WO2023004584A1 - 无线通信的方法、终端设备和网络设备 - Google Patents

无线通信的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2023004584A1
WO2023004584A1 PCT/CN2021/108660 CN2021108660W WO2023004584A1 WO 2023004584 A1 WO2023004584 A1 WO 2023004584A1 CN 2021108660 W CN2021108660 W CN 2021108660W WO 2023004584 A1 WO2023004584 A1 WO 2023004584A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
rnti
value
scrambled
dci
Prior art date
Application number
PCT/CN2021/108660
Other languages
English (en)
French (fr)
Inventor
张世昌
马腾
赵振山
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21951200.1A priority Critical patent/EP4369645A1/en
Priority to CN202180100237.5A priority patent/CN117693914A/zh
Priority to PCT/CN2021/108660 priority patent/WO2023004584A1/zh
Publication of WO2023004584A1 publication Critical patent/WO2023004584A1/zh
Priority to US18/424,731 priority patent/US20240163045A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • H04L1/0008Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length by supplementing frame payload, e.g. with padding bits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0093Point-to-multipoint

Definitions

  • the embodiments of the present application relate to the communication field, and in particular to a wireless communication method, a terminal device, and a network device.
  • MBS multicast and broadcast transmission
  • Terminal equipment may need to receive both unicast services and MBS services.
  • Terminal equipment may support a variety of different MBS service, for different MBS services, due to the difference of MBS service types, the bit fields required for scheduling the downlink control information (Downlink Control Information, DCI) in the physical downlink control channel (Physical Downlink Control Channel, PDCCH) of the MBS service
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • the present application provides a wireless communication method, a terminal device and a network device, which are beneficial to reducing the complexity of detecting a PDCCH by the terminal device.
  • a wireless communication method including: a terminal device detects in a first search space a physical downlink control channel PDCCH scrambled by at least one group radio network temporary identifier G-RNTI, wherein the first search The space includes a common search space CSS and/or a terminal-specific search space USS, and the type of the number of bits of the downlink control information DCI carried by the PDCCH scrambled by the at least one G-RNTI is less than or equal to the first threshold.
  • a wireless communication method including: a terminal device receives a first physical downlink control channel PDCCH scrambled by a first radio network temporary identifier RNTI in a first search space, wherein the first PDCCH carries The value of the hybrid automatic repeat request HARQ process field in the downlink control information DCI is the first value, and the second PDCCH is a PDCCH with the value of the HARQ process field in the last DCI received by the terminal device.
  • the terminal device receives the search space of the second PDCCH according to the first search space, the first RNTI, scrambles the RNTI of the second PDCCH, and new data in the DCI carried by the first PDCCH Indicate at least one of the value of the NDI field and the value of the NDI field in the DCI carried by the second PDCCH, and determine whether the physical downlink shared channel PDSCH scheduled by the first PDCCH is the one scheduled by the second PDCCH Retransmission of PDSCH.
  • a wireless communication method including: a network device sends a physical downlink control channel PDCCH scrambled by at least one group radio network temporary identifier G-RNTI in a first search space, wherein the first search The space includes a common search space CSS and/or a terminal-specific search space USS, and the type of the number of bits of the downlink control information DCI carried by the PDCCH scrambled by the at least one G-RNTI is less than or equal to the first threshold.
  • a wireless communication method including: when the new data indication NDI field in the first physical downlink control channel PDCCH has the same value as the NDI field in the second PDCCH, the network device does not pass Scheduling the retransmission of multicast and multicast MBS services in a point-to-point manner, wherein the first PDCCH is used to schedule the initial transmission of the MBS services, and the second PDCCH is used to schedule unicast services, wherein the first The value of the HARQ process field in a PDCCH is the same as the value of the HARQ process field in the second PDCCH.
  • a terminal device configured to execute the method in any aspect of the above first aspect to the second aspect or in each implementation manner thereof.
  • the terminal device includes a functional module for executing any one of the above first aspect to the second aspect or the method in each implementation manner thereof.
  • a network device configured to execute the method in any aspect of the third aspect to the fourth aspect or in each implementation manner thereof.
  • the network device includes a functional module configured to execute any aspect in the above-mentioned third aspect to the fourth aspect or a method in each implementation manner thereof.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute any aspect of the first aspect to the second aspect or the method in each implementation manner.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute any aspect of the third aspect to the fourth aspect or the method in each implementation manner.
  • a chip configured to implement any one of the foregoing first to fourth aspects or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes any one of the above-mentioned first to fourth aspects or any of the implementations thereof. method.
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute any one of the above-mentioned first to fourth aspects or the method in each implementation manner thereof.
  • a computer program product including computer program instructions, the computer program instructions causing a computer to execute any one of the above first to fourth aspects or the method in each implementation manner thereof.
  • a twelfth aspect provides a computer program that, when running on a computer, causes the computer to execute any one of the above first to fourth aspects or the method in each implementation manner.
  • the complexity of detecting the PDCCH in the search space by the terminal device can be reduced.
  • unnecessary bit transmission on the network side is reduced, and the utilization efficiency of system resources is improved.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of SC-PTM channels and their mapping methods.
  • Fig. 3 is a schematic interaction diagram of a wireless communication method provided according to an embodiment of the present application.
  • Fig. 4 is a schematic interaction diagram of another wireless communication method provided according to an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a receiving sequence of a PDCCH according to an embodiment of the present application.
  • Fig. 6 is a schematic diagram of a receiving sequence of a PDCCH according to another embodiment of the present application.
  • Fig. 7 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of another terminal device provided according to an embodiment of the present application.
  • Fig. 9 is a schematic block diagram of a network device provided according to an embodiment of the present application.
  • Fig. 10 is a schematic block diagram of another network device provided according to an embodiment of the present application.
  • Fig. 11 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 12 is a schematic block diagram of a chip provided according to an embodiment of the present application.
  • Fig. 13 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, broadband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system , New Radio (NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) on unlicensed spectrum unlicensed spectrum (NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunications System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi), fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in the embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, may also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and may also be applied to an independent (Standalone, SA) deployment Web scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent deployment Web scene
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered as non-shared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital assistant (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in self driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • wireless terminal equipment in transportation safety wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , or a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolutional Node B, eNB or eNodeB
  • gNB network equipment in the network or the network equipment in the future evolved PLMN network or the network equipment in the NTN network, etc.
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite or a balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, water, and other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources
  • the cell may be a network device (
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
  • the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
  • the communication system 100 may include a network device 110, and the network device 110 may be a device for communicating with a terminal device 120 (or called a communication terminal, terminal).
  • the network device 110 can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. This application The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include a network equipment 110 and a terminal equipment 120 with communication functions.
  • the network equipment 110 and the terminal equipment 120 may be the specific equipment described above, and will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • predefinition can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in devices (for example, including terminal devices and network devices).
  • the implementation method is not limited.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include the LTE protocol, the NR protocol, and related protocols applied in future communication systems, which is not limited in the present application.
  • 5G Enhanced Mobile Broadband
  • URLLC Ultra-Reliable and Low Latency Communication
  • mMTC Massive Machine Type Communication
  • eMBB still aims at users' access to multimedia content, services and data, and its demand is growing rapidly.
  • eMBB may be deployed in different scenarios, such as indoors, urban areas, and rural areas, the capabilities and requirements vary greatly, so it cannot be generalized and must be analyzed in detail in combination with specific deployment scenarios.
  • Typical applications of URLLC include: industrial automation, electric power automation, telemedicine operations (surgery), traffic safety guarantee, etc.
  • the typical characteristics of mMTC include: high connection density, small data volume, delay-insensitive services, low cost and long service life of modules, etc.
  • RRC Radio Resource Control
  • RRC_IDLE mobility is cell selection and reselection based on terminal equipment, paging is initiated by the core network (Core Network, CN), and the paging area is configured by the CN.
  • Core Network Core Network
  • AS access stratum
  • RRC_CONNECTED state there is an RRC connection, and the base station and the terminal device have the terminal device AS context.
  • the network device knows the location of the terminal device at the specific cell level. Mobility is mobility controlled by network devices. Unicast data can be transmitted between the terminal equipment and the base station.
  • RRC_INACTIVE Mobility is cell selection and reselection based on terminal equipment, there is a connection between CN-NR, the AS context of the terminal equipment exists on a certain base station, and paging is triggered by the radio access network (Radio Access Network, RAN), based on The paging area of the RAN is managed by the RAN, and the network equipment knows the location of the terminal equipment based on the paging area level of the RAN.
  • Radio Access Network Radio Access Network
  • the inactive state may also be referred to as the deactivated state, which is not limited in the present application.
  • the maximum channel bandwidth supported in the NR system can reach 400MHZ (wideband carrier, wideband carrier). If the UE keeps working on the broadband carrier, the power consumption of the UE is very large. Adjusting the UE's radio frequency (Radio Frequency, RF) bandwidth according to the actual throughput of the UE can optimize the power consumption of the UE, which is the motivation for introducing the Bandwidth Part (BWP).
  • RF Radio Frequency
  • the rate of the UE is very low, a smaller bandwidth can be configured for the UE; if the rate of the UE is very high, a larger bandwidth can be configured for the UE. If the UE supports a high rate, or operates in CA mode, multiple BWPs can be configured. Another purpose of the BWP is to trigger the coexistence of multiple numerologies in a cell.
  • Multimedia Broadcast Multicast Service is a technology that transmits data from one data source to multiple user equipments by sharing network resources. It can effectively utilize network resources while providing multimedia services to achieve higher Rate (256kbps) multimedia service broadcast and multicast.
  • MBMS downlink high-speed multimedia broadcast multicast service
  • the concept of single frequency network (Single Frequency Network, SFN) is proposed, that is, a unified frequency is used to transmit data in all cells at the same time, but the synchronization between cells must be guaranteed.
  • This method can greatly improve the overall signal-to-noise ratio distribution of the cell, and the spectrum efficiency will also be greatly improved accordingly.
  • IP Internet Protocol
  • MBMS only has a broadcast bearer mode, not a multicast bearer mode.
  • the reception of MBMS service is applicable to the terminal equipment in connected state (RRC_CONNECTED) or idle state (RRC_IDLE).
  • SC-PTM Single Cell Point To Multiploint
  • MCE Multi-cell/multicast Coordination Entity
  • MBSFN Multimedia Broadcast multicast service Single Frequency Network
  • SC-MCCH Single Cell Multicast Control Channel
  • SC-MTCH Single Cell Multicast Transport Channel
  • DL-SCH downlink shared channel
  • PDSCH Physical Downlink Shared Channel
  • SC-MCCH and SC-MTCH do not support Hybrid Automatic Repeat reQuest (HARQ) operation, and use Unacknowledged Mode (UM) Radio Link Control (RLC).
  • HARQ Hybrid Automatic Repeat reQuest
  • UM Unacknowledged Mode
  • SIB System Information Block
  • the configuration information includes: SC-MCCH modification period, repetition period (mcch-RepetitionPeriod), and radio frame and subframe configuration information.
  • the subframe scheduled by SC-MCCH is indicated by sc-mcch-Subframe.
  • SC-MCCH only transmits a message SCPTMConfiguration, which is used to configure configuration information of SC-PTM.
  • SCPTMConfiguration is used to configure configuration information of SC-PTM.
  • RNTI Radio Network Temporary Identity
  • C-RNTI single Cell RNTI
  • FFFC fixed value FFFC
  • a new RNTI is introduced, Single Cell Notification RNTI (Single Cell Notification RNTI, SC-N-RNTI) (fixed value FFFB), to identify the PDCCH of the SC-MCCH change notification.
  • SC-N-RNTI Single Cell Notification RNTI
  • FFFB fixed value FFFB
  • the RLC acknowledgment mode (Acknowledged Mode, AM) has an automatic request retransmission (Automatic Repeat reQuest, ARQ) feedback mechanism.
  • the receiving end sends an RLC status report to feed back that the receiving status of the RLC packet is a positive acknowledgment (Acknowledgment, ACK) or a negative acknowledgment (Negative Acknowledgment, NACK).
  • the sending end may repeatedly transmit the repeated transmission of the RLC packet of the sequence number (sequence number, SN) number of the NACK feedback.
  • the downlink BWP is configured through the downlink BWP (BWP-Downlink) parameter, as shown in the first paragraph of ASN.1 code below.
  • the BWP-Downlink parameter includes the BWP identifier (bwp-Id), which is used to identify the ID of the current BWP.
  • BWP common (bwp-Common) is used to configure the common parameters of the downlink BWP.
  • the second paragraph of ASN.1 encoding shows the public parameters included in bwp-Common, where the generic parameters (genericParameters) in BWP-DownlinkCommon are used to configure the frequency domain starting point of the downlink BWP and the physical resource block (physical resource block, PRB) number.
  • the dedicated BWP (bwp-Dedicated) parameter in the BWP-Downlink will configure the downlink receiving parameters on the downlink BWP, as shown in the third ASN.1 code, including at least the physical downlink control channel ( Physical Downlink Control Channel, PDCCH) configuration (pdcch-Config), physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) configuration (pdsch-Config), and semi-persistent scheduling (Semi-Persistent Scheduling, SPS) configuration (sps- Config).
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • SPS semi-persistent scheduling
  • pdcch-Config is used to indicate the PDCCH transmission mode on the downlink BWP
  • pdsch-Config is used to indicate the PDSCH transmission mode on the downlink BWP
  • sps-Config is used to indicate the SPS configuration on the downlink BWP.
  • multicast and broadcast services need to support one-to-many multicast transmission.
  • the base station needs to schedule a common physical downlink shared channel (Physical Downlink Shared Channel, PDSCH), the public PDCCH and public PDSCH are scrambled by the group radio network temporary identifier (Group Radio Network Temporary Identity, G-RNTI), within a common frequency domain range (Common Frequency Resource, CFR) send.
  • the downlink control information (Downlink Control Information, DCI) carried by the public PDCCH may have two different types.
  • the first type of DCI has a relatively small number of bits and is mainly used to ensure the coverage of cell edge users.
  • a TB sent through the public PDSCH can be retransmitted in a unicast point-to-point (PTP) manner.
  • PTP point-to-point
  • the terminal devices cannot determine the The number of bits of the public DCI.
  • the terminal device cannot pass the initial BWP or CORESET# 0 determines the number of bits of the common DCI. Since the terminal device needs to support multiple different MBS services, the corresponding G-RNTIs may also be different for different MBS services.
  • the number of bits required to schedule the DCI in the PDCCH of the MBS service may also be different, which will also increase the possible PDCCH bits that the terminal equipment needs to detect number of cases. Therefore, how to reduce the complexity of detecting the PDCCH by the terminal equipment is an urgent problem to be solved.
  • the terminal device may need to receive both unicast service and MBS service. Since the transport block (Transport Block, TB) of an MBS service sent by the public PDSCH, the network device may schedule the retransmission of the TB through PTP. In this case, for the terminal device, how to determine whether the PDCCH of the network device schedules the unicast transmission or the retransmission of the MBS transmission is also an urgent problem to be solved.
  • Transport Block Transport Block
  • FIG. 3 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application.
  • the method 200 can be executed by a terminal device in the communication system shown in FIG. 1.
  • the method 200 includes the following content :
  • the terminal device detects the physical downlink control channel PDCCH scrambled by at least one group radio network temporary identifier G-RNTI in the first search space.
  • the PDCCH scrambled by the G-RNTI can be used to schedule the transmission of the MBS service, for example, the initial transmission of the MBS service or the retransmission of the MBS service.
  • different G-RNTIs can be used to schedule different MBS services.
  • the PDCCH scrambled by the G-RNTI may be transmitted in a common search space (Common Search Space, CSS). Therefore, the terminal device can detect the PDCCH scrambled by one or more G-RNTIs at the CSS.
  • a common search space Common Search Space, CSS
  • the PDCCH scrambled by the G-RNTI may also be transmitted in a terminal-specific search space (UE Search Space, USS). Therefore, the terminal can detect PDCCH scrambled by one or more G-RNTIs at the USS.
  • UE Search Space USS
  • the PDCCH scrambled by the G-RNTI detected by the terminal device at the USS is used to schedule the retransmission of the MBS service.
  • the first search space includes CSS and/or USS.
  • the type of the number of bits of the downlink control information (Downlink Control Information, DCI) carried by the PDCCH scrambled by the at least one G-RNTI detected by the terminal device in the first search space does not exceed the number of bits of the terminal device Ability.
  • DCI Downlink Control Information
  • the type of the number of bits of the downlink control information DCI carried by the at least one G-RNTI scrambled PDCCH detected by the terminal device in the first search space is less than or equal to the first threshold, which may include:
  • the type of the number of bits of DCI carried by the G-RNTI scrambled PDCCH detected by the terminal device in the CSS is less than or equal to the first threshold; and/or
  • the type of the number of bits of the DCI carried by the PDCCH scrambled by the G-RNTI detected by the terminal device at the USS is less than or equal to the first threshold.
