CN102828244A - 基于镍铜复合衬底的层数可控石墨烯薄膜及其制备方法 - Google Patents

基于镍铜复合衬底的层数可控石墨烯薄膜及其制备方法 Download PDF

Info

Publication number
CN102828244A
CN102828244A CN2012103598304A CN201210359830A CN102828244A CN 102828244 A CN102828244 A CN 102828244A CN 2012103598304 A CN2012103598304 A CN 2012103598304A CN 201210359830 A CN201210359830 A CN 201210359830A CN 102828244 A CN102828244 A CN 102828244A
Authority
CN
China
Prior art keywords
preparation
carbon
nickel
carbon source
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012103598304A
Other languages
English (en)
Other versions
CN102828244B (zh
Inventor
丁古巧
朱云
谢晓明
江绵恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN201210359830.4A priority Critical patent/CN102828244B/zh
Publication of CN102828244A publication Critical patent/CN102828244A/zh
Application granted granted Critical
Publication of CN102828244B publication Critical patent/CN102828244B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明涉及石墨烯薄膜制备领域,具体公开了一种基于镍铜复合衬底的层数可控石墨烯薄膜材料及其制备方法,包括如下步骤:1)镍铜复合衬底的制备;2)渗碳:将铜镍复合衬底加热至200~300℃后,通入碳源气体和载气,保温30~240min,对镍层进行渗碳;3)析碳:切断碳源气体的供应,将铜镍复合衬底温度升高到300~1000℃,通入载气,保温10-180min,获得基于镍铜复合衬底的石墨烯薄膜。本发明的有益效果为,不仅提出了新的制备工艺,使石墨烯的层数控制更加容易,还解决了目前复合衬底制备成本高的问题,获得了一种成本低、制备方法简单易控,产品质量好、面积大的石墨烯薄膜材料。

Description

基于镍铜复合衬底的层数可控石墨烯薄膜及其制备方法
技术领域
本发明涉及石墨烯薄膜制备领域,具体公开了一种基于镍铜复合衬底的层数可控石墨烯薄膜材料及其制备方法。
背景技术
石墨烯薄膜具有重要的应用价值,是因为其具有较好的柔性,力学强度及导电特性,化学气相沉积(Chemical Vapor Deposition,CVD)是制备石墨烯薄膜最具性价比的技术途径。在Cu,Ni等金属金属表面可制备大面积石墨烯薄膜,并可转移到各种衬底表面,但在Cu和Ni等金属表面和很难控制石墨烯的层数,在Ni表面由于碳在Ni中的溶解度很大(700到1000℃为6.4到2.7at%),CVD易制备出多层石墨烯,但层数均匀性差。在铜表面由于碳的溶解度很低(<0.001at%,1000℃),一般形成单层石墨烯,但工艺窗口窄,获得高质量均匀单层较难。
为了提高石墨烯的质量及层数控制能力,北京大学刘忠范教授等在专利申请号为201110096201.2发明名称为“一种制备单层石墨烯的方法”的专利中,提出一种制备单层石墨烯的方法,利用蒸镀法在金属基底表面镀另一种金属薄膜,在800-1000℃退火,利用CVD工艺过程不同金属的溶碳能力,在800-1200℃制备单层石墨烯。中科院上海硅酸盐所与中科院上海微系统所提出一种类似的多元衬底及其制备多层石墨烯的方法,专利申请号为201110266477.0,发明名称为“基于多元衬底的层数连续可调的石墨烯及其制备方法”。该发明利用磁控溅射或脉冲激光沉积法在一种不溶碳金属基底表面覆盖另一种高溶碳量的金属薄膜,在500-1100℃先恒温0-60min后再CVD生长1-60min,获得不同层数的石墨烯薄膜。
