CN102674329A - 基于Cl2反应的结构化石墨烯制备方法 - Google Patents

基于Cl2反应的结构化石墨烯制备方法 Download PDF

Info

Publication number
CN102674329A
CN102674329A CN2012101585530A CN201210158553A CN102674329A CN 102674329 A CN102674329 A CN 102674329A CN 2012101585530 A CN2012101585530 A CN 2012101585530A CN 201210158553 A CN201210158553 A CN 201210158553A CN 102674329 A CN102674329 A CN 102674329A
Authority
CN
China
Prior art keywords
sic
reaction
growth
gas
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012101585530A
Other languages
English (en)
Inventor
郭辉
张克基
张玉明
张凤祁
邓鹏飞
雷天民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN2012101585530A priority Critical patent/CN102674329A/zh
Publication of CN102674329A publication Critical patent/CN102674329A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种基于Cl2反应的结构化石墨烯制备方法,主要解决现有技术中制备的石墨烯层数不均匀,且制作器件时由于光刻工艺导致石墨烯电子迁移率降低的问题。其实现过程是:(1)在4-12英寸的Si衬底基片上生长一层碳化层作为过渡;(2)在温度为1150℃-1300℃下利用气源C3H8和SiH4生长3C-SiC薄膜;(3)在3C-SiC薄膜表面淀积一层0.5-1μm厚的SiO2,并在SiO2上刻出图形窗口;(4)将开窗后裸露的3C-SiC在700-1050℃下与Cl2反应,生成碳膜;(5)将生成的碳膜置于Ar气中,在温度为1000-1100℃下退火10-25min,使碳膜在窗口处重构成结构化石墨烯。用本发明方法制备的结构化石墨烯表面光滑,孔隙率低,可用于制作微电子器件。

Description

基于Cl2反应的结构化石墨烯制备方法
技术领域
本发明属于微电子技术领域,涉及一种半导体薄膜材料及其制备方法,具体地说是基于Cl2反应的结构化石墨烯制备方法。
技术背景
石墨烯出现在实验室中是在2004年,当时,英国曼彻斯特大学的两位科学家安德烈·杰姆和克斯特亚·诺沃消洛夫发现他们能用一种非常简单的方法得到越来越薄的石墨薄片。他们从石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。这以后,制备石墨烯的新方法层出不穷。目前的制备方法主要有两种:
1.微机械剥离法:直接将石墨烯薄片从较大的晶体上剪裁下来。2004年Novoselovt等用这种方法制备出了单层石墨烯,并可以在外界环境下稳定存在,见文献“K.S.Novoselovt,science,(2004)《Electric field effect in atomically thincarbon films》”。典型制备方法是用另外一种材料膨化或者引入缺陷的热解石墨进行摩擦,体相石墨的表面会产生絮片状的晶体,在这些絮片状的晶体中含有单层的石墨烯。但缺点是此法是利用摩擦石墨表面获得的薄片来筛选出单层的石墨烯薄片,其尺寸不易控制,无法可靠地制造长度足够供应用的石墨烯薄片。
2.热分解SiC法:将单晶SiC加热以通过使表面上的SiC分解而除去Si,随后残留的碳形成石墨烯。然而,SiC热分解中使用的单晶SiC非常昂贵,并且生长出来的石墨烯呈岛状分布,层数不均匀,且尺寸较小,用这种石墨烯材料制作器件时,由于光刻工艺会使石墨烯的电子迁移率降低,从而影响了器件性能。
发明内容
本发明的目的在于针对上述已有技术的不足,提出一种基于Cl2反应的结构化石墨烯制备方法,以减少成本,提高石墨烯表面光滑度、降低孔隙率,实现在3C-SiC衬底上选择性地生长出结构化石墨烯,以免除在后续制造器件过程中要对石墨烯进行刻蚀的工艺过程,保证石墨烯的电子迁移率稳定,提高器件性能。
为实现上述目的,本发明的制备方法包括以下步骤:
(1)对4-12英寸的Si衬底基片进行标准清洗;
(2)将清洗后的Si衬底基片放入CVD系统反应室中,对反应室抽真空达到10-7mbar级别;
(3)在H2保护的情况下,使反应室逐步升温至碳化温度950℃-1150℃,通入流量为30sccm的C3H8,对衬底进行碳化3-7min,生长一层碳化层;
(4)对反应室加温直到达到1150℃-1300℃的生长温度后,再通入C3H8和SiH4,进行3C-SiC薄膜异质外延生长,生长时间为36-60min,然后在H2保护下逐步降温至室温,完成3C-SiC薄膜的生长;
(5)在生长好的3C-SiC薄膜表面利用等离子体增强化学气相沉积PECVD方法,淀积一层0.5-1μm厚的SiO2,作为掩膜;
(6)在掩膜表面涂一层光刻胶,再在掩膜上刻出与所需制作器件衬底形状相同的窗口,露出3C-SiC,形成结构化图形;
(7)将开窗后的样片置于石英管中,加热至700-1050℃;
(8)向石英管中通入Ar气和Cl2气的混合气体,持续3-5min,使Cl2与裸露的3C-SiC反应生成碳膜;
(9)将生成的碳膜样片置于Ar气中,在温度为1000-1100℃下退火10-25分钟,使碳膜在窗口位置重构成石墨烯。
本发明与现有技术相比具有如下优点:
1.本发明由于选择性地生长了结构化石墨烯,在此石墨烯上制作器件时无需对石墨烯进行刻蚀,因而石墨烯中的电子迁移率不会降低,保证了制作的器件性能。
2.本发明由于利用3C-SiC与Cl2气反应,因而生成的石墨烯表面光滑,空隙率低,且厚度容易控制。
3.本发明中3C-SiC与Cl2可在较低的温度和常压下反应,且反应速率快。
4.本发明由于3C-SiC可异质外延生长在Si圆片上,因而用此方法生长的结构化石墨烯成本低。
5.本发明由于在生长3C-SiC时先在Si衬底上成长一层碳化层作为过渡,然后再生长3C-SiC,因而生长的3C-SiC质量高。
附图说明
图1是本发明制备石墨烯的装置示意图;
图2是本发明制备石墨烯的流程图。
具体实施方式
参照图1,本发明的制备设备主要由石英管1和电阻炉2组成,其中石英管1设有进气口3和出气口4,电阻炉为2为环状空心结构,石英管1插装在电阻炉2内。
参照图2,本发明的制作方法给出如下三种实施例。
实施例1
步骤1:去除样品表面污染物。
对4英寸的Si衬底基片进行表面清洁处理,即先使用NH4OH+H2O2试剂浸泡样品10分钟,取出后烘干,以去除样品表面有机残余物;再使用HCl+H2O2试剂浸泡样品10分钟,取出后烘干,以去除离子污染物。
步骤2:将Si衬底基片放入CVD系统反应室中,对反应室抽真空达到10-7mbar级别。
步骤3:生长碳化层。
在H2保护的情况下将反应室温度升至碳化温度950℃,然后向反应室通入流量为30sccm的C3H8,在Si衬底上生长一层碳化层,生长时间为7min。
步骤4:在碳化层上生长3C-SiC薄膜。
将反应室温度迅速升至生长温度1150℃,通入流量分别为15sccm和30sccm的SiH4和C3H8,进行3C-SiC薄膜异质外延生长,生长时间为60min;然后在H2保护下逐步降温至室温,完成3C-SiC薄膜的生长。