  • the threshold corresponding to the number of bits of DCI carried by the G-RNTI scrambled PDCCH detected by the terminal device on the CSS and the number of types of DCI carried by the G-RNTI scrambled PDCCH detected by the terminal device on the USS may be the same, or may be different, which is not limited in this embodiment of the present application.
  • Embodiment 1 The terminal device can detect one or more PDCCHs scrambled by the G-RNTI in the CSS.
  • the configuration signaling of the CSS includes a control resource set (Control Resource Set, CORESET) identification parameter
  • the CORESET identification parameter is used to indicate the CORESET associated with the CSS
  • the CORESET identification corresponds to the CORESET in the common frequency range CFR.
  • the number of bits of DCI carried by the PDCCHs scrambled by all G-RNTIs detected by the CSS by the terminal device is the same. For example, both are the first bit number. This implementation is beneficial to minimize the number of possible PDCCH bits that the terminal equipment needs to detect in the CSS.
  • the number of bits of DCI carried by the PDCCH scrambled by all G-RNTIs detected by the terminal device in the CSS is predefined or configured by the network device. That is, the first number of bits may be predefined or configured by the network device.
  • the number of bits of DCI carried by the PDCCH scrambled by all G-RNTIs detected by the terminal device in the CSS is configured by the network device through RRC signaling. That is, the network device can configure the first number of bits through RRC signaling.
  • the network device can configure the terminal device to detect the number of bits of DCI carried by the G-RNTI scrambled PDCCH in the CSS through CSS configuration signaling, that is, the network device can configure the terminal at the same time when configuring the CSS.
  • the device detects the number of bits of DCI carried by the PDCCH scrambled by the G-RNTI on the CSS, so that the terminal device can parse the DCI based on the number of bits, which helps reduce the complexity of the terminal device.
  • the network device can ensure that the DCI carried by the PDCCH scrambled by the first G-RNTI is as follows: The number of bits of DCI is the first number of bits:
  • Mode 1 Add padding bits (padding bits) in the DCI, for example, add a certain number of padding bits at the end of the DCI, so that the number of bits of the DCI is equal to the first number of bits.
  • Way 2 Add a first bit field in the DCI, and set the value of the first bit field to an invalid value, so that the number of bits in the DCI is equal to the first number of bits.
  • the first G-RNTI For example, if the MBS service corresponding to the first G-RNTI does not need to indicate the Hybrid Automatic Repeat reQuest (HARQ) feedback mode through DCI, and the bit field indicating the HARQ feedback mode is 2 bits, then the first G-RNTI The number of DCI bits carried by the scrambled PDCCH is 2 bits less than the first number of bits. Then according to mode 2-1, the DCI carried by the PDCCH scrambled by the first G-RNTI does not include the bit field indicating the HARQ feedback mode, and two additional zeros are added at the end of the DCI to ensure that the bits contained in the DCI The number is equal to the first bit number.
  • HARQ Hybrid Automatic Repeat reQuest
  • the DCI may include a bit field indicating the HARQ feedback mode, and further set the bit field to an invalid value. For example, if the bit field is the first value, it means that HARQ feedback is not required; if the bit field is the second value, it means that the HARQ feedback is performed in the first way; if the bit field is the third value, it means The HARQ feedback is performed in the second way, if the bit field is the fourth value, it means that the bit field is invalid, and in this case, the bit field is the fourth value.
  • the types of bits of DCI carried by PDCCHs scrambled by all G-RNTIs detected by the CSS by the terminal device are less than or equal to the first threshold.
  • the terminal device does not expect the types of the bit numbers of the DCI carried by the PDCCHs scrambled by all G-RNTIs detected by the CSS to be greater than the first threshold.
  • the number of bits of DCI carried by the PDCCH scrambled by each G-RNTI detected by the CSS by the terminal device is predefined or configured by a network device. For example, it may be configured by a network device through RRC signaling.
  • the number of bits of DCI carried by all G-RNTI scrambled PDCCHs detected by the terminal device in the CSS may be the same, or may also be different.
  • the number of bits of DCI carried by the PDCCH scrambled by each G-RNTI may be uniformly configured by the network device, or may be configured separately by the network device.
  • the first threshold is predefined, or configured by the network device, for example, configured by the network device through RRC signaling.
  • the type of DCI carried by the PDCCH scrambled by the G-RNTI detected by the terminal device in the CSS is the same, or the terminal device only detects the G-RNTI in the CSS DCI of the first target type carried by the scrambled PDCCH.
  • the terminal equipment By designing the terminal equipment to only detect the DCI carried by the PDCCH scrambled by a specific type of G-RNTI, it is beneficial to reduce the number of bits of the PDCCH detected by the terminal equipment, thereby reducing the complexity of detecting the PDCCH by the terminal equipment.
  • the network device can only send the specific type of DCI carried by the PDCCH scrambled by the G-RNTI in the CSS, for example, the DCI of the first target type, or the terminal device can only detect the DCI carried by the PDCCH scrambled by the G-RNTI in the CSS The DCI of the first target type.
  • the network device can send multiple types of DCI carried by the PDCCH scrambled by G-RNTI in the CSS, or it can only send the first target carried by the PDCCH scrambled by G-RNTI type of DCI.
  • the first target type of DCI is a first type of DCI, or a second type of DCI, wherein the number of bits of the first type of DCI is less than or equal to that of the second type of DCI number of bits.
  • the first type of DCI is used to ensure the coverage of the cell edge users
  • the second type of DCI is used to ensure the transmission performance of the MBS.
  • the type of DCI carried by the terminal device on the PDCCH scrambled by the G-RNTI detected by the CSS is predefined or configured by a network device. That is, the first target type may be predefined or configured by the network device. For example, the network device configures the first target type through RRC signaling.
  • the terminal device only detects DCI in a specific format scrambled by the G-RNTI in the CSS.
  • Embodiment 2 The terminal device can detect one or more PDCCHs scrambled by the G-RNTI in the USS.
  • the type of DCI carried by the PDCCH scrambled by the G-RNTI detected by the terminal device on the USS is the same, or, the terminal device only detects the G-RNTI scrambled DCI on the USS DCI of the second target type carried by the scrambled PDCCH.
  • the network device can only send the specific type of DCI carried by the PDCCH scrambled by the G-RNTI in the USS, for example, the DCI of the second target type, or the terminal device can only detect the DCI carried by the PDCCH scrambled by the G-RNTI in the USS
  • the DCI of the second target type in this case, the network device can send multiple types of DCI carried by the PDCCH scrambled by G-RNTI in the USS, or can only send the second target carried by the PDCCH scrambled by G-RNTI type of DCI.
  • the second target type of DCI is a first type of DCI, or a second type of DCI, wherein the number of bits of the first type of DCI is less than or equal to that of the second type of DCI number of bits.
  • the first type of DCI is used to ensure the coverage of the cell edge users
  • the second type of DCI is used to ensure the transmission performance of the MBS.
  • the type of DCI carried by the PDCCH scrambled by the G-RNTI detected by the terminal device at the USS is predefined or configured by a network device. That is, the second target type may be predefined or configured by the network device. For example, the network device configures the second target type through RRC signaling.
  • the first object type and the second object type may be the same, or may also be different.
  • the number of bits of DCI carried by the PDCCHs scrambled by all G-RNTIs detected by the terminal device at the USS is the same. For example, both are the second bit number. This implementation is beneficial to minimize the number of possible bits of the PDCCH that the terminal equipment needs to detect in the USS.
  • the number of bits of DCI carried by the PDCCH scrambled by all G-RNTIs detected by the terminal device on the USS is predefined or configured by the network device. That is, the second number of bits may be predefined or configured by the network device.
  • the number of bits of DCI carried by the PDCCH scrambled by all G-RNTIs detected by the terminal device on the USS is configured by the network device through RRC signaling. That is, the network device can configure the second number of bits through RRC signaling.
  • the network device can configure the number of bits of DCI carried by the terminal device to detect G-RNTI scrambled PDCCH in the USS through USS configuration signaling, that is, the network device can configure the terminal at the same time when configuring the USS
  • the device detects the number of bits of the DCI carried by the PDCCH scrambled by the G-RNTI on the USS, so that the terminal device can parse the DCI based on the number of bits, which helps reduce the complexity of the terminal device.
  • the network device can use the method 1 or 2 described in Embodiment 1 to ensure that the second The number of bits of the DCI carried by the PDCCH scrambled by the G-RNTI is the second number of bits, which will not be repeated here for brevity.
  • types of bits of DCI carried by all G-RNTI-scrambled PDCCHs detected by the terminal device at the USS are less than or equal to a first threshold.
  • the terminal device does not expect that the types of the bit numbers of the DCI carried by the PDCCHs scrambled by all G-RNTIs detected by the USS are greater than the first threshold.
  • the number of bits of DCI carried by the PDCCH scrambled by each G-RNTI detected by the terminal device at the USS is predefined or configured by a network device. For example, it may be configured by a network device through RRC signaling.
  • the number of bits of DCI carried by the PDCCHs scrambled by all G-RNTIs detected by the terminal device in the USS may be the same, or may also be different.
  • the number of bits of DCI carried by the PDCCH scrambled by each G-RNTI may be uniformly configured by the network device, or may be configured separately by the network device.
  • the first threshold is predefined, or configured by the network device, for example, configured by the network device through RRC signaling.
  • the terminal device at the USS by designing the number of bits of DCI carried by all G-RNTI scrambled PDCCHs received by the terminal device at the USS to be the same, or, the type of the number of bits of DCI carried by all G-RNTI scrambled PDCCHs received by the terminal device at the USS does not exceed a certain threshold, or the terminal device only receives the DCI of the second target type carried by the PDCCH scrambled by the G-RNTI in the USS, on the one hand, it can reduce the complexity of the terminal device detecting the PDCCH in the USS, on the other hand, reduce the network Unnecessary bit transmission on the side improves the utilization efficiency of system resources.
  • FIG. 4 is a schematic flowchart of a wireless communication method 300 according to another embodiment of the present application. As shown in FIG. 4, the method 300 includes the following content:
  • the terminal device receives a second PDCCH, where the value of the HARQ process field in the DCI carried by the second PDCCH is a first value;
  • the terminal device receives the first PDCCH scrambled by the first RNTI in the first search space, where the value of the HARQ process field in the DCI carried by the first PDCCH is a first value.
  • the second PDCCH is the last scheduled PDCCH whose HARQ process number is the first value.
  • the terminal device receives the search space of the second PDCCH, the first RNTI, scrambles the RNTI of the second PDCCH, and the DCI carried by the first PDCCH
  • the new data indicates at least one of the value of the NDI field and the value of the NDI field in the DCI carried by the second PDCCH, and determines whether the physical downlink shared channel PDSCH scheduled by the first PDCCH is the second PDCCH Retransmission of scheduled PDSCH.
  • the first search space is CSS
  • the first RNTI is G-RNTI.
  • the terminal device may determine according to the first RNTI and the RNTI scrambling the second PDCCH Whether the PDSCH scheduled by the first PDCCH is retransmission of the PDSCH scheduled by the second PDCCH.
  • the terminal device can detect the first PDCCH scrambled by the first G-RNTI in the CSS, and the value of the HARQ process field in the DCI carried in the first PDCCH is h, then the terminal device can The RNTI corresponding to the PDCCH of the HARQ process number h and the first G-RNTI determine whether the PDSCH scheduled by the first PDCCH is a new transmission of an MBS transport block (Transport Block, TB).
  • MBS transport block Transport Block
  • the terminal device may consider the PDSCH scheduled by the first PDCCH as an MBS TB new biography.
  • the NDI field in the DCI carried by the first PDCCH scrambled by the first G-RNTI may not be toggled relative to the NDI field in the DCI carried by the second PDCCH.
  • the first G-RNTI represents any G-RNTI configured on the terminal device.
  • the second PDCCH may be received at the CSS, or may also be received at the USS.
  • the terminal device determines that the PDSCH scheduled by the first PDCCH is a new transmission of an MBS service when the following conditions are met (that is, the PDSCH scheduled by the first PDCCH is not the PDSCH scheduled by the second PDCCH retransmissions):
  • the value of the HARQ process field in the DCI carried by the first PDCCH is the same as the value of the HARQ process field in the DCI carried by the second PDCCH;
  • the first PDCCH is received at the CSS
  • the first PDCCH is scrambled by the first G-RNTI
  • the second PDCCH is scrambled by a second RNTI, where the second RNTI is different from the first G-RNTI.
  • the first search space is USS
  • the first RNTI is a cell radio network temporary identifier (Cell Radio Network Temporary Identity, C-RNTI)
  • the second PDCCH is through the second G - RNTI scrambling
  • the terminal device may indicate according to the value of the New Data Indicator (NDI) field in the DCI carried by the first PDCCH and the NDI in the DCI carried by the second PDCCH Whether the field values are the same, and determine whether the physical downlink shared channel PDSCH scheduled by the first PDCCH is a retransmission of the PDSCH scheduled by the second PDCCH.
  • NDI New Data Indicator
  • the PDSCH scheduled by the first PDDCH is the second PDCCH scheduled retransmission of the PDSCH.
  • the PDSCH scheduled by the first PDDCH is not scheduled by the second PDCCH. Retransmission of PDSCH.
  • the terminal device determines that the PDSCH scheduled by the first PDCCH is the retransmission of the PDSCH scheduled by the second PDCCH when the following conditions are met:
  • the first PDCCH is received at the USS;
  • the first PDCCH is scrambled by the first C-RNTI
  • the second PDCCH is scrambled by the second G-RNTI
  • the value of the HARQ process field in the DCI carried by the first PDCCH is the same as the value of the HARQ process field in the DCI carried by the second PDCCH;
  • the value of the NDI field in the DCI carried by the first PDCCH is the same as the value of the NDI field in the DCI carried by the second PDCCH.
  • the second G-RNTI may be any G-RNTI configured on the terminal device.
  • the terminal device needs to receive both unicast service and MBS service, and for a TB of an MBS service sent by the public PDSCH, the network device schedules the retransmission of the MBS service through PTP.
  • the network device schedules the retransmission of the MBS service through PTP.
  • the terminal device does not expect to receive the first target PDCCH scrambled by the C-RNTI on the USS, where the first target PDCCH satisfies the following conditions:
  • the PDSCH scheduled by the first target PDCCH is the retransmission of the PDSCH scheduled by K PDCCHs previously received by the terminal device, wherein the K PDCCHs are scrambled by the third G-RNTI, and the K is less than or equal to N, where N is a positive integer;
  • the value of the HARQ process field in the DCI carried by the first target PDCCH is the first value, and the value of the HARQ process field in the DCI carried by the K PDCCHs is also the first value;
  • the value of the NDI field in the DCI carried by the first target PDCCH is a second value, and the value of the NDI field in the DCI carried by the K PDCCHs is also a second value;
  • the HARQ process number whose value is the first value is used for unicast transmission before sending the K PDCCHs scrambled by the third G-RNTI.
  • the network device does not send the first target PDCCH scrambled by the C-RNTI on the USS.
  • the third G-RNTI may be any G-RNTI configured on the terminal device.
  • the second value may be 0 or 1.
  • the N may be predefined or configured by a network device.
  • said N is 2 or 4, etc.
  • the terminal device first receives PDCCH-1 scrambled by C-RNTI, wherein the value of the HARQ process field in the DCI carried by the PDCCH-1 is h, and the value of the NDI field is 1.
  • the HARQ process h is used for unicast services.
  • the terminal device receives the PDCCH-2 scrambled by G-RNTI#0, wherein the value of the HARQ process field in the DCI carried by the PDCCH-2 is h, and the value of the NDI field is 1.
  • the The HARQ process h is used for the new transmission of the MBS service.
  • the terminal device does not expect the network device to schedule the retransmission of the MBS service through PTP, that is, the terminal device does not expect to receive the C-RNTI scrambled PDCCH-3 (that is, the first target PDCCH), and the PDCCH-
  • the PDSCH scheduled by 3 is the retransmission of the PDSCH scheduled by PDCCH-2, wherein the value of the HARQ process field in the DCI carried by the PDCCH-3 is h, and the value of the NDI field is 1.
  • the scheduled PDSCH is considered to be the retransmission of the previously received C-RNTI scrambled PDCCH-1 scheduled PDSCH and further combining the two issues.
  • the terminal device does not expect to receive the second target PDCCH scrambled by the C-RNTI on the USS, where the second target PDCCH satisfies the following conditions:
  • the PDSCH scheduled by the second target PDCCH is the retransmission of the PDSCH scheduled by K PDCCHs previously received by the terminal device, wherein the K PDCCHs are scrambled by the fourth G-RNTI, and the K is less than or equal to N, where N is a positive integer;
  • the value of the HARQ process field in the DCI carried by the second target PDCCH is the first value, and the value of the HARQ process field in the DCI carried by the K PDCCHs is also the first value;
  • the value of the NDI field in the DCI carried by the second target PDCCH is a second value, and the value of the NDI field in the DCI carried by the K PDCCHs is also a second value;
  • the terminal device does not send the physical uplink control channel (Physical Uplink Control Channel, PUCCH) resource scrambled for the fourth G-RNTI on the physical uplink control channel (Physical Uplink Control Channel, PUCCH) resource indicated by the K PDCCH.
  • PUCCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • the HARQ process number whose value is the first value is used for unicast transmission before the K PDCCHs scrambled by the fourth G-RNTI are sent.
  • the network device does not send the second target PDCCH scrambled by the C-RNTI on the USS.
  • the terminal device does not send the PDSCH scheduled for the K PDCCHs scrambled by the fourth G-RNTI on the PUCCH resources indicated by the K PDCCHs scrambled by the fourth G-RNTI.
  • the HARQ feedback information may be caused by the terminal device not receiving the K PDCCHs scrambled by the fourth G-RNTI.
  • the fourth G-RNTI may be any G-RNTI configured on the terminal device.
  • the second value may be 1 or 0.
  • the N may be predefined or configured by a network device.
  • said N is 2 or 4, etc.
  • the terminal device first receives PDCCH-1 scrambled by C-RNTI, where the value of the HARQ process field in the DCI carried by the PDCCH-1 is h, and the value of the NDI field is 1. At this time, the HARQ process h is used for unicast services.
  • the terminal device receives the PDCCH-2 scrambled by G-RNTI#0, wherein the value of the HARQ process field in the DCI carried by the PDCCH-2 is h, and the value of the NDI field is 1.
  • the The HARQ process h is used for new transmission of the MBS service, and the PDCCH-2 is also used to indicate the PUCCH resource used to transmit the HARQ feedback information of the PDSCH scheduled by the PDCCH-2.
  • the terminal device does not send the HARQ feedback information for the PDSCH scheduled by the PDCCH-2 scrambled by G-RNTI#0 on the PUCCH resource indicated by the PDCCH-2 scrambled by G-RNTI#0, in other words, the network device
  • the HARQ feedback information of the PDSCH scheduled for the PDCCH-2 scrambled by G-RNTI#0 cannot be received on the PUCCH resource indicated by the PDCCH-2 scrambled by G-RNTI#0. In this case, the network device cannot determine the terminal device Whether the PDCCH-2 scrambled by G-RNTI#0 is lost.
  • the terminal device does not expect the network device to schedule the retransmission of the MBS service through PTP, that is, the terminal device does not expect to receive the C-RNTI scrambled PDCCH-3 (that is, the second target PDCCH), the PDCCH
