CN115323347A - 一种铁基衬底及利用该衬底生产石墨烯的方法 - Google Patents

一种铁基衬底及利用该衬底生产石墨烯的方法 Download PDF

Info

Publication number
CN115323347A
CN115323347A CN202210766289.2A CN202210766289A CN115323347A CN 115323347 A CN115323347 A CN 115323347A CN 202210766289 A CN202210766289 A CN 202210766289A CN 115323347 A CN115323347 A CN 115323347A
Authority
CN
China
Prior art keywords
graphene
iron
carbon
waste
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210766289.2A
Other languages
English (en)
Other versions
CN115323347B (zh
Inventor
邵庆国
齐浩
曹宁
臧晓蓓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN202210766289.2A priority Critical patent/CN115323347B/zh
Publication of CN115323347A publication Critical patent/CN115323347A/zh
Application granted granted Critical
Publication of CN115323347B publication Critical patent/CN115323347B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于新材料领域,涉及一种铁基衬底及利用该衬底生产石墨烯的方法,所述铁基衬底采用废弃纯铁片,经过渗碳处理得到含碳量为0.8‑1.2%的废弃定碳铁片,通过机械抛光、清洗获得表面洁净的定碳铁片,然后在其表面镀厚度为10nm的铜膜,经过清洗即可获得洁净石墨烯生长衬底;利用该衬底中所含有的碳元素,在CVD制备过程中衬底中的碳原子会逐渐偏析,从而起到充当碳源的角色,避免了外部气体碳源的加入,最终制备的少数层石墨烯由于缺陷和褶皱较少,力学及电性能良好,可以在无聚合物辅助的条件下完整的转移至目标基底上,避免了聚合物杂质的引入和繁琐的清洗过程,实现了废弃材料的利用和中低温制备了高质量石墨烯,与绿色化学的发展概念紧密相连。

Description

一种铁基衬底及利用该衬底生产石墨烯的方法
技术领域
本发明属于新材料领域,具体涉及一种铁基衬底及利用该衬底生产石墨烯的方法。
背景技术
化学气相沉积(CVD)法是生长二维材料的重要方法,已经发展了十年之久,采用CVD法生长石墨烯,日趋成为制备大面积、高品质单晶或者石墨烯薄膜的最主要方法。然而,采用目前主流的化学气相沉积(CVD)法制备的石墨烯薄膜的基底主要是镍基和铜基,还需要对基底进行退火等处理,而且制备温度通常在900℃以上,制备成本较高;同时现有生产方法中以镍基、铜基及大部分基底制备石墨烯过程中,需要加入烃类或者炔类气体作为碳源,这部分气体在高温下容易发生易爆的危险,对实验人员产生危害。
而在日常生活中,金属材料加工厂切割、铸造过程中常常会产生一些废弃角料,而且基本不会对这些废弃边角料回收利用,直接当做废金属回炉重造,这实际上造成了资源浪费同时污染环境。如果对其进行利用,不仅降低了制备成本也与当下绿色低碳持续发展紧紧相连。
因此如何将上述两者有机的结合,将金属废弃边角料和化学气相沉积法制备石墨烯结合在一起,成为本领域技术人员考虑的问题之一。
发明内容
本发明针对现有技术存在的诸多不足之处,提供了一种铁基衬底及利用该衬底生产石墨烯的方法,所述铁基衬底采用废弃纯铁片,经过渗碳处理得到含碳量为0.8-1.2%的废弃定碳铁片,通过机械抛光、清洗获得表面洁净的定碳铁片,然后在其表面镀厚度为10nm的铜膜,经过清洗即可获得洁净石墨烯生长衬底;利用该衬底中所含有的碳元素,在CVD制备过程中衬底中的碳原子会逐渐偏析,从而起到充当碳源的角色,避免了外部气体碳源的加入,最终制备的少数层石墨烯由于缺陷和褶皱较少,力学及电性能良好,可以在无聚合物辅助的条件下完整的转移至目标基底上,避免了聚合物杂质的引入和繁琐的清洗过程,实现了废弃材料的利用和中低温制备了高质量石墨烯,与绿色化学的发展概念紧密相连。
本发明的总体构思如下:
在众多的废弃金属中,废弃纯铁片价格低廉,易得,硬度低,易进行抛光处理,溶碳能力较高;将工厂中产生的废弃纯铁片进行渗碳气氛处理,可得到含碳量为0.8-1.2%的废弃定碳铁片,进行二次重复利用,其中内部碳原子可以偏析到表面充当石墨烯薄膜制备的碳源,从而避免了气体碳源的应用。而废弃铁片价格低、厚度较薄易于剪裁的优点,使其经过简单的抛光处理便可以成为成为生长基底,降低制备成本。通过在废弃铁片上经过镀铜膜处理,即可作为CVD衬底,利用CVD法生长石墨烯,最终可获得连续性好、晶化程度高、缺陷和褶皱数量少的高质量石墨烯;且无需聚合物辅助即可转移至SiO2/Si片上,轻松实现石墨烯的表征与器件应用。
本发明的具体技术方案如下:
发明人首先提供了一种铁基衬底,其来源于废弃纯铁片基底,其厚度小于0.3mm,表面粗糙度不超过1000nm,进行渗碳处理得到含碳量为0.8-1.2wt%的废弃定碳铁片,其组成为表面的氧化铁和渗碳后的高碳铁基底。
具体的渗碳操作采用本领域的常规方法,如在废弃纯铁片基底上放置定碳片,由于定碳片与废弃纯铁片基底内部碳含量的浓度差,定碳片中的碳原子会扩散到铁片中,在废弃纯铁片基底中形成高碳马氏体,经过渗碳处理得到的碳含量最低为0.8%,一般控制在0.8-1.2wt%。
由于日常Fe、Cu等金属以及Fe基等合金的碳含量是远远低于0.5%,偏析出的碳原子难以成膜,所以本发明需要首先对选择的溶碳能力较高的废弃纯铁片进行渗碳处理,然后再一起作为衬底进行后续的加工,既实现了废物利用,又可以低温获得石墨烯薄膜,从而符合当下绿色化学发展框架。
铁基衬底的具体制备方法如下:
(1)选取尺寸为1.5x3cm2大小的废弃定碳铁片,经过机械抛光、清洗获得表面洁净的定碳铁片;
所述抛光、清洗具体步骤如下:
将干净的抛光机摩擦布浸湿后安装在抛光机上,并在摩擦布上均匀涂抛光膏,启动抛光机,然后将剪切好的废弃铁片在摩擦布上进行抛光,直到废弃铁片表面没有氧化划痕后停止抛光,抛光时间控制在10-20min,将获得表面洁净如镜的表面;
抛光结束后,用酒精冲洗抛光好的废弃铁片,然后用吹风机吹干,吹干后用擦镜纸包存;之后将废弃铁片先后置于丙酮、酒精、去离子水中进行超声清洗5min,循环两次;
(2)用去离子水将抛光后的定碳铁片进行清洗,抛光面朝上,用铜作为靶材,采用磁控溅射或者电子束蒸镀的方法,在定碳铁片上镀厚度为10nm的铜膜;
(3)将处理好的定碳铁片依次经过丙酮、酒精、去离子水各清洗5min,循环两次,从而获得表面洁净如镜的石墨烯生长基底。
通过上述处理后的定碳铁片,其表面均匀光滑,去除了表面的氧化层同时确保碳含量依然在0.8-1.2wt%之间。
利用上述定碳铁片作为衬底,发明人进一步提供了一种高品质石墨烯的制备方法,其具体步骤如下:
(1)以上述方法获得定碳铁片作为衬底至于820℃下生长制备,之后氩气为载气,氢气为还原气体,采用CVD法在滑动式高温管式炉内生长石墨烯;生长温度为760~820℃,升温速度为10℃/min,生长时间为20min;其中氩气的体积流量为120SCCM,氢气的体积流量为60SCCM,制备过程中不通入任何碳源气体;
(2)生长结束后,关闭氢气,保持氩气流量不变,随炉冷却到室温。
(3)CVD法结束后,将反应后的定碳铁片刻蚀,刻蚀液选择0.5g/mL的氯化高铁盐酸水溶液,刻蚀时间为1h,捞取到去离子水中进行清洗,得到上层为石墨烯薄膜,下层为碳膜的双层结构物质,经过剥离即可获得石墨烯薄膜,最后将石墨烯转移至SiO2/Si片上。
上述工艺中,将氩气和氢气按比例混合均匀后通入放有定碳铁片衬底的管式炉中,在步骤1中升温过程中,氢气会还原铜膜以及定碳铁片,这使得基底更加洁净光滑;此外,CVD制备过程中定碳铁片中的碳原子会逐渐偏析,从而起到充当碳源的角色;定碳铁片上的铜膜溶碳能力低不会固溶偏析碳,并且铜膜具有催化作用,会催化定碳铁片偏析出的碳原子从而形成石墨烯薄膜,起到催化裂解制备石墨烯薄膜的作用。
随炉冷却时,温度变化较慢,使得碳原子不会在短时间内过量析出,从而避免了石墨烯褶皱的形成。最终定碳铁片偏析出的碳原子在铜膜表面成核形成石墨烯晶畴,再继续长大最终形成连续的膜,因此采用上述方法获得的石墨烯具有连续性好、晶化程度高、缺陷和褶皱数量少的特点。
与现有技术相比,本发明的有益效果是:
(1)大多数铜镍以及高熵合金基底CVD制备石墨烯所需的温度都属于高温(>900℃),而本发明的方法温度属于中低温(760~820℃),这使的CVD制备石墨烯的温度降低一个温度范围,从而降低成本。
(2)本申请基于废弃定碳铁片绿色循环制备石墨烯薄膜,基于“偏析-成膜”原理出发,首次提出利用工厂废弃铁片,经过加工使其内部所含的碳原子偏析,借用铁片表面铜膜的催化能力制得高质量石墨烯薄膜。这避免了工厂中废弃铁片的浪费,经过简单处理从而成为石墨烯制备过程中的固态碳源,避免了外部气体碳源的加入,既实现了废弃铁片的利用又提供了中低温石墨烯薄膜制备新型方法,与当下低碳绿色可持续紧紧相扣。
(3)制备的少数层石墨烯由于缺陷和褶皱较少,力学及电性能良好,可以在无聚合物辅助的条件下完整的转移至目标基底上,避免了聚合物杂质的引入和繁琐的清洗过程。
附图说明
图1是本发明实施例1获得的定碳铁片处理前后的光学图;
图2是本发明实施例2石墨烯制备过程的原理图;
图3是本发明实施例2获得的石墨烯和现有技术获得的石墨烯的宏观表面形貌示意图;
图4是本发明实施例2获得的石墨烯的微观表面形貌示意图;
图5是本发明实施例2获得的石墨烯石墨烯的层数及分布检测结果示意图;
图6是本发明实施例2获得的石墨烯转移后的选取电子衍射(SAED)图谱;
图7是本发明实施例2获得的石墨烯在叉指电极上的I-V及气体传感器应用示意图。
具体实施方式
以下通过实施例形式的具体实施方式,对本发明的上述内容做进一步的详细说明,但不应将此理解为本发明上述主题的范围仅限于以下的实例。凡基于本发明上述内容所实现的技术均属于本发明的范围,除特殊说明外,下述实施例中均采用现有技术完成。
实施例1:
一种铁基衬底,其来源于废弃铁片基底,废弃铁片基底厚度小于0.3mm,表面粗糙度不超过1000nm,对上述废弃铁片进行渗碳处理得到含碳量为0.8-1.2%的废弃定碳铁片。
渗碳过程采用固体渗碳:在废弃纯铁片上方放置定碳片,用泥巴封存,马弗炉加热到900℃左右,渗碳气氛中的碳原子会在浓度差下会扩散到废弃纯铁片中,从而得到含碳量为0.8-1.2%左右的废弃定碳铁片。
上述铁基衬底的具体制备方法如下:
(1)选取尺寸为1.5x3cm2大小的废弃定碳铁片,经过机械抛光、清洗获得表面洁净的定碳铁片,经过机械抛光、清洗获得表面洁净的定碳铁片;
所述抛光、清洗具体步骤如下:
将干净的抛光机摩擦布浸湿后安装在抛光机上,并在摩擦布上均匀涂抛光膏,启动抛光机,然后将剪切好的废弃铁片在摩擦布上进行抛光,直到废弃铁片表面没有氧化划痕后停止抛光,抛光时间控制在10-20min,将获得表面洁净如镜的表面;
抛光结束后,用酒精冲洗抛光好的废弃铁片,然后用吹风机吹干,吹干后用擦镜纸包存;之后将废弃铁片先后置于丙酮、酒精、去离子水中进行超声清洗5min,循环两次;
(2)用去离子水将抛光后的定碳铁片进行清洗,抛光面朝上,用铜作为靶材,采用磁控溅射或者电子束蒸镀的方法,在定碳铁片上镀厚度为10nm的铜膜;
(3)将处理好的定碳铁片依次经过丙酮、酒精、去离子水各清洗5min,循环两次,从而获得表面洁净如镜石墨烯生长基底。
发明人对其进行了检测和分析,其表面微观形貌分析如下:
未经处理的定碳铁片如图1a所示,可以看到表面十分粗糙并带有氧化层;经过打磨、抛光、清洗后的定碳铁片粗糙度已经降低,如图1b所示;在定碳铁片上附着10nm的铜膜后,基底表面会更加光滑,如图1c所示,低粗糙度的表面有利于生长平整的石墨烯。
实施例2
一种高品质石墨烯的制备方法,其具体步骤如下:
(1)以上述方法获得定碳铁片作为衬底至于820℃下生长制备,之后氩气为载气,氢气为还原气体,采用CVD法在滑动式高温管式炉内生长石墨烯;生长温度为760~820℃,升温速度为10℃/min,生长时间为20min;其中氩气的体积流量为120SCCM,氢气的体积流量为60SCCM,制备过程中不通入任何碳源气体;
(2)生长结束后,关闭氢气,保持氩气流量不变,随炉冷却到室温。
(3)CVD法结束后,将衬底刻蚀,刻蚀液选择0.5g/mL的氯化高铁盐酸水溶液,刻蚀时间为1h,得到上层为石墨烯薄膜,下层为碳膜的双层结构物质,经过简单的剥离,获得石墨烯薄膜,最后将石墨烯转移至SiO2/Si片上。
此外,发明人还将未镀铜膜的废弃定碳铁片、铜片置于相同参数下进行实验对比:铜、镍及其其他金属基底制备石墨烯的温度一般温度在1000℃左右,属于高温制备,而且需要外加CH4、C2H4等碳源气体,具体可参考现有的常规CVD方法。
本实施例上述步骤在废弃铁片上镀铜膜制备石墨烯属于中温制备,还不需外加气体碳源的加入,制备出的石墨烯薄膜与CVD常规方法获得石墨烯薄膜质量基本一致。这既避免了废弃纯铁片的浪费,又中低温绿色制备了石墨烯薄膜。
本实施例制备石墨烯薄膜的原理图如图2所示,生长过程可以分为以下部分:
I定碳铁片中的无定形碳在升温过程中开始活化,达到反应温度后,内部的碳慢慢偏析到铜膜表面;
II在铜膜的催化作用下,氢气的还原、刻蚀下,铜膜表面的偏析碳慢慢形成活性种,并不断聚集从而形成石墨烯薄膜;
III随炉降温过程中,温度缓慢降低,氢气停止供应,从而杜绝了废弃铁片中碳原子的析出。
针对上述方法获得的石墨烯,发明人进行了如下的检测和分析:
(1)石墨烯的宏观表面形貌
石墨烯的光学图像如图3(a)所示,可知石墨烯的均匀性和连续性较好,石墨烯能够覆盖在整个云母片表面;石墨烯的SEM图像如图3(b)所示,可知废弃定碳铁片制得的石墨烯连续性较好,表面起伏小。
(2)石墨烯的微观表面形貌
图4为转移后石墨烯的AFM图,石墨烯薄膜的粗糙度较低,可知生长及转移并没有使石墨烯表面恶化,也无明显缺陷引入,说明废弃定碳铁片表面生长的石墨烯较容易转移,低损转移利于石墨烯进一步的应用。
(3)石墨烯的层数及分布
拉曼光谱中峰的位置与强度可判断石墨烯的缺陷及结构,其中G峰是石墨烯主要的特征峰,D峰是石墨烯的无序振动峰,用于表征石墨烯样品中的结构缺陷所以也称为缺陷峰,G’峰也称2D峰,用于表征石墨烯样品中碳原子的层间堆垛方式。图5a为石墨烯中随机位点的拉曼点扫图,石墨烯的D峰(缺陷峰)比例较低,说明石墨烯的质量较高,缺陷较少,且样品在激光激发下具有强度较高的特征峰,表面石墨烯具有较高的晶化程度;石墨烯面的I2D/IG的比值小于1,说明石墨烯为多层结构。图5b为石墨烯转移后的透射电子显微镜(TEM)图,可知石墨烯为大于5层的多层石墨烯。
(4)石墨烯的晶体结构
图6为转移后石墨烯的选取电子衍射(SAED)图谱,可以看出碳原子六方排列的特点,对应了石墨烯六角蜂窝状的结构特点,并且从衍射光斑的状态可知石墨烯薄膜的晶化程度高,质量较好;此外可以看出电子衍射图中含有多套六方点阵,可以看出石墨烯薄膜为多层。
(5)石墨烯的的性能
将石墨烯搭载在叉指电极上,测量其I-V,如图7可以看出,制备的石墨烯薄膜的电性能性能较好,这说明所制备的石墨烯薄膜连续性较好,内部缺陷较少;此外,将石墨烯薄膜制备成气体传感器,并用NO2对其测试,发现石墨烯薄膜表现出良好的性能,这也说明制备的石墨烯薄膜质量较高、连续性较好,缺陷少。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围,以上实施案例的说明可用来帮助理解本发明的原理及方法。但是以上实施案例并不唯一,不应理解为对本发明的限制。同时,对于本领域的一般技术人员,依据本发明原理和方法,可在具体实施方式及应用范围上进行灵活的改变。

Claims (4)

1.一种铁基衬底,其来源于工厂废弃定碳铁片,其特征在于:废弃定碳铁片厚度小于0.3mm,表面粗糙度不超过1000nm,碳含量在0.8-1.2wt%。
2.根据权利要求1所述的铁基衬底,其特征在于,其具体制备方法如下:
(1)选取1.5x3cm2的废弃定碳铁片,经过机械抛光、清洗获得表面洁净的定碳铁片;
(2)用去离子水将抛光后的定碳铁片进行清洗,抛光面朝上,用铜作为靶材,采用磁控溅射或者电子束蒸镀的方法,在定碳铁片上镀厚度为10nm的铜膜;
(3)将处理好的定碳铁片,然后依次经过丙酮、酒精、去离子水清洗5min,循环两次,从而去除表面的有机、无机污染物,获得洁净石墨烯生长基底。
3.根据权利要求2所述的铁基衬底,其特征在于,
步骤(1)中所述抛光、清洗具体步骤如下:
将干净的抛光机摩擦布浸湿后安装在抛光机上,并在摩擦布上均匀涂抛光膏,启动抛光机,然后将剪切好的废弃铁片在摩擦布上进行抛光,直到废弃铁片表面没有氧化划痕后停止抛光,抛光时间控制在10-20min,将获得表面洁净如镜的表面;
抛光结束后,用酒精冲洗抛光好的废弃铁片,然后用吹风机吹干,吹干后用擦镜纸包存;之后将废弃铁片先后置于丙酮、酒精、去离子水中进行超声清洗5min,循环两次。
4.应用权利要求1所述铁基衬底生产石墨烯的方法,其特征在于:具体步骤如下:
(1)以上述方法获得定碳铁片作为衬底至于820℃下生长制备,之后氩气为载气,氢气为还原气体,采用CVD法在滑动式高温管式炉内生长石墨烯;生长温度为760~820℃,升温速度为10℃/min,生长时间为20min;其中氩气的体积流量为120SCCM,氢气的体积流量为60SCCM,制备过程中不通入任何碳源气体;
(2)生长结束后,关闭氢气,保持氩气流量不变,随炉冷却到室温;
(3)CVD法结束后,将衬底刻蚀,刻蚀液选择0.5g/mL的氯化高铁盐酸水溶液,刻蚀时间为1h,获得上层为石墨烯薄膜下层为碳膜的结合物,将其简单进行剥离,可将石墨烯转移至SiO2/Si片上。
CN202210766289.2A 2022-07-01 2022-07-01 一种铁基衬底及利用该衬底生产石墨烯的方法 Active CN115323347B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210766289.2A CN115323347B (zh) 2022-07-01 2022-07-01 一种铁基衬底及利用该衬底生产石墨烯的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210766289.2A CN115323347B (zh) 2022-07-01 2022-07-01 一种铁基衬底及利用该衬底生产石墨烯的方法

Publications (2)

Publication Number Publication Date
CN115323347A true CN115323347A (zh) 2022-11-11
CN115323347B CN115323347B (zh) 2024-02-27

Family

ID=83917024

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210766289.2A Active CN115323347B (zh) 2022-07-01 2022-07-01 一种铁基衬底及利用该衬底生产石墨烯的方法

Country Status (1)

Country Link
CN (1) CN115323347B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102828244A (zh) * 2012-09-24 2012-12-19 中国科学院上海微系统与信息技术研究所 基于镍铜复合衬底的层数可控石墨烯薄膜及其制备方法
CN102938367A (zh) * 2012-11-22 2013-02-20 西安电子科技大学 基于Cu膜退火的SiC衬底图形化石墨烯制备方法
CN103183523A (zh) * 2013-03-12 2013-07-03 西安电子科技大学 基于Cu膜退火的Si衬底上大面积石墨烯制备方法
WO2013102360A1 (zh) * 2012-01-03 2013-07-11 西安电子科技大学 基于金属膜辅助退火和Cl2反应的石墨烯制备方法
CN103572247A (zh) * 2012-07-27 2014-02-12 中国科学院苏州纳米技术与纳米仿生研究所 一种在金属催化剂表面制备薄层石墨烯的方法
US20160365573A1 (en) * 2015-06-12 2016-12-15 The Board Of Trustees Of The Leland Stanford Junior University Conformal graphene cage encapsulated battery electrode materials and methods of forming thereof
CN108101028A (zh) * 2017-09-18 2018-06-01 山东大学 一种在6H/4H-SiC硅面上利用复合金属辅助生长石墨烯的方法
CN108314019A (zh) * 2018-03-19 2018-07-24 西北大学 一种层数均匀的大面积高质量石墨烯薄膜的制备方法
CN108349729A (zh) * 2015-11-11 2018-07-31 住友电气工业株式会社 制造碳纳米结构体的方法和制造碳纳米结构体的装置
KR20180132382A (ko) * 2017-06-02 2018-12-12 재단법인 나노기반소프트일렉트로닉스연구단 구리박막/니켈박막 적층체를 이용한 화학기상증착에 의한 층수가 제어된 그래핀 합성 방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013102360A1 (zh) * 2012-01-03 2013-07-11 西安电子科技大学 基于金属膜辅助退火和Cl2反应的石墨烯制备方法
CN103572247A (zh) * 2012-07-27 2014-02-12 中国科学院苏州纳米技术与纳米仿生研究所 一种在金属催化剂表面制备薄层石墨烯的方法
CN102828244A (zh) * 2012-09-24 2012-12-19 中国科学院上海微系统与信息技术研究所 基于镍铜复合衬底的层数可控石墨烯薄膜及其制备方法
CN102938367A (zh) * 2012-11-22 2013-02-20 西安电子科技大学 基于Cu膜退火的SiC衬底图形化石墨烯制备方法
CN103183523A (zh) * 2013-03-12 2013-07-03 西安电子科技大学 基于Cu膜退火的Si衬底上大面积石墨烯制备方法
US20160365573A1 (en) * 2015-06-12 2016-12-15 The Board Of Trustees Of The Leland Stanford Junior University Conformal graphene cage encapsulated battery electrode materials and methods of forming thereof
CN108349729A (zh) * 2015-11-11 2018-07-31 住友电气工业株式会社 制造碳纳米结构体的方法和制造碳纳米结构体的装置
KR20180132382A (ko) * 2017-06-02 2018-12-12 재단법인 나노기반소프트일렉트로닉스연구단 구리박막/니켈박막 적층체를 이용한 화학기상증착에 의한 층수가 제어된 그래핀 합성 방법
CN108101028A (zh) * 2017-09-18 2018-06-01 山东大学 一种在6H/4H-SiC硅面上利用复合金属辅助生长石墨烯的方法
CN108314019A (zh) * 2018-03-19 2018-07-24 西北大学 一种层数均匀的大面积高质量石墨烯薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
马来鹏;任文才;董再励;刘连庆;成会明;: "铜表面化学气相沉积石墨烯的研究进展:生长行为与控制制备", 科学通报, no. 23, 20 August 2012 (2012-08-20) *

Also Published As

Publication number Publication date
CN115323347B (zh) 2024-02-27

Similar Documents

Publication Publication Date Title
US9691612B2 (en) Process for preparing graphene on a SiC substrate based on metal film-assisted annealing
KR101626181B1 (ko) 그라핀 필름의 제어된 성장 방법
KR20140077138A (ko) 그래핀 피복 강판 및 이의 제조 방법
Ibrahim et al. Study of the impact of chemical etching on Cu surface morphology, graphene growth and transfer on SiO2/Si substrate
CN107188161B (zh) 石墨烯及其制备方法
CN105018896B (zh) 石墨烯薄膜、其制备方法及用途
JP5867718B2 (ja) SiC表面へのグラフェンの低温形成方法
Chan et al. Nucleation and growth kinetics of multi-layered graphene on copper substrate
Zou et al. Uniform single-layer graphene growth on recyclable tungsten foils
CN108314019B (zh) 一种层数均匀的大面积高质量石墨烯薄膜的制备方法
Chang et al. Effects of surface oxidation of Cu substrates on the growth kinetics of graphene by chemical vapor deposition
CN111270207A (zh) 一种层状结构的高熵合金薄膜材料的制备方法
CN113564699B (zh) 基于Cu2O介质层生长单层单晶石墨烯的方法
US11739421B2 (en) Synthesis of structured carbon material from organic materials
CN115323347A (zh) 一种铁基衬底及利用该衬底生产石墨烯的方法
CN102676975B (zh) 一种纳米氧化锌薄膜及氧化锌/氧化铜半导体材料的制备方法
CN110323127B (zh) 一种利用peald在硅衬底上生长石墨烯的方法
Kumar et al. A parametric study on the influence of synthesis and transfer conditions on the quality of Graphene
Zhang et al. The way towards for ultraflat and superclean graphene
KR101968604B1 (ko) 그래핀이 코팅된 스테인리스 스틸(sus) 지지체 및 이의 제조 방법
CN114171370A (zh) 一种相对封闭区域固相法制备石墨烯的方法
CN114635120A (zh) 用于生长石墨烯薄膜的基底、石墨烯薄膜以及它们的制备方法
CN112746263A (zh) 一种常压化学气相沉积制备少层石墨烯膜的方法
CN113737277A (zh) 一种基于化学气相沉积制备大尺寸单晶二维材料的方法
CN113549897A (zh) 一种形貌可控的单层六方氮化硼生长方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant