信息用于指示需要转发的MBS业务数据的PDCP SN,例如指示从第一PDCP SN开始的N个PDCP SN,N为正整数。例如指示一个PDCP SN列表。
步骤904.1:原基站在GTP隧道标识指示的GTP隧道上转发MBS业务数据给目标基站。
这里,GTP隧道上转发的MBS业务数据可以是:PDCP PDU。其中,PDCP PDU携带MBS业务数据和SN。
步骤904.2:原基站向UE发送切换命令。
这里,所述切换命令在NR系统中为RRC重配置(RRCReconfiguration)消息。
需要说明的是,步骤904.1和步骤9034.2不限定先后顺序。
进一步,所述切换命令携带一个指示信息,所述指示信息用于指示UE在目标基站同时接收单播方式的MBS业务和多播方式的MBS业务。
步骤905:UE收到切换命令之后向目标基站发起随机接入过程,并向目标基站发送切换完成消息。
这里,在NR系统中,切换完成消息为RRC重配置完成(RRCReconfigurationComplete)消息。
UE在切换过程中,PDCP层的接收窗口及其变量保持和切换前一样,直到在UE在目标基站侧接收到新的MBS业务数据才重置接收窗口和/或接收窗口的变量。也就是说,接收窗口和接收窗口的变量不会在切换过程中重置或者改变。
步骤906:目标基站按照单播方式发送原基站转发的MBS业务数据给UE。
步骤907:目标基站按照多播方式发送MBS业务数据给UE。
需要说明的是,上述步骤906和步骤907可以同时执行,UE根据切换命令中的指示信息,同时接收单播方式的MBS业务数据和多播方式的MBS业务数据。
本申请实施例的技术方案中,在移动性过程中,目标基站基于原基站的辅助判断是否触发原基站进行MBS业务数据的转发以及转发的MBS业务数据有哪些。基于网络侧(即原基站)控制UE是否在目标基站侧同时接收多播方式的MBS业务数据和单播方式的MBS业务数据来实现业务接收的连续性和可靠性。
图10是本申请实施例提供的MBS业务的传输方法的流程示意图五,如图10所示,所述MBS业务的传输方法包括以下步骤:
步骤1001:终端设备接收原基站发送的切换命令,从所述源基站切换至目标基站。
本申请实施例中,考虑到终端设备的移动性场景,终端设备可能会从一个基站(即原基站)切换到另一个基站(即目标基站)。例如:原基站为原gNB(Source gNB),目标基站为目标gNB(Target gNB)。
本申请实施例中,所述原基站侧的MBS业务数据由核心网通过第一隧道发送给所述原基站,所述目标基站侧的MBS业务数据由所述原基站通过第二隧道发送给所述目标基站。也就是说,原基站通过第一隧道接收核心网发送的MBS业务数据,通过单播和/或多播方式下发该MBS业务数据。目标基站通过第二隧道接收原基站转发的来自核心网的MBS业务数据,通过单播和/或多播方式下发该MBS业务数据。原基站侧的MBS业务数据和目标基站侧的MBS业务数据存在不同步的情况。
本申请实施例中,所述原基站和所述目标基站可以采用以下其中一种网络架构:
1)DU和CU整合架构,具体地,所述原基站和所述目标基站具有独立的总协议栈,其中,所述总协议栈包括第一协议栈和第二协议栈,其中,所述第一协议栈指DU对应的协议栈,所述第二协议栈指CU对应的协议栈。
这里,DU对应的协议栈包括RLC层、MAC层、PHY层。CU对应的协议栈包括SDAP层、PDCP层。
参照图8,原基站具有一套总协议栈:SDAP层、PDCP层、RLC层、MAC层、PHY层。目标基站也有一套总协议栈:SDAP层、PDCP层、RLC层、MAC层、PHY层(图8没有示意出目标基站侧的SDAP层和PDCP层)。原基站的总协议栈和目标基站的目标基站是独立的。原基 站接收到核心网发送的MBS业务数据后,通过PDCP层复制一份发给目标基站的RLC层,原来的MBS业务数据发给自身(即原基站)的RLC层。
2)分布单元(DU)和集中单元(CU)分离架构,具体地,所述原基站和所述目标基站具有独立的第一协议栈,且具有共享的第二协议栈,其中,所述第一协议栈指分布单元DU对应的协议栈,所述第二协议栈指集中单元CU对应的协议栈。
这里,DU对应的协议栈包括RLC层、MAC层、PHY层。CU对应的协议栈包括SDAP层、PDCP层。DU和CU分离架构相对于DU和CU整合架构来说,原基站相当于原DU,目标基站相当于目标DU,原DU和目标DU连接同一CU。两个基站之间的信令,相当于两个DU之间的信令,进一步,两个DU之间的信令可以在两个DU之间直接传输,或者通过CU转发的方式间接传输。以下实施例大部分以DU和CU整合架构为网络背景进行说明,但DU和CU分离架构同样也适用于本申请实施例的技术方案。
本申请实施例中,在切换之前,终端设备可以按照多播方式或者单播方式接收原基站下发的MBS业务数据。
本申请实施例中,终端设备接收原基站发送的切换命令之前,所述原基站向目标基站发送切换请求消息,所述切换请求消息携带第一MBS业务的相关信息。所述原基站接收所述目标基站发送的切换请求确认消息。而后,终端设备接收原基站发送的切换命令。
上述方案中,可选地,所述第一MBS业务的相关信息包括以下至少之一:业务标识、会话标识、物理信道配置信息、逻辑信道配置信息。
这里,业务标识例如可以是MBS业务的MBS TMGI。
这里,会话标识是指MBS业务的MBS会话标识(MBS session id)。
这里,物理信道配置信息是指MBS业务的MBS物理信道的配置信息。
这里,逻辑信道配置信息是指MBS业务的MBS逻辑信道配的配置信息。
上述方案中,可选地,所述切换命令携带第七指示信息,所述第七指示信息用于指示所述终端设备是否向所述目标基站上报所述第二PDCP SN列表,这里,所述第二PDCP SN列表指所述原基站和所述目标基站之间的缺失的PDCP SN列表(即缺失的PDCP SN列表用于确定SN gap)。
步骤1002:所述终端设备向所述目标基站发送第六指示信息,所述第六指示信息用于指示第二PDCP SN列表,所述第二PDCP SN列表指所述原基站和所述目标基站之间的缺失的PDCP SN列表。
本申请实施例中,终端设备接收到原基站发送的切换命令后,从原基站切换至目标基站,即发起向目标基站的随机接入过程。终端设备向目标基站发送切换完成消息,所述切换完成消息携带所述第六指示信息,所述第六指示信息用于指示所述原基站和所述目标基站之间的缺失的PDCP SN列表。
步骤1003:所述终端设备接收目标基站按照单播方式发送的MBS业务数据以及按照多播方式发送的MBS业务数据。
