WO2023272619A1 - 一种传输方式的确定方法及装置、终端设备、网络设备 - Google Patents

一种传输方式的确定方法及装置、终端设备、网络设备 Download PDF

Info

Publication number
WO2023272619A1
WO2023272619A1 PCT/CN2021/103727 CN2021103727W WO2023272619A1 WO 2023272619 A1 WO2023272619 A1 WO 2023272619A1 CN 2021103727 W CN2021103727 W CN 2021103727W WO 2023272619 A1 WO2023272619 A1 WO 2023272619A1
Authority
WO
WIPO (PCT)
Prior art keywords
rnti
transmission mode
mbs
mbs service
signaling
Prior art date
Application number
PCT/CN2021/103727
Other languages
English (en)
French (fr)
Inventor
王淑坤
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180095849.XA priority Critical patent/CN117063495A/zh
Priority to PCT/CN2021/103727 priority patent/WO2023272619A1/zh
Publication of WO2023272619A1 publication Critical patent/WO2023272619A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services

Definitions

  • the embodiments of the present application relate to the technical field of mobile communication, and specifically relate to a method and device for determining a transmission mode, a terminal device, and a network device.
  • the multicast broadcast service (Multicast Broadcast Service, MBS) service of the multicast type is supported.
  • the terminal device receives the multicast MBS service in a radio resource control (Radio Resource Control, RRC) connected state.
  • RRC Radio Resource Control
  • the terminal device can receive the multicast type MBS service in a point-to-multipoint (Point To MultiPoint, PTM) way or a point-to-point (Point To Point, PTP) way.
  • PTM Point To MultiPoint
  • PTP Point To Point
  • the transmission mode of the MBS service that is, the way the terminal device receives the MBS service
  • how the network device notifies the terminal device of the transmission mode of the MBS service is a problem that needs to be solved.
  • Embodiments of the present application provide a method and device for determining a transmission mode, a terminal device, a network device, a chip, a computer-readable storage medium, a computer program product, and a computer program.
  • the first terminal device receives the first signaling sent by the network device, the first signaling is used to determine the transmission mode of multiple terminal devices in the MBS group, and the transmission mode is PTP mode or PTM mode; wherein, the a plurality of terminal devices including the first terminal device;
  • the first terminal device determines a transmission mode of the first terminal device based on the first signaling, and receives the first MBS service according to the transmission mode of the first terminal device.
  • the network device sends the first signaling, the first signaling is used to determine the transmission mode of the multiple terminal devices in the MBS group, and the transmission mode is the PTP mode or the PTM mode.
  • the device for determining the transmission mode provided in the embodiment of the present application is applied to the first terminal device, and the device includes:
  • the receiving unit is configured to receive the first signaling sent by the network device, the first signaling is used to determine the transmission mode of multiple terminal devices in the multicast broadcast service MBS group, and the transmission mode is point-to-point PTP mode or point-to-point For a multipoint PTM method; wherein, the plurality of terminal devices include the first terminal device;
  • a determining unit configured to determine a transmission mode of the first terminal device based on the first signaling
  • the receiving unit is further configured to receive the first MBS service according to the transmission mode of the first terminal device.
  • the device for determining the transmission mode provided in the embodiment of the present application is applied to network equipment, and the device includes:
  • a sending unit configured to send a first signaling, where the first signaling is used to determine a transmission mode of multiple terminal devices in the MBS group, and the transmission mode is a PTP mode or a PTM mode.
  • the terminal device provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used for storing computer programs
  • the processor is used for invoking and running the computer programs stored in the memory to execute the above-mentioned method for determining the transmission mode.
  • the network device provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used for storing computer programs
  • the processor is used for invoking and running the computer programs stored in the memory to execute the above-mentioned method for determining the transmission mode.
  • the chip provided in the embodiment of the present application is used to implement the above method for determining the transmission mode.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the above method for determining the transmission mode.
  • the computer-readable storage medium provided by the embodiment of the present application is used for storing a computer program, and the computer program causes a computer to execute the above-mentioned method for determining a transmission mode.
  • the computer program product provided by the embodiment of the present application includes computer program instructions, and the computer program instructions cause the computer to execute the above method for determining the transmission mode.
  • the computer program provided by the embodiment of the present application when running on a computer, enables the computer to execute the above method for determining the transmission mode.
  • the network device indicates the transmission mode of multiple terminal devices in the MBS group through the first signaling, and the transmission mode is the PTP mode or the PTM mode, realizing the indication of the transmission mode for the group (that is, the MBS group)
  • the solution does not need to indicate the transmission mode for each terminal device separately, and achieves the purpose of saving signaling.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application
  • Fig. 2 is the schematic diagram of the protocol stack corresponding to the PTM mode and the PTP mode of the embodiment of the present application;
  • FIG. 3 is a schematic diagram of the transmission of the MBS service provided by the embodiment of the present application according to the PTM mode and the PTP mode;
  • FIG. 4 is a schematic flowchart of a method for determining a transmission mode provided in an embodiment of the present application
  • FIG. 5 is a schematic diagram of a first mapping relationship provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a second mapping relationship provided by an embodiment of the present application.
  • FIG. 7 is a first schematic diagram of a MAC CE provided by an embodiment of the present application.
  • FIG. 8 is a second schematic diagram of a MAC CE provided by an embodiment of the present application.
  • FIG. 9 is a first schematic diagram of the structural composition of the device for determining the transmission mode provided by the embodiment of the present application.
  • FIG. 10 is a second schematic diagram of the structural composition of the device for determining the transmission mode provided by the embodiment of the present application.
  • Fig. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • Fig. 13 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • a communication system 100 may include a terminal device 110 and a network device 120 .
  • the network device 120 may communicate with the terminal device 110 through an air interface. Multi-service transmission is supported between the terminal device 110 and the network device 120 .
  • the embodiment of the present application is only described by using the communication system 100 as an example, but the embodiment of the present application is not limited thereto. That is to say, the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: Long Term Evolution (Long Term Evolution, LTE) system, LTE Time Division Duplex (Time Division Duplex, TDD), Universal Mobile Communication System (Universal Mobile Telecommunication System, UMTS), Internet of Things (Internet of Things, IoT) system, Narrow Band Internet of Things (NB-IoT) system, enhanced Machine-Type Communications (eMTC) system, 5G communication system (also known as New Radio (NR) communication system), or future communication systems, etc.
  • LTE Long Term Evolution
  • LTE Time Division Duplex Time Division Duplex
  • TDD Time Division Duplex
  • Universal Mobile Telecommunication System Universal Mobile Telecommunication System
  • UMTS Universal Mobile Communication System
  • Internet of Things Internet of Things
  • NB-IoT Narrow Band Internet of Things
  • eMTC enhanced Machine-Type Communications
  • the network device 120 may be an access network device that communicates with the terminal device 110 .
  • the access network device can provide communication coverage for a specific geographical area, and can communicate with terminal devices 110 (such as UEs) located in the coverage area.
  • the network device 120 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (Long Term Evolution, LTE) system, or a Next Generation Radio Access Network (NG RAN) device, Either a base station (gNB) in the NR system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the network device 120 can be a relay station, an access point, a vehicle-mounted device, a wearable Devices, hubs, switches, bridges, routers, or network devices in the future evolution of the Public Land Mobile Network (Public Land Mobile Network, PLMN), etc.
  • Evolutional Node B, eNB or eNodeB in a Long Term Evolution (Long Term Evolution, LTE) system
  • NG RAN Next Generation Radio Access Network
  • gNB base station
  • CRAN Cloud Radio Access Network
  • the network device 120 can be a relay station, an access point, a vehicle-mounted device, a wear
  • the terminal device 110 may be any terminal device, including but not limited to a terminal device connected to the network device 120 or other terminal devices by wire or wirelessly.
  • the terminal equipment 110 may refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, user agent, or user device.
  • Access terminals can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, IoT devices, satellite handheld terminals, Wireless Local Loop (WLL) stations, Personal Digital Assistant , PDA), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolution networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device 110 can be used for device-to-device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the wireless communication system 100 may also include a core network device 130 that communicates with the base station.
  • the core network device 130 may be a 5G core network (5G Core, 5GC) device, for example, Access and Mobility Management Function (Access and Mobility Management Function , AMF), and for example, authentication server function (Authentication Server Function, AUSF), and for example, user plane function (User Plane Function, UPF), and for example, session management function (Session Management Function, SMF).
  • the core network device 130 may also be a packet core evolution (Evolved Packet Core, EPC) device of the LTE network, for example, a data gateway (Session Management Function+Core Packet Gateway, SMF+PGW- C) equipment.
  • EPC packet core evolution
  • SMF+PGW-C can realize the functions of SMF and PGW-C at the same time.
  • the above-mentioned core network equipment may be called by other names, or a new network entity may be formed by dividing functions of the core network, which is not limited in this embodiment of the present application.
  • Various functional units in the communication system 100 may also establish a connection through a next generation network (next generation, NG) interface to implement communication.
  • NG next generation network
  • the terminal device establishes an air interface connection with the access network device through the NR interface to transmit user plane data and control plane signaling; the terminal device can establish a control plane signaling connection with the AMF through the NG interface 1 (N1 for short); access Network equipment such as the next generation wireless access base station (gNB), can establish a user plane data connection with UPF through NG interface 3 (abbreviated as N3); access network equipment can establish control plane signaling with AMF through NG interface 2 (abbreviated as N2) connection; UPF can establish a control plane signaling connection with SMF through NG interface 4 (abbreviated as N4); UPF can exchange user plane data with the data network through NG interface 6 (abbreviated as N6); AMF can communicate with SMF through NG interface 11 (abbreviated as N11) The SMF establishes a control plane signaling connection; the SMF may establish a control plane signaling connection with the PCF through an NG interface 7 (N7 for short).
  • gNB next generation wireless access base station
  • Figure 1 exemplarily shows a base station, a core network device, and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and each base station may include other numbers of terminals within the coverage area.
  • the device is not limited in the embodiment of this application.
  • FIG. 1 is only an illustration of a system applicable to this application, and of course, the method shown in the embodiment of this application may also be applicable to other systems.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is just an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B can mean: A exists alone, A and B exist simultaneously, and there exists alone B these three situations.
  • the character "/" in this article generally indicates that the contextual objects are an "or” relationship.
  • the "indication” mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • A indicates B, which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the "correspondence” mentioned in the embodiments of the present application may mean that there is a direct correspondence or an indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated. , configuration and configured relationship.
  • the "predefined” or “predefined rules” mentioned in the embodiments of this application can be used by pre-saving corresponding codes, tables or other It is implemented by indicating related information, and this application does not limit the specific implementation.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, and this application does not limit this .
  • 5G 3rd Generation Partnership Project
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra-Reliable Low-Latency Communications
  • mMTC Massive Machine-Type Communications
  • eMBB still aims at users obtaining multimedia content, services and data, and its demand is growing rapidly.
  • eMBB may be deployed in different scenarios, such as indoors, urban areas, and rural areas, the capabilities and requirements vary greatly, so it cannot be generalized, and detailed analysis must be combined with specific deployment scenarios.
  • Typical applications of URLLC include: industrial automation, electric power automation, telemedicine operation (surgery), traffic safety guarantee, etc.
  • the typical characteristics of mMTC include: high connection density, small data volume, delay-insensitive services, low cost and long service life of modules, etc.
  • NR In the early deployment of NR, it is difficult to obtain complete NR coverage, so the typical network coverage is wide-area LTE coverage and NR island coverage mode. Moreover, a large number of LTE deployments are below 6GHz, and there is very little spectrum below 6GHz that can be used for 5G. Therefore, NR must study the spectrum application above 6GHz, while the coverage of high frequency bands is limited and the signal fades quickly. At the same time, in order to protect mobile operators' early investment in LTE, a tight interworking working mode between LTE and NR is proposed.
  • RRC Radio Resource Control
  • RRC_IDLE state (referred to as idle (idle) state): Mobility is UE-based cell selection and reselection, paging is initiated by the core network (Core Network, CN), and the paging area is configured by the CN. There is no UE context and no RRC connection at the base station side.
  • RRC_CONNECTED state (connected state for short): there is an RRC connection, and UE context exists on the base station side and the UE side.
  • the network side knows the location of the UE at the specific cell level. Mobility is mobility controlled by the network side. Unicast data can be transmitted between the UE and the base station.
  • Mobility is UE-based cell selection and reselection, there is a connection between CN-NR, UE context exists on a certain base station, paging is triggered by RAN, based on The paging area of the RAN is managed by the RAN, and the network side knows the location of the UE based on the paging area level of the RAN.
  • MBMS Multimedia Broadcast Multicast Service
  • MBMS is a technology that transmits data from one data source to multiple terminal devices by sharing network resources. This technology can effectively use network resources while providing multimedia services, and realize broadcasting of multimedia services at a higher rate (such as 256kbps) and multicast.
  • 3GPP clearly proposed to enhance the ability to support downlink high-speed MBMS services, and determined the design requirements for the physical layer and air interface.
  • eMBMS evolved MBMS
  • eMBMS evolved MBMS
  • MBSFN Single Frequency Network
  • MBSFN uses a unified frequency to transmit service data in all cells at the same time, but To ensure the synchronization between cells. This method can greatly improve the overall signal-to-noise ratio distribution of the cell, and the spectrum efficiency will also be greatly improved accordingly.
  • eMBMS implements broadcast and multicast of services based on the IP multicast protocol.
  • MBMS In LTE or LTE-Advanced (LTE-Advanced, LTE-A), MBMS only has a broadcast bearer mode, but no multicast bearer mode. In addition, the reception of MBMS service is applicable to terminal equipments in idle state or connected state.
  • 3GPP R13 introduced the concept of Single Cell Point To Multiploint (SC-PTM), and SC-PTM is based on the MBMS network architecture.
  • MBMS introduces new logical channels, including Single Cell-Multicast Control Channel (Single Cell-Multicast Control Channel, SC-MCCH) and Single Cell-Multicast Transport Channel (Single Cell-Multicast Transport Channel, SC-MTCH).
  • SC-MCCH and SC-MTCH are mapped to the downlink shared channel (Downlink-Shared Channel, DL-SCH), and further, DL-SCH is mapped to the physical downlink shared channel (Physical Downlink Shared Channel, PDSCH), wherein, SC - MCCH and SC-MTCH belong to logical channels, DL-SCH belongs to transport channels, and PDSCH belongs to physical channels.
  • SC-MCCH and SC-MTCH do not support Hybrid Automatic Repeat reQuest (HARQ) operation.
  • HARQ Hybrid Automatic Repeat reQuest
  • SIB20 System Information Block
  • SIB20 is used to transmit SC-MCCH configuration information, and one cell has only one SC-MCCH.
  • the SC-MCCH configuration information includes: SC-MCCH modification period, SC-MCCH repetition period, and information such as radio frames and subframes for scheduling SC-MCCH.
  • the SC-MCCH is scheduled through a Physical Downlink Control Channel (PDCCH).
  • a new radio network temporary identity Radio Network Tempory Identity, RNTI
  • RNTI Radio Network Tempory Identity
  • SC-RNTI Single Cell RNTI
  • the fixed value of SC-RNTI is FFFC.
  • a new RNTI is introduced, that is, a single cell notification RNTI (Single Cell Notification RNTI, SC-N-RNTI) to identify the PDCCH used to indicate the change notification of the SC-MCCH (such as notifying the PDCCH).
  • the SC The fixed value of -N-RNTI is FFFB; further, one of the 8 bits (bits) of DCI 1C can be used to indicate the change notification.
  • SC-PTM configuration information is based on SC-MCCH configured by SIB20, and then SC-MCCH configures SC-MTCH, and SC-MTCH is used to transmit service data.
  • the SC-MCCH only transmits one message (that is, SCPTMConfiguration), which is used to configure configuration information of the SC-PTM.
  • the configuration information of SC-PTM includes: temporary mobile group identity (Temporary Mobile Group Identity, TMGI), session identification (seession id), group RNTI (Group RNTI, G-RNTI), discontinuous reception (Discontinuous Reception, DRX) configuration information And the SC-PTM service information of the neighboring cell, etc.
  • TMGI Temporal Mobile Group Identity
  • TMGI Temporal Mobile Group Identity
  • session identification seession id
  • group RNTI Group RNTI, G-RNTI
  • discontinuous reception Discontinuous Reception, DRX
  • SC-PTM service information of the neighboring cell etc.
  • SC-PTM in R13 does not support Robust Header Compression (Robust Header Compression, ROHC) function.
  • the downlink discontinuous reception of SC-PTM is controlled by the following parameters: onDurationTimerSCPTM, drx-InactivityTimerSCPTM, SC-MTCH-SchedulingCycle, and SC-MTCH-SchedulingOffset.
  • the downlink SC-PTM service is received only when the timer onDurationTimerSCPTM or drx-InactivityTimerSCPTM is running.
  • SC-PTM business continuity adopts the concept of MBMS business continuity based on SIB15, that is, "SIB15+MBMSInterestIndication" mode.
  • SIB15 MBMS business continuity
  • the service continuity of terminal equipment in idle state is based on the concept of frequency priority.
  • the multicast-type MBS service refers to the MBS service transmitted in a multicast manner.
  • the broadcast-type MBS service refers to the MBS service transmitted by broadcasting.
  • the MBS service is sent to all terminal devices in a certain group.
  • the terminal equipment receives the multicast type MBS service in the RRC connection state, and the terminal equipment can receive the multicast type MBS service data through the PTM mode or the PTP mode.
  • the MBS service data in the PTM mode scrambles the corresponding scheduling information through the G-RNTI configured on the network side
  • the MBS service data in the PTP mode scrambles the corresponding scheduling information through the C-RNTI.
  • the base station can deliver the MBS service to all terminal devices in a group through the air interface.
  • the base station may deliver the MBS service to all terminal devices in a group through PTP and/or PTM.
  • a group includes Terminal 1, Terminal 2, and Terminal 3.
  • the base station can deliver the MBS service to Terminal 1 through PTP, deliver the MBS service to Terminal 2 through PTP, and deliver the MBS
  • the service is delivered to terminal equipment 3; or, the base station can deliver the MBS service to terminal equipment 1 through PTP, and the MBS service can be delivered to terminal equipment 2 and terminal equipment 3 through PTM; or, the base station can deliver the MBS service to terminal equipment 3 through PTM.
  • the MBS service is delivered to terminal device 1, terminal device 2 and terminal device 3.
  • a shared GTP tunnel (Shared GTP tunnel) is used between the core network and the base station to transmit MBS services, that is, both the PTM MBS service and the PTP MBS service share the GTP tunnel.
  • the base station delivers MBS service data to UE1 and UE2 in a PTM manner, and delivers MBS service data to UE3 in a PTP manner.
  • a terminal device receives MBS services through PTM, but when the signal quality of the terminal device is not good, or there are few users receiving the MBS service in the cell, the network device will decide to send the MBS service to the terminal device through PTP , correspondingly, the terminal device receives the MBS service sent by the network device through PTP.
  • the network equipment will notify the terminal equipment to deactivate the PTM mode. After the terminal equipment deactivates the PTM mode, it will stop monitoring the scheduling information of the MBS service scrambled by G-RNTI, and then stop receiving the MBS service in the PTM mode. . How the network equipment notifies the terminal equipment about the transmission mode of the MBS service is a problem to be solved. To this end, the following technical solutions of the embodiments of the present application are proposed.
  • a link corresponding to the "PTP mode” may be called a "PTP link”
  • a link corresponding to the "PTM mode” may be called a "PTM link”.
  • Fig. 4 is a schematic flowchart of a method for determining a transmission mode provided in an embodiment of the present application. As shown in Fig. 4, the method for determining a transmission mode includes the following steps:
  • Step 401 the network device sends a first signaling, and the first terminal device receives the first signaling sent by the network device, the first signaling is used to determine the transmission mode of multiple terminal devices in the multicast broadcast service MBS group,
  • the transmission mode is a point-to-point PTP mode or a point-to-multipoint PTM mode; wherein, the plurality of terminal devices include the first terminal device.
  • Step 402 The first terminal device determines a transmission mode of the first terminal device based on the first signaling, and receives a first MBS service according to the transmission mode of the first terminal device.
  • the network device may be, but not limited to, a base station.
  • the first signaling may also be referred to as a transmission mode activation and deactivation command.
  • the first signaling may be called a PTM activation and deactivation command, and the PTM activation and deactivation command is used to deactivate the PTM mode and/or activate the PTM mode.
  • the first signaling may be called a PTP activation and deactivation command, and the PTP activation and deactivation command is used to deactivate the PTP mode and/or activate the PTP mode.
  • the first signaling is used to indicate the transmission mode of each terminal device in the MBS group corresponding to the first MBS service.
  • the first signaling is used to indicate a transmission mode of an MBS group corresponding to at least one MBS service, the at least one MBS service includes the first MBS service, and the transmission mode of the MBS group is used to determine the MBS The transmission mode of all terminal devices in the group. It is described below.
  • the first signaling is used to indicate the transmission mode of each terminal device in the MBS group corresponding to the first MBS service.
  • the network device may respectively indicate the transmission modes of the multiple terminal devices through the first signaling, and the transmission modes of the multiple terminal devices may be different.
  • the first signaling carries first information
  • the first information is a first bitmap
  • the first bitmap includes a plurality of bits
  • the plurality of bits are related to the
  • the multiple terminal devices in the MBS group corresponding to the first MBS service have a first correspondence, and the value of each bit in the multiple bits is used to indicate the transmission mode of the terminal device corresponding to the bit.
  • the MBS group corresponding to the first MBS service includes four terminal devices, which are terminal device 1, terminal device 2, terminal device 3, and terminal device 4, respectively.
  • the first bitmap includes 4 bits, and the 4 bits in the first bitmap have a first correspondence with the 4 terminal devices in the MBS group, where the first correspondence may be a one-to-one correspondence.
