WO2013102360A1 - 基于金属膜辅助退火和Cl2反应的石墨烯制备方法 - Google Patents

基于金属膜辅助退火和Cl2反应的石墨烯制备方法 Download PDF

Info

Publication number
WO2013102360A1
WO2013102360A1 PCT/CN2012/080935 CN2012080935W WO2013102360A1 WO 2013102360 A1 WO2013102360 A1 WO 2013102360A1 CN 2012080935 W CN2012080935 W CN 2012080935W WO 2013102360 A1 WO2013102360 A1 WO 2013102360A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
film
sic
substrate
gas
Prior art date
Application number
PCT/CN2012/080935
Other languages
English (en)
French (fr)
Inventor
郭辉
张克基
张玉明
邓鹏飞
雷天民
Original Assignee
西安电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安电子科技大学 filed Critical 西安电子科技大学
Priority to US14/350,282 priority Critical patent/US9048092B2/en
Publication of WO2013102360A1 publication Critical patent/WO2013102360A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • C23C16/0218Pretreatment of the material to be coated by heating in a reactive atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/32Size or surface area

Definitions

  • the invention belongs to the field of microelectronics, and relates to a semiconductor thin film material and a preparation method thereof, in particular to a graphene preparation method based on metal film assisted annealing and Cl 2 reaction.
  • Chemical vapor deposition provides an effective method for controlling graphene. It is to place a planar substrate such as a metal film or a metal single crystal in a high temperature decomposable precursor such as formazan or ethylene. By depositing carbon atoms on the surface of the substrate to form graphene by high temperature annealing, and finally removing the metal substrate by chemical etching to obtain independent graphene sheets. By selecting the type of substrate, the temperature of growth, the flow rate of the precursor, and other parameters, the growth of graphene, such as growth rate, thickness, area, etc., can be regulated. The biggest disadvantage of this method is that the obtained graphene sheet interacts strongly with the substrate. , the properties of many single-layer graphenes are lost, and the continuity of graphene is not very good.
  • Thermal decomposition SiC method Single crystal SiC is heated to remove Si by decomposing SiC on the surface, and then the residual carbon forms graphene.
  • the single crystal SiC used in the thermal decomposition of SiC is very expensive, and the grown graphene is distributed in an island shape, the number of layers is not uniform, and the size is small, making it difficult to manufacture a large area of graphene.
  • the object of the present invention is to provide a method for preparing graphene based on metal film assisted annealing and Cl 2 reaction in order to improve surface smoothness and continuity, reduce porosity, and reduce cost, in view of the above-mentioned deficiencies of the prior art. - Preparation of large area graphene on a SiC substrate.
  • the graphene preparation method of the present invention comprises the following steps:
  • Another object of the present invention is to provide a large-area graphene excellent in properties obtained by the above production method.
  • the invention has the following advantages:
  • the 3C-SiC film can be heteroepitaxially grown on a Si substrate, and the size of the Si substrate wafer can be up to 20 inches, a large area of graphene can be grown by this method, and the price is low.
  • 3C-SiC and Cl 2 can be reacted at a lower temperature and a normal pressure, and the reaction rate is fast, thereby saving energy.
  • the present invention utilizes 3C-SiC to react with (1 2 gas, thereby producing a smooth surface of the carbon film,
  • the porosity is low and the thickness is easily controlled, and the graphene obtained from the carbon film can be used for sealing gases and liquids.
  • the present invention is annealed on a metal film, the formed carbon film is more easily reconstituted to form graphene having better continuity.
  • FIG. 1 is a schematic view of an apparatus used in the reaction of a 3C-SiC sample with Cl 2 in the preparation of large-area graphene;
  • FIG. 2 is a flow chart of a method for preparing graphene of the present invention.
  • Fig. 3 is a SEM photograph of graphene of the present invention.
  • the reaction apparatus 12 is used primarily by the resistance furnace quartz tube 1 and 2, where the quartz tube 1 is provided with an intake port 3 and the air outlet 4, the resistance furnace is 2 in a ring-shaped hollow structure, the quartz tube 1 is inserted in the resistance furnace 2, and the 3C-SiC sample 5 is placed in the quartz tube 1.
  • the preparation method of the invention comprises the following steps:
  • Step (1) First, a standard cleaning of a 2-20 inch Si substrate is performed.
  • the purpose of the substrate in the present invention is to epitaxially grow SiC thereon.
  • epitaxial growth of SiC may be performed using a Si substrate or a SiC single crystal substrate, but the size of the Si substrate is larger than that of the SiC single crystal. Therefore, in order to obtain a large area of graphene, it is preferable to carry out heteroepitaxial growth of SiC using a Si substrate.
  • the Si substrate can be 2-20 inches, more commonly 4-12 inches of Si, so that a large area (4-12 inches) of graphene can be grown.
  • organic residues and ions on the SiC substrate can be removed with ammonia-hydrogen peroxide (NH 4 OH+H 2 0 2 ) and hydrochloric acid-hydrogen peroxide (HC1+H 2 0 2 ), respectively. Contaminants.
  • Step (2) placing the cleaned Si substrate in a reaction chamber of a CVD system, pumping the reaction chamber Vacuum, in the case of H 2 protection, gradually increase the temperature to a carbonization temperature of 950 ° C to 1150 ° C, pass C 3 H 8 , carbonize the Si substrate for 3-lOmin, and grow a carbonized layer.
  • a low carbonization temperature results in a low film crystal quality. This is because C 3 H 8 is not sufficiently decomposed at a low temperature, and Si atoms in the substrate do not have sufficient energy to diffuse out to form C-Si bonds with C atoms on the surface, resulting in a decrease in the crystal quality of the carbonized layer.
  • the carbonization temperature is set to 950 ° C to 1150 ° C. Most preferably, the carbonization temperature is 1000 ° C.
  • the 3C-SiC film prepared at this time has a better preferred orientation, and the 3C-SiC (lll) surface is parallel to the Si (lll) surface of the substrate, and the film has good crystal quality.
  • the carbonization time is too short, the surface of the Si substrate does not have sufficient time for sufficient carbonization, and the carbonization is not uniform enough, and the degree of crystallization of the carbonized layer is low. As the carbonization time becomes longer, the carbonization of the substrate is sufficient and the crystallinity is improved. However, if the carbonization time is too long, the previously formed carbonized layer will weaken the diffusion movement of Si atoms in the substrate, and the Si atoms will not diffuse to the surface of the carbonized layer to react with the C atoms. In this case, carbonization will be "excessive", which will reduce the crystal quality of the carbonized layer. When the carbonization time exceeds 7 min, the crystal quality is lowered.
  • the carbonization time is set to 3 to 10 min, preferably 4 to 7 min, and when the carbonization time is 5 min, the crystal quality of the sample is the best, and thus it is most preferable.
  • the growth of 3C-SiC requires a high degree of vacuum, and if the degree of vacuum is low, the quality of the 3C-SiC crystal is lowered.
  • the degree of vacuum is preferably the reaction chamber reaches the level of 10- 7 mbar.
  • the flow rate of C 3 H 8 does not have a large influence on the carbonization reaction, and is not particularly limited. However, if the flow rate is too low, the reaction rate will be low, and too much flow rate will affect the crystal quality of the film. It is therefore preferred to limit the flow range of C 3 H 8 to 30-40 sccm.
  • Step (3) Then, rapidly heat up to 1150 ° C - 1350 ° C, pass C 3 H 8 and SiH 4 , and grow 3C-SiC heteroepitaxial film on the carbonized layer for 30-60 min. Then, the temperature was gradually lowered to room temperature under the protection of H 2 to complete the growth of the 3C-SiC epitaxial film.
  • the growth temperature of the film is the main factor affecting the quality of the 3C-SiC film.
  • the growth temperature is lower than 1150 °C, C atoms and Si atoms are adsorbed on the surface of the substrate, and it is impossible to obtain sufficient horizontal kinetic energy to move to The corresponding lattice position promotes the growth of the epitaxial film, so the epitaxial layer has a low crystal quality.
  • the growth temperature is too high, the atoms have enough kinetic energy to be incorporated into the crystal lattice, which tends to accumulate to form large particles and pores, which in turn reduces the crystal quality of the epitaxial layer.
  • the growth temperature of the film is limited to 1150 ° C to 1350 ° C, and when the growth temperature is raised to 1170 ° C to 1200 ° C, a single-oriented 3C-SiC film can be obtained, which is more preferable.
  • the growth time of the film also has a great influence on the quality of the 3C-SiC film.
  • the growth time is 30 min or longer, a 3C-SiC single crystal film can be obtained, and when the growth time exceeds 1 h, a graphite phase will appear in the film. Therefore, the growth time of the film is limited to 30-60 min.
  • the carbon/silicon ratio will affect the quality of the 3C-SiC heteroepitaxial layer. If the carbon/silicon ratio is too high or too low, the growth will be carried out in a "carbon rich” or “silicon rich” environment, which will affect the formation of C-Si bonds in the reaction, which in turn affects the crystalline quality of the epitaxial layer. Therefore, it is preferred to limit the flow rates of the introduced SiH 4 and the C 3 3 ⁇ 4 to be in the range of 15-25 sccm and 30-50 sccm, respectively.
  • Step (4) Place the grown 3C-SiC sample in a quartz tube, heat it to 700-1100 °C, and introduce Ar gas and (1 2 gas mixed gas into the quartz tube to make (1 2 and 3C - SiC reacts to form a carbon film.
  • the heating temperature is limited to 700-1100 ° C, preferably 800-1000 ° C.
  • the duration of the reaction is too short, less than 3 min, only a small amount of carbon film is formed; the longer the time, the thicker the carbon film is formed, and the reaction time can be controlled according to the thickness of the carbon film required.
  • the reaction time is from 3 to 15 min.
  • the flow rates of the introduced Ar gas and the Cl 2 gas are preferably 95-98 sccm and 5-2 sccm, respectively.
  • the speed of chlorination can be well controlled so that it is not too fast, if too fast, excessive carbon is generated, which is not conducive to the production of graphene film.
  • 3C-SiC and Cl 2 can be reacted at a lower temperature and a normal pressure according to the following formula, and the reaction rate is fast, thereby greatly saving energy.
  • SiC + 2 Cl 2 SiCl 4 ( ⁇ ) + C
  • the carbon film produced by the reaction of the above 3C-SiC and Cl 2 gas has smooth surface, low porosity and easy control of the thickness.
  • Step (5) A metal film having a thickness of 250 to 300 nm is prepared in advance.
  • the carbon film samples thus formed were placed on a metal film, and they were annealed together in an Ar gas at a temperature of 900 to 1100 ° C for 10 to 30 minutes, and the carbon film was reconstituted into graphene.
  • the metal film can be used arbitrarily as long as it catalyzes the conversion of the carbon film to graphene.
  • a Ni film, a Cu film, or the like can be used.
  • a Cu film is preferable. Since Cu is not stored in the air and is not oxidized, etc., the Cu film does not need to be specially prepared, and a ready-made Cu film can be used.
  • the thickness of the Cu film is not particularly limited, but is preferably 250 to 300 nm.
  • the annealing temperature of the carbon film reconstituting graphene is suitable in the range of 900-1100 °C. If the temperature is too low, sufficient energy cannot be provided for the reconstruction of the carbon film, and the temperature is too high. The reconstruction is not uniform, and more defects are generated.
  • the annealing time is preferably 10-30 minutes, the annealing time is too short, the graphene has many pores, the quality is not good, and the annealing time is longer, the sample pores are reduced and the surface is flatter, but if the time is too long, new defects will be generated. , the quality of graphene will decline.
  • the flow rate of the Ar gas during annealing is not particularly limited, and is mainly determined according to the size of the annealing chamber and the size of the substrate sheet, and is preferably 25-100 sccm.
  • the sample is heat treated under Ar gas protection to desorb the adsorbed chlorine gas from the sample and protect the metal film.
  • Step (6) The metal film is removed from the graphene sample to obtain graphene.
  • the grown 3C-SiC is high in quality. Further, since the 3C-SiC film can be heteroepitaxially grown on the Si substrate, and the size of the Si substrate wafer can be up to 20 inches, a large area of graphene can be grown by this method, and the price is low.
  • 3C-SiC and Cl 2 can react at a lower temperature and a normal pressure, and the reaction rate is fast, saving energy. And, due to the use The reaction of 3C-SiC with Cl 2 gas results in a smooth surface, low porosity, and easy control of the thickness of the carbon film.
  • the graphene obtained from the carbon film can be used for sealing gases and liquids. Further, since the present invention is annealed on the metal film, the formed carbon film is more easily reconstituted to form graphene having better continuity.
  • Fig. 3 shows an SEM photograph of the graphene film of the present invention obtained by the production method of the present invention. It can be seen that the graphene of the present invention has a large area, a smooth surface, a low porosity, and a dense film surface.
  • Step 1 Remove contaminants from the sample surface.
  • the surface of the 4-inch Si substrate is cleaned by first soaking the sample with NH 4 OH + H 2 0 2 reagent for 10 minutes, removing it and drying it to remove the organic residue on the surface of the sample; then immersing the sample with HC1 + 3 ⁇ 40 2 reagent After 10 minutes, remove and dry to remove ionic contaminants.
  • Step 2 The Si substrate placed in a CVD system, the reaction chamber, the reaction chamber is evacuated to achieve the level of 10- 7 mbar.
  • Step 3 Growing the carbonized layer.
  • the temperature of the reaction chamber was raised to a carbonization temperature of 1000 ° C, and then C 3 H 8 having a flow rate of 40 sccm was introduced into the reaction chamber, and a carbonized layer was grown on the Si substrate for a growth time of 8 min.
  • Step 4 Growth of a 3C-SiC epitaxial film on the carbonized layer.
  • the temperature of the reaction chamber was rapidly raised to a growth temperature of 1150 ° C, SiH 4 and C 3 H 8 with flow rates of 15 sccm and 30 sccm were respectively introduced, and the growth of the 3C-SiC heteroepitaxial film was carried out for 60 min ; then at H 2 Under the protection, the temperature was gradually lowered to room temperature to complete the growth of the 3C-SiC epitaxial film.
  • Step 5 The 3C-SiC sample was placed in a quartz tube and heated by venting.
  • Step 6 Create a carbon film
  • Step 7 Reconstitute the graphene.
  • Step 1 Remove contaminants from the sample surface.
  • the surface of the 8-inch Si substrate is cleaned by first soaking the sample with NH 4 OH + H 2 0 2 reagent for 10 minutes, removing it and drying it to remove the organic residue on the surface of the sample; then immersing the sample with HC1 + 3 ⁇ 40 2 reagent After 10 minutes, remove and dry to remove ionic contaminants.
  • Step 2 CVD system Si substrate into the reaction chamber, the reaction chamber is evacuated to achieve the level of 10- 7 mbar.
  • Step 3 Growing the carbonized layer.
  • the temperature of the reaction chamber was raised to a carbonization temperature of 1050 ° C, then C 3 H 8 having a flow rate of 40 sccm was introduced into the reaction chamber, and a carbonized layer was grown on the Si substrate for 5 min. .
  • Step 4 A 3C-SiC epitaxial film is grown on the carbonized layer.
  • the reaction chamber temperature was rapidly raised to a growth temperature of 1200 ° C, and the flow rate was 20 sccm and 4011cm of 8111 4 and ( 3 11 8 , 3C-SiC heteroepitaxial film growth, growth time of 45min ; and then gradually cooled to room temperature under the protection of H 2 to complete the growth of 3C-SiC epitaxial film.
  • Step 5 The 3C-SiC sample is placed in a quartz tube and heated by exhaust.
  • the grown 3C-SiC epitaxial film sample 5 is taken out from the reaction chamber of the CVD system, placed in the quartz tube 1, and the quartz tube is placed in the electric resistance furnace 2; a flow rate of 80 sccm is introduced from the air inlet 3 into the quartz tube.
  • Ar gas evacuate the quartz tube for 10 minutes, and discharge the air from the air outlet 4; then turn on the resistance furnace power switch, heat up to 1000 °C, and heat the quartz tube to 1000 °C.
  • Step 6 Create a carbon film
  • Step 7 Reconstitute graphene.
  • the produced carbon film sample was taken out from the quartz tube and placed on a metal film having a thickness of 280 nm; the carbon film sample and the metal film were entirely placed in an Ar gas having a flow rate of 75 s CC m at a temperature of 1050 ° C. Annealing for 15 minutes, the carbon film is reconstituted into continuous graphene by the catalytic action of metal Cu; and the metal film is removed from the graphene sample to obtain large-area graphene (up to 8 inches in size).
  • Step A The surface of the 12-inch Si substrate is cleaned by first soaking the sample with NH 4 OH+H 2 0 2 reagent for 10 minutes, removing it and drying it to remove the organic residue on the sample surface; then using HC1+H 202 reagent sample was immersed for 10 minutes, remove dried to remove step B: Si substrate placed in a CVD system, the reaction chamber, the reaction chamber is evacuated to achieve the level of 10- 7 mbar.
  • Step C Raise the temperature of the reaction chamber to a carbonization temperature of 1150 ° C under the protection of 3 ⁇ 4 , and then pass a flow rate of 40 sccm of C 3 H 8 to the reaction chamber for 4 minutes to grow a carbonized layer on the Si substrate. .
  • Step D The temperature of the reaction chamber is rapidly raised to a growth temperature of 1350 ° C, and the flow rates are respectively Growth of 3C-SiC heteroepitaxial films at 25 sccm and 50 sccm of SiH 4 and C 3 H 8
  • Step E The grown 3C-SiC epitaxial film sample 5 is taken out from the CVD system reaction chamber, placed in the quartz tube 1, and the quartz tube 1 is placed in the resistance furnace 2; the air inlet 3 is introduced into the quartz tube.
  • the Ar gas with a flow rate of 80 sccm was evacuated for 10 minutes, and the air was discharged from the gas outlet 4; the electric resistance switch of the electric resistance furnace was turned on, and the temperature was raised to 1,100 ° C, and the quartz tube therein was also heated to 1,100 ° C.
  • Step F Argon and Cl 2 gas having a flow rate of 95 sccm and 5 sccm were introduced into the quartz tube for 4 minutes, so that (1 2 and 3 ( -8 react to form a carbon film).
  • Step G The formed carbon film sample is taken out from the quartz tube and placed on a metal film having a thickness of 300 nm; the carbon film sample and the metal film are entirely placed in an Ar gas having a flow rate of 25 s CC m at a temperature of Annealing at 1100 ° C for 10 minutes, the carbon film is reconstituted into continuous graphene by the catalytic action of metal Cu; and the metal film is removed from the graphene sample to obtain large-area graphene (up to 12 inches in size).
  • the preparation method of the present invention By the preparation method of the present invention, a large area of graphene can be obtained, and the surface is smooth, the continuity is good, the porosity is low, and it can be used for sealing of gas and liquid. Further, the graphene prepared by the present invention can be rolled into a barrel shape as a carbon nanotube for storing hydrogen gas; it can also be used for producing a high speed graphene transistor and a transparent conductive film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明公开了一种基于金属膜辅助退火和Cl2反应的石墨烯制备方法,包括以下步骤:对Si衬底进行标准清洗,然后放入CVD系统反应室中抽真空,逐步升温至950℃-1150℃,通入C3H8,对Si衬底进行碳化3-10min;迅速升温至1150℃-1350℃,通入C3H8和SiH4,在所述碳化层上进行3C-SiC异质外延薄膜的生长,然后在H2保护下逐步降温至室温;将生长好的3C-SiC样片置于石英管中,加热至 700℃-1100℃,通入Ar气和Cl2气的混合气体,使Cl2与3C-SiC反应生成碳膜;将碳膜样片置于金属膜上,在温度为900℃-1100℃下退火10-30 min,碳膜重构成石墨烯;将金属膜从石墨烯样片上取开,得到大面积石墨烯。用本发明方法生成的石墨烯面积大,表面光滑,连续性好,孔隙率低,可用于对气体和液体的密封。

Description

基于金属膜辅助退火和 Cl2反应的石墨烯制备方法
技术领域
本发明属于微电子技术领域, 涉及一种半导体薄膜材料及其制备方 法, 具体地说, 是基于金属膜辅助退火和 Cl2反应的石墨烯制备方法。
背景技术
石墨烯出现在实验室中是在 2004年, 当时, 英国曼彻斯特大学 的两位科学家安德烈 ·杰姆和克斯特亚.诺沃消洛夫发现他们能用一种 非常简单的方法得到越来越薄的石墨薄片。他们从石墨中剥离出石墨 片, 然后将薄片的两面粘在一种特殊的胶带上, 撕开胶带, 就能把石 墨片一分为二。 不断地这样操作, 于是薄片越来越薄, 最后, 他们得 到了仅由一层碳原子构成的薄片, 这就是石墨烯。 这以后, 制备石墨 烯的新方法层出不穷, 目前的制备方法主要有两种:
1.化学气相沉积法提供了一种可控制备石墨烯的有效方法,它是 将平面基底, 如金属薄膜、 金属单晶等置于高温可分解的前驱体, 如 甲垸、 乙烯等气氛中, 通过高温退火使碳原子沉积在基底表面形成石 墨烯, 最后用化学腐蚀法去除金属基底后即可得到独立的石墨烯片。 通过选择基底的类型、 生长的温度、 前驱体的流量等参数可调控石墨 烯的生长, 如生长速率、 厚度、 面积等, 此方法最大的缺点在于获得 的石墨烯片层与衬底相互作用强, 丧失了许多单层石墨烯的性质, 而 且石墨烯的连续性不是很好。
2.热分解 SiC法: 将单晶 SiC加热以通过使表面上的 SiC分解而 除去 Si, 随后残留的碳形成石墨烯。 然而, SiC热分解中使用的单晶 SiC非常昂贵, 并且生长出来的石墨烯呈岛状分布, 层数不均匀, 且 尺寸较小, 很难制造大面积的石墨烯。
发明内容 本发明的目的在于针对上述已有技术的不足,提出一种基于金属膜辅 助退火和 Cl2反应的石墨烯制备方法, 以提高表面光滑度和连续性、 降低 孔隙率、 减少成本, 实现在 3C-SiC衬底上的大面积石墨烯的制备。
为了实现上述目的, 本发明的石墨烯制备方法包括以下步骤:
( 1 ) 对 Si衬底进行标准清洗;
(2)将清洗后的 Si衬底放入 CVD系统反应室中,对反应室抽真空, 在 H2保护的情况下逐步升温至碳化温度 950°C-1150°C, 通入 C3H8, 对 Si衬底进行碳化 3-lOmin, 生长一层碳化层;
( 3 ) 迅速升温至 1150°C-1350°C, 通入 C3H8和 SiH4, 在所述碳化层 上进行 3C-SiC异质外延薄膜的生长, 时间为 30-60min, 然后在 ¾保护 下逐步降温至室温, 完成 3C-SiC外延薄膜的生长;
(4) 将生长好的 3C-SiC样片置于石英管中, 加热至 700°C-1100°C, 向石英管中通入 Ar气和( 12气的混合气体, 使 ( 12与 3C-SiC反应生成碳 膜;
(5 ) 将生成的碳膜样片置于对碳重构为石墨烯具有催化作用的金属 膜上, 再将它们一同置于 Ar气中在温度为 900°C-1100°C下退火 10-30 min, 碳膜重构成石墨烯;
(6 ) 将金属膜从石墨烯样片上取开, 得到大面积石墨烯。
本发明的另一目的是提供通过上述制备方法得到的性能优良的大 面积石墨烯。
本发明与现有技术相比具有如下优点:
1. 本发明由于先在 Si衬底上成长一层碳化层作为过渡, 然后再外延 生长 3C-SiC, 因而生长的 3C-SiC质量高。
2. 本发明由于 3C-SiC薄膜可异质外延生长在 Si衬底上, 而 Si衬底 圆片的尺寸最大可达 20英寸, 因而用此方法可以生长大面积的石墨烯, 且价格便宜。
3. 本发明中 3C-SiC与 Cl2可在较低的温度和常压下反应, 且反应速 率快, 节省了能源。
4. 本发明由于利用 3C-SiC与 ( 12气反应,因而生成的碳膜表面光滑, 孔隙率低,且厚度容易控制, 由该碳膜得到的石墨烯可用于对气体和液体 的密封。
5. 本发明由于在金属膜上退火, 因而生成的碳膜更容易重构形成连 续性较好的石墨烯。
附图说明
图 1是本发明在制备大面积石墨烯时 3C-SiC样片与 Cl2反应时所使 用的装置的示意图;
图 2是本发明的石墨烯制备方法的流程图。
图 3是本发明的石墨烯的 SEM照片。
具体实施方式
如图 1所示,在本发明的石墨烯制备方法中, 3C-SiC样片与 ( 12反应 时所使用的装置主要由石英管 1和电阻炉 2组成,其中石英管 1设有进气 口 3和出气口 4, 电阻炉为 2为环状空心结构, 石英管 1插装在电阻炉 2 内, 3C-SiC样片 5放置于石英管 1中。
下面, 参照图 2, 对本发明的基于金属膜辅助退火和 Cl2反应的石墨 烯制备方法进行说明。
本发明的制备方法包括以下步骤:
步骤 (1 ) : 首先, 对 2-20英寸的 Si衬底进行标准清洗。
本发明中衬底的目的是为了在其上外延生长 SiC, 为此目的, 可以采 用 Si衬底或 SiC单晶衬底进行 SiC的外延生长, 但是, Si衬底的尺寸比 SiC单晶要大, 因此, 为了得到大面积的石墨烯, 优选采用 Si衬底进行 SiC的异质外延生长。 Si衬底可以是 2-20英寸, 较常用 4-12英寸的 Si 片, 因此可以生长出大面积 (4-12英寸) 的石墨烯。 为了除去 Si衬底上 的表面污染物, 可以分别用氨水-双氧水 (NH4OH+H202) 和盐酸-双氧水 (HC1+H202) 除去 SiC衬底上的有机残余物和离子污染物。
步骤(2) : 将清洗后的 Si衬底放入 CVD系统反应室中, 对反应室抽 真空,在 H2保护的情况下逐步升温至碳化温度 950°C-1150°C,通入 C3H8, 对 Si衬底进行碳化 3-lOmin, 生长一层碳化层。
其中, 低的碳化温度会导致低的薄膜结晶质量。 这是因为, 低温下 C3H8分解不充分, 并且衬底中的 Si原子也没有足够的能量扩散出来与表 面的 C原子结合形成 C-Si键, 导致碳化层结晶质量的降低。 而碳化温度 过高时,碳化反应将过于剧烈,同样会导致碳化层结晶质量的降低。所以, 碳化温度设定为 950°C-1150°C。 最优选碳化温度为 1000 °C, 此时所制备 的 3C-SiC薄膜具有较好的择优取向, 且 3C-SiC(lll)面与衬底 Si(lll)面 平行, 薄膜结晶质量较好。
另一方面, 如果碳化时间过短, 则 Si衬底表面没有足够的时间充分 的碳化,且碳化不够均匀,碳化层的结晶程度较低。随着碳化时间的变长, 衬底的碳化充分, 结晶度有所提高。但碳化时间过长, 之前形成的碳化层 将减弱衬底中 Si原子的扩散运动, Si原子将无法扩散至碳化层表面与 C 原子反应。在这种情况下, 碳化将 "过量", 这会降低碳化层的结晶质量, 当碳化时间超过 7min时, 结晶质量降低, 当碳化时间超过 lOmin时, 结 晶质量非常差。 因此, 碳化时间被设定为 3-10min, 优选为 4-7min, 当碳 化时间为 5min时, 样品的结晶质量最好, 因此最优选。
另外, 3C-SiC的生长需要高的真空度,如果真空度低,会导致 3C-SiC 晶体的质量下降。 因此, 优选反应室的真空度达到 10— 7mbar级别。
此时 C3H8的流量对碳化反应影响不是很大, 不需要特别限制。 但流 量太低会使反应速率低,流量太大也会影响薄膜的结晶质量。因此优选将 C3H8的流量范围限定为 30-40sccm。
步骤 (3 ) : 然后, 迅速升温至 1150°C-1350°C, 通入 C3H8和 SiH4, 在所述碳化层上进行 3C-SiC异质外延薄膜的生长, 时间为 30-60min, 然 后在 H2保护下逐步降温至室温, 完成 3C-SiC外延薄膜的生长。
其中, 薄膜的生长温度是影响 3C-SiC薄膜质量的主要因素, 在生长 温度低于 1150°C时, C原子和 Si原子在衬底表面被吸附, 无法获得足够 的水平方向动能,无法移动到相应的晶格位置以促进外延薄膜的生长,所 以外延层结晶质量低。而生长温度过高时,原子有了足够的动能并入晶格, 容易积聚而形成大颗粒和孔洞, 这又将降低外延层的结晶质量。 因此, 需 要将薄膜的生长温度限定为 1150°C-1350°C, 而当生长温度升高到 1170°C-1200°C时, 能够得到单一取向的 3C-SiC薄膜, 因此更为优选。
薄膜的生长时间对 3C-SiC薄膜的质量也有很大的影响, 当生长时间 为 30min以上时, 可以得到 3C-SiC单晶薄膜, 而当生长时间超过 lh之 后, 薄膜中将有石墨相出现。 因此, 将薄膜的生长时间限定为 30-60min。
在 3C-SiC异质外延薄膜的生长过程中, 不同的丙垸、 硅垸流量将使 反应的 C原子、 Si原子浓度发生变化。 所以碳 /硅比将影响到 3C-SiC异 质外延层的质量。 碳 /硅比过高或者过低, 生长将在"富碳"或者"富硅"的 环境中进行, 这都将影响反应中 C-Si键的形成, 进而影响外延层结晶质 量。 因此, 优选将通入的所述 SiH4和所述 C3¾的流量分别限定在 15-25sccm和 30-50sccm的范围内。 更优选将碳 /硅比限定为 6(C/Si=6), 例如硅垸流量为 20ml/min、 丙垸流量为 40ml/min, 此时生长的结晶质量 较好。
步骤 (4) :将生长好的 3C-SiC样片置于石英管中, 加热至 700-1100 °C, 向石英管中通入 Ar气和( 12气的混合气体, 使 ( 12与 3C-SiC反应生成碳 膜。
当上述加热温度低于 700 °C时, 反应速率很慢, SiC表层没有完全转 化为碳, 或者说生成的碳膜厚度太小; 在 700-1100°C的范围内, 反应速 率快, 碳膜的厚度随处理温度的升高而增加; 如果温度大于 1100°C, 则 生成带状石墨, 孔径增加, 此时反应速率主要受动力学因素控制。所以限 定加热温度为 700-1100 °C, 优选为 800-1000 °C。
当反应的持续时间太短, 小于 3min时, 只生成少量碳膜; 时间越长, 生成的碳膜越厚,可根据需要得到的碳膜厚度来控制反应时间。优选反应 时间为 3-15min。
在上述步骤(4) 中, 通入的所述 Ar气和所述 Cl2气的流量分别优选 为 95-98sccm和 5-2sccm。 通过限定( 12气的流量在这个范围, 可以较好 地控制氯化的速度, 使之不能过快, 如果过快则会产生过多的碳, 不利于 石墨烯薄膜的产生。
本发明中, 3C-SiC与 Cl2可在较低的温度和常压下按照下式反应,且 反应速率快, 因此大大节省了能源。 SiC + 2 Cl2 = SiCl4(^) + C
由于 SiCl4在高温下的热力学稳定性远远超过 CC14, 所以氯气优先 选择与 SiC 中的 Si 反应生成 SiCl4。生成的 SiCl4以气态的形式被排出反 应系统。
本发明利用上述 3C-SiC与 Cl2气的反应生成的碳膜表面光滑, 孔隙 率低, 且厚度容易控制。
步骤 (5 ) : 预先准备厚度为 250-300nm的金属膜。 将上述生成的碳 膜样片置于金属膜上,再将它们一同置于 Ar气中在温度为 900-1100°C下 退火 10-30分钟, 碳膜重构成石墨烯。
上述金属膜只要对碳膜重构为石墨烯具有催化作用就可以任意使用, 例如可以采用 Ni膜、 Cu膜等。从生成性、所得到的石墨烯的稳定性的角 度出发, 优选为 Cu膜。 因为 Cu在空气中存放不会被氧化等, 所以 Cu 膜不需要专门制备, 可以采用现成的 Cu膜。对 Cu膜的厚度不特别限定, 优选为 250-300nm。
在上述退火过程中, 碳膜重构成石墨烯时的退火温度在 900-1100 °C 这个范围内比较合适,如果温度太低,则不能给碳膜的重构提供足够的能 量, 而温度太高则重构不均匀, 产生的缺陷较多。 另外, 退火时间优选为 10-30分钟, 退火时间太短, 石墨烯的孔隙多, 质量不好, 退火时间长一 点,则样品孔隙减少、表面更加平整,但是时间过长的话会产生新的缺陷, 石墨烯质量会下降。
另外, 对退火时 Ar气的流量不作特别限制, 主要是根据退火腔的尺 寸以及衬底片的大小来确定, 优选为 25-100sccm。 在 Ar气保护下对样品 进行热处理, 可以脱附样品中吸附的氯气, 并对金属膜进行保护。
步骤 (6 ) : 将金属膜从石墨烯样片上取开, 得到石墨烯。
本发明由于先在 Si衬底上成长一层碳化层作为过渡, 然后再外延生 长 3C-SiC, 因而生长的 3C-SiC质量高。 进而, 由于 3C-SiC薄膜可异质 外延生长在 Si衬底上, 而 Si衬底圆片的尺寸最大可达 20英寸, 因而用 此方法可以生长大面积的石墨烯, 且价格便宜。另外, 3C-SiC与 Cl2可在 较低的温度和常压下反应, 且反应速率快, 节省了能源。而且, 由于利用 了 3C-SiC与 Cl2气的反应, 因而生成的碳膜表面光滑, 孔隙率低, 且厚 度容易控制, 由该碳膜得到的石墨烯可用于对气体和液体的密封。 另外, 本发明由于在金属膜上退火,因而生成的碳膜更容易重构形成连续性较好 的石墨烯。
图 3示出了通过本发明的制造方法得到的本发明的石墨烯膜的 SEM 照片。 可以看出, 本发明的石墨烯面积较大, 且表面光滑, 孔隙率低, 膜 面致密。
下面,对本发明的石墨烯制备方法给出如下三种实施例。需要说明的 是,下述实施例只是为了说明本发明的制备方法而做出的具体例示,其中 公开的具体条件不对本发明构成任何限制。
实施例 1
步骤 1: 去除样品表面污染物。
对 4英寸的 Si衬底进行表面清洁处理, 即先使用 NH4OH+H202试剂 浸泡样品 10分钟,取出后烘干,以去除样品表面有机残余物;再使用 HC1+ ¾02试剂浸泡样品 10分钟, 取出后烘干, 以去除离子污染物。
步骤 2: 将 Si衬底放入 CVD系统反应室中, 对反应室抽真空达到 10- 7mbar级别。
步骤 3 : 生长碳化层。
在112保护的情况下将反应室温度升至碳化温度 1000°C,然后向反应 室通入流量为 40sccm的 C3H8, 在 Si衬底上生长一层碳化层, 生长时间 为 8min。
步骤 4: 在碳化层上生长 3C-SiC外延薄膜。
将反应室温度迅速升至生长温度 1150°C,通入流量分别为 15sccm和 30sccm的 SiH4和 C3H8, 进行 3C-SiC异质外延薄膜的生长, 生长时间为 60min;然后在 H2保护下逐步降温至室温,完成 3C-SiC外延薄膜的生长。
步骤 5 : 将 3C-SiC样片装入石英管, 并排气加热。
(5.1 ) 将生长好的 3C-SiC外延薄膜样片 5从 CVD系统反应室取出 后置于石英管 1中, 把石英管 1置于电阻炉 2中; (5.2)从进气口 3向石英管中通入流量为 80sccm的 Ar气,对石英 管进行排空 10分钟, 将空气从出气口 4排出;
(5.3 )打开电阻炉电源开关, 升温至 700°C, 使在其中的石英管也加 热至 700°C。
步骤 6: 生成碳膜
向石英管通入流量分别为 98sccm和 2sccm的 Ar气和 Cl2气,时间为 4分钟, 使 Cl2与 3C-SiC反应生成碳膜。
步骤 7: 重构成石墨烯。
(7.1 ) 将生成的碳膜样片从石英管中取出, 将其置于厚度为 250nm 的金属膜上;
(7.2)将碳膜样片和金属膜整体置于流量为 lOOsccm的 Ar气中, 在 温度为 900 °C下退火 30分钟,通过金属 Cu的催化作用使碳膜重构成连续 的石墨烯;
(7.3 ) 将金属膜从石墨烯样片上取开, 得到大面积石墨烯 (尺寸最 大可达到 4英寸)。
实施例 2
步骤一: 去除样品表面污染物。
对 8英寸的 Si衬底进行表面清洁处理, 即先使用 NH4OH+H202试剂 浸泡样品 10分钟,取出后烘干,以去除样品表面有机残余物;再使用 HC1+ ¾02试剂浸泡样品 10分钟, 取出后烘干, 以去除离子污染物。
步骤二: 将 Si衬底放入 CVD系统反应室中, 对反应室抽真空达到 10- 7mbar级别。
步骤三: 生长碳化层。
在112保护的情况下将反应室温度升至碳化温度 1050°C,然后向反应 室通入流量为 40 sccm的 C3H8, 在 Si衬底上生长一层碳化层, 生长时间 为 5min。
步骤四: 在碳化层上生长 3C-SiC外延薄膜。
将反应室温度迅速升至生长温度 1200°C,通入流量分别为 20sccm和 40sccm的 81114和( 3118, 进行 3C-SiC异质外延薄膜的生长, 生长时间为 45min;然后在 H2保护下逐步降温至室温,完成 3C-SiC外延薄膜的生长。
步骤五: 将 3C-SiC样片装入石英管, 并排气加热。
将生长好的 3C-SiC外延薄膜样片 5从 CVD系统反应室取出后置于 石英管 1中,把石英管置于电阻炉 2中;从进气口 3向石英管中通入流量 为 80sccm的 Ar气, 对石英管进行排空 10分钟, 将空气从出气口 4排 出; 再打开电阻炉电源开关, 升温至 1000°C, 使在其中的石英管也加热 至 1000 °c。
步骤六: 生成碳膜
向石英管通入流量分别为 97sccm和 3sccm的 Ar气和 Cl2气,时间为 5分钟, 使 Cl2与 3C-SiC反应生成碳膜。
步骤七: 重构成石墨烯。
将生成的碳膜样片从石英管中取出, 将其置于厚度为 280nm的金属 膜上; 将碳膜样片和金属膜整体置于流量为 75sCCm的 Ar气中, 在温度 为 1050°C下退火 15分钟, 通过金属 Cu的催化作用使碳膜重构成连续的 石墨烯; 再将金属膜从石墨烯样片上取开, 得到大面积石墨烯(尺寸最大 可达 8英寸)。
实施例 3
步骤 A : 对 12 英寸的 Si 衬底进行表面清洁处理, 即先使用 NH4OH+H202试剂浸泡样品 10分钟, 取出后烘干, 以去除样品表面有机 残余物; 再使用 HC1+H202试剂浸泡样品 10分钟, 取出后烘干, 以去除 步骤 B : 将 Si衬底放入 CVD系统反应室中, 对反应室抽真空达到 10—7mbar级别。
步骤 C: 在¾保护的情况下将反应室温度升至碳化温度 1150°C, 然 后向反应室通入流量为 40sccm的 C3H8, 持续 4min, 以在 Si衬底上生长 一层碳化层。
步骤 D: 将反应室温度迅速升至生长温度 1350°C, 通入流量分别为 25sccm和 50sccm的 SiH4和 C3H8, 进行 3C-SiC异质外延薄膜的生长
36min; 然后在 H2保护下逐步降温至室温。
步骤 E:将生长好的 3C-SiC外延薄膜样片 5从 CVD系统反应室取出 后置于石英管 1中,把石英管 1置于电阻炉 2中;从进气口 3向石英管中 通入流量为 80sccm的 Ar气, 对石英管进行排空 10分钟, 将空气从出 气口 4排出; 再打开电阻炉电源开关, 升温至 1100°C, 使在其中的石英 管也加热至 1100 °C。
步骤 F: 向石英管中通入流量分别为 95sccm和 5sccm的 Ar气和 Cl2 气, 时间为 4分钟, 使 ( 12与3( -8 反应生成碳膜。
步骤 G: 将生成的碳膜样片从石英管中取出,将其置于厚度为 300nm 的金属膜上; 将碳膜样片和金属膜整体置于流量为 25sCCm的 Ar气中, 在温度为 1100°C下退火 10分钟, 通过金属 Cu的催化作用使碳膜重构成 连续的石墨烯; 再将金属膜从石墨烯样片上取开, 得到大面积石墨烯(尺 寸最大可为 12英寸)。
通过本发明的制备方法, 可以得到大面积的石墨烯, 且表面光滑, 连 续性好, 孔隙率低, 可用于气体和液体的密封。 另外, 本发明制备的石 墨烯可卷成圆桶形作为碳纳米管, 用于储存氢气; 也可用于制作高速石 墨烯晶体管和透明导电膜。

Claims

权 利 要 求
1. 一种基于金属膜辅助退火和 Cl2反应的石墨烯制备方法,其特征在 于, 包括以下步骤:
( 1 ) 对 Si衬底进行标准清洗;
(2)将清洗后的 Si衬底放入 CVD系统反应室中,对反应室抽真空, 在 ¾保护的情况下逐步升温至碳化温度 950°C-1150°C, 通入 C3H8, 对 Si衬底进行碳化 3-lOmin, 生长一层碳化层;
(3 ) 迅速升温至 1150°C-1350°C, 通入 C3H8和 SiH4, 在所述碳化层 上进行 3C-SiC异质外延薄膜的生长, 时间为 30-60min, 然后在 H2保护 下逐步降温至室温, 完成 3C-SiC外延薄膜的生长;
(4)将生长好的 3C-SiC样片置于石英管中, 加热至 700°C-1100°C向 石英管中通入 Ar气和 ( 12气的混合气体,使 ( 12与 3C-SiC反应生成碳膜;
(5 ) 将生成的碳膜样片置于对碳重构为石墨烯具有催化作用的金属 膜上, 再将它们一同置于 Ar气中在温度为 900°C-1100°C下退火 10-30 min, 碳膜重构成石墨烯;
(6) 将金属膜从石墨烯样片上取开, 得到大面积石墨烯。
2、 根据权利要求 1所述的石墨烯制备方法, 其特征在于, 在所述步 骤 (2) 中, 所述反应室的真空度达到 10—7mbar级别。
3、 根据权利要求 1或 2所述的石墨烯制备方法, 其特征在于, 在所 述步骤 (2) 中, 所述 C3H8的流量为 30-40sccm。
4. 根据权利要求 1〜3中任一项所述的石墨烯制备方法,其特征在于, 在所述步骤(3 )中,通入的所述 Si 和所述 C3H8的流量分别为 15-25sccm 和 30-50sccm。
5. 根据权利要求 4所述的石墨烯制备方法, 其特征在于, 以 C/Si=6 的方式调整所述 SiH4和所述 C3H8的流量。
6. 根据权利要求 1〜5中任一项所述的石墨烯制备方法,其特征在于, 在所述步骤(4)中,通入的所述 Ar气和所述 ( 12气的流量分别为 95-98sccm 禾口 5-2sccm。
7. 根据权利要求 1〜6中任一项所述的石墨烯制备方法,其特征在于, 在所述步骤 (5 ) 中, 退火时所述 Ar气的流量为 25-100sccm。
8. 根据权利要求 1〜7中任一项所述的石墨烯制备方法,其特征在于, 在所述步骤 (5 ) 中, 所述金属膜是 Cu膜。
9、 根据权利要求 8所述的石墨烯制备方法, 其特征在于, 所述金属 膜的厚度为 250-300nm。
10、 根据权利要求 1〜9中任一项所述的石墨烯制备方法, 其特征在 于, 所述 Si衬底的尺寸为 2-20英寸。
11、根据权利要求 1〜10中任一项所述的石墨烯制备方法,其特征在 于, 所述石墨烯的尺寸为 2-12英寸。
12、通过权利要求 1〜11中任一项所述的石墨烯制备方法制备得到的 大面积石墨烯。
PCT/CN2012/080935 2012-01-03 2012-09-03 基于金属膜辅助退火和Cl2反应的石墨烯制备方法 WO2013102360A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/350,282 US9048092B2 (en) 2012-01-03 2012-09-03 Process for preparing graphene based on metal film-assisted annealing and the reaction with Cl2

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210009503.6 2012-01-03
CN2012100095036A CN102583329B (zh) 2012-01-03 2012-01-03 基于Cu膜辅助退火和Cl2反应的大面积石墨烯制备方法

Publications (1)

Publication Number Publication Date
WO2013102360A1 true WO2013102360A1 (zh) 2013-07-11

Family

ID=46472694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080935 WO2013102360A1 (zh) 2012-01-03 2012-09-03 基于金属膜辅助退火和Cl2反应的石墨烯制备方法

Country Status (3)

Country Link
US (1) US9048092B2 (zh)
CN (1) CN102583329B (zh)
WO (1) WO2013102360A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109273689A (zh) * 2018-09-19 2019-01-25 惠州亿纬锂能股份有限公司 一种异质结构硅基负极材料及其制备方法和锂离子电池
CN115323347A (zh) * 2022-07-01 2022-11-11 中国石油大学(华东) 一种铁基衬底及利用该衬底生产石墨烯的方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102505114A (zh) 2012-01-03 2012-06-20 西安电子科技大学 基于Ni膜辅助退火的SiC衬底上石墨烯制备方法
CN102583329B (zh) 2012-01-03 2013-08-14 西安电子科技大学 基于Cu膜辅助退火和Cl2反应的大面积石墨烯制备方法
CN102701789B (zh) 2012-05-23 2013-10-16 西安电子科技大学 基于Cl2反应的SiC衬底上制备结构化石墨烯的方法
CN103183523A (zh) * 2013-03-12 2013-07-03 西安电子科技大学 基于Cu膜退火的Si衬底上大面积石墨烯制备方法
CN103183336A (zh) * 2013-03-12 2013-07-03 西安电子科技大学 基于Ni膜退火的Si衬底上大面积石墨烯制备方法
CN103183522A (zh) * 2013-03-12 2013-07-03 西安电子科技大学 基于Cu膜退火和氯气反应的SiC衬底上制备石墨烯的方法
CN103183339A (zh) * 2013-03-12 2013-07-03 西安电子科技大学 基于Cu膜退火和氯气反应的大面积石墨烯制备方法
KR101611218B1 (ko) * 2014-01-27 2016-04-26 울산과학기술원 붕소와 질소가 동시에 도핑된 반도체용 그래핀 및 이의 제조방법
CN107640763B (zh) * 2017-11-17 2020-02-04 信阳师范学院 一种单层单晶石墨烯的制备方法
CN109837587B (zh) * 2018-05-22 2020-09-08 北京大学 一种元素辅助快速制备大尺寸单晶二维材料的方法
US10941041B2 (en) 2018-07-06 2021-03-09 Savannah River Nuclear Solutions, Llc Method of manufacturing graphene using photoreduction

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110086756A1 (en) * 2010-12-20 2011-04-14 Gao hong-jun Method for preparing silicon intercalated monolayer graphene
CN102051677A (zh) * 2010-11-12 2011-05-11 山东大学 在大直径6H-SiC碳面上生长石墨烯的方法
JP2011230959A (ja) * 2010-04-27 2011-11-17 Kazuto Yamauchi SiC基板へのグラフェン成膜方法及びグラフェン付きSiC基板
US20110300058A1 (en) * 2010-06-07 2011-12-08 Instytut Technologii Materialow Elektronicznych Method of graphene manufacturing
CN102505141A (zh) * 2012-01-03 2012-06-20 西安电子科技大学 基于Cu膜辅助退火的石墨烯制备方法
CN102505113A (zh) * 2012-01-03 2012-06-20 西安电子科技大学 基于Cl2反应的大面积石墨烯制备方法
CN102583331A (zh) * 2012-01-03 2012-07-18 西安电子科技大学 基于Ni膜辅助退火和Cl2反应的大面积石墨烯制备方法
CN102583329A (zh) * 2012-01-03 2012-07-18 西安电子科技大学 基于Cu膜辅助退火和Cl2反应的大面积石墨烯制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100433822B1 (ko) * 2002-01-17 2004-06-04 한국과학기술연구원 금속이 피복된 탄소 활물질, 이의 제조방법, 및 이를포함하는 금속-탄소 하이브리드 전극 및 리튬이차전지
DE602004025798D1 (de) * 2004-06-30 2010-04-15 Xycarb Ceramics Bv Verfahren zur Oberflächenbehandlung eines Metallcarbid-Substrates zur Verwendung in Halbleiterherstech
US8120448B2 (en) * 2006-10-19 2012-02-21 The Regents Of The University Of California High frequency nanotube oscillator
KR101490111B1 (ko) * 2008-05-29 2015-02-06 삼성전자주식회사 에피택셜 그래핀을 포함하는 적층구조물, 상기적층구조물의 형성방법 및 상기 적층구조물을 포함하는전자 소자
US7952088B2 (en) * 2008-07-11 2011-05-31 International Business Machines Corporation Semiconducting device having graphene channel
US8785261B2 (en) * 2010-09-23 2014-07-22 Intel Corporation Microelectronic transistor having an epitaxial graphene channel layer
CN102134067B (zh) * 2011-04-18 2013-02-06 北京大学 一种制备单层石墨烯的方法
KR101878734B1 (ko) * 2011-06-24 2018-07-16 삼성전자주식회사 그래핀 층상 구조체, 그의 제조방법 및 이를 채용한 투명전극과 트랜지스터

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011230959A (ja) * 2010-04-27 2011-11-17 Kazuto Yamauchi SiC基板へのグラフェン成膜方法及びグラフェン付きSiC基板
US20110300058A1 (en) * 2010-06-07 2011-12-08 Instytut Technologii Materialow Elektronicznych Method of graphene manufacturing
CN102051677A (zh) * 2010-11-12 2011-05-11 山东大学 在大直径6H-SiC碳面上生长石墨烯的方法
US20110086756A1 (en) * 2010-12-20 2011-04-14 Gao hong-jun Method for preparing silicon intercalated monolayer graphene
CN102505141A (zh) * 2012-01-03 2012-06-20 西安电子科技大学 基于Cu膜辅助退火的石墨烯制备方法
CN102505113A (zh) * 2012-01-03 2012-06-20 西安电子科技大学 基于Cl2反应的大面积石墨烯制备方法
CN102583331A (zh) * 2012-01-03 2012-07-18 西安电子科技大学 基于Ni膜辅助退火和Cl2反应的大面积石墨烯制备方法
CN102583329A (zh) * 2012-01-03 2012-07-18 西安电子科技大学 基于Cu膜辅助退火和Cl2反应的大面积石墨烯制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109273689A (zh) * 2018-09-19 2019-01-25 惠州亿纬锂能股份有限公司 一种异质结构硅基负极材料及其制备方法和锂离子电池
CN115323347A (zh) * 2022-07-01 2022-11-11 中国石油大学(华东) 一种铁基衬底及利用该衬底生产石墨烯的方法
CN115323347B (zh) * 2022-07-01 2024-02-27 中国石油大学(华东) 一种铁基衬底及利用该衬底生产石墨烯的方法

Also Published As

Publication number Publication date
US20140256120A1 (en) 2014-09-11
US9048092B2 (en) 2015-06-02
CN102583329A (zh) 2012-07-18
CN102583329B (zh) 2013-08-14

Similar Documents

Publication Publication Date Title
WO2013102360A1 (zh) 基于金属膜辅助退火和Cl2反应的石墨烯制备方法
US9691612B2 (en) Process for preparing graphene on a SiC substrate based on metal film-assisted annealing
WO2006137192A1 (ja) 炭化ケイ素基板の表面再構成方法
WO2012167703A1 (zh) 一种基于化学气相沉积的高温原子透析制备石墨烯的方法
US10246795B2 (en) Transfer-free method for forming graphene layer
CN110817852B (zh) 基于水处理辅助机制的石墨烯制备方法
CN105441902A (zh) 一种外延碳化硅-石墨烯复合薄膜的制备方法
CN102891074A (zh) 基于SiC衬底的石墨烯CVD直接外延生长方法及制造的器件
CN109081332B (zh) 石墨烯纳米图形化蓝宝石衬底及其制备方法
TWI449087B (zh) A method for growing a silicon carbide film on a (100) silicon substrate
CN109850908B (zh) 一种二氧化硅/石墨烯复合物的制备方法及产品
CN109306466A (zh) 半导体材料的制备方法
CN108046246B (zh) 一种工艺气体辅助的石墨烯薄膜生长方法
CN107761071B (zh) 无缺陷峰石墨烯薄膜的制备方法
CN107244666B (zh) 一种以六方氮化硼为点籽晶生长大晶畴石墨烯的方法
CN113373423A (zh) 一种非金属基材表面直接生长石墨烯薄膜的方法
JPH0435021A (ja) 多結晶シリコン薄膜の成長方法
CN112136203B (zh) SiC外延基板的制造方法
CN112746263B (zh) 一种常压化学气相沉积制备少层石墨烯膜的方法
CN110323126B (zh) 一种Si/SiC/石墨烯材料的制备方法
CN111994900A (zh) 一种用小分子生长大面积少层氮掺杂石墨烯的方法
CN113620279A (zh) 一种在绝缘衬底上制备石墨烯的方法
JP2006036613A (ja) ケイ素基板上に立方晶炭化ケイ素結晶膜を形成する方法
JP2009274899A (ja) 炭化珪素エピタキシャル用基板の製造方法
CN112735943B (zh) 硅衬底上生长氮极性ⅲ族氮化物半导体薄膜的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864113

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14350282

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12864113

Country of ref document: EP

Kind code of ref document: A1