上述两个发明的技术路线相比于Cu,Ni等单一金属衬底而言具有显著技术进步,可以分别获得单层及不同层数的石墨烯薄膜。但热蒸发,磁控溅射与脉冲激光沉积等技术硬件投入及制备成本高,并且石墨烯薄膜的尺寸受制于大型设备的限制。其外,专利201110096201.2只是获得单层石墨烯薄膜,而专利201110266477.0所陈述的“通过调节不同的反应温度,碳的空间分布范围及浓度也随之改变,如在低温下碳的空间分布范围及浓度将增加,因而随着反应温度的降低,石墨烯的层数随之增加;通过控制反应温度,即可制备出层数连续可调的石墨烯薄膜”,通过反应温度控制层数的过程中,两种金属之间的互扩散、碳在金属衬底溶解、碳析出形成石墨烯是同时进行的,并且这些动态过程与CVD工艺温度关系密切,需要凭实验经验控制石墨烯层数和质量,过程比较复杂。寻求更新的制备技术,实现大面积层数可控的石墨烯薄膜制备技术依然是石墨烯薄膜应用迫切需要解决的问题。
发明内容
本发明的目的在于克服现有技术的缺陷,提供了一种制备方法简单、能够控制石墨烯层数的基于Ni-Cu复合衬底的石墨烯薄膜的制备方法,以及通过该方法制得的大面积Ni-Cu复合衬底-石墨烯材料。本发明的制备方法通过渗碳和析碳两个独立步骤实现不同层数石墨烯薄膜的制备,使石墨烯的层数控制更加容易。
本发明首先公开了一种基于镍铜复合衬底的层数可控石墨烯薄膜的制备方法,包括如下步骤:
1)镍铜复合衬底的制备:在铜箔表面形成一层金属镍层,获得镍铜复合衬底;
2)渗碳:将铜镍复合衬底加热至200~300℃后,通入碳源气体和载气,保温30~240min,对镍层进行渗碳;
3)析碳:切断碳源气体的供应,将铜镍复合衬底温度升高到300~1000℃,继续通入载气,保温10~180min,获得基于镍铜复合衬底的石墨烯薄膜。
较优的,步骤1)所述的铜箔厚度为10μm-200μm。
更优的,所述铜箔的纯度为99.0%-99.9999%。
步骤1)金属镍层的制备可采用现有的金属薄膜沉积法,例如磁控溅射法或者脉冲激光沉积法等,在铜箔表面沉积获得一层镍层。
较优的,步骤1)镍铜复合衬底的制备是在铜箔表面通过电镀的方法获得一层金属镍层。
较优的,步骤1)金属镍层厚度为50nm-5μm。
较优的,步骤1)制备的镍铜复合衬底的长度为10cm~1m,宽度为10cm~1m。
本发明优选的采用电镀法制备金属镍层可以不限制铜箔的尺寸,获得的Ni-Cu复合衬底的长、宽可以达到1米,甚至更大,并且可以对整卷铜箔进行连续镀镍。
较优的,步骤2)所述碳源为低温分解碳源,其分解气化温度为300℃及以下。更优的,步骤2)所述碳源为低温分解碳源,其分解气化温度为80~300℃。
本发明所述低温分解碳源为能够低温分解的固体碳源或液体碳源。
更优的,步骤2)所述碳源选自苯、萘、菲、芘、苝、六苯并苯、聚苯乙烯或聚甲基丙烯酸甲酯。
优选的,步骤2)渗碳的保温时间为60-240min;步骤3)析碳的保温时间为10-60min。
优选的,步骤3)析碳过程中,铜镍复合衬底温度升高到400~1000℃。
在渗碳过程中,将能够低温分解的碳源加热气化形成碳源气体,并将碳源气体通入加热到一定温度的Ni-Cu复合衬底中,使碳渗入镍层;低温分解碳源包括苯,萘,菲,芘,苝,六苯并苯、聚苯乙烯,聚甲基丙烯酸甲酯等,但不限于这些碳源;并且所述碳源的分解气化温度为80~300℃,每种碳源的具体温度与其种类有关。
较优的,步骤2)和步骤3)所述载气为Ar,Ar流量为100~500sccm。
更优的,步骤2)和步骤3)所述载气还包括H2,H2流量为1~50sccm。该情况下,载气由Ar和H2组成,其中Ar流量为100~500sccm,H2流量为1~50sccm。
本发明的制备方法首先将碳源在低温下渗入镍层,即渗碳过程,在该温度窗口下,Cu与Ni之间的互扩散可以忽略;其次切断碳源后,将复合衬底升高温度到300~1000℃,Cu与Ni发生互扩散,将碳从Ni层逐渐排出形成石墨烯。
所述的石墨烯薄膜层数控制,石墨烯薄膜的最大层数由镍层的渗碳量决定,即如果渗入镍层的碳足以形成10层石墨烯,那么通过后续的析碳过程当碳全部析出后最大层数即为10层,实际可以控制的层数范围为1-10层。如果渗入镍层的碳量只能形成5层石墨烯,那么可控的石墨烯层数范围为1-5层。
本发明另一方面公开了一种基于镍铜复合衬底的石墨烯薄膜,采用上述方法制备获得。
较优的,本发明的基于镍铜复合衬底的石墨烯薄膜层数为1~10层。
较优的,本发明的基于镍铜复合衬底的石墨烯薄膜的长度为10cm~1m,宽度为10cm~1m。
由于本发明采用电镀的方法镀镍,因此制备的镍铜复合衬底的尺寸不受限制,因此可以获得尺寸较大的基于镍铜复合衬底的石墨烯薄膜产品,突破了现有产品尺寸的限制。
本发明技术特点或优势:与现有多元金属衬底制备石墨烯相比,本发明有两个显著不同,一是本发明给出一种渗碳和析碳两个步骤获得不同层数石墨烯的技术路径,与现有技术路线相比明显不同;二是使用铜上镀镍的工艺实现Ni-Cu复合衬底,与溅射、脉冲激光沉积和蒸镀相比,显然衬底的形状和尺寸受限少,可以任意形状和更大面积地电化学镀膜,并且电镀工艺更经济更省时间。本发明在较低的温度下进行渗碳过程,期间Cu-Ni之间没有互扩散,渗入镍层的碳量是可以控制的,对于同样厚度镍膜在同一个温度下最大渗碳量,即饱和渗碳量是一定的,随后的析碳过程,不需要再通入碳源,并且前期渗入镍层的碳可以全部析出形成石墨烯,因此实际石墨烯的层数可控范围是由前期渗碳总量决定的,析碳过程中的温度和时间等参数只是决定了析出碳的快慢。这些技术优势和特点从实施例3和对比实验的比较可以充分体现,可见,本发明相比于现有技术,石墨烯层数控制能力更强,工艺窗口宽。
总之,本发明不仅提出了新的制备工艺,使石墨烯的层数控制更加容易,还解决了目前复合衬底制备成本高的问题,获得了一种成本低、制备方法简单易控,产品质量好、面积大的石墨烯薄膜材料。
附图说明
图1:实施例1制备的单层石墨烯的Raman图谱。
图2:实施例2制备的单层石墨烯Raman Mapping(2D/G)
图3:实施例3保温40分钟所获得石墨烯的Raman图谱
图4:实施例3保温60分钟所获得石墨烯的Raman图谱
图5:实施例4制备的多层石墨烯透射电镜图
具体实施方式
下面结合实施例进一步阐述本发明。应理解,实施例仅用于说明本发明,而非限制本发明的范围。
实施例1单层石墨烯的制备
1.实验方法
1)Ni-Cu复合基底:剪取厚度为25μm铜箔,铜箔纯度为99.8%,宽度为10cm,长度为50cm。铜箔采用丙酮和异丙醇清洗后氮气吹干。使用工业镀镍工艺(镀镍方法参考电沉积纳米晶材料技术,屠振密等编著,国防工业出版社,出版日期:2008年4月1日,ISBN:9787118055528)在Cu表面形成150nm的金属Ni层。
2)渗碳过程:以液态苯为碳源,加热到150-200℃,基底温度为300℃,保持30分钟,Ar流量为300sccm,H2流量为2sccm。
3)析碳过程:切断碳源,衬底温度升高到500℃,保温60分钟,Ar流量为300sccm,H2流量为1sccm。获得基于镍铜复合衬底的石墨烯薄膜。
2.实验结果:
Raman表明石墨烯为单层,如图1所示,Raman mapping结果表明石墨烯覆盖率100%,单层率90%以上,并且从Raman结果看,没有由缺陷引起的D峰。
实施例2单层石墨烯的制备
将碳源替换为菲、芘、聚苯乙烯、聚甲基丙烯酸甲酯等固体碳源来制备镍铜复合衬底的石墨烯薄膜,其他参数同实施例1,方法如下:
方法一:
1)Ni-Cu复合基底:剪取厚度为25μm铜箔,铜箔纯度为99.8%,宽度为10cm,长度为50cm。铜箔采用丙酮和异丙醇清洗后氮气吹干。使用工业镀镍工艺在铜箔表面形成150nm镍层。
2)渗碳过程:以菲为碳源,称取0.015g菲,加热到100-150℃,基底温度为300℃,保持60分钟,Ar流量为300sccm。
3)析碳过程:切断碳源,衬底温度升高到600℃,保温60分钟,Ar流量为300sccm。获得基于镍铜复合衬底的石墨烯薄膜。
实验结果:Raman表明石墨烯为单层,如图2所示,Raman mapping结果表明单层覆盖率为80%。
方法二:
1)Ni-Cu复合基底:剪取厚度为10μm铜箔,铜箔纯度为99%,宽度为10cm,长度为50cm。铜箔采用丙酮和异丙醇清洗后氮气吹干。使用工业镀镍工艺在铜箔表面形成50nm镍层。
2)渗碳过程:以芘为碳源,称取0.015g芘,加热到100-150℃,基底温度为200℃,保持240分钟,Ar流量为300sccm,H2流量为20sccm。
3)析碳过程:切断碳源,衬底温度升高到400℃,保温10分钟,Ar流量为300sccm,H2流量为1sccm。获得基于镍铜复合衬底的石墨烯薄膜。
实验结果:Raman与图2相似,表明石墨烯主要为单层。
方法三:
1)Ni-Cu复合基底:剪取厚度为200μm铜箔,铜箔纯度为99.9999%,宽度为20cm,长度为100cm。铜箔采用丙酮和异丙醇清洗后氮气吹干。使用工业镀镍工艺在铜箔表面形成5μm镍层。
2)渗碳过程:将聚苯乙烯固态碳源0.015g,加热到250-300℃,基底温度为300℃,保持30分钟,Ar流量为300sccm,H2流量为50ccm。
3)析碳过程:切断碳源,衬底温度升高到700℃,保温60分钟,Ar流量为100sccm,H2流量为50sccm。获得基于镍铜复合衬底的石墨烯薄膜。
实验结果:Raman与图2相似,表明石墨烯主要为单层。
方法四:
1)Ni-Cu复合基底:剪取厚度为25μm铜箔,铜箔纯度为99.8%,宽度为10cm,长度为50cm。铜箔采用丙酮和异丙醇清洗后氮气吹干。使用工业镀镍工艺在Ni表面形成150nm镍层。
2)渗碳过程:将聚甲基丙烯酸甲酯固态碳源0.015g,加热到250-300℃,基底温度为300℃,保持60分钟,Ar流量为300sccm,H2流量为10sccm。
3)析碳过程:切断碳源,衬底温度升高到300℃,保温180分钟,Ar流量为300sccm,H2流量为10sccm。获得基于镍铜复合衬底的石墨烯薄膜。
实验结果:Raman与图2相似,表明石墨烯主要为单层。
实施例3多层石墨烯的制备
1.实验方法
1)Ni-Cu复合基底:剪取厚度为25μm铜箔,铜箔纯度为99.9%,宽度为20cm,长度为20cm。将剪取的铜箔用丙酮和异丙醇清洗后氮气吹干。使用工业镀镍工艺在铜箔表面形成600nm镍层。
2)渗碳过程:以奈为碳源,加热到80~120℃,基底温度为300℃,保持60分钟,Ar流量为300sccm,H2流量为2sccm。
3)析碳过程:衬底温度升高到650℃,保温20-180分钟,Ar流量为300sccm,H2流量为1sccm。
2.实验结果:Raman结果显示保温20分钟有碳信号,但没有石墨烯,保温40分钟形成双层石墨烯,如图3所示。保温60分钟,形成多层石墨烯,如图4所示,保温120和180分钟I2D/IG的比例无显著区别。
3.结果分析:不同时间石墨烯的层数从1层,到2层,再到多层,直到基本不变,这些说明衬底温度升到650℃保温不同时间逐渐析碳的过程;与案例1相比,由于镀镍层厚度的提高,从50nm到300nm,渗入镍层的碳源增多,因此能够获得多层石墨烯。
实施例4多层石墨烯的制备
1.实验方法
1)Ni-Cu复合基底:剪取厚度为25μm的铜箔,铜箔纯度为99.999%,宽度为100cm,长度为100cm。将剪取的铜箔用丙酮和异丙醇清洗后氮气吹干。使用工业镀镍工艺在Ni表面形成600nmNi层。
2)渗碳过程:以苝为碳源,加热到280-300℃,基底温度为300℃,保持60分钟Ar流量为500sccm,H2流量为2sccm。
3)析碳过程:衬底温度升高到1000℃,保温10,20,60,120,180分钟,Ar流量为500sccm,H2流量为1sccm。
2.实验结果:Raman结果表明保温10和20分钟,结果和图3相似,获得2-3层石墨烯。保温60分钟,将Cu-Ni基底使用通用的FeCl3溶液去除,并将石墨烯转移到透射电镜测试用铜网上进行透射电镜测试,结果如图5所示,约10层石墨烯。保温120和180分钟层数基本不变。
3.结果分析:不同时间石墨烯的层数从2-3层,再到10层,直到基本不变,这些说明衬底温度升到1000℃保温不同时间逐渐析碳的过程;与案例3相比,由于镀镍层厚度的提高,从300nm到600nm,渗入镍层的碳源增多,因此能够获得更多层数石墨烯。
对比实验
1.实验方法
以实施例4制备的Ni-Cu复合基底材料为对象,以苝为碳源。将碳源温度升到300℃形成气态碳源,将基底温度直接升高到1000℃后,通入气态碳源和载气,分别保温10,20,60,120,180分钟获得一系列样品。控制Ar流量为300sccm,H2流量为10sccm。
2.实验结果
Raman结果显示保温不同时间的样品获得石墨烯的层数均为单层。
3.结果分析
由于直接将温度升高到1000℃,铜和镍之间发生了互扩散,当碳源分解并渗入镍层时,有效吸收碳源的镍层实际已经减少,导致能够扩散到到基底的总碳源减少。由于该条件下渗入碳源只能形成一层石墨烯,即使在1000℃保温更长时间由于Cu-Ni之间已经充分互扩散,不能有更多的碳源渗入,石墨烯的层数无法增加。
本对比实验进一步说明本发明渗碳和析碳分离对控制石墨烯层数的重要意义。
以上所述,仅为本发明的较佳实施例,并非对本发明任何形式上和实质上的限制,应当指出,对于本技术领域的普通技术人员,在不脱离本发明方法的前提下,还将可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。凡熟悉本专业的技术人员,在不脱离本发明的精神和范围的情况下,当可利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对上述实施例所作的任何等同变化的更动、修饰与演变,均仍属于本发明的技术方案的范围内。