步骤5:在生长好的3C-SiC薄膜表面淀积一层SiO2
(5.1)将生长好的3C-SiC薄膜样片放入PECVD系统内,将系统内部压力调为3.0Pa,射频功率调为100W,温度调为150℃;
(5.2)向系统内通入流速分别为30sccm、60sccm和200sccm的SiH4、N2O和N2,持续30min,使SiH4和N2O发生反应,从而在3C-SiC薄膜样片表面淀积一层0.5μm厚的SiO2掩膜层。
步骤6:在SiO2掩膜层上刻出图形窗口。
(6.1)在SiO2掩膜层上旋涂一层光刻胶;
(6.2)按照所要制作器件的衬底形状制成光刻版,然后再进行光刻,将光刻版上图形转移到SiO2掩膜层上;
(6.3)用缓冲氢氟酸腐蚀SiO2刻蚀出图形窗口,露出3C-SiC,形成结构化图形。
步骤7:将开窗后的样片装入石英管,并排气加热。
(7.1)将开窗后的样片装入石英管1中,把石英管置于电阻炉2中;
(7.2)从进气口3向石英管中通入流速为80sccm的Ar气,对石英管进行10分钟排空,将空气从出气口4排出;
(7.3)打开电阻炉电源开关,对石英管加热至700℃。
步骤8:生成碳膜
向石英管通入流速分别为98sccm和2sccm的Ar气和Cl2气,时间为5分钟,使Cl2与裸露的3C-SiC反应生成碳膜。
步骤9:使生成的碳膜重构成结构化石墨烯
将电阻炉温度升至1000℃,向石英管中通入流速为100sccm的Ar气,对生成的碳膜进行10分钟的退火,使碳膜在窗口位置重构成结构化石墨烯。
实施例2
步骤一:去除样品表面污染物。
对8英寸的Si衬底基片进行表面清洁处理,即先使用NH4OH+H2O2试剂浸泡样品10分钟,取出后烘干,以去除样品表面有机残余物;再使用HCl+H2O2试剂浸泡样品10分钟,取出后烘干,以去除离子污染物。
步骤二:与实施例1的步骤2相同。
步骤三:生长碳化层。
在H2保护的情况下将反应室温度升至碳化温度1050℃,然后向反应室通入流量为30sccm的C3H8,在Si衬底上生长一层碳化层,生长时间为5min。
步骤四:在碳化层上生长3C-SiC薄膜。
将反应室温度迅速升至生长温度1200℃,通入流量分别为20sccm和40sccm的SiH4和C3H8,进行3C-SiC薄膜异质外延生长,生长时间为45min;然后在H2保护下逐步降温至室温,完成3C-SiC薄膜的生长。
步骤五:在生长好的3C-SiC薄膜表面淀积一层SiO2
将生长好的3C-SiC薄膜样片放入PECVD系统内,将系统内部压力调为3.0Pa,射频功率调为100W,温度调为150℃;向系统内通入流速分别为30sccm、60sccm和200sccm的SiH4、N2O和N2,持续75min,使SiH4和N2O发生反应,从而在3C-SiC样片表面淀积一层0.8μm厚的SiO2掩膜层。
步骤六:与实施例1的步骤6相同。
步骤七:将开窗后的样片装入石英管,并排气加热。
将开窗后的样片置于石英管1中,把石英管置于电阻炉2中;从进气口3向石英管中通入流速为80sccm的Ar气,对石英管进行10分钟排空,将空气从出气口4排出;再打开电阻炉电源开关,对石英管加热至1000℃。
步骤八:生成碳膜
向石英管通入流速分别为97sccm和3sccm的Ar气和Cl2气,时间为4分钟,使Cl2与裸露的3C-SiC反应生成碳膜。
步骤九:使生成的碳膜重构成结构化石墨烯
将电阻炉温度升至1050℃,向石英管中通入流速为75sccm的Ar气,对生成的碳膜进行15分钟的退火,使碳膜在窗口位置重构成结构化石墨烯。
实施例3
步骤A:对12英寸的Si衬底基片进行表面清洁处理,即先使用NH4OH+H2O2试剂浸泡样品10分钟,取出后烘干,以去除样品表面有机残余物;再使用HCl+H2O2试剂浸泡样品10分钟,取出后烘干,以去除离子污染物。
步骤B:与实施例1的步骤2相同。
步骤C:在H2保护的情况下将反应室温度升至碳化温度1150℃,然后向反应室通入流量为30sccm的C3H8,持续3min,以在Si衬底上生长一层碳化层。
步骤D:将反应室温度迅速升至生长温度1300℃,通入流量分别为25sccm和50sccm的SiH4和C3H8,进行3C-SiC薄膜异质外延生长36min;然后在H2保护下逐步降温至室温。
步骤E:将生长好的3C-SiC薄膜样片放入PECVD系统内,将系统内部压力调为3.0Pa,射频功率调为100W,温度调为150℃;向系统内通入流速分别为30sccm、60sccm和200sccm的SiH4、N2O和N2,持续100min,使SiH4和N2O发生反应,在3C-SiC样片表面淀积一层1μm厚的SiO2掩膜层。
步骤F:与实施例1的步骤6相同。
步骤G:将开窗后的样片置于石英管1中,把石英管置于电阻炉2中;从进气口3向石英管中通入流速为80sccm的Ar气,对石英管进行10分钟排空,将空气从出气口4排出;再打开电阻炉电源开关,对石英管加热至1050℃。
步骤H:向石英管中通入流速分别为95sccm和5sccm的Ar气和Cl2气,时间为3分钟,使Cl2与裸露的3C-SiC反应生成碳膜。
步骤I:将电阻炉温度升至1100℃,向石英管中通入流速为25sccm的Ar气,对生成的碳膜进行25分钟的退火,使碳膜在窗口位置重构成结构化石墨烯。

