CN102583329A - 基于Cu膜辅助退火和Cl2反应的大面积石墨烯制备方法 - Google Patents

基于Cu膜辅助退火和Cl2反应的大面积石墨烯制备方法 Download PDF

Info

Publication number
CN102583329A
CN102583329A CN2012100095036A CN201210009503A CN102583329A CN 102583329 A CN102583329 A CN 102583329A CN 2012100095036 A CN2012100095036 A CN 2012100095036A CN 201210009503 A CN201210009503 A CN 201210009503A CN 102583329 A CN102583329 A CN 102583329A
Authority
CN
China
Prior art keywords
film
reaction
gas
graphene
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012100095036A
Other languages
English (en)
Other versions
CN102583329B (zh
Inventor
郭辉
张克基
张玉明
邓鹏飞
雷天民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN2012100095036A priority Critical patent/CN102583329B/zh
Publication of CN102583329A publication Critical patent/CN102583329A/zh
Priority to US14/350,282 priority patent/US9048092B2/en
Priority to PCT/CN2012/080935 priority patent/WO2013102360A1/zh
Application granted granted Critical
Publication of CN102583329B publication Critical patent/CN102583329B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • C23C16/0218Pretreatment of the material to be coated by heating in a reactive atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/32Size or surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明公开了一种基于Cu膜辅助退火和Cl2反应的大面积石墨烯制备方法,主要解决现有技术中制备的石墨烯面积小、层数不均匀的问题。(1)在4-12英寸的Si衬底基片上先生长一层碳化层作为过渡;(2)在温度为1150℃-1350℃下进行3C-SiC异质外延薄膜的生长,生长气源为C3H8和SiH4;(3)将3C-SiC在700-1100℃下与Cl2反应,生成碳膜,(4)将生成的碳膜样片的碳面置于Cu膜上,再将它们一同置于Ar气中,在温度为900-1100℃下退火10-30min生成石墨烯。用本发明方法生成的石墨烯面积大,表面光滑,连续性好,孔隙率低,可用于对气体和液体的密封。