  • the value of the bit is used to indicate the transmission mode of the terminal device corresponding to the bit.
  • the value of the bit is 1 (or 0) to indicate that the transmission mode of the terminal device corresponding to the bit is PTP.
  • the value of the bit is 0 (or 1) to indicate that the transmission mode of the terminal device corresponding to the bit is the PTM mode.
  • a bit with a value of 1 (or 0) is used to indicate that the terminal device corresponding to the bit deactivates the PTM mode
  • a bit with a value of 0 (or 1) is used to indicate that the terminal corresponding to the bit The device activates the PTM mode.
  • a bit with a value of 1 (or 0) is used to indicate that the terminal device corresponding to the bit activates the PTP mode
  • a bit with a value of 0 (or 1) is used to indicate that the terminal device corresponding to the bit Deactivate the PTP mode.
  • the first correspondence is configured through RRC signaling; or, the first correspondence is stipulated in a protocol.
  • the plurality of bits are in one-to-one correspondence with the plurality of terminal devices according to the order of index from small to large; or, the plurality of bits are in order from The sequence from the high bit to the low bit is one-to-one corresponding to the order of the plurality of terminal devices according to the index from small to large.
  • the MBS group includes four terminal devices, which are terminal device 1, terminal device 2, terminal device 3, and terminal device 4, wherein the index of terminal device 1 is 1, and the index of terminal device 2 is 2. , the index of terminal device 3 is 3, and the index of terminal device 4 is 4.
  • the first bitmap includes 4 bits, and the order of the 4 bits from low order to high order corresponds to the 4 terminal devices in order of index from small to large.
  • the transmission mode of the terminal device 1 and the terminal device 4 is the PTP mode
  • the transmission mode of the terminal device 2 and the terminal device 3 is the PTM mode.
  • the first terminal device determines the first terminal device and the first bit map based on the index of the first terminal device and the first corresponding relationship. corresponding to the first bit; the first terminal device determines the transmission mode of the first terminal device based on the value of the first bit.
  • the first terminal device is terminal device 1, and terminal device 1 determines the lowest bit among the four bits corresponding to terminal device 1 based on its index and the first correspondence, and according to the value of the bit 1 It can be determined that the transmission mode of the terminal device 1 is the PTP mode.
  • the index of the first terminal device is configured through RRC signaling.
  • the first signaling is a first downlink control information (Downlink Control Information, DCI) or a first media access control (Media Access Control, MAC) control element (Control Element, CE). It is described below.
  • DCI Downlink Control Information
  • MAC Media Access Control
  • the first signaling is the first DCI.
  • the first DCI when the first signaling is the first DCI, the first DCI is scrambled by G-RNTI.
  • the G-RNTI is a G-RNTI used for MBS service scheduling.
  • the G-RNTI is used to scramble the scheduling information of the MBS service.
  • the G-RNTI is a G-RNTI dedicated to transmission mode indication.
  • the G-RNTI is a G-RNTI newly defined for the transmission mode indication, and the G-RNTI is dedicated to scrambling the transmission mode indication DCI.
  • the transmission mode indication DCI is the first DCI, and the transmission mode indication DCI may also be called PTM activation-deactivation DCI or PTP activation-deactivation DCI.
  • the G-RNTI dedicated to transmission mode indication may also be called N-G-RNTI, and this embodiment of the present application does not limit the name of the G-RNTI dedicated to transmission mode indication.
  • one G-RNTI may correspond to one MBS service (that is, different MBS services may correspond to different G-RNTIs), or, One G-RNTI can also correspond to multiple MBS services (that is, different MBS services can correspond to the same G-RNTI).
  • one G-RNTI may correspond to one MBS service, that is, different G-RNTIs may correspond to different MBS services.
  • the first signaling is the first MAC CE.
  • the first signaling is the first MAC CE
  • the first MAC CE corresponds to the first LCID
  • the first LCID is used to indicate that the type of the first MAC CE is Indicates the MAC CE of the transport.
  • the scheduling information corresponding to the first MAC CE is scrambled by G-RNTI.
  • the G-RNTI is a G-RNTI used for MBS service scheduling.
  • the G-RNTI is used to scramble the scheduling information of the MBS service.
  • the G-RNTI is a G-RNTI dedicated to transmission mode indication.
  • the G-RNTI is a G-RNTI newly defined for the transmission mode indication, and the G-RNTI is dedicated to scrambling the transmission mode indication MAC CE, where the transmission mode indication MAC CE is the first MAC CE,
  • the transmission mode indication MAC CE can also be called PTM activation and deactivation MAC CE or PTP activation and deactivation MAC CE.
  • the G-RNTI dedicated to transmission mode indication may also be called N-G-RNTI, and this embodiment of the present application does not limit the name of the G-RNTI dedicated to transmission mode indication.
  • one G-RNTI may correspond to one MBS service (that is, different MBS services may correspond to different G-RNTIs), or, One G-RNTI can also correspond to multiple MBS services (that is, different MBS services can correspond to the same G-RNTI).
  • one G-RNTI may correspond to one MBS service, that is, different G-RNTIs may correspond to different MBS services.
  • the first MBS service indicated by the first MAC CE is determined based on the G-RNTI corresponding to the first MAC CE.
  • the indication information of the first MBS service is an MBS index corresponding to the first MBS service.
  • the MBS index of each MBS service in the multiple MBS services is configured through RRC signaling.
  • the first signaling is used to indicate the transmission mode of the MBS group corresponding to at least one MBS service
  • the at least one MBS service includes the first MBS service
  • the transmission mode of the MBS group is used for Determine the transmission modes of all terminal devices in the MBS group.
  • the network device may indicate the transmission mode of the MBS group corresponding to one or more MBS services through the first signaling, and for one MBS group, the transmission modes of all terminal devices in the MBS group are the same
  • the transmission method is the same.
  • the transmission modes of the MBS groups corresponding to different MBS services may be different.
  • the first signaling is a paging message or a second DCI or a second MAC CE. It is described below.
  • the first signaling is a paging message.
  • the first signaling is a paging message
  • the paging message is used to indicate the transmission mode of the MBS group corresponding to the first MBS service.
  • the first MBS service indicated by the paging message is determined based on an MBS session identifier of the first MBS service carried in the paging message.
  • the transmission mode indicated by the paging message is configured through system broadcast; or, the transmission mode indicated by the paging message is stipulated in a protocol.
  • the first signaling is the second DCI.
  • the second DCI is scrambled by G-RNTI.
  • the G-RNTI is a G-RNTI used for MBS service scheduling.
  • the G-RNTI is used to scramble the scheduling information of the MBS service.
  • the G-RNTI is a G-RNTI dedicated to transmission mode indication.
  • the G-RNTI is a G-RNTI newly defined for the transmission mode indication, and the G-RNTI is dedicated to scrambling the transmission mode indication DCI.
  • the transmission mode indication DCI is the second DCI, and the transmission mode indication DCI may also be called PTM activation-deactivation DCI or PTP activation-deactivation DCI.
  • the G-RNTI dedicated to transmission mode indication may also be called N-G-RNTI, and this embodiment of the present application does not limit the name of the G-RNTI dedicated to transmission mode indication.
  • one G-RNTI may correspond to one MBS service (that is, different MBS services may correspond to different G-RNTIs), or, One G-RNTI can also correspond to multiple MBS services (that is, different MBS services can correspond to the same G-RNTI).
  • one G-RNTI may correspond to one MBS service, that is, different G-RNTIs may correspond to different MBS services.
  • one MBS service indicated by the second DCI is determined based on the G-RNTI corresponding to the second DCI, and the one MBS service is the first MBS service.
  • the transmission mode indicated by the second DCI is determined based on the second information carried in the second DCI; or, the transmission mode indicated by the second DCI is configured through RRC signaling; or, the second DCI
  • the indicated transmission mode is stipulated by the protocol.
  • the second information is a first indication bit, and a value of the first indication bit is used to indicate a transmission mode corresponding to the first MBS service.
  • the transmission mode indicated by the second DCI is determined based on the second information carried in the second DCI; or, the transmission mode indicated by the second DCI is configured through RRC signaling; or, the second DCI
  • the indicated transmission mode is stipulated by the protocol.
  • the second information is a first indication bit, and a value of the first indication bit is used to indicate a transmission mode corresponding to the first MBS service.
  • the G-RNTI is a G-RNTI used for MBS service scheduling
  • the second DCI carries third information
  • the third information is The second bit map
  • the second bit map includes a plurality of bits
  • the plurality of bits have a second corresponding relationship with the plurality of MBS services
  • the selection of each bit in the plurality of bits The value is used to indicate the transmission mode of the MBS service corresponding to this bit.
  • the second correspondence is configured through RRC signaling; or, the second correspondence is stipulated in a protocol.
  • the second corresponding relationship is: the plurality of bits are in one-to-one correspondence with the plurality of MBS services in an order from low to high in order of indexes; or, The plurality of bits are in a one-to-one correspondence with the plurality of MBS services in ascending order of indexes from high to low.
  • one G-RNTI corresponds to four MBS services, namely MBS service 11, MBS service 12, MBS service 13 and MBS service 14, wherein the index of MBS service 11 is 11, and the index of MBS service 12 is is 12, the index of MBS service 13 is 13, and the index of MBS service 14 is 14.
  • the second bitmap includes 4 bits, and the sequence of the 4 bits from low to high corresponds to the 4 MBS services in ascending order of indexes.
  • the transmission modes of the MBS groups corresponding to the MBS service 11 and the MBS service 14 are both PTP mode
  • the transmission modes of the MBS groups corresponding to the MBS service 12 and MBS service 13 are both PTM mode.
  • the transmission mode of the MBS service refers to the transmission mode of the MBS group corresponding to the MBS
  • the transmission mode of the MBS group refers to the transmission mode of all terminal devices in the MBS group
  • the transmission mode of all terminal devices in the MBS group the same way.
  • the first signaling is the second MAC CE.
  • the scheduling information corresponding to the second MAC CE is scrambled through the G-RNTI.
  • the G-RNTI is a G-RNTI used for MBS service scheduling.
  • the G-RNTI is used to scramble the scheduling information of the MBS service.
  • the G-RNTI is a G-RNTI dedicated to transmission mode indication.
  • the G-RNTI is a G-RNTI newly defined for the transmission mode indication, and the G-RNTI is dedicated to scrambling the transmission mode indication MAC CE, where the transmission mode indication MAC CE is the second MAC CE,
  • the transmission mode indication MAC CE can also be called PTM activation and deactivation MAC CE or PTP activation and deactivation MAC CE.
  • the G-RNTI dedicated to transmission mode indication may also be called N-G-RNTI, and this embodiment of the present application does not limit the name of the G-RNTI dedicated to transmission mode indication.
  • one G-RNTI may correspond to one MBS service (that is, different MBS services may correspond to different G-RNTIs), or, One G-RNTI can also correspond to multiple MBS services (that is, different MBS services can correspond to the same G-RNTI).
  • one G-RNTI may correspond to one MBS service, that is, different G-RNTIs may correspond to different MBS services.
  • an MBS service indicated by the second MAC CE is determined based on a subheader containing a second LCID, and the second LCID is the The LCID corresponding to the second MAC CE, the one MBS service is the first MBS service.
  • the transmission mode indicated by the second MAC CE is determined based on the fourth information carried in the second MAC CE; or, the transmission mode indicated by the second MAC CE is configured through RRC signaling; or, the The transmission mode indicated by the second MAC CE is agreed upon in the protocol.
  • the fourth information is a second indication bit, and the value of the second indication bit is used to indicate the transmission mode corresponding to the first MBS service.
  • the transmission mode indicated by the second MAC CE is determined based on the fourth information carried in the second MAC CE; or, the transmission mode indicated by the second MAC CE is configured through RRC signaling; or, the The transmission mode indicated by the second MAC CE is agreed upon in the protocol.
  • the fourth information is a second indication bit, and the value of the second indication bit is used to indicate the transmission mode corresponding to the first MBS service.
  • the G-RNTI is a G-RNTI used for MBS service scheduling
  • the second MAC CE carries third information
  • the third information is a second bit map
  • the second bit map includes a plurality of bits
  • the plurality of bits have a second corresponding relationship with the plurality of MBS services
  • each bit in the plurality of bits The value is used to indicate the transmission mode of the MBS service corresponding to this bit.
  • the second correspondence is configured through RRC signaling; or, the second correspondence is stipulated in a protocol.
  • the second corresponding relationship is: the plurality of bits are in one-to-one correspondence with the plurality of MBS services in an order from low to high in order of indexes; or, The plurality of bits are in a one-to-one correspondence with the plurality of MBS services in ascending order of indexes from high to low.
  • the transmission mode of the MBS service refers to the transmission mode of the MBS group corresponding to the MBS
  • the transmission mode of the MBS group refers to the transmission mode of all terminal devices in the MBS group
  • the transmission mode of all terminal devices in the MBS group the same way.
  • the first terminal device receives the first MBS service in a PTM manner before receiving the first signaling; if the first terminal device determines that the first MBS service is based on the first signaling The transmission mode of a terminal device is the PTP mode, then the terminal device switches the transmission mode from the PTM mode to the PTP mode; wherein, the PTM mode is deactivated, and the PTP mode is activated; if the first terminal device is based on the first A signaling determines that the transmission mode of the first terminal device is the PTM mode, and then the terminal device keeps the transmission mode as the PTM mode.
  • the first terminal device receives the MBS service in a PTP manner before receiving the first signaling; if the first terminal device determines that the first terminal The transmission mode of the device is the PTM mode, then the terminal device switches the transmission mode from the PTP mode to the PTM mode; wherein, the PTP mode is deactivated, and the PTM mode is activated; if the first terminal device is based on the first signal If it is determined that the transmission mode of the first terminal device is the PTP mode, then the terminal device keeps the transmission mode as the PTP mode.
  • the network device can notify the first terminal device of the transmission mode of the MBS service.
  • the first terminal device before the first terminal device receives the first signaling sent by the network device, the first terminal device Sending a second signaling to the network device, the network device receiving the second signaling sent by the first terminal device, the second signaling is used to request the network device to transmit the transmission method of the first terminal device Switching from the first transmission mode to the second transmission mode; wherein, the second transmission mode is a PTP mode, and the first transmission mode is a PTM mode, or, the first transmission mode is a PTP mode, and the second The transmission mode is PTM mode.
  • the first terminal device sends the second signaling to the network device in a PTP manner or a unicast manner.
  • the second signaling carries at least one of the following: an MBS session identifier; request purpose indication information.
  • the request purpose indication information is used to indicate at least one of the following: the transmission mode requested by the first terminal device to switch is the second transmission mode; the second transmission mode suggested by the first terminal device Scheduling parameters corresponding to the second transmission mode.
  • the scheduling parameters include but are not limited to: TB size (TB size), modulation and demodulation strategy (MCS), etc.
  • the second signaling is MAC CE or RRC signaling.
  • the RRC signaling is RRC signaling carrying UE assistance information or defined RRC signaling.
  • the base station configures the index number of the first terminal device as 1 in the process of receiving the MBS service through RRC dedicated signaling, and the index number is unique within the MBS service in the cell covered by the base station.
  • the base station judges to switch the transmission mode of one or some terminal equipment units to the PTP mode.
  • the base station issues a first command, where the first command includes transmission mode indications of all terminal devices in the MBS group corresponding to the MBS service.
  • the first command carries a first bit map
  • the first bit map includes a plurality of bits
  • the plurality of bits are related to multiple terminals in the MBS group in order from low to high Devices correspond one-to-one according to the order of index from small to large.
  • the index assigned to the first terminal device is 3, then the third bit from the low bit to the high bit in the first bitmap is the bit corresponding to the first terminal device, and the value of this bit represents the first terminal Indicates the transmission mode corresponding to the device. If the value of the bit is 1, it means that the transmission mode of the first terminal device is the PTP mode.
  • the value of the bit is 1, which means that the first terminal device activates or switches to the PTP mode, and deactivates the PTM mode. . If the value of the bit is 0, it means that the transmission mode of the first terminal device is the PTM mode. In other words, the value of the bit is 0, which means that the first terminal device activates or switches to the PTM mode, and deactivates the PTP mode .
  • the values of the above bits can also be reversed.
  • the first bitmap can be carried in the MAC CE or in the DCI.
  • the DCI is scrambled by G-RNTI.
  • the G-RNTI can be the G-RNTI used for MBS service scheduling, or the G-RNTI can be dedicated to the transmission mode Indicated G-RNTI.
  • the G-RNTI may be the G-RNTI used for MBS service scheduling, or the G-RNTI may be the G-RNTI dedicated to the transmission mode indication.
  • the G-RNTI can be the G-RNTI used for MBS service scheduling, or the G-RNTI can also be the G-RNTI dedicated for transmission mode indication, if each G-RNTI corresponds to one MBS service , that is, each G-RNTI corresponds to an MBS session identifier, and the MAC CE does not need to include the MBS session identifier.
  • MAC CE includes a first bit map, and the first bit map includes 16 bits, corresponding to the indexes of 16 terminal devices, and the value of the bit is used to indicate the terminal device corresponding to the bit the transmission method.
  • the MAC CE also includes a length (Length) indication field, which is used to indicate the number of bits included in the first bitmap.
  • the G-RNTI may be the G-RNTI used for MBS service scheduling. If each G-RNTI corresponds to multiple MBS services, that is, each G-RNTI corresponds to multiple MBS session identifiers, then the MAC CE needs to contain the MBS session identifier, and the MBS session identifier is used to determine the MBS service of the first bitmap application. Considering that the MBS session identifier is too large, therefore, an MBS index (MBS index) allocated to each MBS service among multiple MBS services sharing one G-RNTI is configured for the first terminal device through RRC dedicated signaling, and in the MAC CE Contains the MBS index corresponding to the MBS session identifier.
  • MBS index MBS index
  • the MAC CE includes a first bit map, and the first bit map includes 16 bits, corresponding to the indexes of 16 terminal devices respectively, and the value of the bit is used to indicate the terminal device corresponding to the bit the transmission method.
  • the MAC CE also includes a length (Length) indication field, which is used to indicate the number of bits included in the first bitmap.
  • the MAC CE also includes an MBS index, which is used to indicate the MBS service applied by the first bitmap.
  • the base station For terminal equipment in the RRC connection state, the base station sends a paging message carrying an MBS session identifier, and the paging message is used to indicate that the transmission mode of all terminal equipment in the MBS group corresponding to the MBS service is PTP or PTM.
  • the transmission mode indicated by the paging message may be configured through agreement or through system broadcast.
  • the base station notifies all terminal devices in the MBS group corresponding to one or more MBS services of the transmission mode through the DCI.
  • the transmission mode may be PTM mode or PTM mode.
  • the DCI is scrambled by G-RNTI.
  • the G-RNTI may be the G-RNTI used for MBS service scheduling, or the G-RNTI may also be the G-RNTI dedicated for transmission mode indication. If a G-RNTI corresponds to an MBS service, that is, a G-RNTI corresponds to an MBS session identifier, then the DCI scrambled by the G-RNTI is used to indicate that the transmission mode of all terminal devices in the MBS group corresponding to the MBS service is PTM mode or PTP mode.
  • the transmission mode indicated by the DCI may be configured through RRC signaling, or determined through agreement or through an indication bit carried in the DCI.
  • a 1-bit indication bit is carried in the DCI, and the value of the indication bit is used to indicate the transmission mode.
  • the value of the indication bit is 1, which indicates the PTP mode, and the value of the indication bit, 0, indicates the PTM mode.
  • the value of the indicated bit can be reversed.
  • the G-RNTI may be the G-RNTI used for MBS service scheduling. If one G-RNTI corresponds to multiple MBS services, that is, one G-RNTI corresponds to multiple MBS session identifiers, then the DCI carries the first Two-bit map, the second bit map includes multiple bits, and the multiple bits correspond to multiple MBS services one by one, and the value of the bit is used to indicate all terminals in the MBS group corresponding to the MBS service corresponding to the bit
  • the transmission mode of the device for example, a bit value of 1 indicates a PTP mode, and a bit value of 0 indicates a PTM mode.
  • the value of the indicated bit can be reversed.
  • the correspondence between multiple bits in the second bitmap and multiple MBS services may be predetermined through a protocol or configured through RRC signaling.
  • the base station notifies the transmission mode of all terminal devices in the MBS group corresponding to one or more MBS services through the MAC CE.
  • the transmission mode can be PTM mode or PTM mode.
  • the scheduling information corresponding to the MAC CE is scrambled through the G-RNTI.
  • the G-RNTI may be the G-RNTI used for MBS service scheduling, or the G-RNTI may also be the G-RNTI dedicated for transmission mode indication. If a G-RNTI corresponds to an MBS service, that is, a G-RNTI corresponds to an MBS session identifier, then the subheader containing the LCID of the MAC CE is used to indicate the transmission mode of all terminal devices in the MBS group corresponding to the MBS service. PTM mode or PTP mode.
  • the transmission mode indicated by the MAC CE can be configured through RRC signaling, or determined through an agreement agreement or through an indication bit carried in the MAC CE.
  • a 1-bit indicator bit is carried in the MAC CE, and the value of the indicator bit is used to indicate the transmission mode.
  • the value of the indicator bit is 1 to indicate the PTP mode, and the value of the indicator bit to 0 indicates the PTM mode. The value of the indicated bit can be reversed.
  • the G-RNTI can be the G-RNTI used for MBS service scheduling. If one G-RNTI corresponds to multiple MBS services, that is, one G-RNTI corresponds to multiple MBS session identifiers, then the MAC CE carries The second bit map, the second bit map includes a plurality of bits, and the plurality of bits correspond to a plurality of MBS services one by one, and the value of the bit is used to indicate all the MBS groups corresponding to the MBS service corresponding to the bit.
  • the transmission mode of the terminal device for example, a bit value of 1 indicates a PTP mode, and a bit value of 0 indicates a PTM mode.
  • the value of the indicated bit can be reversed.
  • the correspondence between multiple bits in the second bitmap and multiple MBS services may be predetermined through a protocol or configured through RRC signaling.
  • the first terminal device judges that it needs to request the base station to deactivate the PTM mode (i.e. activate or switch to the PTP mode) or activate the PTM mode (i.e. activate or switch to the PTM mode), then the first terminal device sends to the base station in the PTP mode or unicast mode
  • the second signaling is used to instruct the network device to switch to the PTP mode or the PTM mode.
  • the second signaling includes an MBS session identifier and/or a request purpose indication
  • the request purpose indication is used to indicate at least one of the following: request switching to PTP mode, request switching To the PTM mode, the scheduling parameters corresponding to the suggested PTP mode, and the scheduling parameters corresponding to the suggested PTM mode.