本申请实施例中,目标基站接收到所述终端设备发送的切换完成消息后,按照单播方式向所述终端设备发送MBS业务数据,同时也按照多播方式向所述终端设备发送MBS业务数据。其中,所述目标基站按照单播方式发送的MBS业务数据基于所述第二PDCP SN列表确定。
需要说明的是,终端设备在切换过程中,PDCP层的接收窗口及其变量保持和切换前一样,直到在终端设备在目标基站侧接收到新的MBS业务数据才重置接收窗口和/或接收窗口的变量。也就是说,接收窗口和接收窗口的变量不会在切换过程中重置或者改变。
本申请实施例中,上述方案中的接收窗口是指PDCP层的接收窗口。
图11是本申请实施例提供的MBS业务的传输方法的流程示意图六,UE对应于本申请实施例的终端设备,如图11所示,所述MBS业务的传输方法包括以下步骤:
UE在原基站处于RRC连接态,通过单播方式或者多播方式在空口上接收原基站下发的MBS业务数据。其中,从核心网(例如UPF)到原基站的用于发送MBS业务数据的GTP隧道可以是共享的GTP隧道(即共享的GTP隧道1)也可以是UE专用的GTP隧道(即单播的GTP隧道)。共享的GTP隧道是指从UPF到基站传输一个MBS业务的MBS业务数据,在基站处分别按照单播方式和多播方式在空口上传输该MBS业务数据。基于图8所示的网络架构,原基站将将来自核心网的MBS业务数据(即PDCP PDU)通过GTP隧道转发给目标基站。
步骤1101:原基站做判决切换,向目标基站发送切换请求消息,所述切换请求消息携带UE在原小区正在接收的MBS业务的相关信息。
这里,可选地,原基站可以基于UE上报的测量结果做判决切换。
这里,可选地,UE在原小区正在接收的MBS业务的相关信息包括以下至少之一:MBS TMGI、MBS session id、MBS物理信道的配置信息、MBS逻辑信道的配置信息。
步骤1102:目标基站回复切换确认消息。
步骤1103:原基站向UE发送切换命令。
这里,所述切换命令在NR系统中为RRC重配置(RRCReconfiguration)消息。
进一步,所述切换命令携带一个指示信息,所述指示信息用于指示UE是否可以向目标基站上报原基站和目标基站之间PDCP PDU的gap,即原基站和目标基站之间缺失的PDCP SN列表。
步骤1104:UE收到切换命令之后向目标基站发起随机接入过程,并向目标基站发送切换完成消息。
这里,在NR系统中,切换完成消息为RRC重配置完成(RRCReconfigurationComplete)消息。
进一步,所述切换完成消息携带一个指示信息,所述指示信息用于指示原基站和目标基站之间缺失的PDCP SN列表。
UE在切换过程中,PDCP层的接收窗口及其变量保持和切换前一样,直到在UE在目标基站侧接收到新的MBS业务数据才重置接收窗口和/或接收窗口的变量。也就是说,接收窗口和接收窗口的变量不会在切换过程中重置或者改变。
步骤1105:目标基站按照单播方式发送缺失的PDCP SN列表对应的MBS业务数据给UE。
步骤1106:目标基站按照多播方式发送MBS业务数据给UE。
需要说明的是,上述步骤1105和步骤1106可以同时执行,UE同时接收单播方式的MBS业务数据和多播方式的MBS业务数据。
本申请实施例的技术方案中,在移动性过程中,基于网络侧(即原基站)控制UE上报缺失的PDCP SN列表,触发目标基站发送缺失的MBS业务数据,来实现业务接收的连续性和可靠性。
图12是本申请实施例提供的MBS业务的传输装置的结构组成示意图一,应用于目标基站,所述装置包括:
接收单元1201,用于接收原基站转发的MBS业务数据;
发送单元1202,用于按照单播方式将所述原基站转发的MBS业务数据发送给终端设备;向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备重置接收窗口,重置后的接收窗口用于所述终端设备按照多播方式接收所述目标基站发送的MBS业务数据。
在一可选方式中,所述接收单元1201,还用于接收所述原基站发送的切换请求消息,所述切换请求消息携带第一MBS业务的相关信息,所述第一MBS业务指所述终端设备在所述原基站接收的MBS业务;
所述发送单元1202,还用于向所述原基站发送切换请求确认消息,所述切换请求确认消息携带第一隧道标识,所述第一隧道标识用于所述原基站向所述目标基站转发MBS业务数据。
在一可选方式中,所述第一MBS业务的相关信息包括以下至少之一:业务标识、会话标识、物理信道配置信息、逻辑信道配置信息。
在一可选方式中,所述接收单元1201,用于接收原基站转发的PDCP SDU和SN,所述PDCPSDU携带MBS业务数据;或者,接收原基站转发的PDCP PDU,所述PDCP PDU携带SN和MBS业务数据;或者,接收原基站转发的IP数据包和SN,所述IP数据包携带MBS业务数据;或者,接收原基站转发的SDAP SDU和SN,所述SDAP SDU携带MBS业务数据;或者,接收原基站转发的IP数据包,所述IP数据包携带MBS业务数据。
在一可选方式中,所述接收单元1201接收原基站转发的IP数据包的情况下,所述装置还包括:
处理单元(图中未示出),用于给所述转发的MBS业务数据添加PDCP SN,该添加的PDCP SN基于多播方式传输的MBS业务数据的PDCP SN确定。
在一可选方式中,所述添加的PDCP SN基于多播方式传输给所述终端设备的第一个MBS业务数据的PDCP SN和所述转发的MBS业务数据的总数确定。
在一可选方式中,所述接收单元1201接收原基站转发的IP数据包的情况下,所述装置还包括:
处理单元,用于给所述转发的MBS业务数据添加PDCP SN,该添加的PDCP SN从初始值开始设置。
在一可选方式中,所述发送单元1202向所述终端设备发送第一指示信息的时刻位于第一时刻之后且位于第二时刻之前,所述第一时刻指所述终端设备接收完单播方式的MBS业务数据的 时刻,所述第二时刻指所述终端设备开始接收组播方式的MBS业务数据的时刻。
在一可选方式中,所述装置还包括:
处理单元,用于判断所述原基站转发的MBS业务数据是否已经在所述目标基站侧的空口上传输;
所述发送单元1202,还用于若所述原基站转发的MBS业务数据还未在所述目标基站侧的空口上传输,则向所述原基站发送第二指示信息,所述第二指示信息用于指示所述原基站停止继续转发MBS业务数据。
在一可选方式中,所述装置还包括:
处理单元,用于判断所述目标基站的内存中是否存在所述原基站转发的MBS业务数据;
所述发送单元1202,还用于若所述目标基站的内存中存在所述原基站转发的MBS业务数据,则向所述原基站发送第二指示信息,所述第二指示信息用于指示所述原基站停止继续转发MBS业务数据。
