WO2013174139A1 - 基于Cl2反应的SiC衬底上制备结构化石墨烯的方法 - Google Patents
基于Cl2反应的SiC衬底上制备结构化石墨烯的方法 Download PDFInfo
- Publication number
- WO2013174139A1 WO2013174139A1 PCT/CN2012/087971 CN2012087971W WO2013174139A1 WO 2013174139 A1 WO2013174139 A1 WO 2013174139A1 CN 2012087971 W CN2012087971 W CN 2012087971W WO 2013174139 A1 WO2013174139 A1 WO 2013174139A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sic
- sample
- gas
- graphene
- substrate based
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
- C01B32/184—Preparation
- C01B32/186—Preparation by chemical vapour deposition [CVD]
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
- C01B32/184—Preparation
- C01B32/188—Preparation by epitaxial growth
Definitions
- the invention belongs to the field of microelectronics, and relates to a semiconductor thin film material and a preparation method thereof, in particular to a method for preparing structured graphene on a SiC substrate based on a Cl 2 reaction.
- the arc method was first used by Rao CNR et al. to prepare graphene. They used a mixed gas of hydrogen and helium as the reaction gas. The use of this method for the preparation of graphene requires a higher hydrogen pressure and a larger discharge current, and is more dangerous.
- a method for preparing a conventional graphene a method disclosed in the "Method for preparing graphene by chemical vapor deposition method" of Patent Document 1 is as follows: First, a catalyst is prepared, followed by high-temperature chemical vapor deposition, which is provided with a catalyst. The substrate is placed in an anaerobic reactor to bring the substrate to
- a carbonaceous gas source is used for chemical deposition to obtain graphene, and then the graphene is purified, that is, treated with an acid or evaporated at a low pressure and a high temperature to remove the catalyst.
- the main disadvantages of this method are: complicated process, special removal of catalyst, high energy consumption and high production cost.
- Patent Document 1 Chinese Patent Application CN101285175A
- the object of the present invention is to solve the above-mentioned deficiencies of the prior art, and to provide a method for preparing structured graphene on a SiC substrate based on a 12- reaction to improve the surface smoothness of the graphene, reduce the porosity, and eliminate the subsequent fabrication.
- the process of etching graphene during the device process ensures that the electron mobility of graphene is stable and the device performance is improved.
- the preparation method of the present invention comprises the following steps:
- the invention has the following advantages:
- the present invention selectively grows structured graphene on a SiC substrate, thereby eliminating the need to etch graphene when the device is fabricated from graphene, so that electron mobility in graphene is not lowered, thereby ensuring fabrication. Device performance.
- SiC and Cl 2 can be reacted at a lower temperature and a normal pressure, and the reaction rate is fast.
- the present invention utilizes the reaction of SiC with Cl 2 gas, so that the produced graphene has a smooth surface, a low void ratio, and a thickness which is easy to control.
- the method used in the invention has simple process, energy saving and high safety.
- Figure 1 is a schematic view showing an apparatus for producing structured graphene of the present invention.
- Figure 2 is a flow chart showing the preparation of structured graphene of the present invention.
- the apparatus for preparing structured graphene of the present invention is mainly composed of a quartz tube 1 and an electric resistance furnace 2, wherein the quartz tube 1 is provided with an air inlet 3 and an air outlet 4, and the electric resistance furnace is 2 with a ring-shaped hollow structure.
- the quartz tube 1 is inserted into the resistance furnace 2.
- the SiC sample 5 for forming structured graphene is placed in the quartz tube 1.
- Step (1) First, the SiC sample is cleaned to remove surface contaminants.
- the SiC coupon a substrate substrate having a crystal form of 4H-SiC or 6H-SiC can be used.
- it may be washed with ammonia-hydrogen peroxide (NH 4 OH+H 2 0 2 ) and hydrochloric acid-hydrogen peroxide (HC1+H 2 0 2 ), respectively.
- NH 4 OH+H 2 0 2 ammonia-hydrogen peroxide
- HC1+H 2 0 2 hydrochloric acid-hydrogen peroxide
- the SiC sample is first immersed in the NH 4 OH+H 2 0 2 reagent for 10 to 30 minutes, taken out and dried to remove the organic residue on the surface of the sample; and the sample is immersed in the sample using the HC1+H 2 0 2 reagent.
- a layer of Si0 2 was deposited as a mask on the surface of the cleaned SiC sample.
- the above SiOj deposition may be performed by a plasma enhanced chemical vapor deposition (PECVD) method, or may be performed by other methods such as low pressure chemical vapor deposition (LPCVD).
- PECVD plasma enhanced chemical vapor deposition
- LPCVD low pressure chemical vapor deposition
- the cleaned SiC sample is placed in a PECVD system, and then SiH 4 , N 2 0, and N 2 are introduced into the system to cause SiH 4 to react with N 2 0 to deposit on the surface of the SiC sample.
- a layer of 810 2 mask is deposited.
- the preferred process conditions are: SiH 4 , N 2 0 and N 2 flow rates are 8-45 sccm, 35-450 sccm and 565-150 sccm, respectively, the intracavity pressure is 2-10 Pa, the RF power is 30-220 W, and the deposition temperature is 100-300 ° C, deposition time is 20-100 min.
- the flow rates of SiH 4 , N 2 0 and N 2 are respectively 30 sccm, 60 sccm and 200 sccm, the intracavity pressure is 3.0 Pa, the radio frequency power is 100 W, the deposition temperature is 150 ° C, and the deposition time is for 20-100min, but not limited to this.
- the deposition rate is small; the higher the RF power, the higher the energy of the reactive particles is provided, the probability of mutual reaction is increased, and the deposition rate is increased;
- the value is, for example, 220 W, the film thickness uniformity is significantly deteriorated, and the deposition rate is significantly slowed down. This is because the number of active particles participating in the reaction gradually becomes saturated with the increase of power, so that the deposition rate gradually becomes saturated.
- power greater than 220W will result in a decrease in film thickness due to the physical etching of the wafer surface by the plasma: since the deposition rate is no longer increased, the physical etch is always present and increases with power, ultimately The film thickness is made thin.
- the RF power is preferably 60-180W.
- the thickness uniformity of the film is remarkably poor. This may be because the flow rate of the reaction gas inside the cavity is too fast when the air pressure is too low, and the turbulence is locally generated, so that it cannot be uniformly distributed in the cavity, so that the gas concentration at different positions in the cavity is different, and the film deposition rate at different positions is also Therefore, there is a big difference.