Claims (5)

1.一种基于Cl2反应的结构化石墨烯制备方法,包括以下步骤:
(1)对4-12英寸的Si衬底基片进行标准清洗;
(2)将清洗后的Si衬底基片放入CVD系统反应室中,对反应室抽真空达到10-7mbar级别;
(3)在H2保护的情况下,使反应室逐步升温至碳化温度950℃-1150℃,通入流量为30sccm的C3H8,对衬底进行碳化3-7min,生长一层碳化层;
(4)对反应室加温直到达到1150℃-1300℃的生长温度后,再通入C3H8和SiH4,进行3C-SiC薄膜异质外延生长,生长时间为36-60min,然后在H2保护下逐步降温至室温,完成3C-SiC薄膜的生长;
(5)在生长好的3C-SiC薄膜表面利用等离子体增强化学气相沉积PECVD方法,淀积一层0.5-1μm厚的SiO2,作为掩膜;
(6)在掩膜表面涂一层光刻胶,再在掩膜上刻出与所需制作器件衬底形状相同的窗口,露出3C-SiC,形成结构化图形;
(7)将开窗后的样片置于石英管中,加热至700-1050℃;
(8)向石英管中通入Ar气和Cl2气的混合气体,持续3-5min,使Cl2与裸露的3C-SiC反应生成碳膜;
(9)将生成的碳膜样片置于Ar气中,在温度为1000-1100℃下退火10-25分钟,使碳膜在窗口位置重构成石墨烯。
2.根据权利要求1所述的基于Cl2反应的结构化石墨烯制备方法,其中所述步骤(4)通入的SiH4和C3H8,其流量分别为15-25sccm和30-50sccm。
3.根据权利要求1所述的基于Cl2反应的结构化石墨烯制备方法,其中所述步骤(5)中的PECVD淀积SiO2,其工艺条件为:
SiH4、N2O和N2流速分别为30sccm、60sccm和200sccm,
反应腔内压力为3.0Pa,
射频功率为100W,
淀积温度为150℃,
淀积时间为30-100min。
4.根据权利要求1所述的基于Cl2反应的结构化石墨烯制备方法,其中所述步骤(8)中通入的Ar气和Cl2气,其流速分别为95-98sccm和5-2sccm。
5.根据权利要求1所述的基于Cl2反应的结构化石墨烯制备方法,其中所述步骤(9)退火时的Ar气流速为25-100sccm。
CN2012101585530A 2012-05-22 2012-05-22 基于Cl2反应的结构化石墨烯制备方法 Pending CN102674329A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012101585530A CN102674329A (zh) 2012-05-22 2012-05-22 基于Cl2反应的结构化石墨烯制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012101585530A CN102674329A (zh) 2012-05-22 2012-05-22 基于Cl2反应的结构化石墨烯制备方法

Publications (1)

Publication Number Publication Date
CN102674329A true CN102674329A (zh) 2012-09-19

Family

ID=46806974

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012101585530A Pending CN102674329A (zh) 2012-05-22 2012-05-22 基于Cl2反应的结构化石墨烯制备方法

Country Status (1)