Description

基于Cu膜辅助退火和Cl2反应的大面积石墨烯制备方法
技术领域
本发明属于微电子技术领域,涉及一种半导体薄膜材料及其制备方法,具体地说是基于Cu膜辅助退火和Cl2反应的大面积石墨烯制备方法。
技术背景
石墨烯出现在实验室中是在2004年,当时,英国曼彻斯特大学的两位科学家安德烈·杰姆和克斯特亚·诺沃消洛夫发现他们能用一种非常简单的方法得到越来越薄的石墨薄片。他们从石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。这以后,制备石墨烯的新方法层出不穷。目前的制备方法主要有两种:
1.化学气相沉积法提供了一种可控制备石墨烯的有效方法,它是将平面基底,如金属薄膜、金属单晶等置于高温可分解的前驱体,如甲烷、乙烯等气氛中,通过高温退火使碳原子沉积在基底表面形成石墨烯,最后用化学腐蚀法去除金属基底后即可得到独立的石墨烯片。通过选择基底的类型、生长的温度、前驱体的流量等参数可调控石墨烯的生长,如生长速率、厚度、面积等,此方法最大的缺点在于获得的石墨烯片层与衬底相互作用强,丧失了许多单层石墨烯的性质,而且石墨烯的连续性不是很好。
2.热分解SiC法:将单晶SiC加热以通过使表面上的SiC分解而除去Si,随后残留的碳形成石墨烯。然而,SiC热分解中使用的单晶SiC非常昂贵,并且生长出来的石墨烯呈岛状分布,层数不均匀,且尺寸较小,很难大面积制造石墨烯。
发明内容
本发明的目的在于针对上述已有技术的不足,提出一种基于Cu膜辅助退火和Cl2反应的大面积石墨烯制备方法,以提高表面光滑度和连续性、降低孔隙率、减少成本,实现在3C-SiC衬底上大面积的制造石墨烯。
为实现上述目的,本发明的制备方法包括以下步骤:
(1)对4-12英寸的Si衬底基片进行标准清洗;
(2)将清洗后的Si衬底基片放入CVD系统反应室中,对反应室抽真空达到10-7mbar级别;
(3)在H2保护的情况下逐步升温至碳化温度1000℃-1150℃,通入流量为40sccm的C3H8,对衬底进行碳化4-8min,生长一层碳化层;
(4)迅速升温至生长温度1150℃-1350℃,通入C3H8和SiH4,进行3C-SiC异质外延薄膜的生长,时间为36-60min,然后在H2保护下逐步降温至室温,完成3C-SiC外延薄膜的生长;
(5)将生长好的3C-SiC样片置于石英管中,加热至700-1100℃;
(6)向石英管中通入Ar气和Cl2气的混合气体,持续时间4-7min,使Cl2与3C-SiC反应生成碳膜;
(7)将生成的碳膜样片的碳面置于Cu膜上,再将它们一同置于Ar气中在温度为900-1100℃下退火10-30分钟,碳膜重构成石墨烯,再将Cu膜从石墨烯样片上取开。
本发明与现有技术相比具有如下优点:
1.本发明由于在生长3C-SiC时先在Si衬底上成长一层碳化层作为过渡,然后再生长3C-SiC,因而生长的3C-SiC质量高。
2.本发明由于3C-SiC可异质外延生长在Si圆片上,而Si圆片尺寸可达12英寸,因而用此方法可以生长大面积的石墨烯,且价格便宜。
3.本发明中3C-SiC与Cl2可在较低的温度和常压下反应,且反应速率快。
4.本发明由于利用3C-SiC与Cl2气反应,因而生成的石墨烯表面光滑,空隙率低,且厚度容易控制,可用于对气体和液体的密封。
5.本发明由于利用在Cu膜上退火,因而生成的碳膜更容易重构形成连续性较好的石墨烯。
附图说明
图1是本发明制备石墨烯的装置示意图;
图2是本发明制备石墨烯的流程图。
具体实施方式
参照图1,本发明的制备设备主要由石英管1和电阻炉2组成,其中石英管1设有进气口3和出气口4,电阻炉为2为环状空心结构,石英管1插装在电阻炉2内。
参照图2,本发明的制作方法给出如下三种实施例。
实施例1
步骤1:去除样品表面污染物。
对4英寸的Si衬底基片进行表面清洁处理,即先使用NH4OH+H2O2试剂浸泡样品10分钟,取出后烘干,以去除样品表面有机残余物;再使用HCl+H2O2试剂浸泡样品10分钟,取出后烘干,以去除离子污染物。
步骤2:将Si衬底基片放入CVD系统反应室中,对反应室抽真空达到10-7mbar级别。
步骤3:生长碳化层。
在H2保护的情况下将反应室温度升至碳化温度1000℃,然后向反应室通入流量为40sccm的C3H8,在Si衬底上生长一层碳化层,生长时间为8min。
步骤4:在碳化层上生长3C-SiC外延薄膜。