- the pressure in the chamber is 2-10 Pa, the deposition rate increases as the pressure increases.
- the ratio of the consumption of Si to N 2 0 should be It is 1: 2, but in fact the ratio of the two is much larger than this.
- the dissociation rate of N 2 0 is low, and under the given power conditions, not all N 2 0 can Dissociated into active particles (mainly 0 ⁇ free radicals) involved in the reaction; secondly, the generated active particles do not all combine with Si to form Si0 2 , such as 0 and H can be combined to form OH, and even generate 3 ⁇ 40.
- the deposition rate is low; when the N 2 0 flow rate is higher than 35 sccm, since the SiH 4 has been consumed, the deposition rate is no longer increased with the increase of N 2 0, and the film thickness is increased. The uniformity is slightly reduced. In view of the above considerations, it is preferred to control the flow rate of N 2 0 in the range of 35-450 sccm, and to control the flow rates of SiH 4 and N 2 in the range of 8-45 sccm and 565-150 sccm, respectively. When the deposition temperature is between 100 and 300 ° C, both the stability of the process and the uniformity of the film are relatively good, and thus it is preferred.
- the layer thickness of the generated SiO 2 mask can be controlled by the deposition time, preferably 0.4-1.2 ⁇ ⁇ ⁇ . If the mask layer is too thin, it is easily consumed during etching, and does not have a good masking effect; if it is too thick, The effect of etching is not very good.
- Step (3) A pattern window is carved on the Si0 2 mask layer.
- the pattern window can be etched on the SiO 2 mask layer by conventional photolithography-dry/wet etching.
- a layer of photoresist is spin-coated on the SiO 2 mask layer; then, a lithography plate is formed according to the shape of the substrate of the device to be fabricated, and then photolithography is performed to transfer the pattern on the lithography plate to Si0 2 the mask layer; Finally, buffered hydrofluoric acid etching mask layer 8102, is etched out of the graphics window, is exposed SiC, forming a structured pattern.
- Step (4) Insert the sample after the window into the quartz tube, exhaust and heat to 700-1100 °C, and introduce Ar gas and (1 2 gas mixed gas into the quartz tube to make (1 2 and bare) The SiC reacts to form a carbon film.
- the stencil 5 after the window is placed is placed in the quartz tube 1 shown in Fig. 1, and the quartz tube is placed in the electric resistance furnace 2; then, Ar gas and (1 2 gas) are introduced into the quartz tube from the air inlet 3 Mix the gas, evacuate the quartz tube for 10 minutes, and discharge the air from the gas outlet 4; then, turn on the power switch of the resistance furnace 2 and heat the quartz tube to 700-1100 °C.
- the resulting SiCl 4 is discharged into the reaction system in a gaseous state.
- SiC and Cl 2 can be reacted at a lower temperature and a normal pressure according to the following formula, and the reaction rate is fast, thereby greatly saving energy.
- the heating temperature is limited to 700-1100 ° C, preferably 800-1000 ° C.
- the flow rates of the introduced Ar gas and the Cl 2 gas are preferably respectively 95-98 sccm and 5-2 sccm.
- the chlorination rate can be well controlled so that it cannot be too fast, if too fast, excessive carbon is generated, which is not conducive to the production of graphene film.
- the total flow rate of the diluent gas, Ar gas and Cl 2 gas was 100 sccm.
- the duration of the reaction is too short, less than 3 min, only a small amount of carbon film is formed; the longer the time, the thicker the carbon film is formed, and the reaction time can be controlled according to the thickness of the carbon film required.
- the reaction time is from 3 to 15 min, more preferably from 3 to 8 min.
- Step (5) The formed carbon film is reconstituted into structured graphene.
- the temperature of the resistance furnace is raised to 1000 ° C or higher, Ar gas is introduced into the quartz tube, the formed carbon film is annealed, and graphene is reconstituted at the window position to obtain structured graphene, and the structured graphene has a structure. It is necessary to make a prescribed pattern having the same substrate shape of the device.
- the annealing temperature is suitable in the range of 1000-1200 ° C. If the temperature is too low, sufficient energy cannot be provided for the reconstruction of the carbon film, and if the temperature is too high, the reconstruction is not uniform, resulting in More defects.
- the annealing time is preferably 10-30 minutes, the annealing time is too short, the graphene has many pores, the quality is not good, and the annealing time is longer, the sample pores are reduced and the surface is flatter, but if the time is too long, new ones will be produced. The defect, the quality of graphene will drop.
- the flow rate of the Ar gas during annealing is not particularly limited, and is mainly determined according to the size of the annealing chamber and the size of the substrate sheet, and is preferably 25-100 ml/min.
- the sample is heat treated under Ar gas protection to desorb the chlorine adsorbed in the sample.
- the structured graphene produced by the preparation method of the present invention has a smooth surface and a low porosity and can be used for fabricating microelectronic devices.
- the invention has the following advantages:
- the present invention selectively grows structured graphene on a SiC substrate, whereby the structured graphene directly fabricates the device, thereby eliminating the process of etching graphene during subsequent device fabrication, and thus graphene The electron mobility in the medium will not be reduced, ensuring the performance of the fabricated device.
- SiC and Cl 2 can be reacted at a lower temperature and a normal pressure, and the reaction rate is fast.
- the present invention utilizes the reaction of SiC with Cl 2 gas, so that the produced graphene has a smooth surface, a low void ratio, and a thickness which is easy to control.
- the method used in the invention has simple process, energy saving and high safety.
- Step 1 Clean the 6H-SiC sample to remove surface contaminants.
- Step 2 Deposit a layer of 810 2 mask on the surface of the 6H-SiC sample.
- Step 3 A graphics window is engraved on the Si0 2 mask layer.
- the 810 2 mask layer is etched with buffered hydrofluoric acid, and a pattern window is etched to expose 6H-SiC to form a structured pattern.
- Step 4 The stencil sample is placed in a quartz tube and heated by exhaust gas. Ar gas and a mixed gas of (1 2 gas are introduced into the quartz tube to react (1 2 with bare SiC to form a carbon film).
- Step 5 Reconstitute the formed carbon film to form structured graphene.
- the temperature of the resistance furnace was raised to 1000 ° C, Ar gas of a flow rate of 100 sec was introduced into the quartz tube, and the formed carbon film was annealed for 10 minutes to reconstitute the graphene at the window position.
- Step 1 Clean the 4H-SiC sample to remove surface contaminants.