  • the scheduling parameters include but are not limited to: TB size (TB size), modulation and demodulation strategy (MCS), etc.
  • the second signaling may be MAC CE or RRC signaling.
  • the RRC signaling may be newly defined RRC signaling or RRC signaling corresponding to UEAssistanceInformation.
  • the technical solution of the embodiment of the present application proposes a group-based (ie, MBS group) method of notifying whether the transmission mode of the MBS service is PTP or PTM, so as to achieve the purpose of saving signaling.
  • MBS group group-based (ie, MBS group) method of notifying whether the transmission mode of the MBS service is PTP or PTM, so as to achieve the purpose of saving signaling.
  • a scheme is proposed to assist the network side in judging whether the transmission mode of the terminal device is PTP or PTM based on the method requested by the terminal device, so that the transmission mode indicated by the network side is more in line with the expectations of the terminal device.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the order of execution of the processes should be determined by their functions and internal logic, and should not be used in this application.
  • the implementation of the examples constitutes no limitation.
  • the terms “downlink”, “uplink” and “sidelink” are used to indicate the transmission direction of signals or data, wherein “downlink” is used to indicate that the transmission direction of signals or data is sent from the station The first direction to the user equipment in the cell, “uplink” is used to indicate that the signal or data transmission direction is the second direction sent from the user equipment in the cell to the station, and “side line” is used to indicate that the signal or data transmission direction is A third direction sent from UE1 to UE2.
  • “downlink signal” indicates that the transmission direction of the signal is the first direction.
  • the term “and/or” is only an association relationship describing associated objects, indicating that there may be three relationships. Specifically, A and/or B may mean: A exists alone, A and B exist simultaneously, and B exists alone. In addition, the character "/" in this article generally indicates that the contextual objects are an "or” relationship.
  • Fig. 9 is a schematic diagram of the structure and composition of the device for determining the transmission mode provided by the embodiment of the present application. It is applied to a terminal device. As shown in Fig. 9, the device for determining the transmission mode includes:
  • the receiving unit 901 is configured to receive the first signaling sent by the network device, the first signaling is used to determine the transmission mode of multiple terminal devices in the multicast broadcast service MBS group, and the transmission mode is point-to-point PTP mode or Point-to-multipoint PTM mode; wherein, the plurality of terminal devices include the first terminal device;
  • a determining unit 902 configured to determine a transmission mode of the first terminal device based on the first signaling
  • the receiving unit 901 is further configured to receive the first MBS service according to the transmission mode of the first terminal device.
  • the first signaling is used to indicate the transmission mode of each terminal device in the MBS group corresponding to the first MBS service.
  • the first signaling carries first information
  • the first information is a first bitmap
  • the first bitmap includes a plurality of bits
  • the plurality of bits are related to the
  • the multiple terminal devices in the MBS group corresponding to the first MBS service have a first correspondence, and the value of each bit in the multiple bits is used to indicate the transmission mode of the terminal device corresponding to the bit.
  • the first correspondence is configured through radio resource control RRC signaling; or, the first correspondence is stipulated in a protocol.
  • the first correspondence is:
  • the plurality of bits are in one-to-one correspondence with the plurality of terminal devices in ascending order of indexes from low to high; or,
  • the multiple bits are in a one-to-one correspondence with the multiple terminal devices in ascending order of indexes from high to low.
  • the determining unit 902 is configured to determine, based on the index of the first terminal device and the first corresponding relationship, the first terminal device and the first bitmap in the first bitmap One bit corresponds; determine the transmission mode of the first terminal device based on the value of the first bit.
  • the index of the first terminal device is configured through RRC signaling.
  • the first signaling is first downlink control information DCI or first MAC CE.
  • the first signaling is the first DCI
  • the first DCI is scrambled by G-RNTI
  • the G-RNTI is the G-RNTI used for MBS service scheduling; or,
  • the G-RNTI is a G-RNTI dedicated for transmission mode indication.
  • the first signaling is a first MAC CE
  • the first MAC CE corresponds to a first logical channel identifier LCID
  • the first LCID is used to indicate that the first
  • the type of MAC CE is the MAC CE indicating the transmission mode.
  • the scheduling information corresponding to the first MAC CE is scrambled by G-RNTI;
  • the G-RNTI is the G-RNTI used for MBS service scheduling; or,
  • the G-RNTI is a G-RNTI dedicated for transmission mode indication.
  • the G-RNTI is a G-RNTI dedicated to transmission mode indication
  • the first MBS service indicated by the first MAC CE is determined based on the G-RNTI corresponding to the first MAC CE.
  • the G-RNTI is a G-RNTI used for MBS service scheduling
  • the first MBS service indicated by the first MAC CE is determined based on the G-RNTI corresponding to the first MAC CE;
  • the first MBS service indicated by the first MAC CE is determined based on the indication information of the first MBS service carried in the first MAC CE.
  • the indication information of the first MBS service is an MBS index corresponding to the first MBS service.
  • the MBS index of each MBS service in the multiple MBS services is configured through RRC signaling.
  • the first signaling is used to indicate a transmission mode of an MBS group corresponding to at least one MBS service
  • the at least one MBS service includes the first MBS service
  • the transmission mode of the MBS group It is used to determine the transmission mode of all terminal devices in the MBS group.
  • the first signaling is a paging message
  • the paging message is used to indicate a transmission mode of the MBS group corresponding to the first MBS service.
  • the first MBS service indicated by the paging message is determined based on an MBS session identifier of the first MBS service carried in the paging message.
  • the transmission mode indicated by the paging message is configured through system broadcast; or, the transmission mode indicated by the paging message is stipulated in a protocol.
  • the first signaling is the second DCI or the second MAC CE.
  • the second DCI is scrambled by G-RNTI
  • the G-RNTI is the G-RNTI used for MBS service scheduling; or,
  • the G-RNTI is a G-RNTI dedicated for transmission mode indication.
  • the G-RNTI is a G-RNTI dedicated to transmission mode indication
  • One MBS service indicated by the second DCI is determined based on the G-RNTI corresponding to the second DCI, and the one MBS service is the first MBS service.
  • the G-RNTI is a G-RNTI used for MBS service scheduling
  • one MBS service indicated by the second DCI is determined based on the G-RNTI corresponding to the first MAC CE, and the one MBS service is the first MBS service.
  • the transmission mode indicated by the second DCI is determined based on the second information carried in the second DCI; or, the transmission mode indicated by the second DCI is configured through RRC signaling; or , the transmission mode indicated by the second DCI is stipulated in the protocol.
  • the second information is a first indication bit
  • a value of the first indication bit is used to indicate a transmission mode corresponding to the first MBS service.
  • the G-RNTI is a G-RNTI used for MBS service scheduling
  • the second DCI carries third information
  • the third information is a second bit map
  • the second bit map includes multiple bits
  • the multiple bits The bit has a second corresponding relationship with the plurality of MBS services, and the value of each bit in the plurality of bits is used to indicate the transmission mode of the MBS service corresponding to the bit.
  • the scheduling information corresponding to the second MAC CE is scrambled by G-RNTI;
  • the G-RNTI is the G-RNTI used for MBS service scheduling; or,
  • the G-RNTI is a G-RNTI dedicated for transmission mode indication.
  • the G-RNTI is a G-RNTI dedicated to transmission mode indication
  • An MBS service indicated by the second MAC CE is determined based on a subheader including a second LCID, the second LCID is the LCID corresponding to the second MAC CE, and the one MBS service is the first MBS service.
  • the G-RNTI is a G-RNTI used for MBS service scheduling
  • the MBS service indicated by the second MAC CE is determined based on a subheader containing a second LCID, the second LCID is the LCID corresponding to the second MAC CE, and the One MBS service is the first MBS service.
  • the transmission mode indicated by the second MAC CE is determined based on the fourth information carried in the second MAC CE; or, the transmission mode indicated by the second MAC CE is performed through RRC signaling configuration; or, the transmission mode indicated by the second MAC CE is stipulated in the protocol.
  • the fourth information is a second indication bit, and a value of the second indication bit is used to indicate a transmission mode corresponding to the first MBS service.
  • the G-RNTI is a G-RNTI used for MBS service scheduling
  • the second MAC CE carries third information, the third information is a second bitmap, the second bitmap includes multiple bits, and the multiple The bit has a second corresponding relationship with the plurality of MBS services, and the value of each bit in the plurality of bits is used to indicate the transmission mode of the MBS service corresponding to the bit.
  • the second correspondence is configured through RRC signaling; or, the second correspondence is stipulated in a protocol.
  • the second corresponding relationship is:
  • the plurality of bits are in one-to-one correspondence with the plurality of MBS services in ascending order of indexes from low to high; or,
  • the plurality of bits are in a one-to-one correspondence with the plurality of MBS services in ascending order of indexes from high to low.
  • the G-RNTI when the G-RNTI is a G-RNTI dedicated for transmission mode indication, different G-RNTIs correspond to different MBS services.
  • the receiving unit 901 receives the first MBS service in a PTM manner before receiving the first signaling;
  • the apparatus further includes: a control unit, configured to switch the transmission mode from the PTM mode to the PTP mode if the determining unit 902 determines that the transmission mode of the first terminal device is the PTP mode based on the first signaling; Wherein, the PTM mode is deactivated, and the PTP mode is activated; if the determining unit 902 determines that the transmission mode of the first terminal device is the PTM mode based on the first signaling, then keep the transmission mode as the PTM mode.
  • a control unit configured to switch the transmission mode from the PTM mode to the PTP mode if the determining unit 902 determines that the transmission mode of the first terminal device is the PTP mode based on the first signaling; Wherein, the PTM mode is deactivated, and the PTP mode is activated; if the determining unit 902 determines that the transmission mode of the first terminal device is the PTM mode based on the first signaling, then keep the transmission mode as the PTM mode.
  • the receiving unit 901 receives the MBS service in a PTP manner before receiving the first signaling
  • the apparatus further includes: a control unit, configured to switch the transmission mode from the PTP mode to the PTM mode if the determining unit 902 determines that the transmission mode of the first terminal device is the PTM mode based on the first signaling; Wherein, the PTP mode is deactivated, and the PTM mode is activated; if the determining unit 902 determines that the transmission mode of the first terminal device is the PTP mode based on the first signaling, then keep the transmission mode as the PTP mode.
  • a control unit configured to switch the transmission mode from the PTP mode to the PTM mode if the determining unit 902 determines that the transmission mode of the first terminal device is the PTM mode based on the first signaling; Wherein, the PTP mode is deactivated, and the PTM mode is activated; if the determining unit 902 determines that the transmission mode of the first terminal device is the PTP mode based on the first signaling, then keep the transmission mode as the PTP mode.
  • the device also includes:
  • the sending unit 903 is configured to send a second signaling to the network device before the receiving unit 901 receives the first signaling sent by the network device, the second signaling is used to request the network device to transmit the
  • the transmission mode of the first terminal device is switched from the first transmission mode to the second transmission mode; wherein, the second transmission mode is the PTP mode, the first transmission mode is the PTM mode, or the first transmission mode is In a PTP mode, the second transmission mode is a PTM mode.
  • the sending unit 903 is configured to send the second signaling to the network device through PTP or unicast.
  • the second signaling carries at least one of the following:
  • the request purpose indication information is used to indicate at least one of the following:
  • the transmission mode that the first terminal device requests to switch is the second transmission mode
  • a scheduling parameter corresponding to the second transmission mode suggested by the first terminal device is a scheduling parameter corresponding to the second transmission mode suggested by the first terminal device.
  • the second signaling is MAC CE or RRC signaling.
  • the RRC signaling is RRC signaling carrying UE assistance information or defined RRC signaling.
  • FIG. 10 is a schematic diagram of the structure and composition of the device for determining the transmission mode provided by the embodiment of the present application. It is applied to network equipment. As shown in FIG. 10 , the device for determining the transmission mode includes:
  • the sending unit 1001 is configured to send a first signaling, where the first signaling is used to determine a transmission mode of multiple terminal devices in the MBS group, and the transmission mode is a PTP mode or a PTM mode.
  • the first signaling is used to indicate the transmission mode of each terminal device in the MBS group corresponding to the first MBS service.
  • the first signaling carries first information
  • the first information is a first bitmap
  • the first bitmap includes a plurality of bits
  • the plurality of bits are related to the
  • the multiple terminal devices in the MBS group corresponding to the first MBS service have a first correspondence, and the value of each bit in the multiple bits is used to indicate the transmission mode of the terminal device corresponding to the bit.
  • the first correspondence is configured through RRC signaling; or, the first correspondence is stipulated in a protocol.
  • the first correspondence is:
  • the plurality of bits are in one-to-one correspondence with the plurality of terminal devices in ascending order of indexes from low to high; or,
  • the multiple bits are in a one-to-one correspondence with the multiple terminal devices in ascending order of indexes from high to low.
  • the first signaling is the first DCI or the first MAC CE.
  • the first signaling is the first DCI
  • the first DCI is scrambled by G-RNTI
  • the G-RNTI is the G-RNTI used for MBS service scheduling; or,
  • the G-RNTI is a G-RNTI dedicated for transmission mode indication.
  • the first signaling is the first MAC CE
  • the first MAC CE corresponds to the first LCID
  • the first LCID is used to indicate the first MAC CE
  • the type is a MAC CE indicating the transmission method.
  • the scheduling information corresponding to the first MAC CE is scrambled by G-RNTI;
  • the G-RNTI is the G-RNTI used for MBS service scheduling; or,
  • the G-RNTI is a G-RNTI dedicated for transmission mode indication.
  • the G-RNTI is a G-RNTI dedicated to transmission mode indication
  • the first MBS service indicated by the first MAC CE is determined based on the G-RNTI corresponding to the first MAC CE.
  • the G-RNTI is a G-RNTI used for MBS service scheduling
  • the first MBS service indicated by the first MAC CE is determined based on the G-RNTI corresponding to the first MAC CE;
  • the first MBS service indicated by the first MAC CE is determined based on the indication information of the first MBS service carried in the first MAC CE.
  • the indication information of the first MBS service is an MBS index corresponding to the first MBS service.
  • the MBS index of each MBS service in the multiple MBS services is configured through RRC signaling.
  • the first signaling is used to indicate a transmission mode of an MBS group corresponding to at least one MBS service
  • the at least one MBS service includes the first MBS service
  • the transmission mode of the MBS group It is used to determine the transmission mode of all terminal devices in the MBS group.
  • the first signaling is a paging message
  • the paging message is used to indicate a transmission mode of the MBS group corresponding to the first MBS service.
  • the first MBS service indicated by the paging message is determined based on an MBS session identifier of the first MBS service carried in the paging message.
  • the transmission mode indicated by the paging message is configured through system broadcast; or, the transmission mode indicated by the paging message is stipulated in a protocol.
  • the first signaling is the second DCI or the second MAC CE.
  • the second DCI is scrambled by G-RNTI
  • the G-RNTI is the G-RNTI used for MBS service scheduling; or,
  • the G-RNTI is a G-RNTI dedicated for transmission mode indication.
  • the G-RNTI is a G-RNTI dedicated to transmission mode indication
  • One MBS service indicated by the second DCI is determined based on the G-RNTI corresponding to the second DCI, and the one MBS service is the first MBS service.
  • the G-RNTI is a G-RNTI used for MBS service scheduling
  • the one MBS service indicated by the second DCI is determined based on the G-RNTI corresponding to the first MAC CE, and the one MBS service is the first MBS service.
  • the transmission mode indicated by the second DCI is determined based on the second information carried in the second DCI; or, the transmission mode indicated by the second DCI is configured through RRC signaling; or , the transmission mode indicated by the second DCI is stipulated in the protocol.
  • the second information is a first indication bit
  • a value of the first indication bit is used to indicate a transmission mode corresponding to the first MBS service.
  • the G-RNTI is a G-RNTI used for MBS service scheduling
  • the second DCI carries third information
  • the third information is a second bit map
  • the second bit map includes multiple bits
  • the multiple bits The bit has a second corresponding relationship with the plurality of MBS services, and the value of each bit in the plurality of bits is used to indicate the transmission mode of the MBS service corresponding to the bit.
  • the scheduling information corresponding to the second MAC CE is scrambled by G-RNTI;
  • the G-RNTI is the G-RNTI used for MBS service scheduling; or,
  • the G-RNTI is a G-RNTI dedicated for transmission mode indication.
  • the G-RNTI is a G-RNTI dedicated to transmission mode indication
  • An MBS service indicated by the second MAC CE is determined based on a subheader including a second LCID, the second LCID is the LCID corresponding to the second MAC CE, and the one MBS service is the first MBS service.
  • the G-RNTI is a G-RNTI used for MBS service scheduling
  • the MBS service indicated by the second MAC CE is determined based on a subheader containing a second LCID, the second LCID is the LCID corresponding to the second MAC CE, and the One MBS service is the first MBS service.
  • the transmission mode indicated by the second MAC CE is determined based on the fourth information carried in the second MAC CE; or, the transmission mode indicated by the second MAC CE is performed through RRC signaling configuration; or, the transmission mode indicated by the second MAC CE is stipulated in the protocol.
  • the fourth information is a second indication bit, and a value of the second indication bit is used to indicate a transmission mode corresponding to the first MBS service.
  • the G-RNTI is a G-RNTI used for MBS service scheduling
  • the second MAC CE carries third information, the third information is a second bitmap, the second bitmap includes multiple bits, and the multiple The bit has a second corresponding relationship with the plurality of MBS services, and the value of each bit in the plurality of bits is used to indicate the transmission mode of the MBS service corresponding to the bit.
  • the second correspondence is configured through RRC signaling; or, the second correspondence is stipulated in a protocol.
  • the second corresponding relationship is:
  • the plurality of bits are in one-to-one correspondence with the plurality of MBS services in ascending order of indexes from low to high; or,
  • the plurality of bits are in a one-to-one correspondence with the plurality of MBS services in ascending order of indexes from high to low.
  • the G-RNTI when the G-RNTI is a G-RNTI dedicated for transmission mode indication, different G-RNTIs correspond to different MBS services.
  • the apparatus further includes: a receiving unit 1002, configured to receive a second signaling sent by the first terminal device before the sending unit 1001 sends the first signaling, the second signaling The command is used to request the network device to switch the transmission mode of the first terminal device from the first transmission mode to the second transmission mode; wherein, the second transmission mode is PTP mode, and the first transmission mode is PTM or, the first transmission mode is a PTP mode, and the second transmission mode is a PTM mode.
  • the receiving unit 1002 is configured to receive the second signaling sent by the first terminal device through PTP or unicast.
  • the second signaling carries at least one of the following:
  • the request purpose indication information is used to indicate at least one of the following:
  • the transmission mode that the first terminal device requests to switch is the second transmission mode
  • a scheduling parameter corresponding to the second transmission mode suggested by the first terminal device is a scheduling parameter corresponding to the second transmission mode suggested by the first terminal device.
  • the second signaling is MAC CE or RRC signaling.
  • the RRC signaling is RRC signaling carrying UE assistance information or defined RRC signaling.
  • FIG. 11 is a schematic structural diagram of a communication device 1100 provided by an embodiment of the present application.
  • the communication device may be a terminal device or a network device.
  • the communication device 1100 shown in FIG. 11 includes a processor 1110, and the processor 1110 can invoke and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 1100 may further include a memory 1120 .
  • the processor 1110 can invoke and run a computer program from the memory 1120, so as to implement the method in the embodiment of the present application.
  • the memory 1120 may be an independent device independent of the processor 1110 , or may be integrated in the processor 1110 .
  • the communication device 1100 may further include a transceiver 1130, and the processor 1110 may control the transceiver 1130 to communicate with other devices, specifically, to send information or data to other devices, or to receive other Information or data sent by the device.
  • the processor 1110 may control the transceiver 1130 to communicate with other devices, specifically, to send information or data to other devices, or to receive other Information or data sent by the device.
  • the transceiver 1130 may include a transmitter and a receiver.
  • the transceiver 1130 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1100 may specifically be the network device of the embodiment of the present application, and the communication device 1100 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • the communication device 1100 may specifically be the mobile terminal/terminal device of the embodiment of the present application, and the communication device 1100 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, for the sake of brevity , which will not be repeated here.
  • FIG. 12 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1200 shown in FIG. 12 includes a processor 1210, and the processor 1210 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 1200 may further include a memory 1220 .
  • the processor 1210 can invoke and run a computer program from the memory 1220, so as to implement the method in the embodiment of the present application.
  • the memory 1220 may be an independent device independent of the processor 1210 , or may be integrated in the processor 1210 .
  • the chip 1200 may also include an input interface 1230 .
  • the processor 1210 can control the input interface 1230 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 1200 may also include an output interface 1240 .
  • the processor 1210 can control the output interface 1240 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • Fig. 13 is a schematic block diagram of a communication system 1300 provided by an embodiment of the present application. As shown in FIG. 13 , the communication system 1300 includes a terminal device 1310 and a network device 1320 .
  • the terminal device 1310 can be used to realize the corresponding functions realized by the terminal device in the above method
  • the network device 1320 can be used to realize the corresponding functions realized by the network device in the above method.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application , for the sake of brevity, it is not repeated here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the Let me repeat for the sake of brevity, the Let me repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the methods of the embodiments of the present application, For the sake of brevity, details are not repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program executes each method in the embodiment of the present application to be implemented by the mobile terminal/terminal device
  • the corresponding process will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种传输方式的确定方法及装置、终端设备、网络设备,该方法包括:第一终端设备接收网络设备发送的第一信令,所述第一信令用于确定MBS组内的多个终端设备的传输方式,所述传输方式为PTP方式或者PTM方式;其中,所述多个终端设备包括所述第一终端设备;所述第一终端设备基于所述第一信令确定所述第一终端设备的传输方式,按照所述第一终端设备的传输方式接收第一MBS业务。

Description

一种传输方式的确定方法及装置、终端设备、网络设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种传输方式的确定方法及装置、终端设备、网络设备。
背景技术
在新无线(New Radio,NR)系统中,支持组播类型的多播广播服务(Multicast Broadcast Service,MBS)业务。终端设备在无线资源控制(Radio Resource Control,RRC)连接状态下接收组播类型的MBS业务。
对于组播类型的MBS业务来说,终端设备可以通过点对多点(Point To MultiPoint,PTM)方式或者点对点(Point To Point,PTP)方式接收组播类型的MBS业务。在一些场景下,MBS业务的传输方式(即终端设备接收MBS业务的方式)有需求发生变化,网络设备如何通知终端设备关于MBS业务的传输方式是个需要解决的问题。
发明内容
本申请实施例提供一种传输方式的确定方法及装置、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品、计算机程序。
本申请实施例提供的传输方式的确定方法,包括:
第一终端设备接收网络设备发送的第一信令,所述第一信令用于确定MBS组内的多个终端设备的传输方式,所述传输方式为PTP方式或者PTM方式;其中,所述多个终端设备包括所述第一终端设备;
所述第一终端设备基于所述第一信令确定所述第一终端设备的传输方式,按照所述第一终端设备的传输方式接收第一MBS业务。
本申请实施例提供的传输方式的确定方法,包括:
网络设备发送第一信令,所述第一信令用于确定MBS组内的多个终端设备的传输方式,所述传输方式为PTP方式或者PTM方式。
本申请实施例提供的传输方式的确定装置,应用于第一终端设备,所述装置包括:
接收单元,用于接收网络设备发送的第一信令,所述第一信令用于确定多播广播服务MBS组内的多个终端设备的传输方式,所述传输方式为点对点PTP方式或者点对多点PTM方式;其中,所述多个终端设备包括所述第一终端设备;
确定单元,用于基于所述第一信令确定所述第一终端设备的传输方式;
所述接收单元,还用于按照所述第一终端设备的传输方式接收第一MBS业务。
本申请实施例提供的传输方式的确定装置,应用于网络设备,所述装置包括:
发送单元,用于发送第一信令,所述第一信令用于确定MBS组内的多个终端设备的传输方式,所述传输方式为PTP方式或者PTM方式。
本申请实施例提供的终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的传输方式的确定方法。
本申请实施例提供的网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的传输方式的确定方法。
本申请实施例提供的芯片,用于实现上述的传输方式的确定方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的传输方式的确定方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的传输方式的确定方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机 执行上述的传输方式的确定方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的传输方式的确定方法。
通过上述技术方案,网络设备通过第一信令指示MBS组内的多个终端设备的传输方式,所述传输方式为PTP方式或者PTM方式,实现了针对群组(即MBS组)指示传输方式的方案,无需针对每个终端设备单独指示传输方式,达到了节省信令的目的。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例的一个应用场景的示意图;
图2是本申请实施例的PTM方式和PTP方式对应的协议栈的示意图;
图3是本申请实施例提供的MBS业务按照PTM方式和PTP方式传输的示意图;
图4是本申请实施例提供的传输方式的确定方法的流程示意图;
图5是本申请实施例提供的第一映射关系的示意图;
图6是本申请实施例提供的第二映射关系的示意图;
图7是本申请实施例提供的MAC CE的示意图一;
图8是本申请实施例提供的MAC CE的示意图二;
图9是本申请实施例提供的传输方式的确定装置的结构组成示意图一;
图10是本申请实施例提供的传输方式的确定装置的结构组成示意图二;
图11是本申请实施例提供的一种通信设备示意性结构图;
图12是本申请实施例的芯片的示意性结构图;
图13是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、物联网(Internet of Things,IoT)系统、窄带物联网(Narrow Band Internet of Things,NB-IoT)系统、增强的机器类型通信(enhanced Machine-Type Communications,eMTC)系统、5G通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备120可以是与终端设备110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110(例如UE)进行通信。
网络设备120可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端设备110可以是任意终端设备,其包括但不限于与网络设备120或其它终端设备采用有线或者无线连接的终端设备。
例如,所述终端设备110可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户 站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、IoT设备、卫星手持终端、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进网络中的终端设备等。
终端设备110可以用于设备到设备(Device to Device,D2D)的通信。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过NR接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,可选地,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
需要说明的是,图1只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”或“预定义规则”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性、复杂性,为此第三代合作伙伴计划(3 rd Generation Partnership Project,3GPP)国际标准组织开始研发5G。5G的主要应用场景为:增强移动超宽带(enhanced Mobile Broadband,eMBB)、低时延高可靠通信(Ultra-Reliable Low-Latency Communications,URLLC)、大规模机器类通信(massive Machine-Type Communications,mMTC)。
一方面,eMBB仍然以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。另一方面,由于eMBB可能部署在不同的场景中,例如室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而论,必须结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动 化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
在NR早期部署时,完整的NR覆盖很难获取,所以典型的网络覆盖是广域的LTE覆盖和NR的孤岛覆盖模式。而且大量的LTE部署在6GHz以下,可用于5G的6GHz以下频谱很少。所以NR必须研究6GHz以上的频谱应用,而高频段覆盖有限、信号衰落快。同时为了保护移动运营商前期在LTE投资,提出了LTE和NR之间紧耦合(tight interworking)的工作模式。
RRC状态
5G为了降低空口信令和快速恢复无线连接,快速恢复数据业务的目的,定义了一个新的无线资源控制(Radio Resource Control,RRC)状态,即RRC非激活(RRC_INACTIVE)状态。这种状态有别于RRC空闲(RRC_IDLE)状态和RRC激活(RRC_ACTIVE)状态。其中,
1)RRC_IDLE状态(简称为空闲(idle)态):移动性为基于UE的小区选择重选,寻呼由核心网(Core Network,CN)发起,寻呼区域由CN配置。基站侧不存在UE上下文,不存在RRC连接。
2)RRC_CONNECTED状态(简称为连接(connected)态):存在RRC连接,基站侧和UE侧存在UE上下文。网络侧知道UE的位置是具体小区级别的。移动性是网络侧控制的移动性。UE和基站之间可以传输单播数据。
3)RRC_INACTIVE状态(简称为非激活(inactive)态):移动性为基于UE的小区选择重选,存在CN-NR之间的连接,UE上下文存在某个基站上,寻呼由RAN触发,基于RAN的寻呼区域由RAN管理,网络侧知道UE的位置是基于RAN的寻呼区域级别的。
多媒体广播多播服务(Multimedia Broadcast Multicast Service,MBMS)
MBMS是一种通过共享网络资源从一个数据源向多个终端设备传送数据的技术,该技术在提供多媒体业务的同时能有效地利用网络资源,实现较高速率(如256kbps)的多媒体业务的广播和组播。
由于MBMS频谱效率较低,不足以有效地承载和支撑手机电视类型业务的运营。因此在LTE中,3GPP明确提出增强对下行高速MBMS业务的支持能力,并确定了对物理层和空中接口的设计要求。
3GPP R9将演进的MBMS(evolved MBMS,eMBMS)引入到LTE中。eMBMS提出了单频率网络(Single Frequency Network,SFN)的概念,即多媒体广播多播服务单频率网络(Multimedia Broadcast multicast service Single Frequency Network,MBSFN),MBSFN采用统一频率在所有小区同时发送业务数据,但是要保证小区间的同步。这种方式可以极大的提高小区整体信噪比分布,频谱效率也会相应的大幅提高。eMBMS基于IP多播协议实现业务的广播和多播。
在LTE或增强的LTE(LTE-Advanced,LTE-A)中,MBMS只有广播承载模式,没有多播承载模式。此外,MBMS业务的接收适用于空闲态或者连接态的终端设备。
3GPP R13中引入了单小区点对多点(Single Cell Point To Multiploint,SC-PTM)概念,SC-PTM基于MBMS网络架构。
MBMS引入了新的逻辑信道,包括单小区多播控制信道(Single Cell-Multicast Control Channel,SC-MCCH)和单小区多播传输信道(Single Cell-Multicast Transport Channel,SC-MTCH)。SC-MCCH和SC-MTCH被映射到下行共享信道(Downlink-Shared Channel,DL-SCH)上,进一步,DL-SCH被映射到物理下行共享信道(Physical Downlink Shared Channel,PDSCH)上,其中,SC-MCCH和SC-MTCH属于逻辑信道,DL-SCH属于传输信道,PDSCH属于物理信道。SC-MCCH和SC-MTCH不支持混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)操作。
MBMS引入了新的系统信息块(System Information Block,SIB)类型,即SIB20。具体地,通过SIB20来传输SC-MCCH的配置信息,一个小区只有一个SC-MCCH。SC-MCCH的配置信息包括:SC-MCCH的修改周期、SC-MCCH的重复周期、以及调度SC-MCCH的无线帧和子帧等信息。进一步,1)SC-MCCH的修改周期的边界满足SFN mod m=0,其中,SFN代表边界的系统帧号,m是SIB20中配置的SC-MCCH的修改周期(即sc-mcch-ModificationPeriod)。2)调度SC-MCCH的无线帧满足:SFN mod mcch-RepetitionPeriod=mcch-Offset,其中,SFN代表无线帧的系统帧号,mcch-RepetitionPeriod代表SC-MCCH的重复周期,mcch-Offset代表SC-MCCH的偏移量。3)调度SC-MCCH的子帧通过sc-mcch-Subframe指示。
SC-MCCH通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)调度。一方面,引入新的无线网络临时标识(Radio Network Tempory Identity,RNTI),即单小区RNTI(Single Cell RNTI,SC-RNTI)来识别用于调度SC-MCCH的PDCCH(如SC-MCCH PDCCH),可选地,SC-RNTI 固定取值为FFFC。另一方面,引入新的RNTI,即单小区通知RNTI(Single Cell Notification RNTI,SC-N-RNTI)来识别用于指示SC-MCCH的变更通知的PDCCH(如通知PDCCH),可选地,SC-N-RNTI固定取值为FFFB;进一步,可以用DCI 1C的8个比特(bit)中的一个bit来指示变更通知。在LTE中,SC-PTM的配置信息基于SIB20配置的SC-MCCH,然后SC-MCCH配置SC-MTCH,SC-MTCH用于传输业务数据。
具体地,SC-MCCH只传输一个消息(即SCPTMConfiguration),该消息用于配置SC-PTM的配置信息。SC-PTM的配置信息包括:临时移动组标识(Temporary Mobile Group Identity,TMGI)、会话标识(seession id)、组RNTI(Group RNTI,G-RNTI)、非连续接收(Discontinuous Reception,DRX)配置信息以及邻区的SC-PTM业务信息等。需要说明的是,R13中的SC-PTM不支持健壮性包头压缩(Robust Header Compression,ROHC)功能。
SC-PTM的下行非连续的接收是通过以下参数控制的:onDurationTimerSCPTM、drx-InactivityTimerSCPTM、SC-MTCH-SchedulingCycle、以及SC-MTCH-SchedulingOffset。
当满足[(SFN*10)+subframe number]modulo(SC-MTCH-SchedulingCycle)=SC-MTCH-SchedulingOffset时,启动定时器onDurationTimerSCPTM;
当接收到下行PDCCH调度时,启动定时器drx-InactivityTimerSCPTM;
只有当定时器onDurationTimerSCPTM或drx-InactivityTimerSCPTM运行时才接收下行SC-PTM业务。
SC-PTM业务连续性采用基于SIB15的MBMS业务连续性概念,即“SIB15+MBMSInterestIndication”方式。空闲态的终端设备的业务连续性基于频率优先级的概念。
需要说明的是,上述方案虽然是以MBMS业务为例进行说明的,但本申请实施例的技术方案不局限于此。本申请实施例以MBS业务为例进行说明,“MBS业务”的描述也可以被替换为“MBMS业务”。
在NR系统中,很多场景需要支持组播类型和广播类型的业务需求,例如车联网中,工业互联网中等。所以在NR中引入组播类型和广播类型的MBS业务是有必要的。需要说明的是,组播类型的MBS业务是指通过组播方式传输的MBS业务。广播类型的MBS业务是指通过广播方式传输的MBS业务。
在NR系统中,对于组播类型的MBS业务来说,MBS业务是发给某个组中的所有终端设备。终端设备在RRC连接状态下接收组播类型的MBS业务,终端设备可以通过PTM方式或者PTP方式接收组播类型的MBS业务数据。其中,参照图2,PTM方式的MBS业务数据通过网络侧配置的G-RNTI来加扰对应的调度信息,PTP方式的MBS业务数据通过C-RNTI来加扰对应的调度信息。
对于组播类型的MBS业务来说,基站从共享隧道(tunnel)接收核心网下发的MBS业务后,可以将该MBS业务通过空口下发给一个组中的所有终端设备。这里,基站可以通过PTP方式和/或PTM方式将MBS业务下发给一个组中的所有终端设备。例如:一个组包括终端设备1、终端设备2和终端设备3,基站可以通过PTP方式将MBS业务下发给终端设备1,通过PTP方式将MBS业务下发给终端设备2,通过PTP方式将MBS业务下发给终端设备3;或者,基站可以通过PTP方式将MBS业务下发给终端设备1,通过PTM方式将MBS业务下发给终端设备2和终端设备3;或者,基站可以通过PTM方式将MBS业务下发给终端设备1,终端设备2以及终端设备3。参照图3,在核心网到基站之间采用一个共享的GTP隧道(Shared GTP tunnel)来传输MBS业务,即无论是PTM方式的MBS业务还是PTP方式的MBS业务都是共享这个GTP隧道的。基站按照PTM方式下发MBS业务数据给UE1和UE2,以及按照PTP方式下发MBS业务数据给UE3。
一般,终端设备通过PTM方式接收MBS业务,但当该终端设备的信号质量不好,或者小区内接收该MBS业务的用户很少的情况下,网络设备会判决通过PTP方式给终端设备发送MBS业务,相应地,终端设备通过PTP方式接收网络设备发送的MBS业务。同时,为了终端设备节能的目的,网络设备会通知终端设备去激活PTM方式,终端设备去激活PTM方式后,停止监听G-RNTI加扰的MBS业务的调度信息,进而停止接收PTM方式的MBS业务。网络设备如何通知终端设备关于MBS业务的传输方式是个需要解决的问题。为此,提出了本申请实施例的以下技术方案。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
需要说明的是,本申请实施例中,“PTP方式”对应的链路可以称为“PTP链路”,“PTM方式”对应的链路可以称为“PTM链路”。
图4是本申请实施例提供的传输方式的确定方法的流程示意图,如图4所示,所述传输方式的确定方法包括以下步骤:
步骤401:网络设备发送第一信令,第一终端设备接收网络设备发送的第一信令,所述第一信令用于确定多播广播服务MBS组内的多个终端设备的传输方式,所述传输方式为点对点PTP方式或者点对多点PTM方式;其中,所述多个终端设备包括所述第一终端设备。
步骤402:所述第一终端设备基于所述第一信令确定所述第一终端设备的传输方式,按照所述第一终端设备的传输方式接收第一MBS业务。
本申请实施例中,所述网络设备可以但不局限于是基站。
本申请实施例中,第一信令也可以称为传输方式激活去激活命令。作为示例,第一信令可以称为PTM激活去激活命令,该PTM激活去激活命令用于去激活PTM方式和/或激活PTM方式。作为示例,第一信令可以称为PTP激活去激活命令,该PTP激活去激活命令用于去激活PTP方式和/或激活PTP方式。
本申请实施例中,所述第一信令用于指示所述第一MBS业务对应的MBS组中的每个终端设备的传输方式。或者,所述第一信令用于指示至少一个MBS业务对应的MBS组的传输方式,所述至少一个MBS业务包括所述第一MBS业务,所述MBS组的传输方式用于确定所述MBS组内的全部终端设备的传输方式。以下对其进行描述。
方案一
本申请实施例中,所述第一信令用于指示所述第一MBS业务对应的MBS组中的每个终端设备的传输方式。这里,网络设备通过所述第一信令可以分别指示多个终端设备的传输方式,多个终端设备的传输方式可以不同。
在一些可选实施方式中,所述第一信令携带第一信息,所述第一信息为第一比特图,所述第一比特图包括多个比特位,所述多个比特位与所述第一MBS业务对应的MBS组内的多个终端设备具有第一对应关系,所述多个比特位中的每个比特位的取值用于指示该比特位对应的终端设备的传输方式。
作为示例,第一MBS业务对应的MBS组包括4个终端设备,分别为终端设备1、终端设备2、终端设备3和终端设备4。第一比特图包括4个比特位,第一比特图中的4个比特位与MBS组中的4个终端设备具有第一对应关系,这里,第一对应关系可以是一一对应关系。比特位的取值用于指示该比特位对应的终端设备的传输方式,例如:比特位的取值为1(或者0)用于指示该比特位对应的终端设备的传输方式为PTP方式,比特位的取值为0(或者1)用于指示该比特位对应的终端设备的传输方式为PTM方式。换句话说,比特位的取值为1(或者0)用于指示该比特位对应的终端设备去激活PTM方式,比特位的取值为0(或者1)用于指示该比特位对应的终端设备激活PTM方式。换句话说,比特位的取值为1(或者0)用于指示该比特位对应的终端设备激活PTP方式,比特位的取值为0(或者1)用于指示该比特位对应的终端设备去激活PTP方式。
在一些可选实施方式中,所述第一对应关系通过RRC信令进行配置;或者,所述第一对应关系为协议约定的。
在一些可选实施方式中,所述多个比特位按照从低位到高位的顺序,与所述多个终端设备按照索引从小到大的顺序一一对应;或者,所述多个比特位按照从高位到低位的顺序,与所述多个终端设备按照索引从小到大的顺序一一对应。
作为示例,参照图5,MBS组包括4个终端设备,分别为终端设备1、终端设备2、终端设备3和终端设备4,其中,终端设备1的索引为1,终端设备2的索引为2,终端设备3的索引为3,终端设备4的索引为4。第一比特图包括4个比特位,4个比特位从低位到高位的顺序,与4个终端设备按照索引从小到大的顺序一一对应。假设比特位的取值为1用于指示该比特位对应的终端设备的传输方式为PTP方式,比特位的取值为0用于指示该比特位对应的终端设备的传输方式为PTM方式,那么,终端设备1和终端设备4的传输方式为PTP方式,终端设备2和终端设备3的传输方式为PTM方式。
