WO2020199778A1 - 一种通信方法及通信装置 - Google Patents

一种通信方法及通信装置 Download PDF

Info

Publication number
WO2020199778A1
WO2020199778A1 PCT/CN2020/075911 CN2020075911W WO2020199778A1 WO 2020199778 A1 WO2020199778 A1 WO 2020199778A1 CN 2020075911 W CN2020075911 W CN 2020075911W WO 2020199778 A1 WO2020199778 A1 WO 2020199778A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
logical channel
rlc
status report
data pdu
Prior art date
Application number
PCT/CN2020/075911
Other languages
English (en)
French (fr)
Inventor
彭文杰
肖潇
王君
戴明增
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020199778A1 publication Critical patent/WO2020199778A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and communication device.
  • V2X Vehicle-to-everything
  • V2X Vehicle-to-everything
  • V2V vehicle-to-vehicle
  • V2I vehicle-to-infrastructure
  • V2P vehicle-to-pedestrian
  • V2N vehicle-to-network
  • a V2X communication system two devices can transmit V2X services through a PC5 interface (also called a sidelink (SL)).
  • a PC5 interface also called a sidelink (SL)
  • LTE long term evolution
  • the sender device Before sending data, the sender device creates a bearer for the data to be sent, as well as the radio link control (RLC) entity and logical channel corresponding to the bearer.
  • the radio link control of the sender device The (radio link control, RLC) entity is configured in unacknowledged (UM) mode.
  • UM unacknowledged
  • both the sender device and the receiver device maintain a set of logical channels with a set of source identification and target identification as the granularity, where the source identification is the layer 2 identification of the sender device, and the target identification is the one to which the data to be sent belongs.
  • Service type but for the same group of identifiers, the logical channel maintained by the sending end device is different from the logical channel maintained by the receiving end device.
  • both terminal devices use a set of identifiers (source identifier and target identifier) Maintain a set of logical channels for granularity, where the source ID is the layer 2 ID of the sender device, and the target ID is the layer 2 ID of the peer device, so both devices need to maintain two sets of logical channels for unicast connections, one of which is The logical channel is used to send data PDUs, and the other set of logical channels is used to receive data PDUs. For the same group of identifiers, the logical channel maintained by the sending end device is different from the logical channel maintained by the receiving end device.
  • identifiers source identifier and target identifier
  • the embodiments of the present application provide a communication method and a communication device, which are used to improve the reliability of the V2X service communication process.
  • a first communication method which is applicable to a first terminal device.
  • the method includes: a first terminal device obtains first configuration information, and the first configuration information may include: an identifier of a first logical channel used for transmitting a first data PDU of a side link unicast connection, and a connection with the first logical channel
  • the corresponding radio link control RLC mode in which a unicast connection is established between the first terminal device and the second terminal device, and the first terminal device can send the first configuration information to the second terminal device through the side link.
  • the first terminal device sends the identification of the first logical channel used to send the first data PDU and the RLC mode corresponding to the first logical channel to the second terminal device, so that the second terminal device receives the first logical channel.
  • the logical channel on the unicast connection can be configured in a targeted manner. For example, for the first logical channel whose RLC mode is AM, configure the first logical channel corresponding to the first logical channel to feed back the RLC status report Logical channels, which can improve the reliability of the V2X service communication process.
  • RLC can be AM or UM.
  • the RLC mode corresponding to the first logical channel may be the RLC confirmation mode.
  • the first terminal device sends the first configuration information to the second terminal device, so that the second terminal device can obtain the logical channel configuration for feeding back the RLC status report for the first logical channel corresponding to the RLC confirmation mode , which can realize the automatic retransmission function, and further improve the reliability of the V2X service communication process.
  • the second terminal when the RLC mode corresponding to the first logical channel is the RLC unacknowledged mode, the second terminal does not need to feed back the RLC status report, that is, the second terminal device does not need to configure the logical channel for sending the RLC status report.
  • the first terminal device may also use the first logical channel to send the first RLC to the second terminal device Status report, the first RLC status report is used to indicate the reception status of the first terminal device to receive the second data PDU of the second terminal device.
  • the first terminal device can multiplex the same set of sending logical channels to send the first data PDU and the first RLC status report, which can save the internal overhead of the first terminal device.
  • the first terminal device may also send the first PDU to the second terminal device through the first logical channel.
  • the first indication information is carried, and the first indication information is used to indicate that the type of the first PDU is a data PDU or an RLC status report.
  • the first terminal device when the first terminal device sends the first PDU, it also carries indication information for indicating the type of the first PDU, so that the second terminal device can identify the first PDU after receiving the first PDU.
  • indication information for indicating the type of the first PDU, so that the second terminal device can identify the first PDU after receiving the first PDU.
  • the first terminal device may also establish a first logical channel, and the first logical channel is used to send the first data PDU to the second terminal device;
  • the device may also establish a second logical channel, where the second logical channel is used to receive the second RLC status report sent by the second terminal device.
  • the first terminal device in addition to establishing a logical channel for sending data PDUs, the first terminal device also establishes a logical channel for sending RLC status reports, so that by receiving the second RLC status report, you can know that the second terminal device receives the first logical channel sent by the first logical channel.
  • the status of a data PDU so as to retransmit the lost PDU to the second terminal device when there is a packet loss.
  • the first terminal device may also send the first data PDU to the second terminal device through the first logical channel identified as i
  • the first terminal device may receive the second RLC status report from the second terminal device through the second logical channel identified as i, the RLC mode corresponding to the first logical channel identified as i is AM, and i is a positive integer.
  • the first terminal device uses the same logical channel identifier to correspond to different logical channels to send the first data PDU and receive the second RLC status report, so that the second RLC status report can be received when the second logical channel is received. It can be known which first logical channel the second RLC status report is for.
  • the first terminal device may also send the first data PDU to the second terminal device through the first logical channel identified as i
  • the first terminal device may also receive the second RLC status report from the second terminal device through the second logical channel identified as i+N, where i is a positive integer and N is a positive integer.
  • the second RLC status report is received from the second logical channel of i+N, it is known that the second RLC status report is the first PDU data sent for the first logical channel identified as i.
  • N is determined by the first terminal device, can also be received from the second terminal device, or can be received from the first network device .
  • the first terminal device may also send the first data PDU to the second terminal device through the first logical channel identified as i .
  • the first terminal device may also receive the second RLC status report from the second terminal device through the second logical channel identified as K, where K is a positive integer; K is determined according to the first correspondence, and the first correspondence is used for Indicate the correspondence between the identifier i of the first logical channel and the identifier K of the second logical channel.
  • the first corresponding relationship may be determined by the first terminal device, may be received from the second terminal device, or may be received from the first terminal device. Received by the first network device to which a terminal device belongs.
  • the first terminal device maintains one or more first logical channels, and the first terminal device may also use one or more The first logical channel sends one or more first data PDUs to the second terminal device respectively, and the first terminal device may also receive the first data PDU corresponding to the one or more first logical channels from the second terminal device through the second logical channel.
  • the first logical channel sends one or more first data PDUs to the second terminal device respectively, and the first terminal device may also receive the first data PDU corresponding to the one or more first logical channels from the second terminal device through the second logical channel.
  • RLC status report includes the identity of the first logical channel.
  • a fixed logical channel can be used to receive the second RLC status report corresponding to one or more first logical channels.
  • the first terminal device can maintain fewer logical channels, compared to one-to-one reception.
  • the solution of the embodiment of the present application can save the internal overhead of the first terminal device.
  • the first logical channel is also used for the first terminal device to receive the second RLC status report and the second terminal device from the second terminal device.
  • the second data PDU is also used for the first terminal device to receive the second RLC status report and the second terminal device from the second terminal device.
  • bidirectional bearer is introduced for unicast communication.
  • the advantages of bidirectional bearer are that the internal overhead of the terminal is smaller, the implementation is simpler, and there is no need to maintain many logical channels internally. No interaction between internal RLC entities is required.
  • the first terminal device obtains the first configuration information, including but not limited to the following ways:
  • the first terminal device obtains the first configuration information from the pre-configuration information
  • the first terminal device obtains the first configuration information from a broadcast message sent by the first network device;
  • the first terminal device obtains the first configuration information from RRC dedicated signaling.
  • the first terminal device may also report A network device sends a configuration complete message, where the configuration complete message is used to instruct the first terminal device to complete the configuration based on the first configuration information, or to instruct the second terminal device to complete the configuration based on the first configuration information sent by the first terminal device.
  • the first network device can be made aware of the configuration result of the first terminal device.
  • the first configuration information may also include the communication mode corresponding to the first logical channel. To indicate the side link resource allocation mode corresponding to the first logical channel.
  • the first logical channel can be configured with a policy link allocation mode when transmitting data PDUs.
  • the first configuration information may also include priority information corresponding to the first logical channel.
  • the information is used to indicate the scheduling priority corresponding to the first logical channel.
  • the logical channel corresponding to the priority can be scheduled to send data according to the scheduling priority.
  • the first terminal device may also send at least one first data PDU to the second terminal device through the first logical channel,
  • the first terminal device receives the second RLC status report from the second terminal device through the second logical channel.
  • the first terminal device parses the second RLC status report to obtain the analysis result; the analysis result includes the first data PDU corresponding to the lost first data PDU.
  • the sequence number, or the first sequence number and the second sequence number corresponding to the first data PDU successfully received; the first terminal device retransmits the first sequence number corresponding to the first sequence number to the second terminal device through the first logical channel based on the analysis result One data PDU.
  • an interactive mode for sending data PDUs and feedback status reports on the side link between two terminal devices is provided.
  • the first terminal device includes a first RLC entity corresponding to the first logical channel and a first RLC entity corresponding to the second logical channel.
  • Two RLC entities The second RLC entity may receive the second RLC status report from the second terminal device through the second logical channel.
  • the second RLC entity parses the second RLC status report to obtain the analysis result.
  • the second RLC entity sends the first RLC status report to the first RLC entity.
  • the sequence number The first RLC entity retransmits the first data PDU corresponding to the first sequence number to the second terminal device through the first logical channel.
  • the second RLC entity may also send a second RLC status report to the first RLC entity.
  • the first RLC entity parses the second RLC status report to obtain an analysis result.
  • the first RLC entity sends the analysis result to the second terminal through the first logical channel.
  • the device retransmits the first data PDU corresponding to the first sequence number.
  • a communication method is provided, which is applicable to a second terminal device.
  • the method includes: a second terminal device receives first configuration information from a first terminal device, the first configuration information includes: an identifier of a first logical channel of a sidelink unicast connection for sending a first data PDU, and The radio link control RLC mode corresponding to the first logical channel, the unicast connection is established between the first terminal device and the second terminal device, and the second terminal device can determine which is corresponding to the first logical channel of the first terminal device.
  • the third logical channel for feeding back the second RLC status report, the RLC mode corresponding to the first logical channel is AM, and the second RLC status report is used to indicate the status of the second terminal device receiving the first data PDU of the first logical channel; second The terminal device establishes a third logical channel.
  • the second terminal device may determine that the RLC mode corresponding to the first logical channel is configured to be AM, and then determine the second RLC state corresponding to the first logical channel for feedback
  • the third logical channel of the report can enable the second terminal device to realize the generation and transmission of the second RLC status report, thereby realizing the automatic retransmission function in the RLC AM mode, and improving the low reliability of the V2X service communication process.
  • the second terminal device establishes a third logical channel; the third logical channel is also used by the second terminal device to send the second data PDU to the first terminal device.
  • the second terminal device can multiplex the same set of sending logical channels to send the second data PDU and the second RLC status report, which can save the internal overhead of the second terminal device.
  • the second terminal device sends the second PDU to the first terminal device through the third logical channel; the second PDU carries the first Five indication information, the fifth indication information is used to indicate that the type of the second PDU is data PDU or RLC status report.
  • the second terminal device when the second terminal device sends the second PDU, it also carries indication information for indicating the type of the second PDU, so that the first terminal device can recognize the second PDU after receiving the second PDU.
  • indication information for indicating the type of the second PDU
  • the second terminal device may also establish a fourth logical channel; the fourth logical channel is used to receive the first data PDU from the first terminal device, and the second The terminal device may also establish a third logical channel, and the third logical channel is used to send the second RLC status report to the first terminal device.
  • the second terminal device in addition to establishing a logical channel for sending data PDUs, the second terminal device also establishes a logical channel for sending RLC status reports, so that the first terminal device can be notified by receiving the second RLC status report to receive the first logical channel sent by the first logical channel.
  • the status of a data PDU in addition to establishing a logical channel for sending data PDUs, the second terminal device also establishes a logical channel for sending RLC status reports, so that the first terminal device can be notified by receiving the second RLC status report to receive the first logical channel sent by the first logical channel. The status of a data PDU.
  • the second terminal device in the third possible design in combination with the first aspect, establishes a fifth logical channel; the fifth logical channel is used to send the second terminal device to the first terminal device. Data PDU.
  • the second terminal device also configures a logical channel for sending the second data PDU.
  • the second terminal device receives the first data PDU from the first terminal device through the fourth logical channel identified as i , The second terminal device sends the second RLC status report to the first terminal device through the third logical channel identified as i, the RLC mode corresponding to the first logical channel identified as i is AM, and i is a positive integer.
  • the second terminal device uses the same logical channel identifier to correspond to different logical channels to respectively implement receiving the first data PDU and sending the second RLC status report, so that the first terminal device can know that the second RLC status report is for Which is the first logical channel.
  • the second terminal device receives the first data PDU from the first terminal device through the fourth logical channel identified as i , The second terminal device sends a second RLC status report to the first terminal device through the third logical channel identified as i+N, and the first data PDU is sent by the first terminal device through the first logical channel identified as i;
  • the RLC mode corresponding to the first logical channel i is AM; i is a positive integer, and N is a positive integer.
  • sending the second RLC status report from the third logical channel of i+N can make the first terminal device that receives the second RLC status report know that the second RLC status report is for the first logical channel with the identifier i The first PDU data sent by the channel.
  • N may be determined by the second terminal device, may be received from the first terminal device, or may be from the second network The device receives.
  • the second terminal device may also receive the first terminal device from the first terminal device through the fourth logical channel identified as i.
  • Data PDU the second terminal device can also send a second RLC status report to the first terminal device through the third logical channel identified as K, and the first data PDU is sent by the first terminal device through the first logical channel identified as i .
  • the RLC mode corresponding to the first logical channel with the identifier i is AM
  • K is determined according to the second correspondence
  • the second correspondence includes the correspondence between the identity i of the fourth logical channel and the identity K of the third logical channel
  • I is a positive integer
  • K is a positive integer.
  • the second correspondence relationship may be determined by the second terminal device, or may be received from the first terminal device.
  • the second terminal device maintains one or more fourth logical channels, and M is an integer; the second terminal device uses one One or more fourth logical channels receive one or more first data PDUs from the first terminal device; each fourth logical channel receives the first PDU sent from the first logical channel corresponding to the fourth logical channel;
  • the RLC mode corresponding to a logical channel is AM; the second terminal device sends a second RLC status report corresponding to one or more first logical channels to the first terminal device through the third logical channel, and the second RLC status report includes the first Logical channel identifier.
  • a fixed logical channel can be used to send the second RLC status report corresponding to one or more first logical channels.
  • the second terminal device can maintain fewer logical channels, compared to one-to-one.
  • the solution of the embodiment of the present application can save the internal overhead of the second terminal device.
  • the second terminal device may send the first configuration information to the second network device, and receive from The second configuration information of the second network device, where the second configuration information is used by the second terminal device to determine the third logical channel corresponding to the first logical channel of the first terminal device and used to feed back the second RLC status report; or, the first The second terminal device determines, according to the first configuration information, a third logical channel corresponding to the first logical channel of the first terminal device and used to feed back the second RLC status report.
  • the second terminal device determines the first logical channel corresponding to the first terminal device to feed back the second RLC After the third logical channel of the status report, the second terminal device may also send a first confirmation message to the second network device, the first confirmation message instructing the second terminal device to complete the configuration based on the second configuration information.
  • the second network device can be made aware of the configuration result of the second terminal device.
  • the third logical channel is also used to receive the first data PDU and the first RLC status report from the first terminal device .
  • bidirectional bearer is introduced for unicast communication.
  • the advantages of bidirectional bearer are that the internal overhead of the terminal is smaller, the implementation is simpler, and there is no need to maintain many logical channels internally. No interaction between internal RLC entities is required.
  • the second terminal device sends a second confirmation message to the first terminal device, and the second confirmation message It is used to instruct the second terminal device to complete the configuration based on the first configuration information sent by the first terminal device.
  • the first terminal device can be made aware of the configuration result of the second terminal device.
  • the second terminal device may also receive at least one piece of first data from the first terminal device through the fourth logical channel PDU, and then determine that at least one first data PDU meets the status report trigger condition, then generate a second RLC status report, the second RLC status report includes the first sequence number corresponding to the lost first data PDU, and/or, successfully received The second sequence number corresponding to the first data PDU; the second terminal device sends the second RLC status report to the first terminal device through the third logical channel.
  • the second terminal device includes a third RLC entity corresponding to the fourth logical channel and a third RLC entity corresponding to the third logical channel.
  • the third RLC entity receives at least one first data PDU from the first terminal device through the fourth logical channel, and the third RLC entity determines the first sequence number corresponding to the lost first data PDU and the successfully received first data PDU According to the second sequence number corresponding to a data PDU, the third RLC entity generates a second RLC status report according to the first sequence number, or the first sequence number and the second sequence number, and the fourth RLC entity sends the second RLC status report to the A terminal device sends a second RLC status report.
  • the third RLC entity can determine the first sequence number corresponding to the lost first data PDU and the successfully received After the second sequence number corresponding to the first data PDU, the third RLC entity may also send the first sequence number to the fourth RLC entity; the fourth RLC entity generates the second RLC status report according to the first sequence number; or, the third RLC entity The entity sends the second sequence number to the fourth RLC entity; the fourth RLC entity generates the second RLC status report according to the second sequence number; or, the third RLC entity sends the first sequence number and the second sequence number to the fourth RLC entity; Fourth, the RLC entity generates a second RLC status report according to the first sequence number.
  • the status report trigger condition includes any of the following: periodic triggering and feedback of the second RLC status report; timer timeout , The timer is used to start timing from the first lost data PDU in at least one first data PDU; the seventh indication information carried in the data PDU, the seventh indication information is used to indicate that the second terminal device is receiving the seventh indication The second RLC status report is fed back when information.
  • an embodiment of the present application provides a communication device that has the function of the first terminal device in any possible design of the first aspect or the first aspect, or has the function of the second aspect or The function of the second terminal device in any possible design of the second aspect.
  • the communication device may be a terminal device, such as a vehicle-mounted terminal device or a vehicle-mounted communication device, a device included in the terminal device, such as a chip, or a device containing the terminal device, such as various types of vehicles.
  • the functions of the above-mentioned terminal device may be realized by hardware, or may be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing module and a transceiver module, wherein the processing module is configured to support the communication device to perform the corresponding function in the first aspect or any one of the first aspects. , Or perform the corresponding function in the second aspect or any one of the second aspects mentioned above.
  • the transceiver module is used to support communication between the communication device and other communication devices, for example, sending a third message for RRC connection establishment or RRC connection recovery to the network device.
  • the communication device may also include a storage module, which is coupled with the processing module, and stores program instructions and data necessary for the communication device.
  • the processing module may be a processor
  • the communication module may be a transceiver
  • the storage module may be a memory.
  • the memory may be integrated with the processor or may be provided separately from the processor, which is not limited in this application.
  • the structure of the communication device includes a processor and a memory, and the processor is coupled to the memory and can be used to execute computer program instructions stored in the memory, so that the communication device executes the first aspect or the first aspect.
  • the communication device may further include a communication interface, and the processor is coupled with the communication interface.
  • the communication interface may be a transceiver or an input/output interface; when the communication device is a chip included in the terminal device, the communication interface may be an input/output interface of the chip.
  • the transceiver may be a transceiver circuit, and the input/output interface may be an input/output circuit.
  • an embodiment of the present application provides a chip system, including: a processor, the processor is coupled with a memory, the memory is used to store a program or an instruction, when the program or an instruction is executed by the processor , So that the chip system implements the method in any possible design of the first aspect or the first aspect, or implements the method in any possible design of the second aspect or the second aspect.
  • processors in the chip system there may be one or more processors in the chip system.
  • the processor can be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may be a non-transitory processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be set on different chips.
  • the setting method of the processor is not specifically limited.
  • a first communication method which is applicable to a first network device.
  • the method includes:
  • the first network device determines first configuration information, and the first network device sends the first configuration information to the first terminal device.
  • the first configuration information includes the first logical channel used to send the first data PDU on the sidelink unicast connection And the radio link control RLC mode corresponding to the first logical channel, the first network device receives the configuration complete message sent by the first terminal device, and the configuration complete message is used to instruct the first terminal device to complete the configuration based on the first configuration information, Or it is used to instruct the second terminal device to complete the configuration based on the first configuration information sent by the first terminal device.
  • the first network device sends the first configuration information to the first terminal device, which can provide the first terminal device with a logical channel configuration for sending data, so that the first terminal device and the second terminal device perform unicast communication. , Improve the reliability of the V2X business communication process.
  • a first communication method is provided, and the method is applicable to a second network device.
  • the method includes:
  • the second network device receives the first configuration information sent by the first terminal device; the first configuration information includes the identifier of the first logical channel used to send the first data PDU on the sidelink unicast connection, and the corresponding first logical channel
  • the radio link control RLC mode; the second network device determines the second configuration information based on the first configuration information; the second configuration information is used by the second terminal device to determine the first logical channel corresponding to the first terminal device for feedback
  • the third logical channel of the second RLC status report; the RLC mode corresponding to the first logical channel is AM; the second RLC status report is used to indicate the status of the second terminal device receiving the first data PDU of the first logical channel; the second network The device sends the second configuration information to the second terminal device.
  • the first network device provides the second terminal device with a logical channel configuration for sending the second RLC status report based on the first configuration information of the first terminal device, so that the first terminal device and the second terminal device can perform a single operation.
  • the first network device improves the reliability of V2X service communication process.
  • the second network device may also receive a first confirmation message sent by the second terminal device, the first confirmation message indicating that the second terminal device is based on the second configuration information Complete the configuration.
  • the second network device can know the configuration result of the second terminal device through the first confirmation message.
  • the second configuration information may further include N, where N is the identifier of the third logical channel for the second terminal device to feed back the second RLC status report, and N is Positive integer.
  • the second configuration information may further include a second correspondence between the identity of the fourth logical channel and the identity of the third logical channel, wherein the second correspondence is The identifier of the third logical channel used for the second terminal device to determine the third logical channel for sending the first RLC status report to the first terminal device.
  • an embodiment of the present application provides a communication device, which may have the function of the first network device in any possible design of the fifth aspect or the fifth aspect, or the sixth aspect may be implemented. Or the function of the second network device in any possible design of the sixth aspect.
  • the communication device may be a network device, or a device included in the network device, such as a chip.
  • the functions of the above-mentioned network equipment may be realized by hardware, or may be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing module and a transceiver module, wherein the processing module is configured to support the communication device to perform the corresponding function in the fifth aspect or any one of the fifth aspects above. , Or perform the corresponding function in the sixth aspect or any one of the sixth aspects.
  • the transceiver module is used to support the communication between the communication device and other communication equipment.
  • the communication device may also include a storage module, which is coupled with the processing module, which stores program instructions and data necessary for the communication device.
  • the processing module may be a processor
  • the communication module may be a transceiver
  • the storage module may be a memory.
  • the memory may be integrated with the processor or may be provided separately from the processor, which is not limited in this application.
  • the structure of the communication device includes a processor and a memory, and the processor is coupled with the memory and can be used to execute computer program instructions stored in the memory, so that the communication device can execute the fifth aspect or the fifth aspect.
  • the communication device may further include a communication interface, and the processor is coupled with the communication interface.
  • the communication interface may be a transceiver or an input/output interface; when the communication device is a chip included in the first network device, the communication interface may be an input/output interface of the chip.
  • the transceiver may be a transceiver circuit, and the input/output interface may be an input/output circuit.
  • an embodiment of the present application provides a chip system, including: a processor, the processor is coupled with a memory, the memory is used to store a program or an instruction, when the program or instruction is executed by the processor , So that the chip system implements the method in any possible design of the fifth aspect or the fifth aspect, or implements the method in any possible design of the sixth aspect or the sixth aspect.
  • processors in the chip system there may be one or more processors in the chip system.
  • the processor can be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may be a non-transitory processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be set on different chips.
  • the setting method of the processor is not specifically limited.
  • an embodiment of the present application provides a computer-readable storage medium, which stores computer-readable instructions.
  • the computer reads and executes the computer-readable instructions, the computer executes the first The method in any possible design of the aspect, or the method in any possible design of the second aspect, or the method in any possible design of the fifth aspect, or implement any of the above-mentioned sixth aspect A possible design approach.
  • the embodiments of the present application provide a computer program product.
  • the computer reads and executes the computer program product, the computer executes any of the possible design methods in the first aspect or the second aspect Any one of the possible design methods, or any one of the possible designs of the fifth aspect, or any one of the possible designs of the aforementioned sixth aspect.
  • an embodiment of the present application provides a communication system that includes any one of the first terminal device, the second terminal device, the first network device, and the second network device described in the foregoing aspects or Any number.
  • Figure 1 is a schematic diagram of the system architecture of an embodiment of the application
  • FIGS. 2A to 2E are schematic diagrams of LTE V2X services communicating through PC5 ports;
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • Figure 4 is a schematic diagram of a data PDU structure provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of a logical channel management provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of another logical channel management provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of another logical channel management provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of another logical channel management provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of another logical channel management provided by an embodiment of this application.
  • FIG. 10 is a schematic diagram of an interaction process between terminals according to an embodiment of the application.
  • FIG. 11 is a schematic diagram of another logical channel management provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram of a communication device provided by an embodiment of this application.
  • FIG. 13 is another schematic diagram of a communication device provided by an embodiment of this application.
  • FIG. 14 is another schematic diagram of a communication device provided by an embodiment of the application.
  • FIG. 15 is another schematic diagram of a communication device provided by an embodiment of this application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WIMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • NR new radio
  • FIG. 1 is a network architecture of a communication system to which this embodiment of the application is applicable.
  • the communication system includes a network device 110, a terminal device 120, and a terminal device 130. Further, the communication system may also include an application server 140.
  • the above-mentioned network architecture includes two communication interfaces: PC5 interface and Uu interface.
  • the PC5 interface refers to the direct communication interface between the terminal device and the terminal device
  • the direct communication link between the terminal device and the terminal device is the sidelink (SL), used for the terminal device and the terminal Communication between devices.
  • the Uu interface is a communication interface between a terminal device and a network device, and the communication link between the terminal device and the network device includes an uplink (uplink, UL) and a downlink (downlink, DL).
  • Communication based on the Uu interface can be that the sender terminal device sends data to the network device through the Uu interface, and after the network device sends the data to the application server for processing, then the application server sends the processed data to the network device and passes The network device sends it to the receiving terminal device.
  • the network device that forwards the uplink data sent by the sender terminal device to the application server and the network device that forwards the downlink data issued by the application server to the receiver terminal device may be the same
  • the network device can also be a different network device, which can be determined by the application server.
  • the network device in Figure 1 may be an access network device, such as a base station.
  • the access network equipment corresponds to different equipment in different systems, for example, it can correspond to an eNB in the LTE system, and the corresponding access network equipment in the NR system, such as gNB.
  • the terminal device 120 and the terminal device 130 are shown in FIG. 1, it should be understood that the network device may provide services for multiple terminal devices, and the embodiment of the present application does not limit the number of terminal devices in the communication system.
  • the terminal device in FIG. 1 is described by taking a vehicle-mounted terminal device or a vehicle as an example, and it should be understood that the terminal device in the embodiment of the present application is not limited thereto.
  • terminal device 120 and the terminal device 130 in FIG. 1 may be Internet of Things devices, such as UE.
  • the arrow flow between the terminal devices in FIG. 1 is only exemplarily described from the terminal device 120 to the terminal device 130, and does not limit the embodiment of the present application.
  • the terminal device 120 and the terminal device 130 The communication can also be bidirectional.
  • the terminal device 120 may also perform downlink communication with the network device 110
  • the terminal device 130 may also perform uplink communication with the network device 110, which is not specifically limited.
  • Terminal devices include devices that provide users with voice and/or data packet connectivity. For example, they may include handheld devices with wireless connection functions or processing devices connected to wireless modems.
  • the terminal device can communicate with the core network via a radio access network (RAN), and exchange voice and/or data packets with the RAN.
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote Station (remote station), access point (access point, AP), remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), or user Equipment (user device), etc.
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket-sized, handheld, computer-built mobile devices, and smart wearable devices.
  • PCS personal communication service
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device or the like.
  • Wearable devices can also be called wearable smart devices. It is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only hardware devices, but also powerful functions through software support, data packet interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as various smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • vehicle-mounted terminal equipment for example, the vehicle-mounted terminal equipment is also called on-board unit (OBU).
  • OBU on-board unit
  • Network equipment such as access network (AN) equipment, such as a base station (e.g., access point), may refer to equipment that communicates with wireless terminal equipment through one or more cells on the air interface in the access network
  • AN access network
  • base station e.g., access point
  • IP Internet Protocol
  • the base station can be used to convert the received air frame and Internet Protocol (IP) packets to each other, as a router between the terminal device and the rest of the access network, where the rest of the access network may include an IP network.
  • IP Internet Protocol
  • the RSU can be a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment may include a long term evolution (LTE) system or an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution (advanced, LTE-A) system, Or it may also include the next generation node B (gNB) in the 5G NR system, or it may also include the centralized unit (CU) and the centralized unit (CU) in the cloud radio access network (CloudRAN) system.
  • Distributed unit (DU) is not limited in the embodiment of the present application.
  • V2X in version (Rel)-14/15/16, V2X as a major application of D2D technology was successfully established.
  • V2X will optimize the specific application requirements of V2X on the basis of the existing D2D technology. It is necessary to further reduce the access delay of V2X devices and solve the problem of resource conflicts.
  • V2X specifically can include three application requirements: V2V, V2P, and V2I/N.
  • V2V refers to communication between vehicles;
  • V2P refers to communication between vehicles and people (including pedestrians, cyclists, drivers, or passengers);
  • V2I refers to the communication between the vehicle and the RSU, and there is another type of V2N that can be included in the V2I.
  • V2N refers to the communication between the vehicle and the base station/network.
  • FIGS. 2A to Figure 2E are schematic diagrams of LTE V2X services communicating through the PC5 interface (also known as sidelink).
  • the network devices are all located in the evolved universal radio access network (evolved universal radio access network, E).
  • -UTRAN evolved universal radio access network
  • 2A is a schematic diagram of V2V
  • FIGS. 2B and 2C are schematic diagrams of V2I
  • FIGS. 2D and 2E are schematic diagrams of V2P.
  • the terminal equipment can be within the coverage of the cell that supports V2X, or it can be outside the coverage of the cell that supports V2X.
  • RSU includes two types: terminal type RSU, because it is located on the roadside, the terminal type RSU is in a non-mobile state, and there is no need to consider mobility; base station type RSU can provide timing synchronization for vehicles communicating with it And resource scheduling.
  • At least one means one or more, and "plurality” means two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are in an "or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or plural items (a). For example, at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • first and second mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or order of multiple objects. Importance.
  • first instruction information and the second instruction information are only for distinguishing different information, but do not indicate the difference in content, priority, sending order, or importance of the two types of information.
  • the terminal equipment needs to request resources from the network equipment first before sending the data packets of the V2X service.
  • the terminal device allocates resources of the side link of V2X.
  • This type of mode is called Mode 3 in LTE V2X and Mode 1 in NR V2X; the other way is that the terminal device can broadcast on the network device Or the control function (CF) in the core network is pre-configured by the network element or the V2X side link resources configured by the base station through RRC dedicated signaling to obtain resources through competition.
  • This type of mode is used in LTE V2X It is called Mode4, and it is called Mode2 in NR V2X.
  • terminal devices can transmit data PDUs through the unicast connection on the side link under V2X.
  • the sending end device cannot know that there is a data PDU loss during the V2X service transmission, resulting in low reliability of the V2X service communication process.
  • the first terminal device and the second terminal device can be configured separately The logical channel for receiving data PDUs and status reports, and the logical channel for sending data PDUs and status reports.
  • the following only configures the first logical channel for sending data PDUs for the first terminal device, and configures the second terminal device for sending the first logical channel. 2.
  • the third logical channel of the RLC status report is taken as an example to introduce the solution of the present application.
  • the premise for the second terminal device to configure the third logical channel for sending the second RLC status report is that the first terminal device is configured with the first logical channel for sending data PDUs with the RLC mode being AM.
  • the first RLC status report is used to indicate that the first terminal device receives the receiving status of the second data PDU of the second terminal device.
  • the second logical channel configured by the first terminal device for sending the first RLC status report depends on: the second terminal device is configured with the fourth logical channel for sending the second data PDU with the RLC mode being AM, That is, if the second terminal device configures the fourth logical channel for sending data PDUs with the RLC mode being UM, the first terminal device will not configure the second logical channel for feeding back the first RLC status report.
  • the premise of this configuration is that the RLC mode is configured in UE2 as AM.
  • this application proposes a communication method and communication device.
  • the sending end device sends first configuration information to the receiving end device.
  • the first configuration information includes the side link unicast connection.
  • the identifier of the first logical channel used to send the first data PDU, and the RLC mode corresponding to the first logical channel so as to ensure that the receiving end device can configure the unicast connection according to the RLC mode corresponding to the first logical channel
  • the receiving end device configures the third logical channel corresponding to the first logical channel to feed back the second RLC status report, thereby improving the reliability of the V2X service communication process.
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • the communication method in FIG. 3 can be applied to the system architecture shown in FIG. 1.
  • the communication method shown in FIG. 3 can be applied to the scenario of unicast communication of V2X services.
  • the communication method includes:
  • Step 301 The first terminal device obtains first configuration information.
  • the first configuration information includes: the identifier of the first logical channel used for sending the first data PDU on the side link unicast connection, and the radio link control RLC mode corresponding to the first logical channel.
  • the side link is a direct link between the first terminal device and the second terminal device, and the unicast connection is established between the first terminal device and the second terminal device.
  • the first configuration information may also include unicast connection indication information, which is used to indicate which unicast connection is configured for the first configuration information.
  • the indication information of the unicast connection may be the identifier assigned by the first terminal device for the unicast connection, or the identifier assigned by the second terminal device for the unicast connection, or the first terminal device for the unicast connection.
  • the identifier assigned by the connection and the identifier assigned by the second terminal device for the unicast connection may also be an index value corresponding to the unicast connection.
  • the devices on both sides of the communication will maintain a list of unicast connection information, and the devices on both sides of the communication know that there is a connection between the opposite end and the local end. How many unicast connections, for example, there are a total of n unicast connections.
  • the index value can range from 0 to (n-1), where n is a positive integer, and the index value can indicate the position of the unicast connection in the list, for example, 0 indicates the unicast connection is the first item in the above list, and 1 indicates the unicast connection In the second item of the above list, and so on, it is possible to quickly know which unicast connection is through the index value, and the index value can use a small number of bits to indicate the unicast connection, for example, relative to the target ID DST ID.
  • the index value can also be 1 to n, where 1 indicates that the unicast connection is in the first item of the foregoing list, 2 indicates that the unicast connection is in the second item of the foregoing list, and so on. This can save overhead.
  • the configuration of the unicast connection in this application may be specifically configured for the identification of each unicast connection, or it may be used for all unicast connections
  • a set of configurations can also be grouped for all unicast connections.
  • Each group of unicast connections uses a set of configurations. For example, the grouping can be grouped according to the service type to which the unicast connection belongs, that is, the unicast connection of a service type.
  • the broadcast connection corresponds to a group, and the specific grouping method is not limited in the present invention.
  • the first configuration information may include the identification of each logical channel in the multiple logical channels, and each logical channel.
  • the first configuration information in the above step 301 is described by taking only one first logical channel as an example.
  • all logical channels in a unicast connection can use one RLC mode, or each logical channel can be configured separately, or the logical channel can be configured separately.
  • the channels are grouped, and each group of logical channels uses the same RLC mode, and the specific grouping method is not limited in the present invention.
  • the RLC mode can be AM or UM.
  • the RLC mode corresponding to the first logical channel as AM as an example, the automatic retransmission function of AM is introduced in combination with specific examples.
  • UE1 may send the first data PDU to UE2 through the first logical channel, and add the sequence number SN in the RLC header.
  • UE1 sends five first data PDUs with SN of 1, 2, 3, 4, and 5 to UE2. If UE2 only receives four first data PDUs with sequence numbers of 1, 2, 3, and 5, UE2 has not received When the first data PDU with sequence number 4 is reached, and the first data PDU with SN 4 is not received for a period of time, UE2 can send a second RLC status report to UE1.
  • the second RLC status report is used to inform UE1 After receiving the first data PDU with SN 4 and the four first data PDUs with SN 1, 2, 3, and 5 have been confirmed, UE1 will resend the SN to UE2 after receiving the second RLC status report Is the first data PDU of 4. Optionally, UE1 may also delete the four first data PDUs with SNs 1, 2, 3, and 5. In this case, UE2 configures a set of logical channels to feed back to UE1 the status of UE2 receiving the first data PDU transmitted by the first logical channel, thereby improving the reliability of the communication process.
  • AM can be applied to services such as video and pictures and can guarantee the integrity of data.
  • UM does not have the automatic retransmission function. After UE1 sends the first data PDU to UE2, the first data PDU sent will not be buffered. UE2 has no feedback mechanism, even if UE2 In the event that the first data PDU is lost, UE2 will not feed back the second RLC status report to UE1, so UE1 will not retransmit the first data PDU lost during the transmission process. UM is suitable for voice services and can guarantee the real-time transmission of the first data PDU.
  • the first configuration information may also include any one or more of the communication mode corresponding to the first logical channel and the priority information corresponding to the first logical channel.
  • the communication mode corresponding to the logical channel is used to indicate the side link resource allocation mode corresponding to the first logical channel, such as mode 1 or mode 2.
  • the priority information corresponding to the first logical channel is used to indicate the scheduling priority corresponding to the first logical channel.
  • Step 302 The first terminal device sends the first configuration information to the second terminal device through the side link.
  • the second terminal device receives the first configuration information from the first terminal device.
  • the first terminal device may send part or all of the information in the first configuration information to the second terminal device, and this part of the information needs to include the RLC mode corresponding to the first logical channel.
  • the first terminal device may only send the RLC mode corresponding to the first logical channel to the second terminal device, or The RLC mode corresponding to the first logical channel and the priority information corresponding to the first logical channel.
  • the first configuration information includes the RLC mode corresponding to the first logical channel as an example for description, which is described here in a unified manner, and will not be repeated in the following.
  • the second terminal device when the RLC mode corresponding to the first logical channel is AM, the second terminal device performs step 303 and step 304, and when the RLC mode corresponding to the first logical channel is UM, the second terminal device does not perform step 303 and step 304 .
  • Step 303 The second terminal device determines a third logical channel corresponding to the first logical channel of the first terminal device for feeding back the second RLC status report, and the second RLC status report is used to instruct the second terminal device to receive the first logical channel. The status of the first data PDU of the channel.
  • the third logical channel and the logical channel used for receiving the first data PDU sent by the first logical channel in the second terminal may be the same logical channel, or may be different logical channels.
  • the unicast connection includes three first logical channels, and the identifiers are LC ID1, LC ID2, and LC ID3, respectively.
  • the RLC mode corresponding to the first logical channel LC ID1 is UM
  • the RLC mode corresponding to the first logical channel LC ID2 is AM
  • the RLC mode corresponding to the first logical channel LC ID3 is AM.
  • the second terminal device determines A third logical channel LC ID2 corresponding to a logical channel LC ID2, a third logical channel LC ID3 corresponding to the first logical channel LC ID3, the second terminal device can use the third logical channel LC ID2 to feed back the first logical channel LC
  • the data reception status of ID2 uses the third logical channel LC ID3 to feed back the data reception status for the first logical channel LC ID3.
  • Step 304 The second terminal device establishes a third logical channel.
  • the third logical channel can be used to feed back the second RLC status report to the first terminal device.
  • the first terminal device sends the first configuration information to the second terminal device, and the first configuration information includes the identification of the first logical channel used for sending the first data PDU of the sidelink unicast connection, And the RLC mode corresponding to the first logical channel.
  • the second terminal device may determine the RLC mode corresponding to the first logical channel when the RLC mode corresponding to the first logical channel is configured as AM.
  • the third logical channel used to feed back the second RLC status report, so that the second terminal device can generate and send the second RLC status report, can realize the automatic retransmission function in RLC and AM mode, and improve the communication process of the V2X service. Low reliability.
  • Manner 1 Obtain the first configuration information from the pre-configuration information.
  • Method 1 may be applicable to terminal equipment outside the coverage of a cell supporting V2X, and may also be applicable to UEs within the coverage of a cell supporting V2X. If the first terminal device is outside the coverage of a cell supporting V2X, the first terminal device cannot obtain the first configuration information from the access network, but may obtain the first configuration information based on the pre-configuration.
  • the specific pre-configured information can be obtained from the V2X control function CF unit of the core network, or written on the chip of the first terminal device, or written on the subscriber identity module (subscriber identity module, SIM) card.
  • subscriber identity module subscriber identity module
  • Manner 2 Acquire the first configuration information from a broadcast message sent by the first network device, that is, the first network device sends the first configuration information to the first terminal device.
  • Method 2 can be applied to terminal devices in the IDLE state or inactive state (also referred to as the third state).
  • the terminal device is within the coverage of a cell that supports V2X and supports V2X.
  • the cell of will broadcast a set of configurations suitable for the logical channel used to send data PDUs in a unicast connection.
  • Manner 3 Obtain the first configuration information from RRC dedicated signaling.
  • Method 3 may be applicable to terminal devices in connected or inactive state. That is to say, the terminal device in the connected state or the third state can adopt way 3 to obtain the first configuration information.
  • the terminal device in the connected state can directly use the first configuration information generated by the network device for the terminal device.
  • the terminal device enters the inactive state the underlying configuration is generally deleted.
  • the terminal device continues to retain and apply the first configuration information after entering the inactive state.
  • the first terminal device can use any of the above methods to obtain the first configuration information.
  • a priority order can be set, such as mode 1 to mode 3. The priority is increasing, that is, method 3 is preferentially adopted. If method 3 cannot obtain the first configuration information, method 2 is adopted, and if method 2 cannot obtain the first configuration information, method 1 is adopted. It should be understood that the embodiment of the present application does not limit the priority order of Manner 1 to Manner 3.
  • the first terminal device may use the foregoing manner 2 or manner 3 to obtain the first configuration information from the first network device to which the first terminal device belongs.
  • step 305 may also be included in FIG. 3 ⁇ Step 307.
  • Step 305 The first terminal device sends unicast connection information to the first network device.
  • the information of the unicast connection may include but is not limited to any one or more of the following: identification information of the unicast connection, quality of service (QoS) parameters of the unicast connection, and so on.
  • the QoS parameter of the unicast connection may be one or more of the identifier of the QoS flow included in the unicast connection, the QoS parameter of the QoS flow, or the QoS parameter of the data packet; it may also be the unicast connection Priority information, etc.
  • the present invention is not specifically limited.
  • Step 306 The first network device generates first configuration information based on the unicast connection information.
  • Step 307 The first network device sends first configuration information to the first terminal device.
  • step 308 may be further included in FIG. 3.
  • Step 308 The first terminal device may also send a configuration complete message to the first network device.
  • the first network device receives the configuration completion message sent by the first terminal device, where the configuration completion message may be used to instruct the first terminal device to complete the configuration based on the first configuration information, or may be used to instruct the second terminal device to complete the configuration based on the first configuration information.
  • the first configuration information sent by a terminal device completes the configuration.
  • the second terminal device determines that the third logical channel corresponding to the first logical channel of the first terminal device is used for feeding back the second RLC status report, and there may be multiple implementation manners.
  • the second terminal device may determine, according to the first configuration information, a third logical channel corresponding to the first logical channel of the first terminal device and used to feed back the second RLC status report.
  • step 302 that is, the second terminal device receives the first configuration information sent by the first terminal device
  • the second terminal device uses the information obtained from the second network device to communicate with the first terminal device.
  • the manner of feeding back the third logical channel of the second RLC status report corresponding to the first logical channel may include the following steps 309 to 311.
  • Step 309 The second terminal device sends the first configuration information to the second network device.
  • Step 310 The second network device determines second configuration information based on the first configuration information.
  • the second configuration information is used by the second terminal device to determine the third logical channel corresponding to the first logical channel of the first terminal device and used to feed back the second RLC status report; the RLC mode corresponding to the first logical channel is AM;
  • the second RLC status report is used to indicate the status of the second terminal device receiving the first data PDU of the first logical channel.
  • Step 311 The second network device sends second configuration information to the second terminal device.
  • the second configuration information may further include N, where N is used by the second terminal device to determine the identifier of the third logical channel for feeding back the second RLC status report, and N is a positive integer.
  • the second configuration information may also include a second correspondence between the identity of the fourth logical channel and the identity of the third logical channel; wherein the second correspondence is used by the second terminal device to determine that it is used to send the first terminal device to the first terminal device. And the identifier of the third logical channel of the RLC status report.
  • FIG. 3 may further include the following Steps 312-313.
  • the second terminal device may also send a first confirmation message to the second network device, the first confirmation message indicating that the second terminal device completes the configuration based on the second configuration information.
  • the second network device receives the first confirmation message sent by the second terminal device.
  • Step 313 The second terminal device may also send a second confirmation message to the first terminal device, where the second confirmation message is used to instruct the second terminal device to complete the configuration based on the first configuration information sent by the first terminal device.
  • step 304 establishes a third logical channel when a data PDU or status report needs to be sent.
  • step 304 can be in step 312 and step 313 are executed afterwards.
  • a terminal device will allocate a unique Layer 2 ID (Layer 2ID, L2ID) for each unicast connection. It can be realized based on L2ID when data PDU is transmitted between terminal devices.
  • Layer 2ID Layer 2ID
  • FIG. 4 is a schematic diagram of a data PDU structure provided in an embodiment of this application.
  • the first data PDU may include data (data), source ID (source ID, SRC ID), logical channel ID (LC ID), and destination ID (Destination ID, DST ID), where the source ID is the layer 2 ID, and
  • the LC ID is the logical channel identifier allocated by the sender device for the data
  • the DST ID corresponding to the unicast communication type is used to indicate the identity of the peer (ie, receiver) device of the sender device. If it is a broadcast communication type, the target identifier is used to indicate the service type. If it is a multicast communication type, the target ID is used to indicate the group ID. In the embodiments of this application, only unicast communication is taken as an example for description.
  • the first terminal device when the first terminal device sends the first data PDU, it can carry the source identifier as L2ID1 and the target in the first data PDU.
  • the identifier is L2ID2, so when the receiving end device receives the first data PDU, it will first determine whether the first data PDU is sent to itself through the target identifier carried in the first data PDU, that is, the receiving end device determines the first data PDU.
  • the target identifier carried in a data PDU is the same as its own layer 2 identifier, if it is the same, determine that the target identifier of the first data PDU is its own identifier, if not, determine that the data packet is not sent to itself.
  • the second terminal device receives the first data PDU, determines that the target identifier is L2ID2 and its own layer 2 identifier L2ID2 is the same, indicating that the first data PDU is sent to itself, and the second terminal device continues to process the first data PDU. Data PDU.
  • the third terminal device receives the first data PDU, and determines that the target identifier is L2ID2 and its layer 2 identifier L2ID3 is different, indicating that the first data PDU is not sent to itself, and the third terminal device does not process the The first data PDU, or directly discard the first data PDU.
  • the schematic diagram of the data PDU structure shown in Figure 4 is the data PDU structure corresponding to broadcast communication.
  • the difference from Figure 4 is that the DST ID may not be that of the peer device. All the identities allocated by the unicast connection may be only part of the information of the identities allocated by the opposite end device for the unicast connection.
  • the identifier allocated by the peer device for the unicast connection is divided into two parts, one part is called the first information, and the other part is called the second information.
  • the first information is carried in the medium access control MAC PDU
  • the second information is used for scrambling at the physical layer or carried in the side link control SCI information corresponding to the first data, that is, the information corresponding to unicast communication
  • the data PDU contains the first information, but does not contain the second information, that is, the DST ID is the first information.
  • UE2 receiving the first data PDU sent by UE1 as an example.
  • UE2 When UE2 receives the first data PDU, it needs to obtain the first information and the second information separately to synthesize a destination identifier, and then UE2 compares the identifier assigned to the unicast connection with The synthesized purpose identifier is compared, and if the comparison result is a match, the UE2 determines that the first data PDU is sent to itself; optionally, if it does not match, the first data PDU is discarded.
  • the second terminal device may determine whether the first data PDU is sent to itself by obtaining the source ID and destination ID corresponding to the data, and this application does not limit the specific determination method.
  • a set of source identifier SRC ID and target identifier DST ID can maintain one set of logical channels, or multiple sets of logical channels.
  • a set of source identification SRC ID and target identification DST ID can maintain a set of logical channels; if different sets of logical channels are used to send data PDUs and send Status report, then a set of source identification SRC ID and target identification DST ID can maintain two sets of logical channels, one set of logical channels is used to send data PDUs, and the other set of logical channels is used to send status reports.
  • the following provides several possible implementation manners for implementing the second terminal device to feed back the second RLC status report to the first terminal device.
  • Manner 1 The first terminal device and the second terminal device use the same sending configuration.
  • the second terminal device is required to follow the RLC mode configuration of the first terminal device, or the second terminal device is
  • the RLC mode configuration informs the base station, which can instruct the base station to generate a logical channel configuration for the second terminal device based on the RLC mode configuration of the first terminal device, specifically instructing the second terminal device to send the logical channel configuration of the data PDU.
  • the terminal device uses a set of source identification SRC ID and target identification DST ID to maintain a set of logical channels, that is, logical channels can be used to send data or status reports, as described below with reference to FIG. 5.
  • FIG. 5 is a schematic diagram of logical channel management provided by an embodiment of this application.
  • a set of logical channels is maintained with the source identifier SRC ID1 and the target identifier DST ID2, such as the first set of logical channels called UE1, which are used to send the first data PDU (ie Data) and the first RLC status report (status report, SR).
  • the source identifier SRC ID2 and the target identifier DST ID1 maintain another set of logical channels, such as the second set of logical channels called UE1, for receiving the second data PDU (ie, Data) and the second RLC status report SR.
  • the logical channel identifier in the first set of logical channels maintained by UE1 can be represented by 1-8, and the logical channel identifier in the second set of logical channels maintained by UE1 can be represented by 1-8, but these two sets of logical channels The logical channels are not the same.
  • a set of logical channels is maintained with the source identifier SRC ID1 and the target identifier DST ID2, for example, the first set of logical channels called UE2, which is used to receive the first data PDU (ie Data) and The first RLC status report SR.
  • the source identifier SRC ID2 and the target identifier DST ID1 maintain another set of logical channels, such as the second set of logical channels called UE2, which are used to send the second data PDU (ie, Data) and the second RLC status report SR.
  • the channels in the first set of logical channels maintained by UE2 are represented by 1-8
  • the second set of logical channels maintained by UE2 are represented by 1-8, but the two sets of logical channels are not the same logical channels. .
  • the first terminal device may establish a first logical channel for sending the first data PDU to the second terminal device.
  • the first terminal device can use the first logical channel to send the first RLC status report to the second terminal device.
  • the first RLC status report is used to instruct the first terminal device to receive the second terminal device’s second The receiving status of the data PDU.
  • the first logical channel may be any logical channel in the first set of logical channels of UE1 in FIG. 5 above.
  • the first terminal device sends a first PDU to the second terminal device through the first logical channel. Since both the data PDU and the RLC status report type PDU are sent using the first logical channel, the second terminal device is based on The source identifier and target identifier corresponding to the logical channel cannot be determined whether the type of the first PDU is a data PDU or an RLC status report. Therefore, the first indication information may be carried in the first PDU, and the first indication information is used to indicate the first indication information.
  • the type of the PDU is a data PDU or an RLC status report, so the second terminal device can quickly distinguish which type of the first PDU received according to the first indication information, and then perform subsequent processing as soon as possible.
  • the second terminal device may establish the third logical channel for the second terminal device to send a second RLC status report to the first terminal device.
  • the second terminal device may also use the third logical channel to send the second data PDU to the first terminal device.
  • the third logical channel may be any logical channel in the second set of logical channels of UE2 in FIG. 5 above.
  • the second terminal device sends the second PDU to the first terminal device through the third logical channel. Since both the data PDU and the RLC status report type PDU are sent using the third logical channel, According to the source identifier and target identifier corresponding to the logical channel, the first terminal device cannot determine whether the type of the second PDU is a data PDU or an RLC status report, so the second PDU may carry fifth indication information, the fifth indication information It is used to indicate that the type of the second PDU is a data PDU or an RLC status report, so that the first terminal device can quickly distinguish which type of the received first PDU is according to the fifth indication information, and then perform subsequent processing as soon as possible.
  • the fifth indication information may be carried on the header of the MAC PDU, or in the SCI.
  • the second terminal device determines the configuration of the logical channel used to feed back the second RLC status report according to the RLC mode of the first logical channel used to send the data PDU of the first terminal device.
  • the terminal device uses a set of source identification SRC ID and target identification DST ID to maintain two sets of logical channels, which are described below with reference to FIG. 6.
  • FIG. 6 is a schematic diagram of logical channel management provided by an embodiment of this application.
  • two sets of logical channels are maintained with the source identifier SRC ID1 and the target identifier DST ID2, one is used to send the first data PDU, and the other is used to send the first RLC status report SR;
  • the source identifier SRC ID2 and the target identifier DST ID1 maintain two sets of logical channels, one set is used to receive the second data PDU, and the other set is used to receive the second RLC status report SR.
  • two sets of logical channels are maintained with the source identifier SRC ID1 and the target identifier DST ID2, one set is used to receive the first data PDU, the other set is used to receive the first RLC status report SR; and the source identifier SRC ID2 and target identifier DST ID1 maintain two sets of logical channels, one set is used to send the second data PDU, and the other set is used to send the second RLC status report SR.
  • the first terminal device may establish a first logical channel, and the first logical channel is used to send the first data PDU to the second terminal device, and correspondingly, the second terminal device may establish a fourth logical channel , The fourth logical channel is used to receive the first data PDU from the first terminal device.
  • the first terminal device may establish a second logical channel, and the second logical channel is used to receive the second RLC status report sent by the second terminal device.
  • the second terminal device may establish a third logical channel. The logical channel is used to send the second RLC status report to the first terminal device.
  • the second terminal device may also establish a fifth logical channel, and the fifth logical channel is used to send the second data PDU to the first terminal device.
  • the second terminal device multiplexes the logical channel identifier of the first data PDU sent by the first terminal device to determine the identifier of the third logical channel for sending the second RLC status report, that is, the first logical channel and
  • the third logical channel uses the same logical channel identifier.
  • the first terminal device sends the first data PDU to the second terminal device through the first logical channel identified as i, the RLC mode corresponding to the first logical channel identified as i is AM, and i is a positive integer; , The second terminal device receives the first data PDU from the first terminal device through the fourth logical channel identified as i. After that, the second terminal device sends a second RLC status report to the first terminal device through the third logical channel identified by i, and the first terminal device receives the second RLC status report from the second terminal device through the second logical channel identified by i status report.
  • the RLC mode corresponding to logical channels 1 and 3 is AM
  • UE2 establishes logical channels 1, 3 for sending the second RLC status report
  • UE2 is used for
  • the logical channel for sending the second RLC status report and the logical channels 1 and 3 for sending the data PDU in the UE1 are two sets of logical channels with the same logical channel identifier.
  • the first logical channel is (SRC ID1, DST ID2) the logical channel LC ID2 in the corresponding Tx logical channel
  • the fourth logical channel is (SRC ID1, DST ID2)
  • the third logical channel is the logical channel LC ID2 in the corresponding Tx logical channel (SRC ID2, DST ID1)
  • the second logical channel is corresponding to (SRC ID2, DST ID1)
  • the first terminal device uses the logical channel LC ID2 in the Tx logical channel corresponding to (SRC ID1, DST ID2) to send the first data PDU to the second terminal device.
  • the RLC mode corresponding to channel LC ID2 is AM, and the second terminal device receives the first data PDU through the logical channel LC ID2 in the Rx logical channel corresponding to (SRC ID1, DST ID2).
  • the second terminal device uses (SRC ID2) , DST ID1)
  • the logical channel LC ID2 in the corresponding Tx logical channel sends the second RLC status report to the first terminal device
  • the first terminal device uses the logical channel LC ID2 in the Rx logical channel corresponding to (SRC ID2, DST ID1) Receive the second RLC status report.
  • the second terminal device sends the second data to the first terminal device, and the process of the first terminal device sending the first RLC status report to the second terminal device is similar to the foregoing process, and will not be repeated here.
  • the configuration of the third logical channel for the second terminal device to feed back the second RLC status report may be determined by the second terminal device itself, or it may be obtained from the second network by the second terminal device. Obtained by the device.
  • the second terminal device's own determination may be determined in accordance with the provisions of the protocol, including the length of the timer triggered by the RLC status report, which may be the length specified by the protocol.
  • the corresponding UE1 needs to have a configuration for receiving RLC status reports.
  • the configuration may be obtained by the first terminal device from the base station, that is, obtained in step 307, or the first terminal device may be configured based on the logical channel used to send data PDUs , Determine a set of logical channel configuration for receiving RLC status report.
  • the second terminal device implements the feedback of the second RLC status report by extending the logical channel. Specifically, the second terminal device may determine the third logic for feeding back the second RLC status report through the first correspondence. The ID of the channel.
  • the second terminal device After the second terminal device receives the first configuration information sent by the first terminal device, for the first logical channel whose RLC mode is AM, use i+N as the first logical channel identifier i whose RLC mode is AM. The identity of the third logical channel for feeding back the second RLC status report.
  • FIG. 7 is a schematic diagram of logical channel management provided by an embodiment of this application.
  • the logical channel corresponding to (SRC ID1, DST ID2) may include two parts: one part is the Tx (Data) logical channel used to transmit the first data PDU, and the other part is the logical channel used to transmit the first data PDU.
  • Tx (RLC SR) logical channel for sending the first RLC status report the two parts of the logical channel have different identifiers.
  • the logical channel corresponding to (SRC ID1, DST ID2) includes two parts: one is the Rx (Data) logical channel for receiving the first data PDU, and the other is the logical channel for receiving the first data PDU.
  • An Rx (RLC SR) logical channel of an RLC status report The two parts of the logical channel have different identifiers.
  • the logical channel corresponding to (SRC ID2, DST ID1) includes two parts: one is the Rx (Data) logical channel for receiving the second data PDU, and the other is the logical channel for receiving the second RLC state
  • the identifiers of the two logical channels are different.
  • the logical channel corresponding to (SRC ID2, DST ID1) includes two parts: one part is the Tx (Data) logical channel used to transmit the second data PDU, and the other part is the logical channel used to transmit the second data PDU.
  • Two Tx (RLC SR) logical channels of the RLC status report the two parts of the logical channel have different identifiers.
  • the first terminal device sends the first data PDU to the second terminal device through the first logical channel identified as i, and the RLC mode corresponding to the first logical channel identified as i is AM, and accordingly, The second terminal device receives the first data PDU from the first terminal device through the fourth logical channel identified as i, where i is a positive integer.
  • the second terminal device sends the second RLC status report to the first terminal device through the third logical channel identified as i+N, and correspondingly, the first terminal device receives the second RLC status report through the second logical channel identified as i+N The second RLC status report from the second terminal device, where N is a positive integer.
  • the first terminal device can obtain the N. For example, it can be determined by the first terminal device itself, or it can be received from the second terminal device. For example, the second terminal device sends it to the first terminal through control signaling. For example, after being determined by the second network device, it is sent to the second terminal device, and the second terminal device sends a second confirmation message to the first terminal device.
  • the N may also be the first terminal device to which the first terminal device belongs.
  • a network device receives.
  • the second terminal device can obtain the N. For example, it can be determined by the second terminal device itself, or it can be received from the first terminal device. For example, the first terminal device sends it to the second terminal device through control signaling. The N may also be received from the second network device to which the second terminal device belongs.
  • the first configuration information includes (SRC ID1, DST ID2) corresponding to a part of the logical channel in the Tx (Data) logical channel used to send the first data PDU
  • the RLC mode corresponding to LC ID1 is AM
  • UE2 uses a part of (SRC ID2, DST ID1) corresponding to the logical channel LC ID20 in the Tx (RLC SR) logical channel for sending the second RLC status report for the second RLC status report feedback of.
  • the first terminal device sends the first data PDU to the second terminal device through the first logical channel identified by i, and the RLC mode corresponding to the first logical channel identified by i is AM
  • the second terminal device receives the first data PDU from the first terminal device through the fourth logical channel identified as i.
  • the first terminal device receives the second RLC status report from the second terminal device through the second logical channel identified as K.
  • the K in the first terminal device is determined according to the first correspondence, and the first correspondence is used to indicate the first The corresponding relationship between the identifier i of a logical channel and the identifier K of the second logical channel; the second terminal device sends the second RLC status report to the first terminal device through the third logical channel with the identifier K, and the K in the second terminal device
  • the second correspondence includes the correspondence between the identity i of the fourth logical channel and the identity K of the third logical channel, and K is a positive integer. It should be noted that the values of i and K can be set according to actual needs and are not specifically limited.
  • the first terminal device can obtain the first correspondence. For example, it can be determined by the first terminal device itself, or it can be received from the second terminal device. For example, the second terminal device sends it to The first terminal device, for example, is determined by the second network device and sent to the second terminal device, and the second terminal device forwards it to the first terminal device.
  • the first corresponding relationship may also be from the first terminal device to which the first terminal device belongs.
  • Network equipment receives.
  • the second terminal device can obtain the second correspondence. For example, it can be determined by the second terminal device itself, or it can be received from the first terminal device.
  • the first terminal device can send to the second terminal device through control signaling.
  • the first correspondence relationship may also be received from the second network device to which the second terminal device belongs.
  • the first correspondence includes that the identity 1 of the first logical channel corresponds to the identity 12 of the second logical channel, and the identity 3 of the first logical channel corresponds to the identity 14 of the second logical channel. If the first terminal device uses the identity 1 The first data PDU sent by the corresponding first logical channel will use the second logical channel corresponding to ID 12 to receive the second RLC status report; if the first terminal device uses the first data sent by the first logical channel corresponding to ID 3 PDU, the second logical channel corresponding to the identifier 14 will be used to receive the second RLC status report.
  • the first terminal device is used as the transmitting end device to send the first data PDU, and the second terminal device is required to configure the third logical channel for feeding back the second RLC status report.
  • the first terminal device also needs Allocate a second logical channel for receiving the second RLC status report.
  • the second terminal device uses a logical channel specifically to feed back the second RLC status report.
  • a third logical channel is used to feed back all the second RLC status reports corresponding to the first data PDUs sent by the first logical channel.
  • the third logical channel may be fixed or configurable. If it is configurable, the specific configuration mode can refer to the configuration mode of N in mode two.
  • the first terminal device maintains one or more first logical channels, and the first terminal device may also send one or more first logical channels to the second terminal device through the one or more first logical channels.
  • a data PDU the first terminal device can receive the second RLC status report corresponding to one or more first logical channels from the second terminal device through the second logical channel; the second RLC status report includes the identification of the first logical channel .
  • the second terminal device maintains one or more fourth logical channels, and the second terminal device receives one or more first terminal devices from the first terminal device through the one or more fourth logical channels.
  • Data PDU each fourth logical channel receives the first PDU sent from the first logical channel corresponding to the fourth logical channel, the RLC mode corresponding to the first logical channel is AM, and the second terminal device sends the message to The first terminal device sends a second RLC status report corresponding to one or more first logical channels, and the second RLC status report includes the identifier of the first logical channel.
  • FIG. 8 is a schematic diagram of logical channel management provided by an embodiment of this application.
  • the logical channel corresponding to (SRC ID1, DST ID2) includes two parts: one part is the Tx (Data) logical channel used to send the first data PDU, including multiple first data PDUs.
  • the logical channel corresponding to (SRC ID2, DST ID1) includes two parts: one part is the Rx (Data) logical channel used to receive the first data PDU, including multiple third logical channels, It can be represented by 1-8, and the other part is the Rx (RLC SR) logical channel for receiving the first RLC status report.
  • Rx Data
  • RLC SR Rx SR
  • the logical channel corresponding to (SRC ID2, DST ID1) includes two parts: one part is the Rx (Data) logical channel for receiving the second data PDU, including multiple fourth logical channels, which can Denoted by 1-8, the other part is the Rx (RLC SR) logical channel for receiving the second RLC status report, including a logical channel 21.
  • Rx Data
  • RLC SR Rx SR
  • the logical channel corresponding to (SRC ID2, DST ID1) includes two parts: one part is the Tx (Data) logical channel used to send the second data PDU, including multiple fourth logical channels , Which can be represented by 1-8, and the other part is the Tx (RLC SR) logical channel used to send the second RLC status report, including a second logical channel 21.
  • Tx Data
  • RLC SR Tx SR
  • the first terminal device uses (SRC ID1, DST ID2) Corresponding part of the Tx (Data) logical channel used to send the first data PDU, the first logical channel 1, 2, and 3 with the RLC mode as AM sends the first data PDU to the second terminal device
  • the second terminal device uses a part of (SRC ID1, DST ID2) corresponding to the Tx (RLC SR) logical channel 21 for sending the second RLC status report to send the second RLC status report to the first terminal device.
  • a terminal device uses a part of (SRC ID2, DST ID1) corresponding to the Rx (RLC SR) logical channel 21 for receiving the second RLC status report to receive the second RLC status report from the second terminal device.
  • the first terminal device can identify the first logical channel for which the first data PDU is sent by the second RLC status report, and can introduce a logical channel identifier indication information in the second RLC status report to inform the first terminal device
  • the second RLC status report is for which first logical channel the status of the first data PDU is sent.
  • the first terminal device sends the first data PDU through the logical channel identifier 1. See FIG. 9, which is provided in this embodiment of the application. Schematic diagram of another logical channel management. As shown in FIG. 9, the second RLC status report sent by the second terminal device to the first terminal device through the logical channel 21 carries indication information for indicating the logical channel identifier 1.
  • FIG. 10 is a schematic diagram of an interaction process between terminals provided in an embodiment of this application.
  • the interaction process includes the following steps:
  • Step 1001 The first terminal device sends at least one first data PDU to the second terminal device through the first logical channel.
  • Step 1002 The second terminal device receives at least one first data PDU from the first terminal device through the fourth logical channel.
  • Step 1003 The second terminal device determines that at least one first data PDU satisfies the status report trigger condition, and generates a second RLC status report.
  • the second RLC status report includes the first sequence number corresponding to the lost first data PDU, or, A sequence number and a second sequence number corresponding to the first data PDU successfully received.
  • Step 1004 The second terminal device sends a second RLC status report to the first terminal device through the third logical channel.
  • Step 1005 The first terminal device receives the second RLC status report from the second terminal device through the second logical channel.
  • Step 1006 The first terminal device parses the second RLC status report to obtain the analysis result; the analysis result includes the first sequence number corresponding to the lost first data PDU, or the first sequence number and the first sequence number corresponding to the successfully received first data PDU Two serial number.
  • Step 1007 The first terminal device determines the first data PDU corresponding to the first sequence number based on the analysis result.
  • Step 1008 The first terminal device retransmits the first data PDU corresponding to the first sequence number to the second terminal device through the first logical channel.
  • the status report trigger conditions may include but are not limited to the following three items:
  • the first item is to periodically trigger the feedback of the second RLC status report.
  • the third item is the seventh indication information carried in the data PDU.
  • the seventh indication information is used to instruct the second terminal device to feed back the second RLC status report when the seventh indication information is received.
  • the seventh indication information may be polling indication information.
  • the schematic diagram of the interaction between the first terminal device and the second terminal device shown in FIG. 10 may be applicable to the interaction between the two terminals involved in any of the foregoing embodiments.
  • the second terminal device and the second terminal device maintain two sets of data PDUs and status reports.
  • the terminal device implements sending and receiving operations through two different RLC entities, so the interaction between the two RLC entities is involved in the terminal.
  • the first terminal device includes a first RLC entity corresponding to the first logical channel and a second RLC entity corresponding to the second logical channel
  • the second terminal device includes a third RLC entity corresponding to the fourth logical channel. The RLC entity and the fourth RLC entity corresponding to the third logical channel.
  • the first logical channel of the first RLC entity sends at least one first data PDU to the second terminal device.
  • the third RLC entity receives at least one first data PDU from the first terminal device through the fourth logical channel.
  • the third RLC entity determines the first sequence number corresponding to the lost first data PDU and the second sequence number corresponding to the first data PDU successfully received.
  • the second terminal device can generate the second RLC status report in two possible ways.
  • the third RLC entity generates the second RLC status report, which can be specifically implemented through the following steps S4 to S5.
  • the third RLC entity generates a second RLC status report according to the first sequence number and/or the second sequence number.
  • step S4 if the third RLC entity generates the second RLC status report according to the first sequence number, then in step S5 the third RLC entity sends the second RLC status report to the fourth RLC entity including the first sequence number.
  • step S4 if the third RLC entity generates the second RLC status report according to the first sequence number and the second sequence number, then in step S5 the third RLC entity sends the second RLC status report to the fourth RLC entity, including the first sequence Number and second serial number.
  • step S4 if the third RLC entity generates the second RLC status report according to the second sequence number, then in step S5 the third RLC entity sends the second RLC status report to the fourth RLC entity including the second sequence number.
  • the second RLC status report may also carry the first logical channel identifier.
  • the following uses the fourth RLC entity to generate the second RLC status report as an example to describe the process of triggering the status report.
  • the third RLC entity performs the operation of receiving at least one first data PDU, for example, it may include reordering the at least one first data PDU, and start a timer when a packet loss is found, when When the timer expires, the third RLC entity sends to the fourth RLC entity the indication information for instructing the fourth RLC entity to generate the second RLC status report, and the indication information carries the information corresponding to the missing first data PDU determined by the third RLC entity
  • the first sequence number and the second sequence number corresponding to the successfully received that is, the received first data PDU
  • the fourth RLC entity performs the operation of receiving at least one first data PDU, for example, it may include reordering the at least one first data PDU, and start a timer when a packet loss is found, when When the timer expires, the third RLC entity sends to the fourth RLC entity the indication information for instructing the fourth RLC entity to generate the second RLC status report, and the indication information carries the information corresponding to the missing first
  • the third RLC entity performs the operation of receiving at least one first data PDU.
  • the third RLC entity can send to the fourth RLC entity indication information for instructing the fourth RLC entity to generate the second RLC status report, and the indication information carries the third RLC entity.
  • the fourth RLC entity generates the second RLC status report, for example, through the following steps S6 to S7.
  • the third RLC entity sends the first sequence number and/or the second sequence number to the fourth RLC entity.
  • the fourth RLC entity generates a second RLC status report according to the first sequence number; or, the fourth RLC entity generates a second RLC status report according to the second sequence number; or, the fourth RLC entity generates a second RLC status report according to the first sequence number and The second sequence number generates the second RLC status report.
  • the fourth RLC entity sends the second RLC status report to the first terminal device through the third logical channel.
  • the second RLC entity receives the second RLC status report from the second terminal device through the second logical channel.
  • the second RLC entity may parse the second RLC status report.
  • the following steps S10 to S11 may be included.
  • the second RLC entity parses the second RLC status report to obtain the analysis result.
  • the second RLC entity determines the first data PDU corresponding to the first sequence number based on the analysis result.
  • step S11 there may be the following two optional implementation manners: in one manner, the second RLC entity may send the first sequence number and/or the second sequence number to the first RLC entity; in the other manner , The second RLC entity sends the first sequence number to the first RLC entity, and sends the second sequence number to the first PDCP entity corresponding to the first RLC entity, and the first PDCP entity may send the second sequence number corresponding to the second sequence number. Deleting one data PDU can reduce the amount of the first PDCP buffer.
  • the second RLC status report may also be parsed by the first RLC entity.
  • the following steps S12 to S13 may be included.
  • the second RLC entity may send a second RLC status report to the first RLC entity.
  • the first RLC entity retransmits the first data PDU corresponding to the first sequence number to the second terminal device through the first logical channel.
  • the first RLC entity may send to the first PDCP entity for instructing the first PDCP entity to delete the first data corresponding to the second sequence number PDU information.
  • a communication scheme between two RLC entities within a terminal can be provided, for example, a communication between a first RLC entity for sending a first data PDU and a second RLC entity for receiving a second RLC status report
  • the interaction is another example, the interaction between a third RLC entity for receiving data PDUs and a fourth RLC entity for sending RLC status reports.
  • unicast communication is performed based on the unidirectional bearer on the side link.
  • the bidirectional bearer is introduced in the embodiment of the present application for unicast communication, which is compared with the aforementioned unidirectional bearer
  • the advantages of the two-way bearer of the designed scheme are that the internal overhead of the terminal is smaller, the implementation is simpler, and there is no need for internal maintenance of many logical channels, and no interaction between internal RLC entities.
  • the first terminal device sends the first configuration information to the second terminal device, and the first configuration information includes the receiving configuration and the sending configuration.
  • the second terminal device may perform the configuration of the first configuration information, or may send the first configuration information to the second network device, and the second network device may determine based on the first configuration information And send the second configuration information to the second terminal device.
  • the second terminal device may also directly execute the configuration of the first configuration information, and then report the configuration result to the second network device.
  • the first terminal device and the second terminal device maintain a set of logical channels for a unicast connection, without distinguishing between sending logical channels and receiving logical channels.
  • the second terminal device may also send the first configuration information to the first terminal device, that is, the first terminal device adopts the configuration of the unicast connection of the second terminal device.
  • the first terminal device in addition to using the first logical channel to send the first RLC status report and the first data PDU, the first terminal device also uses the first logical channel to receive the second RLC status report and the second data PDU from the second terminal device. That is, after the first terminal device and the second terminal device are configured, refer to FIG. 11, which is a schematic diagram of a logical channel management provided by an embodiment of this application.
  • the first terminal device internally maintains a set of (SRC ID1, DST ID2) corresponding logical channels for sending the first data PDU and the first RLC status report, and receiving the second data PDU and the second RLC status report.
  • the first terminal device also maintains a set of (SRC ID2, DST ID1) corresponding logical channels for receiving the first data PDU and the first RLC status report, and sending the second data PDU and the second RLC status report.
  • a unicast connection is identified by the identifiers assigned to the unicast connection by two terminal devices.
  • the first terminal device is assigned the identifier 1 for the unicast connection
  • the second terminal device is the unicast connection.
  • the allocation identifier 2 of the broadcast connection is used.
  • the broadcast connection ⁇ 2, 1> is the same unicast connection.
  • a logical channel identifier can uniquely identify a logical channel in a unicast connection.
  • the terminal device maintains a set of logical channels for each unicast connection, and each unicast connection corresponds to two identification methods, that is, instead of maintaining a set of logical channels for each destination identification when sending, Distinguish between the received logical channel and the sent logical channel, so that the RLC status report can be generated and sent, and the automatic retransmission function in the RLC AM mode can be completed, thereby improving the reliability of the V2X service communication process.
  • the communication method provided in the embodiments of this application is not only applicable to unicast communication, but also applicable to multicast communication.
  • the first terminal device can send the first configuration information to all devices in the group, and all devices in the group execute Such as the configuration process of the second terminal device in the embodiment of the present application.
  • first terminal device, the second terminal device, the first network device, and the second network device in the embodiments of the present application can execute various methods of the foregoing embodiments of the present application, that is, the specific working processes of the following various products can be Refer to the corresponding process in the foregoing method embodiment.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1200 includes a transceiver module 1201 and a processing module 1202.
  • the communication apparatus 1200 may correspond to the first terminal device in the above method embodiment, for example, it may be the first terminal device or a chip configured in the first terminal device.
  • the communication apparatus 1200 can perform each step performed by the first terminal device in FIG. 3 or FIG. 10.
  • the processing module 1202 is configured to obtain first configuration information, where the first configuration information includes: the identifier of the first logical channel used to send the first data PDU of the sidelink unicast connection, and the wireless channel corresponding to the first logical channel; Link control RLC mode; unicast connection is established between the first terminal device and the second terminal device;
  • the transceiver module 1201 is configured to send the first configuration information to the second terminal device through the side link.
  • the RLC mode corresponding to the first logical channel is the RLC confirmation mode.
  • the transceiver module 1201 is further configured to use the first logical channel to send a first RLC status report to the second terminal device, and the first RLC status report is used to instruct the first terminal device to receive the second terminal device The receiving status of the second data PDU.
  • the transceiver module 1201 is further configured to send a first PDU to the second terminal device through the first logical channel, the first PDU carries first indication information, and the first indication information is used to indicate the first
  • the type of PDU is data PDU or RLC status report.
  • the processing module 1202 is also used to establish a first logical channel; the first logical channel is used to send the first data PDU to the second terminal device; the second logical channel is established; the second logical channel is used To receive the second RLC status report sent by the second terminal device.
  • the transceiver module 1201 is further configured to send a first data PDU to the second terminal device through the first logical channel identified as i, and the RLC mode corresponding to the first logical channel identified as i is AM , I is a positive integer; the second RLC status report from the second terminal device is received through the second logical channel identified as i.
  • the transceiver module 1201 is further configured to send the first data PDU to the second terminal device through the first logical channel identified as i; i is a positive integer; through the second logical channel identified as i+N The logical channel receives the second RLC status report from the second terminal device, and N is a positive integer.
  • N is determined in the following manner: determined by the first terminal device; alternatively, received from the second terminal device; alternatively, received from the first network device.
  • the transceiver module 1201 is further configured to send the first data PDU to the second terminal device through the first logical channel identified as i; to receive data from the second terminal through the second logical channel identified as K
  • K is a positive integer
  • K is determined according to the first correspondence, and the first correspondence is used to indicate the correspondence between the identifier i of the first logical channel and the identifier K of the second logical channel.
  • the first correspondence relationship is determined in the following manner: determined by the first terminal device; or received from the second terminal device; or received from the first network device to which the first terminal device belongs.
  • the communication apparatus 1200 maintains one or more first logical channels; the transceiver module 1201 is further configured to send one or more first logical channels to the second terminal device through one or more first logical channels.
  • the first logical channel is also used for the first terminal device to receive the second RLC status report and the second data PDU from the second terminal device.
  • the processing module 1202 is configured to obtain the first configuration information from the pre-configuration information by the first terminal device; or, the first terminal device obtains the first configuration from a broadcast message sent by the first network device Information; or, the first terminal device obtains the first configuration information from the RRC dedicated signaling.
  • the transceiver module 1201 is further configured to send a configuration complete message to the first network device, where the configuration complete message is used to instruct the first terminal device to complete the configuration based on the first configuration information, or to indicate the second The terminal device completes the configuration based on the first configuration information sent by the first terminal device.
  • the first configuration information may further include a communication mode corresponding to the first logical channel, and the communication mode is used to indicate a side link resource allocation mode corresponding to the first logical channel.
  • the first configuration information may further include priority information corresponding to the first logical channel, and the priority information is used to indicate the scheduling priority corresponding to the first logical channel.
  • the transceiver module 1201 is further configured to send at least one first data PDU to the second terminal device through the first logical channel; to receive the second RLC status from the second terminal device through the second logical channel Report; processing module 1202, which is also used to parse the second RLC status report to obtain the analysis result; the analysis result includes the first sequence number corresponding to the lost first data PDU, or the first sequence number corresponds to the first data PDU successfully received
  • the transceiver module 1201 is also used to retransmit the first data PDU corresponding to the first serial number to the second terminal device through the first logical channel based on the analysis result.
  • the communication device 1200 includes a first RLC entity corresponding to the first logical channel and a second RLC entity corresponding to the second logical channel; the transceiver module 1201 is also used for the second RLC entity to pass through the second logical channel.
  • the channel receives the second RLC status report from the second terminal device; the second RLC entity parses the second RLC status report to obtain the analysis result; the second RLC entity sends the first sequence number to the first RLC entity; the first RLC entity passes the A logical channel retransmits the first data PDU corresponding to the first sequence number to the second terminal device.
  • the transceiver module 1201 is further configured to send the second RLC entity to the first RLC entity.
  • RLC status report ; processing module 1202, used for the first RLC entity to parse the second RLC status report to obtain the analysis result; transceiver module 1201, used for the first RLC entity to report to the second terminal device through the first logical channel based on the analysis result Retransmit the first data PDU corresponding to the first sequence number.
  • the foregoing transceiver module may include a sending module and a receiving module, and may be the same transceiver module.
  • the communication device 1200 may also include other modules, which are not limited in this application.
  • the communication device 1200 may correspond to the second terminal device in the above method embodiment, for example, it may be the second terminal device or a chip configured in the second terminal device.
  • the communication apparatus 1200 can perform various steps performed by the second terminal device in FIG. 3 or FIG. 10.
  • the transceiver module 1201 is configured to receive first configuration information from a first terminal device.
  • the first configuration information includes: the identifier of the first logical channel of the sidelink unicast connection for sending the first data PDU, and the first The radio link control RLC mode corresponding to the logical channel; the unicast connection is established between the first terminal device and the second terminal device;
  • the processing module 1202 is configured to determine a third logical channel corresponding to the first logical channel of the first terminal device for feeding back the second RLC status report, the RLC mode corresponding to the first logical channel is AM, and the second RLC status report is used To instruct the second terminal device to receive the state of the first data PDU of the first logical channel; establish a third logical channel.
  • the processing module 1202 is further used to establish a third logical channel; the third logical channel is also used to send the second data PDU to the first terminal device by the second terminal device.
  • the transceiver module 1201 is further configured to send a second PDU to the first terminal device through a third logical channel; the second PDU carries fifth indication information, and the fifth indication information is used to indicate the second
  • the type of PDU is data PDU or RLC status report.
  • the processing module 1202 is further configured to establish a fourth logical channel; the fourth logical channel is configured to receive the first data PDU from the first terminal device; establish a third logical channel; and the third logical channel Used to send a second RLC status report to the first terminal device.
  • the processing module 1202 is further configured to establish a fifth logical channel; the fifth logical channel is used to send the second data PDU to the first terminal device.
  • the transceiver module 1201 is further configured to receive the first data PDU from the first terminal device through the fourth logical channel identified as i, where the first data PDU is the first terminal device through the identification i
  • the RLC mode corresponding to the first logical channel identified as i is AM; i is a positive integer; the second RLC status report is sent to the first terminal device through the third logical channel identified as i.
  • the transceiver module 1201 is further configured to receive the first data PDU from the first terminal device through the fourth logical channel identified as i; the first data PDU is the first terminal device through the identification i
  • the RLC mode corresponding to the first logical channel identified as i is AM; i is a positive integer;
  • the second terminal device sends the second RLC status report to the first terminal device through the third logical channel identified as i+N, where N is a positive integer.
  • N is determined in the following manner: determined by the second terminal device; or, received from the first terminal device; or, received from the second network device.
  • the transceiver module 1201 is further configured to receive the first data PDU from the first terminal device through the fourth logical channel identified as i; the first data PDU is the first terminal device through the identification i
  • the RLC mode corresponding to the first logical channel identified as i is AM; i is a positive integer; the second RLC status report is sent to the first terminal device through the third logical channel identified as K, K Is a positive integer; K is determined according to the second correspondence, and the second correspondence includes the correspondence between the identity i of the fourth logical channel and the identity K of the third logical channel.
  • the second correspondence is determined in the following manner: determined by the second terminal device; or received from the first terminal device.
  • the second terminal device maintains one or more fourth logical channels, where M is an integer; the transceiver module 1201 is further configured to receive data from the first terminal device through one or more fourth logical channels One or more first data PDUs; each fourth logical channel receives the first PDU sent from the first logical channel corresponding to the fourth logical channel; the RLC mode corresponding to the first logical channel is AM; through the third logical channel The channel sends a second RLC status report corresponding to one or more first logical channels to the first terminal device, and the second RLC status report includes the first logical channel identifier.
  • the transceiver module 1201 is further configured to send first configuration information to the second network device and receive second configuration information from the second network device, the second configuration information is used for the second terminal device Determine the third logical channel corresponding to the first logical channel of the first terminal device and used to feed back the second RLC status report; or, the processing module 1202 is further configured to determine the third logical channel with the first terminal device according to the first configuration information. A third logical channel corresponding to a logical channel used to feed back the second RLC status report.
  • the transceiver module 1201 is further configured to send a first confirmation message to the second network device, the first confirmation message instructing the second terminal device to complete the configuration based on the second configuration information.
  • the third logical channel is also used to receive the first data PDU and the first RLC status report from the first terminal device.
  • the transceiver module 1201 is further configured to send a second confirmation message to the first terminal device, and the second confirmation message is used to instruct the second terminal device to complete based on the first configuration information sent by the first terminal device. Configuration.
  • the transceiver module 1201 is further configured to receive at least one first data PDU from the first terminal device through the fourth logical channel; the processing module 1202 is further configured to determine that the at least one first data PDU satisfies The status report trigger condition is to generate a second RLC status report.
  • the second RLC status report includes the first sequence number corresponding to the lost first data PDU, or the first sequence number and the second sequence number corresponding to the successfully received first data PDU. Serial number;
  • the transceiver module 1201 is also used to send a second RLC status report to the first terminal device through the third logical channel.
  • the communication device 1200 includes a third RLC entity corresponding to the fourth logical channel and a fourth RLC entity corresponding to the third logical channel; the transceiver module 1201 is also used for the third RLC entity to pass the fourth logical channel
  • the channel receives at least one first data PDU from the first terminal device; the processing module 1202 is also used for the third RLC entity to determine the first sequence number corresponding to the lost first data PDU and the first sequence number corresponding to the successfully received first data PDU The second sequence number; the third RLC entity generates a second RLC status report according to the first sequence number and/or the second sequence number; the transceiver module 1201 is also used for the fourth RLC entity to send the first The terminal device sends the second RLC status report.
  • the transceiver module 1201 is further used for after the third RLC entity determines the first sequence number corresponding to the lost first data PDU and the second sequence number corresponding to the successfully received first data PDU,
  • the third RLC entity sends the first sequence number to the fourth RLC entity;
  • the fourth RLC entity generates the second RLC status report according to the first sequence number; or the third RLC entity sends the second sequence number to the fourth RLC entity;
  • fourth The RLC entity generates the second RLC status report according to the second sequence number; or, the third RLC entity sends the first sequence number and the second sequence number to the fourth RLC entity;
  • the fourth RLC entity generates the second RLC status report according to the first sequence number .
  • the status report trigger condition includes any one of the following: periodically triggering the feedback of the second RLC status report; and the timer expires, and the timer is used for the first packet loss from at least one first data PDU
  • the data PDU starts timing; the seventh indication information carried in the data PDU, the seventh indication information is used to instruct the communication device 1200 to feed back the second RLC status report when the seventh indication information is received.
  • the foregoing transceiver module may include a sending module and a receiving module, and may be the same transceiver module.
  • the communication device 1200 may also include other modules, which are not limited in this application.
  • the communication device 1200 may correspond to the method of the first terminal device or the second terminal device in the foregoing method embodiment, and the foregoing and other management operations and/or the various modules/modules in the communication device 1200
  • the or functions are respectively to implement the corresponding steps of the method of the first terminal device or the second terminal device in the foregoing method embodiment, and therefore, the beneficial effects in the foregoing method embodiment can also be achieved.
  • details are not described here.
  • each module/module in the communication device 1200 can be implemented in the form of software and/or hardware, which is not specifically limited.
  • the communication device 1200 is presented in the form of functional modules.
  • the "module” here may refer to application-specific integrated circuits ASIC, circuits, processors and memories that execute one or more software or firmware programs, integrated logic circuits, and/or other devices that can provide the above-mentioned functions.
  • the communication apparatus 1200 of the above solution may have the function of implementing the corresponding steps of the first terminal device or the second terminal device in the above method; the function may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions; for example, the sending module can be replaced by a transmitter, the receiving module can be replaced by a receiver, and other modules, such as determining modules, can be replaced by a processor and executed respectively. Transceiving operations and related processing operations in each method embodiment.
  • the communication device in FIG. 12 may also be a chip or a chip system, for example, a system on chip (system on chip, SoC).
  • the receiving module and the sending module may be the transceiver circuit of the chip, which is not limited here.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of the application.
  • the communication device 1300 includes a transceiver module 1301 and a processing module 1302.
  • the communication device 1300 may correspond to the first network device in the above method embodiment, for example, it may be the first network device or a chip configured in the first network device.
  • the communication apparatus 1300 can perform various steps performed by the first network device in FIG. 3 or FIG. 10.
  • the processing module 1302 is used to determine the first configuration information.
  • the transceiver module 1301 is configured to send first configuration information to the first terminal device; the first configuration information includes the identifier of the first logical channel used to send the first data PDU on the sidelink unicast connection, and the first logical channel The corresponding radio link control RLC mode; receiving the configuration complete message sent by the first terminal device, the configuration complete message is used to instruct the first terminal device to complete the configuration based on the first configuration information, or to instruct the second terminal device to complete the configuration based on the first terminal device The first configuration information sent by the device completes the configuration.
  • the foregoing transceiver module may include a sending module and a receiving module, and may be the same transceiver module, and the communication device 1300 may include other modules in addition to the foregoing transceiver module, which is not limited in this application.
  • the communication device 1300 may correspond to the second network device in the above method embodiment, for example, it may be the second network device or a chip configured in the second network device.
  • the communication device 1300 can perform various steps performed by the second network device in FIG. 3 or FIG. 10.
  • the transceiver module 1301 is configured to receive the first configuration information sent by the first terminal device; the first configuration information includes the identification of the first logical channel used to send the first data PDU on the sidelink unicast connection, and the first logical The radio link control RLC mode corresponding to the channel;
  • the processing module 1302 is configured to determine the second configuration information based on the first configuration information; the second configuration information is used by the second terminal device to determine the second RLC status report corresponding to the first logical channel of the first terminal device.
  • the third logical channel; the RLC mode corresponding to the first logical channel is AM; the second RLC status report is used to indicate the status of the second terminal device receiving the first data PDU of the first logical channel.
  • the transceiver module 1301 is also used to send second configuration information to the second terminal device.
  • the second network device receives a first confirmation message sent by the second terminal device, where the first confirmation message instructs the second terminal device to complete the configuration based on the second configuration information.
  • the second configuration information may further include N.
  • N is used by the second terminal device to feed back the identifier of the third logical channel of the second RLC status report, and N is a positive integer.
  • the second configuration information may further include a second correspondence between the identity of the fourth logical channel and the identity of the third logical channel; wherein the second correspondence is used by the second terminal device to determine The identifier of the third logical channel of the first RLC status report is sent to the first terminal device.
  • the foregoing transceiver module may include a sending module and a receiving module, and may be the same transceiver module, and the communication device 1300 may include other modules in addition to the foregoing transceiver module, which is not limited in this application.
  • the communication device 1300 may correspond to the method of the first network device or the second network device in the foregoing method embodiment, and the foregoing and other management operations and/or the various modules/modules in the communication device 1300
  • the or functions are respectively to implement the corresponding steps of the method of the first network device or the second network device in the foregoing method embodiment, and therefore, the beneficial effects in the foregoing method embodiment can also be achieved.
  • details are not described here.
  • each module/module in the communication device 1300 may be implemented in the form of software and/or hardware, which is not specifically limited.
  • the communication device 1300 is presented in the form of functional modules.
  • the "module” here may refer to application-specific integrated circuits ASIC, circuits, processors and memories that execute one or more software or firmware programs, integrated logic circuits, and/or other devices that can provide the above-mentioned functions.
  • the communication device 1300 of the foregoing solution may have a function of implementing the corresponding steps of the first network device or the second network device in the foregoing method; the function may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions; for example, the sending module can be replaced by a transmitter, the receiving module can be replaced by a receiver, and other modules, such as determining modules, can be replaced by a processor and executed respectively. Transceiving operations and related processing operations in each method embodiment.
  • the communication device in FIG. 13 may also be a chip or a chip system, such as a system on chip (system on chip, SoC).
  • the receiving module and the sending module may be the transceiver circuit of the chip, which is not limited here.
  • FIG. 14 is a schematic structural diagram of another communication device provided in an embodiment of this application.
  • the communication apparatus may be a terminal device 1400, for example, a first terminal device or a second terminal device, which is applied to the system as shown in FIG. 1, and executes the first terminal device or the second terminal device in the foregoing method embodiment.
  • the function of the device It can also be a chip in a terminal device, or a vehicle-mounted communication module, a vehicle-mounted communication chip, and so on.
  • the terminal device 1400 includes a processor 1401 and a transceiver 1402.
  • the terminal device 800 may further include a memory 1403.
  • the processor 1401, the transceiver 1402, and the memory 1403 can communicate with each other through internal connection paths to transfer control and/or data signals.
  • the memory 1403 is used to store computer programs, and the processor 1401 is used to download from the memory 1403. Call and run the computer program to control the transceiver 1402 to send and receive signals.
  • the terminal device 1400 may further include an antenna (not shown in FIG. 14) for sending uplink data or uplink control signaling output by the transceiver 1402 through a wireless signal.
  • the foregoing processor 1401 and the memory 1403 may be combined into one processing device, or the communication device includes the memory 1403.
  • the processor 1401 is configured to execute the program code stored in the memory 1403 to implement the foregoing functions.
  • the memory 1403 may also be integrated in the processor 1401 or independent of the processor 1401.
  • the processor 1401 may correspond to the processing module 1202 in the communication device 1200.
  • the aforementioned transceiver 1402 may correspond to the transceiver module 1201 in FIG. 12, and may also be referred to as a communication unit.
  • the transceiver 1402 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the transceiver 1402 may also be an interface circuit used in a communication device or a communication chip to transmit and receive information with the outside world.
  • the terminal device 1400 shown in FIG. 14 can implement each process involving the first terminal device or the second terminal device in the method embodiments shown in FIGS. 3 and 10.
  • the operation and/or function of each module in the terminal device 1400 are respectively for implementing the corresponding process in the foregoing method embodiment.
  • the above-mentioned processor 1401 can be used to execute the actions implemented by the first terminal device or the second terminal device described in the previous method embodiment, and the transceiver 1402 can be used to execute the first terminal device to the first terminal device described in the previous method embodiment.
  • An action sent or received by a network device please refer to the description in the previous method embodiment, which will not be repeated here.
  • the foregoing terminal device 1400 may further include a power source, which is used to provide power to various devices or circuits in the terminal device.
  • the terminal device 1400 may also include one or more of an input unit, a display unit, an audio circuit, a camera, and a sensor.
  • the audio circuit may also include a speaker, Microphone etc.
  • terminal device 1400 may also be the second terminal device in any of the foregoing method embodiments to implement the steps or functions of the second terminal device in any of the foregoing implementation manners.
  • FIG. 15 is a schematic structural diagram of another communication device provided in an embodiment of the application, and may be a schematic structural diagram of a network device, for example.
  • the network device 1500 can be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiment.
  • the network device 1500 may include one or more radio frequency units, such as a remote radio unit (RRU) 1510 and one or more baseband units (BBU) (also It can be called a digital unit (DU) 1520.
  • RRU 1510 may be called a communication unit or a transceiver unit, and corresponds to the transceiver module 1301 in FIG. 13.
  • the transceiver unit 1510 may also be called a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 1511 and a radio frequency unit 1512.
  • the transceiver unit 1510 may include a receiving unit and a transmitting unit.
  • the receiving unit may correspond to a receiver (or called a receiver, a receiving circuit), and the transmitting unit may correspond to a transmitter (or called a transmitter, a transmitting circuit), and
  • the transceiver unit 1510 may be implemented by the same module, such as a transceiver circuit module.
  • the RRU 1510 part is mainly used for receiving and sending of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending first information to terminal equipment.
  • the 1520 part of the BBU is mainly used for baseband processing and control of network equipment.
  • the RRU 1510 and the BBU 1520 may be physically arranged together, or may be physically separated, that is, a distributed base station.
  • the BBU 1520 may be the control part of the network device, or may be called the processing unit, and may correspond to the processing module 1302 included in the communication device 1300, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and expansion. Frequency and so on.
  • the BBU processing unit
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to send the foregoing configuration information.
  • the BBU 1520 may be composed of one or more single boards, and multiple single boards may jointly support a wireless access network (such as an LTE network) of a single access standard, or can respectively support wireless access networks of different access standards. Access network (such as LTE network, 5G network or other networks).
  • the BBU 1520 may also include a memory 1521 and a processor 1522.
  • the memory 1521 is used to store necessary program instructions and/or data, or load necessary program instructions and/or data when needed.
  • the processor 1522 is used to control the network device to perform necessary actions, for example, to control the network to execute the operation flow of the network device in the foregoing method embodiment.
  • the memory 1521 and the processor 1522 may serve one or more boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the network device 1500 shown in FIG. 15 can implement various processes involving the network device in the method embodiment in FIG. 3.
  • the operation and/or function of each module in the network device 1500 are respectively for implementing the corresponding process in the foregoing method embodiment.
  • the above-mentioned BBU 1520 can be used to perform the actions described in the previous method embodiments implemented by the network device, and the RRU 1510 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • the RRU 1510 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the method in any of the foregoing method embodiments.
  • the processing device may be a chip.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC), or It is a central processor unit (CPU), it can also be a network processor (NP), it can also be a digital signal processing circuit (digital signal processor, DSP), or it can be a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller unit microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • the steps of the above method can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, the computer executes the embodiment shown in FIG. 3 Transmission method.
  • the present application also provides a computer-readable medium storing program code, which when the program code runs on a computer, causes the computer to execute the embodiment shown in FIG. 3 Methods.
  • the present application also provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the network equipment in the above-mentioned device embodiments completely corresponds to the network equipment or terminal equipment in the terminal equipment and method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the communication unit transmits the receiving or In the sending step, other steps except sending and receiving can be executed by the processing unit (processor).
  • the processing unit processor
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed between two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component may be based on, for example, a signal having one or more data packets (such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • a signal having one or more data packets (such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • each functional unit may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions (programs).
  • programs When the computer program instructions (programs) are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website site, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及通信装置,其中的一种通信方法包括:第一终端设备获取第一配置信息,第一配置信息可以包括:侧行链路单播连接的用于发送第一数据PDU的第一逻辑信道的标识,以及与第一逻辑信道对应的无线链路控制RLC模式,其中单播连接建立于第一终端设备和第二终端设备之间,第一终端设备可以通过侧行链路,向第二终端设备发送第一配置信息。从而第二终端设备接收该第一逻辑信道对应的RLC模式后可以有针对性的对单播连接上逻辑信道进行配置,从而可以提高V2X业务通信过程的可靠性。

Description

一种通信方法及通信装置
相关申请的交叉引用
本申请要求在2019年03月29日提交中国专利局、申请号为201910253358.8、申请名称为“一种通信方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及通信装置。
背景技术
车与外界(vehicle-to-everything,V2X)作为未来智能交通运输系统的关键技术,其包括车与车(vehicle-to-vehicle,V2V)、车与路侧基础设施(vehicle-to-infrastructure,V2I)、车与行人(vehicle-to-pedestrian,V2P)的直接通信,以及车与网络(vehicle-to-network,V2N)的通信交互,从而可以获得实时路况、道路、行人等一系列交通信息,大幅提升交通安全性、减少拥堵、提高交通效率等。
在V2X通信系统中,两个设备之间可以通过PC5接口(也可以称为侧行链路(sidelink,SL)进行V2X业务传输。目前,在长期演进(long term evolution,LTE)V2X系统中只支持广播通信,发送端设备在发送数据之前,会为待发送数据创建承载,以及该承载对应的无线链路控制(radio link control,RLC)实体和逻辑信道,其中发送端设备的无线链路控制(radio link control,RLC)实体被配置为非确认模式(unacknowledged,UM)模式,发送端设备在发送多个协议数据单元(protocol data unit,PDU)之后,无法知晓接收端设备针对该多个数据PDU的接收情况,如果在V2X业务传输过程中存在数据PDU丢失,也没有办法解决,导致V2X通信过程可靠性低。
在广播通信机制中,发送端设备和接收端设备都以一组源标识和目标标识为粒度维护一套逻辑信道,其中源标识为发送端设备的层2标识,目标标识为待发送数据所属的业务类型,但是针对同一组标识,发送端设备维护的逻辑信道和接收端设备维护的逻辑信道不同。在新空口(new radio,NR)V2X场景中若想实现两个终端设备之间的单播通信,按照LTE V2X的通信机制,则两个终端设备都以一组标识(源标识和目标标识)为粒度维护一套逻辑信道,其中源标识为发送端设备的层2标识,目标标识为对端设备的层2标识,所以两个设备都需要为单播连接维护两套逻辑信道,其中一套逻辑信道用于发送数据PDU,另一套逻辑信道用于接收数据PDU,针对同一组标识,发送端设备维护的逻辑信道与接收端设备维护的逻辑信道不同,如果在V2X业务传输过程中存在数据PDU丢失,也无法实现接收端设备向发送端设备反馈数据PDU的接收情况,因此,如何提高V2X业务通信过程的可靠性成为一项亟待解决的技术问题。
发明内容
本申请实施例提供一种通信方法及通信装置,用于提高V2X业务通信过程的可靠性。
第一方面,提供第一种通信方法,该方法适用于第一终端设备。该方法包括:第一终端设备获取第一配置信息,第一配置信息可以包括:侧行链路单播连接的用于发送第一数据PDU的第一逻辑信道的标识,以及与第一逻辑信道对应的无线链路控制RLC模式,其中单播连接建立于第一终端设备和第二终端设备之间,第一终端设备可以通过侧行链路,向第二终端设备发送第一配置信息。
在本申请中,第一终端设备将用于发送第一数据PDU的第一逻辑信道的标识,以及该第一逻辑信道对应的RLC模式发送给第二终端设备,从而第二终端设备接收该第一逻辑信道对应的RLC模式后可以有针对性的对单播连接上逻辑信道进行配置,例如针对RLC模式为AM的第一逻辑信道,配置与第一逻辑信道对应的用来反馈RLC状态报告的逻辑信道,从而可以提高V2X业务通信过程的可靠性。
其中,RLC可以为AM或UM。
结合第一方面,在第一方面的第一种可能的设计中,第一逻辑信道对应的RLC模式可以为RLC确认模式。
在本申请中,第一终端设备将第一配置信息发送给第二终端设备,可以使得第二终端设备针对该RLC确认模式对应的第一逻辑信道,获取用于反馈RLC状态报告的逻辑信道配置,从而可以实现自动重传功能,进一步提高V2X业务通信过程的可靠性。
可选的,第一逻辑信道对应的RLC模式为RLC非确认模式时,第二终端就不需要反馈RLC状态报告,即第二终端设备不需要进行用于发送RLC状态报告的逻辑信道配置。
结合第一方面,或第一方面的第一种可能的设计,在第一方面的第二种可能的设计中,第一终端设备还可以使用第一逻辑信道向第二终端设备发送第一RLC状态报告,第一RLC状态报告用于指示第一终端设备接收第二终端设备的第二数据PDU的接收状态。
在本申请中,第一终端设备可以复用同一套发送逻辑信道来发送第一数据PDU和第一RLC状态报告,可以节省第一终端设备的内部开销。
结合第一方面的第二种可能的设计,在第一方面的第三种可能的设计中,第一终端设备还可以通过第一逻辑信道向第二终端设备发送第一PDU,第一PDU中携带第一指示信息,第一指示信息用于指示第一PDU的类型为数据PDU或RLC状态报告。
在本申请中,第一终端设备在发送第一PDU时,还携带用于指示第一PDU的类型的指示信息,从而可以使得第二终端设备在接收到该第一PDU,可以识别出该第一PDU的类型。
结合第一方面,在第一方面的第四种可能的设计中,第一终端设备还可以建立第一逻辑信道,第一逻辑信道用于向第二终端设备发送第一数据PDU;第一终端设备还可以建立第二逻辑信道,第二逻辑信道用于接收第二终端设备发送的第二RLC状态报告。
在本申请中,第一终端设备除了建立发送数据PDU的逻辑信道,还建立发送RLC状态报告的逻辑信道,从而可以通过接收第二RLC状态报告知晓第二终端设备接收第一逻辑信道发送的第一数据PDU的状态,以便在存在丢包时向第二终端设备重传丢失的PDU。
结合第一方面的第四种可能的设计,在第一方面的第五种可能的设计中,第一终端设备还可以通过标识为i的第一逻辑信道向第二终端设备发送第一数据PDU,第一终端设备可以通过标识为i的第二逻辑信道接收来自第二终端设备的第二RLC状态报告,标识为i的第一逻辑信道对应的RLC模式为AM,i为正整数。
在本申请中,第一终端设备采用相同的逻辑信道标识对应不同逻辑信道分别实现发送 第一数据PDU和接收第二RLC状态报告,从而可以在第二逻辑信道接收到第二RLC状态报告时就可以知晓该第二RLC状态报告是针对哪个第一逻辑信道的。
结合第一方面的第四种可能的设计,在第一方面的第六种可能的设计中,第一终端设备还可以通过标识为i的第一逻辑信道向第二终端设备发送第一数据PDU,第一终端设备还可以通过标识为i+N的第二逻辑信道接收来自第二终端设备的第二RLC状态报告,i为正整数,N为正整数。
在本申请中,从i+N的第二逻辑信道接收到第二RLC状态报告,就知晓第二RLC状态报告是针对标识为i的第一逻辑信道发送的第一PDU数据。
结合第一方面的第六种可能的设计,在第一方面的第七种可能的设计中,N由第一终端设备确定,也可以从第二终端设备接收,也可以从第一网络设备接收。
在本申请中,提供了多种确定N的方式。
结合第一方面的第四种可能的设计,在第一方面的第八种可能的设计中,第一终端设备还可以通过标识为i的第一逻辑信道向第二终端设备发送第一数据PDU,第一终端设备还可以通过标识为K的第二逻辑信道接收来自第二终端设备的第二RLC状态报告,K为正整数;K为根据第一对应关系确定的,第一对应关系用于指示第一逻辑信道的标识i与第二逻辑信道的标识K的对应关系。
在本申请中,可以根据第一对应关系来确定用哪个第二逻辑信道来接收第二RLC状态报告。
结合第一方面的第八种可能的设计,在第一方面的第九种可能的设计中,第一对应关系可以由第一终端设备确定,也可以从第二终端设备接收,也可以从第一终端设备所属的第一网络设备接收。
在本申请中,提供了多种确定第一对应关系的方式。
结合第一方面的第四种可能的设计,在第一方面的第十种可能的设计中,第一终端设备维护一个或多个第一逻辑信道,第一终端设备还可以通过一个或多个第一逻辑信道分别向第二终端设备发送一个或多个第一数据PDU,第一终端设备还可以通过第二逻辑信道接收来自第二终端设备的与一个或多个第一逻辑信道对应的第二RLC状态报告;第二RLC状态报告包括第一逻辑信道的标识。
在本申请中,可以使用一个固定的逻辑信道来接收一个或多个第一逻辑信道对应的第二RLC状态报告,第一终端设备内部可以维护较少的逻辑信道,相较于一对一接收状态报告的方式,本申请实施例的方案可以节省第一终端设备内部开销。
结合第一方面的第二种可能的设计,在第一方面的第十一种可能的设计中,第一逻辑信道还用于第一终端设备接收来自第二终端设备的第二RLC状态报告和第二数据PDU。
在本申请中,引入双向承载进行单播通信,相比于上述基于单向承载设计的方案,双向承载的好处在于终端内部开销更小,实现更简单,而且不需要内部维护很多逻辑信道,也不需要内部RLC实体之间的交互。
结合第一方面,或第一方面的任一种可能的设计,在第一方面的第十二种可能的设计中,第一终端设备获取第一配置信息,包括但不限于以下方式:
第一终端设备从预配置信息中获取第一配置信息;
或者,第一终端设备从第一网络设备发送的广播消息中获取第一配置信息;
或者,第一终端设备从RRC专用信令中获取第一配置信息。
在本申请中,通过上述实施例中提供的几种实现方式,可以提供一种灵活地根据实际需要确定第一配置信息的方式。
结合第一方面,或第一方面的任一种可能的设计,在第一方面的第十三种可能的设计中,第一终端设备获取第一配置信息之后,第一终端设备还可以向第一网络设备发送配置完成消息,配置完成消息用于指示第一终端设备基于第一配置信息完成配置,或者用于指示第二终端设备基于第一终端设备发送的第一配置信息完成配置。
在本申请中,可以使第一网络设备知晓第一终端设备的配置结果。
结合第一方面,或第一方面的任一种可能的设计,在第一方面的第十四种可能的设计中,第一配置信息还可以包括第一逻辑信道对应的通信模式,通信模式用于指示第一逻辑信道对应的侧行链路资源分配模式。
在本申请中,可以为第一逻辑信道配置传输数据PDU时的策略链路分配方式。
结合第一方面,或第一方面的任一种可能的设计,在第一方面的第十五种可能的设计中,第一配置信息还可以包括第一逻辑信道对应的优先级信息,优先级信息用于指示第一逻辑信道对应的调度优先级。
在本申请中,可以按照调度优先级调度对应优先级的逻辑信道发送数据。
结合第一方面的第四种可能的设计,在第一方面的第十六种可能的设计中,第一终端设备还可以通过第一逻辑信道向第二终端设备发送至少一个第一数据PDU,第一终端设备通过第二逻辑信道接收来自第二终端设备的第二RLC状态报告,第一终端设备解析第二RLC状态报告,得到解析结果;解析结果包括丢失的第一数据PDU对应的第一序列号,或者第一序列号和成功接收的第一数据PDU对应的第二序列号;第一终端设备基于解析结果,通过第一逻辑信道向第二终端设备重传第一序列号对应的第一数据PDU。
在本申请中,提供了一种两个终端设备之间侧行链路上发送数据PDU、以及反馈状态报告的交互方式。
结合第一方面的第十六种可能的设计,在第一方面的第十七种可能的设计中,第一终端设备包括第一逻辑信道对应的第一RLC实体和第二逻辑信道对应的第二RLC实体。第二RLC实体可以通过第二逻辑信道接收来自第二终端设备的第二RLC状态报告,第二RLC实体解析第二RLC状态报告,得到解析结果,第二RLC实体向第一RLC实体发送第一序列号,第一RLC实体通过第一逻辑信道向第二终端设备重传第一序列号对应的第一数据PDU。
在本申请中,提供了第一终端设备内部两个不同的RLC实体交互,以及由第二RLC实体解析第二RLC状态报告的方案。
结合第一方面的第十七种可能的设计,在第一方面的第十八种可能的设计中,第二RLC实体通过第二逻辑信道接收来自第二终端设备的第二RLC状态报告之后,第二RLC实体还可以向第一RLC实体发送第二RLC状态报告,第一RLC实体解析第二RLC状态报告,得到解析结果,第一RLC实体基于解析结果,通过第一逻辑信道向第二终端设备重传第一序列号对应的第一数据PDU。
在本申请中,提供了第一终端设备内部两个不同的RLC实体交互,以及由第一RLC解析第二RLC状态报告的方案。
第二方面,提供一种通信方法,该方法适用于第二终端设备。该方法包括:第二终端设备接收来自第一终端设备的第一配置信息,第一配置信息包括:侧行链路单播连接的用 于发送第一数据PDU的第一逻辑信道的标识,以及第一逻辑信道对应的无线链路控制RLC模式,单播连接建立于第一终端设备和第二终端设备之间,第二终端设备可以确定与第一终端设备的第一逻辑信道对应的用于反馈第二RLC状态报告的第三逻辑信道,第一逻辑信道对应的RLC模式为AM,第二RLC状态报告用于指示第二终端设备接收第一逻辑信道的第一数据PDU的状态;第二终端设备建立第三逻辑信道。
在本申请中,第二终端设备可以在接收到该第一配置信息后,在确定第一逻辑信道对应的RLC模式配置为AM时,确定与第一逻辑信道对应的用于反馈第二RLC状态报告的第三逻辑信道,从而可以使得第二终端设备实现第二RLC状态报告的生成和发送,进而可以实现RLC AM模式下的自动重传功能,提高V2X业务通信过程的可靠性低。
结合第一方面,在第一方面的第一种可能的设计中,第二终端设备建立第三逻辑信道;第三逻辑信道还用于第二终端设备向第一终端设备发送第二数据PDU。
在本申请中,第二终端设备可以复用同一套发送逻辑信道来发送第二数据PDU和第二RLC状态报告,可以节省第二终端设备的内部开销。
结合第一方面的第一种可能的设计,在第一方面的第二种可能的设计中,第二终端设备通过第三逻辑信道向第一终端设备发送第二PDU;第二PDU中携带第五指示信息,第五指示信息用于指示第二PDU的类型为数据PDU或RLC状态报告。
在本申请中,第二终端设备在发送第二PDU时,还携带用于指示第二PDU的类型的指示信息,从而可以使得第一终端设备在接收到该第二PDU,可以识别出该第二PDU的类型。
结合第一方面,在第一方面的第三种可能的设计中,第二终端设备还可以建立第四逻辑信道;第四逻辑信道用于接收来自第一终端设备的第一数据PDU,第二终端设备还可以建立第三逻辑信道,第三逻辑信道用于向第一终端设备发送第二RLC状态报告。
在本申请中,第二终端设备除了建立发送数据PDU的逻辑信道,还建立发送RLC状态报告的逻辑信道,从而可以通过接收第二RLC状态报告告知第一终端设备接收第一逻辑信道发送的第一数据PDU的状态。
结合第一方面的第三种可能的设计中,在第一方面的第四种可能的设计中,第二终端设备建立第五逻辑信道;第五逻辑信道用于向第一终端设备发送第二数据PDU。
在本申请中,第二终端设备还配置发送第二数据PDU的逻辑信道。
结合第一方面的第三种可能的设计中,在第一方面的第五种可能的设计中,第二终端设备通过标识为i的第四逻辑信道接收来自第一终端设备的第一数据PDU,第二终端设备通过标识为i的第三逻辑信道向第一终端设备发送第二RLC状态报告,标识为i的第一逻辑信道对应的RLC模式为AM,i为正整数。
在本申请中,第二终端设备采用相同的逻辑信道标识对应不同逻辑信道分别实现接收第一数据PDU和发送第二RLC状态报告,从而可以使得第一终端设备知晓该第二RLC状态报告是针对哪个第一逻辑信道的。
结合第一方面的第三种可能的设计中,在第一方面的第六种可能的设计中,第二终端设备通过标识为i的第四逻辑信道接收来自第一终端设备的第一数据PDU,第二终端设备通过标识为i+N的第三逻辑信道向第一终端设备发送第二RLC状态报告,第一数据PDU为第一终端设备通过标识为i的第一逻辑信道发送的;标识为i的第一逻辑信道对应的RLC模式为AM;i为正整数,N为正整数。
在本申请中,从i+N的第三逻辑信道发送第二RLC状态报告,可以使得接收到第二RLC状态报告的第一终端设备知晓第二RLC状态报告是针对标识为i的第一逻辑信道发送的第一PDU数据。
结合第一方面的第六种可能的设计中,在第一方面的第七种可能的设计中,N可以由第二终端设备确定,也可以从第一终端设备接收,也可以从第二网络设备接收。
在本申请中,提供了多种确定N的方式。
结合第一方面的第三种可能的设计中,在第一方面的第八种可能的设计中,第二终端设备还可以通过标识为i的第四逻辑信道接收来自第一终端设备的第一数据PDU,第二终端设备还可以通过标识为K的第三逻辑信道向第一终端设备发送第二RLC状态报告,第一数据PDU为第一终端设备通过标识为i的第一逻辑信道发送的,标识为i的第一逻辑信道对应的RLC模式为AM,K为根据第二对应关系中确定的,第二对应关系包括第四逻辑信道的标识i和第三逻辑信道的标识K的对应关系,i为正整数,K为正整数。
在本申请中,可以根据第一对应关系来确定用哪个第二逻辑信道来发送第二RLC状态报告,而且可以使得接收该第二RLC状态报告知晓该第二RLC状态报告是针对哪个逻辑信道发送的第一数据PDU的状态。
结合第一方面的第八种可能的设计中,在第一方面的第九种可能的设计中,第二对应关系可以由第二终端设备确定,也可以从第一终端设备接收。
在本申请中,提供了多种确定第二对应关系的方式。
结合第一方面的第三种可能的设计中,在第一方面的第十种可能的设计中,第二终端设备维护一个或多个第四逻辑信道,M为整数;第二终端设备通过一个或多个第四逻辑信道接收来自第一终端设备的一个或多个第一数据PDU;每个第四逻辑信道接收来自与第四逻辑信道对应的第一逻辑信道所发送的第一PDU;第一逻辑信道对应的RLC模式为AM;第二终端设备通过第三逻辑信道向第一终端设备发送与一个或多个第一逻辑信道对应的第二RLC状态报告,第二RLC状态报告包括第一逻辑信道标识。
在本申请中,可以使用一个固定的逻辑信道来发送与一个或多个第一逻辑信道对应的第二RLC状态报告,第二终端设备内部可以维护较少的逻辑信道,相较于一对一发送状态报告的方式,本申请实施例的方案可以节省第二终端设备内部开销。
结合第一方面,或第一方面的任一种可能的设计,在第一方面的第十一种可能的设计中,第二终端设备可以向第二网络设备发送第一配置信息,并接收来自第二网络设备的第二配置信息,第二配置信息用于第二终端设备确定与第一终端设备的第一逻辑信道对应的用来反馈第二RLC状态报告的第三逻辑信道;或者,第二终端设备根据第一配置信息,确定与第一终端设备的第一逻辑信道对应的用来反馈第二RLC状态报告的第三逻辑信道。
在本申请中,为第二终端设备提供了多种确定第三逻辑信道的方式。
结合第一方面的第三种可能的设计中,在第一方面的第十二种可能的设计中,第二终端设备确定与第一终端设备的第一逻辑信道对应的用来反馈第二RLC状态报告的第三逻辑信道之后,第二终端设备还可以向第二网络设备发送第一确认消息,第一确认消息指示第二终端设备基于第二配置信息完成配置。
在本申请中,可以使第二网络设备知晓第二终端设备的配置结果。
结合第一方面的第一种可能的设计,在第一方面的第十三种可能的设计中,第三逻辑信道还用于接收来自第一终端设备的第一数据PDU和第一RLC状态报告。
在本申请中,引入双向承载进行单播通信,相比于上述基于单向承载设计的方案,双向承载的好处在于终端内部开销更小,实现更简单,而且不需要内部维护很多逻辑信道,也不需要内部RLC实体之间的交互。
结合第一方面,或第一方面的任一种可能的设计,在第一方面的第十四种可能的设计中,第二终端设备向第一终端设备发送第二确认消息,第二确认消息用于指示第二终端设备基于第一终端设备发送的第一配置信息完成配置。
在本申请中,可以使第一终端设备知晓第二终端设备的配置结果。
结合第一方面的第三种可能的设计中,在第一方面的第十五种可能的设计中,第二终端设备还可以通过第四逻辑信道接收来自第一终端设备的至少一个第一数据PDU,然后确定至少一个第一数据PDU满足状态报告触发条件,则生成第二RLC状态报告,第二RLC状态报告包括丢失的第一数据PDU对应的第一序列号,和/或,成功接收的第一数据PDU对应的第二序列号;第二终端设备通过第三逻辑信道向第一终端设备发送第二RLC状态报告。
在本申请中,提供了一种触发第二RLC状态报告的方式。
结合第一方面的第十五种可能的设计,在第一方面的第十六种可能的设计中,第二终端设备包括第四逻辑信道对应的第三RLC实体和第三逻辑信道对应的第四RLC实体,第三RLC实体通过第四逻辑信道接收来自第一终端设备的至少一个第一数据PDU,第三RLC实体确定丢失的第一数据PDU对应的第一序列号、以及成功接收的第一数据PDU对应的第二序列号,第三RLC实体根据第一序列号,或者,第一序列号和第二序列号,生成第二RLC状态报告,第四RLC实体通过第三逻辑信道向第一终端设备发送第二RLC状态报告。
在本申请中,提供了第二终端设备内部两个不同的RLC实体交互,以及由第三RLC实体生成第二RLC状态报告的方案。
结合第一方面的第十六种可能的设计,在第一方面的第十七种可能的设计中,第三RLC实体可以确定丢失的第一数据PDU对应的第一序列号、以及成功接收的第一数据PDU对应的第二序列号之后,第三RLC实体还可以向第四RLC实体发送第一序列号;第四RLC实体根据第一序列号生成第二RLC状态报告;或者,第三RLC实体向第四RLC实体发送第二序列号;第四RLC实体根据第二序列号生成第二RLC状态报告;或者,第三RLC实体向第四RLC实体第一序列号和第二序列号;第四RLC实体根据第一序列号生成第二RLC状态报告。
在本申请中,提供了第二终端设备内部两个不同的RLC实体交互,以及由第四RLC实体生成第二RLC状态报告的方案。
结合第一方面的第十五种可能的设计,在第一方面的第十八种可能的设计中,状态报告触发条件包括以下任一项:周期性触发反馈第二RLC状态报告;定时器超时,定时器用于从至少一个第一数据PDU中第一个丢包的数据PDU开始计时;数据PDU中携带的第七指示信息,第七指示信息用于指示第二终端设备在接收到第七指示信息时反馈第二RLC状态报告。
第三方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面或第一方面的任一种可能的设计中第一终端设备的功能、或具有实现上述第二方面或第二方面的任一种可能的设计中第二终端设备的功能。该通信装置可以为终端设备,例如车载终端设备或车载通信装置,也可以为终端设备中包含的装置,例如芯片,也可以为包含所述终 端设备的装置,例如各种类型的车辆。上述终端设备的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该通信装置的结构中包括处理模块和收发模块,其中,处理模块被配置为支持该通信装置执行上述第一方面或第一方面的任一种设计中相应的功能、或执行上述第二方面或第二方面的任一种设计中相应的功能。收发模块用于支持该通信装置与其他通信设备之间的通信,例如向网络设备发送用于RRC连接建立或RRC连接恢复的第三消息。该通信装置还可以包括存储模块,该存储模块与处理模块耦合,其保存有通信装置必要的程序指令和数据。作为一种示例,处理模块可以为处理器,通信模块可以为收发器,存储模块可以为存储器,存储器可以和处理器集成在一起,也可以和处理器分离设置,本申请并不限定。
在另一种可能的设计中,该通信装置的结构中包括处理器和存储器,处理器与存储器耦合,可用于执行存储器中存储的计算机程序指令,以使通信装置执行上述第一方面或第一方面的任一种可能的设计中的方法,或者执行上述第二方面或第二方面的任一种可能的设计中的方法。可选地,该通信装置还可以包括通信接口,处理器与通信接口耦合。当通信装置为终端设备时,该通信接口可以是收发器或输入/输出接口;当该通信装置为终端设备中包含的芯片时,该通信接口可以是芯片的输入/输出接口。可选地,收发器可以为收发电路,输入/输出接口可以是输入/输出电路。
第四方面,本申请实施例提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述第一方面或第一方面的任一种可能的设计中的方法、或实现上述第二方面或第二方面的任一种可能的设计中的方法。
可选地,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
第五方面,提供第一种通信方法,该方法适用于第一网络设备。该方法包括:
第一网络设备确定第一配置信息,第一网络设备向第一终端设备发送第一配置信息,第一配置信息包括侧行链路单播连接上用于发送第一数据PDU的第一逻辑信道的标识,以及第一逻辑信道对应的无线链路控制RLC模式,第一网络设备接收第一终端设备发送的配置完成消息,配置完成消息用于指示第一终端设备基于第一配置信息完成配置,或者用于指示第二终端设备基于第一终端设备发送的第一配置信息完成配置。
在本申请中,第一网络设备给第一终端设备发送第一配置信息,可以为第一终端设备提供发送数据的逻辑信道配置,以使第一终端设备和第二终端设备进行单播通信时,提高V2X业务通信过程的可靠性。
第六方面,提供第一种通信方法,该方法适用于第二网络设备。该方法包括:
第二网络设备接收第一终端设备发送的第一配置信息;第一配置信息包括侧行链路单播连接上用于发送第一数据PDU的第一逻辑信道的标识,以及第一逻辑信道对应的无线 链路控制RLC模式;第二网络设备基于第一配置信息,确定第二配置信息;第二配置信息用于第二终端设备确定与第一终端设备的第一逻辑信道对应的用来反馈第二RLC状态报告的第三逻辑信道;第一逻辑信道对应的RLC模式为AM;第二RLC状态报告用于指示第二终端设备接收第一逻辑信道的第一数据PDU的状态;第二网络设备向第二终端设备发送第二配置信息。
在本申请中,第一网络设备基于第一终端设备的第一配置信息,为第二终端设备提供发送第二RLC状态报告的逻辑信道配置,以使第一终端设备和第二终端设备进行单播通信时,提高V2X业务通信过程的可靠性。
结合第一方面,在第一方面的第一种可能的设计中,第二网络设备还可以接收第二终端设备发送的第一确认消息,第一确认消息指示第二终端设备基于第二配置信息完成配置。
在本申请中,第二网络设备可以通过第一确认消息知晓第二终端设备的配置结果。
结合第一方面,在第一方面的第二种可能的设计中,第二配置信息还可以包括N,N用于第二终端设备反馈第二RLC状态报告的第三逻辑信道的标识,N为正整数。
结合第一方面,在第一方面的第二种可能的设计中,第二配置信息还可以包括第四逻辑信道的标识与第三逻辑信道的标识的第二对应关系,其中,第二对应关系用于第二终端设备确定用于向第一终端设备发送第而RLC状态报告的第三逻辑信道的标识。
第七方面,本申请实施例提供一种通信装置,该通信装置可具有实现上述第五方面或第五方面的任一种可能的设计中第一网络设备的功能、或具有实现上述第六方面或第六方面的任一种可能的设计中第二网络设备的功能。该通信装置可以为网络设备,也可以为网络设备中包含的装置,例如芯片。上述网络设备的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该通信装置的结构中包括处理模块和收发模块,其中,处理模块被配置为支持该通信装置执行上述第五方面或第五方面的任一种设计中相应的功能、或执行上述第六方面或第六方面的任一种设计中相应的功能。收发模块用于支持该通信装置与其他通信设备之间的通信。该通信装置还可以包括存储模块,存储模块与处理模块耦合,其保存有通信装置必要的程序指令和数据。作为一种示例,处理模块可以为处理器,通信模块可以为收发器,存储模块可以为存储器,存储器可以和处理器集成在一起,也可以和处理器分离设置,本申请并不限定。
在另一种可能的设计中,该通信装置的结构中包括处理器和存储器,处理器与存储器耦合,可用于执行存储器中存储的计算机程序指令,以使通信装置执行上述第五方面或第五方面的任一种可能的设计中的方法、或执行上述第六方面或第六方面的任一种可能的设计中的方法。可选地,该通信装置还可以包括通信接口,处理器与通信接口耦合。当通信装置为第一网络设备时,该通信接口可以是收发器或输入/输出接口;当该通信装置为第一网络设备中包含的芯片时,该通信接口可以是芯片的输入/输出接口。可选地,收发器可以为收发电路,输入/输出接口可以是输入/输出电路。
第八方面,本申请实施例提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述第五方面或第五方面的任一种可能的设计中的方法、或实现上述第六方面或第六方面的任一种可能的设计中的方法。
可选地,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可 以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
第九方面,本申请实施例提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述第一方面的任一种可能的设计中的方法、或第二方面的任一种可能的设计中的方法、或第五方面的任一种可能的设计中的方法、或执行上述第六方面的任一种可能的设计中的方法。
第十方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面的任一种可能的设计中的方法、或第二方面的任一种可能的设计中的方法、或第五方面的任一种可能的设计中的方法、或执行上述第六方面的任一种可能的设计中的方法。
第十一方面,本申请实施例提供一种通信系统,该通信系统包括上述各方面中所述的第一终端设备、第二终端设备、第一网络设备、第二网络设备中的任一个或任多个。
附图说明
图1为本申请实施例的系统架构示意图;
图2A~图2E为通过PC5口进行通信的LTE V2X业务的几种示意图;
图3为本申请实施例提供的一种通信方法的流程示意图;
图4为本申请实施例提供的一种数据PDU结构示意图;
图5为本申请实施例提供的一种逻辑信道管理的示意图;
图6为本申请实施例提供的另一种逻辑信道管理的示意图;
图7为本申请实施例提供的另一种逻辑信道管理的示意图;
图8为本申请实施例提供的另一种逻辑信道管理的示意图;
图9为本申请实施例提供的另一种逻辑信道管理的示意图;
图10为本申请实施例提供的终端之间交互过程示意图;
图11为本申请实施例提供的另一种逻辑信道管理的示意图;
图12为本申请实施例提供的能够实现通信装置的一种示意图;
图13为本申请实施例提供的能够实现通信装置的另一种示意图;
图14为本申请实施例提供的能够实现通信装置的另一种示意图;
图15为本申请实施例提供的能够实现通信装置的另一种示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access, CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WIMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR),或者应用于未来的通信系统或其它类似的通信系统等。
请参见图1,为本申请实施例适用的一种通信系统的网络架构,该通信系统包括网络设备110、终端设备120、终端设备130。进一步地,该通信系统中还可以包括应用服务器140。
上述网络架构中包含两种通信接口:PC5接口和Uu接口。其中,PC5接口是指终端设备与终端设备之间的直连通信接口,终端设备与终端设备之间的直连通信链路即为侧行链路(sidelink,SL),用于终端设备与终端设备之间的通信。Uu接口是终端设备与网络设备之间的通信接口,终端设备与网络设备之间的通信链路包括上行链路(uplink,UL)和下行链路(downlink,DL)。基于Uu接口的通信可以为,发送方终端设备将数据通过Uu接口发送至网络设备,通过网络设备发送至应用服务器进行处理后,再由应用服务器将处理后的数据下发至网络设备,并通过网络设备发送给接收方终端设备。需要说明的是,在基于Uu接口的通信方式下,转发发送方终端设备发至应用服务器的上行数据的网络设备和转发应用服务器下发至接收方终端设备的下行数据的网络设备可以是同一个网络设备,也可以是不同的网络设备,具体可以由应用服务器决定。
图1中的网络设备可以为接入网设备,例如基站。其中,接入网设备在不同的系统对应不同的设备,例如在LTE系统中可以对应eNB,在NR系统中对应的接入网设备,例如gNB。尽管只在图1中示出了终端设备120和终端设备130,应理解,网络设备可以为多个终端设备提供服务,本申请实施例对通信系统中终端设备的数量不作限定。另外,图1中的终端设备是以车载终端设备或车辆为例进行说明的,也应理解,本申请实施例中的终端设备不限于此。
应理解,图1中的终端设备120和终端设备130可以是物联网设备,比如UE。
还应理解,图1中的终端设备之间的箭头流向只是以终端设备120向终端设备130示例性地描述,并不对本申请实施例构成限定,实际上,终端设备120和终端设备130之间的通信也可以是双向的。同理,终端设备120也可以与网络设备110进行下行通信,终端设备130也可以与网络设备110进行上行通信,对此不作具体限定。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据包连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据包。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移 动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置,智能穿戴式设备等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还可以包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备等。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据包交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
2)网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种V2X技术中的网络设备为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括长期演进(long term evolution,LTE)系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括5G NR系统中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,CloudRAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
3)V2X,在版本(Rel)-14/15/16版本,V2X作为D2D技术的一个主要应用顺利立项。V2X将在已有的D2D技术的基础上对V2X的具体应用需求进行优化,需要进一步减少V2X设备的接入时延,解决资源冲突问题。
V2X具体又可以包括V2V、V2P、V2I/N三种应用需求,V2V指的是车辆间的通信;V2P指的是车辆与人(包括行人、骑自行车的人、司机、或乘客)的通信;V2I指的是车辆与RSU的通信,另外还有一种V2N可以包括在V2I中,V2N指的是车辆与基站/网络的通信。
请参见图2A~图2E,为通过PC5接口(也称之为sidelink)进行通信的LTE V2X业务的示意图,其中的网络设备都位于演进型通用无线接入网(evolved universal terrestrial radio access network,E-UTRAN)中。其中图2A为V2V的示意图,图2B和图2C为V2I的示意图,图2D和图2E为V2P的示意图。这时候终端设备可以在支持V2X的小区覆盖范围内,也可以在支持V2X的小区覆盖范围外。
其中,RSU包括两种类型:终端类型的RSU,由于布在路边,该终端类型的RSU处于非移动状态,不需要考虑移动性;基站类型的RSU,可以给与之通信的车辆提供定时同步及资源调度。
4)“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一指示信息和第二指示信息,只是为了区分不同的信息,而并不是表示这两种信息的内容、优先级、发送顺序或者重要程度等的不同。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例的技术特征。
目前,终端设备获取V2X的侧行链路的资源的方式有两种,一种方式是,终端设备在发送V2X业务的数据包前,需要先向网络设备去请求资源,由网络设备按需为终端设备分配V2X的侧行链路的资源,这类模式在LTE V2X中称为模式3(Mode 3),在NR V2X中称为Mode 1;另一种方式是,终端设备可以在网络设备广播的或者核心网中的控制功能(control function,CF)网元预配置的或者基站通过RRC专用信令配置的V2X的侧行链路的资源中通过竞争方式获取资源,这类模式在LTE V2X中称为Mode4,在NR V2X中称为Mode2。
目前,终端设备之间可以通过V2X下的侧行链路上的单播连接来传输数据PDU,但是,目前并没有如何实现在侧行链路单播连接上反馈接收端设备接收数据PDU的状态的方案,如果在V2X业务传输过程中存在数据PDU丢失,发送端设备无法知晓在V2X业务传输过程中存在数据PDU丢失,从而导致V2X业务通信过程的可靠性低。
为了提高第一终端设备与第二终端设备之间的单播连接通信过程的可靠性,在第一终端设备与第二终端设备传输PDU之前,可以分别为第一终端设备和第二终端设备配置接收数据PDU和状态报告的逻辑信道、以及发送数据PDU和状态报告的逻辑信道,下面仅以为第一终端设备配置用于发送数据PDU的第一逻辑信道、为第二终端设备配置用于发送第二RLC状态报告的第三逻辑信道为例进行介绍本申请的方案。应理解,为第二终端设备配置用于发送第二数据PDU、以及为第一终端设备配置用于发送第一RLC状态报告的相关配置过程与前述第一逻辑信道、第三逻辑信道相关配置过程类似,下文中不再赘述。
本申请实施例中,第二终端设备配置用于发送第二RLC状态报告的第三逻辑信道的前提是:第一终端设备配置了RLC模式为AM的用于发送数据PDU的第一逻辑信道。
应理解,第一RLC状态报告用于指示第一终端设备接收第二终端设备的第二数据PDU的接收状态。需要说明的是,第一终端设备配置用于发送第一RLC状态报告的第二逻辑信道取决于:第二终端设备配置了RLC模式为AM的用于发送第二数据PDU的第四逻辑信道,也就是说,如果第二终端设备配置RLC模式为UM的用于发送数据PDU的第四逻辑信道,那么第一终端设备就不会配置用于反馈第一RLC状态报告的第二逻辑信道。
此处作统一说明,下文中不再赘述。
下文中的图5、图6、图7和图8中均示例性示出了UE1中配置了用于发送第一RLC状态报告的逻辑信道,这个配置的前提是UE2中配置了RLC模式为AM的用于发送第二数据PDU的逻辑信道。
鉴于此,本申请提出了一种通信方法和通信装置,在V2X单播通信过程中,发送端设备向接收端设备发送第一配置信息,该第一配置信息包括侧行链路单播连接的用于发送第一数据PDU的第一逻辑信道的标识,以及与该第一逻辑信道对应的RLC模式,从而可以保证接收端设备可以根据该第一逻辑信道对应的RLC模式进行单播连接的配置,当第一逻辑信道对应的RLC模式为AM时,接收端设备配置与第一逻辑信道对应的第三逻辑信道用来反馈第二RLC状态报告,从而可以提高V2X业务通信过程的可靠性。
下面将结合具体的例子详细描述本申请的实施例。需要说明的是,这只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
图3为本申请实施例提供的一种通信方法的流程示意图。其中,图3的通信方法可以应用于图1所示的系统架构。该图3所示的通信方法可以应用于V2X业务的单播通信的场景下。如图3所示,该通信方法包括:
步骤301,第一终端设备获取第一配置信息。其中,第一配置信息包括:侧行链路单播连接上用于发送第一数据PDU的第一逻辑信道的标识,以及与第一逻辑信道对应的无线链路控制RLC模式。
其中,该侧行链路为第一终端设备与第二终端设备之间的直连链路,单播连接建立于第一终端设备和第二终端设备之间。
本申请实施中,该侧行链路上可以有一个或多个单播连接,每个单播连接对应一种业务类型。如果该侧行链路包括多个单播连接,那么第一配置信息还可以包括单播连接的指示信息,用来指示第一配置信息是针对哪一个单播连接的配置。示例性地,该单播连接的指示信息可以是第一终端设备为单播连接分配的标识,也可以是第二终端设备为单播连接分配的标识,也可以是第一终端设备为单播连接分配的标识和第二终端设备为单播连接分配的标识,也可以是单播连接对应的索引值。
下面针对索引值进行说明。假设该侧行链路上有多个单播连接,通信双方设备(第一终端设备和第二终端设备)都会维护单播连接信息的列表,那么通信双方设备知晓对端与本端之间有多少个单播连接,例如总共有n个单播连接。索引值可以取值0~(n-1),其中n为正整数,索引值可以指示单播连接在列表的位置,比如0指示单播连接在上述列表的第一项,1指示单播连接在上述列表的第二项,以此类推,这样就可通过索引值快速知晓是哪个单播连接,而且索引值可以用较少的比特数来指示单播连接,比如相对于目标标识DST ID。可选的,索引值取值也可以是1~n,1指示单播连接在上述列表的第一项,2指示单播连接在上述列表的第二项,以此类推。这样可以省开销。
示例性地,当侧行链路包括多个单播连接时,本申请中对单播连接的配置可以是针对每个单播连接的标识专门进行配置,也可以是对所有的单播连接使用一套配置,也可以是对所有的单播连接进行分组,每组单播连接使用一套配置,比如,所述分组可以是按照单播连接所属的业务类型进行分组,即一个业务类型的单播连接对应一个组,具体分组方式在本发明中不做限定。
为了便于说明,本申请实施例中仅以一个单播连接为例进行说明。应理解,一个单播连接上可以有一个或多个逻辑信道,如果单播连接包括多个逻辑信道,那么第一配置信息 可以包括多个逻辑信道中每个逻辑信道的标识,以及每个逻辑信道对应的RLC模式。上述步骤301中的第一配置信息仅以一个第一逻辑信道为例进行说明。
示例性地,以配置逻辑信道对应的RLC模式为例,可以是一个单播连接中所有的逻辑信道都使用一种RLC模式,也可以是对每个逻辑信道分别进行配置,也可以是对逻辑信道进行分组,每组逻辑信道使用相同的RLC模式,具体分组的方式在本发明中不做限定。
其中,RLC模式可以为AM或UM。以第一逻辑信道对应的RLC模式为AM为例,结合具体示例介绍AM具有的自动重传功能。
以第一终端设备(UE1)和第二终端设备(UE2)之间进行单播通信为例,UE1可以通过第一逻辑信道向UE2发送第一数据PDU,并在RLC头中添加序列号SN。UE1向UE2发送SN为1、2、3、4、5五个第一数据PDU,UE2如果只收到序列号为1、2、3、5等四个第一数据PDU,UE2在发现未接收到序列号为4的第一数据PDU时,等待一段时间还未收到SN为4的第一数据PDU,UE2可以向UE1发送第二RLC状态报告,该第二RLC状态报告用于告知UE1未收到SN为4的第一数据PDU、以及已确认收到SN为1、2、3、5的四个第一数据PDU,UE1收到该第二RLC状态报告之后,向UE2重新发送该SN为4的第一数据PDU。可选的,UE1还可以删除缓存的SN为1、2、3、5的四个第一数据PDU。在这种情况下,UE2配置一套逻辑信道用于向UE1反馈UE2接收该第一逻辑信道所传输的第一数据PDU的状态,从而提高通信过程的可靠性。AM可以适用于视频、图片等业务,可以保证数据的完整性。
以第一逻辑信道对应的RLC模式为UM为例,UM不具有自动重传功能,UE1向UE2发送第一数据PDU之后,不会缓存该发送的第一数据PDU,UE2没有反馈机制,即使UE2出现第一数据PDU丢失的情况,UE2也不会向UE1反馈第二RLC状态报告,所以UE1也不会重传发送过程中丢失的第一数据PDU。UM适用于语音业务,可以保证第一数据PDU发送的实时性。
可选的,第一配置信息除了包括第一逻辑信道之外,还可以包括第一逻辑信道对应的通信模式和第一逻辑信道对应的优先级信息中的任一项或多项,该第一逻辑信道对应的通信模式用于指示第一逻辑信道对应的侧行链路资源分配模式,比如模式1或者模式2。该第一逻辑信道对应的优先级信息用于指示第一逻辑信道对应的调度优先级。
步骤302,第一终端设备通过侧行链路,向第二终端设备发送第一配置信息。相应的,第二终端设备接收来自第一终端设备的第一配置信息。
需要说明的是,第一终端设备可以向第二终端设备发送第一配置信息中的部分信息或全部信息,该部分信息中需要包括第一逻辑信道对应的RLC模式。比如当第一配置信息包括第一逻辑信道对应的RLC模式和第一逻辑信道对应的优先级信息时,第一终端设备可以只向第二终端设备发送第一逻辑信道对应的RLC模式,也可以向第一逻辑信道对应的RLC模式和第一逻辑信道对应的优先级信息。
本申请实施例中,下文中以第一配置信息包括第一逻辑信道对应的RLC模式为例进行说明,此处统一说明,后续不在赘述。
可选的,当第一逻辑信道对应的RLC模式为AM,第二终端设备执行步骤303和步骤304,当第一逻辑信道对应的RLC模式为UM,第二终端设备不执行步骤303和步骤304。
步骤303,第二终端设备确定与第一终端设备的第一逻辑信道对应的用于反馈第二RLC状态报告的第三逻辑信道,第二RLC状态报告用于指示第二终端设备接收第一逻辑 信道的第一数据PDU的状态。
可选的,第三逻辑信道与第二终端中用于接收第一逻辑信道发送的第一数据PDU的逻辑信道可以是同一逻辑信道,也可以是不同的逻辑信道。
在一个示例中,比如单播连接包括三个第一逻辑信道,标识分别为LC ID1、LC ID2、LC ID3。其中,第一逻辑信道LC ID1对应的RLC模式为UM,第一逻辑信道LC ID2对应的RLC模式为AM,第一逻辑信道LC ID3对应的RLC模式为AM,那么第二终端设备确定出与第一逻辑信道LC ID2对应的第三逻辑信道LC ID2、与第一逻辑信道LC ID3对应的第三逻辑信道LC ID3,第二终端设备可以采用第三逻辑信道LC ID2来反馈针对第一逻辑信道LC ID2的数据接收状态,采用第三逻辑信道LC ID3来反馈针对第一逻辑信道LC ID3的数据接收状态。
步骤304,第二终端设备建立第三逻辑信道。其中,第三逻辑信道可以用于向第一终端设备反馈第二RLC状态报告。
本申请实施例中,第一终端设备将第一配置信息发送给第二终端设备,第一配置信息包括侧行链路单播连接的用于发送第一数据PDU的第一逻辑信道的标识,以及所述第一逻辑信道对应的RLC模式,第二终端设备可以在接收到该第一配置信息后,在确定第一逻辑信道对应的RLC模式配置为AM时,确定与第一逻辑信道对应的用于反馈第二RLC状态报告的第三逻辑信道,从而可以使得第二终端设备实现第二RLC状态报告的生成和发送,可以实现RLC AM模式下的自动重传功能,提高V2X业务通信过程的可靠性低。
上述第一终端设备获取第一配置信息的实现方式有多种,本实施例仅以其中三种可能的实现方式进行举例。
方式1,从预配置信息中获取第一配置信息。该方式1可以适用于支持V2X的小区覆盖外的终端设备,也可以适用于支持V2X的小区覆盖内的UE。如果第一终端设备在支持V2X的小区覆盖外,那么该第一终端设备无法从接入网获取第一配置信息,但是可以基于预配置获取第一配置信息。具体的预配置的信息可以是从核心网的V2X控制功能CF单元获取,也可以是写在第一终端设备的芯片上,也可以是写在第一终端设备的用户识别模块(subscriber identity module,SIM)卡上。
方式2,从第一网络设备发送的广播消息中获取第一配置信息,即第一网络设备向第一终端设备发送第一配置信息。
该方式2可以适用于空闲(IDLE)态或非激活(inactive)态(也可称为第三态)的终端设备,在这种场景下,终端设备处于支持V2X的小区覆盖范围内,支持V2X的小区会广播一套适用于单播连接中用于发送数据PDU逻辑信道的配置。
方式3,从RRC专用信令中获取第一配置信息。
该方式3可以适用于连接态(connected)或者inactive态的终端设备。也就是说,处于连接态或者第三态的终端设备可以采用方式3来获取第一配置信息。
针对处于连接态的终端设备可以直接使用网络设备为该终端设备生成的第一配置信息,而当该终端设备进入inactive态,一般会删除底层配置,为了可以正常使用该第一配置信息,可以在终端设备在进入inactive态之后继续保留并应用该第一配置信息。
本申请实施例中,第一终端设备可以用上述任一种方式来获取第一配置信息,示例性地,如果上述三种方式都可以适用,可以设置一个优先级顺序,比如方式1至方式3优先级递增,也就是说,优先采用方式3,若方式3无法获取第一配置信息,就采用方式2, 如果方式2也无法获取到第一配置信息就采用方式1。应理解,本申请实施例并不限定方式1至方式3的优先级顺序。
通过上述实施例中提供的几种实现方式,可以提供一种灵活地根据实际需要确定第一配置信息的方式。
可选的,第一终端设备可以采用上述方式2或方式3来实现从第一终端设备所属的第一网络设备中获取第一配置信息,在这种情况下,图3中还可以包括步骤305~步骤307。
步骤305,第一终端设备向第一网络设备发送单播连接的信息。其中,单播连接的信息可以包括但不限于以下任一项或多项:单播连接的标识信息、单播连接的服务质量(quality of service,QoS)参数等。示例性的,单播连接的QoS参数可以是该单播连接包括的QoS流的标识、QoS流的QoS参数,或者数据包的QoS参数中的一项或者多项;也可以是该单播连接的优先级信息等。本发明不做具体限定。
步骤306,第一网络设备基于单播连接的信息,生成第一配置信息。
步骤307,第一网络设备向第一终端设备发送第一配置信息。
可选的,在第一终端设备获取第一配置信息之后,图3中还可以包括步骤308。
步骤308,第一终端设备还可以向第一网络设备发送配置完成消息。
相应的,第一网络设备接收第一终端设备发送的配置完成消息,其中,配置完成消息可以用于指示第一终端设备基于第一配置信息完成配置,或者可以用于指示第二终端设备基于第一终端设备发送的第一配置信息完成配置。
示例性地,第二终端设备确定与第一终端设备的第一逻辑信道对应的用于反馈第二RLC状态报告的第三逻辑信道可以有多种实现方式。一种可能的实现方式中,第二终端设备可以根据第一配置信息,确定与第一终端设备的第一逻辑信道对应的用来反馈第二RLC状态报告的第三逻辑信道。
在另一种可选的实现方式中,在步骤302之后,即第二终端设备接收到第一终端设备发送的第一配置信息,第二终端设备采用从第二网络设备获取与第一终端设备的第一逻辑信道对应的用于反馈第二RLC状态报告的第三逻辑信道的方式,具体过程可以包括如下步骤309~步骤311。
步骤309,第二终端设备向第二网络设备发送第一配置信息。
步骤310,第二网络设备基于第一配置信息,确定第二配置信息。其中,第二配置信息用于第二终端设备确定与第一终端设备的第一逻辑信道对应的用来反馈第二RLC状态报告的第三逻辑信道;第一逻辑信道对应的RLC模式为AM;第二RLC状态报告用于指示第二终端设备接收第一逻辑信道的第一数据PDU的状态。
步骤311,第二网络设备向第二终端设备发送第二配置信息。
可选的,第二配置信息还可以包括N,N用于第二终端设备确定反馈第二RLC状态报告的第三逻辑信道的标识,N为正整数。或者,第二配置信息还可以包括第四逻辑信道的标识与第三逻辑信道的标识的第二对应关系;其中,第二对应关系用于第二终端设备确定用于向第一终端设备发送第而RLC状态报告的第三逻辑信道的标识。
基于上述任一实现方式,可选的,在第二终端设备确定与第一终端设备的第一逻辑信道对应的用于反馈第二RLC状态报告的第三逻辑信道之后,图3还可以包括如下步骤312-313。
步骤312,第二终端设备还可以向第二网络设备发送第一确认消息,第一确认消息指 示第二终端设备基于第二配置信息完成配置。相应的,第二网络设备接收第二终端设备发送的第一确认消息。
步骤313,第二终端设备还可以向第一终端设备发送第二确认消息,第二确认消息用于指示第二终端设备基于第一终端设备发送的第一配置信息完成配置。
需要说明的是,上述步骤312、步骤313与步骤304可以不分先后顺序,一般而言,步骤304在需要发送数据PDU或状态报告时建立第三逻辑信道,可选的,步骤304可以在步骤312和步骤313之后执行。
下面结合具体示例,针对如何配置单播连接的逻辑信道进行详细说明。
本申请实施例中,一个终端设备会为每个单播连接分配一个唯一的层2标识(Layer 2ID,L2ID)。在终端设备之间传输数据PDU时可基于L2ID实现。以第一终端设备向第二终端设备发送第一数据PDU为例,请参见图4,为本申请实施例提供的一种数据PDU结构示意图。
该第一数据PDU可以包括数据(data)、源标识(source ID,SRC ID)、逻辑信道标识(LC ID)和目标标识(Destination ID,DST ID),其中,源标识即层二标识,用于唯一识别一个发送端设备,LC ID为发送端设备为该数据分配的逻辑信道标识,在单播通信类型对应的DST ID用于指示发送端设备的对端(即接收端)设备的标识。如果是广播通信类型,目标标识用于指示业务类型。如果是组播通信类型,目标标识用于指示组的标识。本申请实施例中仅以单播通信为例进行说明。
以第一终端设备的层2标识为L2ID1、第二终端设备的层2标识为L2ID2为例,第一终端设备发送第一数据PDU时,可以在第一数据PDU中携带源标识为L2ID1、目标标识为L2ID2,这样接收端设备接收到该第一数据PDU时,会先通过第一数据PDU携带的目标标识来判断该第一数据PDU是否是发给自己的,也就是,接收端设备确定第一数据PDU携带的目标标识是否与自己的层2标识相同,如果相同,确定该第一数据PDU的目标标识为自己的标识,如果不相同,确定该数据包不是发给自己的。比如,第二终端设备接收到该第一数据PDU,确定该目标标识为L2ID2与自己的层2标识L2ID2相同,说明该第一数据PDU是发给自己的,第二终端设备继续处理该第一数据PDU。再比如,第三终端设备接收到该第一数据PDU,确定该目标标识为L2ID2与自己的层2标识L2ID3不相同,说明该第一数据PDU不是发给自己的,第三终端设备不处理该第一数据PDU,或者直接丢弃该第一数据PDU。
需要说明的是,图4所示的数据PDU结构示意图是广播通信对应的数据PDU结构,针对单播通信对应的数据PDU结构中,与图4不同的是DST ID可能并不是对端设备为该单播连接分配的标识的全部,有可能只是该对端设备为该单播连接分配的标识的部分信息。
示例性地,将对端设备为该单播连接分配的标识分成两部分,一部分称为第一信息,另一部分称为第二信息。其中,第一信息承载于媒介访问控制MAC PDU中,第二信息用于物理层进行加扰或者携带在第一数据对应的侧行链路控制SCI信息中,也就是说,单播通信对应的数据PDU中包含第一信息,而不包含第二信息,即DST ID为第一信息。
以UE2接收UE1发送的第一数据PDU为例,UE2接收到该第一数据PDU,需要分别获取第一信息和第二信息,合成一个目的标识,然后UE2将自己为单播连接分配的标识与该合成的目的标识比较,如果比较结果为匹配,则UE2确定该第一数据PDU是发给自 己的;可选的,如果不匹配,则丢弃该第一数据PDU。
应理解,第二终端设备可以通过获得数据对应的source ID和destination ID,来确定第一数据PDU是否是发给自己的,本申请对具体的确定方式不作限定。
本申请实施例中,一组源标识SRC ID和目标标识DST ID可以维护一套逻辑信道,也可以维护多套逻辑信道。针对一个终端设备来说,如果采用同一套逻辑信道发送数据PDU和状态报告,那么一组源标识SRC ID和目标标识DST ID可以维护一套逻辑信道;如果采用不同套逻辑信道发送数据PDU和发送状态报告,那么一组源标识SRC ID和目标标识DST ID可以维护两套逻辑信道,一套逻辑信道用于发送数据PDU,另一套逻辑信道用于发送状态报告。
基于上述实施例,以下提供实现第二终端设备向第一终端设备反馈第二RLC状态报告的几种可能的实施方式。
方式一,第一终端设备和第二终端设备使用相同的发送配置,这种实现方式中,要求第二终端设备遵循第一终端设备的RLC模式配置,或者第二终端设备将第一终端设备的RLC模式配置告知基站,这样可以指示基站基于第一终端设备的RLC模式配置为第二终端设备生成逻辑信道的配置,具体是指示第二终端设备发送数据PDU的逻辑信道配置。
在该方式下,终端设备采用一组源标识SRC ID和目标标识DST ID维护一套逻辑信道,即逻辑信道既可以用来发送数据,也可以用来发送状态报告,下面结合图5进行说明。参见图5,为本申请实施例提供的一种逻辑信道管理的示意图。
如图5所示,在第一终端设备UE1内部,以源标识SRC ID1和目标标识DST ID2维护一套逻辑信道,比如称为UE1的第一套逻辑信道,用于发送第一数据PDU(即Data)和第一RLC状态报告(status report,SR)。以源标识SRC ID2和目标标识DST ID1维护另一套逻辑信道,比如称为UE1的第二套逻辑信道,用于接收第二数据PDU(即Data)和第二RLC状态报告SR。其中,UE1维护的第一套逻辑信道中的逻辑信道标识可以用1-8来表示,UE1维护的第二套逻辑信道中的逻辑信道标识可以用1-8来表示,但是这两套逻辑信道中包括的并不是相同的逻辑信道。
相应的,在第二终端设备UE2内部,以源标识SRC ID1和目标标识DST ID2维护一套逻辑信道,比如称为UE2的第一套逻辑信道,用于接收第一数据PDU(即Data)和第一RLC状态报告SR。以源标识SRC ID2和目标标识DST ID1维护另一套逻辑信道,比如称为UE2的第二套逻辑信道,用于发送第二数据PDU(即Data)和第二RLC状态报告SR。其中,UE2维护的第一套逻辑信道中的信道用1-8来表示,UE2维护的第二套逻辑信道用1-8来表示,但是这两套逻辑信道中包括的并不是相同的逻辑信道。
一种可能的实现方式中,第一终端设备可以建立第一逻辑信道,用于向第二终端设备发送第一数据PDU,可选的,如果第一终端设备复用发送数据PDU的逻辑信道来发送第一RLC状态报告,那么第一终端设备可以使用第一逻辑信道向第二终端设备发送第一RLC状态报告,第一RLC状态报告用于指示第一终端设备接收第二终端设备的第二数据PDU的接收状态。此处,第一逻辑信道可以是上述图5中的UE1的第一套逻辑信道中的任一逻辑信道。
在这种情况下,第一终端设备通过第一逻辑信道向第二终端设备发送一个第一PDU,由于数据PDU和RLC状态报告类型的PDU都采用第一逻辑信道发送,所以第二终端设备根据逻辑信道对应的源标识和目标标识,无法确定该第一PDU的类型为数据PDU还是 RLC状态报告,因此,可以在第一PDU中携带第一指示信息,第一指示信息用于指示该第一PDU的类型为数据PDU或RLC状态报告,从而第二终端设备可以根据第一指示信息快速区分收到的第一PDU是哪种类型,进而尽快进行后续处理。
另一种可能的实现方式中,第二终端设备可以建立所述第三逻辑信道,用于所述第二终端设备向所述第一终端设备发送第二RLC状态报告,可选的,如果第二终端设备复用发送数据PDU的逻辑信道来发送第二RLC状态报告,那么第二终端设备也可以使用第三逻辑信道向所述第一终端设备发送第二数据PDU。此处,第三逻辑信道可以是上述图5中的UE2的第二套逻辑信道中的任一逻辑信道。
在这种情况下,所述第二终端设备通过所述第三逻辑信道向所述第一终端设备发送第二PDU,由于数据PDU和RLC状态报告类型的PDU都采用第三逻辑信道发送,所以第一终端设备根据逻辑信道对应的源标识和目标标识,无法确定该第二PDU的类型为数据PDU还是RLC状态报告,所以可以在第二PDU中携带第五指示信息,所述第五指示信息用于指示所述第二PDU的类型为数据PDU或RLC状态报告,从而第一终端设备可以根据第五指示信息快速区分收到的第一PDU是哪种类型,进而尽快进行后续处理。可选的,该第五指示信息可以携带在MAC PDU的头上,或者在SCI中。
方式二,第二终端设备按照第一终端设备的用于发送数据PDU的第一逻辑信道的RLC模式,确定用于反馈第二RLC状态报告的逻辑信道的配置。
在该方式下,终端设备采用一组源标识SRC ID和目标标识DST ID维护两套逻辑信道,下面结合图6进行说明。参见图6,为本申请实施例提供的一种逻辑信道管理的示意图。
参见图6,在第一终端设备UE1内部,以源标识SRC ID1和目标标识DST ID2维护两套逻辑信道,一套用于发送第一数据PDU,另一套用于发送第一RLC状态报告SR;还以源标识SRC ID2和目标标识DST ID1维护两套逻辑信道,一套用于接收第二数据PDU,另一套用于接收第二RLC状态报告SR。在第二终端设备UE2内部,以源标识SRC ID1和目标标识DST ID2维护两套逻辑信道,一套用于接收第一数据PDU,另一套用于接收第一RLC状态报告SR;还以源标识SRC ID2和目标标识DST ID1维护两套逻辑信道,一套用于发送第二数据PDU,另一套用于发送第二RLC状态报告SR。
一种可选的实现方式中,第一终端设备可以建立第一逻辑信道,第一逻辑信道用于向第二终端设备发送第一数据PDU,相应的,第二终端设备可以建立第四逻辑信道,第四逻辑信道用于接收来自第一终端设备的第一数据PDU。可选的,第一终端设备可以建立第二逻辑信道,第二逻辑信道用于接收第二终端设备发送的第二RLC状态报告,相应的,第二终端设备可以建立第三逻辑信道,第三逻辑信道用于向第一终端设备发送第二RLC状态报告。
可选的,第二终端设备还可以建立第五逻辑信道,第五逻辑信道用于向第一终端设备发送第二数据PDU。
示例性地,第二终端设备复用第一终端设备发送第一数据PDU的逻辑信道标识来确定用于发送第二RLC状态报告的第三逻辑信道的标识,也就是说,第一逻辑信道和第三逻辑信道使用相同的逻辑信道标识。
示例性的,第一终端设备通过标识为i的第一逻辑信道向第二终端设备发送第一数据PDU,标识为i的第一逻辑信道对应的RLC模式为AM,i为正整数;相应的,第二终端设备通过标识为i的第四逻辑信道接收来自第一终端设备的第一数据PDU。之后,第二终 端设备通过标识为i的第三逻辑信道向第一终端设备发送第二RLC状态报告,第一终端设备通过标识为i的第二逻辑信道接收来自第二终端设备的第二RLC状态报告。例如UE1中用于发送数据PDU的至少一个逻辑信道中,逻辑信道1、3对应的RLC模式为AM,则UE2建立逻辑信道1、3,用于发送第二RLC状态报告,而UE2中用于发送第二RLC状态报告的逻辑信道和UE1中用于发送数据PDU的逻辑信道1、3是逻辑信道标识相同的两套逻辑信道。
下面结合图6来说明,以i为2为例,第一逻辑信道为(SRC ID1,DST ID2)对应的Tx逻辑信道中的逻辑信道LC ID2,第四逻辑信道为(SRC ID1,DST ID2)对应的Rx逻辑信道中的逻辑信道LC ID2,第三逻辑信道为(SRC ID2,DST ID1)对应的Tx逻辑信道中的逻辑信道LC ID2,第二逻辑信道为(SRC ID2,DST ID1)对应的Rx逻辑信道中的逻辑信道LC ID2。具体过程如下:
第一终端设备使用(SRC ID1,DST ID2)对应的Tx逻辑信道中的逻辑信道LC ID2向第二终端设备发送第一数据PDU,该(SRC ID1,DST ID2)对应的Tx逻辑信道中的逻辑信道LC ID2对应的RLC模式为AM,第二终端设备通过(SRC ID1,DST ID2)对应的Rx逻辑信道中的逻辑信道LC ID2接收该第一数据PDU,之后,第二终端设备使用(SRC ID2,DST ID1)对应的Tx逻辑信道中的逻辑信道LC ID2向第一终端设备发送第二RLC状态报告,第一终端设备使用(SRC ID2,DST ID1)对应的Rx逻辑信道中的逻辑信道LC ID2接收第二RLC状态报告。基于同一原理,第二终端设备向第一终端设备发送第二数据,第一终端设备向第二终端设备发送第一RLC状态报告的过程与上述过程类似,此处不再赘述。
如上所述,在方式2中,第二终端设备的用于反馈第二RLC状态报告的第三逻辑信道的配置可以是第二终端设备自己确定的,也可以是第二终端设备从第二网络设备获取的。其中,第二终端设备自己确定可以是遵循协议规定确定的,其中包括RLC状态报告触发的定时器长度,可以是协议规定的长度。对应的UE1需要有一套RLC状态报告接收的配置,类似的,该配置可以是第一终端设备从基站获取,即在步骤307中获取,或者第一终端设备基于用于发送数据PDU的逻辑信道配置,自己确定一套接收RLC状态报告的逻辑信道配置。
方式三,第二终端设备通过扩展逻辑信道的方式来实现反馈第二RLC状态报告,具体来说,第二终端设备可以通过第一对应关系来确定用于反馈第二RLC状态报告的第三逻辑信道的标识。
第二终端设备在接收到第一终端设备发送的第一配置信息之后,针对RLC模式为AM的第一逻辑信道,根据该RLC模式为AM的第一逻辑信道标识i,将i+N作为用于反馈第二RLC状态报告的第三逻辑信道的标识。
参见图7,为本申请实施例提供的一种逻辑信道管理的示意图。
参见图7,在第一终端设备UE1内部,(SRC ID1,DST ID2)对应的逻辑信道可以包括两部分:一部分为用于发送第一数据PDU的Tx(Data)逻辑信道,另一部分为用于发送第一RLC状态报告的Tx(RLC SR)逻辑信道,两部分的逻辑信道的标识不同。相应的,在第二终端设备UE2内部,(SRC ID1,DST ID2)对应的逻辑信道包括两部分:一部分为用于接收第一数据PDU的Rx(Data)逻辑信道,另一部分为用于接收第一RLC状态报告的Rx(RLC SR)逻辑信道,这两部分的逻辑信道的标识不同。
在第一终端设备UE1内部,(SRC ID2,DST ID1)对应的逻辑信道包括两部分:一部分 为用于接收第二数据PDU的Rx(Data)逻辑信道,另一部分为用于接收第二RLC状态报告的Rx(RLC SR)逻辑信道,两部分的逻辑信道的标识不同。相应的,在第二终端设备UE2内部,(SRC ID2,DST ID1)对应的逻辑信道包括两部分:一部分为用于发送第二数据PDU的Tx(Data)逻辑信道,另一部分为用于发送第二RLC状态报告的Tx(RLC SR)逻辑信道,两部分的逻辑信道的标识不同。
一种可能的实现方式中,第一终端设备通过标识为i的第一逻辑信道向第二终端设备发送第一数据PDU,标识为i的第一逻辑信道对应的RLC模式为AM,相应的,第二终端设备通过标识为i的第四逻辑信道接收来自第一终端设备的第一数据PDU,其中i为正整数。可选的,第二终端设备通过标识为i+N的第三逻辑信道向第一终端设备发送第二RLC状态报告,相应的,第一终端设备通过标识为i+N的第二逻辑信道接收来自第二终端设备的第二RLC状态报告,其中N为正整数。
可选的,第一终端设备获取该N的方式有多种,比如可以通过第一终端设备自己确定,也可以从第二终端设备接收,比如第二终端设备通过控制信令发送给第一终端设备,再比如由第二网络设备确定之后发给第二终端设备,第二终端设备再通过第二确认消息发给转发给第一终端设备,该N还可以是从第一终端设备所属的第一网络设备接收。第二终端设备获取该N的方式有多种,比如可以由所述第二终端设备自己确定,也可以从第一终端设备接收,比如第一终端设备通过控制信令发送给第二终端设备,该N还可以是从第二终端设备所属的第二网络设备接收。
作为一种示例,结合图7,以N为20为例,如果第一配置信息中包括(SRC ID1,DST ID2)对应的一部分用于发送第一数据PDU的Tx(Data)逻辑信道中逻辑信道LC ID1对应的RLC模式为AM,则UE2使用(SRC ID2,DST ID1)对应的一部分用于发送第二RLC状态报告的Tx(RLC SR)逻辑信道中的逻辑信道LC ID20进行第二RLC状态报告的反馈。
在另一种可选的实现方式中,第一终端设备通过标识为i的第一逻辑信道向第二终端设备发送第一数据PDU,标识为i的第一逻辑信道对应的RLC模式为AM,相应的,第二终端设备通过标识为i的第四逻辑信道接收来自第一终端设备的第一数据PDU。第一终端设备通过标识为K的第二逻辑信道接收来自第二终端设备的第二RLC状态报告,第一终端设备中的K为根据第一对应关系确定的,第一对应关系用于指示第一逻辑信道的标识i与第二逻辑信道的标识K的对应关系;第二终端设备通过标识为K的第三逻辑信道向第一终端设备发送第二RLC状态报告,第二终端设备中的K为根据第二对应关系中确定的,所述第二对应关系包括所述第四逻辑信道的标识i和所述第三逻辑信道的标识K的对应关系,K为正整数。需要说明的是,i和K的取值可以根据实际需要进行设置,不作具体限定。
可选的,第一终端设备获取该第一对应关系的方式有多种,比如可以通过第一终端设备自己确定,也可以从第二终端设备接收,比如第二终端设备通过控制信令发送给第一终端设备,再比如由第二网络设备确定之后发给第二终端设备,第二终端设备再转发给第一终端设备,该第一对应关系还可以是从第一终端设备所属的第一网络设备接收。第二终端设备获取该第二对应关系的方式有多种,比如可以由所述第二终端设备自己确定,也可以从第一终端设备接收,比如第一终端设备通过控制信令发送给第二终端设备,该第一对应关系还可以是从第二终端设备所属的第二网络设备接收。
示例性地,比如第一对应关系包括第一逻辑信道的标识1对应第二逻辑信道的标识12, 第一逻辑信道的标识3对应第二逻辑信道的标识14,如果第一终端设备使用标识1对应的第一逻辑信道发送的第一数据PDU,就会采用标识12对应的第二逻辑信道接收第二RLC状态报告;如果第一终端设备使用标识3对应的第一逻辑信道发送的第一数据PDU,就会采用标识14对应的第二逻辑信道接收第二RLC状态报告。
应理解,上述示例中,第一终端设备作为发送端设备发送第一数据PDU,需要第二终端设备配出用于反馈第二RLC状态报告的第三逻辑信道,当然,第一终端设备还需要配出用于接收第二RLC状态报告的第二逻辑信道。
方式四,第二终端设备使用一个逻辑信道专门用来反馈第二RLC状态报告,示例性的,使用一个第三逻辑信道反馈所有第一逻辑信道发送的第一数据PDU对应的第二RLC状态报告。该第三逻辑信道可以是固定的,也可以是可配置的,如果是可配置的,具体配置方式可以参考方式二中的N的配置方式。
在一种可能的实现方式中,第一终端设备维护一个或多个第一逻辑信道,第一终端设备还可以通过一个或多个第一逻辑信道分别向第二终端设备发送一个或多个第一数据PDU,第一终端设备可以通过第二逻辑信道接收来自第二终端设备的与一个或多个第一逻辑信道对应的第二RLC状态报告;第二RLC状态报告包括第一逻辑信道的标识。
在另一种可能的实现方式中,第二终端设备维护一个或多个第四逻辑信道,第二终端设备通过一个或多个第四逻辑信道接收来自第一终端设备的一个或多个第一数据PDU;每个第四逻辑信道接收来自与第四逻辑信道对应的第一逻辑信道所发送的第一PDU,第一逻辑信道对应的RLC模式为AM,第二终端设备通过第三逻辑信道向第一终端设备发送与一个或多个第一逻辑信道对应的第二RLC状态报告,第二RLC状态报告包括第一逻辑信道的标识。
参见图8,为本申请实施例提供的一种逻辑信道管理的示意图。
如图8所示,在第一终端设备UE1内部,(SRC ID1,DST ID2)对应的逻辑信道包括两部分:一部分为用于发送第一数据PDU的Tx(Data)逻辑信道,包括多个第一逻辑信道,其可以用1-8来表示,另一部分为用于发送第一RLC状态报告的Tx(RLC SR)逻辑信道,包括一个逻辑信道21。相应的,在第二终端设备UE2内部,(SRC ID2,DST ID1对应的逻辑信道包括两部分:一部分为用于接收第一数据PDU的Rx(Data)逻辑信道,包括多个第三逻辑信道,其可以用1-8来表示,另一部分为用于接收第一RLC状态报告的Rx(RLC SR)逻辑信道。
在第一终端设备UE1内部,(SRC ID2,DST ID1)对应的逻辑信道包括两部分:一部分为用于接收第二数据PDU的Rx(Data)逻辑信道,包括多个第四逻辑信道,其可以用1-8来表示,另一部分为用于接收第二RLC状态报告的Rx(RLC SR)逻辑信道,包括一个逻辑信道21。相应的,在第二终端设备UE2内部,(SRC ID2,DST ID1)对应的逻辑信道包括两部分:一部分为用于发送第二数据PDU的Tx(Data)逻辑信道,包括多个第四逻辑信道,其可以用1-8来表示,另一部分为用于发送第二RLC状态报告的Tx(RLC SR)逻辑信道,包括一个第二逻辑信道21。
示例性地,如上图8所示,以第一终端设备向第二终端设备发送第一数据PDU、第二终端设备向第一终端设备发送第二RLC状态报告为例,假设第一终端设备采用(SRC ID1,DST ID2)对应的一部分用于发送第一数据PDU的Tx(Data)逻辑信道中,RLC模式 为AM的第一逻辑信道1,2,3向第二终端设备发送第一数据PDU,那么第二终端设备采用(SRC ID1,DST ID2)对应的一部分用于发送第二RLC状态报告的Tx(RLC SR)逻辑信道21向第一终端设备发送第二RLC状态报告,相应的,第一终端设备采用(SRC ID2,DST ID1)对应的一部分用于接收第二RLC状态报告的Rx(RLC SR)逻辑信道21接收来自第二终端设备的第二RLC状态报告。
由于从第二终端设备针对不同发送第一数据PDU的第一逻辑信道所反馈的第二RLC状态报告,都是通过同一个逻辑信道21进行发送的,为了使第二RLC状态的接收端设备,即第一终端设备能够识别第二RLC状态报告是针对哪个发送第一数据PDU的第一逻辑信道,可以在第二RLC状态报告中引入一个逻辑信道标识的指示信息,用来告知第一终端设备该第二RLC状态报告是针对哪个第一逻辑信道发送的第一数据PDU的状态,例如,第一终端设备通过逻辑信道标识1发送第一数据PDU,参见图9,为本申请实施例提供的另一种逻辑信道管理的示意图。如图9所示,第二终端设备通过逻辑信道21向第一终端设备发送的第二RLC状态报告中携带用于指示逻辑信道标识1的指示信息。
下面针对第一终端设备与第二终端设备交互过程进行详细描述。
参见图10,为本申请实施例提供的终端之间交互过程示意图。该交互过程包括如下步骤:
步骤1001,第一终端设备通过第一逻辑信道向第二终端设备发送至少一个第一数据PDU。
步骤1002,第二终端设备通过第四逻辑信道接收来自第一终端设备的至少一个第一数据PDU。
步骤1003,第二终端设备确定至少一个第一数据PDU满足状态报告触发条件,则生成第二RLC状态报告,第二RLC状态报告包括丢失的第一数据PDU对应的第一序列号,或者,第一序列号和成功接收的第一数据PDU对应的第二序列号。
步骤1004,第二终端设备通过第三逻辑信道向第一终端设备发送第二RLC状态报告。
步骤1005,第一终端设备通过第二逻辑信道接收来自第二终端设备的第二RLC状态报告。
步骤1006,第一终端设备解析第二RLC状态报告,得到解析结果;解析结果包括丢失的第一数据PDU对应的第一序列号,或者第一序列号和成功接收的第一数据PDU对应的第二序列号。
步骤1007,第一终端设备基于解析结果,确定出第一序列号对应的第一数据PDU。
步骤1008,第一终端设备通过第一逻辑信道向第二终端设备重传第一序列号对应的第一数据PDU。
基于上述实施例,状态报告触发条件可以包括但不限于以下三项:
第一项,周期性触发反馈第二RLC状态报告。
第二项,定时器超时,定时器用于从至少一个第一数据PDU中第一个丢包的数据PDU开始计时。
第三项,数据PDU中携带的第七指示信息,第七指示信息用于指示第二终端设备在接收到第七指示信息时反馈第二RLC状态报告。其中,第七指示信息可以为polling指示信息。
该图10所示的第一终端设备与第二终端设备的交互示意图可以适用于上述任一实施 例涉及到的两个终端之间的交互。
基于上述实现第二终端设备向第一终端设备反馈第二RLC状态报告的方式二、方式三、以及方式四,第一终端设备和第二终端设备内部都维护两套用于发送数据PDU和状态报告的逻辑信道,以及两套接收数据PDU和状态报告的逻辑信道。在这种情况下,终端设备通过两个不同的RLC实体实现发送和接收操作,那么在终端内部涉及到两个RLC实体之间的交互。在一种可选的实施方式中,第一终端设备包括第一逻辑信道对应的第一RLC实体和第二逻辑信道对应的第二RLC实体,第二终端设备包括第四逻辑信道对应的第三RLC实体和第三逻辑信道对应的第四RLC实体。
下面结合图10所示的两个终端设备之间的交互流程,提供如下针对每个终端设备内部的两个RLC实体间的交互实施例,示例过程可以通过如下步骤实现:
S1,第一RLC实体第一逻辑信道向第二终端设备发送至少一个第一数据PDU。
S2,第三RLC实体通过第四逻辑信道接收来自第一终端设备的至少一个第一数据PDU。
S3,第三RLC实体确定丢失的第一数据PDU对应的第一序列号、以及成功接收的第一数据PDU对应的第二序列号。
在S3之后,第二终端设备可以有两种可能的方式生成第二RLC状态报告。一种可能的方式中,由第三RLC实体生成第二RLC状态报告,具体可通过以下步骤S4~S5实现。
S4第三RLC实体根据第一序列号和/或第二序列号,生成第二RLC状态报告。
S5,第三RLC实体向第四RLC实体发送第二RLC状态报告。
应理解,在步骤S4中,如果第三RLC实体根据第一序列号生成第二RLC状态报告,那么步骤S5中第三RLC实体向第四RLC实体发送第二RLC状态报告包括第一序列号。在步骤S4中,如果第三RLC实体根据第一序列号和第二序列号生成第二RLC状态报告,那么步骤S5中第三RLC实体向第四RLC实体发送第二RLC状态报告包括第一序列号和第二序列号。在步骤S4中,如果第三RLC实体根据第二序列号生成第二RLC状态报告,那么步骤S5中第三RLC实体向第四RLC实体发送第二RLC状态报告包括第二序列号。如果结合上述方式三,第二RLC状态报告中还可以携带第一逻辑信道标识。
基于上述实施例,下面以第四RLC实体生成第二RLC状态报告为例,描述触发状态报告的过程。
在一个示例中,上述步骤S3,第三RLC实体执行对至少一个第一数据PDU的接收操作,比如,可以包括对至少一个第一数据PDU进行重排序,若发现丢包时启动定时器,当定时器超时,第三RLC实体向第四RLC实体发送用于指示第四RLC实体生成第二RLC状态报告的指示信息,该指示信息中携带第三RLC实体确定的丢失的第一数据PDU对应的第一序列号以及成功接收的(也就是已经确认收到的)第一数据PDU对应的第二序列号发送给第四RLC实体。
在另一个示例中,上述步骤S3,第三RLC实体执行对至少一个第一数据PDU的接收操作,在接收到每个第一数据PDU时,如果发现某个第一数据PDU的头上包含polling指示信息,此时并不需要等到定时器超时,第三RLC实体就可以向第四RLC实体发送用于指示第四RLC实体生成第二RLC状态报告的指示信息,该指示信息携带第三RLC实体确定的当前已经确定丢失的第一数据PDU对应的第一序列号和已经确认收到的第一数据PDU对应的第二序列号发送给第四RLC实体。
在另一种可选的方式中,由第四RLC实体生成第二RLC状态报告,比如,可通过以 下步骤S6~S7实现。
S6,第三RLC实体向第四RLC实体发送第一序列号和/或第二序列号。
S7,第四RLC实体根据第一序列号,生成第二RLC状态报告;或者,第四RLC实体根据第二序列号,生成第二RLC状态报告;或者,第四RLC实体根据第一序列号和第二序列号,生成第二RLC状态报告。
S8,第四RLC实体通过第三逻辑信道向第一终端设备发送第二RLC状态报告。
S9,第二RLC实体通过第二逻辑信道接收来自第二终端设备的第二RLC状态报告。
可选的,在上述S9之后,可以由第二RLC实体来解析第二RLC状态报告,比如,可以包括如下步骤S10~S11。
S10,第二RLC实体解析第二RLC状态报告,得到解析结果。
S11,第二RLC实体基于解析结果,确定出第一序列号对应的第一数据PDU。
在步骤S11之后可以有以下两种可选的实现方式:一种方式中,第二RLC实体可以将该第一序列号和/或第二序列号发送给第一RLC实体;另一种方式中,第二RLC实体将第一序列号发送给第一RLC实体,并将第二序列号发送给第一RLC实体对应的第一PDCP实体,第一PDCP实体可以将该第二序列号对应的第一数据PDU删除,可以减少第一PDCP缓存量。
可选的,在上述S9之后,还可以由第一RLC实体来解析第二RLC状态报告,比如,可以包括如下步骤S12~S13。
S12,第二RLC实体可以向第一RLC实体发送第二RLC状态报告。
S13,第一RLC实体解析第二RLC状态报告,得到解析结果。
在上述S11或S13之后,继续执行S14。
S14,第一RLC实体通过第一逻辑信道向第二终端设备重传第一序列号对应的第一数据PDU。
可选的,第二RLC状态报告包括第一序列号和第二序列号时,第一RLC实体可以向第一PDCP实体发送用于指示第一PDCP实体删除该第二序列号对应的第一数据PDU的信息。
基于该实施例,可以提供一种终端内部两个RLC实体通信的方案,例如,用于发送第一数据PDU的第一RLC实体与用于接收第二RLC状态报告的第二RLC实体之间的交互,再例如,用于接收数据PDU的第三RLC实体与用于发送RLC状态报告的第四RLC实体之间的交互。
上述任一实施例中,为了解决现有的在侧行链路上建立单向承载的进行单播通信的可靠性低的问题,基于在侧行链路上单向承载进行单播通信,通过为第一终端设备中用于发送数据PDU的逻辑信道配置RLC模式为AM,实现第二终端设备的状态报告的生成和发送,从而可以实现在RLC AM模式下的自动重传功能,进而提高V2X业务通信过程的可靠性。
为了解决现有的在侧行链路上建立单向承载的进行单播通信的可靠性低的问题,本申请实施例中引入双向承载进行单播通信的方式,相比于上述基于单向承载设计的方案,双向承载的好处在于终端内部开销更小,实现更简单,而且不需要内部维护很多逻辑信道,也不需要内部RLC实体之间的交互。
示例性地,第一终端设备将第一配置信息发送给第二终端设备,第一配置信息包括接 收配置和发送配置。第二终端设备接收到该第一配置信息之后,可以执行该第一配置信息的配置,也可以将该第一配置信息发送给第二网络设备,第二网络设备可以基于第一配置信息确定出第二配置信息,并将第二配置信息发送给向第二终端设备。可选的,第二终端设备也可以直接执行该第一配置信息的配置,然后将配置结果上报给第二网络设备。在第二终端设备配置完后之后,第一终端设备和第二终端设备为一个单播连接维护一套逻辑信道,不区分发送逻辑信道和接收逻辑信道。可选的,第二终端设备也可以给第一终端设备发送第一配置信息,即第一终端设备采用第二终端设备的单播连接的配置。
本申请实施例中,第一终端设备除了使用第一逻辑信道发送第一RLC状态报告和第一数据PDU,还使用第一逻辑信道向第二终端设备接收第二RLC状态报和第二数据PDU,也就是说,第一终端设备和第二终端设备完成配置后,参见图11,为本申请实施例提供的一种逻辑信道管理的示意图。
如图11所示,第一终端设备内部维护一套(SRC ID1,DST ID2)对应的逻辑信道,用于发送第一数据PDU和第一RLC状态报告,以及接收第二数据PDU和第二RLC状态报告。第一终端设备内部也维护一套(SRC ID2,DST ID1)对应的逻辑信道,用于接收第一数据PDU和第一RLC状态报告,以及发送第二数据PDU和第二RLC状态报告。
在该实施例中,一个单播连接是由两个终端设备各自为该单播连接分配的标识一起识别的,以第一终端设备为该单播连接分配标识1,第二终端设备为该单播连接分配标识2为例,这时可以用<1,2>来标识该单播连接,也可以用<2,1>来标识该单播连接,即单播连接<1,2>和单播连接<2,1>为同一个单播连接。另外,一个逻辑信道标识能够在一个单播连接中唯一识别一个逻辑信道。
通过该实施例,终端设备为每个单播连接维护一套逻辑信道,每个单播连接对应的有两种标识方式,即发送时为而不是为每个目的标识维护一套逻辑信道,不再区分接收的逻辑信道和发送的逻辑信道,从而可以实现RLC状态报告的生成和发送,完成RLC AM模式下的自动重传功能,进而可以提高V2X业务通信过程的可靠性。
本申请实施例提供的通信方法,除了可以适用于单播通信,也可以适用于组播通信,在实施中,第一终端设备可以给组内所有设备发送第一配置信息,组内所有设备执行如本申请实施例中第二终端设备的配置过程。
应理解,本申请实施例的第一终端设备、第二终端设备、第一网络设备和第二网络设备可以执行前述本申请实施例的各种方法,即以下各种产品的具体工作过程,可以参考前述方法实施例中的对应过程。
下面结合图12至图15详细介绍本申请涉及的通信装置。
本申请实施例提供一种通信装置,请参阅图12,为本申请实施例提供的一种通信装置的结构示意图,该通信装置1200包括:收发模块1201和处理模块1202。
在一种可能的设计中,该通信装置1200可对应于上文方法实施例中的第一终端设备,例如,可以为第一终端设备,或者配置于第一终端设备中的芯片。通信装置1200能够执行图3或者图10中由第一终端设备执行的各个步骤。
处理模块1202,用于获取第一配置信息,第一配置信息包括:侧行链路单播连接的用于发送第一数据PDU的第一逻辑信道的标识,以及与第一逻辑信道对应的无线链路控制RLC模式;单播连接建立于第一终端设备和第二终端设备之间;
收发模块1201,用于通过侧行链路,向第二终端设备发送第一配置信息。
可选地,作为一个实施例,第一逻辑信道对应的RLC模式为RLC确认模式。
可选地,作为一个实施例,收发模块1201,还用于使用第一逻辑信道向第二终端设备发送第一RLC状态报告,第一RLC状态报告用于指示第一终端设备接收第二终端设备的第二数据PDU的接收状态。
可选地,作为一个实施例,收发模块1201,还用于通过第一逻辑信道向第二终端设备发送第一PDU,第一PDU中携带第一指示信息,第一指示信息用于指示第一PDU的类型为数据PDU或RLC状态报告。
可选地,作为一个实施例,处理模块1202,还用于建立第一逻辑信道;第一逻辑信道用于向第二终端设备发送第一数据PDU;建立第二逻辑信道;第二逻辑信道用于接收第二终端设备发送的第二RLC状态报告。
可选地,作为一个实施例,收发模块1201,还用于通过标识为i的第一逻辑信道向第二终端设备发送第一数据PDU,标识为i的第一逻辑信道对应的RLC模式为AM,i为正整数;通过标识为i的第二逻辑信道接收来自第二终端设备的第二RLC状态报告。
可选地,作为一个实施例,收发模块1201,还用于通过标识为i的第一逻辑信道向第二终端设备发送第一数据PDU;i为正整数;通过标识为i+N的第二逻辑信道接收来自第二终端设备的第二RLC状态报告,N为正整数。
可选地,作为一个实施例,N通过以下方式确定:由第一终端设备确定;或者,从第二终端设备接收;或者,从第一网络设备接收。
可选地,作为一个实施例,收发模块1201,还用于通过标识为i的第一逻辑信道向第二终端设备发送第一数据PDU;通过标识为K的第二逻辑信道接收来自第二终端设备的第二RLC状态报告,K为正整数;K为根据第一对应关系确定的,第一对应关系用于指示第一逻辑信道的标识i与第二逻辑信道的标识K的对应关系。
可选地,作为一个实施例,第一对应关系通过以下方式确定:由第一终端设备确定;或者,从第二终端设备接收;或者,从第一终端设备所属的第一网络设备接收。
可选地,作为一个实施例,通信装置1200维护一个或多个第一逻辑信道;收发模块1201,还用于通过一个或多个第一逻辑信道分别向第二终端设备发送一个或多个第一数据PDU;通过第二逻辑信道接收来自第二终端设备的与一个或多个第一逻辑信道对应的第二RLC状态报告;第二RLC状态报告包括第一逻辑信道的标识。
可选地,作为一个实施例,第一逻辑信道还用于第一终端设备接收来自第二终端设备的第二RLC状态报告和第二数据PDU。
可选地,作为一个实施例,处理模块1202,用于第一终端设备从预配置信息中获取第一配置信息;或者,第一终端设备从第一网络设备发送的广播消息中获取第一配置信息;或者,第一终端设备从RRC专用信令中获取第一配置信息。
可选地,作为一个实施例,收发模块1201,还用于向第一网络设备发送配置完成消息,配置完成消息用于指示第一终端设备基于第一配置信息完成配置,或者用于指示第二终端设备基于第一终端设备发送的第一配置信息完成配置。
可选地,作为一个实施例,第一配置信息还可以包括第一逻辑信道对应的通信模式,通信模式用于指示第一逻辑信道对应的侧行链路资源分配模式。
可选地,作为一个实施例,第一配置信息还可以包括第一逻辑信道对应的优先级信息, 优先级信息用于指示第一逻辑信道对应的调度优先级。
可选地,作为一个实施例,收发模块1201,还用于通过第一逻辑信道向第二终端设备发送至少一个第一数据PDU;通过第二逻辑信道接收来自第二终端设备的第二RLC状态报告;处理模块1202,还用于解析第二RLC状态报告,得到解析结果;解析结果包括丢失的第一数据PDU对应的第一序列号,或者第一序列号和成功接收的第一数据PDU对应的第二序列号;收发模块1201,还用于基于解析结果,通过第一逻辑信道向第二终端设备重传第一序列号对应的第一数据PDU。
可选地,作为一个实施例,通信装置1200包括第一逻辑信道对应的第一RLC实体和第二逻辑信道对应的第二RLC实体;收发模块1201,还用于第二RLC实体通过第二逻辑信道接收来自第二终端设备的第二RLC状态报告;第二RLC实体解析第二RLC状态报告,得到解析结果;第二RLC实体向第一RLC实体发送第一序列号;第一RLC实体通过第一逻辑信道向第二终端设备重传第一序列号对应的第一数据PDU。
可选地,作为一个实施例,第二RLC实体通过第二逻辑信道接收来自第二终端设备的第二RLC状态报告之后,收发模块1201,还用于第二RLC实体向第一RLC实体发送第二RLC状态报告;处理模块1202,用于第一RLC实体解析第二RLC状态报告,得到解析结果;收发模块1201,用于第一RLC实体基于解析结果,通过第一逻辑信道向第二终端设备重传第一序列号对应的第一数据PDU。
需要说明的是,上述收发模块可以包括发送模块和接收模块,可以为同一个收发模块,通信装置1200除了上述收发模块外还可以包括其它模块,本申请对此不作限定。
在一种可能的设计中,该通信装置1200可对应于上文方法实施例中的第二终端设备,例如,可以为第二终端设备,或者配置于第二终端设备中的芯片。通信装置1200能够执行图3或者图10中由第二终端设备执行的各个步骤。
收发模块1201,用于接收来自第一终端设备的第一配置信息,第一配置信息包括:侧行链路单播连接的用于发送第一数据PDU的第一逻辑信道的标识,以及第一逻辑信道对应的无线链路控制RLC模式;单播连接建立于第一终端设备和第二终端设备之间;
处理模块1202,用于确定与第一终端设备的第一逻辑信道对应的用于反馈第二RLC状态报告的第三逻辑信道,第一逻辑信道对应的RLC模式为AM,第二RLC状态报告用于指示第二终端设备接收第一逻辑信道的第一数据PDU的状态;建立第三逻辑信道。
可选地,作为一个实施例,处理模块1202,还用于建立第三逻辑信道;第三逻辑信道还用于第二终端设备向第一终端设备发送第二数据PDU。
可选地,作为一个实施例,收发模块1201,还用于通过第三逻辑信道向第一终端设备发送第二PDU;第二PDU中携带第五指示信息,第五指示信息用于指示第二PDU的类型为数据PDU或RLC状态报告。
可选地,作为一个实施例,处理模块1202,还用于建立第四逻辑信道;第四逻辑信道用于接收来自第一终端设备的第一数据PDU;建立第三逻辑信道;第三逻辑信道用于向第一终端设备发送第二RLC状态报告。
可选地,作为一个实施例,处理模块1202,还用于建立第五逻辑信道;第五逻辑信道用于向第一终端设备发送第二数据PDU。
可选地,作为一个实施例,收发模块1201,还用于通过标识为i的第四逻辑信道接收来自第一终端设备的第一数据PDU,第一数据PDU为第一终端设备通过标识为i的第一 逻辑信道发送的;标识为i的第一逻辑信道对应的RLC模式为AM;i为正整数;通过标识为i的第三逻辑信道向第一终端设备发送第二RLC状态报告。
可选地,作为一个实施例,收发模块1201,还用于通过标识为i的第四逻辑信道接收来自第一终端设备的第一数据PDU;第一数据PDU为第一终端设备通过标识为i的第一逻辑信道发送的;标识为i的第一逻辑信道对应的RLC模式为AM;i为正整数;
第二终端设备通过标识为i+N的第三逻辑信道向第一终端设备发送第二RLC状态报告,N为正整数。
可选地,作为一个实施例,N通过以下方式确定:由第二终端设备确定;或者,从第一终端设备接收;或者,从第二网络设备接收。
可选地,作为一个实施例,收发模块1201,还用于通过标识为i的第四逻辑信道接收来自第一终端设备的第一数据PDU;第一数据PDU为第一终端设备通过标识为i的第一逻辑信道发送的;标识为i的第一逻辑信道对应的RLC模式为AM;i为正整数;通过标识为K的第三逻辑信道向第一终端设备发送第二RLC状态报告,K为正整数;K为根据第二对应关系中确定的,第二对应关系包括第四逻辑信道的标识i和第三逻辑信道的标识K的对应关系。
可选地,作为一个实施例,第二对应关系通过以下方式确定:由第二终端设备确定;或者,从第一终端设备接收。
可选地,作为一个实施例,第二终端设备维护一个或多个第四逻辑信道,M为整数;收发模块1201,还用于通过一个或多个第四逻辑信道接收来自第一终端设备的一个或多个第一数据PDU;每个第四逻辑信道接收来自与第四逻辑信道对应的第一逻辑信道所发送的第一PDU;第一逻辑信道对应的RLC模式为AM;通过第三逻辑信道向第一终端设备发送与一个或多个第一逻辑信道对应的第二RLC状态报告,第二RLC状态报告包括第一逻辑信道标识。
可选地,作为一个实施例,收发模块1201,还用于向第二网络设备发送第一配置信息,并接收来自第二网络设备的第二配置信息,第二配置信息用于第二终端设备确定与第一终端设备的第一逻辑信道对应的用来反馈第二RLC状态报告的第三逻辑信道;或者,处理模块1202,还用于根据第一配置信息,确定与第一终端设备的第一逻辑信道对应的用来反馈第二RLC状态报告的第三逻辑信道。
可选地,作为一个实施例,收发模块1201,还用于向第二网络设备发送第一确认消息,第一确认消息指示第二终端设备基于第二配置信息完成配置。
可选地,作为一个实施例,第三逻辑信道还用于接收来自第一终端设备的第一数据PDU和第一RLC状态报告。
可选地,作为一个实施例,收发模块1201,还用于向第一终端设备发送第二确认消息,第二确认消息用于指示第二终端设备基于第一终端设备发送的第一配置信息完成配置。
可选地,作为一个实施例,收发模块1201,还用于通过第四逻辑信道接收来自第一终端设备的至少一个第一数据PDU;处理模块1202,还用于确定至少一个第一数据PDU满足状态报告触发条件,则生成第二RLC状态报告,第二RLC状态报告包括丢失的第一数据PDU对应的第一序列号,或者,第一序列号和成功接收的第一数据PDU对应的第二序列号;收发模块1201,还用于通过第三逻辑信道向第一终端设备发送第二RLC状态报告。
可选地,作为一个实施例,通信装置1200包括第四逻辑信道对应的第三RLC实体和 第三逻辑信道对应的第四RLC实体;收发模块1201,还用于第三RLC实体通过第四逻辑信道接收来自第一终端设备的至少一个第一数据PDU;处理模块1202,还用于第三RLC实体确定丢失的第一数据PDU对应的第一序列号、以及成功接收的第一数据PDU对应的第二序列号;第三RLC实体根据第一序列号,和/或,第二序列号,生成第二RLC状态报告;收发模块1201,还用于第四RLC实体通过第三逻辑信道向第一终端设备发送第二RLC状态报告。
可选地,作为一个实施例,收发模块1201,还用于第三RLC实体确定丢失的第一数据PDU对应的第一序列号、以及成功接收的第一数据PDU对应的第二序列号之后,第三RLC实体向第四RLC实体发送第一序列号;第四RLC实体根据第一序列号生成第二RLC状态报告;或者,第三RLC实体向第四RLC实体发送第二序列号;第四RLC实体根据第二序列号生成第二RLC状态报告;或者,第三RLC实体向第四RLC实体第一序列号和第二序列号;第四RLC实体根据第一序列号生成第二RLC状态报告。
可选地,作为一个实施例,状态报告触发条件包括以下任一项:周期性触发反馈第二RLC状态报告;定时器超时,定时器用于从至少一个第一数据PDU中第一个丢包的数据PDU开始计时;数据PDU中携带的第七指示信息,第七指示信息用于指示通信装置1200在接收到第七指示信息时反馈第二RLC状态报告。
需要说明的是,上述收发模块可以包括发送模块和接收模块,可以为同一个收发模块,通信装置1200除了上述收发模块外还可以包括其它模块,本申请对此不作限定。
应理解,根据本申请实施例的通信装置1200可对应于前述方法实施例中第一终端设备或者第二终端设备的方法,并且通信装置1200中的各个模块/模块的上述和其它管理操作和/或功能分别为了实现前述方法实施例中第一终端设备或者第二终端设备的方法的相应步骤,因此也可以实现前述方法实施例中的有益效果,为了简洁,这里不作赘述。
还应理解,通信装置1200中的各个模块/模块可以通过软件和/或硬件形式实现,对此不作具体限定。换言之,通信装置1200是以功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路ASIC、电路、执行一个或多个软件或固件程序的处理器和存储器、集成逻辑电路,和/或其他可以提供上述功能的器件。
上述方案的通信装置1200可以具有实现上述方法中第一终端设备或者第二终端设备的相应步骤的功能;所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如发送模块可以由发射机替代,接收模块可以由接收机替代,其它模块,如确定模块等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
在本申请的实施例,图12中的通信装置也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。对应的,接收模块和发送模块可以是该芯片的收发电路,在此不做限定。
本申请实施例提供一种通信装置,请参阅图13,为本申请实施例提供的一种通信装置的结构示意图,该通信装置1300包括:收发模块1301和处理模块1302。
在一种可能的设计中,该通信装置1300可对应于上文方法实施例中的第一网络设备,例如,可以为第一网络设备,或者配置于第一网络设备中的芯片。通信装置1300能够执行图3或者图10中由第一网络设备执行的各个步骤。
处理模块1302,用于确定第一配置信息。
收发模块1301,用于向第一终端设备发送第一配置信息;第一配置信息包括侧行链路单播连接上用于发送第一数据PDU的第一逻辑信道的标识,以及第一逻辑信道对应的无线链路控制RLC模式;接收第一终端设备发送的配置完成消息,配置完成消息用于指示第一终端设备基于第一配置信息完成配置,或者用于指示第二终端设备基于第一终端设备发送的第一配置信息完成配置。
需要说明的是,上述收发模块可以包括发送模块和接收模块,可以为同一个收发模块,通信装置1300除了上述收发模块外还可以包括其它模块,本申请对此不作限定。
在一种可能的设计中,该通信装置1300可对应于上文方法实施例中的第二网络设备,例如,可以为第二网络设备,或者配置于第二网络设备中的芯片。通信装置1300能够执行图3或者图10中由第二网络设备执行的各个步骤。
收发模块1301,用于接收第一终端设备发送的第一配置信息;第一配置信息包括侧行链路单播连接上用于发送第一数据PDU的第一逻辑信道的标识,以及第一逻辑信道对应的无线链路控制RLC模式;
处理模块1302,用于基于第一配置信息,确定第二配置信息;第二配置信息用于第二终端设备确定与第一终端设备的第一逻辑信道对应的用来反馈第二RLC状态报告的第三逻辑信道;第一逻辑信道对应的RLC模式为AM;第二RLC状态报告用于指示第二终端设备接收第一逻辑信道的第一数据PDU的状态。
收发模块1301,还用于向第二终端设备发送第二配置信息。
可选地,作为一个实施例,第二网络设备接收第二终端设备发送的第一确认消息,第一确认消息指示第二终端设备基于第二配置信息完成配置。
可选地,作为一个实施例,第二配置信息还可以包括N,N用于第二终端设备反馈第二RLC状态报告的第三逻辑信道的标识,N为正整数。
可选地,作为一个实施例,第二配置信息还可以包括第四逻辑信道的标识与第三逻辑信道的标识的第二对应关系;其中,第二对应关系用于第二终端设备确定用于向第一终端设备发送第而RLC状态报告的第三逻辑信道的标识。
需要说明的是,上述收发模块可以包括发送模块和接收模块,可以为同一个收发模块,通信装置1300除了上述收发模块外还可以包括其它模块,本申请对此不作限定。
应理解,根据本申请实施例的通信装置1300可对应于前述方法实施例中第一网络设备或者第二网络设备的方法,并且通信装置1300中的各个模块/模块的上述和其它管理操作和/或功能分别为了实现前述方法实施例中第一网络设备或者第二网络设备的方法的相应步骤,因此也可以实现前述方法实施例中的有益效果,为了简洁,这里不作赘述。
还应理解,通信装置1300中的各个模块/模块可以通过软件和/或硬件形式实现,对此不作具体限定。换言之,通信装置1300是以功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路ASIC、电路、执行一个或多个软件或固件程序的处理器和存储器、集成逻辑电路,和/或其他可以提供上述功能的器件。
上述方案的通信装置1300可以具有实现上述方法中第一网络设备或者第二网络设备的相应步骤的功能;所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如发送模块可以由发射机替代,接收模块可以由接收机替代,其它模块,如确定模块等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
在本申请的实施例,图13中的通信装置也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。对应的,接收模块和发送模块可以是该芯片的收发电路,在此不做限定。
图14为本申请实施例中提供的另一种通信装置的结构示意图。示例性地,该通信装置可以是终端设备1400,例如,第一终端设备或者第二终端设备,应用于如图1所示的系统中,执行上述方法实施例中第一终端设备或第二终端设备的功能。也可以是终端设备中的芯片,或者车载通信模块,车载通信芯片等。
如图所示,该终端设备1400包括处理器1401和收发器1402。可选地,该终端设备800还可以包括存储器1403。其中,处理器1401、收发器1402和存储器1403之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器1403用于存储计算机程序,该处理器1401用于从该存储器1403中调用并运行该计算机程序,以控制该收发器1402收发信号。可选地,终端设备1400还可以包括天线(未在图14中示出),用于将收发器1402输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器1401可以和存储器1403可以合成一个处理装置,或者该通信装置中包括存储器1403。处理器1401用于执行存储器1403中存储的程序代码来实现上述功能。具体实现时,该存储器1403也可以集成在处理器1401中,或者独立于处理器1401。该处理器1401可以与通信装置1200中的处理模块1202对应。
上述收发器1402可以与图12中的收发模块1201对应,也可以称为通信单元。收发器1402可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。该收发器1402也可以是用于通信装置或通信芯片中实现与外界信息收发的接口电路。
应理解,图14所示的终端设备1400能够实现图3以及图10所示方法实施例中涉及第一终端设备或第二终端设备的各个过程。终端设备1400中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器1401可以用于执行前面方法实施例中描述的由第一终端设备或者第二终端设备内部实现的动作,而收发器1402可以用于执行前面方法实施例中描述的第一终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备1400还可以包括电源,用于给终端设备中的各种器件或电路提供电源。除此之外,为了使得终端设备的功能更加完善,该终端设备1400还可以包括输入单元、显示单元、音频电路、摄像头和传感器等中的一个或多个,所述音频电路还可以包括扬声器、麦克风等。
需要说明的是,该终端设备1400也可以是前述任一方法实施例中的第二终端设备,以实现前述任一实现方式中的第二终端设备的步骤或者功能。
图15为本申请实施例中提供的另一种通信装置的结构示意图,例如可以为网络设备的结构示意图。该网络设备1500可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。
如图所示,示例性地,该网络设备1500可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1510和一个或多个基带单元(baseband unit,BBU)(也可 称为数字单元,digital unit,DU)1520。所述RRU 1510可以称为通信单元或收发单元,与图13中的收发模块1301对应。可选地,该收发单元1510还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1511和射频单元1512。
可选地,收发单元1510可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路),又比如,收发单元1510可以通过同一个模块实现,比如通过一个收发电路模块来实现。所述RRU 1510部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送第一信息。所述BBU 1520部分主要用于进行基带处理,对网络设备进行控制等。所述RRU1510与BBU 1520可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1520可以是网络设备的控制部分,也可以称为处理单元,可以与通信装置1300中包括的处理模块1302对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,发送上述配置信息等。
在一个示例中,所述BBU1520可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1520还可以包括存储器1521和处理器1522。所述存储器1521用以存储必要的程序指令和/或数据,或者在需要的时候载入必要的程序指令和/或数据。所述处理器1522用于控制网络设备进行必要的动作,例如用于控制网络执行上述方法实施例中关于网络设备的操作流程。所述存储器1521和处理器1522可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图15所示的网络设备1500能够实现图3方法实施例中涉及网络设备的各个过程。网络设备1500中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述BBU1520可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而RRU 1510可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例中的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟 的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图3所示实施例的传输方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图3所示实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域 普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,各功能单元的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行所述计算机程序指令(程序)时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、 磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (31)

  1. 一种通信方法,其特征在于,包括:
    第一终端设备获取第一配置信息,所述第一配置信息包括:侧行链路单播连接的用于发送第一数据PDU的第一逻辑信道的标识,以及与所述第一逻辑信道对应的无线链路控制RLC模式;所述单播连接建立于所述第一终端设备和第二终端设备之间;
    所述第一终端设备通过所述侧行链路,向所述第二终端设备发送所述第一配置信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一逻辑信道对应的RLC模式为RLC确认模式。
  3. 根据权利要求1或2所述的方法,其特征在于,还包括:
    所述第一终端设备使用所述第一逻辑信道向所述第二终端设备发送第一RLC状态报告,所述第一RLC状态报告用于指示所述第一终端设备接收所述第二终端设备的第二数据PDU的接收状态。
  4. 根据权利要求3所述的方法,其特征在于,还包括:
    所述第一终端设备通过所述第一逻辑信道向所述第二终端设备发送第一PDU,所述第一PDU中携带第一指示信息,所述第一指示信息用于指示所述第一PDU的类型为数据PDU或RLC状态报告。
  5. 根据权利要求1或2所述的方法,其特征在于,还包括:
    所述第一终端设备建立所述第一逻辑信道;所述第一逻辑信道用于向所述第二终端设备发送所述第一数据PDU;
    所述第一终端设备建立第二逻辑信道;所述第二逻辑信道用于接收所述第二终端设备发送的第二RLC状态报告。
  6. 根据权利要求5所述的方法,其特征在于,还包括:
    所述第一终端设备通过标识为i的所述第一逻辑信道向所述第二终端设备发送所述第一数据PDU,所述标识为i的第一逻辑信道对应的RLC模式为AM,所述i为正整数;
    所述第一终端设备通过标识为i的所述第二逻辑信道接收来自所述第二终端设备的所述第二RLC状态报告。
  7. 根据权利要求5所述的方法,其特征在于,还包括:
    所述第一终端设备通过标识为i的所述第一逻辑信道向所述第二终端设备发送所述第一数据PDU;所述i为正整数;
    所述第一终端设备通过标识为i+N的所述第二逻辑信道接收来自所述第二终端设备的所述第二RLC状态报告,所述N为正整数。
  8. 根据权利要求5所述的方法,其特征在于,还包括:
    所述第一终端设备通过标识为i的所述第一逻辑信道向所述第二终端设备发送所述第一数据PDU;
    所述第一终端设备通过标识为K的第二逻辑信道接收来自所述第二终端设备的所述第二RLC状态报告,所述K为正整数;所述K为根据第一对应关系确定的,所述第一对应关系用于指示所述第一逻辑信道的标识i与所述第二逻辑信道的标识K的对应关系。
  9. 根据权利要求5所述的方法,其特征在于,所述第一终端设备维护一个或多个所述第一逻辑信道;所述方法还包括:
    所述第一终端设备通过所述一个或多个所述第一逻辑信道分别向所述第二终端设备发送一个或多个所述第一数据PDU;
    所述第一终端设备通过所述第二逻辑信道接收来自所述第二终端设备的与所述一个或多个所述第一逻辑信道对应的所述第二RLC状态报告;所述第二RLC状态报告包括所述第一逻辑信道的标识。
  10. 根据权利要求3所述的方法,其特征在于,所述第一逻辑信道还用于所述第一终端设备接收来自所述第二终端设备的所述第二RLC状态报告和第二数据PDU。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述第一终端设备获取第一配置信息,包括:
    所述第一终端设备从预配置信息中获取所述第一配置信息;
    或者,所述第一终端设备从所述第一网络设备发送的广播消息中获取所述第一配置信息;
    或者,所述第一终端设备从RRC专用信令中获取所述第一配置信息。
  12. 根据权利要求5所述的方法,其特征在于,还包括:
    所述第一终端设备通过所述第一逻辑信道向所述第二终端设备发送至少一个所述第一数据PDU;
    所述第一终端设备通过所述第二逻辑信道接收来自所述第二终端设备的所述第二RLC状态报告;
    所述第一终端设备解析所述第二RLC状态报告,得到解析结果;所述解析结果包括丢失的所述第一数据PDU对应的第一序列号,或者所述第一序列号和成功接收的所述第一数据PDU对应的第二序列号;
    第一终端设备基于所述解析结果,通过所述第一逻辑信道向所述第二终端设备重传所述第一序列号对应的所述第一数据PDU。
  13. 根据权利要求12所述的方法,其特征在于,所述第一终端设备包括所述第一逻辑信道对应的第一RLC实体和所述第二逻辑信道对应的第二RLC实体;
    所述第一终端设备通过所述第二逻辑信道接收来自所述第二终端设备的所述第二RLC状态报告,包括:
    所述第二RLC实体通过所述第二逻辑信道接收来自所述第二终端设备的所述第二RLC状态报告;
    所述第一终端设备解析所述第二RLC状态报告,得到解析结果,包括:
    所述第二RLC实体解析所述第二RLC状态报告,得到所述解析结果;
    所述第一终端设备基于所述解析结果,通过所述第一逻辑信道向所述第二终端设备重传所述第一序列号对应的所述第一数据PDU,包括:
    所述第二RLC实体向所述第一RLC实体发送所述第一序列号;
    所述第一RLC实体通过所述第一逻辑信道向所述第二终端设备重传所述第一序列号对应的所述第一数据PDU。
  14. 根据权利要求13所述的方法,其特征在于,所述第二RLC实体通过所述第二逻辑信道接收来自所述第二终端设备的所述第二RLC状态报告之后,还包括:
    所述第二RLC实体向所述第一RLC实体发送所述第二RLC状态报告;
    所述第一终端设备解析所述第二RLC状态报告,得到解析结果,包括:
    所述第一RLC实体解析所述第二RLC状态报告,得到所述解析结果;
    所述第一终端设备基于所述解析结果,通过所述第一逻辑信道向所述第二终端设备重传所述第一序列号对应的所述第一数据PDU,包括:
    所述第一RLC实体基于所述解析结果,通过所述第一逻辑信道向所述第二终端设备重传所述第一序列号对应的所述第一数据PDU。
  15. 一种通信方法,其特征在于,包括:
    第二终端设备接收来自第一终端设备的第一配置信息,所述第一配置信息包括:侧行链路单播连接的用于发送第一数据PDU的第一逻辑信道的标识,以及所述第一逻辑信道对应的无线链路控制RLC模式;所述单播连接建立于所述第一终端设备和第二终端设备之间;
    所述第二终端设备确定与所述第一终端设备的第一逻辑信道对应的用于反馈第二RLC状态报告的第三逻辑信道,所述第一逻辑信道对应的RLC模式为AM,所述第二RLC状态报告用于指示所述第二终端设备接收所述第一逻辑信道的第一数据PDU的状态;
    所述第二终端设备建立所述第三逻辑信道。
  16. 根据权利要求15所述的方法,其特征在于,所述第三逻辑信道还用于所述第二终端设备向所述第一终端设备发送第二数据PDU。
  17. 根据权利要求15所述的方法,其特征在于,所述第三逻辑信道还用于所述第二终端设备接收来自所述第一终端设备的所述第一数据PDU。
  18. 根据权利要求16所述的方法,其特征在于,还包括:
    所述第二终端设备通过所述第三逻辑信道向所述第一终端设备发送第二PDU;所述第二PDU中携带第五指示信息,所述第五指示信息用于指示所述第二PDU的类型为数据PDU或RLC状态报告。
  19. 根据权利要求15所述的方法,其特征在于,还包括:
    所述第二终端设备建立第四逻辑信道;所述第四逻辑信道用于接收来自所述第一终端设备的所述第一数据PDU;
    所述第二终端设备建立所述第三逻辑信道;所述第三逻辑信道用于向所述第一终端设备发送所述第二RLC状态报告。
  20. 根据权利要求19所述的方法,其特征在于,还包括:
    所述第二终端设备通过标识为i的所述第四逻辑信道接收来自所述第一终端设备的所述第一数据PDU,所述第一数据PDU为所述第一终端设备通过标识为i的所述第一逻辑信道发送的;所述标识为i的第一逻辑信道对应的RLC模式为AM;所述i为正整数;
    所述第二终端设备通过标识为i的所述第三逻辑信道向所述第一终端设备发送所述第二RLC状态报告。
  21. 根据权利要求19所述的方法,其特征在于,还包括:
    所述第二终端设备通过标识为i的所述第四逻辑信道接收来自所述第一终端设备的所述第一数据PDU;所述第一数据PDU为所述第一终端设备通过标识为i的所述第一逻辑信道发送的;所述标识为i的第一逻辑信道对应的RLC模式为AM;所述i为正整数;
    所述第二终端设备通过标识为i+N的所述第三逻辑信道向所述第一终端设备发送所述第二RLC状态报告,所述N为正整数。
  22. 根据权利要求19所述的方法,其特征在于,还包括:
    所述第二终端设备通过标识为i的所述第四逻辑信道接收来自所述第一终端设备的所述第一数据PDU;所述第一数据PDU为所述第一终端设备通过标识为i的所述第一逻辑信道发送的;所述标识为i的第一逻辑信道对应的RLC模式为AM;所述i为正整数;
    所述第二终端设备通过标识为所述K的第三逻辑信道向所述第一终端设备发送所述第二RLC状态报告,所述K为正整数;所述K为根据第二对应关系中确定的,所述第二对应关系包括所述第四逻辑信道的标识i和所述第三逻辑信道的标识K的对应关系。
  23. 根据权利要求19所述的方法,其特征在于,所述第二终端设备维护一个或多个所述第四逻辑信道,所述M为整数;所述方法还包括:
    所述第二终端设备通过所述一个或多个所述第四逻辑信道接收来自所述第一终端设备的一个或多个所述第一数据PDU;每个所述第四逻辑信道接收来自与所述第四逻辑信道对应的所述第一逻辑信道所发送的所述第一PDU;所述第一逻辑信道对应的RLC模式为AM;
    所述第二终端设备通过所述第三逻辑信道向所述第一终端设备发送与所述一个或多个所述第一逻辑信道对应的所述第二RLC状态报告,所述第二RLC状态报告包括所述第一逻辑信道标识。
  24. 根据权利要求15-23任一项所述的方法,其特征在于,所述第二终端设备确定与所述第一终端设备的第一逻辑信道对应的用来反馈第二RLC状态报告的第三逻辑信道,包括:
    所述第二终端设备向第二网络设备发送所述第一配置信息,并接收来自所述第二网络设备的第二配置信息,所述第二配置信息用于所述第二终端设备确定与所述第一终端设备的第一逻辑信道对应的用来反馈第二RLC状态报告的第三逻辑信道;或者,
    所述第二终端设备根据所述第一配置信息,确定与所述第一终端设备的第一逻辑信道对应的用来反馈第二RLC状态报告的第三逻辑信道。
  25. 根据权利要求16所述的方法,其特征在于,所述第三逻辑信道还用于接收来自所述第一终端设备的所述第一数据PDU和第一RLC状态报告。
  26. 根据权利要求19所述的方法,其特征在于,还包括:
    所述第二终端设备通过所述第四逻辑信道接收来自所述第一终端设备的至少一个所述第一数据PDU;
    所述第二终端设备确定所述至少一个所述第一数据PDU满足状态报告触发条件,则生成所述第二RLC状态报告,所述第二RLC状态报告包括丢失的第一数据PDU对应的第一序列号,或者,所述第一序列号和成功接收的所述第一数据PDU对应的第二序列号;
    所述第二终端设备通过所述第三逻辑信道向所述第一终端设备发送所述第二RLC状态报告。
  27. 根据权利要求26所述的方法,其特征在于,所述第二终端设备包括所述第四逻辑信道对应的第三RLC实体和所述第三逻辑信道对应的第四RLC实体;
    所述第二终端设备通过所述第四逻辑信道接收来自所述第一终端设备的至少一个所述第一数据PDU,包括:
    所述第三RLC实体通过所述第四逻辑信道接收来自所述第一终端设备的至少一个所述第一数据PDU;
    所述第二终端设备生成所述第二RLC状态报告,包括:
    所述第三RLC实体确定丢失的所述第一数据PDU对应的第一序列号、以及成功接收的所述第一数据PDU对应的第二序列号;
    所述第三RLC实体根据所述第一序列号,和/或,所述第二序列号,生成所述第二RLC状态报告;
    所述第二终端设备通过所述第三逻辑信道向所述第一终端设备发送所述第二RLC状态报告,包括:
    所述第四RLC实体通过所述第三逻辑信道向所述第一终端设备发送所述第二RLC状态报告。
  28. 根据权利要求27所述的方法,其特征在于,所述第三RLC实体确定丢失的所述第一数据PDU对应的第一序列号、以及成功接收的所述第一数据PDU对应的第二序列号之后,还包括:
    所述第三RLC实体向所述第四RLC实体发送所述第一序列号;所述第四RLC实体根据所述第一序列号生成所述第二RLC状态报告;或者,
    所述第三RLC实体向所述第四RLC实体发送所述第二序列号;所述第四RLC实体根据所述第二序列号生成所述第二RLC状态报告;或者,
    所述第三RLC实体向所述第四RLC实体所述第一序列号和所述第二序列号;所述第四RLC实体根据所述第一序列号生成所述第二RLC状态报告。
  29. 根据权利要求26所述的方法,其特征在于,所述状态报告触发条件包括以下任一项:
    周期性触发反馈所述第二RLC状态报告;
    定时器超时,所述定时器用于从所述至少一个第一数据PDU中第一个丢包的数据PDU开始计时;
    所述数据PDU中携带的第七指示信息,所述第七指示信息用于指示所述第二终端设备在接收到所述第七指示信息时反馈所述第二RLC状态报告。
  30. 一种通信装置,其特征在于,所述通信装置包括处理器和收发器,所述收发器用于所述通信装置和其他通信装置之间进行信息交互,所述处理器执行程序指令,用以执行如权利要求1至14中任一项所述的方法或者执行如权利要求15至29中任一项所述的方法。
  31. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质具有用于执行如权利要求1至14或者权利要求15至29中任一项所述的方法的指令。
PCT/CN2020/075911 2019-03-29 2020-02-19 一种通信方法及通信装置 WO2020199778A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910253358.8A CN111757293B (zh) 2019-03-29 2019-03-29 一种通信方法及通信装置
CN201910253358.8 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020199778A1 true WO2020199778A1 (zh) 2020-10-08

Family

ID=72664930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075911 WO2020199778A1 (zh) 2019-03-29 2020-02-19 一种通信方法及通信装置

Country Status (2)

Country Link
CN (1) CN111757293B (zh)
WO (1) WO2020199778A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114501337B (zh) * 2020-10-23 2023-08-15 大唐移动通信设备有限公司 一种分组数据汇聚协议状态上报、接收方法、终端及设备
CN114979312B (zh) * 2022-05-27 2024-05-28 山东闻远通信技术有限公司 一种高层业务类型检测方法及装置
CN118283538A (zh) * 2022-12-30 2024-07-02 华为技术有限公司 通信方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159845A1 (en) * 2015-03-31 2016-10-06 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for wireless communications between communication devices
WO2017127245A1 (en) * 2016-01-22 2017-07-27 Qualcomm Incorporated Hybrid automatic repeat request feedback for device-to-device unicast sidelink communications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159845A1 (en) * 2015-03-31 2016-10-06 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for wireless communications between communication devices
WO2017127245A1 (en) * 2016-01-22 2017-07-27 Qualcomm Incorporated Hybrid automatic repeat request feedback for device-to-device unicast sidelink communications

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ETSI MCC: "Report of 3GPP TSG RAN2#105 Meeting, Athens, Greece", 3GPP TSG-RAN WG2 MEETING #105 R2-1903001, 1 March 2019 (2019-03-01), DOI: 20200506074208X *
HUAWEI: "Summary of Email Discussion [104#58][NR V2X] - QoS Support for NR V2X", 3GPP TSG-RAN WG2 MEETING #105 R2-1900370, 1 March 2019 (2019-03-01), XP051601766, DOI: 20200506074054X *

Also Published As

Publication number Publication date
CN111757293B (zh) 2024-04-16
CN111757293A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
CN110572246B (zh) 一种数据发送方法、数据接收方法和装置
WO2018202037A1 (zh) 传输数据的方法、终端设备和网络设备
WO2020164443A1 (zh) 单播传输的方法和通信装置
WO2021043174A1 (zh) 一种通信方法及装置
WO2020199778A1 (zh) 一种通信方法及通信装置
WO2020221281A1 (zh) 用于获取无线承载配置的方法和装置
WO2021180098A1 (zh) 无线通信方法和通信装置
WO2020143731A1 (zh) 用于传输数据的方法、通信设备和网络设备
WO2018059438A1 (zh) 消息传输方法、设备和系统
CN112351403B (zh) 通信方法、建立slrb的方法和通信装置
WO2021017792A1 (zh) 一种反馈信息的传输方法及终端装置
TW202019205A (zh) 一種資源配置方法及裝置、終端
WO2021056152A1 (zh) 一种信息配置方法及装置、终端设备、网络设备
US20230239957A1 (en) Communication control method
WO2021018295A1 (zh) 一种反馈信息传输方法及装置
WO2022032654A1 (zh) 无线通信方法、终端设备和网络设备
WO2022120837A1 (zh) Mbs业务的半静态调度方法及装置、终端设备、网络设备
WO2022032515A1 (zh) 无线通信方法、终端设备和网络设备
WO2021163832A1 (zh) 数据传输的方法和装置
WO2021212510A1 (zh) 一种通信方法及装置
WO2022000180A1 (en) Methods and apparatus of reliable multicast transmission with uplink feedback
WO2021088063A1 (zh) 一种通信方法及装置
WO2020156339A1 (zh) 一种通信方法及装置
WO2022147832A1 (zh) 信息传输方法及相关装置
WO2022016477A1 (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20781951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20781951

Country of ref document: EP

Kind code of ref document: A1