Country Link
CN (1) CN102674329A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931060A (zh) * 2012-11-23 2013-02-13 西安电子科技大学 基于SiC与氯气反应的Ni膜退火图形化石墨烯制备方法
CN102936011A (zh) * 2012-11-23 2013-02-20 西安电子科技大学 基于3C-SiC与氯气反应的Ni膜退火图形化石墨烯制备方法
CN102936746A (zh) * 2012-10-29 2013-02-20 武汉理工大学 在低温常压及卤化条件下直接将无定形碳化物转化为石墨烯的方法
WO2013174139A1 (zh) * 2012-05-23 2013-11-28 西安电子科技大学 基于Cl2反应的SiC衬底上制备结构化石墨烯的方法
CN106145096A (zh) * 2015-05-13 2016-11-23 储晞 三维石墨烯生产方法、装置、复合电极材料及制备与应用
US9691612B2 (en) 2012-01-03 2017-06-27 Xidian University Process for preparing graphene on a SiC substrate based on metal film-assisted annealing
CN108046246A (zh) * 2017-12-22 2018-05-18 中国电子科技集团公司第五十五研究所 一种工艺气体辅助的石墨烯薄膜生长方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1716522A (zh) * 2004-06-30 2006-01-04 齐卡博制陶业有限公司 金属碳化物衬底表面的处理方法及这种金属碳化物衬底
CN101150055A (zh) * 2006-09-18 2008-03-26 中国科学院半导体研究所 用于MEMS器件的大面积3C-SiC薄膜的制备方法
CN101602503A (zh) * 2009-07-20 2009-12-16 西安电子科技大学 4H-SiC硅面外延生长石墨烯的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1716522A (zh) * 2004-06-30 2006-01-04 齐卡博制陶业有限公司 金属碳化物衬底表面的处理方法及这种金属碳化物衬底
CN101150055A (zh) * 2006-09-18 2008-03-26 中国科学院半导体研究所 用于MEMS器件的大面积3C-SiC薄膜的制备方法
CN101602503A (zh) * 2009-07-20 2009-12-16 西安电子科技大学 4H-SiC硅面外延生长石墨烯的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A.V. ZINOVEV ET AL.: "Etching of hexagonal SiC surfaces in chlorine-containing gas media at mbient pressure", 《SURFACE SCIENCE》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9691612B2 (en) 2012-01-03 2017-06-27 Xidian University Process for preparing graphene on a SiC substrate based on metal film-assisted annealing
WO2013174139A1 (zh) * 2012-05-23 2013-11-28 西安电子科技大学 基于Cl2反应的SiC衬底上制备结构化石墨烯的方法
US9951418B2 (en) 2012-05-23 2018-04-24 Xidian University Method for preparing structured graphene on SiC substrate based on Cl2 reaction
CN102936746A (zh) * 2012-10-29 2013-02-20 武汉理工大学 在低温常压及卤化条件下直接将无定形碳化物转化为石墨烯的方法
CN102936746B (zh) * 2012-10-29 2015-09-30 武汉理工大学 在低温常压及卤化条件下直接将无定形碳化物转化为石墨烯的方法
CN102931060A (zh) * 2012-11-23 2013-02-13 西安电子科技大学 基于SiC与氯气反应的Ni膜退火图形化石墨烯制备方法
CN102936011A (zh) * 2012-11-23 2013-02-20 西安电子科技大学 基于3C-SiC与氯气反应的Ni膜退火图形化石墨烯制备方法
CN102936011B (zh) * 2012-11-23 2014-07-09 西安电子科技大学 基于3C-SiC与氯气反应的Ni膜退火图形化石墨烯制备方法
CN106145096A (zh) * 2015-05-13 2016-11-23 储晞 三维石墨烯生产方法、装置、复合电极材料及制备与应用
CN108046246A (zh) * 2017-12-22 2018-05-18 中国电子科技集团公司第五十五研究所 一种工艺气体辅助的石墨烯薄膜生长方法

Similar Documents

Publication Publication Date Title
CN102583329B (zh) 基于Cu膜辅助退火和Cl2反应的大面积石墨烯制备方法
CN102583331B (zh) 基于Ni膜辅助退火和Cl2反应的大面积石墨烯制备方法
CN102674329A (zh) 基于Cl2反应的结构化石墨烯制备方法
CN102674333B (zh) 基于Ni膜退火和Cl2反应的结构化石墨烯制备方法
CN101285175B (zh) 化学气相沉积法制备石墨烯的方法
CN102505114A (zh) 基于Ni膜辅助退火的SiC衬底上石墨烯制备方法
CN102653401B (zh) 基于Ni膜退火的结构化石墨烯制备方法
CN102674328A (zh) 基于Cu膜退火的结构化石墨烯制备方法
CN102560414A (zh) 在3C-SiC衬底上制备石墨烯的方法
CN102701789B (zh) 基于Cl2反应的SiC衬底上制备结构化石墨烯的方法
CN102674330A (zh) 基于Cu膜退火的SiC衬底上结构化石墨烯制备方法
CN102583325B (zh) 基于Ni膜退火和Cl2反应的SiC衬底上制备石墨烯的方法
CN102718207A (zh) 基于Cu膜退火和Cl2反应的结构化石墨烯制备方法
CN102674331A (zh) 基于Ni膜退火的SiC与Cl2反应制备结构化石墨烯的方法
CN102674332A (zh) 基于Cu膜退火的SiC与Cl2反应制备结构化石墨烯的方法
CN102505141A (zh) 基于Cu膜辅助退火的石墨烯制备方法
CN109081332B (zh) 石墨烯纳米图形化蓝宝石衬底及其制备方法
CN102718208A (zh) 基于Ni膜退火的SiC衬底上结构化石墨烯制备方法
CN102530936A (zh) 基于Cl2反应的SiC衬底上制备石墨烯的方法
CN102505113B (zh) 基于Cl2反应的大面积石墨烯制备方法
CN102723258A (zh) 以SiC为基底的结构化石墨烯制备方法
CN102583330B (zh) 基于Cu膜辅助退火的SiC衬底上石墨烯制备方法
CN102936011B (zh) 基于3C-SiC与氯气反应的Ni膜退火图形化石墨烯制备方法
CN102505140A (zh) 基于Ni膜辅助退火的石墨烯制备方法
CN102924119A (zh) 基于3C-SiC与氯气反应的Cu膜退火图形化石墨烯制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120919