- the 4H-SiC substrate was first immersed in the sample with NH 4 OH + H 2 0 2 reagent for 10 minutes, taken out and dried to remove the organic residue on the sample surface; then the sample was immersed for 10 minutes using HC1 + H 2 2 2 reagent. , remove and dry to remove ionic contaminants.
- Step 2 Deposit a layer of Si0 2 on the surface of the 4H-SiC sample.
- the cleaned 4H-SiC sample was placed in a PECVD system, the internal pressure of the system was adjusted to 3.0 Pa, the RF power was adjusted to 100 W, and the temperature was adjusted to 150 ° C.
- the flow rates into the system were 30 sccm, 60 sccm, and 200 sccm, respectively.
- SiH 4 , N 2 0 and N 2 for a duration of 75 min, reacted SiH 4 and N 2 0 to deposit a 0.8 ⁇ m thick 810 2 mask layer on the surface of the 4H-SiC sample.
- Step 3 Inscribe the graphics window on the Si0 2 mask layer.
- a layer of photoresist is spin-coated on the SiO 2 mask layer; a lithographic plate is formed according to the shape of the substrate of the device to be fabricated, and then photolithography is performed to transfer the pattern on the lithographic plate onto the SiO 2 mask layer;
- the 810 2 mask layer was etched with buffered hydrofluoric acid, and a pattern window was etched to expose 4H-SiC to form a structured pattern.
- Step 4 The sample after the window is opened into a quartz tube, and exhausted and heated, and an Ar gas and a mixed gas of (1 2 gas) are introduced into the quartz tube to react (1 2 with the exposed SiC to form a carbon film.
- the temperature of the resistance furnace was raised to 1,050 ° C, and Ar gas having a flow rate of 75 sccm was introduced into the quartz tube, and the resulting carbon film was annealed for 15 minutes to reconstitute the graphene at the window position.
- Step A The surface of the 6H-SiC substrate is cleaned by first soaking the sample with NH 4 OH + H 2 0 2 reagent for 10 minutes, taking it out and drying it to remove the organic residue on the sample surface; then using HC1+ H The 2 0 2 reagent was immersed in the sample for 10 minutes, taken out and dried to remove ionic contaminants.
- Step B Put the cleaned 6H-SiC sample into the PECVD system, adjust the internal pressure of the system to 3.0Pa, adjust the RF power to 100W, and adjust the temperature to 150°C .
- the flow rate into the system is 30sccm and 60sccm respectively.
- Step C spin coating a layer of photoresist on the SiO 2 mask layer; forming a lithographic pattern according to the shape of the substrate of the device to be fabricated, and then performing photolithography to transfer the pattern on the lithographic plate to the SiO 2 mask On the layer; the 810 2 mask layer is etched with buffered hydrofluoric acid, and the pattern window is etched to expose 6H-SiC to form a structured pattern.
- Step D The sample after the window is placed in the quartz tube 1, and the quartz tube is placed in the resistance furnace 2; Ar gas having a flow rate of 80 sccm is introduced into the quartz tube from the air inlet 3, and the quartz tube is subjected to 10 Drain in minutes and drain the air from the air outlet 4; then turn on the resistance furnace power switch and heat the quartz tube to 1100 °C. Ar gas and Cl 2 gas having flow rates of 95 sccm and 5 sccm were respectively introduced into the quartz tube for 8 minutes to react (1 2 with bare 6H-SiC to form a carbon film.
- Step E Raise the temperature of the resistance furnace to 1200 °C, pass Ar gas with a flow rate of 25 sccm into the quartz tube, and anneal the resulting carbon film for 30 minutes to reconstitute the graphene at the window position.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Carbon And Carbon Compounds (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
本发明公开了一种基于Cl2反应的SiC衬底上制备结构化石墨烯的方法,其过程是:先对SiC样片进行标准清洗;在SiC样片表面淀积一层SiO2,并在SiO2上刻出图形窗口;再将开窗后的样片置于石英管中,通入Ar气和Cl2的混合气体,在700-1100℃下裸露的SiC与Cl2反应 3-8min,生成碳膜;将生成的碳膜置于Ar气中,在温度为1000-1200℃下退火10-30min,使碳膜在窗口位置重构成结构化石墨烯。本发明工艺简单,安全性高,生成的结构化石墨烯表面光滑,孔隙率低,可用于制作微电子器件。
Description
基于 Cl2反应的 SiC衬底上制备结构化石墨烯的方法
技术领域
本发明属于微电子技术领域,涉及半导体薄膜材料及其制备方法,具 体地说是基于 Cl2反应的 SiC衬底上制备结构化石墨烯的方法。
背景技术
石墨烯出现在实验室中是在 2004年, 当时, 英国曼彻斯特大学的两 位科学家安德烈,杰姆和克斯特亚,诺沃消洛夫发现他们能用一种非常简 单的方法得到越来越薄的石墨薄片。他们从石墨中剥离出石墨片,然后将 薄片的两面粘在一种特殊的胶带上, 撕开胶带, 就能把石墨片一分为二。 不断地这样操作, 于是薄片越来越薄, 最后, 他们得到了仅由一层碳原子 构成的薄片, 这就是石墨烯。这以后, 制备石墨烯的新方法层出不穷。 目 前的制备方法主要有电弧法和热分解 SiC法两种:
1.电弧法最早由 Rao CNR等人用来制备石墨烯, 他们使用氢气和氦 气的混合气体作为反应气。使用该方法制备石墨烯需要较高的氢气压力和 较大的放电电流, 危险性较高。
2.热分解 SiC法:将单晶 SiC加热以通过使表面上的 SiC分解而除去 Si, 随后残留的碳形成石墨烯。 然而, SiC热分解中使用的单晶 SiC非常 昂贵, 并且生长出来的石墨烯呈岛状分布, 孔隙多, 层数不均匀。 进而, 当对上述得到的石墨烯进行结构化从而制作各种器件时,由于需要经过光 刻、干法刻蚀等工序, 因此会使石墨烯的电子迁移率降低, 从而影响了器 件性能。
此外, 现有的石墨烯的制备方法、如专利文献 1的 "化学气相沉积法 制备石墨烯的方法"专利所公开的方法是: 首先制备催化剂, 然后进行高 温化学气相沉积, 将带有催化剂的衬底放入无氧反应器中, 使衬底达到
500-1200 °C , 再通入含碳气源进行化学沉积而得到石墨烯, 然后对石墨烯 进行提纯, 即用酸处理或在低压、 高温下蒸发, 以除去催化剂。 该方法的 主要缺点是:工艺复杂,需要专门去除催化剂,能源消耗大,生产成本高。
现有技术文献
专利文献 1 : 中国专利申请 CN101285175A
发明内容
本发明的目的在于针对上述已有技术的不足, 提出一种基于 12反应 的 SiC衬底上制备结构化石墨烯的方法, 以提高石墨烯表面光滑度、 降 低孔隙率,并免除在后续制造器件过程中对石墨烯进行刻蚀的工艺,保证 石墨烯的电子迁移率稳定, 提高器件性能。
为实现上述目的, 本发明的制备方法包括以下步骤:
( 1 ) 对 SiC样片进行清洗, 以去除表面污染物;
( 2 ) 在清洗后的 SiC 样片表面利用等离子体增强化学气相沉积 (PECVD) 方法淀积一层 0.4-1.2 μ m厚的 Si02作为掩膜;
(3 )在掩膜表面涂一层光刻胶,光刻后再在掩膜上刻蚀出与所需制作 器件的衬底形状相同的窗口, 露出 SiC, 形成结构化图形;
(4) 将开窗后的样片置于石英管中, 加热至 700-1100°C, 向石英管 中通入 Ar气和( 12气的混合气体, 持续 3-8min, 使( 12与裸露的 SiC反 应, 生成碳膜;
(5 ) 将生成的碳膜样片置于 Ar气中, 在温度为 1000-1200°C下退火 10-30min, 使碳膜在窗口位置重构成石墨烯, 得到结构化石墨烯。
本发明与现有技术相比具有如下优点:
1. 本发明由于在 SiC衬底上选择性生长了结构化石墨烯, 由此石墨 烯制作器件时无需对石墨烯进行刻蚀,因而石墨烯中的电子迁移率不会降 低, 保证了制作的器件性能。
2. 本发明中 SiC与 Cl2可在较低的温度和常压下反应,且反应速率快。
3. 本发明由于利用了 SiC与 Cl2气的反应,因而生成的石墨烯表面光 滑, 空隙率低, 且厚度容易控制。
4. 本发明使用的方法工艺简单, 节约能源, 安全性高。
附图说明
图 1是表示本发明用于制备结构化石墨烯的装置的示意图。
图 2是表示本发明制备结构化石墨烯的流程图。
具体实施方式
参照图 1,本发明的结构化石墨烯的制备设备主要由石英管 1和电 阻炉 2组成, 其中石英管 1设有进气口 3和出气口 4, 电阻炉为 2为环 状空心结构, 石英管 1插装在电阻炉 2内。 用于形成结构化石墨烯的 SiC样片 5置于石英管 1内。
下面,参照图 2的流程图,对本发明的结构化石墨烯的制备方法进行 说明。
步骤 (1 ) : 首先, 对 SiC样片进行清洗, 以去除表面污染物。
SiC样片可采用晶型为 4H-SiC或 6H-SiC的衬底基片。 为了除去 SiC 样片上的表面污染物, 可以分别使用氨水-双氧水 (NH4OH+H202) 和盐 酸-双氧水 (HC1+H202 ) 进行清洗。 具体来说, 是先使用 NH4OH+H202 试剂浸泡 SiC样片 10〜30分钟, 取出后烘干, 以去除样片表面有机残余 物; 再使用 HC1+H202试剂浸泡样片 10〜30分钟, 取出后烘干, 以去除 步骤(2) : 其次, 在清洗后的 SiC样片表面淀积一层 Si02作为掩膜。 上述 SiOj^淀积可以利用等离子体增强化学气相沉积 (PECVD) 方 法, 也可以采用其他方法, 例如利用低压化学气相沉积 (LPCVD ) 法。
具体来说, 将清洗后的 SiC样片放入 PECVD系统内, 然后, 向系 统内通入 SiH4、 N20和 N2, 使其中的 SiH4与 N20发生反应, 在 SiC 样片表面淀积一层 8102掩膜层。
其优选的工艺条件为: SiH4、 N20 和 N2流速分别为 8-45sccm、 35-450sccm和 565-150sccm, 腔内压力为 2-10Pa, 射频功率为 30-220W, 淀积温度为 100-300°C, 淀积时间为 20-100min。 作为一个具体的例子, 可以列举出 SiH4、 N20和 N2流速分别为 30sccm、 60sccm和 200sccm, 腔内压力为 3.0Pa, 射频功率为 100W, 淀积温度为 150°C, 淀积时间为
20-100min, 但不局限于此。
当射频功率低于 30W时, 淀积速率很小; 射频功率越大, 提供反应 活性粒子的能量越高, 增大了相互反应的几率, 从而增加了淀积速率; 而 随着功率增加到一定值例如 220W时, 薄膜厚度均匀性明显变差,淀积速 率增幅明显变缓,这是由于参与反应的活性粒子的数目随功率增加而逐渐 趋于饱和, 使得淀积速率也逐渐趋于饱和, 最后稳定; 而功率大于 220W 会导致薄膜厚度降低,这是由于等离子体对硅片表面的物理刻蚀作用: 由 于淀积速率不再增加,而物理刻蚀始终存在并随功率增加而增加,最终使 得薄膜厚度变薄。 射频功率优选 60-180W。
当腔内压力低于 2Pa时,薄膜的厚度均匀性明显较差。这可能是气压 过低时腔体内部的反应气体流速过快,局部产生湍流, 以至于不能够在腔 体内均匀分布,从而使得腔体内不同位置的气体浓度不同,不同位置的薄 膜淀积速率也因此出现较大的差异。 腔内压力在 2-10Pa时, 淀积速率随 压力的增加而增加。原因是随着压力的增加, 反应气体的浓度增加, 因此 反应产物 Si02的浓度相应增加, 从而提高了薄膜淀积速率; 当压力超过 10Pa时, 淀积速率将不再发生变化, 这是因为在更高的反应压强条件下, 更多的气体分子参与反应, 同时导致更多的离子间碰撞,在没有足够的时 间获得电离所需能量的情况下, 过于频繁的碰撞将使等离子体密度下降, 限制了反应速率。
对于 SiH4、 0和 的流速来说, 需要控制 ^0流量, 同时改变 N2流量以保持 N20+ N 总流量不变; 为生成 Si02, Si 与 N20的消耗 量之比应该为 1 : 2, 而实际上两者之比要比这大得多, 这有两方面的原 因: 首先是 N20的离解率低, 在所给功率条件下, 并非所有N20都能离 解成参与反应的活性粒子 (主要是 0 ·自由基); 其次是生成的活性粒子并 未全部都与 Si结合而生成 Si02, 如 0与 H就可以结合生成 OH, 甚至生 成 ¾0。在 N20流量低于 35sccm时,淀积速率低;在 N20流量高于 35sccm 时, 由于 SiH4已经消耗殆尽, 因此淀积速率不再随 N20增加而提高, 且 薄膜厚度均匀性略有降低。 鉴于上述考虑, 优选将 N20 的流速控制在 35-450sccm的范围,将 SiH4和 N2流速分别控制在 8-45sccm和 565-150sccm 的范围。
淀积温度在 100-300°C之间时, 工艺的稳定性和薄膜的均匀性都比较 好, 因此优选。
生成的 Si02掩膜的层厚可以通过淀积时间来控制, 优选为 0.4-1.2 πΐο 掩膜层太薄的话, 刻蚀时易被消耗, 起不到很好的掩蔽效果; 太厚 的话, 刻蚀出来的效果不是很好。
步骤 (3 ) : 在 Si02掩膜层上刻出图形窗口。
可以通过常规的光刻 -干法 /湿法刻蚀法在 Si02掩膜层上刻出图形 窗口。 首先, 在 Si02掩膜层上旋涂一层光刻胶; 然后, 按照所要制作 器件的衬底形状制成光刻版, 然后再进行光刻, 将光刻版上的图形转 移到 Si02掩膜层上; 最后, 用缓冲氢氟酸腐蚀 8102掩膜层, 刻蚀出图 形窗口, 露出 SiC, 形成结构化图形。
步骤 (4 ) : 将开窗后的样片装入石英管, 排气并加热至 700-1100 °C, 向石英管中通入 Ar气和( 12气的混合气体, 使 ( 12与裸露的 SiC反 应, 生成碳膜。
将开窗后的样片 5放入图 1所示的石英管 1 中, 把石英管置于电 阻炉 2中;然后,从进气口 3向石英管中通入 Ar气和 ( 12气的混合气体, 对石英管进行 10分钟的排空, 将空气从出气口 4排出; 接着, 打开电 阻炉 2的电源开关, 对石英管加热至 700-1100°C。
此时, 混合气体中的 Cl2按照下式与裸露的 SiC反应, 生成碳膜。
SiC + 2 Cl2 = SiCl4(^) + C
生成的 SiCl4以气态的形式被排出反应系统。 本发明中, SiC与 Cl2 可在较低的温度和常压下按照下式反应,且反应速率快, 因此大大节省了 能源。
当上述加热温度低于 700 °C时, 反应速率很慢, SiC表层没有完全转 化为碳, 或者说生成的碳膜厚度太小; 在 700-1100°C的范围内, 反应速 率快, 碳膜的厚度随处理温度的升高而增加; 如果温度大于 1100°C, 则 生成带状石墨, 孔径增加, 此时反应速率主要受动力学因素控制。所以限 定加热温度为 700-1100 °C, 优选为 800-1000 °C。
在上述步骤中, 通入的所述 Ar气和所述 Cl2气的流量分别优选为
95-98sccm和 5-2sccm。通过限定 ( 12气的流量在这个范围,可以较好地控 制氯化的速度, 使之不能过快, 如果过快则会产生过多的碳, 不利于石墨 烯薄膜的产生。 Ar气作为稀释气体, Ar气和 Cl2气的总流量为 100sccm。
此外, 当反应的持续时间太短, 小于 3min时, 只生成少量碳膜; 时 间越长, 生成的碳膜越厚, 可根据需要得到的碳膜厚度来控制反应时间。 优选反应时间为 3-15min, 更优选为 3-8min。
步骤 (5 ) : 将生成的碳膜重构成结构化石墨烯。
将电阻炉温度升至 1000°C以上, 向石英管中通入 Ar气, 对生成的 碳膜进行退火, 在窗口位置重构成石墨烯, 得到结构化石墨烯, 该结 构化石墨烯具有与所需制作器件的衬底形状相同的规定图形。
在上述退火过程中, 退火温度在 1000-1200°C这个范围内比较合适, 如果温度太低,则不能给碳膜的重构提供足够的能量,而温度太高则重构 不均匀, 产生的缺陷较多。 另夕卜, 退火时间优选为 10-30分钟, 退火时间 太短, 石墨烯的孔隙多, 质量不好, 退火时间长一点, 则样品孔隙减少、 表面更加平整, 但是时间过长的话会产生新的缺陷, 石墨烯质量会下降。
另外, 对退火时 Ar气的流速不作特别限制, 主要是根据退火腔的尺 寸以及衬底片的大小来确定, 优选为 25-100ml/min。 在 Ar气保护下对样 品进行热处理, 可以脱附样品中吸附的氯气。
通过本发明的制备方法生成的结构化石墨烯表面光滑,孔隙率低,可 用于制作微电子器件。
本发明与现有技术相比具有如下优点:
1. 本发明由于是在 SiC衬底上选择性生长了结构化石墨烯, 由此结 构化石墨烯直接制作器件,免除了在后续制造器件过程中对石墨烯进行刻 蚀的工艺,因而石墨烯中的电子迁移率不会降低,保证了制作的器件性能。
2. 本发明中 SiC与 Cl2可在较低的温度和常压下反应,且反应速率快。
3. 本发明由于利用了 SiC与 Cl2气的反应,因而生成的石墨烯表面光 滑, 空隙率低, 且厚度容易控制。
4. 本发明使用的方法工艺简单, 节约能源, 安全性高。
下面,对本发明的结构化石墨烯的制备方法给出如下三种实施例。需
要说明的是,下述实施例只是为了说明本发明的制备方法而做出的具体例 示, 其中公开的具体条件不对本发明构成任何限制。
实施例 1
步骤 1: 清洗 6H-SiC样片, 以去除表面污染物。
(1.1)对 6H-SiC衬底基片使用 NH4OH+H202试剂浸泡样品 10分 钟, 取出后烘干, 以去除样品表面有机残余物;
(1.2)将去除表面有机残余物后的 6H-SiC样片再使用 HC1+ H202 试剂浸泡样品 10分钟, 取出后烘干, 以去除离子污染物。
步骤 2: 在 6H-SiC样片表面淀积一层 8102掩膜层。
(2.1)将清洗后的 6H-SiC样片放入 PECVD系统内, 将系统内部 压力调为 3.0Pa, 射频功率调为 100W, 温度调为 150°C;
(2.2) 向系统内通入流速分别为 30sccm、 60sccm和 200sccm的 SiH4、 N20和 N2, 持续 20min, 使 SiH4和 N20发生反应, 在 6H-SiC 样片表面淀积一层 0.4μ m厚的 8102掩膜层。
步骤 3: 在 Si02掩膜层上刻出图形窗口。
(3.1) 在 Si02掩膜层上旋涂一层光刻胶;
(3.2) 按照所要制作器件的衬底形状制成光刻版, 然后再进行光 刻, 将光刻版上的图形转移到 Si02掩膜层上;
(3.3) 用缓冲氢氟酸腐蚀 8102掩膜层, 刻蚀出图形窗口, 露出 6H-SiC, 形成结构化图形。
步骤 4: 将开窗后的样片装入石英管, 并排气加热, 向石英管中通 入 Ar气和 ( 12气的混合气体, 使 ( 12与裸露的 SiC反应, 生成碳膜。
(4.1) 将开窗后的样片放入石英管 1 中, 把石英管置于电阻炉 2 中;
(4.2)从进气口 3向石英管中通入流速为 80sccm的 Ar 气,对石 英管进行 10分钟的排空, 将空气从出气口 4排出;
(4.3) 打开电阻炉电源开关, 对石英管加热至 700°C。
(4.4) 向石英管通入流速分别为 98sccm和 2sccm的 Ar气和 Cl2
气, 持续 5分钟, 使 ( 12与裸露的 6H-SiC反应, 生成碳膜。
步骤 5 : 对生成的碳膜重构成结构化石墨烯。
将电阻炉温度升至 1000°C, 向石英管中通入流速为 lOOsccm的 Ar 气, 对生成的碳膜进行 10分钟的退火, 以在窗口位置重构成石墨烯。
实施例 2
步骤一: 清洗 4H-SiC样片, 以去除表面污染物。
对 4H-SiC衬底基片先使用 NH4OH+H202试剂浸泡样品 10分钟, 取出后烘干, 以去除样品表面有机残余物; 再使用 HC1+H202试剂浸泡 样品 10分钟, 取出后烘干, 以去除离子污染物。
步骤二: 在 4H-SiC样片表面淀积一层 Si02。
将清洗后的 4H-SiC样片放入 PECVD系统内, 将系统内部压力调 为 3.0Pa, 射频功率调为 100W, 温度调为 150°C ; 向系统内通入流速 分别为 30sccm、 60sccm和 200sccm的 SiH4、 N20和 N2, 持续时间为 75min, 使 SiH4和 N20反应, 在 4H-SiC样片表面淀积一层 0.8 μ m厚 的 8102掩膜层。
步骤三: 在 Si02掩膜层上刻出图形窗口。
在 Si02掩膜层上旋涂一层光刻胶; 按照所要制作器件的衬底形状 制成光刻版, 然后再进行光刻, 将光刻版上图形转移到 Si02掩膜层上; 用缓冲氢氟酸腐蚀 8102掩膜层, 刻蚀出图形窗口, 露出 4H-SiC, 形成 结构化图形。
步骤四: 将开窗后的样片装入石英管, 并排气加热, 向石英管中通 入 Ar气和 ( 12气的混合气体, 使 ( 12与裸露的 SiC反应, 生成碳膜。
将开窗后的样片置于石英管 1 中, 把石英管置于电阻炉 2中; 从 进气口 3 向石英管中通入流速为 80sccm的 Ar气, 对石英管进行 10 分钟排空, 将空气从出气口 4排出; 再打开电阻炉电源开关, 对石英 管加热至 1000 °C o
向石英管通入流速分别为 97sccm和 3sccm的 Ar气和 Cl2气,持续 3分钟, 使 Cl2与裸露的 4H-SiC反应, 生成碳膜。
步骤五: 对生成的碳膜重构成石墨烯
将电阻炉温度升至 1050°C, 向石英管中通入流速为 75sccm的 Ar 气, 对生成的碳膜进行 15分钟的退火, 以在窗口位置重构成石墨烯。
实施例 3
步骤 A : 对 6H-SiC 衬底基片进行表面清洁处理, 即先使用 NH4OH+H202试剂浸泡样品 10分钟, 取出后烘干, 以去除样品表面有 机残余物; 再使用 HC1+ H202试剂浸泡样品 10分钟, 取出后烘干, 以 去除离子污染物。
步骤 B : 将清洗后的 6H-SiC样片放入 PECVD系统内, 将系统内 部压力调为 3.0Pa, 射频功率调为 100W, 温度调为 150°C ; 向系统内 通入流速分别为 30sccm、 60sccm和 200sccm的 SiH4、 N20和 N2, 持 续时间为 lOOmin, 使 SiH^P N20反应, 在 6H-SiC样片表面淀积一层 1.2 μ ιη厚的 Si02。
步骤 C: 在 Si02掩膜层上旋涂一层光刻胶; 按照所要制作器件的 衬底形状制成光刻版, 然后再进行光刻, 将光刻版上图形转移到 Si02 掩膜层上; 用缓冲氢氟酸腐蚀 8102掩膜层, 刻蚀出图形窗口, 露出 6H-SiC, 形成结构化图形。
步骤 D: 将开窗后的样片置于石英管 1 中, 并把石英管置于电阻 炉 2中; 从进气口 3向石英管中通入流速为 80sccm的 Ar气, 对石英 管进行 10分钟排空,将空气从出气口 4排出;再打开电阻炉电源开关, 对石英管加热至 1100°C。 向石英管中通入流速分别为 95sccm和 5sccm 的 Ar气和 Cl2气, 持续 8分钟, 使 ( 12与裸露的 6H-SiC反应, 生成碳 膜。
步骤 E:将电阻炉温度升至 1200 °C,向石英管中通入流速为 25sccm 的 Ar气, 对生成的碳膜进行 30分钟的退火, 以在窗口位置重构成石 墨烯。
Claims
1.一种基于 Cl2反应的 SiC衬底上制备结构化石墨烯的方法, 包括以 下步骤:
( 1 ) 对 SiC样片进行清洗, 以去除表面污染物;
(2) 在清洗后的 SiC样片表面利用等离子体增强化学气相沉积法即 PECVD方法淀积一层 0.4-1.2 μ m厚的 Si02作为掩膜;
( 3 ) 在掩膜表面涂一层光刻胶, 光刻后再在掩膜上刻蚀出与所需制 作器件的衬底形状相同的窗口, 露出 SiC, 形成结构化图形;
(4) 将开窗后的样片置于石英管中, 加热至 700-1100 °C, 向石英管 中通入 Ar气和( 12气的混合气体, 持续 3-8min, 使( 12与裸露的 SiC反 应, 生成碳膜;
(5 )将生成的碳膜样片置于 Ar气中,在温度为 1000-1200°C下退火 10-30min, 使碳膜在窗口位置重构成石墨烯, 得到结构化石墨烯。
2. 根据权利要求 1所述的基于 Cl2反应的 SiC衬底上制备结构化石 墨烯的方法, 其特征在于, 所述步骤 (1 ) 对 SiC样片进行清洗, 是先使 用 NH4OH+H202试剂浸泡 SiC样片 10〜30分钟, 取出后烘干, 以去除样 片表面有机残余物; 再使用 HC1+H202试剂浸泡样片 10〜30分钟, 取出 后烘干, 以去除离子污染物。
3.根据权利要求 1或 2所述的基于 Cl2反应的 SiC衬底上制备结构化 石墨烯的方法, 其特征在于, 所述步骤 (2) 中, 利用 PECVD方法淀积 Si02的工艺条件为: SiH4、 N20 和 N2流速分别为 30sccm、 60sccm和 200sccm, 腔内压力为 3.0Pa, 射频功率为 100W, 淀积温度为 150°C, 淀 积时间为 20-100min。
4.根据权利要求 1或 2所述的基于 Cl2反应的 SiC衬底上制备结构化 石墨烯的方法, 其特征在于, 所述步骤 (2) 中, 利用 PECVD方法淀积
Si02的工艺条件为: SiH4、 N20和 N2流速分别为 8-45sccm、 35-450sccm 和 565-150sccm, 腔内压力为 2-10Pa, 射频功率为 30-220W, 淀积温度为 100-300 °C, 淀积时间为 20-100min。
5. 根据权利要求 1或 2所述的基于 Cl2反应的 SiC衬底上制备结构 化石墨烯的方法, 其特征在于, 所述步骤 (2) 中, 利用低压化学气相沉 积法即 LPCVD方法淀积一层 Si02作为掩膜。
6. 根据权利要求 5所述的基于 Cl2反应的 SiC衬底上制备结构化石 墨烯的方法, 其特征在于, 所述掩膜的层厚为 0.4-1.2 μ ιη。
7.根据权利要求 1〜6中任一项所述的基于 Cl2反应的 SiC衬底上制 备结构化石墨烯的方法, 其特征在于, 所述步骤 (4) 中通入的 Ar气和 Cl2气, 其流速分别为 95-98sccm和 5-2sccm。
8. 根据权利要求 1〜7中任一项所述的基于 Cl2反应的 SiC衬底上制 备结构化石墨烯的方法, 其特征在于, 所述步骤 (5 ) 退火时 Ar气的流 速为 25-100sccm。
9. 根据权利要求 1〜8中任一项所述的基于 Cl2反应的 SiC衬底上制 备结构化石墨烯的方法, 其特征在于所述 SiC样片的晶型采用 4H-SiC或
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/397,633 US9951418B2 (en) | 2012-05-23 | 2012-12-31 | Method for preparing structured graphene on SiC substrate based on Cl2 reaction |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210162173.4 | 2012-05-23 | ||
CN2012101621734A CN102701789B (zh) | 2012-05-23 | 2012-05-23 | 基于Cl2反应的SiC衬底上制备结构化石墨烯的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013174139A1 true WO2013174139A1 (zh) | 2013-11-28 |
Family
ID=46894919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/087971 WO2013174139A1 (zh) | 2012-05-23 | 2012-12-31 | 基于Cl2反应的SiC衬底上制备结构化石墨烯的方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9951418B2 (zh) |
CN (1) | CN102701789B (zh) |
WO (1) | WO2013174139A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102505114A (zh) | 2012-01-03 | 2012-06-20 | 西安电子科技大学 | 基于Ni膜辅助退火的SiC衬底上石墨烯制备方法 |
CN102701789B (zh) * | 2012-05-23 | 2013-10-16 | 西安电子科技大学 | 基于Cl2反应的SiC衬底上制备结构化石墨烯的方法 |
JP6123220B2 (ja) * | 2012-10-16 | 2017-05-10 | 住友電気工業株式会社 | 多孔質炭素材料の製造方法 |
CN106744844A (zh) * | 2016-12-23 | 2017-05-31 | 武汉理工大学 | 一种通过对二维碳化物晶体进行氯化可控合成高品质石墨烯的方法 |
CN109801990A (zh) * | 2018-12-29 | 2019-05-24 | 山东大学 | 一种利用SiC热解石墨烯制作光电探测器的方法 |
CN110217783A (zh) * | 2019-06-28 | 2019-09-10 | 宁波大学 | 一种石墨烯图案的制作方法 |
CN114256631A (zh) * | 2021-12-22 | 2022-03-29 | 上海空间电源研究所 | 氯化石墨烯材料、制备方法及隐身空间太阳电池 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1716522A (zh) * | 2004-06-30 | 2006-01-04 | 齐卡博制陶业有限公司 | 金属碳化物衬底表面的处理方法及这种金属碳化物衬底 |
CN101872120A (zh) * | 2010-07-01 | 2010-10-27 | 北京大学 | 一种图形化石墨烯的制备方法 |
CN102505113A (zh) * | 2012-01-03 | 2012-06-20 | 西安电子科技大学 | 基于Cl2反应的大面积石墨烯制备方法 |
CN102530936A (zh) * | 2012-01-03 | 2012-07-04 | 西安电子科技大学 | 基于Cl2反应的SiC衬底上制备石墨烯的方法 |
CN102674329A (zh) * | 2012-05-22 | 2012-09-19 | 西安电子科技大学 | 基于Cl2反应的结构化石墨烯制备方法 |
CN102701789A (zh) * | 2012-05-23 | 2012-10-03 | 西安电子科技大学 | 基于Cl2反应的SiC衬底上制备结构化石墨烯的方法 |
CN102723258A (zh) * | 2012-05-22 | 2012-10-10 | 西安电子科技大学 | 以SiC为基底的结构化石墨烯制备方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6784077B1 (en) * | 2002-10-15 | 2004-08-31 | Taiwan Semiconductor Manufacturing Co. Ltd. | Shallow trench isolation process |
FI20085113A0 (fi) * | 2008-02-08 | 2008-02-08 | Valtion Teknillinen | Menetelmä grafiinirakenteiden valmistamiseksi alustoille |
JP5641484B2 (ja) | 2009-08-31 | 2014-12-17 | 国立大学法人九州大学 | グラフェン薄膜とその製造方法 |
CN101693534B (zh) * | 2009-10-09 | 2011-05-18 | 天津大学 | 单片层石墨烯的制备方法 |
JP2011178617A (ja) | 2010-03-02 | 2011-09-15 | Panasonic Corp | グラフェン膜の形成方法 |
CN102153077A (zh) * | 2011-05-12 | 2011-08-17 | 北京工业大学 | 一种具有高碳氧比的单层石墨烯的制备方法 |
CN102320597B (zh) * | 2011-07-15 | 2012-11-07 | 天津大学 | 一种石墨烯的制备方法 |