基于以上方案,对于第一终端设备来说,所述第一终端设备基于所述第一终端设备的索引和所述第一对应关系,确定所述第一终端设备与所述第一比特图中的第一比特位对应;所述第一终端设备基于所述第一比特位的取值确定所述第一终端设备的传输方式。依然以图5为例,第一终端设备为终端设备1,终端设备1基于其索引和第一对应关系,确定终端设备1对应4个比特位中的最低比特位,根据该比特位的取值1可以确定终端设备1的传输方式为PTP方式。
上述方案中,所述第一终端设备的索引通过RRC信令进行配置。
本申请实施例中,所述第一信令为第一下行控制信息(Downlink Control Information,DCI)或者第一媒体接入控制(Media Access Control,MAC)控制单元(Control Element,CE)。以下对其进行描述。
1)所述第一信令为第一DCI。
本申请实施例中,所述第一信令为第一DCI的情况下,所述第一DCI通过G-RNTI加扰。
在一些可选实施方式中,所述G-RNTI为用于MBS业务调度的G-RNTI。这里,所述G-RNTI用于加扰MBS业务的调度信息。
在一些可选实施方式中,所述G-RNTI为专用于传输方式指示的G-RNTI。这里,所述G-RNTI是为传输方式指示新定义的一个G-RNTI,该G-RNTI专用于加扰传输方式指示DCI,这里,传输方式指示DCI即为所述第一DCI,传输方式指示DCI也可以称为PTM激活去激活DCI或者PTP激活去激活DCI。作为示例,专用于传输方式指示的G-RNTI也可以称为N-G-RNTI,本申请实施例对专用于传输方式指示的G-RNTI的名称不做限定。
需要说明的是,所述G-RNTI为用于MBS业务调度的G-RNTI的情况下,一个G-RNTI可以对应一个MBS业务(即不同的MBS业务可以对应不同的G-RNTI),或者,一个G-RNTI也可以对应多个MBS业务(即不同的MBS业务可以对应相同的G-RNTI)。
需要说明的是,所述G-RNTI为专用于传输方式指示的G-RNTI的情况下,一个G-RNTI可以对应一个MBS业务,即不同的G-RNTI可以对应不同的MBS业务。
2)所述第一信令为第一MAC CE。
本申请实施例中,所述第一信令为第一MAC CE的情况下,所述第一MAC CE与第一LCID对应,所述第一LCID用于指示所述第一MAC CE的类型为指示所述传输方式的MAC CE。
本申请实施例中,所述第一MAC CE对应的调度信息通过G-RNTI加扰。
在一些可选实施方式中,所述G-RNTI为用于MBS业务调度的G-RNTI。这里,所述G-RNTI用于加扰MBS业务的调度信息。
在一些可选实施方式中,所述G-RNTI为专用于传输方式指示的G-RNTI。这里,所述G-RNTI是为传输方式指示新定义的一个G-RNTI,该G-RNTI专用于加扰传输方式指示MAC CE,这里,传输方式指示MAC CE即为所述第一MAC CE,传输方式指示MAC CE也可以称为PTM激活去激活MAC CE或者PTP激活去激活MAC CE。作为示例,专用于传输方式指示的G-RNTI也可以称为N-G-RNTI,本申请实施例对专用于传输方式指示的G-RNTI的名称不做限定。
需要说明的是,所述G-RNTI为用于MBS业务调度的G-RNTI的情况下,一个G-RNTI可以对应一个MBS业务(即不同的MBS业务可以对应不同的G-RNTI),或者,一个G-RNTI也可以对应多个MBS业务(即不同的MBS业务可以对应相同的G-RNTI)。
需要说明的是,所述G-RNTI为专用于传输方式指示的G-RNTI的情况下,一个G-RNTI可以对应一个MBS业务,即不同的G-RNTI可以对应不同的MBS业务。
方案a1)所述G-RNTI为专用于传输方式指示的G-RNTI的情况下,所述第一MAC CE指示的所述第一MBS业务基于所述第一MAC CE对应的G-RNTI确定。
方案b1)所述G-RNTI为用于MBS业务调度的G-RNTI的情况下,若一个G-RNTI对应一个MBS业务,则所述第一MAC CE指示的所述第一MBS业务基于所述第一MAC CE对应的G-RNTI确定;若一个G-RNTI对应多个MBS业务,则所述第一MAC CE指示的所述第一MBS业务基于所述第一MAC CE中携带的所述第一MBS业务的指示信息确定。
这里,可选地,所述第一MBS业务的指示信息为所述第一MBS业务对应的MBS索引。进一步,可选地,所述多个MBS业务中的每个MBS业务的MBS索引通过RRC信令进行配置。
方案二
本申请实施例中,所述第一信令用于指示至少一个MBS业务对应的MBS组的传输方式,所述至少一个MBS业务包括所述第一MBS业务,所述MBS组的传输方式用于确定所述MBS组内的全部终端设备的传输方式。这里,网络设备通过所述第一信令可以指示一个或多个MBS业务对应的MBS组的传输方式,对于一个MBS组来说,该MBS组内的全部终端设备的传输方式均与该MBS组的传输方式相同。不同MBS业务对应的MBS组的传输方式可以不同。
本申请实施例中,所述第一信令为寻呼消息或者第二DCI或者第二MAC CE。以下对其进行描述。
1)所述第一信令为寻呼消息。
本申请实施例中,所述第一信令为寻呼消息,所述寻呼消息用于指示所述第一MBS业务对 应的MBS组的传输方式。
在一些可选实施方式中,所述寻呼消息指示的所述第一MBS业务基于所述寻呼消息携带的所述第一MBS业务的MBS会话标识确定。
在一些可选实施方式中,所述寻呼消息指示的传输方式通过系统广播进行配置;或者,所述寻呼消息指示的传输方式为协议约定的。
2)所述第一信令为第二DCI。
本申请实施例中,所述第一信令为第二DCI的情况下,所述第二DCI通过G-RNTI加扰。
在一些可选实施方式中,所述G-RNTI为用于MBS业务调度的G-RNTI。这里,所述G-RNTI用于加扰MBS业务的调度信息。
在一些可选实施方式中,所述G-RNTI为专用于传输方式指示的G-RNTI。这里,所述G-RNTI是为传输方式指示新定义的一个G-RNTI,该G-RNTI专用于加扰传输方式指示DCI,这里,传输方式指示DCI即为所述第二DCI,传输方式指示DCI也可以称为PTM激活去激活DCI或者PTP激活去激活DCI。作为示例,专用于传输方式指示的G-RNTI也可以称为N-G-RNTI,本申请实施例对专用于传输方式指示的G-RNTI的名称不做限定。
需要说明的是,所述G-RNTI为用于MBS业务调度的G-RNTI的情况下,一个G-RNTI可以对应一个MBS业务(即不同的MBS业务可以对应不同的G-RNTI),或者,一个G-RNTI也可以对应多个MBS业务(即不同的MBS业务可以对应相同的G-RNTI)。
需要说明的是,所述G-RNTI为专用于传输方式指示的G-RNTI的情况下,一个G-RNTI可以对应一个MBS业务,即不同的G-RNTI可以对应不同的MBS业务。
方案a2)所述G-RNTI为专用于传输方式指示的G-RNTI的情况下,所述第二DCI指示的一个MBS业务基于所述第二DCI对应的G-RNTI确定,所述一个MBS业务为所述第一MBS业务。
这里,所述第二DCI指示的传输方式基于所述第二DCI中携带的第二信息确定;或者,所述第二DCI指示的传输方式通过RRC信令进行配置;或者,所述第二DCI指示的传输方式为协议约定的。进一步,可选地,所述第二信息为第一指示位,所述第一指示位的取值用于指示所述第一MBS业务对应的传输方式。
方案b2)所述G-RNTI为用于MBS业务调度的G-RNTI的情况下,若一个G-RNTI对应一个MBS业务,则所述第二DCI指示的一个MBS业务基于所述第一MAC CE对应的G-RNTI确定,所述一个MBS业务为所述第一MBS业务。
这里,所述第二DCI指示的传输方式基于所述第二DCI中携带的第二信息确定;或者,所述第二DCI指示的传输方式通过RRC信令进行配置;或者,所述第二DCI指示的传输方式为协议约定的。进一步,可选地,所述第二信息为第一指示位,所述第一指示位的取值用于指示所述第一MBS业务对应的传输方式。
方案b3)所述G-RNTI为用于MBS业务调度的G-RNTI的情况下,若一个G-RNTI对应多个MBS业务,则所述第二DCI携带第三信息,所述第三信息为第二比特图,所述第二比特图包括多个比特位,所述多个比特位与所述多个MBS业务具有第二对应关系,所述多个比特位中的每个比特位的取值用于指示该比特位对应的MBS业务的传输方式。
在一些可选实施方式中,所述第二对应关系通过RRC信令进行配置;或者,所述第二对应关系为协议约定的。
在一些可选实施方式中,所述第二对应关系为:所述多个比特位按照从低位到高位的顺序,与所述多个MBS业务按照索引从小到大的顺序一一对应;或者,所述多个比特位按照从高位到低位的顺序,与所述多个MBS业务按照索引从小到大的顺序一一对应。
作为示例,参照图6,一个G-RNTI对应4个MBS业务,分别为MBS业务11、MBS业务12、MBS业务13和MBS业务14,其中,MBS业务11的索引为11,MBS业务12的索引为12,MBS业务13的索引为13,MBS业务14的索引为14。第二比特图包括4个比特位,4个比特位从低位到高位的顺序,与4个MBS业务按照索引从小到大的顺序一一对应。假设比特位的取值为1用于指示该比特位对应的MBS业务的传输方式为PTP方式,比特位的取值为0用于指示该比特位对应的MBS业务的传输方式为PTM方式,那么,MBS业务11和MBS业务14对应的MBS组的传输方式均为PTP方式,MBS业务12和MBS业务13对应的MBS组的传输方式均为PTM方式。
这里,需要说明的是,MBS业务的传输方式是指MBS对应的MBS组的传输方式,MBS组的传输方式是指MBS组内的全部终端设备的传输方式,MBS组内的全部终端设备的传输方式相 同。
3)所述第一信令为第二MAC CE。
本申请实施例中,所述第一信令为第二MAC CE的情况下,所述第二MAC CE对应的调度信息通过G-RNTI加扰。
在一些可选实施方式中,所述G-RNTI为用于MBS业务调度的G-RNTI。这里,所述G-RNTI用于加扰MBS业务的调度信息。
在一些可选实施方式中,所述G-RNTI为专用于传输方式指示的G-RNTI。这里,所述G-RNTI是为传输方式指示新定义的一个G-RNTI,该G-RNTI专用于加扰传输方式指示MAC CE,这里,传输方式指示MAC CE即为所述第二MAC CE,传输方式指示MAC CE也可以称为PTM激活去激活MAC CE或者PTP激活去激活MAC CE。作为示例,专用于传输方式指示的G-RNTI也可以称为N-G-RNTI,本申请实施例对专用于传输方式指示的G-RNTI的名称不做限定。
需要说明的是,所述G-RNTI为用于MBS业务调度的G-RNTI的情况下,一个G-RNTI可以对应一个MBS业务(即不同的MBS业务可以对应不同的G-RNTI),或者,一个G-RNTI也可以对应多个MBS业务(即不同的MBS业务可以对应相同的G-RNTI)。
需要说明的是,所述G-RNTI为专用于传输方式指示的G-RNTI的情况下,一个G-RNTI可以对应一个MBS业务,即不同的G-RNTI可以对应不同的MBS业务。
方案a3)所述G-RNTI为专用于传输方式指示的G-RNTI的情况下,所述第二MAC CE指示的一个MBS业务基于包含第二LCID的子头确定,所述第二LCID为所述第二MAC CE对应的LCID,所述一个MBS业务为所述第一MBS业务。
这里,所述第二MAC CE指示的传输方式基于所述第二MAC CE中携带的第四信息确定;或者,所述第二MAC CE指示的传输方式通过RRC信令进行配置;或者,所述第二MAC CE指示的传输方式为协议约定的。进一步,可选地,所述第四信息为第二指示位,所述第二指示位的取值用于指示所述第一MBS业务对应的传输方式。
方案b3)所述G-RNTI为用于MBS业务调度的G-RNTI的情况下,若一个G-RNTI对应一个MBS业务,则所述第二MAC CE指示的一个MBS业务基于包含第二LCID的子头确定,所述第二LCID为所述第二MAC CE对应的LCID,所述一个MBS业务为所述第一MBS业务。
这里,所述第二MAC CE指示的传输方式基于所述第二MAC CE中携带的第四信息确定;或者,所述第二MAC CE指示的传输方式通过RRC信令进行配置;或者,所述第二MAC CE指示的传输方式为协议约定的。进一步,可选地,所述第四信息为第二指示位,所述第二指示位的取值用于指示所述第一MBS业务对应的传输方式。
方案c3)所述G-RNTI为用于MBS业务调度的G-RNTI的情况下,若一个G-RNTI对应多个MBS业务,则所述第二MAC CE携带第三信息,所述第三信息为第二比特图,所述第二比特图包括多个比特位,所述多个比特位与所述多个MBS业务具有第二对应关系,所述多个比特位中的每个比特位的取值用于指示该比特位对应的MBS业务的传输方式。
在一些可选实施方式中,所述第二对应关系通过RRC信令进行配置;或者,所述第二对应关系为协议约定的。
在一些可选实施方式中,所述第二对应关系为:所述多个比特位按照从低位到高位的顺序,与所述多个MBS业务按照索引从小到大的顺序一一对应;或者,所述多个比特位按照从高位到低位的顺序,与所述多个MBS业务按照索引从小到大的顺序一一对应。
这里,需要说明的是,MBS业务的传输方式是指MBS对应的MBS组的传输方式,MBS组的传输方式是指MBS组内的全部终端设备的传输方式,MBS组内的全部终端设备的传输方式相同。
在一个应用场景下,所述第一终端设备在接收所述第一信令之前按照PTM方式接收所述第一MBS业务;若所述第一终端设备基于所述第一信令确定所述第一终端设备的传输方式为PTP方式,则所述终端设备将传输方式由PTM方式切换为PTP方式;其中,PTM方式被去激活,PTP方式被激活;若所述第一终端设备基于所述第一信令确定所述第一终端设备的传输方式为PTM方式,则所述终端设备保持传输方式为PTM方式。
在一个应用场景下,所述第一终端设备在接收所述第一信令之前按照PTP方式接收所述MBS业务;若所述第一终端设备基于所述第一信令确定所述第一终端设备的传输方式为PTM方式,则所述终端设备将传输方式由PTP方式切换为PTM方式;其中,PTP方式被去激活,PTM方式被激活;若所述第一终端设备基于所述第一信令确定所述第一终端设备的传输方式为PTP方式, 则所述终端设备保持传输方式为PTP方式。
通过上述方案可以实现网络设备向第一终端设备通知MBS业务的传输方式,在一些可选实施方式中,所述第一终端设备接收网络设备发送的第一信令之前,所述第一终端设备向所述网络设备发送第二信令,所述网络设备接收第一终端设备发送的第二信令,所述第二信令用于请求所述网络设备将所述第一终端设备的传输方式由第一传输方式切换到第二传输方式;其中,所述第二传输方式为PTP方式,所述第一传输方式为PTM方式,或者,所述第一传输方式为PTP方式,所述第二传输方式为PTM方式。
在一些可选实施方式中,所述第一终端设备通过PTP方式或者单播方式向所述网络设备发送第二信令。
在一些可选实施方式中,所述第二信令携带以下至少之一:MBS会话标识;请求目的指示信息。进一步,可选地,所述请求目的指示信息用于指示以下至少之一:所述第一终端设备请求切换的传输方式为所述第二传输方式;所述第一终端设备建议的所述第二传输方式对应的调度参数。作为示例,调度参数包括但不局限于:TB尺寸(TB size),调制解调策略(MCS)等。
上述方案中,所述第二信令为MAC CE或者RRC信令。作为示例,所述RRC信令为承载UE辅助信息的RRC信令或者为定义的RRC信令。
以下结合具体应用实例对本申请实施例的技术方案进行举例说明。
应用实例一
基站通过RRC专用信令配置第一终端设备在MBS业务接收过程中的索引号为1,该索引号在基站覆盖的小区内的该MBS业务内是唯一的。基站判断切换某个或者某些终端设备部的传输方式切换到PTP方式。基站下发第一命令,所述第一命令包括MBS业务对应的MBS组内的所有终端设备的传输方式指示。
在一个示例中,所述第一命令携带第一比特图,所述第一比特图包括多个比特位,所述多个比特位按照从低位到高位的顺序,与MBS组内的多个终端设备按照索引从小到大的顺序一一对应。例如第一终端设备被分配的索引为3,则在第一比特图中从低位向高位数第三个比特位就是该第一终端设备对应的比特位,该比特位的取值表征第一终端设备对应的传输方式指示。如果比特位的取值为1则表示第一终端设备的传输方式为PTP方式,换句话说,比特位的取值为1则表示第一终端设备激活或者切换到PTP方式,并且去激活PTM方式。如果比特位的取值为0则表示第一终端设备的传输方式为PTM方式,换句话说,比特位的取值为0则表示第一终端设备激活或者切换到PTM方式,并且去激活PTP方式。上述比特位的取值也可以反过来。
第一比特图可以承载MAC CE中或者DCI中。
1)如果第一比特图承载在DCI中,则该DCI通过G-RNTI加扰,该G-RNTI可以是用于MBS业务调度的G-RNTI,或者,该G-RNTI可以是专用于传输方式指示的G-RNTI。
2)如果第一比特图承载在MAC CE中,则为该MAC CE定义一个LCID,通过该LCID来标识这个MAC CE。该MAC CE对应的调度信息通过G-RNTI加扰,该G-RNTI可以是用于MBS业务调度的G-RNTI,或者,该G-RNTI可以是专用于传输方式指示的G-RNTI。
在一可选方式中,G-RNTI可以是用于MBS业务调度的G-RNTI,或者,G-RNTI也可以是专用于传输方式指示的G-RNTI,如果每个G-RNTI对应一个MBS业务,即每个G-RNTI对应一个MBS会话标识,则MAC CE中不需要包含MBS会话标识。
作为示例,参照图7,MAC CE包括第一比特图,第一比特图包括16个比特位,分别与16个终端设备的索引对应,比特位的取值用于指示该比特位对应的终端设备的传输方式。此外,MAC CE还包括长度(Length)指示域,用于指示第一比特图包括的比特位数。
在一可选方式中,G-RNTI可以是用于MBS业务调度的G-RNTI,如果每个G-RNTI对应多个MBS业务,即每个G-RNTI对应多个MBS会话标识,则MAC CE中需要包含MBS会话标识,该MBS会话标识用于确定第一比特图应用的MBS业务。考虑到MBS会话标识太大,因此,通过RRC专用信令为第一终端设备配置关于共享一个G-RNTI的多个MBS业务中每个MBS业务分配的一个MBS索引(MBS index),MAC CE中包含MBS会话标识对应的MBS索引。
作为示例,参照图8,MAC CE包括第一比特图,第一比特图包括16个比特位,分别与16个终端设备的索引对应,比特位的取值用于指示该比特位对应的终端设备的传输方式。此外,MAC CE还包括长度(Length)指示域,用于指示第一比特图包括的比特位数。此外,MAC CE还包括MBS索引,用于指示第一比特图应用的MBS业务。
应用实例二
针对RRC连接态的终端设备,基站发送携带MBS会话标识的的寻呼消息,所述寻呼消息用于指示MBS业务对应的MBS组内的全体终端设备的传输方式是PTP方式或者PTM方式。
这里,寻呼消息指示的传输方式可以通过协议约定或者通过系统广播进行配置。
应用实例三
方案A)基站通过DCI通知一个或多个MBS业务对应的MBS组内的全体终端设备的传输方式,这里,传输方式可以是PTM方式或者PTM方式。该DCI通过G-RNTI加扰。
在一可选方式中,G-RNTI可以是用于MBS业务调度的G-RNTI,或者,G-RNTI也可以是专用于传输方式指示的G-RNTI。若一个G-RNTI对应一个MBS业务,即一个G-RNTI对应一个MBS会话标识,则该G-RNTI加扰的DCI用于指示该MBS业务对应的MBS组内的全体终端设备的传输方式为PTM方式或者PTP方式。
这里,DCI指示的传输方式可以通过RRC信令进行配置或者通过协议约定或者通过DCI中携带的指示位来确定。作为示例,DCI中携带1比特的指示位,该指示位的取值用于指示传输方式,例如指示位的取值为1表示PTP方式,指示位的取值为0表示PTM方式。指示位的取值反过来也可以。
在一可选方式中,G-RNTI可以是用于MBS业务调度的G-RNTI,若一个G-RNTI对应多个MBS业务,即一个G-RNTI对应多个MBS会话标识,则DCI中携带第二比特图,第二比特图包括多个比特位,多个比特位与多个MBS业务一一对应,比特位的取值用于指示该比特位对应的MBS业务对应的MBS组内的全体终端设备的传输方式,例如例如比特位的取值为1表示PTP方式,比特位的取值为0表示PTM方式。指示位的取值反过来也可以。这里,第二比特图中的多个比特位与多个MBS业务之间的对应关系可以通过协议预定或者通过RRC信令进行配置。
方案B)基站通过MAC CE通知一个或多个MBS业务对应的MBS组内的全体终端设备的传输方式,这里,传输方式可以是PTM方式或者PTM方式。该MAC CE对应的调度信息通过G-RNTI加扰。
在一可选方式中,G-RNTI可以是用于MBS业务调度的G-RNTI,或者,G-RNTI也可以是专用于传输方式指示的G-RNTI。若一个G-RNTI对应一个MBS业务,即一个G-RNTI对应一个MBS会话标识,则包含该MAC CE的LCID的子头用于指示该MBS业务对应的MBS组内的全体终端设备的传输方式为PTM方式或者PTP方式。
这里,MAC CE指示的传输方式可以通过RRC信令进行配置或者通过协议约定或者通过MAC CE中携带的指示位来确定。作为示例,MAC CE中携带1比特的指示位,该指示位的取值用于指示传输方式,例如指示位的取值为1表示PTP方式,指示位的取值为0表示PTM方式。指示位的取值反过来也可以。
在一可选方式中,G-RNTI可以是用于MBS业务调度的G-RNTI,若一个G-RNTI对应多个MBS业务,即一个G-RNTI对应多个MBS会话标识,则MAC CE中携带第二比特图,第二比特图包括多个比特位,多个比特位与多个MBS业务一一对应,比特位的取值用于指示该比特位对应的MBS业务对应的MBS组内的全体终端设备的传输方式,例如例如比特位的取值为1表示PTP方式,比特位的取值为0表示PTM方式。指示位的取值反过来也可以。这里,第二比特图中的多个比特位与多个MBS业务之间的对应关系可以通过协议预定或者通过RRC信令进行配置。
应用实例四
第一终端设备判决需要请求基站去激活PTM方式(即激活或切换到PTP方式)或者激活PTM方式(即激活或切换到PTM方式),则第一终端设备通过PTP方式或者单播方式向基站发送第二信令,第二信令用于指示网络设备切到到PTP方式或者PTM方式。
在一些可选方式中,所述第二信令中包含MBS会话标识和/或请求目的指示,可选地,所述请求目的指示用于指示以下至少之一:请求切换到PTP方式、请求切换到PTM方式、建议的PTP方式对应的调度参数、建议的PTM方式对应的调度参数。作为示例,调度参数包括但不局限于:TB尺寸(TB size),调制解调策略(MCS)等。
在一些可选方式中,第二信令可以是MAC CE或者RRC信令。这里,所述RRC信令可以是新定义的RRC信令或者UEAssistanceInformation对应的RRC信令。
本申请实施例的技术方案,一方面,提出了基于群组(即MBS组)方式通知MBS业务的传输方式是PTP方式还是PTM方式的方案,达到了节省信令的目的。另一方面,提出了基于终端设备请求的方式辅助网络侧判决终端设备的传输方式是PTP方式还是PTM方式的方案,使得网络侧指示的传输方式更加符合终端设备的期望。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。又例如,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以和现有技术任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”、“上行”和“侧行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,“侧行”用于表示信号或数据的传输方向为从用户设备1发送至用户设备2的第三方向。例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图9是本申请实施例提供的传输方式的确定装置的结构组成示意图一,应用于终端设备,如图9所示,所述传输方式的确定装置包括:
接收单元901,用于接收网络设备发送的第一信令,所述第一信令用于确定多播广播服务MBS组内的多个终端设备的传输方式,所述传输方式为点对点PTP方式或者点对多点PTM方式;其中,所述多个终端设备包括所述第一终端设备;
确定单元902,用于基于所述第一信令确定所述第一终端设备的传输方式;
所述接收单元901,还用于按照所述第一终端设备的传输方式接收第一MBS业务。
在一些可选实施方式中,所述第一信令用于指示所述第一MBS业务对应的MBS组中的每个终端设备的传输方式。
在一些可选实施方式中,所述第一信令携带第一信息,所述第一信息为第一比特图,所述第一比特图包括多个比特位,所述多个比特位与所述第一MBS业务对应的MBS组内的多个终端设备具有第一对应关系,所述多个比特位中的每个比特位的取值用于指示该比特位对应的终端设备的传输方式。
在一些可选实施方式中,所述第一对应关系通过无线资源控制RRC信令进行配置;或者,所述第一对应关系为协议约定的。
在一些可选实施方式中,所述第一对应关系为:
所述多个比特位按照从低位到高位的顺序,与所述多个终端设备按照索引从小到大的顺序一一对应;或者,
所述多个比特位按照从高位到低位的顺序,与所述多个终端设备按照索引从小到大的顺序一一对应。
在一些可选实施方式中,所述确定单元902,用于基于所述第一终端设备的索引和所述第一对应关系,确定所述第一终端设备与所述第一比特图中的第一比特位对应;基于所述第一比特位的取值确定所述第一终端设备的传输方式。
在一些可选实施方式中,所述第一终端设备的索引通过RRC信令进行配置。
在一些可选实施方式中,所述第一信令为第一下行控制信息DCI或者第一MAC CE。
在一些可选实施方式中,所述第一信令为第一DCI的情况下,所述第一DCI通过G-RNTI加扰;
所述G-RNTI为用于MBS业务调度的G-RNTI;或者,
所述G-RNTI为专用于传输方式指示的G-RNTI。
在一些可选实施方式中,所述第一信令为第一MAC CE的情况下,所述第一MAC CE与第一逻辑信道标识LCID对应,所述第一LCID用于指示所述第一MAC CE的类型为指示所述传输方式的MAC CE。
在一些可选实施方式中,所述第一MAC CE对应的调度信息通过G-RNTI加扰;
所述G-RNTI为用于MBS业务调度的G-RNTI;或者,
所述G-RNTI为专用于传输方式指示的G-RNTI。
在一些可选实施方式中,所述G-RNTI为专用于传输方式指示的G-RNTI的情况下,
所述第一MAC CE指示的所述第一MBS业务基于所述第一MAC CE对应的G-RNTI确定。
在一些可选实施方式中,所述G-RNTI为用于MBS业务调度的G-RNTI的情况下,
若一个G-RNTI对应一个MBS业务,则所述第一MAC CE指示的所述第一MBS业务基于所述第一MAC CE对应的G-RNTI确定;
若一个G-RNTI对应多个MBS业务,则所述第一MAC CE指示的所述第一MBS业务基于所述第一MAC CE中携带的所述第一MBS业务的指示信息确定。
在一些可选实施方式中,所述第一MBS业务的指示信息为所述第一MBS业务对应的MBS索引。
在一些可选实施方式中,所述多个MBS业务中的每个MBS业务的MBS索引通过RRC信令进行配置。
在一些可选实施方式中,所述第一信令用于指示至少一个MBS业务对应的MBS组的传输方式,所述至少一个MBS业务包括所述第一MBS业务,所述MBS组的传输方式用于确定所述MBS组内的全部终端设备的传输方式。
在一些可选实施方式中,所述第一信令为寻呼消息,所述寻呼消息用于指示所述第一MBS业务对应的MBS组的传输方式。
在一些可选实施方式中,所述寻呼消息指示的所述第一MBS业务基于所述寻呼消息携带的所述第一MBS业务的MBS会话标识确定。
在一些可选实施方式中,所述寻呼消息指示的传输方式通过系统广播进行配置;或者,所述寻呼消息指示的传输方式为协议约定的。
在一些可选实施方式中,所述第一信令为第二DCI或者第二MAC CE。
在一些可选实施方式中,所述第一信令为第二DCI的情况下,所述第二DCI通过G-RNTI加扰;
所述G-RNTI为用于MBS业务调度的G-RNTI;或者,
所述G-RNTI为专用于传输方式指示的G-RNTI。
在一些可选实施方式中,所述G-RNTI为专用于传输方式指示的G-RNTI的情况下,
所述第二DCI指示的一个MBS业务基于所述第二DCI对应的G-RNTI确定,所述一个MBS业务为所述第一MBS业务。
在一些可选实施方式中,所述G-RNTI为用于MBS业务调度的G-RNTI的情况下,
若一个G-RNTI对应一个MBS业务,则所述第二DCI指示的一个MBS业务基于所述第一MAC CE对应的G-RNTI确定,所述一个MBS业务为所述第一MBS业务。
在一些可选实施方式中,所述第二DCI指示的传输方式基于所述第二DCI中携带的第二信息确定;或者,所述第二DCI指示的传输方式通过RRC信令进行配置;或者,所述第二DCI指示的传输方式为协议约定的。
在一些可选实施方式中,所述第二信息为第一指示位,所述第一指示位的取值用于指示所述第一MBS业务对应的传输方式。
在一些可选实施方式中,所述G-RNTI为用于MBS业务调度的G-RNTI的情况下,
若一个G-RNTI对应多个MBS业务,则所述第二DCI携带第三信息,所述第三信息为第二比特图,所述第二比特图包括多个比特位,所述多个比特位与所述多个MBS业务具有第二对应关系,所述多个比特位中的每个比特位的取值用于指示该比特位对应的MBS业务的传输方式。
在一些可选实施方式中,所述第一信令为第二MAC CE的情况下,所述第二MAC CE对应的调度信息通过G-RNTI加扰;
所述G-RNTI为用于MBS业务调度的G-RNTI;或者,
所述G-RNTI为专用于传输方式指示的G-RNTI。
在一些可选实施方式中,所述G-RNTI为专用于传输方式指示的G-RNTI的情况下,
所述第二MAC CE指示的一个MBS业务基于包含第二LCID的子头确定,所述第二LCID为所述第二MAC CE对应的LCID,所述一个MBS业务为所述第一MBS业务。
在一些可选实施方式中,所述G-RNTI为用于MBS业务调度的G-RNTI的情况下,
若一个G-RNTI对应一个MBS业务,则所述第二MAC CE指示的一个MBS业务基于包含第二LCID的子头确定,所述第二LCID为所述第二MAC CE对应的LCID,所述一个MBS业务为所述第一MBS业务。
在一些可选实施方式中,所述第二MAC CE指示的传输方式基于所述第二MAC CE中携带的第 四信息确定;或者,所述第二MAC CE指示的传输方式通过RRC信令进行配置;或者,所述第二MAC CE指示的传输方式为协议约定的。
在一些可选实施方式中,所述第四信息为第二指示位,所述第二指示位的取值用于指示所述第一MBS业务对应的传输方式。
在一些可选实施方式中,所述G-RNTI为用于MBS业务调度的G-RNTI的情况下,
若一个G-RNTI对应多个MBS业务,则所述第二MAC CE携带第三信息,所述第三信息为第二比特图,所述第二比特图包括多个比特位,所述多个比特位与所述多个MBS业务具有第二对应关系,所述多个比特位中的每个比特位的取值用于指示该比特位对应的MBS业务的传输方式。
在一些可选实施方式中,所述第二对应关系通过RRC信令进行配置;或者,所述第二对应关系为协议约定的。
在一些可选实施方式中,所述第二对应关系为:
所述多个比特位按照从低位到高位的顺序,与所述多个MBS业务按照索引从小到大的顺序一一对应;或者,
所述多个比特位按照从高位到低位的顺序,与所述多个MBS业务按照索引从小到大的顺序一一对应。
在一些可选实施方式中,所述G-RNTI为专用于传输方式指示的G-RNTI的情况下,不同的G-RNTI对应不同的MBS业务。
在一些可选实施方式中,所述接收单元901在接收所述第一信令之前按照PTM方式接收所述第一MBS业务;
所述装置还包括:控制单元,用于若所述确定单元902基于所述第一信令确定所述第一终端设备的传输方式为PTP方式,则将传输方式由PTM方式切换为PTP方式;其中,PTM方式被去激活,PTP方式被激活;若所述确定单元902基于所述第一信令确定所述第一终端设备的传输方式为PTM方式,则保持传输方式为PTM方式。
在一些可选实施方式中,所述接收单元901在接收所述第一信令之前按照PTP方式接收所述MBS业务;
所述装置还包括:控制单元,用于若所述确定单元902基于所述第一信令确定所述第一终端设备的传输方式为PTM方式,则将传输方式由PTP方式切换为PTM方式;其中,PTP方式被去激活,PTM方式被激活;若所述确定单元902基于所述第一信令确定所述第一终端设备的传输方式为PTP方式,则保持传输方式为PTP方式。
在一些可选实施方式中,所述装置还包括:
发送单元903,用于在所述接收单元901接收网络设备发送的第一信令之前,向所述网络设备发送第二信令,所述第二信令用于请求所述网络设备将所述第一终端设备的传输方式由第一传输方式切换到第二传输方式;其中,所述第二传输方式为PTP方式,所述第一传输方式为PTM方式,或者,所述第一传输方式为PTP方式,所述第二传输方式为PTM方式。
在一些可选实施方式中,所述发送单元903,用于通过PTP方式或者单播方式向所述网络设备发送第二信令。
在一些可选实施方式中,所述第二信令携带以下至少之一:
MBS会话标识;
请求目的指示信息。
在一些可选实施方式中,所述请求目的指示信息用于指示以下至少之一:
所述第一终端设备请求切换的传输方式为所述第二传输方式;
所述第一终端设备建议的所述第二传输方式对应的调度参数。
在一些可选实施方式中,所述第二信令为MAC CE或者RRC信令。
在一些可选实施方式中,所述RRC信令为承载UE辅助信息的RRC信令或者为定义的RRC信令。
本领域技术人员应当理解,本申请实施例的上述传输方式的确定装置的相关描述可以参照本申请实施例的传输方式的确定方法的相关描述进行理解。
图10是本申请实施例提供的传输方式的确定装置的结构组成示意图二,应用于网络设备,如图10所示,所述传输方式的确定装置包括:
发送单元1001,用于发送第一信令,所述第一信令用于确定MBS组内的多个终端设备的传输方式,所述传输方式为PTP方式或者PTM方式。
在一些可选实施方式中,所述第一信令用于指示所述第一MBS业务对应的MBS组中的每个终端设备的传输方式。
在一些可选实施方式中,所述第一信令携带第一信息,所述第一信息为第一比特图,所述第一比特图包括多个比特位,所述多个比特位与所述第一MBS业务对应的MBS组内的多个终端设备具有第一对应关系,所述多个比特位中的每个比特位的取值用于指示该比特位对应的终端设备的传输方式。
在一些可选实施方式中,所述第一对应关系通过RRC信令进行配置;或者,所述第一对应关系为协议约定的。
在一些可选实施方式中,所述第一对应关系为:
所述多个比特位按照从低位到高位的顺序,与所述多个终端设备按照索引从小到大的顺序一一对应;或者,
所述多个比特位按照从高位到低位的顺序,与所述多个终端设备按照索引从小到大的顺序一一对应。
在一些可选实施方式中,所述第一信令为第一DCI或者第一MAC CE。
在一些可选实施方式中,所述第一信令为第一DCI的情况下,所述第一DCI通过G-RNTI加扰;
所述G-RNTI为用于MBS业务调度的G-RNTI;或者,
所述G-RNTI为专用于传输方式指示的G-RNTI。
在一些可选实施方式中,所述第一信令为第一MAC CE的情况下,所述第一MAC CE与第一LCID对应,所述第一LCID用于指示所述第一MAC CE的类型为指示所述传输方式的MAC CE。
在一些可选实施方式中,所述第一MAC CE对应的调度信息通过G-RNTI加扰;
所述G-RNTI为用于MBS业务调度的G-RNTI;或者,
所述G-RNTI为专用于传输方式指示的G-RNTI。
在一些可选实施方式中,所述G-RNTI为专用于传输方式指示的G-RNTI的情况下,
所述第一MAC CE指示的所述第一MBS业务基于所述第一MAC CE对应的G-RNTI确定。
在一些可选实施方式中,所述G-RNTI为用于MBS业务调度的G-RNTI的情况下,
若一个G-RNTI对应一个MBS业务,则所述第一MAC CE指示的所述第一MBS业务基于所述第一MAC CE对应的G-RNTI确定;
若一个G-RNTI对应多个MBS业务,则所述第一MAC CE指示的所述第一MBS业务基于所述第一MAC CE中携带的所述第一MBS业务的指示信息确定。
在一些可选实施方式中,所述第一MBS业务的指示信息为所述第一MBS业务对应的MBS索引。
在一些可选实施方式中,所述多个MBS业务中的每个MBS业务的MBS索引通过RRC信令进行配置。
在一些可选实施方式中,所述第一信令用于指示至少一个MBS业务对应的MBS组的传输方式,所述至少一个MBS业务包括所述第一MBS业务,所述MBS组的传输方式用于确定所述MBS组内的全部终端设备的传输方式。
在一些可选实施方式中,所述第一信令为寻呼消息,所述寻呼消息用于指示所述第一MBS业务对应的MBS组的传输方式。
在一些可选实施方式中,所述寻呼消息指示的所述第一MBS业务基于所述寻呼消息携带的所述第一MBS业务的MBS会话标识确定。
在一些可选实施方式中,所述寻呼消息指示的传输方式通过系统广播进行配置;或者,所述寻呼消息指示的传输方式为协议约定的。
在一些可选实施方式中,所述第一信令为第二DCI或者第二MAC CE。
在一些可选实施方式中,所述第一信令为第二DCI的情况下,所述第二DCI通过G-RNTI加扰;
所述G-RNTI为用于MBS业务调度的G-RNTI;或者,
所述G-RNTI为专用于传输方式指示的G-RNTI。
在一些可选实施方式中,所述G-RNTI为专用于传输方式指示的G-RNTI的情况下,
所述第二DCI指示的一个MBS业务基于所述第二DCI对应的G-RNTI确定,所述一个MBS业务为所述第一MBS业务。
在一些可选实施方式中,所述G-RNTI为用于MBS业务调度的G-RNTI的情况下,
若一个G-RNTI对应一个MBS业务,则所述第二DCI指示的一个MBS业务基于所述第一MAC  CE对应的G-RNTI确定,所述一个MBS业务为所述第一MBS业务。
在一些可选实施方式中,所述第二DCI指示的传输方式基于所述第二DCI中携带的第二信息确定;或者,所述第二DCI指示的传输方式通过RRC信令进行配置;或者,所述第二DCI指示的传输方式为协议约定的。
在一些可选实施方式中,所述第二信息为第一指示位,所述第一指示位的取值用于指示所述第一MBS业务对应的传输方式。
在一些可选实施方式中,所述G-RNTI为用于MBS业务调度的G-RNTI的情况下,
若一个G-RNTI对应多个MBS业务,则所述第二DCI携带第三信息,所述第三信息为第二比特图,所述第二比特图包括多个比特位,所述多个比特位与所述多个MBS业务具有第二对应关系,所述多个比特位中的每个比特位的取值用于指示该比特位对应的MBS业务的传输方式。
在一些可选实施方式中,所述第一信令为第二MAC CE的情况下,所述第二MAC CE对应的调度信息通过G-RNTI加扰;
所述G-RNTI为用于MBS业务调度的G-RNTI;或者,
所述G-RNTI为专用于传输方式指示的G-RNTI。
在一些可选实施方式中,所述G-RNTI为专用于传输方式指示的G-RNTI的情况下,
所述第二MAC CE指示的一个MBS业务基于包含第二LCID的子头确定,所述第二LCID为所述第二MAC CE对应的LCID,所述一个MBS业务为所述第一MBS业务。
在一些可选实施方式中,所述G-RNTI为用于MBS业务调度的G-RNTI的情况下,
若一个G-RNTI对应一个MBS业务,则所述第二MAC CE指示的一个MBS业务基于包含第二LCID的子头确定,所述第二LCID为所述第二MAC CE对应的LCID,所述一个MBS业务为所述第一MBS业务。
在一些可选实施方式中,所述第二MAC CE指示的传输方式基于所述第二MAC CE中携带的第四信息确定;或者,所述第二MAC CE指示的传输方式通过RRC信令进行配置;或者,所述第二MAC CE指示的传输方式为协议约定的。
在一些可选实施方式中,所述第四信息为第二指示位,所述第二指示位的取值用于指示所述第一MBS业务对应的传输方式。
在一些可选实施方式中,所述G-RNTI为用于MBS业务调度的G-RNTI的情况下,
若一个G-RNTI对应多个MBS业务,则所述第二MAC CE携带第三信息,所述第三信息为第二比特图,所述第二比特图包括多个比特位,所述多个比特位与所述多个MBS业务具有第二对应关系,所述多个比特位中的每个比特位的取值用于指示该比特位对应的MBS业务的传输方式。
在一些可选实施方式中,所述第二对应关系通过RRC信令进行配置;或者,所述第二对应关系为协议约定的。
在一些可选实施方式中,所述第二对应关系为:
所述多个比特位按照从低位到高位的顺序,与所述多个MBS业务按照索引从小到大的顺序一一对应;或者,
所述多个比特位按照从高位到低位的顺序,与所述多个MBS业务按照索引从小到大的顺序一一对应。
在一些可选实施方式中,所述G-RNTI为专用于传输方式指示的G-RNTI的情况下,不同的G-RNTI对应不同的MBS业务。
在一些可选实施方式中,所述装置还包括:接收单元1002,用于在所述发送单元1001发送第一信令之前,接收第一终端设备发送的第二信令,所述第二信令用于请求所述网络设备将所述第一终端设备的传输方式由第一传输方式切换到第二传输方式;其中,所述第二传输方式为PTP方式,所述第一传输方式为PTM方式,或者,所述第一传输方式为PTP方式,所述第二传输方式为PTM方式。
在一些可选实施方式中,所述接收单元1002,用于接收第一终端设备通过PTP方式或者单播方式发送的第二信令。
在一些可选实施方式中,所述第二信令携带以下至少之一:
MBS会话标识;
请求目的指示信息。
在一些可选实施方式中,所述请求目的指示信息用于指示以下至少之一:
所述第一终端设备请求切换的传输方式为所述第二传输方式;
所述第一终端设备建议的所述第二传输方式对应的调度参数。
在一些可选实施方式中,所述第二信令为MAC CE或者RRC信令。
在一些可选实施方式中,所述RRC信令为承载UE辅助信息的RRC信令或者为定义的RRC信令。
本领域技术人员应当理解,本申请实施例的上述传输方式的确定装置的相关描述可以参照本申请实施例的传输方式的确定方法的相关描述进行理解。
图11是本申请实施例提供的一种通信设备1100示意性结构图。该通信设备可以终端设备,也可以是网络设备。图11所示的通信设备1100包括处理器1110,处理器1110可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,通信设备1100还可以包括存储器1120。其中,处理器1110可以从存储器1120中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1120可以是独立于处理器1110的一个单独的器件,也可以集成在处理器1110中。
可选地,如图11所示,通信设备1100还可以包括收发器1130,处理器1110可以控制该收发器1130与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1130可以包括发射机和接收机。收发器1130还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1100具体可为本申请实施例的网络设备,并且该通信设备1100可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1100具体可为本申请实施例的移动终端/终端设备,并且该通信设备1100可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图12是本申请实施例的芯片的示意性结构图。图12所示的芯片1200包括处理器1210,处理器1210可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图12所示,芯片1200还可以包括存储器1220。其中,处理器1210可以从存储器1220中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1220可以是独立于处理器1210的一个单独的器件,也可以集成在处理器1210中。
可选地,该芯片1200还可以包括输入接口1230。其中,处理器1210可以控制该输入接口1230与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1200还可以包括输出接口1240。其中,处理器1210可以控制该输出接口1240与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图13是本申请实施例提供的一种通信系统1300的示意性框图。如图13所示,该通信系统1300包括终端设备1310和网络设备1320。
其中,该终端设备1310可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1320可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据 实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (94)

  1. 一种传输方式的确定方法,所述方法包括:
    第一终端设备接收网络设备发送的第一信令,所述第一信令用于确定多播广播服务MBS组内的多个终端设备的传输方式,所述传输方式为点对点PTP方式或者点对多点PTM方式;其中,所述多个终端设备包括所述第一终端设备;
    所述第一终端设备基于所述第一信令确定所述第一终端设备的传输方式,按照所述第一终端设备的传输方式接收第一MBS业务。
  2. 根据权利要求1所述的方法,其中,所述第一信令用于指示所述第一MBS业务对应的MBS组中的每个终端设备的传输方式。
  3. 根据权利要求2所述的方法,其中,所述第一信令携带第一信息,所述第一信息为第一比特图,所述第一比特图包括多个比特位,所述多个比特位与所述第一MBS业务对应的MBS组内的多个终端设备具有第一对应关系,所述多个比特位中的每个比特位的取值用于指示该比特位对应的终端设备的传输方式。
  4. 根据权利要求3所述的方法,其中,
    所述第一对应关系通过无线资源控制RRC信令进行配置;或者,
    所述第一对应关系为协议约定的。
  5. 根据权利要求3或4所述的方法,其中,所述第一对应关系为:
    所述多个比特位按照从低位到高位的顺序,与所述多个终端设备按照索引从小到大的顺序一一对应;或者,
    所述多个比特位按照从高位到低位的顺序,与所述多个终端设备按照索引从小到大的顺序一一对应。
  6. 根据权利要求3至5中任一项所述的方法,其中,所述第一终端设备基于所述第一信令确定所述第一终端设备的传输方式,包括:
    所述第一终端设备基于所述第一终端设备的索引和所述第一对应关系,确定所述第一终端设备与所述第一比特图中的第一比特位对应;
    所述第一终端设备基于所述第一比特位的取值确定所述第一终端设备的传输方式。
  7. 根据权利要求6所述的方法,其中,所述第一终端设备的索引通过RRC信令进行配置。
  8. 根据权利要求2至7中任一项所述的方法,其中,所述第一信令为第一下行控制信息DCI或者第一媒体接入控制MAC控制单元CE。
  9. 根据权利要求8所述的方法,其中,所述第一信令为第一DCI的情况下,所述第一DCI通过G-RNTI加扰;
    所述G-RNTI为用于MBS业务调度的G-RNTI;或者,
    所述G-RNTI为专用于传输方式指示的G-RNTI。
  10. 根据权利要求8所述的方法,其中,所述第一信令为第一MAC CE的情况下,所述第一MAC CE与第一逻辑信道标识LCID对应,所述第一LCID用于指示所述第一MAC CE的类型为指示所述传输方式的MAC CE。
  11. 根据权利要求10所述的方法,其中,所述第一MAC CE对应的调度信息通过G-RNTI加扰;
    所述G-RNTI为用于MBS业务调度的G-RNTI;或者,
    所述G-RNTI为专用于传输方式指示的G-RNTI。
  12. 根据权利要求11所述的方法,其中,所述G-RNTI为专用于传输方式指示的G-RNTI的情况下,
    所述第一MAC CE指示的所述第一MBS业务基于所述第一MAC CE对应的G-RNTI确定。
  13. 根据权利要求11所述的方法,其中,所述G-RNTI为用于MBS业务调度的G-RNTI的情况下,
    若一个G-RNTI对应一个MBS业务,则所述第一MAC CE指示的所述第一MBS业务基于所述第一MAC CE对应的G-RNTI确定;
    若一个G-RNTI对应多个MBS业务,则所述第一MAC CE指示的所述第一MBS业务基于 所述第一MAC CE中携带的所述第一MBS业务的指示信息确定。
  14. 根据权利要求13所述的方法,其中,所述第一MBS业务的指示信息为所述第一MBS业务对应的MBS索引。
  15. 根据权利要求13或14所述的方法,其中,所述多个MBS业务中的每个MBS业务的MBS索引通过RRC信令进行配置。
  16. 根据权利要求1所述的方法,其中,所述第一信令用于指示至少一个MBS业务对应的MBS组的传输方式,所述至少一个MBS业务包括所述第一MBS业务,所述MBS组的传输方式用于确定所述MBS组内的全部终端设备的传输方式。
  17. 根据权利要求16所述的方法,其中,所述第一信令为寻呼消息,所述寻呼消息用于指示所述第一MBS业务对应的MBS组的传输方式。
  18. 根据权利要求17所述的方法,其中,所述寻呼消息指示的所述第一MBS业务基于所述寻呼消息携带的所述第一MBS业务的MBS会话标识确定。
  19. 根据权利要求17或18所述的方法,其中,
    所述寻呼消息指示的传输方式通过系统广播进行配置;或者,
    所述寻呼消息指示的传输方式为协议约定的。
  20. 根据权利要求16所述的方法,其中,所述第一信令为第二DCI或者第二MAC CE。
  21. 根据权利要求20所述的方法,其中,所述第一信令为第二DCI的情况下,所述第二DCI通过G-RNTI加扰;
    所述G-RNTI为用于MBS业务调度的G-RNTI;或者,
    所述G-RNTI为专用于传输方式指示的G-RNTI。
  22. 根据权利要求21所述的方法,其中,所述G-RNTI为专用于传输方式指示的G-RNTI的情况下,
    所述第二DCI指示的一个MBS业务基于所述第二DCI对应的G-RNTI确定,所述一个MBS业务为所述第一MBS业务。
  23. 根据权利要求21所述的方法,其中,所述G-RNTI为用于MBS业务调度的G-RNTI的情况下,
    若一个G-RNTI对应一个MBS业务,则所述第二DCI指示的一个MBS业务基于所述第一MAC CE对应的G-RNTI确定,所述一个MBS业务为所述第一MBS业务。
  24. 根据权利要求22或23所述的方法,其中,
    所述第二DCI指示的传输方式基于所述第二DCI中携带的第二信息确定;或者,
    所述第二DCI指示的传输方式通过RRC信令进行配置;或者,
    所述第二DCI指示的传输方式为协议约定的。
  25. 根据权利要求24所述的方法,其中,所述第二信息为第一指示位,所述第一指示位的取值用于指示所述第一MBS业务对应的传输方式。
  26. 根据权利要求21所述的方法,其中,所述G-RNTI为用于MBS业务调度的G-RNTI的情况下,
    若一个G-RNTI对应多个MBS业务,则所述第二DCI携带第三信息,所述第三信息为第二比特图,所述第二比特图包括多个比特位,所述多个比特位与所述多个MBS业务具有第二对应关系,所述多个比特位中的每个比特位的取值用于指示该比特位对应的MBS业务的传输方式。
  27. 根据权利要求20所述的方法,其中,所述第一信令为第二MAC CE的情况下,所述第二MAC CE对应的调度信息通过G-RNTI加扰;
    所述G-RNTI为用于MBS业务调度的G-RNTI;或者,
    所述G-RNTI为专用于传输方式指示的G-RNTI。
  28. 根据权利要求27所述的方法,其中,所述G-RNTI为专用于传输方式指示的G-RNTI的情况下,
    所述第二MAC CE指示的一个MBS业务基于包含第二LCID的子头确定,所述第二LCID为所述第二MAC CE对应的LCID,所述一个MBS业务为所述第一MBS业务。
  29. 根据权利要求27所述的方法,其中,所述G-RNTI为用于MBS业务调度的G-RNTI的情况下,
    若一个G-RNTI对应一个MBS业务,则所述第二MAC CE指示的一个MBS业务基于包含第二LCID的子头确定,所述第二LCID为所述第二MAC CE对应的LCID,所述一个MBS业务 为所述第一MBS业务。
  30. 根据权利要求28或29所述的方法,其中,
    所述第二MAC CE指示的传输方式基于所述第二MAC CE中携带的第四信息确定;或者,
    所述第二MAC CE指示的传输方式通过RRC信令进行配置;或者,
    所述第二MAC CE指示的传输方式为协议约定的。
  31. 根据权利要求30所述的方法,其中,所述第四信息为第二指示位,所述第二指示位的取值用于指示所述第一MBS业务对应的传输方式。
  32. 根据权利要求27所述的方法,其中,所述G-RNTI为用于MBS业务调度的G-RNTI的情况下,
    若一个G-RNTI对应多个MBS业务,则所述第二MAC CE携带第三信息,所述第三信息为第二比特图,所述第二比特图包括多个比特位,所述多个比特位与所述多个MBS业务具有第二对应关系,所述多个比特位中的每个比特位的取值用于指示该比特位对应的MBS业务的传输方式。
  33. 根据权利要求26或32所述的方法,其中,
    所述第二对应关系通过RRC信令进行配置;或者,
    所述第二对应关系为协议约定的。
  34. 根据权利要求26、32、33中任一项所述的方法,其中,所述第二对应关系为:
    所述多个比特位按照从低位到高位的顺序,与所述多个MBS业务按照索引从小到大的顺序一一对应;或者,
    所述多个比特位按照从高位到低位的顺序,与所述多个MBS业务按照索引从小到大的顺序一一对应。
  35. 根据权利要求9、11、12、21、22、27、28中任一项所述的方法,其中,所述G-RNTI为专用于传输方式指示的G-RNTI的情况下,不同的G-RNTI对应不同的MBS业务。
  36. 根据权利要求1至35中任一项所述的方法,其中,所述第一终端设备在接收所述第一信令之前按照PTM方式接收所述第一MBS业务;所述方法还包括:
    若所述第一终端设备基于所述第一信令确定所述第一终端设备的传输方式为PTP方式,则所述终端设备将传输方式由PTM方式切换为PTP方式;其中,PTM方式被去激活,PTP方式被激活;
    若所述第一终端设备基于所述第一信令确定所述第一终端设备的传输方式为PTM方式,则所述终端设备保持传输方式为PTM方式。
  37. 根据权利要求1至35中任一项所述的方法,其中,所述第一终端设备在接收所述第一信令之前按照PTP方式接收所述MBS业务;所述方法还包括:
    若所述第一终端设备基于所述第一信令确定所述第一终端设备的传输方式为PTM方式,则所述终端设备将传输方式由PTP方式切换为PTM方式;其中,PTP方式被去激活,PTM方式被激活;
    若所述第一终端设备基于所述第一信令确定所述第一终端设备的传输方式为PTP方式,则所述终端设备保持传输方式为PTP方式。
  38. 根据权利要求1至37中任一项所述的方法,其中,所述第一终端设备接收网络设备发送的第一信令之前,所述方法还包括:
    所述第一终端设备向所述网络设备发送第二信令,所述第二信令用于请求所述网络设备将所述第一终端设备的传输方式由第一传输方式切换到第二传输方式;其中,所述第二传输方式为PTP方式,所述第一传输方式为PTM方式,或者,所述第一传输方式为PTP方式,所述第二传输方式为PTM方式。
  39. 根据权利要求38所述的方法,其中,所述第一终端设备向所述网络设备发送第二信令,包括:
    所述第一终端设备通过PTP方式或者单播方式向所述网络设备发送第二信令。
  40. 根据权利要求38或39所述的方法,其中,所述第二信令携带以下至少之一:
    MBS会话标识;
    请求目的指示信息。
  41. 根据权利要求40所述的方法,其中,所述请求目的指示信息用于指示以下至少之一:
    所述第一终端设备请求切换的传输方式为所述第二传输方式;
    所述第一终端设备建议的所述第二传输方式对应的调度参数。
  42. 根据权利要求38至41中任一项所述的方法,其中,所述第二信令为MAC CE或者RRC信令。
  43. 根据权利要求42所述的方法,其中,所述RRC信令为承载UE辅助信息的RRC信令或者为定义的RRC信令。
  44. 一种传输方式的确定方法,所述方法包括:
    网络设备发送第一信令,所述第一信令用于确定MBS组内的多个终端设备的传输方式,所述传输方式为PTP方式或者PTM方式。
  45. 根据权利要求44所述的方法,其中,所述第一信令用于指示所述第一MBS业务对应的MBS组中的每个终端设备的传输方式。
  46. 根据权利要求45所述的方法,其中,所述第一信令携带第一信息,所述第一信息为第一比特图,所述第一比特图包括多个比特位,所述多个比特位与所述第一MBS业务对应的MBS组内的多个终端设备具有第一对应关系,所述多个比特位中的每个比特位的取值用于指示该比特位对应的终端设备的传输方式。
  47. 根据权利要求46所述的方法,其中,
    所述第一对应关系通过RRC信令进行配置;或者,
    所述第一对应关系为协议约定的。
  48. 根据权利要求46或47所述的方法,其中,所述第一对应关系为:
    所述多个比特位按照从低位到高位的顺序,与所述多个终端设备按照索引从小到大的顺序一一对应;或者,
    所述多个比特位按照从高位到低位的顺序,与所述多个终端设备按照索引从小到大的顺序一一对应。
  49. 根据权利要求45至48中任一项所述的方法,其中,所述第一信令为第一DCI或者第一MAC CE。
  50. 根据权利要求49所述的方法,其中,所述第一信令为第一DCI的情况下,所述第一DCI通过G-RNTI加扰;
    所述G-RNTI为用于MBS业务调度的G-RNTI;或者,
    所述G-RNTI为专用于传输方式指示的G-RNTI。
  51. 根据权利要求49所述的方法,其中,所述第一信令为第一MAC CE的情况下,所述第一MAC CE与第一LCID对应,所述第一LCID用于指示所述第一MAC CE的类型为指示所述传输方式的MAC CE。
  52. 根据权利要求51所述的方法,其中,所述第一MAC CE对应的调度信息通过G-RNTI加扰;
    所述G-RNTI为用于MBS业务调度的G-RNTI;或者,
    所述G-RNTI为专用于传输方式指示的G-RNTI。
  53. 根据权利要求52所述的方法,其中,所述G-RNTI为专用于传输方式指示的G-RNTI的情况下,
    所述第一MAC CE指示的所述第一MBS业务基于所述第一MAC CE对应的G-RNTI确定。
  54. 根据权利要求52所述的方法,其中,所述G-RNTI为用于MBS业务调度的G-RNTI的情况下,
    若一个G-RNTI对应一个MBS业务,则所述第一MAC CE指示的所述第一MBS业务基于所述第一MAC CE对应的G-RNTI确定;
    若一个G-RNTI对应多个MBS业务,则所述第一MAC CE指示的所述第一MBS业务基于所述第一MAC CE中携带的所述第一MBS业务的指示信息确定。
  55. 根据权利要求54所述的方法,其中,所述第一MBS业务的指示信息为所述第一MBS业务对应的MBS索引。
  56. 根据权利要求54或55所述的方法,其中,所述多个MBS业务中的每个MBS业务的MBS索引通过RRC信令进行配置。
  57. 根据权利要求44所述的方法,其中,所述第一信令用于指示至少一个MBS业务对应的MBS组的传输方式,所述至少一个MBS业务包括所述第一MBS业务,所述MBS组的传输方式用于确定所述MBS组内的全部终端设备的传输方式。
  58. 根据权利要求57所述的方法,其中,所述第一信令为寻呼消息,所述寻呼消息用于指示所述第一MBS业务对应的MBS组的传输方式。
  59. 根据权利要求58所述的方法,其中,所述寻呼消息指示的所述第一MBS业务基于所述寻呼消息携带的所述第一MBS业务的MBS会话标识确定。
  60. 根据权利要求58或59所述的方法,其中,
    所述寻呼消息指示的传输方式通过系统广播进行配置;或者,
    所述寻呼消息指示的传输方式为协议约定的。
  61. 根据权利要求57所述的方法,其中,所述第一信令为第二DCI或者第二MAC CE。
  62. 根据权利要求61所述的方法,其中,所述第一信令为第二DCI的情况下,所述第二DCI通过G-RNTI加扰;
    所述G-RNTI为用于MBS业务调度的G-RNTI;或者,
    所述G-RNTI为专用于传输方式指示的G-RNTI。
  63. 根据权利要求62所述的方法,其中,所述G-RNTI为专用于传输方式指示的G-RNTI的情况下,
    所述第二DCI指示的一个MBS业务基于所述第二DCI对应的G-RNTI确定,所述一个MBS业务为所述第一MBS业务。
  64. 根据权利要求62所述的方法,其中,所述G-RNTI为用于MBS业务调度的G-RNTI的情况下,
    若一个G-RNTI对应一个MBS业务,则所述第二DCI指示的一个MBS业务基于所述第一MAC CE对应的G-RNTI确定,所述一个MBS业务为所述第一MBS业务。
  65. 根据权利要求63或64所述的方法,其中,
    所述第二DCI指示的传输方式基于所述第二DCI中携带的第二信息确定;或者,
    所述第二DCI指示的传输方式通过RRC信令进行配置;或者,
    所述第二DCI指示的传输方式为协议约定的。
  66. 根据权利要求65所述的方法,其中,所述第二信息为第一指示位,所述第一指示位的取值用于指示所述第一MBS业务对应的传输方式。
  67. 根据权利要求62所述的方法,其中,所述G-RNTI为用于MBS业务调度的G-RNTI的情况下,
    若一个G-RNTI对应多个MBS业务,则所述第二DCI携带第三信息,所述第三信息为第二比特图,所述第二比特图包括多个比特位,所述多个比特位与所述多个MBS业务具有第二对应关系,所述多个比特位中的每个比特位的取值用于指示该比特位对应的MBS业务的传输方式。
  68. 根据权利要求61所述的方法,其中,所述第一信令为第二MAC CE的情况下,所述第二MAC CE对应的调度信息通过G-RNTI加扰;
    所述G-RNTI为用于MBS业务调度的G-RNTI;或者,
    所述G-RNTI为专用于传输方式指示的G-RNTI。
  69. 根据权利要求68所述的方法,其中,所述G-RNTI为专用于传输方式指示的G-RNTI的情况下,
    所述第二MAC CE指示的一个MBS业务基于包含第二LCID的子头确定,所述第二LCID为所述第二MAC CE对应的LCID,所述一个MBS业务为所述第一MBS业务。
  70. 根据权利要求68所述的方法,其中,所述G-RNTI为用于MBS业务调度的G-RNTI的情况下,
    若一个G-RNTI对应一个MBS业务,则所述第二MAC CE指示的一个MBS业务基于包含第二LCID的子头确定,所述第二LCID为所述第二MAC CE对应的LCID,所述一个MBS业务为所述第一MBS业务。
  71. 根据权利要求69或70所述的方法,其中,
    所述第二MAC CE指示的传输方式基于所述第二MAC CE中携带的第四信息确定;或者,
    所述第二MAC CE指示的传输方式通过RRC信令进行配置;或者,
    所述第二MAC CE指示的传输方式为协议约定的。
  72. 根据权利要求71所述的方法,其中,所述第四信息为第二指示位,所述第二指示位的取值用于指示所述第一MBS业务对应的传输方式。
  73. 根据权利要求68所述的方法,其中,所述G-RNTI为用于MBS业务调度的G-RNTI的 情况下,
    若一个G-RNTI对应多个MBS业务,则所述第二MAC CE携带第三信息,所述第三信息为第二比特图,所述第二比特图包括多个比特位,所述多个比特位与所述多个MBS业务具有第二对应关系,所述多个比特位中的每个比特位的取值用于指示该比特位对应的MBS业务的传输方式。
  74. 根据权利要求67或73所述的方法,其中,
    所述第二对应关系通过RRC信令进行配置;或者,
    所述第二对应关系为协议约定的。
  75. 根据权利要求67、73、74中任一项所述的方法,其中,所述第二对应关系为:
    所述多个比特位按照从低位到高位的顺序,与所述多个MBS业务按照索引从小到大的顺序一一对应;或者,
    所述多个比特位按照从高位到低位的顺序,与所述多个MBS业务按照索引从小到大的顺序一一对应。
  76. 根据权利要求50、52、53、62、63、68、69中任一项所述的方法,其中,所述G-RNTI为专用于传输方式指示的G-RNTI的情况下,不同的G-RNTI对应不同的MBS业务。
  77. 根据权利要求44至76中任一项所述的方法,其中,所述网络设备发送第一信令之前,所述方法还包括:
    所述网络设备接收第一终端设备发送的第二信令,所述第二信令用于请求所述网络设备将所述第一终端设备的传输方式由第一传输方式切换到第二传输方式;其中,所述第二传输方式为PTP方式,所述第一传输方式为PTM方式,或者,所述第一传输方式为PTP方式,所述第二传输方式为PTM方式。
  78. 根据权利要求77所述的方法,其中,所述网络设备接收第一终端设备发送的第二信令,包括:
    所述网络设备接收第一终端设备通过PTP方式或者单播方式发送的第二信令。
  79. 根据权利要求77或78所述的方法,其中,所述第二信令携带以下至少之一:
    MBS会话标识;
    请求目的指示信息。
  80. 根据权利要求79所述的方法,其中,所述请求目的指示信息用于指示以下至少之一:
    所述第一终端设备请求切换的传输方式为所述第二传输方式;
    所述第一终端设备建议的所述第二传输方式对应的调度参数。
  81. 根据权利要求77至80中任一项所述的方法,其中,所述第二信令为MAC CE或者RRC信令。
  82. 根据权利要求81所述的方法,其中,所述RRC信令为承载UE辅助信息的RRC信令或者为定义的RRC信令。
  83. 一种传输方式的确定装置,应用于第一终端设备,所述装置包括:
    接收单元,用于接收网络设备发送的第一信令,所述第一信令用于确定多播广播服务MBS组内的多个终端设备的传输方式,所述传输方式为点对点PTP方式或者点对多点PTM方式;其中,所述多个终端设备包括所述第一终端设备;
    确定单元,用于基于所述第一信令确定所述第一终端设备的传输方式;
    所述接收单元,还用于按照所述第一终端设备的传输方式接收第一MBS业务。
  84. 一种传输方式的确定装置,应用于网络设备,所述装置包括:
    发送单元,用于发送第一信令,所述第一信令用于确定MBS组内的多个终端设备的传输方式,所述传输方式为PTP方式或者PTM方式。
  85. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至43中任一项所述的方法。
  86. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求44至82中任一项所述的方法。
  87. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至43中任一项所述的方法。
  88. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求44至82中任一项所述的方法。
  89. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至43中任一项所述的方法。
  90. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求44至82中任一项所述的方法。
  91. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至43中任一项所述的方法。
  92. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求44至82中任一项所述的方法。
  93. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至43中任一项所述的方法。
  94. 一种计算机程序,所述计算机程序使得计算机执行如权利要求44至82中任一项所述的方法。
PCT/CN2021/103727 2021-06-30 2021-06-30 一种传输方式的确定方法及装置、终端设备、网络设备 WO2023272619A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180095849.XA CN117063495A (zh) 2021-06-30 2021-06-30 一种传输方式的确定方法及装置、终端设备、网络设备
PCT/CN2021/103727 WO2023272619A1 (zh) 2021-06-30 2021-06-30 一种传输方式的确定方法及装置、终端设备、网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/103727 WO2023272619A1 (zh) 2021-06-30 2021-06-30 一种传输方式的确定方法及装置、终端设备、网络设备

Publications (1)

Publication Number Publication Date
WO2023272619A1 true WO2023272619A1 (zh) 2023-01-05

Family

ID=84692170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103727 WO2023272619A1 (zh) 2021-06-30 2021-06-30 一种传输方式的确定方法及装置、终端设备、网络设备

Country Status (2)

Country Link
CN (1) CN117063495A (zh)
WO (1) WO2023272619A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009026809A1 (fr) * 2007-08-29 2009-03-05 Huawei Technologies Co., Ltd. Procédé de colocalisation de mode de transmission de service de diffusion/multidiffusion, appareil et contrôleur de réseau sans fil
CN102821362A (zh) * 2006-10-17 2012-12-12 华为技术有限公司 多播广播业务的控制方法及其系统
US20170048893A1 (en) * 2014-05-08 2017-02-16 Nokia Solutions And Networks Oy Improving multimedia broadcast service efficiency
CN111866975A (zh) * 2020-05-18 2020-10-30 中兴通讯股份有限公司 切换方法及装置、信息发送方法及装置
CN111901765A (zh) * 2020-04-27 2020-11-06 中兴通讯股份有限公司 模式配置方法、装置、设备和存储介质
WO2021098106A1 (en) * 2020-03-24 2021-05-27 Zte Corporation Dynamically changing multicast/broadcast service delivery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102821362A (zh) * 2006-10-17 2012-12-12 华为技术有限公司 多播广播业务的控制方法及其系统
WO2009026809A1 (fr) * 2007-08-29 2009-03-05 Huawei Technologies Co., Ltd. Procédé de colocalisation de mode de transmission de service de diffusion/multidiffusion, appareil et contrôleur de réseau sans fil
US20170048893A1 (en) * 2014-05-08 2017-02-16 Nokia Solutions And Networks Oy Improving multimedia broadcast service efficiency
WO2021098106A1 (en) * 2020-03-24 2021-05-27 Zte Corporation Dynamically changing multicast/broadcast service delivery
CN111901765A (zh) * 2020-04-27 2020-11-06 中兴通讯股份有限公司 模式配置方法、装置、设备和存储介质
CN111866975A (zh) * 2020-05-18 2020-10-30 中兴通讯股份有限公司 切换方法及装置、信息发送方法及装置

Also Published As

Publication number Publication date
CN117063495A (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
US20220322049A1 (en) Method and apparatus for scheduling service, terminal device, and network device
WO2021134298A1 (zh) 一种资源指示方法及装置、通信设备
WO2022006875A1 (zh) 建立mbs业务的方法及装置、终端设备、网络设备
EP4080958A1 (en) Resource allocation method and apparatus, terminal device and network device
WO2022006849A1 (zh) Mbs业务的tci状态管理方法及装置、终端设备
WO2022155978A1 (zh) Mbs业务的配置方法及装置、终端设备、网络设备
WO2022141088A1 (zh) 一种mbs业务的传输方法及装置、终端设备
US11963199B2 (en) Semi-persistent scheduling method and apparatus for MBS service, and terminal device and network device
WO2023010287A1 (zh) 一种通知信息变更的方法及装置、终端设备、网络设备
WO2022056669A1 (zh) 一种mbs业务的管理方法及装置、终端设备、网络设备
WO2022141545A1 (zh) 一种mcch调度传输方法及装置、终端设备
WO2022205454A1 (zh) 一种指示寻呼的方法及装置、终端设备、网络设备
WO2023272619A1 (zh) 一种传输方式的确定方法及装置、终端设备、网络设备
WO2023050185A1 (zh) 一种变量的维护方法及装置、终端设备
WO2023097665A1 (zh) 一种数据接收方法及装置、终端设备
WO2023097613A1 (zh) 一种信息确定方法及装置、终端设备
WO2023102833A1 (zh) 一种反馈状态的指示方法及装置、终端设备、网络设备
WO2023004586A1 (zh) 一种寻呼方法及装置、终端设备、网络设备
WO2023070577A1 (zh) 一种头压缩方法及装置、终端设备、网络设备
WO2023092531A1 (zh) 一种广播业务的配置方法及装置、终端设备、网络设备
US12095584B2 (en) Bearer configuration method and apparatus, terminal device, and network device
WO2023056641A1 (zh) 一种头压缩方法及装置、终端设备、网络设备
WO2022266961A1 (zh) 一种变量的维护方法及装置、终端设备
WO2023102898A1 (zh) 重传方式的确定方法及定时器的控制方法、装置
WO2022165720A1 (zh) 提高mbs业务可靠性的方法及装置、终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947573

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180095849.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21947573

Country of ref document: EP

Kind code of ref document: A1