将反应室温度迅速升至生长温度1150℃,通入流量分别为15sccm和30sccm的SiH4和C3H8,进行3C-SiC异质外延薄膜的生长,生长时间为60min;然后在H2保护下逐步降温至室温,完成3C-SiC外延薄膜的生长。
步骤5:将3C-SiC样片装入石英管,并排气加热。
(5.1)将生长好的3C-SiC外延薄膜样片从CVD系统反应室取出后置于石英管5中,把石英管置于电阻炉2中;
(5.2)从进气口3向石英管中通入流速为80sccm的Ar气,对石英管进行排空10分钟,将空气从出气口4排出;
(5.3)打开电阻炉电源开关,升温至700℃,使在其中的石英管也加热至700℃。
步骤6:生成碳膜
向石英管通入流速分别为98sccm和2sccm的Ar气和Cl2气,时间为4分钟,使Cl2与3C-SiC反应生成碳膜。
步骤7:重构成石墨烯。
(7.1)将生成的碳膜样片从石英管中取出,将其碳面置于厚度为250nm的Cu膜上;
(7.2)将碳膜样片和Cu膜整体置于流速为100sccm的Ar气中,在温度为900℃下退火30分钟,通过金属Cu的催化作用使碳膜重构成连续的石墨烯;
(7.3)将Cu膜从石墨烯样片上取开。
实施例2
步骤一:去除样品表面污染物。
对8英寸的Si衬底基片进行表面清洁处理,即先使用NH4OH+H2O2试剂浸泡样品10分钟,取出后烘干,以去除样品表面有机残余物;再使用HCl+H2O2试剂浸泡样品10分钟,取出后烘干,以去除离子污染物。
步骤二:将Si衬底基片放入CVD系统反应室中,对反应室抽真空达到10-7mbar级别。
步骤三:生长碳化层。
在H2保护的情况下将反应室温度升至碳化温度1050℃,然后向反应室通入流量为40sccm的C3H8,在Si衬底上生长一层碳化层,生长时间为5min。
步骤四:在碳化层上生长3C-SiC外延薄膜。
将反应室温度迅速升至生长温度1200℃,通入流量分别为20sccm和40sccm的SiH4和C3H8,进行3C-SiC异质外延薄膜的生长,生长时间为45min;然后在H2保护下逐步降温至室温,完成3C-SiC外延薄膜的生长。
步骤五:将3C-SiC样片装入石英管,并排气加热。
将生长好的3C-SiC外延薄膜样片从CVD系统反应室取出后置于石英管5中,把石英管置于电阻炉2中;从进气口3向石英管中通入流速为80sccm的Ar气,对石英管进行排空10分钟,将空气从出气口4排出;再打开电阻炉电源开关,升温至1000℃,使在其中的石英管也加热至1000℃。
步骤六:生成碳膜
向石英管通入流速分别为97sccm和3sccm的Ar气和Cl2气,时间为5分钟,使Cl2与3C-SiC反应生成碳膜。
步骤七:重构成石墨烯。
将生成的碳膜样片从石英管中取出,将其碳面置于厚度为280nm的Cu膜上;将碳膜样片和Cu膜整体置于流速为75sccm的Ar气中,在温度为1050℃下退火15分钟,通过金属Cu的催化作用使碳膜重构成连续的石墨烯;再将Cu膜从石墨烯样片上取开。
实施例3
步骤A:对12英寸的Si衬底基片进行表面清洁处理,即先使用NH4OH+H2O2试剂浸泡样品10分钟,取出后烘干,以去除样品表面有机残余物;再使用HCl+H2O2试剂浸泡样品10分钟,取出后烘干,以去除离子污染物。
步骤B:将Si衬底基片放入CVD系统反应室中,对反应室抽真空达到10-7mbar级别。
步骤C:在H2保护的情况下将反应室温度升至碳化温度1150℃,然后向反应室通入流量为40sccm的C3H8,持续4min,以在Si衬底上生长一层碳化层。
步骤D:将反应室温度迅速升至生长温度1350℃,通入流量分别为25sccm和50sccm的SiH4和C3H8,进行3C-SiC异质外延薄膜的生长36min;然后在H2保护下逐步降温至室温。
步骤E:将生长好的3C-SiC外延薄膜样片从CVD系统反应室取出后置于石英管5中,把石英管置于电阻炉2中;从进气口3向石英管中通入流速为80sccm的Ar气,对石英管进行排空10分钟,将空气从出气口4排出;再打开电阻炉电源开关,升温至1100℃,使在其中的石英管也加热至1100℃。
步骤F:向石英管中通入流速分别为95sccm和5sccm的Ar气和Cl2气,时间为4分钟,使Cl2与3C-SiC反应生成碳膜。
步骤G:将生成的碳膜样片从石英管中取出,将其碳面置于厚度为300nm的Cu膜上;将碳膜样片和Cu膜整体置于流速为25sccm的Ar气中,在温度为1100℃下退火10分钟,通过金属Cu的催化作用使碳膜重构成连续的石墨烯;再将Cu膜从石墨烯样片上取开。