CN102505140A (zh) | 2012-01-03 | 2012-06-20 | 西安电子科技大学 | 基于Ni膜辅助退火的石墨烯制备方法 |
CN102583330B (zh) | 2012-01-03 | 2013-09-25 | 西安电子科技大学 | 基于Cu膜辅助退火的SiC衬底上石墨烯制备方法 |
CN102583325B (zh) * | 2012-01-03 | 2013-09-25 | 西安电子科技大学 | 基于Ni膜退火和Cl2反应的SiC衬底上制备石墨烯的方法 |
CN102505114A (zh) | 2012-01-03 | 2012-06-20 | 西安电子科技大学 | 基于Ni膜辅助退火的SiC衬底上石墨烯制备方法 |
CN102505141A (zh) | 2012-01-03 | 2012-06-20 | 西安电子科技大学 | 基于Cu膜辅助退火的石墨烯制备方法 |
CN102583329B (zh) | 2012-01-03 | 2013-08-14 | 西安电子科技大学 | 基于Cu膜辅助退火和Cl2反应的大面积石墨烯制备方法 |
CN102583331B (zh) | 2012-01-03 | 2013-09-25 | 西安电子科技大学 | 基于Ni膜辅助退火和Cl2反应的大面积石墨烯制备方法 |
CN102924119A (zh) * | 2012-11-23 | 2013-02-13 | 西安电子科技大学 | 基于3C-SiC与氯气反应的Cu膜退火图形化石墨烯制备方法 |
-
2012
- 2012-05-23 CN CN2012101621734A patent/CN102701789B/zh not_active Expired - Fee Related
- 2012-12-31 WO PCT/CN2012/087971 patent/WO2013174139A1/zh active Application Filing
- 2012-12-31 US US14/397,633 patent/US9951418B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1716522A (zh) * | 2004-06-30 | 2006-01-04 | 齐卡博制陶业有限公司 | 金属碳化物衬底表面的处理方法及这种金属碳化物衬底 |
CN101872120A (zh) * | 2010-07-01 | 2010-10-27 | 北京大学 | 一种图形化石墨烯的制备方法 |
CN102505113A (zh) * | 2012-01-03 | 2012-06-20 | 西安电子科技大学 | 基于Cl2反应的大面积石墨烯制备方法 |
CN102530936A (zh) * | 2012-01-03 | 2012-07-04 | 西安电子科技大学 | 基于Cl2反应的SiC衬底上制备石墨烯的方法 |
CN102674329A (zh) * | 2012-05-22 | 2012-09-19 | 西安电子科技大学 | 基于Cl2反应的结构化石墨烯制备方法 |
CN102723258A (zh) * | 2012-05-22 | 2012-10-10 | 西安电子科技大学 | 以SiC为基底的结构化石墨烯制备方法 |
CN102701789A (zh) * | 2012-05-23 | 2012-10-03 | 西安电子科技大学 | 基于Cl2反应的SiC衬底上制备结构化石墨烯的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102701789A (zh) | 2012-10-03 |
CN102701789B (zh) | 2013-10-16 |
US20150132506A1 (en) | 2015-05-14 |
US9951418B2 (en) | 2018-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013174139A1 (zh) | 基于Cl2反应的SiC衬底上制备结构化石墨烯的方法 | |
WO2013102359A1 (zh) | 基于金属膜辅助退火的SiC衬底上的石墨烯制备方法 | |
JP2015073096A (ja) | パルス化された低周波数rf電力による高選択性かつ低応力のカーボンハードマスク | |
WO2013102360A1 (zh) | 基于金属膜辅助退火和Cl2反应的石墨烯制备方法 | |
JP4866461B2 (ja) | ドーナッツ状の触媒金属層を利用したシリコンナノチューブの製造方法 | |
CN105405749B (zh) | 一种刻蚀碳化硅的方法 | |
WO2012109968A1 (zh) | 一种在可控气氛环境中用微波辐照制备改性石墨烯材料的方法 | |
CN102653401B (zh) | 基于Ni膜退火的结构化石墨烯制备方法 | |
CN109461648A (zh) | 一种碳化硅器件制造方法 | |
CN110817852B (zh) | 基于水处理辅助机制的石墨烯制备方法 | |
CN102723258A (zh) | 以SiC为基底的结构化石墨烯制备方法 | |
KR20130035617A (ko) | 그래핀상의 금속 박막의 형성 방법 | |
CN109850908B (zh) | 一种二氧化硅/石墨烯复合物的制备方法及产品 | |
CN102674331A (zh) | 基于Ni膜退火的SiC与Cl2反应制备结构化石墨烯的方法 | |
CN102718208A (zh) | 基于Ni膜退火的SiC衬底上结构化石墨烯制备方法 | |
CN110323127B (zh) | 一种利用peald在硅衬底上生长石墨烯的方法 | |
CN102924119A (zh) | 基于3C-SiC与氯气反应的Cu膜退火图形化石墨烯制备方法 | |
Guo et al. | Method for preparing structured graphene on SiC substrate based on Cl2 reaction | |
Zhang et al. | The way towards for ultraflat and superclean graphene | |
CN107761071A (zh) | 无缺陷峰石墨烯薄膜的制备方法 | |
WO2017096626A1 (zh) | 一种在石墨烯表面形成栅介质层及制备晶体管的方法 | |
CN102936011B (zh) | 基于3C-SiC与氯气反应的Ni膜退火图形化石墨烯制备方法 | |
CN103107068A (zh) | 基于SiC与氯气反应的Ni膜退火侧栅石墨烯晶体管制备方法 | |
TWI850649B (zh) | 半導體處理方法 | |
CN112919822A (zh) | 基于刻蚀辅助机制的石墨烯玻璃制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12877390 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14397633 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12877390 Country of ref document: EP Kind code of ref document: A1 |