WO2016150148A1 - 一种基站实现小区参考信号发射的方法、装置及基站 - Google Patents

一种基站实现小区参考信号发射的方法、装置及基站 Download PDF

Info

Publication number
WO2016150148A1
WO2016150148A1 PCT/CN2015/092116 CN2015092116W WO2016150148A1 WO 2016150148 A1 WO2016150148 A1 WO 2016150148A1 CN 2015092116 W CN2015092116 W CN 2015092116W WO 2016150148 A1 WO2016150148 A1 WO 2016150148A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
cell
reference signal
transmit power
class
Prior art date
Application number
PCT/CN2015/092116
Other languages
English (en)
French (fr)
Inventor
袁红峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016150148A1 publication Critical patent/WO2016150148A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink

Definitions

  • This application relates to, but is not limited to, the field of wireless communication technology.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • the uplink and downlink of 3GPP LTE adopts single-carrier orthogonal frequency division multiple access and orthogonal frequency division multiple access.
  • This orthogonal frequency division multiplexing method can greatly improve the spectrum utilization, is suitable for high-speed data transmission services, and also supports flexible configuration of various bandwidths.
  • the LTE downlink physical layer channel includes a physical downlink shared channel (PDSCH), a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH, a physical downlink control channel), and the like. Including the cell common reference signal (CRS, cell reference signal) and the like.
  • the downlink data is formed by combining the physical layer channel and the physical signal in the frequency domain in the frequency domain, and is transmitted to the air interface through the remote radio unit (RRU, Remote Radio Unit) through the inverse Fourier transform.
  • RRU Remote Radio Unit
  • the power of the base station transmitting data is a very important factor. If the power is too small, the signal-to-noise ratio of the user equipment is too low, which affects the data demodulation.
  • the size of the base station transmit power is based on the cell common reference signal.
  • the definition of a cell common reference signal is defined in the 3GPP 36.213 protocol: a linear average of the power on all common reference signal resource elements carrying the cell within the system bandwidth.
  • the LTE protocol stipulates that the transmit power of all physical layer channels and physical signals is based on CRS. After determining the reference signal power of the cell, other physical signals are determined by the power offset to determine the transmit power of the physical signal. .
  • the size of the cell reference signal is also directly related to the user equipment estimating the path loss of the wireless channel. Therefore, it is important for the base station to accurately transmit the power of the cell reference signal.
  • the embodiments of the present invention provide a method, a device, and a base station for a base station to implement cell reference signal transmission, which enable a base station to accurately transmit a cell reference signal power.
  • a method for a base station to implement cell reference signal transmission comprising:
  • the method before the step of acquiring the cell reference signal power and the transmit power of the remote radio module RRU channel, the method further includes:
  • the cell power parameter configured by the user is determined to be a reasonable parameter, and the cell power parameter includes a cell reference signal power and a maximum cell transmit power.
  • the step of determining the cell power parameter configured by the user as a reasonable parameter includes:
  • the cell power parameter configured by the user is a reasonable parameter.
  • the step of determining whether the power of the class A OFDM symbol and the power of the class B OFDM symbol are both smaller than the maximum transmit power of the cell includes:
  • the power of the class A OFDM symbol is determined by the formula: SC PDSCHA *10 (PA+E_RS)/10 ⁇ P cell /PortNum to be smaller than the maximum transmit power of the cell;
  • SC RS *10 E_RS/10 +SC PDSCHB *10 (PA+E_RS)/10 * ⁇ B / ⁇ A ⁇ P cell /PortNum determines that the power of the class B OFDM symbol is smaller than the maximum transmit power of the cell;
  • the SC PDSCHA indicates the number of PDSCH available resource units in the class A OFDM symbol
  • the PA indicates the ratio of the average power of all PDSCH available resource units in the class A OFDM symbol to the cell reference signal power
  • the E_RS indicates the cell reference signal power
  • P cell Indicates the maximum transmit power of the cell
  • PortNum represents the number of antenna ports of the cell
  • SC RS represents the number of resource elements available for the cell reference signal in the class B OFDM symbol
  • SC PDSCHB represents the number of available resource units of the PDSCH in the class B OFDM symbol
  • ⁇ B / ⁇ A represents the ratio of the power of the PDSCH resource unit in the class B OFDM symbol to the power of the PDSCH resource unit in the class A OFDM symbol.
  • the step of acquiring the transmit power of the RRU channel includes:
  • the step of obtaining a ratio of the cell reference signal power to the transmit power of the RRU channel according to the cell reference signal power and the transmit power of the RRU channel includes:
  • E_RS PHY represents a ratio
  • E_RS represents a cell reference signal power
  • the step of generating a cell reference signal of the time domain according to the communication protocol and the ratio includes:
  • the digital signal in the frequency domain is converted into a cell reference signal in the time domain.
  • the step of generating a digital signal of the frequency domain according to the communication protocol and the ratio comprises:
  • s' CRS represents a digital signal in the frequency domain
  • s CRS represents an original frequency domain reference signal of the indoor baseband processing unit BBU
  • E_RS PHY represents a ratio
  • P IrDBFS represents a maximum digital power in a base station Ir interface.
  • the step of converting the digital signal in the frequency domain into the cell reference signal in the time domain comprises:
  • the frequency domain digital signal is converted into a time domain cell reference signal by an inverse Fourier transform operation.
  • a device for implementing cell reference signal transmission by a base station comprising:
  • Obtaining a module configured to: obtain a cell reference signal power and a transmit power of a remote radio module RRU channel;
  • Obtaining a module configured to: obtain a ratio of a cell reference signal power to a transmit power of the RRU channel according to the cell reference signal power and the RRU channel transmit power;
  • the generating module is configured to: generate a cell reference signal of the time domain according to the communication protocol and the ratio, and transmit the cell reference signal.
  • the device further includes:
  • the determining module is configured to: determine that the cell power parameter configured by the user is a reasonable parameter, and the cell power parameter includes a cell reference signal power and a maximum transmit power of the cell.
  • the determining module comprises:
  • a first unit configured to: obtain power of a class A orthogonal frequency division multiplexing OFDM symbol and power of a class B OFDM symbol in an LTE frequency domain resource according to a cell power parameter configured by the user;
  • the second unit is configured to: determine whether the power of the class A OFDM symbol and the power of the class B OFDM symbol are both smaller than the maximum transmit power of the cell, and whether the maximum transmit power of the cell is smaller than the transmit power of the RRU channel, and the power of the class A OFDM symbol And the power of the class B OFDM symbol is smaller than the maximum transmit power of the cell, and when the maximum transmit power of the cell is less than the transmit power of the RRU channel, the third unit is triggered;
  • the third unit is configured to: determine, according to the triggering of the second unit, that the cell power parameter configured by the user is a reasonable parameter.
  • the second unit comprises:
  • the first subunit is configured to: determine, by using the formula: SC PDSCHA *10 (PA+E_RS)/10 ⁇ P cell /PortNum, that the power of the class A OFDM symbol is less than the maximum transmit power of the cell;
  • the second subunit set to: through the formula:
  • SC RS *10 E_RS/10 +SC PDSCHB *10 (PA+E_RS)/10 * ⁇ B / ⁇ A ⁇ P cell /PortNum determines that the power of the class B OFDM symbol is smaller than the maximum transmit power of the cell;
  • the SC PDSCHA indicates the number of PDSCH available resource units in the class A OFDM symbol
  • the PA indicates the ratio of the average power of all PDSCH available resource units in the class A OFDM symbol to the cell reference signal power
  • the E_RS indicates the cell reference signal power
  • P cell Indicates the maximum transmit power of the cell
  • PortNum represents the number of antenna ports of the cell
  • SC RS represents the number of resource elements available for the cell reference signal in the class B OFDM symbol
  • SC PDSCHB represents the number of available resource units of the PDSCH in the class B OFDM symbol
  • ⁇ B / ⁇ A represents the ratio of the power of the PDSCH resource unit in the class B OFDM symbol to the power of the PDSCH resource unit in the class A OFDM symbol.
  • the obtaining module includes:
  • the first calculating unit is configured to: calculate a sum of powers of RRU channels of all physical channels corresponding to the logical port of the single cell reference signal, and use the sum value as the transmit power of the RRU channel.
  • the obtaining module comprises:
  • the second calculation unit is set to: according to the formula: Calculating the ratio
  • E_RS PHY represents a ratio
  • E_RS represents a cell reference signal power
  • the generating module includes:
  • the fourth unit is configured to: generate a digital signal in the frequency domain according to the communication protocol and the ratio;
  • the conversion unit is configured to: convert the digital signal in the frequency domain into a cell reference signal in the time domain.
  • the fourth unit comprises:
  • the third subunit is set to: according to the formula: Obtaining a digital signal in the frequency domain;
  • s' CRS represents a digital signal in the frequency domain
  • s CRS represents an original frequency domain reference signal of the indoor baseband processing unit BBU
  • E_RS PHY represents a ratio
  • P IrDBFS represents a maximum digital power in a base station Ir interface.
  • the converting unit comprises:
  • the fourth subunit is configured to convert the digital signal in the frequency domain into a cell reference signal in the time domain by an inverse Fourier transform operation.
  • a base station comprising the above-mentioned base station for implementing cell reference signal transmission.
  • a computer readable storage medium storing computer executable instructions for performing the method of any of the above.
  • the ratio of the cell reference signal power to the transmit power of the RRU channel is calculated according to the transmit power of the RRU channel and the cell reference signal power in the user-configured cell power parameter, and then according to the ratio and the communication.
  • the protocol generates a cell reference signal and outputs it to the RRU. Thereby the base station accurately transmits the cell reference signal power.
  • FIG. 1 is a flowchart of steps of a method for a base station to implement cell reference signal transmission according to an embodiment of the present invention
  • FIG. 2 is a flow chart showing the steps of step 13 in FIG. 1 according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of power variation of each module in a base station system according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an apparatus for implementing cell reference signal transmission by a base station according to an embodiment of the present invention.
  • the embodiment of the present invention provides a method, a device, and a base station for implementing a cell reference signal transmission by a base station, which can provide an accurate base station for a problem that a base station cannot accurately transmit a cell reference signal in the related art.
  • the base transmits the reference signal power of the cell.
  • an embodiment of the present invention provides a method for a base station to implement cell reference signal transmission, where the method includes:
  • Step 11 Acquire a cell reference signal power and a transmit power of the remote radio module RRU channel.
  • the step of acquiring the transmit power of the RRU channel is: calculating a sum of powers of RRU channels of all physical channels corresponding to the logical port of the single cell reference signal, and using the sum value as the transmit power of the RRU channel.
  • the transmit power of the RRU channel refers to the sum of the transmit powers of the RRU channels of all physical channels corresponding to the logical port of the single cell reference signal. For example, if the cell is configured with 2 antenna ports and 2 physical transmit antennas, the transmit power of the RRU channel is the transmit power of each RRU channel; if the cell is configured with 2 antenna ports and 4 physical transmit antennas, then a single logical port corresponds to 2 The physical transmit antenna, and the transmit power of the RRU channel is the sum of the transmit power of the two RRU channels.
  • Step 12 Obtain a ratio of the cell reference signal power to the transmit power of the RRU channel according to the cell reference signal power and the transmit power of the RRU channel.
  • the step of obtaining the above ratio is: according to the formula: Calculating the ratio; where E_RS PHY represents the ratio and E_RS represents the cell reference signal power, Indicates the transmit power of the RRU channel.
  • Step 13 Generate a cell reference signal of the time domain according to the communication protocol and the ratio, and transmit the cell reference signal.
  • the communication protocol may employ the Long Term Evolution (LTE) protocol.
  • LTE Long Term Evolution
  • the base station implementation architecture is a combination of indoor baseband processing units BBU+RRU.
  • the BBU mainly performs baseband-related processing operations (including bit-level processing, constellation modulation, precoding, resource mapping, and inverse Fourier transform operations), and transmits digital signals to the RRU through the Ir interface; and the RRU mainly performs digital intermediate frequencies. , digital-to-analog conversion, and power amplification operations, and send physical signals to the air interface.
  • the network pipe system of the base station transmits the acquired cell reference signal power and the transmit power of the RRU channel to the medium access control layer, thereby enabling the medium access control layer to use the cell reference signal power and the RRU.
  • the transmit power of the channel calculates a ratio of the cell reference signal power to the transmit power of the RRU channel, and passes the ratio value to the physical layer, so that the physical layer generates a cell reference signal of the time domain according to the ratio value and the LTE protocol.
  • the method before performing step 11, the method further includes: determining that the cell power parameter configured by the user is a reasonable parameter, and the cell power parameter includes a cell reference signal power and a maximum transmit power of the cell, and the like Step 11 is performed when the user-configured cell power parameter is a reasonable parameter.
  • the base station network pipe system before performing step 11, the base station network pipe system checks the obtained cell power parameter of the user configuration, and only performs when the cell power parameter configured by the user is determined to be a reasonable parameter. Step 11. The verification determination steps will be elaborated later.
  • the step of determining that the cell power parameter configured by the user is a reasonable parameter comprises: obtaining, according to the cell power parameter configured by the user, the class A orthogonal frequency division multiplexing OFDM symbol in the LTE frequency domain resource.
  • verifying the cell power parameters and rationality of the user configuration includes two aspects.
  • One aspect is to confirm whether the power of the class A OFDM symbol and the power of the class B OFDM symbol in the LTE frequency domain resource calculated according to the cell power parameter configured by the user are both smaller than the maximum transmit power of the cell; and the other aspect is to confirm whether the maximum transmit power of the cell is Less than the transmit power of the RRU channel. Only when the verification of the above two aspects is established, the cell power parameter configured by the user can be confirmed as a reasonable parameter, otherwise, the cell power parameter configured by the user is not reasonable.
  • the step of determining whether the power of the class A OFDM symbol and the power of the class B OFDM symbol are both smaller than the maximum transmit power of the cell is: determining the class A by the formula: SC PDSCHA *10 (PA+E_RS)/10 ⁇ P cell /PortNum The power of the OFDM symbol is smaller than the maximum transmit power of the cell; the class B OFDM symbol is determined by the formula: SC RS *10 E_RS/10 +SC PDSCHB *10 (PA+E_RS)/10 * ⁇ B / ⁇ A ⁇ P cell /PortNum The power is smaller than the maximum transmit power of the cell; where, SC PDSCHA represents the number of PDSCH available resource elements in the class A OFDM symbol, and PA represents the ratio of the average power of all PDSCH available resource elements in the class A OFDM symbol to the cell reference signal power, and E_RS represents Cell reference signal power, P cell represents the maximum transmit power of the cell, PortNum represents the number of antenna ports of the cell, SC RS represents the number of resource units available for
  • the value of ⁇ B / ⁇ A is related to P B , and the corresponding relationship is as shown in Table 1, wherein P B is an index, and the above PA and P B can be in the cell configured by the user. Configured in the power parameters.
  • step 13 the steps of the foregoing step 13 are:
  • Step 21 Generate a digital signal in the frequency domain according to the communication protocol and the ratio.
  • step 22 the digital signal in the frequency domain is converted into a cell reference signal in the time domain.
  • the step of the above step 21 is: according to the formula: Obtaining a digital signal in the frequency domain; wherein s' CRS represents a digital signal in the frequency domain, s CRS represents an original frequency domain reference signal of the indoor baseband processing unit BBU, E_RS PHY represents a ratio, and P IrDBFS is a preset intermediate value indicating a base station
  • the maximum digital power in the Ir interface is the agreed value between the base station BBU and the RRU.
  • the interface between the BBU and the RRU is referred to as an Ir interface
  • the P IrDBFS is the maximum digital power output by the BBU
  • the BBU digital signal power is P IrDBFS regardless of the transmit power of the RRU.
  • the maximum transmit power of the RRU when the physical layer generates the cell reference signal of the time domain according to the ratio value and the LTE protocol, the maximum digital power in the Ir interface needs to be added.
  • the physical layer maps the E_RS PHY + P IrDBFS to the frequency domain resource according to the frequency domain resource position specified in the LTE protocol 36.211, and the frequency domain power of the digital signal carried by the E_RS PHY + P IrDBFS is E_RS PHY + P IrDBFS .
  • the frequency domain digital signal of the cell reference signal is
  • the step of step 22 is: converting the digital signal in the frequency domain into the cell reference signal in the time domain by the inverse Fourier transform operation.
  • the frequency domain digital signal is converted into a time domain cell reference signal by an inverse Fourier transform operation, and transmitted to the RRU through the Ir interface.
  • the power variation of each module in the base station system is: the digital power of the original reference signal generated by the protocol in the BBU baseband is 0 db, and the weighted digital power becomes E_RS PHY. +P IrDBFS , ie Passed to the RRU, the overall power gain of the RRU is set to G RRU , and the power of the analog signal after the RRU is According to the relevant provisions of the Ir interface, in the case of the maximum power of the digital signal, the RRU is at the maximum transmission power, so the corresponding power gain can be written as Therefore, the reference signal power of the analog signal that goes out of the air interface is Thereby the base station is accurately transmitted with the cell reference signal power.
  • the RRU is a channel with a fixed gain, that is, its gain does not change with time and cell parameters.
  • an embodiment of the present invention further provides a device for implementing a cell reference signal transmission by a base station, where the device includes:
  • the obtaining module 41 is configured to: acquire a cell reference signal power and a transmit power of the remote radio module RRU channel;
  • the obtaining module 42 is configured to: obtain a ratio of the cell reference signal power to the transmit power of the RRU channel according to the cell reference signal power and the transmit power of the RRU channel;
  • the generating module 43 is configured to: generate a cell reference signal of the time domain according to the communication protocol and the ratio, and transmit the cell reference signal.
  • the device further comprises:
  • the determining module is configured to: determine that the cell power parameter configured by the user is a reasonable parameter, and the cell power parameter includes a cell reference signal power and a maximum transmit power of the cell.
  • the determining module comprises:
  • a first unit configured to: obtain power of a class A orthogonal frequency division multiplexing OFDM symbol and power of a class B OFDM symbol in an LTE frequency domain resource according to a cell power parameter configured by the user;
  • the second unit is configured to: determine whether the power of the class A OFDM symbol and the power of the class B OFDM symbol are both smaller than the maximum transmit power of the cell, and whether the maximum transmit power of the cell is smaller than the transmit power of the RRU channel, and the power of the class A OFDM symbol And the power of the class B OFDM symbol is smaller than the maximum transmit power of the cell, and when the maximum transmit power of the cell is less than the transmit power of the RRU channel, the third unit is triggered;
  • the third unit is configured to: determine, according to the trigger of the second unit, the cell power parameter configured by the user The number is a reasonable parameter.
  • the second unit includes:
  • the first subunit is configured to: determine, by using the formula: SC PDSCHA *10 (PA+E_RS)/10 ⁇ P cell /PortNum, that the power of the class A OFDM symbol is less than the maximum transmit power of the cell;
  • the second subunit set to: through the formula:
  • SC RS *10 E_RS/10 +SC PDSCHB *10 (PA+E_RS)/10 * ⁇ B / ⁇ A ⁇ P cell /PortNum determines that the power of the class B OFDM symbol is smaller than the maximum transmit power of the cell;
  • the SC PDSCHA indicates the number of PDSCH available resource units in the class A OFDM symbol
  • the PA indicates the ratio of the average power of all PDSCH available resource units in the class A OFDM symbol to the cell reference signal power
  • the E_RS indicates the cell reference signal power
  • P cell Indicates the maximum transmit power of the cell
  • PortNum represents the number of antenna ports of the cell
  • SC RS represents the number of resource elements available for the cell reference signal in the class B OFDM symbol
  • SC PDSCHB represents the number of available resource units of the PDSCH in the class B OFDM symbol
  • ⁇ B / ⁇ A represents the ratio of the power of the PDSCH resource unit in the class B OFDM symbol to the power of the PDSCH resource unit in the class A OFDM symbol.
  • the obtaining module 41 includes:
  • the first calculating unit is configured to: calculate a sum of powers of RRU channels of all physical channels corresponding to the logical port of the single cell reference signal, and use the sum value as the transmit power of the RRU channel.
  • the obtaining module 42 includes:
  • the second calculation unit is set to: according to the formula: Calculating the ratio
  • E_RS PHY represents a ratio
  • E_RS represents a cell reference signal power
  • the generating module 43 includes:
  • the fourth unit is configured to: generate a digital signal in the frequency domain according to the communication protocol and the ratio;
  • the conversion unit is configured to: convert the digital signal in the frequency domain into a cell reference signal in the time domain.
  • the fourth unit includes:
  • the third subunit is set to: according to the formula: Obtaining a digital signal in the frequency domain;
  • s' CRS represents a digital signal in the frequency domain
  • s CRS represents an original frequency domain reference signal of the indoor baseband processing unit BBU
  • E_RS PHY represents a ratio
  • P IrDBFS represents a maximum digital power in a base station Ir interface.
  • the conversion unit includes:
  • the fourth subunit is configured to convert the digital signal in the frequency domain into a cell reference signal in the time domain by an inverse Fourier transform operation.
  • the apparatus for implementing the cell reference signal transmission by the base station provided by the embodiment of the present invention is the apparatus applying the foregoing method, that is, all the embodiments of the foregoing methods are applicable to the apparatus, and all of the same or similar beneficial effects can be achieved.
  • Embodiments of the present invention also provide a base station, including the foregoing apparatus for implementing cell reference signal transmission by a base station.
  • the base station provided by the embodiment of the present invention is a base station to which the foregoing apparatus is applied, that is, all embodiments of the foregoing apparatus are applicable to the base station, and all of the same or similar beneficial effects can be achieved.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/function unit in the above embodiment is implemented in the form of a software function module and When sold or used as a stand-alone product, it can be stored on a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the ratio of the cell reference signal power to the transmit power of the RRU channel is calculated according to the transmit power of the RRU channel and the cell reference signal power in the user-configured cell power parameter, and then according to the ratio and the communication.
  • the protocol generates a cell reference signal and outputs it to the RRU, so that the base station accurately transmits the cell reference signal power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公布一种基站实现小区参考信号发射的方法、装置及基站,该方法包括:获取小区参考信号功率以及远端射频模块RRU通道的发射功率;根据小区参考信号功率与RRU通道的发射功率,获得小区参考信号功率相对于RRU通道的发射功率的比率;根据通信协议与比率生成时域的小区参考信号,并发射该小区参考信号。

Description

一种基站实现小区参考信号发射的方法、装置及基站 技术领域
本申请涉及但不限于无线通信技术领域。
背景技术
目前第三代合作伙伴计划(3GPP,3rd Generation Partnership Project)长期演进(LTE,Long Term Evolution,)是当前主流的通信方式。3GPP LTE的上下行分别采用单载波正交频分多址和正交频分多址接入方式。这种正交频分复用的方式可以大大提高频谱利用率,适合高速数据传输业务,同时也支持各种带宽的灵活配置。
LTE下行物理层信道有物理下行共享信道(PDSCH,Physical Downlink Shared Channel),物理控制格式指示信道(PCFICH,Physical Control Format Indicator Channel),物理下行控制信道(PDCCH,Physical Downlink Control Channel)等,物理信号包括小区公共参考信号(CRS,cell Reference Signal)等。下行数据在频域由物理层信道和物理信号按频域组合而成,通过傅里叶逆变换转到时域通过远端射频模块(RRU,Remote Radio Unit)发射到空口。基站发射数据功率大小是一个很重要的因素,功率太小则用户设备受到数据的信噪比太低,影响数据解调;发射数据功率越大则会对临区产生较大的干扰,影响临区用户设备的数据解调。基站发射功率的大小以小区公共参考信号为基础。在3GPP 36.213协议中规定了小区公共参考信号的定义:在系统带宽内所有携带小区公共参考信号资源单元上的功率的线性平均值。LTE协议中规定,所有物理层信道和物理信号的发射功率大小均以CRS为标准,在确定小区参考信号功率后,其他物理信号均在此基础上通过功率偏移为确定该物理信号的发射功率。小区参考信号的大小还直接关系着用户设备估计无线信道的路损。因此基站准确发射小区参考信号功率显得异常的重要。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种基站实现小区参考信号发射的方法、装置及基站,能使基站准确地发射小区参考信号功率。
一种基站实现小区参考信号发射的方法,该方法包括:
获取小区参考信号功率以及远端射频模块RRU通道的发射功率;
根据小区参考信号功率与RRU通道的发射功率,获得小区参考信号功率相对于RRU通道的发射功率的比率;
根据通信协议与比率生成时域的小区参考信号,并发射该小区参考信号。
可选地,获取小区参考信号功率以及远端射频模块RRU通道的发射功率的步骤之前,方法还包括:
确定用户配置的小区功率参数为合理参数,小区功率参数包括小区参考信号功率和小区最大发射功率。
可选地,确定用户配置的小区功率参数为合理参数的步骤包括:
根据用户配置的小区功率参数,获得LTE频域资源中A类正交频分复用OFDM符号的功率和B类OFDM符号的功率;
判断A类OFDM符号的功率和B类OFDM符号的功率是否都小于小区最大发射功率,以及小区最大发射功率是否小于RRU通道的发射功率;
若A类OFDM符号的功率和B类OFDM符号的功率都小于小区最大发射功率,且小区最大发射功率小于RRU通道的发射功率,则确定用户配置的小区功率参数为合理参数。
可选地,判断A类OFDM符号的功率和B类OFDM符号的功率是否都小于小区最大发射功率的步骤包括:
通过公式:SCPDSCHA*10(PA+E_RS)/10≤Pcell/PortNum判断出A类OFDM符号的功率小于小区最大发射功率;
通过公式:
SCRS*10E_RS/10+SCPDSCHB*10(PA+E_RS)/10BA≤Pcell/PortNum判断出B类OFDM符号的功率小于小区最大发射功率;
其中,SCPDSCHA表示A类OFDM符号中PDSCH可用资源单元的个数,PA表示A类OFDM符号中所有PDSCH可用资源单元平均功率相对于小区参考信号功率的比值,E_RS表示小区参考信号功率,Pcell表示小区最大发射功率,PortNum表示小区的天线端口数,SCRS表示B类OFDM符号中小区参考信号可用的资源单元个数,SCPDSCHB表示B类OFDM符号中PDSCH可用资源单元的个数,ρBA表示B类OFDM符号中PDSCH资源单元的功率与A类OFDM符号中PDSCH资源单元的功率的比值。
可选地,获取RRU通道的发射功率的步骤包括:
计算单个小区参考信号逻辑端口对应的所有物理通道的RRU通道的功率的和值,并将该和值作为RRU通道的发射功率。
可选地,根据小区参考信号功率与RRU通道的发射功率,获得小区参考信号功率相对于RRU通道的发射功率的比率的步骤包括:
根据公式:
Figure PCTCN2015092116-appb-000001
计算比率;
其中,E_RSPHY表示比率,E_RS表示小区参考信号功率,
Figure PCTCN2015092116-appb-000002
表示RRU通道的发射功率。
可选地,根据通信协议与比率生成时域的小区参考信号的步骤包括:
根据通信协议与比率生成频域的数字信号;
将频域的数字信号转换为时域的小区参考信号。
可选地,根据通信协议与比率生成频域的数字信号的步骤包括:
根据公式:
Figure PCTCN2015092116-appb-000003
得到频域的数字信号;
其中,s′CRS表示频域的数字信号,sCRS表示室内基带处理单元BBU的原始频域参考信号,E_RSPHY表示比率,PIrDBFS表示基站Ir接口中最大数字功率。
可选地,将频域的数字信号转换为时域的小区参考信号的步骤包括:
通过傅里叶逆变换操作将频域的数字信号转换为时域的小区参考信号。
一种基站实现小区参考信号发射的装置,该装置包括:
获取模块,设置为:获取小区参考信号功率以及远端射频模块RRU通道的发射功率;
获得模块,设置为:根据小区参考信号功率与RRU通道的发射功率,获得小区参考信号功率相对于RRU通道的发射功率的比率;
生成模块,设置为:根据通信协议与比率生成时域的小区参考信号,并发射该小区参考信号。
可选地,装置还包括:
确定模块,设置为:确定用户配置的小区功率参数为合理参数,小区功率参数包括小区参考信号功率和小区最大发射功率。
可选地,确定模块包括:
第一单元,设置为:根据用户配置的小区功率参数,获得LTE频域资源中A类正交频分复用OFDM符号的功率和B类OFDM符号的功率;
第二单元,设置为:判断A类OFDM符号的功率和B类OFDM符号的功率是否都小于小区最大发射功率,以及小区最大发射功率是否小于RRU通道的发射功率,并当A类OFDM符号的功率和B类OFDM符号的功率都小于小区最大发射功率,且小区最大发射功率小于RRU通道的发射功率时,触发第三单元;
第三单元,设置为:根据第二单元的触发,确定用户配置的小区功率参数为合理参数。
可选地,第二单元包括:
第一子单元,设置为:通过公式:SCPDSCHA*10(PA+E_RS)/10≤Pcell/PortNum判断出A类OFDM符号的功率小于小区最大发射功率;
第二子单元,设置为:通过公式:
SCRS*10E_RS/10+SCPDSCHB*10(PA+E_RS)/10BA≤Pcell/PortNum判断出B类OFDM符号的功率小于小区最大发射功率;
其中,SCPDSCHA表示A类OFDM符号中PDSCH可用资源单元的个数,PA表示A类OFDM符号中所有PDSCH可用资源单元平均功率相对于小区参考信号功率的比值,E_RS表示小区参考信号功率,Pcell表示小区最大发射功率,PortNum表示小区的天线端口数,SCRS表示B类OFDM符号中小区参考信号可用的资源单元个数,SCPDSCHB表示B类OFDM符号中PDSCH可用资源单元的个数,ρBA表示B类OFDM符号中PDSCH资源单元的功率与A类OFDM符号中PDSCH资源单元的功率的比值。
可选地,获取模块包括:
第一计算单元,设置为:计算单个小区参考信号逻辑端口对应的所有物理通道的RRU通道的功率的和值,并将该和值作为RRU通道的发射功率。
可选地,获得模块包括:
第二计算单元,设置为:根据公式:
Figure PCTCN2015092116-appb-000004
计算比率;
其中,E_RSPHY表示比率,E_RS表示小区参考信号功率,
Figure PCTCN2015092116-appb-000005
表示RRU通道的发射功率。
可选地,生成模块包括:
第四单元,设置为:根据通信协议与比率生成频域的数字信号;
转换单元,设置为:将频域的数字信号转换为时域的小区参考信号。
可选地,第四单元包括:
第三子单元,设置为:根据公式:
Figure PCTCN2015092116-appb-000006
得到频域的数字信号;
其中,s′CRS表示频域的数字信号,sCRS表示室内基带处理单元BBU的原始频域参考信号,E_RSPHY表示比率,PIrDBFS表示基站Ir接口中最大数字功率。
可选地,转换单元包括:
第四子单元,设置为:通过傅里叶逆变换操作将频域的数字信号转换为时域的小区参考信号。
一种基站,包括上述的基站实现小区参考信号发射的装置。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一项的方法。
本发明实施例的上述方案至少包括以下有益效果:
在本发明的实施例中,根据RRU通道的发射功率和用户配置的小区功率参数中的小区参考信号功率,计算出小区参考信号功率相对于RRU通道的发射功率的比率,再根据该比率与通信协议生成小区参考信号,并输出给RRU。从而使基站准确地发射小区参考信号功率。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例中基站实现小区参考信号发射的方法的步骤流程图;
图2为本发明实施例中图1中步骤13的步骤流程图;
图3为本发明实施例中基站系统内经每个模块时的功率变化的示意图;
图4为本发明实施例中基站实现小区参考信号发射的装置的结构示意图。
本发明的实施方式
下面将结合附图及实施方式进行详细描述。
本发明实施例针对相关技术中基站不能准确发射小区参考信号的问题,提供了一种基站实现小区参考信号发射的方法、装置及基站,能使基站准确 地发射小区参考信号功率。
如图1所示,本发明的实施例提供了一种基站实现小区参考信号发射的方法,该方法包括:
步骤11,获取小区参考信号功率以及远端射频模块RRU通道的发射功率。
其中,获取RRU通道的发射功率的步骤为:计算单个小区参考信号逻辑端口对应的所有物理通道的RRU通道的功率的和值,并将该和值作为RRU通道的发射功率。
在本发明的实施例中,RRU通道的发射功率是指单个小区参考信号逻辑端口对应的所有物理通道的RRU通道的发射功率之和。例如小区配置2个天线端口,2个物理发射天线,则RRU通道的发射功率即为每个RRU通道的发射功率;如果小区配置2个天线端口,4个物理发射天线,则单个逻辑端口对应2个物理发射天线,而RRU通道的发射功率为2个RRU通道的发射功率之和。
步骤12,根据小区参考信号功率与RRU通道的发射功率,获得小区参考信号功率相对于RRU通道的发射功率的比率。
其中,获得上述比率的步骤为:根据公式:
Figure PCTCN2015092116-appb-000007
计算比率;其中,E_RSPHY表示比率,E_RS表示小区参考信号功率,
Figure PCTCN2015092116-appb-000008
表示RRU通道的发射功率。
步骤13,根据通信协议与比率生成时域的小区参考信号,并发射该小区参考信号。
在本发明的实施例中,通信协议可采用长期演进LTE协议。
在本发明的实施例中,基站实现架构是室内基带处理单元BBU+RRU的组合方式。其中,BBU主要进行基带相关的处理运算(包括比特级处理、星座调制、预编码、资源映射和傅里叶逆变换运算),并通过Ir接口将数字信号传给RRU;而RRU主要进行数字中频,数模转换以及功率放大等操作,且将物理信号发送至空口。
在本发明的实施例中,基站的网管子系统会将获取到小区参考信号功率和RRU通道的发射功率传递到媒体接入控制层,进而使媒体接入控制层能根据小区参考信号功率和RRU通道的发射功率计算出小区参考信号功率相对于RRU通道的发射功率的比率,并将该比率值传递到物理层,从而使物理层根据该比率值与LTE协议生成时域的小区参考信号。而这些步骤主要由BBU完成,继而BBU会通过Ir接口将时域的小区参考信号输出给RRU,再由RRU将该小区参考信号发送至空口。从而使基站准确地发送小区参考信号,即准确地将小区参考信号功率发射出去。
其中,在本发明的上述实施例中,在执行步骤11之前,上述方法还包括:确定用户配置的小区功率参数为合理参数,小区功率参数包括小区参考信号功率和小区最大发射功率等,且当用户配置的小区功率参数为合理参数时执行步骤11。
在本发明的实施例中,在执行步骤11之前,基站网管子系统会对获取到的用户配置的小区功率参数进行校验,只有当确定用户配置的小区功率参数为合理参数时才会接着执行步骤11。校验确定步骤在后文会详细阐述。
其中,在本发明的上述实施例中,确定用户配置的小区功率参数为合理参数的步骤包括:根据用户配置的小区功率参数,获得LTE频域资源中A类正交频分复用OFDM符号的功率和B类OFDM符号的功率;判断A类OFDM符号的功率和B类OFDM符号的功率是否都小于小区最大发射功率,以及小区最大发射功率是否小于RRU通道的发射功率;若A类OFDM符号的功率和B类OFDM符号的功率都小于小区最大发射功率,且小区最大发射功率小于RRU通道的发射功率,则确定用户配置的小区功率参数为合理参数。
在本发明的实施例中,校验用户配置的小区功率参数和合理性包含两个方面。一个方面是确认根据用户配置的小区功率参数计算出的LTE频域资源中A类OFDM符号的功率和B类OFDM符号的功率是否都小于小区最大发射功率;另一个方面是确认小区最大发射功率是否小于RRU通道的发射功率。只有当上述两个方面的校验都成立时,才能确认用户配置的小区功率参数为合理参数,否则便提示告警该用户配置的小区功率参数不合理。
其中,判断A类OFDM符号的功率和B类OFDM符号的功率是否都小于小区最大发射功率的步骤为:通过公式:SCPDSCHA*10(PA+E_RS)/10≤Pcell/PortNum判断出A类OFDM符号的功率小于小区最大发射功率;通过公式:SCRS*10E_RS/10+SCPDSCHB*10(PA+E_RS)/10BA≤Pcell/PortNum判断出B类OFDM符号的功率小于小区最大发射功率;其中,SCPDSCHA表示A类OFDM符号中PDSCH可用资源单元的个数,PA表示A类OFDM符号中所有PDSCH可用资源单元平均功率相对于小区参考信号功率的比值,E_RS表示小区参考信号功率,Pcell表示小区最大发射功率,PortNum表示小区的天线端口数,SCRS表示B类OFDM符号中小区参考信号可用的资源单元个数,SCPDSCHB表示B类OFDM符号中PDSCH可用资源单元的个数,ρBA表示B类OFDM符号中PDSCH资源单元的功率与A类OFDM符号中PDSCH资源单元的功率的比值。
在本发明的实施例中,ρBA的取值与PB有关,其对应关系如表1所示,其中,PB为一索引,上述PA与PB均可在用户配置的小区功率参数中进行配置。
Figure PCTCN2015092116-appb-000009
表1
其中,如图2所示,在本发明的上述实施例中,上述步骤13的步骤为:
步骤21,根据通信协议与比率生成频域的数字信号。
步骤22,将频域的数字信号转换为时域的小区参考信号。
在本发明的实施例中,上述步骤21的步骤为:根据公式:
Figure PCTCN2015092116-appb-000010
得到频域的数字信号;其中,s′CRS表示频域的数字信号,sCRS表示室内基带处理单元BBU的原始频域参考信号,E_RSPHY表示比率,PIrDBFS为一预设中间值,表示基站Ir接口中最大数字功率,即为基站BBU和RRU之间的约定值。
在本发明的实施例中,将BBU和RRU之间的接口称为Ir接口,约定PIrDBFS为BBU输出的最大数字功率,定义不管RRU的发射功率是多少,当BBU数字信号功率为PIrDBFS时对应RRU最大发射功率。在本发明的实施例中,物理层根据该比率值与LTE协议生成时域的小区参考信号时,需要加上Ir接口中最大数字功率。物理层会将E_RSPHY+PIrDBFS按照LTE协议36.211规定的频域资源位置映射到频域资源上,其承载的数字信号频域功率为E_RSPHY+PIrDBFS。在此若用sCRS表示根据协议生成的BBU的原始频域参考信号,其数字功率为1,即0db,则小区参考信号的频域数字信号为
Figure PCTCN2015092116-appb-000011
其中,在本发明的上述实施例中,步骤22的步骤为:通过傅里叶逆变换操作将频域的数字信号转换为时域的小区参考信号。
在本发明的实施例中,BBU完成资源映射后会通过傅里叶逆变换操作将频域数字信号转变成时域的小区参考信号,并通过Ir接口传输给RRU。
在本发明的实施例中,如图3所示,基站系统内经每个模块时的功率变化为:在BBU基带中按协议生成原始参考信号的数字功率为0db,加权后数字功率变为E_RSPHY+PIrDBFS,即
Figure PCTCN2015092116-appb-000012
传递给RRU,RRU 整体的功率增益设为GRRU,则经过RRU后其模拟信号的功率为
Figure PCTCN2015092116-appb-000013
根据Ir接口的相关规定,在数字信号最大功率的情况下,RRU处于最大发射功率,因此对应的功率增益可以写成
Figure PCTCN2015092116-appb-000014
从而空口出去的模拟信号的参考信号功率为
Figure PCTCN2015092116-appb-000015
从而便使得基站准确地发射小区参考信号功率。其中,RRU是一个具有固定增益的通道,即其增益不随时间和小区参数改变而变化。
如图4所示,本发明的实施例还提供了一种基站实现小区参考信号发射的装置,该装置包括:
获取模块41,设置为:获取小区参考信号功率以及远端射频模块RRU通道的发射功率;
获得模块42,设置为:根据小区参考信号功率与RRU通道的发射功率,获得小区参考信号功率相对于RRU通道的发射功率的比率;
生成模块43,设置为:根据通信协议与比率生成时域的小区参考信号,并发射该小区参考信号。
其中,装置还包括:
确定模块,设置为:确定用户配置的小区功率参数为合理参数,小区功率参数包括小区参考信号功率和小区最大发射功率。
其中,确定模块包括:
第一单元,设置为:根据用户配置的小区功率参数,获得LTE频域资源中A类正交频分复用OFDM符号的功率和B类OFDM符号的功率;
第二单元,设置为:判断A类OFDM符号的功率和B类OFDM符号的功率是否都小于小区最大发射功率,以及小区最大发射功率是否小于RRU通道的发射功率,并当A类OFDM符号的功率和B类OFDM符号的功率都小于小区最大发射功率,且小区最大发射功率小于RRU通道的发射功率时,触发第三单元;
第三单元,设置为:根据第二单元的触发,确定用户配置的小区功率参 数为合理参数。
其中,第二单元包括:
第一子单元,设置为:通过公式:SCPDSCHA*10(PA+E_RS)/10≤Pcell/PortNum判断出A类OFDM符号的功率小于小区最大发射功率;
第二子单元,设置为:通过公式:
SCRS*10E_RS/10+SCPDSCHB*10(PA+E_RS)/10BA≤Pcell/PortNum判断出B类OFDM符号的功率小于小区最大发射功率;
其中,SCPDSCHA表示A类OFDM符号中PDSCH可用资源单元的个数,PA表示A类OFDM符号中所有PDSCH可用资源单元平均功率相对于小区参考信号功率的比值,E_RS表示小区参考信号功率,Pcell表示小区最大发射功率,PortNum表示小区的天线端口数,SCRS表示B类OFDM符号中小区参考信号可用的资源单元个数,SCPDSCHB表示B类OFDM符号中PDSCH可用资源单元的个数,ρBA表示B类OFDM符号中PDSCH资源单元的功率与A类OFDM符号中PDSCH资源单元的功率的比值。
其中,获取模块41包括:
第一计算单元,设置为:计算单个小区参考信号逻辑端口对应的所有物理通道的RRU通道的功率的和值,并将该和值作为RRU通道的发射功率。
其中,获得模块42包括:
第二计算单元,设置为:根据公式:
Figure PCTCN2015092116-appb-000016
计算比率;
其中,E_RSPHY表示比率,E_RS表示小区参考信号功率,
Figure PCTCN2015092116-appb-000017
表示RRU通道的发射功率。
其中,生成模块43包括:
第四单元,设置为:根据通信协议与比率生成频域的数字信号;
转换单元,设置为:将频域的数字信号转换为时域的小区参考信号。
其中,第四单元包括:
第三子单元,设置为:根据公式:
Figure PCTCN2015092116-appb-000018
得到频域的数字信号;
其中,s′CRS表示频域的数字信号,sCRS表示室内基带处理单元BBU的原始频域参考信号,E_RSPHY表示比率,PIrDBFS表示基站Ir接口中最大数字功率。;
其中,转换单元包括:
第四子单元,设置为:通过傅里叶逆变换操作将频域的数字信号转换为时域的小区参考信号。
需要说明的是,本发明实施例提供的基站实现小区参考信号发射的装置是应用上述方法的装置,即上述方法的所有实施例均适用于该装置,且均能达到相同或相似的有益效果。
本发明的实施例还提供了一种基站,包括上述的基站实现小区参考信号发射的装置。
需要说明的是,本发明实施例提供的基站是应用上述装置的基站,即上述装置的所有实施例均适用于该基站,且均能达到相同或相似的有益效果。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并 作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
在本发明的实施例中,根据RRU通道的发射功率和用户配置的小区功率参数中的小区参考信号功率,计算出小区参考信号功率相对于RRU通道的发射功率的比率,再根据该比率与通信协议生成小区参考信号,并输出给RRU,从而使基站准确地发射小区参考信号功率。

Claims (15)

  1. 一种基站实现小区参考信号发射的方法,包括:
    获取小区参考信号功率以及远端射频模块RRU通道的发射功率;
    根据所述小区参考信号功率与RRU通道的发射功率,获得小区参考信号功率相对于RRU通道的发射功率的比率;
    根据通信协议与所述比率生成时域的小区参考信号,并发射该小区参考信号。
  2. 如权利要求1所述的方法,其中,所述获取小区参考信号功率以及远端射频模块RRU通道的发射功率的步骤之前,所述方法还包括:
    确定用户配置的小区功率参数为合理参数,所述小区功率参数包括小区参考信号功率和小区最大发射功率。
  3. 如权利要求2所述的方法,其中,所述确定用户配置的小区功率参数为合理参数的步骤包括:
    根据用户配置的小区功率参数,获得LTE频域资源中A类正交频分复用OFDM符号的功率和B类OFDM符号的功率;
    判断所述A类OFDM符号的功率和B类OFDM符号的功率是否都小于小区最大发射功率,以及小区最大发射功率是否小于RRU通道的发射功率;
    若所述A类OFDM符号的功率和B类OFDM符号的功率都小于小区最大发射功率,且小区最大发射功率小于RRU通道的发射功率,则确定所述用户配置的小区功率参数为合理参数。
  4. 如权利要求3所述的方法,其中,所述判断所述A类OFDM符号的功率和B类OFDM符号的功率是否都小于小区最大发射功率的步骤包括:
    通过公式:SCPDSCHA·10(PA+E_RS)/10≤Pcell/PortNum判断出A类OFDM符号的功率小于小区最大发射功率;
    通过公式:
    Figure PCTCN2015092116-appb-100001
    判断出B类OFDM符号的功率小于小区最大发射功率;
    其中,SCPDSCHA表示A类OFDM符号中PDSCH可用资源单元的个数,PA表示A类OFDM符号中所有PDSCH可用资源单元平均功率相对于小区参考信号功率的比值,E_RS表示小区参考信号功率,Pcell表示小区最大发射功率,PortNum表示小区的天线端口数,SCRS表示B类OFDM符号中小区参考信号可用的资源单元个数,SCPDSCHB表示B类OFDM符号中PDSCH可用资源单元的个数,ρBA表示B类OFDM符号中PDSCH资源单元的功率与A类OFDM符号中PDSCH资源单元的功率的比值。
  5. 如权利要求1所述的方法,其中,所述获取RRU通道的发射功率的步骤包括:
    计算单个小区参考信号逻辑端口对应的所有物理通道的RRU通道的功率的和值,并将该和值作为RRU通道的发射功率。
  6. 如权利要求1所述的方法,其中,所述根据所述小区参考信号功率与RRU通道的发射功率,获得小区参考信号功率相对于RRU通道的发射功率的比率的步骤包括:
    根据公式:
    Figure PCTCN2015092116-appb-100002
    计算所述比率;
    其中,E_RSPHY表示所述比率,E_RS表示小区参考信号功率,
    Figure PCTCN2015092116-appb-100003
    表示RRU通道的发射功率。
  7. 如权利要求1所述的方法,其中,所述根据通信协议与所述比率生成时域的小区参考信号的步骤包括:
    根据通信协议与所述比率生成频域的数字信号;
    将所述频域的数字信号转换为时域的小区参考信号。
  8. 如权利要求7所述的方法,其中,所述根据通信协议与所述比率生成频域的数字信号的步骤包括:
    根据公式:
    Figure PCTCN2015092116-appb-100004
    得到频域的数字信号;
    其中,s′CRS表示频域的数字信号,sCRS表示室内基带处理单元BBU的原始频域参考信号,E_RSPHY表示所述比率,PIrDBFS表示基站Ir接口中最大数字功率。
  9. 如权利要求7所述的方法,其中,所述将所述频域的数字信号转换为时域的小区参考信号的步骤包括:
    通过傅里叶逆变换操作将频域的数字信号转换为时域的小区参考信号。
  10. 一种基站实现小区参考信号发射的装置,包括:
    获取模块,设置为:获取小区参考信号功率以及远端射频模块RRU通道的发射功率;
    获得模块,设置为:根据所述小区参考信号功率与RRU通道的发射功率,获得小区参考信号功率相对于RRU通道的发射功率的比率;
    生成模块,设置为:根据通信协议与所述比率生成时域的小区参考信号,并发射该小区参考信号。
  11. 如权利要求10所述的装置,所述装置还包括:
    确定模块,设置为:确定用户配置的小区功率参数为合理参数,所述小区功率参数包括小区参考信号功率和小区最大发射功率。
  12. 如权利要求11所述的装置,其中,所述确定模块包括:
    第一单元,设置为:根据用户配置的小区功率参数,获得LTE频域资源中A类正交频分复用OFDM符号的功率和B类OFDM符号的功率;
    第二单元,设置为:判断所述A类OFDM符号的功率和B类OFDM符号的功率是否都小于小区最大发射功率,以及小区最大发射功率是否小于RRU通道的发射功率,并当所述A类OFDM符号的功率和B类OFDM符号的功率都小于小区最大发射功率,且小区最大发射功率小于RRU通道的发射功率时,触发第三单元;
    第三单元,设置为:根据所述第二单元的触发,确定所述用户配置的小区功率参数为合理参数。
  13. 如权利要求10所述的装置,其中,所述获取模块包括:
    第一计算单元,设置为:计算单个小区参考信号逻辑端口对应的所有物理通道的RRU通道的功率的和值,并将该和值作为RRU通道的发射功率。
  14. 一种基站,包括如权利要求10~18任一项所述的基站实现小区参考信号发射的装置。
  15. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1-9任一项的方法。
PCT/CN2015/092116 2015-03-23 2015-10-16 一种基站实现小区参考信号发射的方法、装置及基站 WO2016150148A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510128388.8A CN106161311A (zh) 2015-03-23 2015-03-23 一种基站实现小区参考信号发射的方法、装置及基站
CN201510128388.8 2015-03-23

Publications (1)

Publication Number Publication Date
WO2016150148A1 true WO2016150148A1 (zh) 2016-09-29

Family

ID=56977002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092116 WO2016150148A1 (zh) 2015-03-23 2015-10-16 一种基站实现小区参考信号发射的方法、装置及基站

Country Status (2)

Country Link
CN (1) CN106161311A (zh)
WO (1) WO2016150148A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110708756A (zh) * 2018-07-09 2020-01-17 成都鼎桥通信技术有限公司 基于信道功率的资源分配方法及设备
CN110891306A (zh) * 2018-09-07 2020-03-17 成都鼎桥通信技术有限公司 下行覆盖自适应调整的方法、基站和存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3553962B1 (en) 2016-12-23 2021-07-28 Huawei Technologies Co., Ltd. Signal transmission method and base station
CN108259149B (zh) * 2016-12-29 2023-05-05 华为技术有限公司 发送/接收参考信号的方法及终端设备、网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118842A (zh) * 2011-03-18 2011-07-06 电信科学技术研究院 一种应用于lte系统的下行功率控制方法及装置
WO2013097111A1 (en) * 2011-12-28 2013-07-04 Telefonaktiebolaget L M Ericsson Methods for determining a beam-forming gain parameter, user equipment, base station, computer programs and computer program products
CN103281768A (zh) * 2013-06-14 2013-09-04 大唐移动通信设备有限公司 一种crs功率的确定方法和设备
CN103298088A (zh) * 2012-02-24 2013-09-11 电信科学技术研究院 一种资源调度方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118842A (zh) * 2011-03-18 2011-07-06 电信科学技术研究院 一种应用于lte系统的下行功率控制方法及装置
WO2013097111A1 (en) * 2011-12-28 2013-07-04 Telefonaktiebolaget L M Ericsson Methods for determining a beam-forming gain parameter, user equipment, base station, computer programs and computer program products
CN103298088A (zh) * 2012-02-24 2013-09-11 电信科学技术研究院 一种资源调度方法及装置
CN103281768A (zh) * 2013-06-14 2013-09-04 大唐移动通信设备有限公司 一种crs功率的确定方法和设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110708756A (zh) * 2018-07-09 2020-01-17 成都鼎桥通信技术有限公司 基于信道功率的资源分配方法及设备
CN110708756B (zh) * 2018-07-09 2023-01-31 成都鼎桥通信技术有限公司 基于信道功率的资源分配方法及设备
CN110891306A (zh) * 2018-09-07 2020-03-17 成都鼎桥通信技术有限公司 下行覆盖自适应调整的方法、基站和存储介质
CN110891306B (zh) * 2018-09-07 2023-02-28 成都鼎桥通信技术有限公司 下行覆盖自适应调整的方法、基站和存储介质

Also Published As

Publication number Publication date
CN106161311A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
US11349695B2 (en) DM-RS of pi/2-BPSK signals
US10462796B2 (en) Systems and methods of reducing interference in a wireless communications system
JP6773945B2 (ja) 基地局装置、ロケーションサーバ装置、および通信方法
EP3217711B1 (en) Base station device, terminal device, and communication method
WO2018202083A1 (zh) 功率余量的上报方法和装置
WO2012093455A1 (ja) 無線通信端末装置及び電力制御方法
JP2022168124A (ja) 端末装置、基地局装置、および通信方法
WO2021219060A1 (zh) 信息指示方法、信息确定方法、载频信息确定方法、通信节点、终端及介质
WO2016150148A1 (zh) 一种基站实现小区参考信号发射的方法、装置及基站
US11368959B2 (en) Base station apparatus, terminal apparatus, and communication method
WO2017132806A1 (zh) 配置导频信号的方法及第一设备
EP2680517B1 (en) Channel spread estimation
EP3734856A1 (en) Method and device for transmitting and receiving signal in wireless communication system
US20230208698A1 (en) Frame structure indication method, frame structure updating method, and related device
JP2024515496A (ja) 非コードブックベースのマルチtrpのpuschのためのシステムと方法
WO2022121891A1 (zh) 导频传输方法、装置、网络侧设备及存储介质
EP3179763A1 (en) Base station device, terminal device and method
JP6058812B2 (ja) 無線通信における受信パワーのトラッキング
WO2021056588A1 (zh) 一种配置预编码的方法及装置
CN103415067A (zh) 一种基于探测参考信号的信噪比估计方法
WO2021104020A1 (zh) 数据传输方法、发送设备和接收设备
WO2017005161A1 (zh) 功率分配方法和装置
US10009076B2 (en) Method and apparatus for obtaining downlink data in a massive MIMO system
WO2016106724A1 (zh) 通信方法和装置
US20230029484A1 (en) Frequency domain scheduling with time domain beamforming

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886070

Country of ref document: EP

Kind code of ref document: A1