Claims (10)

1.一种基于镍铜复合衬底的层数可控石墨烯薄膜的制备方法,包括如下步骤:
1)镍铜复合衬底的制备:在铜箔表面形成一层金属镍层,获得镍铜复合衬底;
2)渗碳:将铜镍复合衬底加热至200~300℃后,通入碳源气体和载气,保温30~240min,对镍层进行渗碳;
3)析碳:切断碳源气体的供应,将铜镍复合衬底温度升高到300~1000℃,继续通入载气,保温10~180min,获得基于镍铜复合衬底的石墨烯薄膜。
2.如权利要求1所述的制备方法,其特征在于,步骤1)所述的铜箔厚度为10μm-200μm。
3.如权利要求1所述的制备方法,其特征在于,步骤1)金属镍层厚度为50nm-5μm。
4.如权利要求1所述的制备方法,其特征在于,步骤2)所述碳源为低温分解碳源,其分解气化温度为300℃及以下。
5.如权利要求4所述的制备方法,其特征在于,步骤2)所述碳源为低温分解碳源,其分解气化温度为80~300℃。
6.如权利要求1所述的制备方法,其特征在于,步骤2)所述碳源选自苯、萘、菲、芘、苝、六苯并苯、聚苯乙烯或聚甲基丙烯酸甲酯。
7.如权利要求1所述的制备方法,其特征在于,步骤2)渗碳的保温时间为60~240min;步骤3)析碳的保温时间为10~60min。
8.如权利要求1所述的制备方法,其特征在于,步骤2)和步骤3)所述载气为Ar,Ar的流量为100~500sccm。
9.如权利要求8所述的制备方法,其特征在于,步骤2)和步骤3)所述载气还包括H2,所述H2的流量为1~50sccm。
10.一种基于镍铜复合衬底的石墨烯薄膜,采用权利要求1-9任一权利要求所述方法制备获得。
CN201210359830.4A 2012-09-24 2012-09-24 基于镍铜复合衬底的层数可控石墨烯薄膜及其制备方法 Active CN102828244B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210359830.4A CN102828244B (zh) 2012-09-24 2012-09-24 基于镍铜复合衬底的层数可控石墨烯薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210359830.4A CN102828244B (zh) 2012-09-24 2012-09-24 基于镍铜复合衬底的层数可控石墨烯薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN102828244A true CN102828244A (zh) 2012-12-19
CN102828244B CN102828244B (zh) 2015-05-27

Family

ID=47331540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210359830.4A Active CN102828244B (zh) 2012-09-24 2012-09-24 基于镍铜复合衬底的层数可控石墨烯薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN102828244B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103726027A (zh) * 2013-12-27 2014-04-16 中国科学院上海微系统与信息技术研究所 一种石墨烯晶畴的制备方法
CN104465267A (zh) * 2014-12-04 2015-03-25 合肥工业大学 一种多级降压收集极Cu电极表面采用石墨烯处理的方法
CN104495811A (zh) * 2014-12-12 2015-04-08 盐城市新能源化学储能与动力电源研究中心 一种石墨烯复合材料及其制备方法
CN104928649A (zh) * 2015-04-20 2015-09-23 中国科学院上海微系统与信息技术研究所 局域供碳装置及局域供碳制备晶圆级石墨烯单晶的方法
CN105197878A (zh) * 2015-06-23 2015-12-30 华东师范大学 一种利用石墨烯实现电子场发射装置的制备方法
CN105655242A (zh) * 2014-11-21 2016-06-08 中国科学院上海微系统与信息技术研究所 掺杂石墨烯及石墨烯pn结器件的制备方法
CN105779964A (zh) * 2016-05-23 2016-07-20 中国科学院上海微系统与信息技术研究所 一种金属蒸气辅助快速生长少层石墨烯的制备方法
CN106276863A (zh) * 2015-05-12 2017-01-04 武汉大学 一种转移石墨烯的方法
CN106927459A (zh) * 2015-12-29 2017-07-07 中国科学院上海微系统与信息技术研究所 一种在绝缘衬底上直接制备层数可控石墨烯的方法
CN109019571A (zh) * 2017-06-12 2018-12-18 中国科学院上海高等研究院 层数可控氮掺杂石墨烯的制备方法
CN109659082A (zh) * 2019-01-16 2019-04-19 深圳天元羲王材料科技有限公司 一种石墨烯复合电缆及其制备方法
CN110759334A (zh) * 2019-12-06 2020-02-07 上海集成电路研发中心有限公司 一种石墨烯沟道结构及其制作方法
CN114411116A (zh) * 2022-01-24 2022-04-29 陕西科技大学 一种激光在铜金属基底镀镍表面原位生长石墨烯薄膜的方法
CN115323347A (zh) * 2022-07-01 2022-11-11 中国石油大学(华东) 一种铁基衬底及利用该衬底生产石墨烯的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101988184A (zh) * 2009-08-06 2011-03-23 北京大学 一种制备石墨烯薄膜的方法
US20110104442A1 (en) * 2007-10-29 2011-05-05 Samsung Electronics Co., Ltd. Graphene sheet, graphene base including the same, and method of preparing the graphene sheet
CN102134067A (zh) * 2011-04-18 2011-07-27 北京大学 一种制备单层石墨烯的方法
CN102259849A (zh) * 2011-06-09 2011-11-30 无锡第六元素高科技发展有限公司 一种固态碳源制备石墨烯的方法
JP2012020915A (ja) * 2010-07-16 2012-02-02 Masayoshi Umeno 透明導電膜の形成方法及び透明導電膜
CN102633258A (zh) * 2012-05-10 2012-08-15 中国科学院上海微系统与信息技术研究所 一种无需衬底转移的制备石墨烯的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110104442A1 (en) * 2007-10-29 2011-05-05 Samsung Electronics Co., Ltd. Graphene sheet, graphene base including the same, and method of preparing the graphene sheet
CN101988184A (zh) * 2009-08-06 2011-03-23 北京大学 一种制备石墨烯薄膜的方法
JP2012020915A (ja) * 2010-07-16 2012-02-02 Masayoshi Umeno 透明導電膜の形成方法及び透明導電膜
CN102134067A (zh) * 2011-04-18 2011-07-27 北京大学 一种制备单层石墨烯的方法
CN102259849A (zh) * 2011-06-09 2011-11-30 无锡第六元素高科技发展有限公司 一种固态碳源制备石墨烯的方法
CN102633258A (zh) * 2012-05-10 2012-08-15 中国科学院上海微系统与信息技术研究所 一种无需衬底转移的制备石墨烯的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DONGYUN WAN,ET AL.: "Autonomously Controlled Homogenous Growth of Wafer-Sized High-Quality Graphene via a Smart Janus Substrate", 《ADVANCED FUNCTIONAL MATERIALS》 *
XULI DING,ET AL.: "Direct growth of few layer graphene on hexagonal boron nitride by chemical vapor deposition", 《CARBON》 *