  • the PDSCH scheduled by -3 is the retransmission of the PDSCH scheduled by PDCCH-2, wherein the value of the HARQ process field in the DCI carried by the PDCCH-3 is h, and the value of the NDI field is 1.
  • the scheduled PDSCH is considered to be the retransmission of the previously received C-RNTI scrambled PDCCH-1 scheduled PDSCH and further combining the two issues.
  • the method 300 further includes:
  • the terminal device does not expect to detect a PDCCH scrambled by a G-RNTI at the USS, wherein the PDCCH scrambled by the G-RNTI is used to indicate a new transmission of one or more transport blocks TB.
  • the terminal device Since the MBS service is sent for multiple UEs, the terminal device does not expect the newly transmitted PDCCH for scheduling the MBS service to be scrambled by the G-RNTI sent by the network device on the USS.
  • the terminal device judges whether the PDSCH scheduled by the PDCCH is a new transmission of the MBS service according to the change of the RNTI of the scrambled PDCCH.
  • the terminal device may determine that the first PDCCH is used to schedule MBS services when the first G-RNTI is different from the second RNTI new biography.
  • the terminal device detects the PDCCH scrambled by the C-RNTI in the USS, if the value of the HARQ process field in the DCI carried by the PDCCH is the same as the HARQ process field in the DCI carried by the last received PDCCH scrambled by the G-RNTI The value of the process field is the same, and the value of the NDI field in the DCI carried by the two PDCCHs is also the same, then the terminal device considers that the PDSCH scheduled by the PDCCH scrambled by the C-RNTI is the last received PDSCH scrambled by the G-RNTI Retransmission of PDSCH scheduled by scrambled PDCCH.
  • the NDI in the corresponding PDCCH is not inverted.
  • the terminal equipment does not expect the network
  • the device schedules the retransmission of the MBS service through PTP.
  • Fig. 7 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • the communication unit 410 is configured to detect a physical downlink control channel PDCCH scrambled by at least one group radio network temporary identifier G-RNTI in a first search space, wherein the first search space includes a common search space CSS and/or a terminal-specific In the search space USS, the type of the number of bits of the downlink control information DCI carried by the PDCCH scrambled by the at least one G-RNTI is less than or equal to the first threshold.
  • the type of the number of bits of the downlink control information DCI carried by the PDCCH scrambled by the at least one G-RNTI is less than or equal to the first threshold, including: all detected by the terminal device in the CSS The number of bits of DCI carried by the PDCCH scrambled by the G-RNTI is the same.
  • the number of bits of DCI carried by the PDCCHs scrambled by all G-RNTIs detected by the CSS by the terminal device is predefined or configured by a network device.
  • the number of bits of DCI carried by the PDCCH scrambled by all G-RNTIs detected by the CSS by the terminal device is configured by the network device through radio resource control RRC signaling.
  • the DCI carried by the PDCCH scrambled by the at least one G-RNTI includes the DCI carried by the PDCCH scrambled by the first G-RNTI
  • the DCI carried by the PDCCH scrambled by the first G-RNTI includes a first bit field, and the first bit field is used to indicate a HARQ feedback mode, where the value of the first bit field is an invalid value; or,
  • the DCI carried by the PDCCH scrambled by the first G-RNTI does not include the first bit field, and the end of the DCI carried by the PDCCH scrambled by the first G-RNTI is a padding bit.
  • the type of the number of bits of the downlink control information DCI carried by the PDCCH scrambled by the at least one G-RNTI is less than or equal to the first threshold, including:
  • Types of bits of DCI carried by PDCCHs scrambled by all G-RNTIs detected by the CSS by the terminal device are less than or equal to the first threshold.
  • the number of bits of DCI carried by the PDCCH scrambled by each G-RNTI detected by the CSS by the terminal device is predefined or configured by a network device.
  • the type of the number of bits of the downlink control information DCI carried by the PDCCH scrambled by the at least one G-RNTI is less than or equal to the first threshold, including: the G-RNTI detected by the terminal device in the CSS - the types of DCI carried by the PDCCH scrambled by the RNTI are the same; or, the terminal device only detects the DCI of the first target type carried by the PDCCH scrambled by the G-RNTI in the CSS.
  • the first target type of DCI is a first type of DCI, or a second type of DCI, wherein the number of bits of the first type of DCI is less than or equal to the number of bits of the second type of DCI.
  • Type of DCI bits are used to indicate whether the first type of DCI is a first type of DCI, or a second type of DCI.
  • the type of DCI carried by the terminal device on the PDCCH scrambled by the G-RNTI detected by the CSS is predefined or configured by the network device.
  • the first target type is configured by the network device through radio resource control RRC signaling.
  • the type of the number of bits of the downlink control information DCI carried by the PDCCH scrambled by the at least one G-RNTI is less than or equal to the first threshold, including: the terminal device only detects the G-RNTI in the USS - DCI of the second target type carried by the PDCCH scrambled by the RNTI.
  • the DCI of the second target type is the DCI of the first type, or the DCI of the second type, wherein the number of bits of the DCI of the first type is less than or equal to that of the second type. Type of DCI bits.
  • the type of DCI carried by the PDCCH scrambled by the G-RNTI detected by the terminal device at the USS is predefined or configured by a network device.
  • the second target type is configured by the network device through RRC signaling.
  • the CSS configuration signaling includes a control resource set CORESET identification parameter, the CORESET identification parameter is used to indicate the CORESET associated with the CSS, and the CORESET corresponding to the CORESET identification is located in a public frequency range Inside the CFR.
  • the first threshold is predefined.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 400 are for realizing the method shown in FIG. 3
  • the corresponding process of the terminal device in 200 will not be repeated here.
  • Fig. 8 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 500 of FIG. 8 includes:
  • the communication unit 510 is configured to receive the first physical downlink control channel PDCCH scrambled by the first radio network temporary identifier RNTI in the first search space, wherein the hybrid automatic request repeat in the downlink control information DCI carried by the first PDCCH transmit the value of the HARQ process field to the first value, and the second PDCCH is a PDCCH in which the value of the HARQ process field in the DCI received by the terminal device is the first value;
  • the processing unit 520 is configured to receive the search space of the second PDCCH according to the first search space, the first RNTI, scramble the RNTI of the second PDCCH, and the DCI carried by the first PDCCH
  • the new data indicates at least one of the value of the NDI field and the value of the NDI field in the DCI carried by the second PDCCH, and determines whether the physical downlink shared channel PDSCH scheduled by the first PDCCH is the second PDCCH Retransmission of scheduled PDSCH.
  • the processing unit 520 is further configured to:
  • the PDSCH scheduled by the first PDCCH is a new transmission of a multicast multicast service MBS:
  • said first search space is a common search space CSS
  • the first RNTI is a first group of wireless network temporary identifiers G-RNTI;
  • the second PDCCH is scrambled by a second RNTI, where the second RNTI is different from the first G-RNTI.
  • the processing unit 520 is further configured to: determine that the PDSCH scheduled by the first PDCCH is the retransmission of the PDSCH scheduled by the second PDCCH when the following conditions are met:
  • the first search space is a terminal-specific search space USS;
  • the first RNTI is the radio network temporary identifier C-RNTI of the first cell
  • the second PDCCH is scrambled by the second G-RNTI
  • the value of the NDI field in the DCI carried by the first PDCCH is the same as the value of the NDI field in the DCI carried by the second PDCCH.
  • the processing unit 520 is further configured to:
  • the PDSCH scheduled by the first target PDCCH is the retransmission of the PDSCH scheduled by K PDCCHs previously received by the terminal device, wherein the K PDCCHs are scrambled by the third G-RNTI, and the K is less than or equal to N, where N is a positive integer;
  • the value of the HARQ process field in the DCI carried by the first target PDCCH is the first value, and the value of the HARQ process field in the DCI carried by the K PDCCHs is also the first value;
  • the value of the NDI field in the DCI carried by the first target PDCCH is a second value, and the value of the NDI field in the DCI carried by the K PDCCHs is also a second value;
  • the HARQ process number whose value is the first value is used for unicast transmission before sending the K PDCCHs scrambled by the third G-RNTI.
  • the processing unit 520 is further configured to:
  • the PDSCH scheduled by the second target PDCCH is the retransmission of the PDSCH scheduled by K PDCCHs previously received by the terminal device, wherein the K PDCCHs are scrambled by the fourth G-RNTI, and the K is less than or equal to N, where N is a positive integer;
  • the value of the HARQ process field in the DCI carried by the second target PDCCH is the first value, and the value of the HARQ process field in the DCI carried by the K PDCCHs is also the first value;
  • the value of the NDI field in the DCI carried by the second target PDCCH is a second value, and the value of the NDI field in the DCI carried by the K PDCCHs is also a second value;
  • the terminal device does not send the PDSCH scheduled for the K PDCCHs scrambled by the fourth G-RNTI on the physical uplink control channel PUCCH resources indicated by the K PDCCHs scrambled by the fourth G-RNTI HARQ feedback information;
  • the HARQ process number whose value is the first value is used for unicast transmission before the K PDCCHs scrambled by the fourth G-RNTI are sent.
  • the processing unit 520 is further configured to:
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 500 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 500 are to realize the For the sake of brevity, the corresponding processes of the terminal device in the shown method 300 are not repeated here.
  • Fig. 9 is a schematic block diagram of a network device according to an embodiment of the present application.
  • the network device 1000 of Figure 9 includes:
  • the communication unit 1010 is configured to send a physical downlink control channel PDCCH scrambled by at least one group radio network temporary identifier G-RNTI in a first search space, where the first search space includes a common search space CSS and/or a terminal-specific In the search space USS, the type of the number of bits of the downlink control information DCI carried by the PDCCH scrambled by the at least one G-RNTI is less than or equal to the first threshold.
  • the type of the number of bits of the downlink control information DCI carried by the PDCCH scrambled by the at least one G-RNTI is less than or equal to the first threshold, including:
  • the number of bits of DCI carried by the PDCCH scrambled by all G-RNTIs sent by the network device in the CSS is the same.
  • the number of bits of DCI carried by the network device on all G-RNTI scrambled PDCCHs sent by the CSS is the first number of bits
  • the network device further includes:
  • a processing unit configured to, when the number of bits of the DCI carried by the PDCCH scrambled by the first G-RNTI is less than the first number of bits, at the end of the DCI carried by the PDCCH scrambled by the first G-RNTI Filling bits to make the number of bits of the DCI equal to the first number of bits, or adding a first bit field to the DCI carried by the PDCCH scrambled by the first G-RNTI, wherein the first bit field The value of is an invalid value so that the number of bits of the DCI is equal to the first number of bits.
  • the first bit field is used to indicate a hybrid automatic repeat request HARQ feedback mode.
  • the number of bits of DCI carried by the PDCCH scrambled by all G-RNTIs sent by the network device in the CSS is predefined or configured by the network device.
  • the type of the number of bits of the downlink control information DCI carried by the PDCCH scrambled by the at least one G-RNTI is less than or equal to the first threshold, including:
  • Types of bits of DCI carried by all G-RNTI scrambled PDCCHs sent by the network device in the CSS are less than or equal to the first threshold.
  • the number of bits of DCI carried by the PDCCH scrambled by each G-RNTI sent by the network device in the CSS is predefined or configured by the network device.
  • the type of the number of bits of the downlink control information DCI carried by the PDCCH scrambled by the at least one G-RNTI is less than or equal to the first threshold, including:
  • the network device only sends the DCI of the first target type carried by the PDCCH scrambled by the G-RNTI in the CSS.
  • the first target type of DCI is a first type of DCI, or a second type of DCI, wherein the number of bits of the first type of DCI is smaller than that of the second type of DCI The number of bits of the DCI.
  • the type of DCI carried by the network device on the G-RNTI scrambled PDCCH sent by the CSS is predefined or configured by the network device.
  • the first target type is configured by the network device through radio resource control RRC signaling.
  • the type of the number of bits of the downlink control information DCI carried by the PDCCH scrambled by the at least one G-RNTI is less than or equal to the first threshold, including:
  • the network device only sends the DCI of the second target type carried by the PDCCH scrambled by the G-RNTI in the USS.
  • the DCI of the second target type is the DCI of the first type, or the DCI of the second type, wherein the number of bits of the DCI of the first type is smaller than that of the DCI of the second type. The number of bits of the DCI.
  • the type of DCI carried by the G-RNTI scrambled PDCCH sent by the network device at the USS is predefined or configured by the network device.
  • the second target type is configured by the network device through RRC signaling.
  • the CSS configuration signaling includes a control resource set CORESET identification parameter, the CORESET identification parameter is used to indicate the CORESET associated with the CSS, and the CORESET corresponding to the CORESET identification is located in a public frequency range Inside the CFR.
  • the first threshold is predefined.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the network device 1000 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 1000 are for realizing the method shown in FIG. 3
  • the corresponding processes of the network devices in 200 will not be repeated here.
  • Fig. 10 is a schematic block diagram of a network device according to an embodiment of the present application.
  • the network device 1100 of FIG. 10 includes:
  • the processing unit 1110 is configured to not schedule the multicast multicast MBS service in a point-to-point manner when the new data indication NDI field in the first physical downlink control channel PDCCH has the same value as the NDI field in the second PDCCH retransmission, wherein the first PDCCH is used to schedule the initial transmission of the MBS service, and the second PDCCH is used to schedule the unicast service, wherein the hybrid automatic request retransmission HARQ process in the first PDCCH
  • the value of the field is the same as the value of the HARQ process field in the second PDCCH.
  • the network device 1100 further includes:
  • the communication unit is configured not to receive the first target PDCCH scrambled by the cell radio network temporary identifier C-RNTI on the terminal-specific search space USS, wherein the first target PDCCH satisfies the following conditions:
  • the PDSCH scheduled by the first target PDCCH is the retransmission of the PDSCH scheduled by K PDCCHs previously received by the terminal device, wherein the K PDCCHs are scrambled by the third G-RNTI, and the K is less than or equal to N, where N is a positive integer;
  • the value of the HARQ process field in the DCI carried by the first target PDCCH is the first value, and the value of the HARQ process field in the DCI carried by the K PDCCHs is also the first value;
  • the value of the NDI field in the DCI carried by the first target PDCCH is a second value, and the value of the NDI field in the DCI carried by the K PDCCHs is also a second value;
  • the HARQ process number whose value is the first value is used for unicast transmission before sending the K PDCCHs scrambled by the third G-RNTI.
  • the network device 1100 further includes:
  • the communication unit is configured not to receive the second target PDCCH scrambled by the cell radio network temporary identifier C-RNTI on the terminal-specific search space USS, wherein the second target PDCCH satisfies the following conditions:
  • the PDSCH scheduled by the second target PDCCH is the retransmission of the PDSCH scheduled by K PDCCHs previously received by the terminal device, wherein the K PDCCHs are scrambled by the fourth G-RNTI, and the K is less than or equal to N, where N is a positive integer;
  • the value of the HARQ process field in the DCI carried by the second target PDCCH is the first value, and the value of the HARQ process field in the DCI carried by the K PDCCHs is also the first value;
  • the value of the NDI field in the DCI carried by the second target PDCCH is a second value, and the value of the NDI field in the DCI carried by the K PDCCHs is also a second value;
  • the terminal device does not send the PDSCH scheduled for the K PDCCHs scrambled by the fourth G-RNTI on the physical uplink control channel PUCCH resources indicated by the K PDCCHs scrambled by the fourth G-RNTI HARQ feedback information;
  • the HARQ process number whose value is the first value is used for unicast transmission before the K PDCCHs scrambled by the fourth G-RNTI are sent.
  • the N is a predefined value, or is configured by a network device.
  • the network device 1100 further includes:
  • the communication unit is configured not to send a PDCCH scrambled by a group radio network temporary identifier G-RNTI in the USS, wherein the PDCCH is used to indicate a new transmission of one or more transport blocks TB.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the network device 1100 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 1100 are to realize the For the sake of brevity, the corresponding flow of the network device in the shown method 300 is not repeated here.
  • FIG. 11 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 11 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620 .
  • the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, to send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be the network device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • the communication device 600 may specifically be the mobile terminal/terminal device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, for the sake of brevity , which will not be repeated here.
  • FIG. 12 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 12 includes a processor 710, and the processor 710 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720 .
  • the processor 710 can invoke and run a computer program from the memory 720, so as to implement the method in the embodiment of the present application.
  • the memory 720 may be an independent device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may also include an input interface 730 .
  • the processor 710 can control the input interface 730 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 700 may also include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • Fig. 13 is a schematic block diagram of a communication system 900 provided by an embodiment of the present application. As shown in FIG. 13 , the communication system 900 includes a terminal device 910 and a network device 920 .
  • the terminal device 910 can be used to realize the corresponding functions realized by the terminal device in the above method
  • the network device 920 can be used to realize the corresponding functions realized by the network device in the above method.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application , for the sake of brevity, it is not repeated here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the Let me repeat For the sake of brevity, the Let me repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the methods of the embodiments of the present application, For the sake of brevity, details are not repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program is run on the computer, the computer is made to execute the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the computer program is run on the computer, the computer is made to execute the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program executes each method in the embodiment of the present application to be implemented by the mobile terminal/terminal device
  • the corresponding process will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信的方法、终端设备和网络设备,有利于降低终端设备检测PDCCH的复杂度,该方法包括:终端设备在第一搜索空间检测至少一个组无线网络临时标识符G-RNTI加扰的物理下行控制信道PDCCH,其中,所述第一搜索空间包括公共搜索空间CSS和/或终端特定搜索空间USS,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值。