在一可选方式中,所述接收单元1201,还用于接收到所述终端设备发送的切换完成消息。
在一可选方式中,所述第一指示信息还用于指示所述终端设备将重置前的接收窗口中的全部PDCP SDU递交至高层,所述重置前的接收窗口用于所述终端设备接收所述原基站侧的MBS业务数据,其中,所述原基站侧的MBS业务数据包括由所述原基站发送的MBS业务数据和/或由所述目标基站发送的来自所述原基站转发的MBS业务数据。
在一可选方式中,所述第一指示信息还用于指示所述终端设备将所述重置后的接收窗口的至少一个变量的取值更新为默认值。
在一可选方式中,所述第一指示信息承载在MAC CE中、或者PDCCH中、或者RRC信令中。
在一可选方式中,所述原基站侧的MBS业务数据由核心网通过第一隧道发送给所述原基站,所述目标基站侧的MBS业务数据由核心网通过第二隧道发送给所述目标基站。
本领域技术人员应当理解,本申请实施例的上述MBS业务的传输装置的相关描述可以参照本申请实施例的MBS业务的传输方法的相关描述进行理解。
图13是本申请实施例提供的MBS业务的传输装置的结构组成示意图二,应用于原基站,所述装置包括:
发送单元1301,用于向目标基站发送第一辅助信息,所述第一辅助信息用于所述目标基站确定是否需要所述原基站转发MBS业务数据给所述目标基站;
接收单元1302,用于接收所述目标基站发送的第三指示信息,所述第三指示信息用于指示所述源基站转发MBS业务数据给所述目标基站;
所述发送单元1301,还用于向所述目标基站转发MBS业务数据,以及向终端设备发送切换命令,所述切换命令用于触发所述终端设备从所述原基站切换至所述目标基站,并接收所述目标基站按照单播方式发送的MBS业务数据以及按照多播方式发送的MBS业务数据。
在一可选方式中,所述发送单元1301,用于向目标基站发送切换请求消息,所述切换请求消息携带第一MBS业务的相关信息和所述第一辅助信息,所述第一MBS业务指所述终端设备在所述原基站接收的MBS业务。
在一可选方式中,所述第一MBS业务的相关信息包括以下至少之一:业务标识、会话标识、物理信道配置信息、逻辑信道配置信息。
在一可选方式中,所述第一辅助信息用于确定第一PDCP SN,所述第一PDCP SN为所述原基站向所述终端设备发送的最后一个MBS业务数据的PDCP SN或者下一个要发送的MBS业务数据的PDCP SN。
在一可选方式中,所述第一PDCP SN和所述目标基站的内存中存在的MBS业务数据的PDCP SN用于所述目标基站确定是否需要所述原基站转发MBS业务数据给所述目标基站;或者,
所述第一PDCP SN和所述目标基站正在发送的MBS业务数据的PDCP SN用于所述目标基站确定是否需要所述原基站转发MBS业务数据给所述目标基站。
在一可选方式中,所述第一PDCP SN和所述目标基站正在发送的MBS业务数据的PDCP SN用于所述目标基站确定所述原基站向所述目标基站转发的MBS业务数据的第一PDCP SN列表。
在一可选方式中,所述接收单元1302,还用于接收所述目标基站发送的切换请求确认消息;其中,需要所述原基站转发MBS业务数据给所述目标基站的情况下,所述切换请求确认消息携带第一隧道标识,所述第一隧道标识用于所述原基站向所述目标基站转发MBS业务数据。
在一可选方式中,所述切换请求确认消息还携带第四指示信息,所述第四指示信息用于指示第一PDCP SN列表或者第一数量,所述第一数量和所述第一PDCP SN用于确定第一PDCP SN列表,所述第一PDCP SN列表指所述原基站向所述目标基站转发的MBS业务数据的PDCP SN列表。
在一可选方式中,所述切换命令携带第五指示信息,所述第五指示信息用于指示所述终端设备同时接收所述目标基站按照单播方式发送的MBS业务数据和按照多播方式发送的MBS业务数据。
在一可选方式中,所述目标基站按照单播方式发送的MBS业务数据是指来自所述源基站转发的MBS业务数据。
在一可选方式中,所述原基站侧的MBS业务数据由核心网通过第一隧道发送给所述原基站,所述目标基站侧的MBS业务数据由所述原基站通过第二隧道发送给所述目标基站。
在一可选方式中,所述原基站和所述目标基站具有独立的第一协议栈,且具有共享的第二协议栈,其中,所述第一协议栈指DU对应的协议栈,所述第二协议栈指CU对应的协议栈;或者,
所述原基站和所述目标基站具有独立的总协议栈,其中,所述总协议栈包括所述第一协议栈和所述第二协议栈。
本领域技术人员应当理解,本申请实施例的上述MBS业务的传输装置的相关描述可以参照本申请实施例的MBS业务的传输方法的相关描述进行理解。
图14是本申请实施例提供的MBS业务的传输装置的结构组成示意图三,应用于终端设备,所述装置包括:
接收单元1401,用于接收原基站发送的切换命令,从所述源基站切换至目标基站;
发送单元1402,用于向所述目标基站发送第六指示信息,所述第六指示信息用于指示第二PDCP SN列表,所述第二PDCP SN列表指所述原基站和所述目标基站之间的缺失的PDCP SN列表;
所述接收单元1401,还用于接收目标基站按照单播方式发送的MBS业务数据以及按照多播方式发送的MBS业务数据。
在一可选方式中,所述切换命令携带第七指示信息,所述第七指示信息用于指示所述终端设备是否向所述目标基站上报所述第二PDCP SN列表。
在一可选方式中,所述发送单元1402,用于向所述目标基站发送切换完成消息,所述切换完成消息携带所述第六指示信息。
在一可选方式中,所述目标基站按照单播方式发送的MBS业务数据基于所述第二PDCP SN列表确定。
在一可选方式中,所述原基站侧的MBS业务数据由核心网通过第一隧道发送给所述原基站,所述目标基站侧的MBS业务数据由所述原基站通过第二隧道发送给所述目标基站。
在一可选方式中,所述原基站和所述目标基站具有独立的第一协议栈,且具有共享的第二协议栈,其中,所述第一协议栈指DU对应的协议栈,所述第二协议栈指CU对应的协议栈;或者,
所述原基站和所述目标基站具有独立的总协议栈,其中,所述总协议栈包括所述第一协议栈和所述第二协议栈。
本领域技术人员应当理解,本申请实施例的上述MBS业务的传输装置的相关描述可以参照本申请实施例的MBS业务的传输方法的相关描述进行理解。
图15是本申请实施例提供的一种通信设备1500示意性结构图。该通信设备可以是终端设备,也可以是网络设备,图15所示的通信设备1500包括处理器1510,处理器1510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图15所示,通信设备1500还可以包括存储器1520。其中,处理器1510可以从存储器1520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1520可以是独立于处理器1510的一个单独的器件,也可以集成在处理器1510中。
可选地,如图15所示,通信设备1500还可以包括收发器1530,处理器1510可以控制该收发器1530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1530可以包括发射机和接收机。收发器1530还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1500具体可为本申请实施例的网络设备,并且该通信设备1500可以实现 本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1500具体可为本申请实施例的移动终端/终端设备,并且该通信设备1500可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图16是本申请实施例的芯片的示意性结构图。图16所示的芯片1600包括处理器1610,处理器1610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图16所示,芯片1600还可以包括存储器1620。其中,处理器1610可以从存储器1620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1620可以是独立于处理器1610的一个单独的器件,也可以集成在处理器1610中。
可选地,该芯片1600还可以包括输入接口1630。其中,处理器1610可以控制该输入接口1630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1600还可以包括输出接口1640。其中,处理器1610可以控制该输出接口1640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图17是本申请实施例提供的一种通信系统1700的示意性框图。如图17所示,该通信系统1700包括终端设备1710和网络设备1720。
其中,该终端设备1710可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1720可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (71)

  1. 一种多媒体多播服务MBS业务的传输方法,所述方法包括:
    目标基站接收原基站转发的MBS业务数据,所述目标基站按照单播方式将所述原基站转发的MBS业务数据发送给终端设备;
    所述目标基站向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备重置接收窗口,重置后的接收窗口用于所述终端设备按照多播方式接收所述目标基站发送的MBS业务数据。
  2. 根据权利要求1所述的方法,其中,所述目标基站接收原基站转发的MBS业务数据之前,所述方法还包括:
    所述目标基站接收所述原基站发送的切换请求消息,所述切换请求消息携带第一MBS业务的相关信息,所述第一MBS业务指所述终端设备在所述原基站接收的MBS业务;
    所述目标基站向所述原基站发送切换请求确认消息,所述切换请求确认消息携带第一隧道标识,所述第一隧道标识用于所述原基站向所述目标基站转发MBS业务数据。
  3. 根据权利要求2所述的方法,其中,所述第一MBS业务的相关信息包括以下至少之一:业务标识、会话标识、物理信道配置信息、逻辑信道配置信息。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述目标基站接收原基站转发的MBS业务数据,包括:
    所述目标基站接收原基站转发的分组数据汇聚协议PDCP业务数据单元SDU和序列号SN,所述PDCP SDU携带MBS业务数据;或者,
    所述目标基站接收原基站转发的PDCP协议数据单元PDU,所述PDCP PDU携带SN和MBS业务数据;或者,
    所述目标基站接收原基站转发的IP数据包和SN,所述IP数据包携带MBS业务数据;或者,
    所述目标基站接收原基站转发的业务数据适配协议SDAP SDU和SN,所述SDAP SDU携带MBS业务数据;或者,
    所述目标基站接收原基站转发的IP数据包,所述IP数据包携带MBS业务数据。
  5. 根据权利要求4所述的方法,其中,所述目标基站接收原基站转发的IP数据包的情况下,所述方法还包括:
    所述目标基站给所述转发的MBS业务数据添加PDCP SN,该添加的PDCP SN基于多播方式传输的MBS业务数据的PDCP SN确定。
  6. 根据权利要求5所述的方法,其中,所述添加的PDCP SN基于多播方式传输的MBS业务数据的PDCP SN确定,包括:
    所述添加的PDCP SN基于多播方式传输给所述终端设备的第一个MBS业务数据的PDCP SN和所述转发的MBS业务数据的总数确定。
  7. 根据权利要求4所述的方法,其中,所述目标基站接收原基站转发的IP数据包的情况下,所述方法还包括:
    所述目标基站给所述转发的MBS业务数据添加PDCP SN,该添加的PDCP SN从初始值开始设置。
  8. 根据权利要求7所述的方法,其中,所述目标基站向所述终端设备发送第一指示信息的时刻位于第一时刻之后且位于第二时刻之前,所述第一时刻指所述终端设备接收完单播方式的MBS业务数据的时刻,所述第二时刻指所述终端设备开始接收组播方式的MBS业务数据的时刻。
  9. 根据权利要求1至8中任一项所述的方法,其中,所述目标基站接收原基站转发的MBS业务数据之后,所述方法还包括:
    所述目标基站判断所述原基站转发的MBS业务数据是否已经在所述目标基站侧的空口上传输;
    若所述原基站转发的MBS业务数据还未在所述目标基站侧的空口上传输,则所述目标基站向所述原基站发送第二指示信息,所述第二指示信息用于指示所述原基站停止继续转发MBS业务数据。
  10. 根据权利要求1至8中任一项所述的方法,其中,所述目标基站接收原基站转发的MBS 业务数据之后,所述方法还包括:
    所述目标基站判断所述目标基站的内存中是否存在所述原基站转发的MBS业务数据;
    若所述目标基站的内存中存在所述原基站转发的MBS业务数据,则所述目标基站向所述原基站发送第二指示信息,所述第二指示信息用于指示所述原基站停止继续转发MBS业务数据。
  11. 根据权利要求1至10中任一项所述的方法,其中,所述目标基站按照单播方式将所述原基站转发的MBS业务数据发送给终端设备,包括:
    所述目标基站接收到所述终端设备发送的切换完成消息后,按照单播方式将所述原基站转发的MBS业务数据发送给终端设备。
  12. 根据权利要求1至11中任一项所述的方法,其中,所述第一指示信息还用于指示所述终端设备将重置前的接收窗口中的全部PDCP SDU递交至高层,所述重置前的接收窗口用于所述终端设备接收所述原基站侧的MBS业务数据,其中,所述原基站侧的MBS业务数据包括由所述原基站发送的MBS业务数据和/或由所述目标基站发送的来自所述原基站转发的MBS业务数据。
  13. 根据权利要求1至12中任一项所述的方法,其中,所述第一指示信息还用于指示所述终端设备将所述重置后的接收窗口的至少一个变量的取值更新为默认值。
  14. 根据权利要求1至13中任一项所述的方法,其中,所述第一指示信息承载在媒体接入控制控制单元MAC CE中、或者物理下行控制信道PDCCH中、或者无线资源控制RRC信令中。
  15. 根据权利要求1至14中任一项所述的方法,其中,所述原基站侧的MBS业务数据由核心网通过第一隧道发送给所述原基站,所述目标基站侧的MBS业务数据由核心网通过第二隧道发送给所述目标基站。
  16. 一种MBS业务的传输方法,所述方法包括:
    原基站向目标基站发送第一辅助信息,所述第一辅助信息用于所述目标基站确定是否需要所述原基站转发MBS业务数据给所述目标基站;
    所述源基站接收所述目标基站发送的第三指示信息,所述第三指示信息用于指示所述源基站转发MBS业务数据给所述目标基站;
    所述源基站向所述目标基站转发MBS业务数据,以及向终端设备发送切换命令,所述切换命令用于触发所述终端设备从所述原基站切换至所述目标基站,并接收所述目标基站按照单播方式发送的MBS业务数据以及按照多播方式发送的MBS业务数据。
  17. 根据权利要求16所述的方法,其中,所述原基站向目标基站发送第一辅助信息,包括:
    所述原基站向目标基站发送切换请求消息,所述切换请求消息携带第一MBS业务的相关信息和所述第一辅助信息,所述第一MBS业务指所述终端设备在所述原基站接收的MBS业务。
  18. 根据权利要求17所述的方法,其中,所述第一MBS业务的相关信息包括以下至少之一:业务标识、会话标识、物理信道配置信息、逻辑信道配置信息。
  19. 根据权利要求16至18中任一项所述的方法,其中,所述第一辅助信息用于确定第一PDCP SN,所述第一PDCP SN为所述原基站向所述终端设备发送的最后一个MBS业务数据的PDCP SN或者下一个要发送的MBS业务数据的PDCP SN。
  20. 根据权利要求19所述的方法,其中,
    所述第一PDCP SN和所述目标基站的内存中存在的MBS业务数据的PDCP SN用于所述目标基站确定是否需要所述原基站转发MBS业务数据给所述目标基站;或者,
    所述第一PDCP SN和所述目标基站正在发送的MBS业务数据的PDCP SN用于所述目标基站确定是否需要所述原基站转发MBS业务数据给所述目标基站。
  21. 根据权利要求20所述的方法,其中,所述第一PDCP SN和所述目标基站正在发送的MBS业务数据的PDCP SN用于所述目标基站确定所述原基站向所述目标基站转发的MBS业务数据的第一PDCP SN列表。
  22. 根据权利要求21所述的方法,其中,所述方法还包括:
    所述原基站接收所述目标基站发送的切换请求确认消息;其中,需要所述原基站转发MBS业务数据给所述目标基站的情况下,所述切换请求确认消息携带第一隧道标识,所述第一隧道标识用于所述原基站向所述目标基站转发MBS业务数据。
  23. 根据权利要求22所述的方法,其中,所述切换请求确认消息还携带第四指示信息,所述第四指示信息用于指示第一PDCP SN列表或者第一数量,所述第一数量和所述第一PDCP SN用于确定第一PDCP SN列表,所述第一PDCP SN列表指所述原基站向所述目标基站转发的MBS业务数据的PDCP SN列表。
  24. 根据权利要求16至23中任一项所述的方法,其中,所述切换命令携带第五指示信息,所述第五指示信息用于指示所述终端设备同时接收所述目标基站按照单播方式发送的MBS业务数据和按照多播方式发送的MBS业务数据。
  25. 根据权利要求16至24中任一项所述的方法,其中,所述目标基站按照单播方式发送的MBS业务数据是指来自所述源基站转发的MBS业务数据。
  26. 根据权利要求16至25中任一项所述的方法,其中,所述原基站侧的MBS业务数据由核心网通过第一隧道发送给所述原基站,所述目标基站侧的MBS业务数据由所述原基站通过第二隧道发送给所述目标基站。
  27. 根据权利要求16至26中任一项所述的方法,其中,
    所述原基站和所述目标基站具有独立的第一协议栈,且具有共享的第二协议栈,其中,所述第一协议栈指分布单元DU对应的协议栈,所述第二协议栈指集中单元CU对应的协议栈;或者,
    所述原基站和所述目标基站具有独立的总协议栈,其中,所述总协议栈包括所述第一协议栈和所述第二协议栈。
  28. 一种MBS业务的传输方法,所述方法包括:
    终端设备接收原基站发送的切换命令,从所述源基站切换至目标基站;
    所述终端设备向所述目标基站发送第六指示信息,所述第六指示信息用于指示第二PDCP SN列表,所述第二PDCP SN列表指所述原基站和所述目标基站之间的缺失的PDCP SN列表;
    所述终端设备接收目标基站按照单播方式发送的MBS业务数据以及按照多播方式发送的MBS业务数据。
  29. 根据权利要求28所述的方法,其中,所述切换命令携带第七指示信息,所述第七指示信息用于指示所述终端设备是否向所述目标基站上报所述第二PDCP SN列表。
  30. 根据权利要求28或29所述的方法,其中,所述终端设备向所述目标基站发送第六指示信息,包括:
    所述终端设备向所述目标基站发送切换完成消息,所述切换完成消息携带所述第六指示信息。
  31. 根据权利要求28至30中任一项所述的方法,其中,所述目标基站按照单播方式发送的MBS业务数据基于所述第二PDCP SN列表确定。
  32. 根据权利要求28至31中任一项所述的方法,其中,所述原基站侧的MBS业务数据由核心网通过第一隧道发送给所述原基站,所述目标基站侧的MBS业务数据由所述原基站通过第二隧道发送给所述目标基站。
  33. 根据权利要求28至32中任一项所述的方法,其中,
    所述原基站和所述目标基站具有独立的第一协议栈,且具有共享的第二协议栈,其中,所述第一协议栈指DU对应的协议栈,所述第二协议栈指CU对应的协议栈;或者,
    所述原基站和所述目标基站具有独立的总协议栈,其中,所述总协议栈包括所述第一协议栈和所述第二协议栈。
  34. 一种MBS业务的传输装置,应用于目标基站,所述装置包括:
    接收单元,用于接收原基站转发的MBS业务数据;
    发送单元,用于按照单播方式将所述原基站转发的MBS业务数据发送给终端设备;向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备重置接收窗口,重置后的接收窗口用于所述终端设备按照多播方式接收所述目标基站发送的MBS业务数据。
  35. 根据权利要求34所述的装置,其中,
    所述接收单元,还用于接收所述原基站发送的切换请求消息,所述切换请求消息携带第一MBS业务的相关信息,所述第一MBS业务指所述终端设备在所述原基站接收的MBS业务;
    所述发送单元,还用于向所述原基站发送切换请求确认消息,所述切换请求确认消息携带第一隧道标识,所述第一隧道标识用于所述原基站向所述目标基站转发MBS业务数据。
  36. 根据权利要求35所述的装置,其中,所述第一MBS业务的相关信息包括以下至少之一:业务标识、会话标识、物理信道配置信息、逻辑信道配置信息。
  37. 根据权利要求34至36中任一项所述的装置,其中,所述接收单元,用于接收原基站转发的PDCP SDU和SN,所述PDCP SDU携带MBS业务数据;或者,接收原基站转发的PDCP PDU,所述PDCP PDU携带SN和MBS业务数据;或者,接收原基站转发的IP数据包和SN,所述IP数据包携带MBS业务数据;或者,接收原基站转发的SDAP SDU和SN,所述SDAP SDU携带 MBS业务数据;或者,接收原基站转发的IP数据包,所述IP数据包携带MBS业务数据。
  38. 根据权利要求37所述的装置,其中,所述接收单元接收原基站转发的IP数据包的情况下,所述装置还包括:
    处理单元,用于给所述转发的MBS业务数据添加PDCP SN,该添加的PDCP SN基于多播方式传输的MBS业务数据的PDCP SN确定。
  39. 根据权利要求38所述的装置,其中,所述添加的PDCP SN基于多播方式传输给所述终端设备的第一个MBS业务数据的PDCP SN和所述转发的MBS业务数据的总数确定。
  40. 根据权利要求37所述的装置,其中,所述接收单元接收原基站转发的IP数据包的情况下,所述装置还包括:
    处理单元,用于给所述转发的MBS业务数据添加PDCP SN,该添加的PDCP SN从初始值开始设置。
  41. 根据权利要求40所述的装置,其中,所述发送单元向所述终端设备发送第一指示信息的时刻位于第一时刻之后且位于第二时刻之前,所述第一时刻指所述终端设备接收完单播方式的MBS业务数据的时刻,所述第二时刻指所述终端设备开始接收组播方式的MBS业务数据的时刻。
  42. 根据权利要求34至41中任一项所述的装置,其中,所述装置还包括:
    处理单元,用于判断所述原基站转发的MBS业务数据是否已经在所述目标基站侧的空口上传输;
    所述发送单元,还用于若所述原基站转发的MBS业务数据还未在所述目标基站侧的空口上传输,则向所述原基站发送第二指示信息,所述第二指示信息用于指示所述原基站停止继续转发MBS业务数据。
  43. 根据权利要求34至41中任一项所述的装置,其中,所述装置还包括:
    处理单元,用于判断所述目标基站的内存中是否存在所述原基站转发的MBS业务数据;
    所述发送单元,还用于若所述目标基站的内存中存在所述原基站转发的MBS业务数据,则向所述原基站发送第二指示信息,所述第二指示信息用于指示所述原基站停止继续转发MBS业务数据。
  44. 根据权利要求34至43中任一项所述的装置,其中,所述接收单元,还用于接收到所述终端设备发送的切换完成消息。
  45. 根据权利要求34至44中任一项所述的装置,其中,所述第一指示信息还用于指示所述终端设备将重置前的接收窗口中的全部PDCP SDU递交至高层,所述重置前的接收窗口用于所述终端设备接收所述原基站侧的MBS业务数据,其中,所述原基站侧的MBS业务数据包括由所述原基站发送的MBS业务数据和/或由所述目标基站发送的来自所述原基站转发的MBS业务数据。
  46. 根据权利要求34至45中任一项所述的装置,其中,所述第一指示信息还用于指示所述终端设备将所述重置后的接收窗口的至少一个变量的取值更新为默认值。
  47. 根据权利要求34至46中任一项所述的装置,其中,所述第一指示信息承载在MAC CE中、或者PDCCH中、或者RRC信令中。
  48. 根据权利要求34至47中任一项所述的装置,其中,所述原基站侧的MBS业务数据由核心网通过第一隧道发送给所述原基站,所述目标基站侧的MBS业务数据由核心网通过第二隧道发送给所述目标基站。
  49. 一种MBS业务的传输装置,应用于原基站,所述装置包括:
    发送单元,用于向目标基站发送第一辅助信息,所述第一辅助信息用于所述目标基站确定是否需要所述原基站转发MBS业务数据给所述目标基站;
    接收单元,用于接收所述目标基站发送的第三指示信息,所述第三指示信息用于指示所述源基站转发MBS业务数据给所述目标基站;
    所述发送单元,还用于向所述目标基站转发MBS业务数据,以及向终端设备发送切换命令,所述切换命令用于触发所述终端设备从所述原基站切换至所述目标基站,并接收所述目标基站按照单播方式发送的MBS业务数据以及按照多播方式发送的MBS业务数据。
  50. 根据权利要求49所述的装置,其中,所述发送单元,用于向目标基站发送切换请求消息,所述切换请求消息携带第一MBS业务的相关信息和所述第一辅助信息,所述第一MBS业务指所述终端设备在所述原基站接收的MBS业务。
  51. 根据权利要求50所述的装置,其中,所述第一MBS业务的相关信息包括以下至少之一:业务标识、会话标识、物理信道配置信息、逻辑信道配置信息。
  52. 根据权利要求49至51中任一项所述的装置,其中,所述第一辅助信息用于确定第一PDCP SN,所述第一PDCP SN为所述原基站向所述终端设备发送的最后一个MBS业务数据的PDCP SN或者下一个要发送的MBS业务数据的PDCP SN。
  53. 根据权利要求52所述的装置,其中,
    所述第一PDCP SN和所述目标基站的内存中存在的MBS业务数据的PDCP SN用于所述目标基站确定是否需要所述原基站转发MBS业务数据给所述目标基站;或者,
    所述第一PDCP SN和所述目标基站正在发送的MBS业务数据的PDCP SN用于所述目标基站确定是否需要所述原基站转发MBS业务数据给所述目标基站。
  54. 根据权利要求53所述的装置,其中,所述第一PDCP SN和所述目标基站正在发送的MBS业务数据的PDCP SN用于所述目标基站确定所述原基站向所述目标基站转发的MBS业务数据的第一PDCP SN列表。
  55. 根据权利要求54所述的装置,其中,所述接收单元,还用于接收所述目标基站发送的切换请求确认消息;其中,需要所述原基站转发MBS业务数据给所述目标基站的情况下,所述切换请求确认消息携带第一隧道标识,所述第一隧道标识用于所述原基站向所述目标基站转发MBS业务数据。
  56. 根据权利要求55所述的装置,其中,所述切换请求确认消息还携带第四指示信息,所述第四指示信息用于指示第一PDCP SN列表或者第一数量,所述第一数量和所述第一PDCP SN用于确定第一PDCP SN列表,所述第一PDCP SN列表指所述原基站向所述目标基站转发的MBS业务数据的PDCP SN列表。
  57. 根据权利要求49至56中任一项所述的装置,其中,所述切换命令携带第五指示信息,所述第五指示信息用于指示所述终端设备同时接收所述目标基站按照单播方式发送的MBS业务数据和按照多播方式发送的MBS业务数据。
  58. 根据权利要求49至57中任一项所述的装置,其中,所述目标基站按照单播方式发送的MBS业务数据是指来自所述源基站转发的MBS业务数据。
  59. 根据权利要求49至58中任一项所述的装置,其中,所述原基站侧的MBS业务数据由核心网通过第一隧道发送给所述原基站,所述目标基站侧的MBS业务数据由所述原基站通过第二隧道发送给所述目标基站。
  60. 根据权利要求49至59中任一项所述的装置,其中,
    所述原基站和所述目标基站具有独立的第一协议栈,且具有共享的第二协议栈,其中,所述第一协议栈指DU对应的协议栈,所述第二协议栈指CU对应的协议栈;或者,
    所述原基站和所述目标基站具有独立的总协议栈,其中,所述总协议栈包括所述第一协议栈和所述第二协议栈。
  61. 一种MBS业务的传输装置,应用于终端设备,所述装置包括:
    接收单元,用于接收原基站发送的切换命令,从所述源基站切换至目标基站;
    发送单元,用于向所述目标基站发送第六指示信息,所述第六指示信息用于指示第二PDCP SN列表,所述第二PDCP SN列表指所述原基站和所述目标基站之间的缺失的PDCP SN列表;
    所述接收单元,还用于接收目标基站按照单播方式发送的MBS业务数据以及按照多播方式发送的MBS业务数据。
  62. 根据权利要求61所述的装置,其中,所述切换命令携带第七指示信息,所述第七指示信息用于指示所述终端设备是否向所述目标基站上报所述第二PDCP SN列表。
  63. 根据权利要求61或62所述的装置,其中,所述发送单元,用于向所述目标基站发送切换完成消息,所述切换完成消息携带所述第六指示信息。
  64. 根据权利要求61至63中任一项所述的装置,其中,所述目标基站按照单播方式发送的MBS业务数据基于所述第二PDCP SN列表确定。
  65. 根据权利要求61至64中任一项所述的装置,其中,所述原基站侧的MBS业务数据由核心网通过第一隧道发送给所述原基站,所述目标基站侧的MBS业务数据由所述原基站通过第二隧道发送给所述目标基站。
  66. 根据权利要求61至65中任一项所述的装置,其中,
    所述原基站和所述目标基站具有独立的第一协议栈,且具有共享的第二协议栈,其中,所述第一协议栈指DU对应的协议栈,所述第二协议栈指CU对应的协议栈;或者,
    所述原基站和所述目标基站具有独立的总协议栈,其中,所述总协议栈包括所述第一协议栈 和所述第二协议栈。
  67. 一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至15中任一项所述的方法、或者权利要求16至27中任一项所述的方法、或者权利要求28至33中任一项所述的方法。
  68. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至15中任一项所述的方法、或者权利要求16至27中任一项所述的方法、或者权利要求28至33中任一项所述的方法。
  69. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至15中任一项所述的方法、或者权利要求16至27中任一项所述的方法、或者权利要求28至33中任一项所述的方法。
  70. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至15中任一项所述的方法、或者权利要求16至27中任一项所述的方法、或者权利要求28至33中任一项所述的方法。
  71. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至15中任一项所述的方法、或者权利要求16至27中任一项所述的方法、或者权利要求28至33中任一项所述的方法。
PCT/CN2020/105924 2020-07-30 2020-07-30 一种mbs业务的传输方法及装置、通信设备 WO2022021235A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080101102.6A CN115668994A (zh) 2020-07-30 2020-07-30 一种mbs业务的传输方法及装置、通信设备
CN202310505913.8A CN116546443A (zh) 2020-07-30 2020-07-30 一种mbs业务的传输方法及装置、通信设备
PCT/CN2020/105924 WO2022021235A1 (zh) 2020-07-30 2020-07-30 一种mbs业务的传输方法及装置、通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/105924 WO2022021235A1 (zh) 2020-07-30 2020-07-30 一种mbs业务的传输方法及装置、通信设备

Publications (1)

Publication Number Publication Date
WO2022021235A1 true WO2022021235A1 (zh) 2022-02-03

Family

ID=80037408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105924 WO2022021235A1 (zh) 2020-07-30 2020-07-30 一种mbs业务的传输方法及装置、通信设备

Country Status (2)

Country Link
CN (2) CN115668994A (zh)
WO (1) WO2022021235A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291462A (zh) * 2007-02-15 2008-10-22 华为技术有限公司 多播广播系统中终端移动的方法和相关终端
CN101400028A (zh) * 2007-09-29 2009-04-01 鼎桥通信技术有限公司 一种小区切换方法及装置
CN103535093A (zh) * 2011-03-17 2014-01-22 高通股份有限公司 针对多媒体广播多播服务连续性的目标小区选择
CN104602344A (zh) * 2013-10-30 2015-05-06 电信科学技术研究院 一种组通信信息通知方法及设备
WO2015080407A1 (en) * 2013-11-29 2015-06-04 Lg Electronics Inc. Method and apparatus for transmitting unicast request indication in wireless communication system
CN104918204A (zh) * 2015-03-17 2015-09-16 华中科技大学 一种lte中的单播多播转换控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291462A (zh) * 2007-02-15 2008-10-22 华为技术有限公司 多播广播系统中终端移动的方法和相关终端
CN101400028A (zh) * 2007-09-29 2009-04-01 鼎桥通信技术有限公司 一种小区切换方法及装置
CN103535093A (zh) * 2011-03-17 2014-01-22 高通股份有限公司 针对多媒体广播多播服务连续性的目标小区选择
CN104602344A (zh) * 2013-10-30 2015-05-06 电信科学技术研究院 一种组通信信息通知方法及设备
WO2015080407A1 (en) * 2013-11-29 2015-06-04 Lg Electronics Inc. Method and apparatus for transmitting unicast request indication in wireless communication system
CN104918204A (zh) * 2015-03-17 2015-09-16 华中科技大学 一种lte中的单播多播转换控制方法

Also Published As

Publication number Publication date
CN116546443A (zh) 2023-08-04
CN115668994A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
WO2021142647A1 (zh) 一种业务传输方法及装置、终端设备、网络设备
WO2021056152A1 (zh) 一种信息配置方法及装置、终端设备、网络设备
CN113661722B (zh) 一种业务数据传输方法及装置、网络设备、终端设备
WO2021056155A1 (zh) 一种反馈资源配置方法及通信方法、装置、通信设备
CN114008952A (zh) 一种窗口调整方法及装置、网络设备、终端设备
US20230361923A1 (en) Mbs service configuration method and terminal device
WO2022006849A1 (zh) Mbs业务的tci状态管理方法及装置、终端设备
WO2022006875A1 (zh) 建立mbs业务的方法及装置、终端设备、网络设备
WO2021051312A1 (zh) 一种信息配置方法及装置、终端设备、网络设备
WO2022141545A1 (zh) 一种mcch调度传输方法及装置、终端设备
WO2022141088A1 (zh) 一种mbs业务的传输方法及装置、终端设备
WO2022120837A1 (zh) Mbs业务的半静态调度方法及装置、终端设备、网络设备
WO2021142646A1 (zh) 一种业务传输方法及装置、通信设备
WO2022021235A1 (zh) 一种mbs业务的传输方法及装置、通信设备
WO2021051321A1 (zh) 一种业务数据传输方法及装置、终端设备
WO2022006888A1 (zh) 一种mbs业务的接收方法及装置、终端设备
WO2022165720A1 (zh) 提高mbs业务可靠性的方法及装置、终端设备、网络设备
WO2022198415A1 (zh) 提高mbs业务可靠性的方法及装置、终端设备、网络设备
WO2022056859A1 (zh) Mbs业务传输进度的控制方法及装置、通信设备
WO2022226937A1 (zh) 一种mbs寻呼方法及装置、网络设备、终端设备
WO2021189458A1 (zh) 一种数据转发方法及装置、通信设备
WO2022021410A1 (zh) 一种mbs业务传输方法及装置、终端设备、网络设备
WO2022141255A1 (zh) 一种mbs业务的配置方法及装置、网络设备、终端设备
WO2022021024A1 (zh) 一种bwp切换的方法及装置、终端设备
WO2022205454A1 (zh) 一种指示寻呼的方法及装置、终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947690

Country of ref document: EP

Kind code of ref document: A1