Claims (5)

1.一种基于Cu膜辅助退火和Cl2反应的大面积石墨烯制备方法,其特征在于,制备方法包括以下步骤:
(1)对4-12英寸的Si衬底基片进行标准清洗;
(2)将清洗后的Si衬底基片放入CVD系统反应室中,对反应室抽真空达到10-7mbar级别;
(3)在H2保护的情况下逐步升温至碳化温度1000℃-1150℃,通入流量为40sccm的C3H8,对衬底进行碳化4-8min,生长一层碳化层;
(4)迅速升温至生长温度1150℃-1350℃,通入C3H8和SiH4,进行3C-SiC异质外延薄膜的生长,时间为36-60min,然后在H2保护下逐步降温至室温,完成3C-SiC外延薄膜的生长;
(5)将生长好的3C-SiC样片置于石英管中,加热至700-1100℃;
(6)向石英管中通入Ar气和Cl2气的混合气体,持续时间4-7min,使Cl2与3C-SiC反应生成碳膜;
(7)将生成的碳膜样片的碳面置于Cu膜上,再将它们一同置于Ar气中在温度为900-1100℃下退火10-30分钟,碳膜重构成石墨烯,再将Cu膜从石墨烯样片上取开。
2.根据权利要求1所述的基于Cu膜辅助退火和Cl2反应的大面积石墨烯制备方法,其特征在于步骤(4)所述通入的SiH4和C3H8,其流量分别为15-25sccm和30-50sccm。
3.根据权利要求1所述的基于Cu膜辅助退火和Cl2反应的大面积石墨烯制备方法,其特征在于步骤(6)所述通入的Ar气和Cl2气,其流速分别为95-98sccm和5-2sccm。
4.根据权利要求1所述的基于Cu膜辅助退火和Cl2反应的大面积石墨烯制备方法,其特征在于所述步骤(7)退火时Ar气的流速为25-100sccm。
5.根据权利要求1所述的基于Cu膜辅助退火和Cl2反应的大面积石墨烯制备方法,其特征在于所述步骤(7)中的Cu膜厚度为250-300nm。
CN2012100095036A 2012-01-03 2012-01-03 基于Cu膜辅助退火和Cl2反应的大面积石墨烯制备方法 Expired - Fee Related CN102583329B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2012100095036A CN102583329B (zh) 2012-01-03 2012-01-03 基于Cu膜辅助退火和Cl2反应的大面积石墨烯制备方法
US14/350,282 US9048092B2 (en) 2012-01-03 2012-09-03 Process for preparing graphene based on metal film-assisted annealing and the reaction with Cl2
PCT/CN2012/080935 WO2013102360A1 (zh) 2012-01-03 2012-09-03 基于金属膜辅助退火和Cl2反应的石墨烯制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012100095036A CN102583329B (zh) 2012-01-03 2012-01-03 基于Cu膜辅助退火和Cl2反应的大面积石墨烯制备方法

Publications (2)

Publication Number Publication Date
CN102583329A true CN102583329A (zh) 2012-07-18
CN102583329B CN102583329B (zh) 2013-08-14

Family

ID=46472694

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012100095036A Expired - Fee Related CN102583329B (zh) 2012-01-03 2012-01-03 基于Cu膜辅助退火和Cl2反应的大面积石墨烯制备方法

Country Status (3)

Country Link
US (1) US9048092B2 (zh)
CN (1) CN102583329B (zh)
WO (1) WO2013102360A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103183522A (zh) * 2013-03-12 2013-07-03 西安电子科技大学 基于Cu膜退火和氯气反应的SiC衬底上制备石墨烯的方法
CN103183336A (zh) * 2013-03-12 2013-07-03 西安电子科技大学 基于Ni膜退火的Si衬底上大面积石墨烯制备方法
CN103183523A (zh) * 2013-03-12 2013-07-03 西安电子科技大学 基于Cu膜退火的Si衬底上大面积石墨烯制备方法
CN103183339A (zh) * 2013-03-12 2013-07-03 西安电子科技大学 基于Cu膜退火和氯气反应的大面积石墨烯制备方法
WO2013102360A1 (zh) * 2012-01-03 2013-07-11 西安电子科技大学 基于金属膜辅助退火和Cl2反应的石墨烯制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102505114A (zh) 2012-01-03 2012-06-20 西安电子科技大学 基于Ni膜辅助退火的SiC衬底上石墨烯制备方法
CN102701789B (zh) 2012-05-23 2013-10-16 西安电子科技大学 基于Cl2反应的SiC衬底上制备结构化石墨烯的方法
KR101611218B1 (ko) * 2014-01-27 2016-04-26 울산과학기술원 붕소와 질소가 동시에 도핑된 반도체용 그래핀 및 이의 제조방법
CN107640763B (zh) * 2017-11-17 2020-02-04 信阳师范学院 一种单层单晶石墨烯的制备方法
CN109837587B (zh) * 2018-05-22 2020-09-08 北京大学 一种元素辅助快速制备大尺寸单晶二维材料的方法
US10941041B2 (en) 2018-07-06 2021-03-09 Savannah River Nuclear Solutions, Llc Method of manufacturing graphene using photoreduction
CN109273689B (zh) * 2018-09-19 2021-09-24 惠州亿纬锂能股份有限公司 一种异质结构硅基负极材料及其制备方法和锂离子电池
US20200135489A1 (en) * 2018-10-31 2020-04-30 Atomera Incorporated Method for making a semiconductor device including a superlattice having nitrogen diffused therein
CN115323347B (zh) * 2022-07-01 2024-02-27 中国石油大学(华东) 一种铁基衬底及利用该衬底生产石墨烯的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030138698A1 (en) * 2002-01-17 2003-07-24 Korea Institute Of Science And Technology Carbonaceous materials coated with a metal or metal oxide, a preparation method thereof, and a composite electrode and lithium secondary battery comprising the same
CN1716522A (zh) * 2004-06-30 2006-01-04 齐卡博制陶业有限公司 金属碳化物衬底表面的处理方法及这种金属碳化物衬底
CN102134067A (zh) * 2011-04-18 2011-07-27 北京大学 一种制备单层石墨烯的方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8120448B2 (en) * 2006-10-19 2012-02-21 The Regents Of The University Of California High frequency nanotube oscillator
KR101490111B1 (ko) * 2008-05-29 2015-02-06 삼성전자주식회사 에피택셜 그래핀을 포함하는 적층구조물, 상기적층구조물의 형성방법 및 상기 적층구조물을 포함하는전자 소자
US7952088B2 (en) * 2008-07-11 2011-05-31 International Business Machines Corporation Semiconducting device having graphene channel
JP5644175B2 (ja) * 2010-04-27 2014-12-24 和人 山内 SiC基板へのグラフェン成膜方法
PL213291B1 (pl) * 2010-06-07 2013-02-28 Inst Tech Material Elekt Sposób wytwarzania grafenu
US8785261B2 (en) * 2010-09-23 2014-07-22 Intel Corporation Microelectronic transistor having an epitaxial graphene channel layer
CN102051677B (zh) 2010-11-12 2012-03-28 山东大学 在大直径6H-SiC碳面上生长石墨烯的方法
US20110086756A1 (en) * 2010-12-20 2011-04-14 Gao hong-jun Method for preparing silicon intercalated monolayer graphene
KR101878734B1 (ko) * 2011-06-24 2018-07-16 삼성전자주식회사 그래핀 층상 구조체, 그의 제조방법 및 이를 채용한 투명전극과 트랜지스터
CN102583329B (zh) * 2012-01-03 2013-08-14 西安电子科技大学 基于Cu膜辅助退火和Cl2反应的大面积石墨烯制备方法
CN102505141A (zh) * 2012-01-03 2012-06-20 西安电子科技大学 基于Cu膜辅助退火的石墨烯制备方法
CN102505113B (zh) * 2012-01-03 2013-04-03 西安电子科技大学 基于Cl2反应的大面积石墨烯制备方法
CN102583331B (zh) * 2012-01-03 2013-09-25 西安电子科技大学 基于Ni膜辅助退火和Cl2反应的大面积石墨烯制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030138698A1 (en) * 2002-01-17 2003-07-24 Korea Institute Of Science And Technology Carbonaceous materials coated with a metal or metal oxide, a preparation method thereof, and a composite electrode and lithium secondary battery comprising the same
CN1716522A (zh) * 2004-06-30 2006-01-04 齐卡博制陶业有限公司 金属碳化物衬底表面的处理方法及这种金属碳化物衬底
CN102134067A (zh) * 2011-04-18 2011-07-27 北京大学 一种制备单层石墨烯的方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013102360A1 (zh) * 2012-01-03 2013-07-11 西安电子科技大学 基于金属膜辅助退火和Cl2反应的石墨烯制备方法
US9048092B2 (en) 2012-01-03 2015-06-02 Xidian University Process for preparing graphene based on metal film-assisted annealing and the reaction with Cl2
CN103183522A (zh) * 2013-03-12 2013-07-03 西安电子科技大学 基于Cu膜退火和氯气反应的SiC衬底上制备石墨烯的方法
CN103183336A (zh) * 2013-03-12 2013-07-03 西安电子科技大学 基于Ni膜退火的Si衬底上大面积石墨烯制备方法
CN103183523A (zh) * 2013-03-12 2013-07-03 西安电子科技大学 基于Cu膜退火的Si衬底上大面积石墨烯制备方法
CN103183339A (zh) * 2013-03-12 2013-07-03 西安电子科技大学 基于Cu膜退火和氯气反应的大面积石墨烯制备方法

Also Published As

Publication number Publication date
CN102583329B (zh) 2013-08-14
US9048092B2 (en) 2015-06-02
WO2013102360A1 (zh) 2013-07-11
US20140256120A1 (en) 2014-09-11

Similar Documents

Publication Publication Date Title
CN102583329B (zh) 基于Cu膜辅助退火和Cl2反应的大面积石墨烯制备方法
CN102583331B (zh) 基于Ni膜辅助退火和Cl2反应的大面积石墨烯制备方法
CN102505114A (zh) 基于Ni膜辅助退火的SiC衬底上石墨烯制备方法
CN103981507B (zh) 一种石墨烯制备方法
CN102674333B (zh) 基于Ni膜退火和Cl2反应的结构化石墨烯制备方法
US8932673B2 (en) Methods of fabricating large-area graphene
CN102674329A (zh) 基于Cl2反应的结构化石墨烯制备方法
WO2012002995A3 (en) Thin films and methods of making them using cyclohexasilane
CN102653401B (zh) 基于Ni膜退火的结构化石墨烯制备方法
CN102560414A (zh) 在3C-SiC衬底上制备石墨烯的方法
CN103352202B (zh) 一种常压化学气相沉积大面积高质量双层石墨烯薄膜的可控制备方法
CN102583325B (zh) 基于Ni膜退火和Cl2反应的SiC衬底上制备石墨烯的方法
CN102505141A (zh) 基于Cu膜辅助退火的石墨烯制备方法
CN102701789B (zh) 基于Cl2反应的SiC衬底上制备结构化石墨烯的方法
CN102674330A (zh) 基于Cu膜退火的SiC衬底上结构化石墨烯制备方法
CN102530936A (zh) 基于Cl2反应的SiC衬底上制备石墨烯的方法
CN102718207A (zh) 基于Cu膜退火和Cl2反应的结构化石墨烯制备方法
CN102674331A (zh) 基于Ni膜退火的SiC与Cl2反应制备结构化石墨烯的方法
CN102674332A (zh) 基于Cu膜退火的SiC与Cl2反应制备结构化石墨烯的方法
CN102505113B (zh) 基于Cl2反应的大面积石墨烯制备方法
CN102304701A (zh) 一种碳化硅薄膜的制备方法
CN102583330B (zh) 基于Cu膜辅助退火的SiC衬底上石墨烯制备方法
CN102718208A (zh) 基于Ni膜退火的SiC衬底上结构化石墨烯制备方法
CN102505140A (zh) 基于Ni膜辅助退火的石墨烯制备方法
CN110408990A (zh) 单晶石墨烯的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130814

Termination date: 20190103

CF01 Termination of patent right due to non-payment of annual fee