Description

无线通信的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,具体涉及一种无线通信的方法、终端设备和网络设备。
背景技术
在NR系统中,组播和广播传输(MULTICAST BROADCAST SERVICE,MBS)需要支持一对多的组播传输,终端设备可能既需要接收单播业务又需要接收MBS业务,终端设备可能支持多种不同的MBS业务,对于不同的MBS业务,由于MBS业务类型的差异,调度该MBS业务的物理下行控制信道(Physical Downlink Control Channel,PDCCH)中的下行控制信息(Downlink Control Information,DCI)所需的比特域也可能不同,这也将增加终端设备需要检测的可能的PDCCH比特数的情况。因此,如何降低终端设备检测PDCCH的复杂度是一项亟需解决的问题。
发明内容
本申请提供了一种无线通信的方法、终端设备和网络设备,有利于降低终端设备检测PDCCH的复杂度。
第一方面,提供了一种无线通信的方法,包括:终端设备在第一搜索空间检测至少一个组无线网络临时标识符G-RNTI加扰的物理下行控制信道PDCCH,其中,所述第一搜索空间包括公共搜索空间CSS和/或终端特定搜索空间USS,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值。
第二方面,提供了一种无线通信的方法,包括:终端设备在第一搜索空间接收第一无线网络临时标识符RNTI加扰的第一物理下行控制信道PDCCH,其中,所述第一PDCCH携带的下行控制信息DCI中的混合自动请求重传HARQ进程域的取值为第一值,第二PDCCH是所述终端设备上一个接收的DCI中的HARQ进程域的取值为第一值的PDCCH;
所述终端设备根据所述第一搜索空间,接收所述第二PDCCH的搜索空间,所述第一RNTI,加扰所述第二PDCCH的RNTI,所述第一PDCCH携带的DCI中的新数据指示NDI域的取值和所述第二PDCCH携带的DCI中的NDI域的取值中的至少一项,确定所述第一PDCCH调度的物理下行共享信道PDSCH是否为所述第二PDCCH调度的PDSCH的重传。
第三方面,提供了一种无线通信的方法,包括:网络设备在第一搜索空间发送至少一个组无线网络临时标识符G-RNTI加扰的物理下行控制信道PDCCH,其中,所述第一搜索空间包括公共搜索空间CSS和/或终端特定搜索空间USS,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值。
第四方面,提供了一种无线通信的方法,包括:在第一物理下行控制信道PDCCH中的新数据指示NDI域和第二PDCCH中的NDI域的取值相同的情况下,网络设备不通过点到点方式调度多播组播MBS业务的重传,其中,所述第一PDCCH用于调度所述MBS业务的初传,所述第二PDCCH用于调度单播业务,其中,所述第一PDCCH中的混合自动请求重传HARQ进程域的取值和所述第二PDCCH中的HARQ进程域的取值相同。
第五方面,提供了一种终端设备,用于执行上述第一方面至第二方面中的任意方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面至第二方面中的任意方面或其各实现方式中的方法的功能模块。
第六方面,提供了一种网络设备,用于执行上述第三方面至第四方面中的任意方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第三方面至第四方面中的任意方面或其各实现方式中的方法的功能模块。
第七方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面至第二方面中的任意方面或其各实现方式中的方法。
第八方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第三方面至第四方面中的任意方面或其各实现方式中的方法。
第九方面,提供了一种芯片,用于实现上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
第十一方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
第十二方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,通过设计终端设备在搜索空间接收的G-RNTI加扰的PDCCH携带的DCI的比特数不超过第一阈值,一方面可以降低终端设备在搜索空间检测PDCCH的复杂度,另一方面减少网络侧的不必要的比特发送,提升系统资源的利用效率。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是SC-PTM信道及其映射方式的示意图。
图3是根据本申请实施例提供的一种无线通信的方法的示意性交互图。
图4是根据本申请实施例提供的另一种无线通信的方法的示意性交互图。
图5是根据本申请一个实施例的PDCCH的接收顺序示意图。
图6是根据本申请另一个实施例的PDCCH的接收顺序示意图。
图7是根据本申请实施例提供的一种终端设备的示意性框图。
图8是根据本申请实施例提供的另一种终端设备的示意性框图。
图9是根据本申请实施例提供的一种网络设备的示意性框图。
图10是根据本申请实施例提供的另一种网络设备的示意性框图。
图11是根据本申请实施例提供的一种通信设备的示意性框图。
图12是根据本申请实施例提供的一种芯片的示意性框图。
图13是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移 动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表 示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,"预定义"可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性、复杂性,为此3GPP国际标准组织开始研发5G。5G的主要应用场景为:增强移动超宽带(Enhance Mobile Broadband,eMBB)、高可靠低时延通信(Ultra-Reliable and Low Latency Communication,URLLC)、大规模机器类型通信(massive Machine Type Communication,mMTC)。
eMBB仍然以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。另一方面,由于eMBB可能部署在不同的场景中,便如室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而论,必须结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
5G网络环境中为了降低空口信令和快速恢复无线连接,快速恢复数据业务的目的,定了一个新的无线资源控制(Radio Resource Control,RRC)状态,即RRC_INACTIVE(非激活)状态。这种状态有别于RRC_IDLE(空闲)和RRC_CONNECTED(连接)状态。
在RRC_IDLE状态下:移动性为基于终端设备的小区选择重选,寻呼由核心网(Core Network,CN)发起,寻呼区域由CN配置。基站侧不存在终端设备接入层(Access Stratum,AS)上下文,也不存在RRC连接。
在RRC_CONNECTED状态下:存在RRC连接,基站和终端设备存在终端设备AS上下文。网络设备知道终端设备的位置是具体小区级别的。移动性是网络设备控制的移动性。终端设备和基站之间可以传输单播数据。
RRC_INACTIVE:移动性为基于终端设备的小区选择重选,存在CN-NR之间的连接,终端设备AS上下文存在某个基站上,寻呼由无线接入网(Radio Access Network,RAN)触发,基于RAN的寻呼区域由RAN管理,网络设备知道终端设备的位置是基于RAN的寻呼区域级别的。
需要说明的是,在本申请实施例中,非激活态也可以称之为去激活态,本申请对此并不限定。
NR系统中支持的最大信道带宽可以到400MHZ(宽带载波,wideband carrier),如果UE一直保持工作在宽带载波上,则UE的功率消耗是很大的。根据UE实际的吞吐量来调整UE的射频(Radio Frequency,RF)带宽可以优化UE的功率消耗,这就是引入带宽部分(Bandwidth Part,BWP)的动机。
例如UE的速率很低,可以给UE配置小一点的带宽,如果UE速率要求很高,则可以给UE配置大一点的带宽。如果UE支持高速率,或者操作在CA模式下,可以给配置多个BWP。BWP的另一个目的就是触发一个小区中多个基础参数集(numerology)共存。
多媒体广播多播服务(Multimedia Broadcast Multicast Service,MBMS)是一种通过共享网络资源从一个数据源向多个用户设备传送数据的技术,在提供多媒体业务的同时能有效地利用网络资源,实现较高速率(256kbps)的多媒体业务广播和组播。
由于MBMS频谱效率较低,不足以有效地承载和支撑手机电视类型业务的运营。进一步提出增强对下行高速多媒体广播多播服务业务(eMBMS)的支持能力,并确定了对物理层和空中接口的设计要求。
针对eMBMS提出了单频率网络(Single Frequency Network,SFN)的概念,即采用统一频率在所有小区同时发送数据,但是要保证小区间的同步。这种方式可以极大的提高小区整体信噪比分布,频谱效率也会相应的大幅提高。并基于网络协议(Internet Protocol,IP)多播协议实现业务的广播和多播。
在LTE系统中,MBMS只有广播承载模式,没有多播承载模式。
MBMS业务的接收适用于连接态(RRC_CONNECTED)或者空闲态(RRC_IDLE)的终端设备。
在一些场景中,引入单小区点到多点(Single Cell Point To Multiploint,SC-PTM)。SC-PTM基于MBMS网络架构,多小区或多播协调实体(Multi-cell/multicast Coordination Entity,MCE)决定采 用SC-PTM传输方式还是多媒体广播多播服务单频点网络(Multimedia Broadcast multicast service Single Frequency Network,MBSFN)传输方式。
在一些场景中,引入新的逻辑信道单小区多播控制信道(Single Cell Multicast Control Channel,SC-MCCH)(LCID=11001)和单小区多播传输信道(Single Cell Multicast Transport Channel,SC-MTCH)(LCID=11001),如图2所示,SC-MCCH和SC-MTCH映射到下行共享信道(DL-SCH)传输信道,物理下行共享信道(Physical Downlink Shared Channel,PDSCH)物理信道上。SC-MCCH和SC-MTCH不支持混合自动请求重传(Hybrid Automatic Repeat reQuest,HARQ)操作,并采用确认模式(Unacknowledged Mode,UM)无线链路控制(Radio Link Control,RLC)。
在一些场景中,引入新的系统信息块(System Information Block,SIB)类型,即SIB20用于传输SC-MCCH的配置信息,一个小区只有一个SC-MCCH。配置信息包括:SC-MCCH的修改周期,重复周期(mcch-RepetitionPeriod),以及无线帧和子帧配置信息。
在一些实施例中,SC-MCCH调度的无线帧(mcch-Offset)可以根据该公式确定:SFN mod mcch-RepetitionPeriod=mcch-Offset。
在一些实施例中,SC-MCCH调度的子帧通过sc-mcch-Subframe指示。
在一些实施例中,SC-MCCH只传输一个消息SCPTMConfiguration,该消息用于配置SC-PTM的配置信息。引入新的无线网络临时标识(Radio Network Temporary Identity,RNTI),单小区RNTI(Single Cell RNTI,C-RNTI)(固定取值FFFC)来识别SC-MCCH在物理下行控制信道(Physical Downlink Control Channel,PDCCH)上的调度信息。
在一些场景中,引入新的RNTI,单小区通知RNTI(Single Cell Notification RNTI,SC-N-RNTI)(固定取值FFFB),来识别SC-MCCH的变更通知的PDCCH。用DCI 1C中的8个bit中的一个bit来指示变更通知。修改周期边界定义为SFN mod m=0,其中m是SIB20中配置的修改周期sc-mcch-ModificationPeriod。
在NR系统中,RLC确认模式(Acknowledged Mode,AM)是带有自动请求重传(Automatic Repeat reQuest,ARQ)反馈机制的。接收端发送RLC状态报告来反馈RLC包的接收状态为肯定应答(Acknowledgement,ACK)或者否定应答(Negative Acknowledgement,NACK)。发送端可以重复传输反馈NACK的序列号(sequence number,SN)号的RLC包的重复发送。
下行BWP通过下行链路BWP(BWP-Downlink)参数配置,如下面第一段ASN.1编码所示,该BWP-Downlink参数中包括BWP标识(bwp-Id),用于标识当前BWP的ID,BWP公共(bwp-Common)用于配置该下行BWP的公共参数。第二段ASN.1编码所示是bwp-Common包括的公共参数,其中BWP-DownlinkCommon中的通用参数(genericParameters)用于配置该下行BWP的频域起点和包含的物理资源块(physical resource block,PRB)个数。对于一个终端专用单播BWP,BWP-Downlink中的专用BWP(bwp-Dedicated)参数将配置该下行BWP上的下行接收参数,如第三段ASN.1编码所示,至少包括物理下行控制信道(Physical Downlink Control Channel,PDCCH)配置(即pdcch-Config),物理下行共享信道(Physical Downlink Shared Channel,PDSCH)配置(pdsch-Config),和半静态调度(Semi-Persistent Scheduling,SPS)配置(sps-Config)。其中,pdcch-Config用于指示该下行BWP上的PDCCH发送方式,pdsch-Config用于指示该下行BWP上的PDSCH发送方式,sps-Config用于指示该下行BWP上的SPS配置。
第一段ASN.1编码:
BWP-Downlink::=SEQUENCE{
bwp-Id BWP-Id,
bwp-Common BWP-DownlinkCommon OPTIONAL,--Cond SetupOtherBWP
bwp-Dedicated BWP-DownlinkDedicated OPTIONAL,--Cond SetupOtherBWP
...
}
第二段ASN.1编码:
BWP-DownlinkCommon::=SEQUENCE{
genericParameters BWP,
pdcch-ConfigCommon SetupRelease{PDCCH-ConfigCommon}OPTIONAL,--Need M
pdsch-ConfigCommon SetupRelease{PDSCH-ConfigCommon}OPTIONAL,--Need M
...
}
第三段ASN.1编码:
BWP-DownlinkDedicated::=SEQUENCE{
pdcch-Config SetupRelease{PDCCH-Config}OPTIONAL,--Need M
pdsch-Config SetupRelease{PDSCH-Config}OPTIONAL,--Need M
sps-Config SetupRelease{SPS-Config}OPTIONAL,--Need M
radioLinkMonitoringConfig SetupRelease{RadioLinkMonitoringConfig}OPTIONAL,--Need M
...,
在NR系统中,组播和广播业务(MULTICAST BROADCAST SERVICE,MBS)需要支持一对多的组播传输,在这种传输方式中,基站需要通过发送公共的PDCCH调度公共的物理下行共享信道(Physical Downlink Shared Channel,PDSCH),所述公共PDCCH和公共PDSCH由组无线网络临时标识符(Group Radio Network Temporary Identity,G-RNTI)加扰,在一段公共的频域范围(Common Frequency Resource,CFR)内发送。其中,公共PDCCH承载的下行控制信息(Downlink Control Information,DCI)可能有两种不同的类型,第一类型的DCI的比特数比较少,主要用于保证小区边缘用户的覆盖,第二类型在比特数上没有优化,主要用于保证MBS的传输性能。为了提高MBS数据重传的可靠性,一个通过公共PDSCH发送的TB可以通过单播点对点(Point to Point,PTP)的方式重传。
由于调度公共PDSCH的公共PDCCH需要同时发送给多个接收终端,为了保证所述多个终端确定的公共PDCCH中承载的公共DCI的比特数相同,终端设备不能根据各自的专用单播BWP的配置确定公共DCI的比特数,另外,由于CFR的PRB个数可能和终端当前配置的初始BWP或控制资源集#0(COntrol REsource SET 0,CORESET#0)不同,终端设备也无法通过初始BWP或CORESET#0确定公共DCI的比特数。由于终端设备需要支持多种不同的MBS业务,对于不同的MBS业务,其对应的G-RNTI也可能不同。对于不同G-RNTI的加扰的PDCCH,由于MBS业务类型的差异,调度该MBS业务的PDCCH中的DCI所需的比特数也可能不同,这也将增加终端设备需要检测的可能的PDCCH的比特数的情况。因此,如何降低终端设备检测PDCCH的复杂度是一项亟需解决的问题。
另外,终端设备可能既需要接收单播业务又需要接收MBS业务,由于公共PDSCH发送的一个MBS业务的传输块(Transport Block,TB),网络设备可能通过PTP的方式调度该TB的重传,在这种情况下,对于终端设备而言,如何确定网络设备PDCCH调度的是单播传输还是MBS传输的重传也是一项亟需解决的问题。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图3是根据本申请实施例的无线通信的方法200的示意性流程图,该方法200可以由图1所示的通信系统中的终端设备执行,如图3所示,该方法200包括如下内容:
S210,终端设备在第一搜索空间检测至少一个组无线网络临时标识符G-RNTI加扰的物理下行控制信道PDCCH。
在一些实施例中,所述G-RNTI加扰的PDCCH可以用于调度MBS业务的传输,例如MBS业务的初传,或者MBS业务的重传。
在一些实施例中,不同的G-RNTI可以用于调度不同的MBS业务。
在一些实施例中,G-RNTI加扰的PDCCH可以是在公共搜索空间(Common Search Space,CSS)传输的。因此,终端设备可以在CSS检测一个或多个G-RNTI加扰的PDCCH。
在另一些实施例中,G-RNTI加扰的PDCCH也可以是在终端特定搜索空间(UE Search Space,USS)传输的。因此,终端是可以在USS检测一个或多个G-RNTI加扰的PDCCH。
在一些实施例中,终端设备在USS检测的G-RNTI加扰的PDCCH用于调度MBS业务的重传。
在本申请一些实施例中,所述第一搜索空间包括CSS和/或USS。
在本申请一些实施例中,所述终端设备在第一搜索空间检测的所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息(Downlink Control Information,DCI)的比特数的种类不超过终端的能力。通过设计终端设备在第一搜索空间检测的G-RNTI加扰的PDCCH承载的DCI的比特数的种类不超过第一阈值,一方面可以降低终端检测PDCCH的复杂度,另一方面减少网络侧的不必要的比特发送,提升系统资源的利用效率。
可选地,所述终端设备在第一搜索空间检测的所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值,可以包括:
所述终端设备在CSS检测的G-RNTI加扰的PDCCH承载的DCI的比特数的种类小于或等于第一阈值;和/或
所述终端设备在USS检测的G-RNTI加扰的PDCCH承载的DCI的比特数的种类小于或等于第一阈值。
应理解,在本申请实施例中,终端设备在CSS检测的G-RNTI加扰的PDCCH承载的DCI的比特数的种类数对应的阈值和终端设备在USS检测的G-RNTI加扰的PDCCH承载的DCI的比特数的种类数对应的阈值可以相同,或者,也可以不同,本申请实施例对此不作限定。
以下,结合实施例1和实施例2,分别说明终端设备在CSS检测的G-RNTI加扰的PDCCH承载的DCI的比特数的设计方式,以及终端设备在USS检测的G-RNTI加扰的PDCCH承载的DCI的比特数的设计方式。
实施例1:终端设备可以在CSS检测一个或多个G-RNTI加扰的PDCCH。
在一些实施例中,所述CSS的配置信令包括控制资源合(Control Resource Set,CORESET)标识参数,所述CORESET标识参数用于指示与所述CSS关联的CORESET,所述CORESET标识对应的CORESET位于公共频率范围CFR内。
作为实施例1的一种实现方式,所述终端设备在所述CSS检测的所有G-RNTI加扰的PDCCH承载的DCI的比特数相同。例如均为第一比特数。该实现方式有利于最大限度的降低终端设备在CSS需要检测的可能的PDCCH的比特数的种类。
可选地,所述终端设备在所述CSS检测的所有G-RNTI加扰的PDCCH承载的DCI的比特数是预定义的,或者是由网络设备配置的。即所述第一比特数可以是预定义的,或者网络设备配置的。
例如,所述终端设备在所述CSS检测的所有G-RNTI加扰的PDCCH承载的DCI的比特数由所述网络设备通过RRC信令配置的。即网络设备可以通过RRC信令配置该第一比特数。
作为一个具体示例,所述网络设备可以通过CSS的配置信令配置所述终端设备在CSS检测G-RNTI加扰的PDCCH承载的DCI的比特数,即网络设备可以在配置CSS时,同时配置终端设备在CSS上检测G-RNTI加扰的PDCCH承载的DCI的比特数,从而,终端设备可以基于该比特数解析该DCI,有利于降低终端设备的复杂度。
在一些实施例中,若第一G-RNTI加扰的PDCCH承载的DCI的比特数小于所述第一比特数,则网络设备可以通过如下方式保证第一G-RNTI加扰的PDCCH所承载的DCI的比特数为所述第一比特数:
方式1:在DCI中增加填充比特(padding bit),例如,在DCI的末尾增加一定数量的填充比特,以使得DCI的比特数等于所述第一比特数。
方式2:在DCI中增加第一比特域,并且将所述第一比特域的取值设置为无效值,以使DCI的比特数等于第一比特数。
例如,如果第一G-RNTI对应的MBS业务不需要通过DCI指示混合自动请求重传(Hybrid Automatic Repeat reQuest,HARQ)反馈方式,指示HARQ反馈方式的比特域为2比特,则第一G-RNTI加扰的PDCCH承载的DCI的比特数比第一比特数少2比特。则根据方式2-1,该第一G-RNTI加扰的PDCCH所承载的DCI中不包括指示HARQ反馈方式的比特域,在该DCI的末尾额外添加2个零,以保证该DCI包含的比特数等于第一比特数。根据方式2-2,可以在该DCI中包含指示HARQ反馈方式的比特域,进一步将该比特域设置为无效值。例如,如果该比特域为第一取值,表示不需要进行HARQ反馈,如果该比特域为第二取值,则表示通过第一方式进行HARQ反馈,如果该比特域为第三取值,表示通过第二方式进行HARQ反馈,如果该比特域为第四取值,则表示该比特域无效,此情况下,该比特域的取值为第四取值。
作为实施例1的另一种实现方式,所述终端设备在所述CSS检测的所有G-RNTI加扰的PDCCH承载的DCI的比特数的种类小于或等于第一阈值。换言之,所述终端设备不期望在所述CSS检测的所有G-RNTI加扰的PDCCH承载的DCI的比特数的种类大于第一阈值。通过设计终端设备在CSS检测的G-RNTI加扰的PDCCH承载的DCI的比特数的种类不超过第一阈值,一方面可以降低终端设备在CSS检测PDCCH的复杂度,另一方面减少网络侧的不必要的比特发送,提升系统资源的利用效率。
在一些实施例中,所述终端设备在所述CSS检测的每个G-RNTI加扰的PDCCH承载的DCI的比特数是预定义的,或者是由网络设备配置的。例如,可以由网络设备通过RRC信令配置。
可选地,终端设备在所述CSS内检测的所有G-RNTI加扰的PDCCH承载的DCI的比特数可以相 同,或者,也可以不同。
可选地,对于每个G-RNTI加扰的PDCCH承载的DCI的比特数可以由网络设备统一配置,或者,也可以是由网络设备分别配置。
在一些实施例中,所述第一阈值是预定义的,或者是由网络设备配置的,例如网络设备通过RRC信令配置。
作为实施例1的又一种实现方式,所述终端设备在所述CSS检测的G-RNTI加扰的PDCCH承载的DCI的类型相同,或者,所述终端设备在所述CSS仅检测G-RNTI加扰的PDCCH承载的第一目标类型的DCI。通过设计终端设备仅检测特定类型的G-RNTI加扰的PDCCH承载的DCI,有利于降低终端设备检测到的PDCCH的比特数的种类,从而降低终端设备检测PDCCH的复杂度。
换言之,网络设备可以在CSS仅发送G-RNTI加扰的PDCCH承载的特定类型的DCI,例如,第一目标类型的DCI,或者,终端设备可以在CSS仅检测G-RNTI加扰的PDCCH承载的第一目标类型的DCI,此情况下,网络设备在CSS可以发送G-RNTI加扰的PDCCH承载的多种类型的DCI,或者,也可以只发送G-RNTI加扰的PDCCH承载的第一目标类型的DCI。
可选地,所述第一目标类型的DCI为第一类型的DCI,或者,第二类型的DCI,其中,所述第一类型的DCI的比特数小于或等于所述第二类型的DCI的比特数。
可选地,第一类型的DCI用于保证小区边缘用户的覆盖,第二类型的DCI用于保证MBS的传输性能。
在一些实施例中,所述终端设备在所述CSS检测的G-RNTI加扰的PDCCH承载的DCI的类型是预定义的,或者是由网络设备配置的。即所述第一目标类型可以是预定义的,或者是网络设备配置的。例如,网络设备通过RRC信令配置所述第一目标类型。
作为一个可选实现方式,终端设备在CSS仅检测G-RNTI加扰的特定格式的DCI。
实施例2:终端设备可以在USS检测一个或多个G-RNTI加扰的PDCCH。
作为实施例2的一种实现方式,所述终端设备在所述USS检测的G-RNTI加扰的PDCCH承载的DCI的类型相同,或,所述终端设备在所述USS仅检测G-RNTI加扰的PDCCH承载的第二目标类型的DCI。
换言之,网络设备可以在USS仅发送G-RNTI加扰的PDCCH承载的特定类型的DCI,例如,第二目标类型的DCI,或者,终端设备可以在USS仅检测G-RNTI加扰的PDCCH承载的第二目标类型的DCI,此情况下,网络设备在USS可以发送G-RNTI加扰的PDCCH承载的多种类型的DCI,或者,也可以只发送G-RNTI加扰的PDCCH承载的第二目标类型的DCI。
可选地,所述第二目标类型的DCI为第一类型的DCI,或者,第二类型的DCI,其中,所述第一类型的DCI的比特数小于或等于所述第二类型的DCI的比特数。
可选地,第一类型的DCI用于保证小区边缘用户的覆盖,第二类型的DCI用于保证MBS的传输性能。
在一些实施例中,所述终端设备在所述USS检测的G-RNTI加扰的PDCCH承载的DCI的类型是预定义的,或者是由网络设备配置的。即所述第二目标类型可以是预定义的,或者是网络设备配置的。例如,网络设备通过RRC信令配置所述第二目标类型。
可选地,在一些实施例中,所述第一目标类型和所述第二目标类型可以相同,或者也可以不同。
作为实施例2的另一种实现方式,所述终端设备在所述USS检测的所有G-RNTI加扰的PDCCH承载的DCI的比特数相同。例如均为第二比特数。该实现方式有利于最大限度的降低终端设备在USS需要检测的可能的PDCCH的比特数的种类。
可选地,所述终端设备在所述USS检测的所有G-RNTI加扰的PDCCH承载的DCI的比特数是预定义的,或者是由网络设备配置的。即所述第二比特数可以是预定义的,或者网络设备配置的。
例如,所述终端设备在所述USS检测的所有G-RNTI加扰的PDCCH承载的DCI的比特数由所述网络设备通过RRC信令配置的。即网络设备可以通过RRC信令配置该第二比特数。
作为一个具体示例,所述网络设备可以通过USS的配置信令配置所述终端设备在USS检测G-RNTI加扰的PDCCH承载的DCI的比特数,即网络设备可以在配置USS时,同时配置终端设备在USS上检测G-RNTI加扰的PDCCH承载的DCI的比特数,从而,终端设备可以基于该比特数解析该DCI,有利于降低终端设备的复杂度。
在一些实施例中,若第二G-RNTI加扰的PDCCH承载的DCI的比特数小于所述第二比特数,则网络设备可以采用实施例1中所述的方式1或方式2保证第二G-RNTI加扰的PDCCH承载的DCI的比特数为所述第二比特数,为了简洁,这里不再赘述。
作为实施例2的又一种实现方式,所述终端设备在所述USS检测的所有G-RNTI加扰的PDCCH 承载的DCI的比特数的种类小于或等于第一阈值。换言之,所述终端设备不期望在所述USS检测的所有G-RNTI加扰的PDCCH承载的DCI的比特数的种类大于第一阈值。通过设计终端设备在USS检测的G-RNTI加扰的PDCCH承载的DCI的比特数的种类不超过第一阈值,一方面可以降低终端设备在USS检测PDCCH的复杂度,另一方面减少网络侧的不必要的比特发送,提升系统资源的利用效率。
在一些实施例中,所述终端设备在所述USS检测的每个G-RNTI加扰的PDCCH承载的DCI的比特数是预定义的,或者是由网络设备配置的。例如,可以由网络设备通过RRC信令配置。
可选地,终端设备在所述USS内检测的所有G-RNTI加扰的PDCCH承载的DCI的比特数可以相同,或者,也可以不同。可选地,对于每个G-RNTI加扰的PDCCH承载的DCI的比特数可以由网络设备统一配置,或者,也可以是由网络设备分别配置。
在一些实施例中,所述第一阈值是预定义的,或者是由网络设备配置的,例如网络设备通过RRC信令配置。
综上,在本申请实施例中,通过设计终端设备在CSS接收的所有G-RNTI加扰的PDCCH携带的DCI的比特数相同,或者,终端设备在CSS接收的所有G-RNTI加扰的PDCCH携带的DCI的比特数的种类不超过一定阈值,或者,终端设备在CSS仅接收G-RNTI加扰的PDCCH携带的第一目标类型的DCI,一方面,可以降低终端设备在CSS检测PDCCH的复杂度,另一方面,减少网络侧的不必要的比特发送,提升系统资源的利用效率。
或者,通过设计终端设备在USS接收的所有G-RNTI加扰的PDCCH携带的DCI的比特数相同,或者,终端设备在USS接收的所有G-RNTI加扰的PDCCH携带的DCI的比特数的种类不超过一定阈值,或者,终端设备在USS仅接收G-RNTI加扰的PDCCH携带的第二目标类型的DCI,一方面,可以降低终端设备在USS检测PDCCH的复杂度,另一方面,减少网络侧的不必要的比特发送,提升系统资源的利用效率。
图4是根据本申请另一实施例的无线通信的方法300的示意性流程图,如图4所示,该方法300包括如下内容:
S310,终端设备接收第二PDCCH,其中,所述第二PDCCH携带的DCI中的HARQ进程域的取值为第一值;
S320,终端设备在第一搜索空间接收第一RNTI加扰的第一PDCCH,其中,所述第一PDCCH携带的DCI中的HARQ进程域的取值为第一值。
即第二PDCCH是上一个调度取值为第一值的HARQ进程号的PDCCH。
S330,所述终端设备根据所述第一搜索空间,接收所述第二PDCCH的搜索空间,所述第一RNTI,加扰所述第二PDCCH的RNTI,所述第一PDCCH携带的DCI中的新数据指示NDI域的取值和所述第二PDCCH携带的DCI中的NDI域的取值中的至少一项,确定所述第一PDCCH调度的物理下行共享信道PDSCH是否为所述第二PDCCH调度的PDSCH的重传。
在一些实施例中,所述第一搜索空间为CSS,所述第一RNTI为G-RNTI,此情况下,所述终端设备可以根据所述第一RNTI和加扰第二PDCCH的RNTI,确定所述第一PDCCH调度的PDSCH是否为所述第二PDCCH调度的PDSCH的重传。
例如,若终端设备在CSS检测到第一G-RNTI加扰的第一PDCCH,该第一PDCCH中承载的DCI中的HARQ进程域的取值为h,则终端设备可以根据上一次接收的指示该HARQ进程号h的PDCCH对应的RNTI和第一G-RNTI确定第一PDCCH调度的PDSCH是否为一次MBS传输块(Transport Block,TB)的新传。
在一些情况下,若第二PDCCH是第二RNTI加扰的,所述第二RNTI和所述第一G-RNTI不同,此情况下,终端设备可以认为第一PDCCH调度的PDSCH为一次MBS TB的新传。
需要说明的是,在这种情况下,第一G-RNTI加扰的第一PDCCH承载的DCI中的NDI域相对于所述第二PDCCH承载的DCI中的NDI域可以不翻转(toggle)。
应理解,所述第一G-RNTI表示终端设备上配置的任一个G-RNTI。
可选地,所述第二PDCCH可以是在CSS接收的,或者也可以是在USS接收的。
综上,所述终端设备在满足以下条件的情况下,确定所述第一PDCCH调度的PDSCH是一次MBS业务的新传(即所述第一PDCCH调度的PDSCH不是所述第二PDCCH调度的PDSCH的重传):
第一PDCCH携带的DCI中的HARQ进程域的取值和第二PDCCH携带的DCI中的HARQ进程域的取值相同;
所述第一PDCCH是在CSS接收的;
所述第一PDCCH是第一G-RNTI加扰的;
所述第二PDCCH是第二RNTI加扰的,其中,所述第二RNTI和所述第一G-RNTI不同。
在另一些实施例中,所述第一搜索空间为USS,所述第一RNTI为小区无线网络临时标识符(Cell Radio Network Temporary Identity,C-RNTI),所述第二PDCCH是通过第二G-RNTI加扰的,此情况下,所述终端设备可以根据第一PDCCH携带的DCI中的新数据指示(New Data Indicator,NDI)域的取值和所述第二PDCCH携带的DCI中的NDI域的取值是否相同,确定所述第一PDCCH调度的物理下行共享信道PDSCH是否为所述第二PDCCH调度的PDSCH的重传。
例如,若第一PDCCH携带的DCI中的NDI域的取值和所述第二PDCCH携带的DCI中的NDI域的取值相同,确定所述第一PDDCH调度的PDSCH为所述第二PDCCH调度的PDSCH的重传。
又如,若第一PDCCH携带的DCI中的NDI域的取值和所述第二PDCCH携带的DCI中的NDI域的取值不同,确定所述第一PDDCH调度的PDSCH不是第二PDCCH调度的PDSCH的重传。
综上,所述终端设备在满足以下条件的情况下,确定所述第一PDCCH调度的PDSCH为第二PDCCH调度的PDSCH的重传:
第一PDCCH是在USS接收的;
第一PDCCH是第一C-RNTI加扰的;
第二PDCCH是第二G-RNTI加扰的;
第一PDCCH携带的DCI中的HARQ进程域的取值和第二PDCCH携带的DCI中的HARQ进程域的取值相同;
第一PDCCH携带的DCI中的NDI域的取值和所述第二PDCCH携带的DCI中的NDI域的取值相同。
应理解,所述第二G-RNTI可以为终端设备上配置的任一G-RNTI。
在本申请实施例中,终端设备既需要接收单播业务又需要接收MBS业务,对于由公共PDSCH发送的一个MBS业务的TB,网络设备通过PTP方式调度该MBS业务的重传。为了避免终端设备将MBS业务的重传识别为单播业务的重传,在本申请一些实施例中,如果一个HARQ进程在用于MBS业务的新传之前是用于单播业务的,在用于MBS业务之后,对应的PDCCH中的NDI没有翻转,此情况下,终端设备不期望网络设备通过PTP方式调度MBS业务的重传。
例如,所述终端设备不期望在USS上接收由C-RNTI加扰的第一目标PDCCH,其中,所述第一目标PDCCH满足如下条件:
所述第一目标PDCCH调度的PDSCH为所述终端设备之前接收到的K个PDCCH调度的PDSCH的重传,其中,所述K个PDCCH是由第三G-RNTI加扰的,所述K小于或等于N,所述N为正整数;
所述第一目标PDCCH携带的DCI中的HARQ进程域的取值为第一值,所述K个PDCCH携带的DCI中的HARQ进程域的取值也为第一值;
所述第一目标PDCCH携带的DCI中的NDI域的取值为第二值,所述K个PDCCH携带的DCI中的NDI域的取值也为第二值;
取值为所述第一值的HARQ进程号在用于发送所述第三G-RNTI加扰的所述K个PDCCH之前用于单播传输。
对应地,网络设备不在USS上发送由C-RNTI加扰的第一目标PDCCH。
可选地,所述第三G-RNTI可以为终端设备上配置的任一G-RNTI。
可选地,所述第二值可以为0或1。
可选地,所述N可以是预定义的,或者由网络设备配置的。
可选地,所述N为2或4等。
作为示例,如图5所示,终端设备首先接收到C-RNTI加扰的PDCCH-1,其中,该PDCCH-1携带的DCI中的HARQ进程域的取值为h,NDI域的取值为1,此时,该HARQ进程h用于单播业务。然后,终端设备接收到G-RNTI#0加扰的PDCCH-2,其中,该PDCCH-2携带的DCI中的HARQ进程域的取值为h,NDI域的取值为1,此时,该HARQ进程h用于MBS业务的新传。这种情况下,终端设备不期望网络设备通过PTP方式调度该MBS业务的重传,即终端设备不期望接收到C-RNTI加扰的PDCCH-3(即所述第一目标PDCCH),PDCCH-3调度的PDSCH为PDCCH-2调度的PDSCH的重传,其中,该PDCCH-3携带的DCI中的HARQ进程域的取值为h,NDI域的取值为1。基于该方式,可以避免终端设备在终端设备接收到C-RNTI加扰的PDCCH-1而没有检测到G-RNTI#0加扰的PDCCH-2时,错误的将C-RNTI加扰的PDCCH-3调度的PDSCH认为是之前接收到的C-RNTI加扰的PDCCH-1调度的PDSCH的重传进一步将二者进行合并的问题。
又例如,所述终端设备不期望在USS上接收由C-RNTI加扰的第二目标PDCCH,其中,所述第 二目标PDCCH满足如下条件:
所述第二目标PDCCH调度的PDSCH为所述终端设备之前接收到的K个PDCCH调度的PDSCH的重传,其中,所述K个PDCCH是由第四G-RNTI加扰的,所述K小于或等于N,所述N为正整数;
所述第二目标PDCCH携带的DCI中的HARQ进程域的取值为第一值,所述K个PDCCH携带的DCI中的HARQ进程域的取值也为第一值;
所述第二目标PDCCH携带的DCI中的NDI域的取值为第二值,所述K个PDCCH携带的DCI中的NDI域的取值也为第二值;
所述终端设备没有在所述第四G-RNTI加扰的所述K个PDCCH指示的物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源上发送针对所述第四G-RNTI加扰的所述K个PDCCH调度的PDSCH的HARQ反馈信息;
取值为所述第一值的HARQ进程号在用于发送所述第四G-RNTI加扰的所述K个PDCCH之前用于单播传输。
对应地,网络设备不在USS上发送由C-RNTI加扰的第二目标PDCCH。
可选地,所述终端设备没有在所述第四G-RNTI加扰的所述K个PDCCH指示的PUCCH资源上发送针对所述第四G-RNTI加扰的所述K个PDCCH调度的PDSCH的HARQ反馈信息可能是由于终端设备没有接收到第四G-RNTI加扰的所述K个PDCCH造成的。
可选地,所述第四G-RNTI可以为终端设备上配置的任一G-RNTI。
可选地,所述第二值可以为1或0。
可选地,所述N可以是预定义的,或者由网络设备配置的。
可选地,所述N为2或4等。
作为示例,如图6所示,终端设备首先接收到C-RNTI加扰的PDCCH-1,其中,该PDCCH-1携带的DCI中的HARQ进程域的取值为h,NDI域的取值为1,此时,该HARQ进程h用于单播业务。
然后,终端设备接收到G-RNTI#0加扰的PDCCH-2,其中,该PDCCH-2携带的DCI中的HARQ进程域的取值为h,NDI域的取值为1,此时,该HARQ进程h用于MBS业务的新传,该PDCCH-2还用于指示用于传输PDCCH-2调度的PDSCH的HARQ反馈信息的PUCCH资源。
进一步地,所述终端设备没有在G-RNTI#0加扰的PDCCH-2指示的PUCCH资源上发送针对G-RNTI#0加扰的PDCCH-2调度的PDSCH的HARQ反馈信息,换言之,网络设备不能在G-RNTI#0加扰的PDCCH-2指示的PUCCH资源上接收到针对G-RNTI#0加扰的PDCCH-2调度的PDSCH的HARQ反馈信息,此情况下,网络设备不能确定终端设备是否丢失G-RNTI#0加扰的PDCCH-2。
在这种情况下,终端设备不期望网络设备通过PTP方式调度该MBS业务的重传,即终端设备不期望接收到C-RNTI加扰的PDCCH-3(即所述第二目标PDCCH),PDCCH-3调度的PDSCH为PDCCH-2调度的PDSCH的重传,其中,该PDCCH-3携带的DCI中的HARQ进程域的取值为h,NDI域的取值为1。基于该方式,可以避免终端设备在终端设备接收到C-RNTI加扰的PDCCH-1而没有检测到G-RNTI#0加扰的PDCCH-2时,错误的将C-RNTI加扰的PDCCH-3调度的PDSCH认为是之前接收到的C-RNTI加扰的PDCCH-1调度的PDSCH的重传进一步将二者进行合并的问题。
在本申请另一些实施例中,所述方法300还包括:
所述终端设备不期望在USS检测到由G-RNTI加扰的PDCCH,其中,所述G-RNTI加扰的PDCCH用于指示一个或多个传输块TB的新传。
由于MBS业务是针对多个UE发送的,终端设备不期望网络设备在USS上发送的G-RNTI加扰的用于调度MBS业务的新传的PDCCH。
综上所述,对于承载在G-RNTI加扰的PDCCH中的DCI指示的一个HARQ进程,终端设备根据加扰PDCCH的RNTI的变化,判断PDCCH调度的PDSCH是否为MBS业务的新传。例如,若第一PDCCH是第一G-RNTI加扰的,第一PDCCH中的HARQ进程域的取值为第一值,上一个接收到的HARQ进程域的取值为第一值的PDCCH为第二PDCCH,其中,所述第二PDCCH是第二RNTI加扰的,则终端设备可以在第一G-RNTI和第二RNTI不同的情况下,确定所述第一PDCCH用于调度MBS业务的新传。
若终端设备在USS内检测到由C-RNTI加扰的PDCCH,如果该PDCCH携带的DCI中的HARQ进程域的值和上一个接收到的由G-RNTI加扰的PDCCH携带的DCI中的HARQ进程域的值相同,而且,这两个PDCCH携带的DCI中的NDI域的值也相同,则终端设备认为该由C-RNTI加扰的PDCCH调度的PDSCH为上一个接收到的由G-RNTI加扰的PDCCH调度的PDSCH的重传。
进一步地,如果一个HARQ进程在用于MBS业务的新传之前是用于单播业务的,在用于MBS 业务之后,对应的PDCCH中的NDI没有翻转,这种情况下,终端设备不期望网络设备通过PTP方式调度MBS业务的重传。
上文结合图3至图6,详细描述了本申请的方法实施例,下文结合图7至图11,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图7示出了根据本申请实施例的终端设备400的示意性框图。如图7所示,该终端设备400包括:
通信单元410,用于在第一搜索空间检测至少一个组无线网络临时标识符G-RNTI加扰的物理下行控制信道PDCCH,其中,所述第一搜索空间包括公共搜索空间CSS和/或终端特定搜索空间USS,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值。
在本申请一些实施例中,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值,包括:所述终端设备在所述CSS检测的所有G-RNTI加扰的PDCCH承载的DCI的比特数相同。
在本申请一些实施例中,所述终端设备在所述CSS检测的所有G-RNTI加扰的PDCCH承载的DCI的比特数是预定义的,或者是由网络设备配置的。
在本申请一些实施例中,所述终端设备在所述CSS检测的所有G-RNTI加扰的PDCCH承载的DCI的比特数由所述网络设备通过无线资源控制RRC信令配置的。
在本申请一些实施例中,所述至少一个G-RNTI加扰的PDCCH承载的DCI包括第一G-RNTI加扰的PDCCH承载的DCI,
所述第一G-RNTI加扰的PDCCH承载的DCI包括第一比特域,所述第一比特域用于指示HARQ反馈方式,其中,所述第一比特域的取值为无效值;或者,
所述第一G-RNTI加扰的PDCCH承载的DCI不包括第一比特域,所述第一G-RNTI加扰的PDCCH承载的DCI的末尾为填充比特。
在本申请一些实施例中,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值,包括:
所述终端设备在所述CSS检测的所有G-RNTI加扰的PDCCH承载的DCI的比特数的种类小于或等于所述第一阈值。
在本申请一些实施例中,所述终端设备在所述CSS检测的每个G-RNTI加扰的PDCCH承载的DCI的比特数是预定义的,或者是由网络设备配置的。
在本申请一些实施例中,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值,包括:所述终端设备在所述CSS检测的G-RNTI加扰的PDCCH承载的DCI的类型相同;或者,所述终端设备在所述CSS仅检测G-RNTI加扰的PDCCH承载的第一目标类型的DCI。
在本申请一些实施例中,所述第一目标类型的DCI为第一类型的DCI,或者,第二类型的DCI,其中,所述第一类型的DCI的比特数小于或等于所述第二类型的DCI的比特数。
在本申请一些实施例中,所述终端设备在所述CSS检测的G-RNTI加扰的PDCCH承载的DCI的类型是预定义的,或者是由网络设备配置的。
在本申请一些实施例中,所述第一目标类型是网络设备通过无线资源控制RRC信令配置的。
在本申请一些实施例中,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值,包括:所述终端设备在所述USS仅检测G-RNTI加扰的PDCCH承载的第二目标类型的DCI。
在本申请一些实施例中,所述第二目标类型的DCI为第一类型的DCI,或者,第二类型的DCI,其中,所述第一类型的DCI的比特数小于或等于所述第二类型的DCI的比特数。
在本申请一些实施例中,所述终端设备在所述USS检测的G-RNTI加扰的PDCCH承载的DCI的类型是预定义的,或者是由网络设备配置的。
在本申请一些实施例中,所述第二目标类型是网络设备通过RRC信令配置的。
在本申请一些实施例中,所述CSS的配置信令包括控制资源集合CORESET标识参数,所述CORESET标识参数用于指示与所述CSS关联的CORESET,所述CORESET标识对应的CORESET位于公共频率范围CFR内。
在本申请一些实施例中,所述第一阈值是预定义的。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图3所示方法200中终端设备的相 应流程,为了简洁,在此不再赘述。
图8是根据本申请实施例的终端设备的示意性框图。图8的终端设备500包括:
通信单元510,用于在第一搜索空间接收第一无线网络临时标识符RNTI加扰的第一物理下行控制信道PDCCH,其中,所述第一PDCCH携带的下行控制信息DCI中的混合自动请求重传HARQ进程域的取值为第一值,第二PDCCH是所述终端设备上一个接收的DCI中的HARQ进程域的取值为第一值的PDCCH;
处理单元520,用于根据所述第一搜索空间,接收所述第二PDCCH的搜索空间,所述第一RNTI,加扰所述第二PDCCH的RNTI,所述第一PDCCH携带的DCI中的新数据指示NDI域的取值和所述第二PDCCH携带的DCI中的NDI域的取值中的至少一项,确定所述第一PDCCH调度的物理下行共享信道PDSCH是否为所述第二PDCCH调度的PDSCH的重传。
在本申请一些实施例中,所述处理单元520还用于:
在满足以下条件的情况下,确定所述第一PDCCH调度的PDSCH为一次多播组播业务MBS的新传:
所述第一搜索空间是公共搜索空间CSS;
所述第一RNTI为第一组无线网络临时标识符G-RNTI;
所述第二PDCCH是第二RNTI加扰的,其中,所述第二RNTI和所述第一G-RNTI不同。
在本申请一些实施例中,所述处理单元520还用于:在满足以下条件的情况下,确定所述第一PDCCH调度的PDSCH为第二PDCCH调度的PDSCH的重传:
所述第一搜索空间是终端特定搜索空间USS;
所述第一RNTI为第一小区无线网络临时标识符C-RNTI;
所述第二PDCCH是第二G-RNTI加扰的;
所述第一PDCCH携带的DCI中的NDI域的取值和所述第二PDCCH携带的DCI中的NDI域的取值相同。
在本申请一些实施例中,所述处理单元520还用于:
不期望在USS上接收由C-RNTI加扰的第一目标PDCCH,其中,所述第一目标PDCCH满足如下条件:
所述第一目标PDCCH调度的PDSCH为所述终端设备之前接收到的K个PDCCH调度的PDSCH的重传,其中,所述K个PDCCH是由第三G-RNTI加扰的,所述K小于或等于N,所述N为正整数;
所述第一目标PDCCH携带的DCI中的HARQ进程域的取值为第一值,所述K个PDCCH携带的DCI中的HARQ进程域的取值也为第一值;
所述第一目标PDCCH携带的DCI中的NDI域的取值为第二值,所述K个PDCCH携带的DCI中的NDI域的取值也为第二值;
取值为所述第一值的HARQ进程号在用于发送所述第三G-RNTI加扰的所述K个PDCCH之前用于单播传输。
在本申请一些实施例中,所述处理单元520还用于:
不期望在USS上接收由C-RNTI加扰的第二目标PDCCH,其中,所述第二目标PDCCH满足如下条件:
所述第二目标PDCCH调度的PDSCH为所述终端设备之前接收到的K个PDCCH调度的PDSCH的重传,其中,所述K个PDCCH是由第四G-RNTI加扰的,所述K小于或等于N,所述N为正整数;
所述第二目标PDCCH携带的DCI中的HARQ进程域的取值为第一值,所述K个PDCCH携带的DCI中的HARQ进程域的取值也为第一值;
所述第二目标PDCCH携带的DCI中的NDI域的取值为第二值,所述K个PDCCH携带的DCI中的NDI域的取值也为第二值;
所述终端设备没有在所述第四G-RNTI加扰的所述K个PDCCH指示的物理上行控制信道PUCCH资源上发送针对所述第四G-RNTI加扰的所述K个PDCCH调度的PDSCH的HARQ反馈信息;
取值为所述第一值的HARQ进程号在用于发送所述第四G-RNTI加扰的所述K个PDCCH之前用于单播传输。
6、根据权利要求4或5所述的终端设备,其特征在于,所述N是预定义值,或者是网络设备配置的。
在本申请一些实施例中,所述处理单元520还用于:
不期望在USS检测到由G-RNTI加扰的PDCCH,其中,所述G-RNTI加扰的PDCCH用于指示一个或多个传输块TB的新传。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备500可对应于本申请方法实施例中的终端设备,并且终端设备500中的各个单元的上述和其它操作和/或功能分别为了实现图4至图6所示方法300中终端设备的相应流程,为了简洁,在此不再赘述。
图9是根据本申请实施例的网络设备的示意性框图。图9的网络设备1000包括:
通信单元1010,用于在第一搜索空间发送至少一个组无线网络临时标识符G-RNTI加扰的物理下行控制信道PDCCH,其中,所述第一搜索空间包括公共搜索空间CSS和/或终端特定搜索空间USS,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值。
在本申请一些实施例中,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值,包括:
所述网络设备在所述CSS发送的所有G-RNTI加扰的PDCCH承载的DCI的比特数相同。
在本申请一些实施例中,所述网络设备在所述CSS发送的所有G-RNTI加扰的PDCCH承载的DCI的比特数为第一比特数,所述网络设备还包括:
处理单元,用于在第一G-RNTI加扰的PDCCH承载的DCI的比特数小于所述第一比特数的情况下,在所述第一G-RNTI加扰的PDCCH承载的DCI的末尾补入填充比特以使所述DCI的比特数等于所述第一比特数,或者在所述第一G-RNTI加扰的PDCCH承载的DCI中增加第一比特域,其中,所述第一比特域的取值为无效值以使所述DCI的比特数等于所述第一比特数。
在本申请一些实施例中,所述第一比特域用于指示混合自动请求重传HARQ反馈方式。
在本申请一些实施例中,所述网络设备在所述CSS发送的所有G-RNTI加扰的PDCCH承载的DCI的比特数是预定义的,或者是由网络设备配置的。
在本申请一些实施例中,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值,包括:
所述网络设备在所述CSS发送的所有G-RNTI加扰的PDCCH承载的DCI的比特数的种类小于或等于所述第一阈值。
在本申请一些实施例中,所述网络设备在所述CSS发送的每个G-RNTI加扰的PDCCH承载的DCI的比特数是预定义的,或者是由网络设备配置的。
在本申请一些实施例中,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值,包括:
所述网络设备在所述CSS仅发送G-RNTI加扰的PDCCH承载的第一目标类型的DCI。
在本申请一些实施例中,所述第一目标类型的DCI为第一类型的DCI,或者,第二类型的DCI,其中,所述第一类型的DCI的比特数小于所述第二类型的DCI的比特数。
在本申请一些实施例中,所述网络设备在所述CSS发送的G-RNTI加扰的PDCCH承载的DCI的类型是预定义的,或者是由网络设备配置的。
在本申请一些实施例中,所述第一目标类型是网络设备通过无线资源控制RRC信令配置的。
在本申请一些实施例中,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值,包括:
所述网络设备在所述USS仅发送G-RNTI加扰的PDCCH承载的第二目标类型的DCI。
在本申请一些实施例中,所述第二目标类型的DCI为第一类型的DCI,或者,第二类型的DCI,其中,所述第一类型的DCI的比特数小于所述第二类型的DCI的比特数。
在本申请一些实施例中,所述网络设备在所述USS发送的G-RNTI加扰的PDCCH承载的DCI的类型是预定义的,或者是由网络设备配置的。
在本申请一些实施例中,所述第二目标类型是网络设备通过RRC信令配置的。
在本申请一些实施例中,所述CSS的配置信令包括控制资源集合CORESET标识参数,所述CORESET标识参数用于指示与所述CSS关联的CORESET,所述CORESET标识对应的CORESET位于公共频率范围CFR内。
在本申请一些实施例中,所述第一阈值是预定义的。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备1000可对应于本申请方法实施例中的网络设备,并且网 络设备1000中的各个单元的上述和其它操作和/或功能分别为了实现图3所示方法200中网络设备的相应流程,为了简洁,在此不再赘述。
图10是根据本申请实施例的网络设备的示意性框图。图10的网络设备1100包括:
处理单元1110,用于在第一物理下行控制信道PDCCH中的新数据指示NDI域和第二PDCCH中的NDI域的取值相同的情况下,不通过点到点方式调度多播组播MBS业务的重传,其中,所述第一PDCCH用于调度所述MBS业务的初传,所述第二PDCCH用于调度单播业务,其中,所述第一PDCCH中的混合自动请求重传HARQ进程域的取值和所述第二PDCCH中的HARQ进程域的取值相同。
在本申请一些实施例中,所述网络设备1100还包括:
通信单元,用于不在终端特定搜索空间USS上接收由小区无线网络临时标识符C-RNTI加扰的第一目标PDCCH,其中,所述第一目标PDCCH满足如下条件:
所述第一目标PDCCH调度的PDSCH为所述终端设备之前接收到的K个PDCCH调度的PDSCH的重传,其中,所述K个PDCCH是由第三G-RNTI加扰的,所述K小于或等于N,所述N为正整数;
所述第一目标PDCCH携带的DCI中的HARQ进程域的取值为第一值,所述K个PDCCH携带的DCI中的HARQ进程域的取值也为第一值;
所述第一目标PDCCH携带的DCI中的NDI域的取值为第二值,所述K个PDCCH携带的DCI中的NDI域的取值也为第二值;
取值为所述第一值的HARQ进程号在用于发送所述第三G-RNTI加扰的所述K个PDCCH之前用于单播传输。
在本申请一些实施例中,所述网络设备1100还包括:
通信单元,用于不在终端特定搜索空间USS上接收由小区无线网络临时标识符C-RNTI加扰的第二目标PDCCH,其中,所述第二目标PDCCH满足如下条件:
所述第二目标PDCCH调度的PDSCH为所述终端设备之前接收到的K个PDCCH调度的PDSCH的重传,其中,所述K个PDCCH是由第四G-RNTI加扰的,所述K小于或等于N,所述N为正整数;
所述第二目标PDCCH携带的DCI中的HARQ进程域的取值为第一值,所述K个PDCCH携带的DCI中的HARQ进程域的取值也为第一值;
所述第二目标PDCCH携带的DCI中的NDI域的取值为第二值,所述K个PDCCH携带的DCI中的NDI域的取值也为第二值;
所述终端设备没有在所述第四G-RNTI加扰的所述K个PDCCH指示的物理上行控制信道PUCCH资源上发送针对所述第四G-RNTI加扰的所述K个PDCCH调度的PDSCH的HARQ反馈信息;
取值为所述第一值的HARQ进程号在用于发送所述第四G-RNTI加扰的所述K个PDCCH之前用于单播传输。
在本申请一些实施例中,所述N是预定义值,或者是网络设备配置的。
在本申请一些实施例中,所述网络设备1100还包括:
通信单元,用于不在USS发送由组无线网络临时标识符G-RNTI加扰的PDCCH,其中,所述PDCCH用于指示一个或多个传输块TB的新传。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备1100可对应于本申请方法实施例中的网络设备,并且网络设备1100中的各个单元的上述和其它操作和/或功能分别为了实现图4至图6所示方法300中网络设备的相应流程,为了简洁,在此不再赘述。
图11是本申请实施例提供的一种通信设备600示意性结构图。图11所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图11所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申 请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图12是本申请实施例的芯片的示意性结构图。图12所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图12所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图13是本申请实施例提供的一种通信系统900的示意性框图。如图13所示,该通信系统900包括终端设备910和网络设备920。
其中,该终端设备910可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计 算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (101)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备在第一搜索空间检测至少一个组无线网络临时标识符G-RNTI加扰的物理下行控制信道PDCCH,其中,所述第一搜索空间包括公共搜索空间CSS和/或终端特定搜索空间USS,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值。
  2. 根据权利要求1所述的方法,其特征在于,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值,包括:
    所述终端设备在所述CSS检测的所有G-RNTI加扰的PDCCH承载的DCI的比特数相同。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备在所述CSS检测的所有G-RNTI加扰的PDCCH承载的DCI的比特数是预定义的,或者是由网络设备配置的。
  4. 根据权利要求3所述的方法,其特征在于,所述终端设备在所述CSS检测的所有G-RNTI加扰的PDCCH承载的DCI的比特数由所述网络设备通过无线资源控制RRC信令配置的。
  5. 根据权利要求2-4中任一项所述的方法,其特征在于,所述至少一个G-RNTI加扰的PDCCH承载的DCI包括第一G-RNTI加扰的PDCCH承载的DCI,
    所述第一G-RNTI加扰的PDCCH承载的DCI包括第一比特域,所述第一比特域用于指示HARQ反馈方式,其中,所述第一比特域的取值为无效值;或者,
    所述第一G-RNTI加扰的PDCCH承载的DCI不包括第一比特域,所述第一G-RNTI加扰的PDCCH承载的DCI的末尾为填充比特。
  6. 根据权利要求1所述的方法,其特征在于,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值,包括:
    所述终端设备在所述CSS检测的所有G-RNTI加扰的PDCCH承载的DCI的比特数的种类小于或等于所述第一阈值。
  7. 根据权利要求6所述的方法,其特征在于,所述终端设备在所述CSS检测的每个G-RNTI加扰的PDCCH承载的DCI的比特数是预定义的,或者是由网络设备配置的。
  8. 根据权利要求1所述的方法,其特征在于,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值,包括:
    所述终端设备在所述CSS检测的G-RNTI加扰的PDCCH承载的DCI的类型相同;或
    所述终端设备在所述CSS仅检测G-RNTI加扰的PDCCH承载的第一目标类型的DCI。
  9. 根据权利要求8所述的方法,其特征在于,所述第一目标类型的DCI为第一类型的DCI,或者,第二类型的DCI,其中,所述第一类型的DCI的比特数小于或等于所述第二类型的DCI的比特数。
  10. 根据权利要求8或9所述的方法,其特征在于,所述终端设备在所述CSS检测的G-RNTI加扰的PDCCH承载的DCI的类型是预定义的,或者是由网络设备配置的。
  11. 根据权利要求8-10中任一项所述的方法,其特征在于,所述第一目标类型是网络设备通过无线资源控制RRC信令配置的。
  12. 根据权利要求1所述的方法,其特征在于,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值,包括:
    所述终端设备在所述USS仅检测G-RNTI加扰的PDCCH承载的第二目标类型的DCI。
  13. 根据权利要求12所述的方法,其特征在于,所述第二目标类型的DCI为第一类型的DCI,或者,第二类型的DCI,其中,所述第一类型的DCI的比特数小于或等于所述第二类型的DCI的比特数。
  14. 根据权利要求12或13所述的方法,其特征在于,所述终端设备在所述USS检测的G-RNTI加扰的PDCCH承载的DCI的类型是预定义的,或者是由网络设备配置的。
  15. 根据权利要求12-14中任一项所述的方法,其特征在于,所述第二目标类型是网络设备通过RRC信令配置的。
  16. 根据权利要求1-15中任一项所述的方法,其特征在于,所述CSS的配置信令包括控制资源集合CORESET标识参数,所述CORESET标识参数用于指示与所述CSS关联的CORESET,所述CORESET标识对应的CORESET位于公共频率范围CFR内。
  17. 根据权利要求1-16中任一项所述的方法,其特征在于,所述第一阈值是预定义的。
  18. 一种无线通信的方法,其特征在于,包括:
    终端设备在第一搜索空间接收第一无线网络临时标识符RNTI加扰的第一物理下行控制信道PDCCH,其中,所述第一PDCCH携带的下行控制信息DCI中的混合自动请求重传HARQ进程域的 取值为第一值,第二PDCCH是所述终端设备上一个接收的DCI中的HARQ进程域的取值为第一值的PDCCH;
    所述终端设备根据所述第一搜索空间,接收所述第二PDCCH的搜索空间,所述第一RNTI,加扰所述第二PDCCH的RNTI,所述第一PDCCH携带的DCI中的新数据指示NDI域的取值和所述第二PDCCH携带的DCI中的NDI域的取值中的至少一项,确定所述第一PDCCH调度的物理下行共享信道PDSCH是否为所述第二PDCCH调度的PDSCH的重传。
  19. 根据权利要求18所述的方法,其特征在于,所述终端设备根据所述第一搜索空间,接收所述第二PDCCH的搜索空间,所述第一RNTI,加扰所述第二PDCCH的RNTI,所述第一PDCCH携带的DCI中的新数据指示NDI域的取值和所述第二PDCCH携带的DCI中的NDI域的取值中的至少一项,确定所述第一PDCCH调度的物理下行共享信道PDSCH是否为所述第二PDCCH调度的PDSCH的重传,包括:
    所述终端设备在满足以下条件的情况下,确定所述第一PDCCH调度的PDSCH为一次多播组播业务MBS的新传:
    所述第一搜索空间是公共搜索空间CSS;
    所述第一RNTI为第一组无线网络临时标识符G-RNTI;
    所述第二PDCCH是第二RNTI加扰的,其中,所述第二RNTI和所述第一G-RNTI不同。
  20. 根据权利要求18所述的方法,其特征在于,所述终端设备根据所述第一搜索空间,接收所述第二PDCCH的搜索空间,所述第一RNTI,加扰所述第二PDCCH的RNTI,所述第一PDCCH携带的DCI中的新数据指示NDI域的取值和所述第二PDCCH携带的DCI中的NDI域的取值中的至少一项,确定所述第一PDCCH调度的物理下行共享信道PDSCH是否为所述第二PDCCH调度的PDSCH的重传,包括:
    所述终端设备在满足以下条件的情况下,确定所述第一PDCCH调度的PDSCH为第二PDCCH调度的PDSCH的重传:
    所述第一搜索空间是终端特定搜索空间USS;
    所述第一RNTI为第一小区无线网络临时标识符C-RNTI;
    所述第二PDCCH是第二G-RNTI加扰的;
    所述第一PDCCH携带的DCI中的NDI域的取值和所述第二PDCCH携带的DCI中的NDI域的取值相同。
  21. 根据权利要求18-20中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备不期望在USS上接收由C-RNTI加扰的第一目标PDCCH,其中,所述第一目标PDCCH满足如下条件:
    所述第一目标PDCCH调度的PDSCH为所述终端设备之前接收到的K个PDCCH调度的PDSCH的重传,其中,所述K个PDCCH是由第三G-RNTI加扰的,所述K小于或等于N,所述N为正整数;
    所述第一目标PDCCH携带的DCI中的HARQ进程域的取值为第一值,所述K个PDCCH携带的DCI中的HARQ进程域的取值也为第一值;
    所述第一目标PDCCH携带的DCI中的NDI域的取值为第二值,所述K个PDCCH携带的DCI中的NDI域的取值也为第二值;
    取值为所述第一值的HARQ进程号在用于发送所述第三G-RNTI加扰的所述K个PDCCH之前用于单播传输。
  22. 根据权利要求18-20中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备不期望在USS上接收由C-RNTI加扰的第二目标PDCCH,其中,所述第二目标PDCCH满足如下条件:
    所述第二目标PDCCH调度的PDSCH为所述终端设备之前接收到的K个PDCCH调度的PDSCH的重传,其中,所述K个PDCCH是由第四G-RNTI加扰的,所述K小于或等于N,所述N为正整数;
    所述第二目标PDCCH携带的DCI中的HARQ进程域的取值为第一值,所述K个PDCCH携带的DCI中的HARQ进程域的取值也为第一值;
    所述第二目标PDCCH携带的DCI中的NDI域的取值为第二值,所述K个PDCCH携带的DCI中的NDI域的取值也为第二值;
    所述终端设备没有在所述第四G-RNTI加扰的所述K个PDCCH指示的物理上行控制信道PUCCH资源上发送针对所述第四G-RNTI加扰的所述K个PDCCH调度的PDSCH的HARQ反馈信息;
    取值为所述第一值的HARQ进程号在用于发送所述第四G-RNTI加扰的所述K个PDCCH之前用于单播传输。
  23. 根据权利要求21或22所述的方法,其特征在于,所述N是预定义值,或者是网络设备配置的。
  24. 根据权利要求18-23中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备不期望在USS检测到由G-RNTI加扰的PDCCH,其中,所述G-RNTI加扰的PDCCH用于指示一个或多个传输块TB的新传。
  25. 一种无线通信的方法,其特征在于,包括:
    网络设备在第一搜索空间发送至少一个组无线网络临时标识符G-RNTI加扰的物理下行控制信道PDCCH,其中,所述第一搜索空间包括公共搜索空间CSS和/或终端特定搜索空间USS,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值。
  26. 根据权利要求25所述的方法,其特征在于,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值,包括:
    所述网络设备在所述CSS发送的所有G-RNTI加扰的PDCCH承载的DCI的比特数相同。
  27. 根据权利要求26所述的方法,其特征在于,所述网络设备在所述CSS发送的所有G-RNTI加扰的PDCCH承载的DCI的比特数为第一比特数,所述方法还包括:
    若第一G-RNTI加扰的PDCCH承载的DCI的比特数小于所述第一比特数,在所述第一G-RNTI加扰的PDCCH承载的DCI的末尾补入填充比特以使所述DCI的比特数等于所述第一比特数;或者
    若第一G-RNTI加扰的PDCCH承载的DCI的比特数小于所述第一比特数,在所述第一G-RNTI加扰的PDCCH承载的DCI中增加第一比特域,其中,所述第一比特域的取值为无效值以使所述DCI的比特数等于所述第一比特数。
  28. 根据权利要求27所述的方法,其特征在于,所述第一比特域用于指示混合自动请求重传HARQ反馈方式。
  29. 根据权利要求26-28中任一项所述的方法,其特征在于,所述网络设备在所述CSS发送的所有G-RNTI加扰的PDCCH承载的DCI的比特数是预定义的,或者是由网络设备配置的。
  30. 根据权利要求25所述的方法,其特征在于,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值,包括:
    所述网络设备在所述CSS发送的所有G-RNTI加扰的PDCCH承载的DCI的比特数的种类小于或等于所述第一阈值。
  31. 根据权利要求30所述的方法,其特征在于,所述网络设备在所述CSS发送的每个G-RNTI加扰的PDCCH承载的DCI的比特数是预定义的,或者是由网络设备配置的。
  32. 根据权利要求25所述的方法,其特征在于,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值,包括:
    所述网络设备在所述CSS发送G-RNTI加扰的PDCCH承载的第一目标类型的DCI。
  33. 根据权利要求32所述的方法,其特征在于,所述第一目标类型的DCI为第一类型的DCI,或者,第二类型的DCI,其中,所述第一类型的DCI的比特数小于所述第二类型的DCI的比特数。
  34. 根据权利要求32或33所述的方法,其特征在于,所述网络设备在所述CSS发送的G-RNTI加扰的PDCCH承载的DCI的类型是预定义的,或者是由网络设备配置的。
  35. 根据权利要求32-34中任一项所述的方法,其特征在于,所述第一目标类型是网络设备通过无线资源控制RRC信令配置的。
  36. 根据权利要求25所述的方法,其特征在于,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值,包括:
    所述网络设备在所述USS仅发送G-RNTI加扰的PDCCH承载的第二目标类型的DCI。
  37. 根据权利要求36所述的方法,其特征在于,所述第二目标类型的DCI为第一类型的DCI,或者,第二类型的DCI,其中,所述第一类型的DCI的比特数小于所述第二类型的DCI的比特数。
  38. 根据权利要求36或37所述的方法,其特征在于,所述网络设备在所述USS发送的G-RNTI加扰的PDCCH承载的DCI的类型是预定义的,或者是由网络设备配置的。
  39. 根据权利要求36-38中任一项所述的方法,其特征在于,所述第二目标类型是网络设备通过RRC信令配置的。
  40. 根据权利要求25-39中任一项所述的方法,其特征在于,所述CSS的配置信令包括控制资源集合CORESET标识参数,所述CORESET标识参数用于指示与所述CSS关联的CORESET,所述CORESET标识对应的CORESET位于公共频率范围CFR内。
  41. 一种无线通信的方法,其特征在于,包括:
    在第一物理下行控制信道PDCCH中的新数据指示NDI域和第二PDCCH中的NDI域的取值相同的情况下,网络设备不通过点到点方式调度多播组播MBS业务的重传,其中,所述第一PDCCH用于调度所述MBS业务的初传,所述第二PDCCH用于调度单播业务,其中,所述第一PDCCH中的混合自动请求重传HARQ进程域的取值和所述第二PDCCH中的HARQ进程域的取值相同。
  42. 根据权利要求41所述的方法,其特征在于,所述方法还包括:
    所述网络设备不在终端特定搜索空间USS上接收由小区无线网络临时标识符C-RNTI加扰的第一目标PDCCH,其中,所述第一目标PDCCH满足如下条件:
    所述第一目标PDCCH调度的PDSCH为所述终端设备之前接收到的K个PDCCH调度的PDSCH的重传,其中,所述K个PDCCH是由第三G-RNTI加扰的,所述K小于或等于N,所述N为正整数;
    所述第一目标PDCCH携带的DCI中的HARQ进程域的取值为第一值,所述K个PDCCH携带的DCI中的HARQ进程域的取值也为第一值;
    所述第一目标PDCCH携带的DCI中的NDI域的取值为第二值,所述K个PDCCH携带的DCI中的NDI域的取值也为第二值;
    取值为所述第一值的HARQ进程号在用于发送所述第三G-RNTI加扰的所述K个PDCCH之前用于单播传输。
  43. 根据权利要求41所述的方法,其特征在于,所述方法还包括:
    所述网络设备不在终端特定搜索空间USS上接收由小区无线网络临时标识符C-RNTI加扰的第二目标PDCCH,其中,所述第二目标PDCCH满足如下条件:
    所述第二目标PDCCH调度的PDSCH为所述终端设备之前接收到的K个PDCCH调度的PDSCH的重传,其中,所述K个PDCCH是由第四G-RNTI加扰的,所述K小于或等于N,所述N为正整数;
    所述第二目标PDCCH携带的DCI中的HARQ进程域的取值为第一值,所述K个PDCCH携带的DCI中的HARQ进程域的取值也为第一值;
    所述第二目标PDCCH携带的DCI中的NDI域的取值为第二值,所述K个PDCCH携带的DCI中的NDI域的取值也为第二值;
    所述终端设备没有在所述第四G-RNTI加扰的所述K个PDCCH指示的物理上行控制信道PUCCH资源上发送针对所述第四G-RNTI加扰的所述K个PDCCH调度的PDSCH的HARQ反馈信息;
    取值为所述第一值的HARQ进程号在用于发送所述第四G-RNTI加扰的所述K个PDCCH之前用于单播传输。
  44. 根据权利要求42或43所述的方法,其特征在于,所述N是预定义值,或者是网络设备配置的。
  45. 根据权利要求41-44中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备不在USS发送由组无线网络临时标识符G-RNTI加扰的PDCCH,其中,所述PDCCH用于指示一个或多个传输块TB的新传。
  46. 一种终端设备,其特征在于,包括:
    通信单元,用于在第一搜索空间检测至少一个组无线网络临时标识符G-RNTI加扰的物理下行控制信道PDCCH,其中,所述第一搜索空间包括公共搜索空间CSS和/或终端特定搜索空间USS,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值。
  47. 根据权利要求46所述的终端设备,其特征在于,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值,包括:
    所述终端设备在所述CSS检测的所有G-RNTI加扰的PDCCH承载的DCI的比特数相同。
  48. 根据权利要求47所述的终端设备,其特征在于,所述终端设备在所述CSS检测的所有G-RNTI加扰的PDCCH承载的DCI的比特数是预定义的,或者是由网络设备配置的。
  49. 根据权利要求48所述的终端设备,其特征在于,所述终端设备在所述CSS检测的所有G-RNTI加扰的PDCCH承载的DCI的比特数由所述网络设备通过无线资源控制RRC信令配置的。
  50. 根据权利要求47-49中任一项所述的终端设备,其特征在于,所述至少一个G-RNTI加扰的PDCCH承载的DCI包括第一G-RNTI加扰的PDCCH承载的DCI,所述第一G-RNTI加扰的PDCCH承载的DCI包括第一比特域,所述第一比特域用于指示HARQ反馈方式,其中,所述第一比特域的取值为无效值,或者,所述第一G-RNTI加扰的PDCCH承载的DCI不包括第一比特域,所述第一G-RNTI加扰的PDCCH承载的DCI的末尾为填充比特。
  51. 根据权利要求46所述的终端设备,其特征在于,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值,包括:
    所述终端设备在所述CSS检测的所有G-RNTI加扰的PDCCH承载的DCI的比特数的种类小于或等于所述第一阈值。
  52. 根据权利要求51所述的终端设备,其特征在于,所述终端设备在所述CSS检测的每个G-RNTI加扰的PDCCH承载的DCI的比特数是预定义的,或者是由网络设备配置的。
  53. 根据权利要求46所述的终端设备,其特征在于,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值,包括:
    所述终端设备在所述CSS检测的G-RNTI加扰的PDCCH承载的DCI的类型相同;或
    所述终端设备在所述CSS仅检测G-RNTI加扰的PDCCH承载的第一目标类型的DCI。
  54. 根据权利要求53所述的终端设备,其特征在于,所述第一目标类型的DCI为第一类型的DCI,或者,第二类型的DCI,其中,所述第一类型的DCI的比特数小于或等于所述第二类型的DCI的比特数。
  55. 根据权利要求53或54所述的终端设备,其特征在于,所述终端设备在所述CSS检测的G-RNTI加扰的PDCCH承载的DCI的类型是预定义的,或者是由网络设备配置的。
  56. 根据权利要求53-55中任一项所述的终端设备,其特征在于,所述第一目标类型是网络设备通过无线资源控制RRC信令配置的。
  57. 根据权利要求46所述的终端设备,其特征在于,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值,包括:
    所述终端设备在所述USS仅检测G-RNTI加扰的PDCCH承载的第二目标类型的DCI。
  58. 根据权利要求57所述的终端设备,其特征在于,所述第二目标类型的DCI为第一类型的DCI,或者,第二类型的DCI,其中,所述第一类型的DCI的比特数小于或等于所述第二类型的DCI的比特数。
  59. 根据权利要求57或58所述的终端设备,其特征在于,所述终端设备在所述USS检测的G-RNTI加扰的PDCCH承载的DCI的类型是预定义的,或者是由网络设备配置的。
  60. 根据权利要求57-59中任一项所述的终端设备,其特征在于,所述第二目标类型是网络设备通过RRC信令配置的。
  61. 根据权利要求46-60中任一项所述的终端设备,其特征在于,所述CSS的配置信令包括控制资源集合CORESET标识参数,所述CORESET标识参数用于指示与所述CSS关联的CORESET,所述CORESET标识对应的CORESET位于公共频率范围CFR内。
  62. 根据权利要求46-61中任一项所述的终端设备,其特征在于,所述第一阈值是预定义的。
  63. 一种终端设备,其特征在于,包括:
    通信单元,用于在第一搜索空间接收第一无线网络临时标识符RNTI加扰的第一物理下行控制信道PDCCH,其中,所述第一PDCCH携带的下行控制信息DCI中的混合自动请求重传HARQ进程域的取值为第一值,第二PDCCH是所述终端设备上一个接收的DCI中的HARQ进程域的取值为第一值的PDCCH;
    处理单元,用于根据所述第一搜索空间,接收所述第二PDCCH的搜索空间,所述第一RNTI,加扰所述第二PDCCH的RNTI,所述第一PDCCH携带的DCI中的新数据指示NDI域的取值和所述第二PDCCH携带的DCI中的NDI域的取值中的至少一项,确定所述第一PDCCH调度的物理下行共享信道PDSCH是否为所述第二PDCCH调度的PDSCH的重传。
  64. 根据权利要求63所述的终端设备,其特征在于,所述处理单元还用于:
    在满足以下条件的情况下,确定所述第一PDCCH调度的PDSCH为一次多播组播业务MBS的新传:
    所述第一搜索空间是公共搜索空间CSS;
    所述第一RNTI为第一组无线网络临时标识符G-RNTI;
    所述第二PDCCH是第二RNTI加扰的,其中,所述第二RNTI和所述第一G-RNTI不同。
  65. 根据权利要求63所述的终端设备,其特征在于,所述处理单元还用于:
    在满足以下条件的情况下,确定所述第一PDCCH调度的PDSCH为第二PDCCH调度的PDSCH的重传:
    所述第一搜索空间是终端特定搜索空间USS;
    所述第一RNTI为第一小区无线网络临时标识符C-RNTI;
    所述第二PDCCH是第二G-RNTI加扰的;
    所述第一PDCCH携带的DCI中的NDI域的取值和所述第二PDCCH携带的DCI中的NDI域的取值相同。
  66. 根据权利要求63-65中任一项所述的终端设备,其特征在于,所述处理单元还用于:
    不期望在USS上接收由C-RNTI加扰的第一目标PDCCH,其中,所述第一目标PDCCH满足如下条件:
    所述第一目标PDCCH调度的PDSCH为所述终端设备之前接收到的K个PDCCH调度的PDSCH的重传,其中,所述K个PDCCH是由第三G-RNTI加扰的,所述K小于或等于N,所述N为正整数;
    所述第一目标PDCCH携带的DCI中的HARQ进程域的取值为第一值,所述K个PDCCH携带的DCI中的HARQ进程域的取值也为第一值;
    所述第一目标PDCCH携带的DCI中的NDI域的取值为第二值,所述K个PDCCH携带的DCI中的NDI域的取值也为第二值;
    取值为所述第一值的HARQ进程号在用于发送所述第三G-RNTI加扰的所述K个PDCCH之前用于单播传输。
  67. 根据权利要求63-66中任一项所述的终端设备,其特征在于,所述处理单元还用于:
    不期望在USS上接收由C-RNTI加扰的第二目标PDCCH,其中,所述第二目标PDCCH满足如下条件:
    所述第二目标PDCCH调度的PDSCH为所述终端设备之前接收到的K个PDCCH调度的PDSCH的重传,其中,所述K个PDCCH是由第四G-RNTI加扰的,所述K小于或等于N,所述N为正整数;
    所述第二目标PDCCH携带的DCI中的HARQ进程域的取值为第一值,所述K个PDCCH携带的DCI中的HARQ进程域的取值也为第一值;
    所述第二目标PDCCH携带的DCI中的NDI域的取值为第二值,所述K个PDCCH携带的DCI中的NDI域的取值也为第二值;
    所述终端设备没有在所述第四G-RNTI加扰的所述K个PDCCH指示的物理上行控制信道PUCCH资源上发送针对所述第四G-RNTI加扰的所述K个PDCCH调度的PDSCH的HARQ反馈信息;
    取值为所述第一值的HARQ进程号在用于发送所述第四G-RNTI加扰的所述K个PDCCH之前用于单播传输。
  68. 根据权利要求66或67所述的终端设备,其特征在于,所述N是预定义值,或者是网络设备配置的。
  69. 根据权利要求63-68中任一项所述的终端设备,其特征在于,所述处理单元还用于:
    不期望在USS检测到由G-RNTI加扰的PDCCH,其中,所述G-RNTI加扰的PDCCH用于指示一个或多个传输块TB的新传。
  70. 一种网络设备,其特征在于,包括:
    通信单元,用于在第一搜索空间发送至少一个组无线网络临时标识符G-RNTI加扰的物理下行控制信道PDCCH,其中,所述第一搜索空间包括公共搜索空间CSS和/或终端特定搜索空间USS,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值。
  71. 根据权利要求70所述的网络设备,其特征在于,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值,包括:
    所述网络设备在所述CSS发送的所有G-RNTI加扰的PDCCH承载的DCI的比特数相同。
  72. 根据权利要求71所述的网络设备,其特征在于,所述网络设备在所述CSS发送的所有G-RNTI加扰的PDCCH承载的DCI的比特数为第一比特数,所述网络设备还包括:
    处理单元,用于在第一G-RNTI加扰的PDCCH承载的DCI的比特数小于所述第一比特数的情况下,在所述第一G-RNTI加扰的PDCCH承载的DCI的末尾补入填充比特以使所述DCI的比特数等于所述第一比特数,或者在所述第一G-RNTI加扰的PDCCH承载的DCI中增加第一比特域,其中,所述第一比特域的取值为无效值以使所述DCI的比特数等于所述第一比特数。
  73. 根据权利要求72所述的网络设备,其特征在于,所述第一比特域用于指示混合自动请求重传HARQ反馈方式。
  74. 根据权利要求71-73中任一项所述的网络设备,其特征在于,所述网络设备在所述CSS发送的所有G-RNTI加扰的PDCCH承载的DCI的比特数是预定义的,或者是由网络设备配置的。
  75. 根据权利要求70所述的网络设备,其特征在于,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值,包括:
    所述网络设备在所述CSS发送的所有G-RNTI加扰的PDCCH承载的DCI的比特数的种类小于或等于所述第一阈值。
  76. 根据权利要求75所述的网络设备,其特征在于,所述网络设备在所述CSS发送的每个G-RNTI加扰的PDCCH承载的DCI的比特数是预定义的,或者是由网络设备配置的。
  77. 根据权利要求70所述的网络设备,其特征在于,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值,包括:
    所述网络设备在所述CSS发送G-RNTI加扰的PDCCH承载的第一目标类型的DCI。
  78. 根据权利要求77所述的网络设备,其特征在于,所述第一目标类型的DCI为第一类型的DCI,或者,第二类型的DCI,其中,所述第一类型的DCI的比特数小于所述第二类型的DCI的比特数。
  79. 根据权利要求77或78所述的网络设备,其特征在于,所述网络设备在所述CSS发送的G-RNTI加扰的PDCCH承载的DCI的类型是预定义的,或者是由网络设备配置的。
  80. 根据权利要求77-79中任一项所述的网络设备,其特征在于,所述第一目标类型是网络设备通过无线资源控制RRC信令配置的。
  81. 根据权利要求70所述的网络设备,其特征在于,所述至少一个G-RNTI加扰的PDCCH承载的下行控制信息DCI的比特数的种类小于或等于第一阈值,包括:
    所述网络设备在所述USS仅发送G-RNTI加扰的PDCCH承载的第二目标类型的DCI。
  82. 根据权利要求81所述的网络设备,其特征在于,所述第二目标类型的DCI为第一类型的DCI,或者,第二类型的DCI,其中,所述第一类型的DCI的比特数小于所述第二类型的DCI的比特数。
  83. 根据权利要求81或82所述的网络设备,其特征在于,所述网络设备在所述USS发送的G-RNTI加扰的PDCCH承载的DCI的类型是预定义的,或者是由网络设备配置的。
  84. 根据权利要求81-83中任一项所述的网络设备,其特征在于,所述第二目标类型是网络设备通过RRC信令配置的。
  85. 根据权利要求70-84中任一项所述的网络设备,其特征在于,所述CSS的配置信令包括控制资源集合CORESET标识参数,所述CORESET标识参数用于指示与所述CSS关联的CORESET,所述CORESET标识对应的CORESET位于公共频率范围CFR内。
  86. 根据权利要求70-85中任一项所述的网络设备,其特征在于,所述第一阈值是预定义的。
  87. 一种网络设备,其特征在于,包括:
    处理单元,用于在第一物理下行控制信道PDCCH中的新数据指示NDI域和第二PDCCH中的NDI域的取值相同的情况下,不通过点到点方式调度多播组播MBS业务的重传,其中,所述第一PDCCH用于调度所述MBS业务的初传,所述第二PDCCH用于调度单播业务,其中,所述第一PDCCH中的混合自动请求重传HARQ进程域的取值和所述第二PDCCH中的HARQ进程域的取值相同。
  88. 根据权利要求87所述的网络设备,其特征在于,所述网络设备还包括:
    通信单元,用于不在终端特定搜索空间USS上接收由小区无线网络临时标识符C-RNTI加扰的第一目标PDCCH,其中,所述第一目标PDCCH满足如下条件:
    所述第一目标PDCCH调度的PDSCH为所述终端设备之前接收到的K个PDCCH调度的PDSCH的重传,其中,所述K个PDCCH是由第三G-RNTI加扰的,所述K小于或等于N,所述N为正整数;
    所述第一目标PDCCH携带的DCI中的HARQ进程域的取值为第一值,所述K个PDCCH携带的DCI中的HARQ进程域的取值也为第一值;
    所述第一目标PDCCH携带的DCI中的NDI域的取值为第二值,所述K个PDCCH携带的DCI中的NDI域的取值也为第二值;
    取值为所述第一值的HARQ进程号在用于发送所述第三G-RNTI加扰的所述K个PDCCH之前用于单播传输。
  89. 根据权利要求87所述的网络设备,其特征在于,所述网络设备还包括:
    通信单元,用于不在终端特定搜索空间USS上接收由小区无线网络临时标识符C-RNTI加扰的第二目标PDCCH,其中,所述第二目标PDCCH满足如下条件:
    所述第二目标PDCCH调度的PDSCH为所述终端设备之前接收到的K个PDCCH调度的PDSCH的重传,其中,所述K个PDCCH是由第四G-RNTI加扰的,所述K小于或等于N,所述N为正整数;
    所述第二目标PDCCH携带的DCI中的HARQ进程域的取值为第一值,所述K个PDCCH携带的DCI中的HARQ进程域的取值也为第一值;
    所述第二目标PDCCH携带的DCI中的NDI域的取值为第二值,所述K个PDCCH携带的DCI 中的NDI域的取值也为第二值;
    所述终端设备没有在所述第四G-RNTI加扰的所述K个PDCCH指示的物理上行控制信道PUCCH资源上发送针对所述第四G-RNTI加扰的所述K个PDCCH调度的PDSCH的HARQ反馈信息;
    取值为所述第一值的HARQ进程号在用于发送所述第四G-RNTI加扰的所述K个PDCCH之前用于单播传输。
  90. 根据权利要求88或89所述的网络设备,其特征在于,所述N是预定义值,或者是网络设备配置的。
  91. 根据权利要求87-90中任一项所述的网络设备,其特征在于,所述网络设备还包括:
    通信单元,用于不在USS发送由组无线网络临时标识符G-RNTI加扰的PDCCH,其中,所述PDCCH用于指示一个或多个传输块TB的新传。
  92. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至17中任一项所述的方法,或者如权利要求25至40中任一项所述的方法。
  93. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至17中任一项所述的方法,或者如权利要求25至40中任一项所述的方法。
  94. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至17中任一项所述的方法,或者如权利要求25至40中任一项所述的方法。
  95. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至17中任一项所述的方法,或者如权利要求25至40中任一项所述的方法。
  96. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至17中任一项所述的方法,或者如权利要求25至40中任一项所述的方法。
  97. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求18至24中任一项所述的方法,或者如权利要求41至45中任一项所述的方法。
  98. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求18至24中任一项所述的方法,或者如权利要求41至45中任一项所述的方法。
  99. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求18至24中任一项所述的方法,或者如权利要求41至45中任一项所述的方法。
  100. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求18至24中任一项所述的方法,或者如权利要求41至45中任一项所述的方法。
  101. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求18至24中任一项所述的方法,或者如权利要求41至45中任一项所述的方法。
PCT/CN2021/108660 2021-07-27 2021-07-27 无线通信的方法、终端设备和网络设备 WO2023004584A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21951200.1A EP4369645A1 (en) 2021-07-27 2021-07-27 Wireless communication method, terminal device, and network device
CN202180100237.5A CN117693914A (zh) 2021-07-27 2021-07-27 无线通信的方法、终端设备和网络设备
PCT/CN2021/108660 WO2023004584A1 (zh) 2021-07-27 2021-07-27 无线通信的方法、终端设备和网络设备
US18/424,731 US20240163045A1 (en) 2021-07-27 2024-01-26 Wireless communication method, terminal device, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/108660 WO2023004584A1 (zh) 2021-07-27 2021-07-27 无线通信的方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/424,731 Continuation US20240163045A1 (en) 2021-07-27 2024-01-26 Wireless communication method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2023004584A1 true WO2023004584A1 (zh) 2023-02-02

Family

ID=85086144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108660 WO2023004584A1 (zh) 2021-07-27 2021-07-27 无线通信的方法、终端设备和网络设备

Country Status (4)

Country Link
US (1) US20240163045A1 (zh)
EP (1) EP4369645A1 (zh)
CN (1) CN117693914A (zh)
WO (1) WO2023004584A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180270865A1 (en) * 2017-03-20 2018-09-20 Motorola Mobility Llc Determining a request for system information
CN109802755A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 下行控制信息确定方法和通信装置
CN111262675A (zh) * 2019-10-12 2020-06-09 维沃移动通信有限公司 一种确定dci格式的方法、终端设备和网络设备
CN111867097A (zh) * 2019-04-30 2020-10-30 北京三星通信技术研究有限公司 接收下行控制信息的方法和设备
WO2020252708A1 (zh) * 2019-06-19 2020-12-24 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180270865A1 (en) * 2017-03-20 2018-09-20 Motorola Mobility Llc Determining a request for system information
CN109802755A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 下行控制信息确定方法和通信装置
CN111867097A (zh) * 2019-04-30 2020-10-30 北京三星通信技术研究有限公司 接收下行控制信息的方法和设备
WO2020252708A1 (zh) * 2019-06-19 2020-12-24 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
CN111262675A (zh) * 2019-10-12 2020-06-09 维沃移动通信有限公司 一种确定dci格式的方法、终端设备和网络设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Correction on DCI size alignment in TS 38.212", 3GPP DRAFT; R1-1905248, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 7 April 2019 (2019-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051700323 *
SHARP: "Correction to DCI size alignment procedure in TS 38.212", 3GPP DRAFT; R1-1902649, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20190225 - 20190301, 15 February 2019 (2019-02-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051600343 *

Also Published As

Publication number Publication date
US20240163045A1 (en) 2024-05-16
EP4369645A1 (en) 2024-05-15
CN117693914A (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
WO2021168833A1 (zh) 数据传输方法、装置及设备
WO2022150937A1 (zh) 用于接收数据的方法与装置和用于发送数据的方法与装置
KR20200138814A (ko) 데이터를 전송하는 방법, 단말기 및 네트워크 기기
WO2020259611A1 (zh) 一种通信方法、装置及存储介质
CN114788204B (zh) Harq进程的状态确定方法、装置及设备
WO2021056155A1 (zh) 一种反馈资源配置方法及通信方法、装置、通信设备
EP3975647A1 (en) Wireless communication method, receiving-end device, and sending-end device
WO2022006914A1 (zh) 混合自动重传请求应答harq-ack的反馈方法和终端设备
WO2022061661A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022021007A1 (zh) 无线通信方法、终端设备和网络设备
US20230076835A1 (en) Harq feedback method and apparatus, terminal, and network device
WO2022021811A1 (zh) 无线通信方法、终端设备和网络设备
EP4243528A1 (en) Semi-persistent scheduling method and apparatus for mbs service, and terminal device and network device
WO2023004584A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024031395A1 (zh) 重复传输方法、终端设备和网络设备
WO2023155151A1 (zh) 无线通信的方法、终端设备和网络设备
WO2019191911A1 (zh) 数据传输的方法和设备
WO2023050319A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022205436A1 (zh) 无线通信的方法及终端设备
WO2022061548A1 (zh) 无线通信的方法、终端设备和网络设备
US12028169B2 (en) Wireless communication method, receiving-end device, and sending-end device
WO2022027669A1 (zh) 传输反馈信息的方法、终端设备和网络设备
WO2024031307A1 (zh) 混合自动重传请求harq反馈方法、装置、设备及介质
WO2022021032A1 (zh) 信息处理方法、终端设备和网络设备
WO2022126446A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951200

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100237.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021951200

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021951200

Country of ref document: EP

Effective date: 20240207

NENP Non-entry into the national phase

Ref country code: DE