ZHENGZONG SUN,ET AL.: "Growth of graphene from solid carbon sources", 《NATURE》 *
曹春雷等: "PMMA、PS和SAN的热稳定性比较研究", 《中国塑料》 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103726027A (zh) * 2013-12-27 2014-04-16 中国科学院上海微系统与信息技术研究所 一种石墨烯晶畴的制备方法
CN103726027B (zh) * 2013-12-27 2016-03-16 中国科学院上海微系统与信息技术研究所 一种石墨烯晶畴的制备方法
CN105655242A (zh) * 2014-11-21 2016-06-08 中国科学院上海微系统与信息技术研究所 掺杂石墨烯及石墨烯pn结器件的制备方法
CN105655242B (zh) * 2014-11-21 2018-07-06 中国科学院上海微系统与信息技术研究所 掺杂石墨烯及石墨烯pn结器件的制备方法
CN104465267A (zh) * 2014-12-04 2015-03-25 合肥工业大学 一种多级降压收集极Cu电极表面采用石墨烯处理的方法
CN104495811A (zh) * 2014-12-12 2015-04-08 盐城市新能源化学储能与动力电源研究中心 一种石墨烯复合材料及其制备方法
CN104928649B (zh) * 2015-04-20 2017-12-05 中国科学院上海微系统与信息技术研究所 局域供碳装置及局域供碳制备晶圆级石墨烯单晶的方法
CN104928649A (zh) * 2015-04-20 2015-09-23 中国科学院上海微系统与信息技术研究所 局域供碳装置及局域供碳制备晶圆级石墨烯单晶的方法
CN106276863A (zh) * 2015-05-12 2017-01-04 武汉大学 一种转移石墨烯的方法
CN106276863B (zh) * 2015-05-12 2018-05-11 武汉大学 一种转移石墨烯的方法
CN105197878A (zh) * 2015-06-23 2015-12-30 华东师范大学 一种利用石墨烯实现电子场发射装置的制备方法
CN106927459A (zh) * 2015-12-29 2017-07-07 中国科学院上海微系统与信息技术研究所 一种在绝缘衬底上直接制备层数可控石墨烯的方法
CN105779964A (zh) * 2016-05-23 2016-07-20 中国科学院上海微系统与信息技术研究所 一种金属蒸气辅助快速生长少层石墨烯的制备方法
CN109019571A (zh) * 2017-06-12 2018-12-18 中国科学院上海高等研究院 层数可控氮掺杂石墨烯的制备方法
CN109019571B (zh) * 2017-06-12 2022-01-21 中国科学院上海高等研究院 层数可控氮掺杂石墨烯的制备方法
CN109659082A (zh) * 2019-01-16 2019-04-19 深圳天元羲王材料科技有限公司 一种石墨烯复合电缆及其制备方法
CN110759334A (zh) * 2019-12-06 2020-02-07 上海集成电路研发中心有限公司 一种石墨烯沟道结构及其制作方法
CN110759334B (zh) * 2019-12-06 2023-07-28 上海集成电路研发中心有限公司 一种石墨烯沟道结构及其制作方法
CN114411116A (zh) * 2022-01-24 2022-04-29 陕西科技大学 一种激光在铜金属基底镀镍表面原位生长石墨烯薄膜的方法
CN115323347A (zh) * 2022-07-01 2022-11-11 中国石油大学(华东) 一种铁基衬底及利用该衬底生产石墨烯的方法
CN115323347B (zh) * 2022-07-01 2024-02-27 中国石油大学(华东) 一种铁基衬底及利用该衬底生产石墨烯的方法

Also Published As

Publication number Publication date
CN102828244B (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
CN102828244A (zh) 基于镍铜复合衬底的层数可控石墨烯薄膜及其制备方法
Huang et al. Growth of single-layer and multilayer graphene on Cu/Ni alloy substrates
KR101371286B1 (ko) 그래핀 롤투롤 코팅 장치 및 이를 이용한 그래핀 롤투롤 코팅 방법
CN103726027B (zh) 一种石墨烯晶畴的制备方法
US11124870B2 (en) Transfer-free method for producing graphene thin film
Vargas et al. Stoichiometry behavior of TaN, TaCN and TaC thin films produced by magnetron sputtering
Tamura et al. Characteristic change of hydrogen permeation in stainless steel plate by BN coating
KR101999564B1 (ko) 구리박막/니켈박막 적층체를 이용한 화학기상증착에 의한 층수가 제어된 그래핀 합성 방법
JP6078024B2 (ja) 2次元六角形格子化合物製造用圧延銅箔、及び2次元六角形格子化合物の製造方法
TWI526559B (zh) 藉由物理氣相沉積法在基板上成長碳薄膜或無機材料薄膜的方法
CN103572247A (zh) 一种在金属催化剂表面制备薄层石墨烯的方法
CN103172061A (zh) 一种在绝缘衬底上生长大面积石墨烯的方法
CN107188161B (zh) 石墨烯及其制备方法
Kim et al. Growth characteristics and properties of indium oxide and indium-doped zinc oxide by atomic layer deposition
Das et al. Nucleation and growth of single layer graphene on electrodeposited Cu by cold wall chemical vapor deposition
Choi et al. Precise control of chemical vapor deposition graphene layer thickness using Ni x Cu 1− x alloys
Abd Elhamid et al. Room temperature graphene growth on complex metal matrix by PLD
JP7320862B2 (ja) 膜及び製造プロセス
Joo et al. Atomic layer deposited Mo2N thin films using Mo (CO) 6 and NH3 plasma as a Cu diffusion barrier
Pu et al. Chemical vapor deposition growth of few-layer graphene for transparent conductive films
Ali et al. Surface morphology, nano-indentation and TEM analysis of tantalum carbide–graphite composite film synthesized by hot-filament chemical vapor deposition
Jangid et al. Structural, optical and electrical characterizations of Mg/Ti/Ni multilayer thin films deposited by DC magnetron sputtering for hydrogen storage
An et al. A facile method for the synthesis of transfer-free graphene from co-deposited nickel–carbon layers
Şimşek et al. Difficulties in thin film synthesis
KR20160106832A (ko) 그래핀의 제조 방법 및 제조 장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant