WO2013164879A1 - 電力貯蔵電池 - Google Patents

電力貯蔵電池 Download PDF

Info

Publication number
WO2013164879A1
WO2013164879A1 PCT/JP2012/061546 JP2012061546W WO2013164879A1 WO 2013164879 A1 WO2013164879 A1 WO 2013164879A1 JP 2012061546 W JP2012061546 W JP 2012061546W WO 2013164879 A1 WO2013164879 A1 WO 2013164879A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode electrolyte
aqueous solution
mol
polyethyleneimine
Prior art date
Application number
PCT/JP2012/061546
Other languages
English (en)
French (fr)
Inventor
洋成 出口
嵐 黄
有希 植村
昭介 山之内
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Priority to EP12876002.2A priority Critical patent/EP2846389B1/en
Priority to IN8835DEN2014 priority patent/IN2014DN08835A/en
Priority to JP2014513318A priority patent/JP5768933B2/ja
Priority to PCT/JP2012/061546 priority patent/WO2013164879A1/ja
Priority to US14/388,246 priority patent/US9577283B2/en
Priority to CN201280067242.1A priority patent/CN104054203B/zh
Publication of WO2013164879A1 publication Critical patent/WO2013164879A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/604Polymers containing aliphatic main chain polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a power storage battery such as a redox flow battery.
  • Patent Document 1 proposes a configuration in which the negative electrode electrolyte is an aqueous solution containing an iron redox-based material as an active material on the negative electrode side and containing a chelating agent or a complexing agent for shifting the potential to the negative side.
  • the positive electrode electrolyte is an aqueous solution containing a manganese redox-based material as an active material on the positive electrode side.
  • manganese oxide has a strong oxidizing power and decomposes (oxidizes) a wide range of organic substances in water. Therefore, potassium permanganate, which is a kind of manganese oxide, is used as an oxidizing agent for measuring the amount of organic matter in water, that is, the COD value (see Non-Patent Document 1). Manganese ions also have a strong oxidizing power.
  • Non-Patent Document 2 Even in the case of Mn (III) -EDTA (ethylenediaminetetraacetic acid) complex that is complexed with a chelating agent or a complexing agent, the ligand is oxidized to generate carbon dioxide gas, and self-decomposition It is known that this occurs (see Non-Patent Document 2).
  • Mn (III) -EDTA ethylenediaminetetraacetic acid
  • Patent Document 2 proposes the use of a chelating agent or a complexing agent in order to prevent precipitation of manganese compounds.
  • Patent Document 3 proposes the use of a chelating agent or a complexing agent in order to improve the reactivity of manganese ions in the positive electrode electrolyte of a microbial battery.
  • JP 56-42970 (published April 21, 1981) JP 57-9073 (published January 18, 1982) JP 2009-23130 (released Oct. 8, 2009)
  • MSDS “MSDS / Reagent website (http://www.wako-chem.co.jp/siyaku/msds.htm)” Ethylenediamine (reference number: JW050093) Product Safety Data Sheet (MSDS) : September 1, 2001, Revised date: October 14, 2010)
  • Patent Documents 2 and 3 have the disadvantage that many types of chelating agents and complexing agents are decomposed by the oxidizing power of manganese ions. If the chelating agent or complexing agent is decomposed by the oxidizing power of manganese ions contained in the positive electrode electrolyte, the redox flow battery will self-discharge, which reduces the energy efficiency of the redox flow battery. have. Further, since the chelating agent and the complexing agent are reduced, the manganese compound is easily precipitated, and the reactivity of manganese ions is lowered. For this reason, there also exists a problem that the performance of a redox flow type battery falls. Therefore, a redox flow battery using a manganese redox-based material has not yet been put into practical use.
  • the present invention has been made in view of the above-mentioned problems, and its main purpose is to use a redox flow battery having sufficient durability to be widely put into practical use using a manganese redox-based material. It is to provide a power storage battery.
  • the inventor of the present application diligently studied chelating agents and complexing agents that can withstand the oxidizing power of manganese ions (not decomposed (oxidized)). As a result, only polyethyleneimine can withstand the oxidizing power of manganese ions (not decomposed (oxidized)), can prevent precipitation of manganese compounds, and can prevent self-discharge of power storage batteries.
  • the present invention has been completed.
  • the power storage battery according to the present invention is a redox type power storage battery in which the positive electrode electrolyte contains a manganese redox-based material as an active material on the positive electrode side and polyethyleneimine. It is characterized by being an aqueous solution containing.
  • the positive electrode electrolyte is an aqueous solution containing polyethyleneimine
  • precipitation of the manganese compound can be prevented, self-discharge of the power storage battery can be prevented, and the reactivity of manganese ions can be prevented.
  • the molar ratio between manganese ions and nitrogen atoms contained in polyethyleneimine is more preferably in the range of 1: 1 to 1: 5.
  • the nitrogen atom contained in polyethyleneimine refers to a nitrogen atom contained in ethyleneimine (—CH 2 CH 2 NH—) which is a basic unit.
  • ethyleneimine —CH 2 CH 2 NH—
  • the reactivity of manganese ions is most improved when the molar ratio is 1: 1, and when used near 60 ° C. It was found that the reactivity of manganese ions was most improved when the molar ratio was 1: 5. Therefore, according to the above configuration, it is possible to provide a power storage battery in which the reactivity of manganese ions is further improved.
  • the concentration of the manganese-polyethyleneimine complex contained in the positive electrode electrolyte is more preferably 0.2 mol / L or more and 2.5 mol / L or less.
  • the pH of the positive electrode electrolyte is more preferably in the range of 2-7.
  • the manganese redox material is more preferably manganese sulfate.
  • the positive electrode electrolyte contains chlorine ions, chlorine gas is generated when manganese ions are oxidized by charging the power storage battery. If the positive electrode electrolyte contains an organic substance, the organic substance is decomposed by the oxidizing power of manganese ions, and the power storage battery self-discharges. However, manganese sulfate does not contain chlorine ions or organic substances. Therefore, according to the above configuration, it is possible to provide a power storage battery that does not generate chlorine gas and that can further prevent self-discharge.
  • the positive electrode electrolyte is more preferably electrolytically oxidized.
  • manganese redox-based substance is manganese (II) sulfate
  • manganese (II) sulfate manganese ions generated when polyethyleneimine is dissolved in an aqueous solution containing manganese (II) sulfate is considered to be divalent.
  • the valence of manganese ions changes between divalent and trivalent during the redox reaction.
  • an aqueous solution containing divalent manganese ions is electrolytically oxidized, most of the manganese ions are considered to be trivalent (however, the exact valence (valence distribution) is unknown).
  • the manganese ion contained in the positive electrode electrolyte obtained by electrolytic oxidation of an aqueous solution containing manganese ions changes in valence between trivalent and tetravalent during the redox reaction. Therefore, according to the above configuration, precipitation of the manganese compound can be further prevented, self-discharge of the power storage battery can be further prevented, and the reactivity of the manganese ion can be further improved.
  • a storage battery can be provided.
  • the positive electrode electrolyte is more preferably shielded from oxygen in the atmosphere.
  • a storage battery can be provided.
  • the negative electrode electrolyte is more preferably an aqueous solution containing an iron redox-based material as an active material on the negative electrode side.
  • the negative electrode electrolyte is more preferably an aqueous solution containing an iron-diethylenetriaminepentaacetic acid complex.
  • it is more preferable that the negative electrode electrolyte is electrolytically oxidized.
  • the power storage battery according to the present invention is more preferably a redox flow battery.
  • a power storage battery that can prevent precipitation of a manganese compound, can prevent self-discharge of the power storage battery, and has improved manganese ion reactivity. be able to. Therefore, it is possible to provide a power storage battery having sufficient durability to be widely put into practical use by using a manganese redox material.
  • Example 4 is a graph showing electrode characteristics at 20 ° C. of an electrode immersed in the positive electrode electrolyte b obtained in Example 3.
  • 6 is a graph showing electrode characteristics at 60 ° C. of an electrode immersed in the positive electrode electrolyte b obtained in Example 3.
  • 6 is a graph showing the electrode characteristics of an electrode immersed in the positive electrode electrolyte c-1 obtained in Example 4.
  • 6 is a graph showing electrode characteristics of an electrode immersed in the positive electrode electrolyte c-2 obtained in Example 4.
  • 6 is a graph showing electrode characteristics of an electrode immersed in the positive electrode electrolyte c-3 obtained in Example 4.
  • 6 is a graph showing electrode characteristics of an electrode immersed in a positive electrode electrolyte c-4 obtained in Example 4.
  • FIG. 4 is a graph showing “electrolyte utilization” of the redox flow battery of Example 2 and “electrolyte utilization” of the redox flow battery of Comparative Example 10.
  • FIG. 4 is a graph showing “electrolyte utilization” of the redox flow battery of Example 2 and “electrolyte utilization” of the redox flow battery of Comparative Example 10.
  • the power storage battery according to the present invention is a redox-type power storage battery in which the positive electrode electrolyte is an aqueous solution containing a manganese redox-based material as an active material on the positive electrode side and containing polyethyleneimine.
  • the “manganese redox substance” refers to a compound that generates manganese ions whose valence changes in an ionic state during redox reaction (participates in redox reaction). The same applies to iron.
  • the description “A to B” indicating a numerical range indicates “A or more and B or less” unless otherwise specified. Accordingly, in the present invention, for example, “pH 2 to 7” means that the pH is 2 or more and 7 or less.
  • the “number of moles of polyethyleneimine” refers to the number of moles of nitrogen atoms contained in the basic unit ethyleneimine (—CH 2 CH 2 NH—).
  • one mole of polyethyleneimine means that the number of moles of nitrogen atoms contained in the basic unit ethyleneimine (molecular weight 43) is one mole, that is, the number of moles of ethyleneimine is one mole. (Hence, “polyethyleneimine 1 mol” is 43 g).
  • a redox flow battery is taken as an example of the power storage battery.
  • the present invention is not limited to this, and can be implemented in a mode in which various modifications are added within the range described.
  • the redox flow battery 1 As shown in FIG. 1, the redox flow battery 1 according to the present embodiment mainly includes a charge / discharge cell (battery container) 2, a positive electrode electrolyte tank 3, and a negative electrode electrolyte tank 4.
  • the inside of the charge / discharge cell 2 is partitioned into a positive electrode side cell 2a and a negative electrode side cell 2b by a diaphragm 11 made of, for example, an ion exchange membrane.
  • the charge / discharge cell 2 may be provided with a temperature control device that keeps the temperature constant.
  • the positive electrode side cell 2a accommodates a current collector plate 12 such as a glassy carbon plate and a positive electrode 13 made of, for example, carbon felt.
  • the negative electrode side cell 2b accommodates a current collector plate 14 such as a glassy carbon plate and a negative electrode 15 made of, for example, carbon felt.
  • the positive electrode 13 is impregnated with a positive electrode electrolyte
  • the negative electrode 15 is impregnated with a negative electrode electrolyte.
  • the positive electrode electrolyte and the negative electrode electrolyte have a pH in the range of 2 to 7, are not strongly acidic, and are poor in corrosiveness, so that they are excellent in handleability.
  • the current collecting plates 12 and 14 are electrically connected to the charging / discharging device 10.
  • the positive electrode 13 performs a reduction reaction and receives electrons
  • the negative electrode 15 performs an oxidation reaction and emits electrons.
  • the current collecting plate 12 receives electrons from the charging / discharging device 10 and supplies them to the positive electrode 13, and the current collecting plate 14 collects electrons emitted from the negative electrode 15 and collects them in the charging / discharging device 10. It comes to supply.
  • the positive electrode 13 performs an oxidation reaction and emits electrons
  • the negative electrode 15 performs a reduction reaction and receives electrons.
  • the current collector 12 collects the electrons emitted from the positive electrode 13 and supplies them to the charging / discharging device 10.
  • the current collector 14 receives the electrons from the charging / discharging device 10 and supplies them to the negative electrode 15. It comes to supply.
  • the positive electrode electrolyte tank 3 is a tank for storing the positive electrode electrolyte, and is connected to the positive electrode side cell 2a. That is, the positive electrode electrolyte tank 3 supplies the positive electrode electrolyte to the positive electrode 13 in the positive electrode side cell 2a through the supply pipe 3a, and the positive electrode electrolyte that has passed through the positive electrode 13 passes through the recovery pipe 3b. It comes to collect.
  • the positive electrode electrolyte is circulated by a pump 5 provided in the supply pipe 3a.
  • the supply amount of the positive electrode electrolyte per unit time to the positive electrode side cell 2a at the time of charge / discharge and the capacity of the positive electrode electrolyte tank 3 depend on the size of the charge / discharge cell 2, the capacity required for the redox flow battery 1 and the like. There is no particular limitation.
  • the negative electrode electrolyte tank 4 is a tank for storing the negative electrode electrolyte, and is connected to the negative electrode side cell 2b. That is, the negative electrode electrolyte tank 4 supplies the negative electrode electrolyte to the negative electrode 15 in the negative electrode side cell 2b through the supply pipe 4a, and the negative electrode electrolyte that has passed through the negative electrode 15 passes through the recovery pipe 4b. It comes to collect.
  • the negative electrode electrolyte is circulated by a pump 6 provided in the supply pipe 4a.
  • the supply amount of the negative electrode electrolyte per unit time to the negative electrode side cell 2b during charge / discharge and the capacity of the negative electrode electrolyte tank 4 depend on the size of the charge / discharge cell 2 and the capacity required of the redox flow battery 1 and the like. There is no particular limitation.
  • the electrolyte in the charge / discharge cell 2 can be exchanged. Therefore, in the redox flow battery 1 according to the present embodiment, a long-time (so-called large-capacity battery). ) Charging and discharging are possible.
  • the charge / discharge cell 2, the positive electrode electrolyte tank 3 and the negative electrode electrolyte tank 4 are supplied with an inert gas such as nitrogen gas from a gas supply device (not shown) through an inert gas supply pipe 7. Thereby, the positive electrode electrolyte and the negative electrode electrolyte are shielded from oxygen in the atmosphere.
  • the inert gas supplied from the inert gas supply pipe 7 is exhausted to the outside through the exhaust pipe 8.
  • the front end of the exhaust pipe 8 is sealed with a water-sealed pipe 9 to prevent backflow of the atmosphere and keep the air pressure in the charge / discharge cell 2, the positive electrode electrolyte tank 3 and the negative electrode electrolyte tank 4 constant. ing.
  • the inert gas supply pipe 7 may supply an inert gas to the gas phase portion of the charge / discharge cell 2 and the positive electrode electrolyte tank 3 and the negative electrode electrolyte tank 4. And you may come to supply by bubbling in a negative electrode electrolyte solution.
  • the above-described positive electrode electrolyte and negative electrode electrolyte have a pH in the range of 2 to 7, and are not strongly acidic and poor in corrosiveness.
  • the degree of freedom of material selection of each constituent member constituting the flow type battery 1 is great.
  • the positive electrode electrolyte and the negative electrode electrolyte are strongly acidic, there are restrictions on the selection of materials that can be used as battery containers (for example, plastics that are hydrolyzed cannot be used), Since the positive electrode electrolyte and the negative electrode electrolyte are not strongly acidic, specific examples of the material of the charge / discharge cell 2 include, for example, general-purpose plastics and relatively, such as Sn, Al, Ti, Cu, Fe, and Ni. An inexpensive metal can be used.
  • the materials exemplified above can also be used as materials for the positive electrode electrolyte tank 3, the pump 5, the supply pipe 3a, the recovery pipe 3b, the negative electrode electrolyte tank 4, the pump 6, the supply pipe 4a, and the recovery pipe 4b.
  • the redox flow battery 1 can be manufactured at a relatively low cost. Further, since it is poorly corrosive, the service life of the redox flow battery 1 is longer than that of a conventional redox flow battery (using a strongly acidic electrolyte). Therefore, the redox flow battery 1 is easy to mass-produce (industrialize) at a relatively low cost as compared with the conventional redox flow battery (using a strongly acidic electrolyte).
  • each constituent member constituting the redox flow type battery 1 has an appropriate mechanical strength sufficient to maintain the apparatus, and may be made of a material that is not corroded by the positive electrode electrolyte and the negative electrode electrolyte. The material is not limited to the above exemplified materials.
  • the negative electrode electrolyte preferably has a pH in the range of 2 to 7, more preferably in the range of 4 to 6, and can perform a good redox reaction under conditions of pH 2 to 7 (ion The aqueous solution containing the active material on the negative electrode side may be used.
  • the negative electrode electrolyte include, for example, an aqueous solution containing an Fe-DTPA (diethylenetriaminepentaacetic acid) complex, an aqueous solution containing an Fe-EDTA (ethylenediaminetetraacetic acid) complex, and Fe-EGTA (O, O′-bis ( 2-aminoethyl) ethylene glycol-N, N, N ′, N′-tetraacetic acid) complex-containing aqueous solution, Fe-EDTA-OH (N- (2-hydroxyethyl) ethylenediamine-N, N ′, N′- Aqueous solution containing (triacetic acid) complex, aqueous solution containing Fe-NTA (nitrilotriacetic acid) complex, aqueous solution containing Cr-DTPA complex, aqueous solution containing Cr-EDTA complex, aqueous solution containing Cr-EGTA complex, Cr-EDTA-OH Aqueous solution containing complex, aqueous solution containing Cr-DT
  • an aqueous solution containing an iron redox-based material as an active material on the negative electrode side that is, an Fe complex
  • An aqueous solution containing is more preferable, and an aqueous solution containing an Fe-DTPA complex is most preferable.
  • a redox flow battery using an aqueous solution containing an Fe complex as a negative electrode electrolyte has an excellent charge / discharge reaction rate.
  • the concentration of the Fe complex in the aqueous solution is more preferably 0.2 mol / L or more and 2.5 mol / L or less. More preferably, it is 3 mol / L or more and 2.0 mol / L or less, and most preferably 0.5 mol / L or more and 1.0 mol / L or less.
  • the negative electrode electrolyte is more preferably electrolytically oxidized.
  • the negative electrode electrolyte is an aqueous solution containing, for example, an Fe-DTPA complex and is electrolytically oxidized, the complex becomes an Fe (II) -DTPA complex in a charged state and Fe (III) that has released electrons in a discharged state.
  • -It becomes a DTPA complex.
  • the redox flow type battery which was further excellent in performance can be provided.
  • the negative electrode electrolyte may further contain a known electrolyte (conductive salt) such as sodium sulfate (Na 2 SO 4 ), sodium acetate, sodium salt of EDTA, NaCl, and the like in addition to the complex.
  • a known electrolyte conductive salt
  • the preparation method of a negative electrode electrolyte solution can employ
  • the water used for the negative electrode electrolyte is sufficient if it has a purity equivalent to or higher than that of distilled water.
  • the aqueous solution containing the Fe, Cr aminopolycarboxylic acid chelate in particular, the aqueous solution containing the Cr aminopolycarboxylic acid chelate is used in order to more completely form the chelate, that is, the complex. More preferably, the mixture is heated to reflux for about 4 to 18 hours.
  • the reflux operation is not performed, there is a possibility that Cr or the like is deposited or that the power storage battery using the aqueous solution cannot be charged.
  • the reflux operation may be performed in several steps.
  • aminopolycarboxylic acid constituting the aminopolycarboxylic acid chelate such as Fe and Cr include, for example, diethylenetriaminepentaacetic acid ⁇ DTPA (Diethylene Triamine Pentaacetic acid) (“DTPA (5H)”) (CH 2 COOH) 2 NCH 2 CH 2 N (CH 2 COOH) CH 2 CH 2 N (CH 2 COOH) 2 ⁇ and salts thereof, ethylenediaminetetraacetic acid ⁇ EDTA (Ethylene Diamine Tetraacetic acid); 2 COOH) 2 NCH 2 CH 2 N (CH 2 COOH) 2 ⁇ and salts thereof, O, O′-bis (2-aminoethyl) ethylene glycol-N, N, N ′, N′-tetraacetic acid ⁇ EGTA ( O, O'-bis (2- aminoethyl) ethyleneglycol -N, N, N ', N'- tetraacetic acid); (CH 2 COOH) 2 NCH 2 CH
  • a method for preparing an aminopolycarboxylic acid chelate of Fe using an inorganic compound of Fe and an aminopolycarboxylic acid as a starting material is not particularly limited, and a known chelating method can be employed.
  • the Fe complex can be produced by using FeSO 4 as a starting material (raw material) and coordinating aminopolycarboxylic acid as a ligand. That is, the method for preparing Fe aminopolycarboxylic acid chelate is not particularly limited.
  • the inorganic compound of Fe may be a water-soluble compound (solubility of 0.2 mol / L or more) suitable for chelation.
  • the positive electrode electrolyte preferably has a pH in the range of 2 to 7, more preferably in the range of 3 to 6, and can perform a good redox reaction under the conditions of pH 2 to 7 (ion
  • the aqueous solution containing the active material on the positive electrode side that is, the aqueous solution containing the polyethylene redine material as the active material on the positive electrode side, may be used.
  • the manganese redox-based substance is not particularly limited as long as it is a compound that generates manganese ions whose valence changes in the state of ions during redox reaction (participating in redox reaction), and is not particularly limited. It is desirable that no organic substances are contained.
  • Specific examples of the manganese redox-based substance include manganese sulfate and potassium permanganate. Among these, manganese sulfate is most preferable.
  • chlorine ions are contained in the positive electrode electrolyte, chlorine gas is generated when manganese ions are oxidized by charging the redox flow battery. If the positive electrode electrolyte contains an organic substance, the organic substance is decomposed by the oxidizing power of manganese ions, and the redox flow battery is self-discharged. However, since the exemplified compounds do not contain chlorine ions or organic substances, chlorine gas is not generated, and self-discharge can be further prevented.
  • the polyethyleneimine can withstand the oxidizing power of manganese ions (not decomposed (oxidized)), it acts as a chelating agent or a complexing agent on manganese ions to form a Mn-polyethyleneimine complex.
  • Polyethyleneimine is usually marketed as a mixture of compounds having different degrees of polymerization, and a commercially available product can be suitably used in the present invention. Accordingly, the polyethyleneimine may be a mixture having a primary, secondary, or tertiary amine structure (branched structure) as long as it does not hinder the formation of the Mn-polyethyleneimine complex.
  • the average molecular weight of the polyethyleneimine is not particularly limited, but preferably has water solubility suitable for chelation (solubility is 0.2 mol / L or more), specifically, 300 or more, It is more preferably 10,000 or less, and further preferably 600 or more and 1800 or less.
  • water solubility is 0.2 mol / L or more
  • it is more preferably 10,000 or less, and further preferably 600 or more and 1800 or less.
  • the molecular weight distribution of polyethyleneimine is not particularly limited, it is desirable that the molecular weight distribution is narrower so that the performance is stable.
  • the positive electrode electrolyte contains polyethyleneimine
  • precipitation of the manganese compound can be prevented, self-discharge of the redox flow battery can be prevented, and the reactivity of manganese ions can be improved. Therefore, it is possible to provide a redox flow battery having sufficient durability to be widely put into practical use by using a manganese redox material.
  • the amount of polyethyleneimine relative to the manganese redox substance, that is, the molar ratio of manganese ions to nitrogen atoms contained in polyethyleneimine is more preferably in the range of 1: 1 to 1: 5.
  • the nitrogen atom contained in polyethyleneimine refers to a nitrogen atom contained in ethyleneimine (—CH 2 CH 2 NH—) which is a basic unit.
  • the redox flow type battery when the redox flow type battery is used near 20 ° C., the reactivity of manganese ions is most improved when the molar ratio is 1: 1, and the redox flow type battery is used near 60 ° C. In some cases, it was found that the reactivity of manganese ions was most improved when the molar ratio was 1: 5. Therefore, according to said structure, the reactivity of manganese ion can be improved further.
  • the positive electrode electrolyte is an aqueous solution containing a Mn-polyethyleneimine complex.
  • concentration of the Mn-polyethyleneimine complex contained in the positive electrode electrolyte is more preferably from 0.2 mol / L to 2.5 mol / L, more preferably from 0.2 mol / L to 1.5 mol. / L or less is more preferable, and 0.5 mol / L or more and 1.5 mol / L or less is most preferable.
  • the positive electrode electrolyte is more preferably electrolytically oxidized.
  • the Mn-polyethyleneimine complex becomes a Mn (IV) -polyethyleneimine complex that releases electrons in a charged state, and becomes a Mn (III) -polyethyleneimine complex in a discharged state.
  • the manganese redox material is manganese (II) sulfate
  • manganese ions generated when polyethyleneimine is dissolved in an aqueous solution containing manganese sulfate (II) is considered to be divalent. .
  • the valence of manganese ions changes between divalent and trivalent during the redox reaction.
  • an aqueous solution containing divalent manganese ions is electrolytically oxidized, most of the manganese ions are considered to be trivalent (however, the exact valence (valence distribution) is unknown). Therefore, the manganese ion contained in the positive electrode electrolyte obtained by electrolytic oxidation of an aqueous solution containing manganese ions changes in valence between trivalent and tetravalent during the redox reaction.
  • the Mn (IV) -polyethyleneimine complex that has released electrons in the charged state and the Mn (III) -polyethyleneimine complex in the discharged state can be used.
  • the precipitation of the compound can be further prevented, the self-discharge of the redox flow battery can be further prevented, and the reactivity of manganese ions can be further improved.
  • the positive electrode electrolyte further contains a known electrolyte (conductive salt) such as sodium sulfate (Na 2 SO 4 ), sodium acetate, sodium salt of EDTA, NaCl, and the like. May be.
  • a known electrolyte conductive salt
  • the preparation method of positive electrode electrolyte solution can employ
  • the water used for the positive electrode electrolyte is sufficient if it has a purity equivalent to or higher than that of distilled water.
  • the positive electrode electrolyte is more preferably shielded from oxygen in the atmosphere by an inert gas in the redox flow battery.
  • the detailed mechanism is unknown, when the positive electrode electrolyte is exposed to oxygen in the atmosphere, the redox flow battery is self-discharged, and thereafter good charge / discharge cannot be performed. Therefore, by blocking the positive electrode electrolyte from oxygen in the atmosphere, precipitation of the manganese compound can be further prevented, self-discharge of the redox flow battery can be further prevented, and manganese ions can be prevented. The reactivity can be further improved.
  • the redox flow battery according to the present embodiment is an aqueous solution in which the positive electrode electrolyte contains a Mn-polyethyleneimine complex, and Mn has a relatively high electromotive force. can do.
  • the redox flow battery has higher energy efficiency and better charge / discharge cycle characteristics (reversibility) when the coulomb efficiency is higher.
  • the Coulomb efficiency is preferably 65% or more, and more preferably 80% or more.
  • the energy efficiency is preferably 40% or more, and more preferably 60% or more.
  • the charge / discharge cycle characteristics (reversibility) are preferably 90% or more practically.
  • the voltage efficiency is preferably 60% or more practically, and more preferably 75% or more.
  • the utilization factor of the electrolytic solution is preferably 28% or more, and more preferably 55% or more.
  • the Coulomb efficiency can be 65% or more, more preferably 80% or more.
  • the energy efficiency can be 40% or more, more preferably 60% or more.
  • the charge / discharge cycle characteristics (reversibility) can be 90% or more.
  • the voltage efficiency can be 60% or more, more preferably 75% or more.
  • the utilization factor of the electrolytic solution can be 28% or more, more preferably 75% or more.
  • the redox flow battery according to the present embodiment can withstand the use of several thousand cycles, it can be suitably used as a power storage battery.
  • Specific methods for calculating various performances charge / discharge cycle characteristics (reversibility), Coulomb efficiency, voltage efficiency, energy efficiency, and utilization rate of electrolyte) will be described in the following examples.
  • the positive electrode electrolyte and the negative electrode electrolyte may be composed of aqueous solutions having different compositions (so-called two-component type), or on the positive electrode side.
  • aqueous solution of the same composition formed by mixing both electrolytes So-called premix system
  • Example 1 The performance evaluation of the redox flow battery was performed by the following method.
  • a negative electrode electrolyte was prepared by the following method. That is, first, 0.02 mol (7.87 g) of DTPA (5H) and 0.1 mol (4.0 g) of NaOH were added and dissolved in 50 ml of distilled water. Subsequently, 0.02 mol (5.56 g) of FeSO 4 .7H 2 O was added to this aqueous solution and dissolved, and then 0.05 mol (7.1 g) of Na 2 SO 4 (conductive salt) was added. In addition, it was dissolved. Then, distilled water was added so that the total amount became 100 ml. Thereby, an aqueous solution having a concentration of Fe (II) -DTPA complex of 0.2 mol / L was prepared.
  • the aqueous solution was electrolytically oxidized by the following method. That is, the aqueous solution was subjected to electrolytic oxidation using a redox flow battery having the configuration shown in FIG.
  • the redox flow battery used for electrolytic oxidation (and the charge / discharge test described later) is a small-scale battery for testing.
  • the positive electrode and the negative electrode GFA5 manufactured by SGL, which is a kind of carbon felt, was used, and the electrode area was 10 cm 2 .
  • the diaphragm CMS manufactured by Astom Corp., which is a kind of ion exchange membrane, was used.
  • a glass container having a capacity of 30 ml was used as a positive electrode electrolyte tank and a negative electrode electrolyte tank.
  • Silicone tubes were used as various pipes such as a supply pipe, a recovery pipe, an inert gas supply pipe, and an exhaust pipe.
  • a micro tube pump MP-1000 manufactured by Tokyo Science Instrument Co., Ltd. was used as the pump.
  • the charging / discharging battery test system PFX200 by Kikusui Electronics Industry Co., Ltd. was used as a charging / discharging apparatus.
  • Nitrogen gas is supplied from an inert gas supply pipe before and during the start of charging to expel oxygen from the gas phase portion of the charge / discharge cell and the positive electrode electrolyte tank and the negative electrode electrolyte tank, and dissolved oxygen in the aqueous solution Kicked out.
  • the Fe (II) -DTPA complex contained in the aqueous solution placed in the positive electrode electrolyte tank was electrolytically oxidized to prepare an aqueous solution having a concentration of Fe (III) -DTPA complex of 0.2 mol / L.
  • a negative electrode electrolyte was obtained.
  • hydrogen gas was generated on the negative electrode side.
  • a positive electrode electrolyte was prepared by the following method. That is, first, 0.02 mol (0.86 g) of polyethyleneimine was added and dissolved in 50 ml of distilled water. As the polyethyleneimine, polyethyleneimine having an average molecular weight of 600 (manufactured by Wako Pure Chemical Industries, Ltd.) was used.
  • the aqueous solution was subjected to electrolytic oxidation by the same method as the electrolytic oxidation method of the negative electrode electrolyte. That is, in the redox flow battery having the above-described configuration, 20 ml of an aqueous solution having a concentration of 0.2 mol / L of Mn (II) -polyethyleneimine complex is placed in the positive electrode electrolyte tank, and Fe (III) — 20 ml of the aqueous solution having a DTPA complex concentration of 0.2 mol / L was added. Then, charging (total 384 coulombs) was performed for 32 minutes at a constant current of 200 mA.
  • Nitrogen gas is supplied from an inert gas supply pipe before and during the start of charging to expel oxygen from the gas phase portion of the charge / discharge cell and the positive electrode electrolyte tank and the negative electrode electrolyte tank, and dissolved oxygen in the aqueous solution Kicked out.
  • the Mn (II) -polyethyleneimine complex contained in the aqueous solution placed in the positive electrode electrolyte tank was electrolytically oxidized to prepare an aqueous solution having a Mn (III) III-polyethyleneimine complex concentration of 0.2 mol / L.
  • the positive electrode electrolyte was used.
  • the exact valence (valence distribution) of the electrolytically oxidized Mn-polyethyleneimine complex is unknown.
  • Redox reactions of the positive electrode side is "Mn (III) - polyethyleneimine complex ⁇ Mn (IV) - polyethyleneimine complex + e -” is, the redox reaction of the negative electrode side "Fe (III) -DTPA complex + e - ⁇ Fe (II) -DTPA complex ”.
  • the result of the charge / discharge test (change in battery voltage) is shown as a graph in FIG. From the graph, various performances of the above redox flow type battery, that is, “charge / discharge cycle characteristics (reversibility)”, “coulomb efficiency”, “voltage efficiency”, “energy efficiency” and “utilization rate of electrolyte” are calculated. did. In addition, in the charge / discharge of the first cycle, the terminal voltage at the time of switching from charge to discharge (when the current is 0 mA) was read to be “electromotive force”.
  • the “charge / discharge cycle characteristics (reversibility)” is obtained by calculating the coulomb amount b during discharge in the second cycle charge / discharge and the coulomb amount e during discharge in the third cycle charge / discharge. b) ⁇ 100 ”(%). And the case where the calculated numerical value is 80% or more was evaluated as “ ⁇ ” (repetitive charge / discharge is possible), and the case where it is less than 80% was evaluated as “x” (repetitive charge / discharge is impossible).
  • the “voltage efficiency” is obtained by calculating an average terminal voltage a during charging and an average terminal voltage b during discharging in charge / discharge of the second cycle, and using the formula “(b / a) ⁇ 100” (%). Calculated.
  • the above “energy efficiency” was calculated using the formula “(b / a) ⁇ 100” (%) by obtaining the electric energy a during charging and the electric energy b during discharging in the second cycle charge / discharge.
  • the above “utilization rate of the electrolytic solution” is obtained by multiplying the amount (mole number) of the active material of the electrolytic solution supplied to the positive electrode side or the negative electrode side by the Faraday constant (96500 coulomb / mol) to obtain the coulomb amount c.
  • the coulomb amount d at the time of discharge in the charge / discharge of the cycle was obtained and calculated using the formula “(d / c) ⁇ 100” (%). If there is a difference between the amount of the active material of the electrolyte supplied to the positive electrode side and the amount of the active material of the electrolyte supplied to the negative electrode side in the so-called two-component system, the smaller amount is selected. It was decided to adopt and calculate.
  • the “electrolytic solution potential” was evaluated by the following method. That is, a graphite electrode and a silver / silver chloride (saturated potassium chloride aqueous solution) electrode were previously inserted into the positive electrode electrolyte tank and the negative electrode electrolyte tank of the redox flow battery, respectively, and silver / silver chloride (saturated potassium chloride) during charge / discharge Evaluation was made by measuring the potential of the graphite electrode with respect to the aqueous solution) electrode. As a result, the potential of the positive electrode electrolyte was 0.94 V at the end of discharge and 1.06 V at the end of charge. The potential of the negative electrode electrolyte was 0.00 V at the end of discharge and ⁇ 0.13 V at the end of charge.
  • the concentration of Mn (III) -polyethyleneimine complex was about 0.1 mol / L, and the concentration of Mn (IV) -polyethyleneimine complex was about 0.1
  • the negative electrode electrolyte after charging has a concentration of about 0.1 mol / L of Fe (III) -DTPA complex, and a concentration of about 0.1 mol / L. It was considered that (II) -DTPA complex was contained at a concentration of about 0.1 mol / L (approximately 50%: 50%).
  • nitrogen gas is supplied from an inert gas supply pipe to expel oxygen from the gas phase portion of the charge / discharge cell and the positive and negative electrolyte tanks. Expelled dissolved oxygen inside.
  • the voltage after charging the positive electrode electrolyte was 1.00 V
  • the voltage after standing overnight was 1.00 V
  • the voltage after charging the negative electrode electrolyte was ⁇ 0.07 V
  • the voltage after standing overnight was ⁇ 0.07. Therefore, it was found that the redox flow battery having the above configuration does not substantially self-discharge (self-discharge is sufficiently slow).
  • a negative electrode electrolyte was prepared by the following method. That is, first, 0.02 mol (0.86 g) of polyethyleneimine was added and dissolved in 50 ml of distilled water. As the polyethyleneimine, polyethyleneimine having an average molecular weight of 600 (manufactured by Wako Pure Chemical Industries, Ltd.) was used.
  • a positive electrode electrolyte was prepared by the following method. That is, first, 0.02 mol (0.86 g) of polyethyleneimine was added and dissolved in 50 ml of distilled water. As the polyethyleneimine, polyethyleneimine having an average molecular weight of 600 (manufactured by Wako Pure Chemical Industries, Ltd.) was used.
  • the aqueous solution was subjected to electrolytic oxidation and electrolytic reduction by the same method as the electrolytic oxidation method of Example 1. That is, in the redox flow battery having the above-described configuration, 15 ml of an aqueous solution having a concentration of 0.2 mol / L of Mn (II) -polyethyleneimine complex is placed in the positive electrode electrolyte tank, and Cu (II)- 15 ml of the aqueous solution having a polyethyleneimine complex concentration of 0.2 mol / L was added.
  • the current collector plate pure titanium (thickness 0.6 mm) is used for the positive electrode side current collector plate, and SG made by Showa Denko KK, which is a kind of glassy carbon plate, is used for the negative electrode current collector plate. Carbon (thickness 0.6 mm) was used.
  • the Cu (II) -polyethyleneimine complex in the negative electrode electrolyte tank was reduced to become a Cu (I) -polyethyleneimine complex, and thus the aqueous solution became an aqueous solution of Cu (I) -polyethyleneimine complex.
  • the exact valence (valence distribution) of the electrolytically reduced Cu-polyethyleneimine complex is unknown.
  • a charge / discharge test of a redox flow type battery having the same configuration as the redox flow type battery described in Example 1 was performed under the following conditions using the positive electrode electrolyte and the negative electrode electrolyte.
  • Redox reactions of the positive electrode side is "Mn (III) - polyethyleneimine complex ⁇ Mn (IV) - polyethyleneimine complex + e -" is, the redox reaction of the negative electrode side "Cu (II) - polyethyleneimine complex + e - ⁇ Cu (I) -polyethyleneimine complex ”.
  • Cu (II) -polyethyleneimine complex having a concentration of 0.2 mol / L was formed (regenerated).
  • Fig. 3 is a graph showing the results (changes in battery voltage) of the main test (31st to 50th cycles) of the charge / discharge test. From the graph, in the same manner as in Example 1, various performances of the redox flow battery, that is, “charge / discharge cycle characteristics (reversibility)”, “Coulomb efficiency”, “voltage efficiency”, “energy efficiency”, and “ The “utilization rate of the electrolyte” was calculated. However, each calculation method was the following method. In addition, in the charge and discharge at the 31st cycle, the terminal voltage at the time of switching from charge to discharge (when the current is 0 mA) was read to be “electromotive force”.
  • the “charge / discharge cycle characteristics (reversibility)” is obtained by calculating the coulomb amount b at the time of discharge in the 31st charge / discharge and the coulomb amount e at the time of discharge in the 50th cycle charge / discharge. b) ⁇ 100 ”(%).
  • the “voltage efficiency” is obtained by calculating an average terminal voltage a during charging and an average terminal voltage b during discharging in charge and discharge at the 32nd cycle, and using the formula “(b / a) ⁇ 100” (%). Calculated.
  • the above “energy efficiency” was calculated using the formula “(b / a) ⁇ 100” (%) by obtaining the electric energy “a” during charging and the electric energy “b” during discharging in charge / discharge at the 32nd cycle.
  • the above-mentioned “utilization rate of the electrolytic solution” is obtained by multiplying the amount (mole number) of the active material of the electrolytic solution supplied to the positive electrode side or the negative electrode side by the Faraday constant to obtain the coulomb amount c.
  • the coulomb amount d at the time of discharge was determined and calculated using the formula “(d / c) ⁇ 100” (%). If there is a difference between the amount of the active material of the electrolyte supplied to the positive electrode side and the amount of the active material of the electrolyte supplied to the negative electrode side in the so-called two-component system, the smaller amount is selected. It was decided to adopt and calculate.
  • the “electrolytic solution potential” was evaluated in the same manner as in Example 1. As a result, the potential of the positive electrode electrolyte was 0.94 V at the end of discharge and 1.06 V at the end of charge. The negative electrode electrolyte had a potential of 0.14 V at the end of discharge and 0.06 V at the end of charge.
  • Example 3 The performance evaluation of the positive electrode electrolyte when changing the molar ratio between manganese ions and nitrogen atoms contained in polyethyleneimine was performed by the following method using cyclic voltammetry. That is, in order to evaluate the performance of the positive electrode electrolyte, the electrode characteristics of the electrode immersed in the positive electrode electrolyte were measured (electrochemical measurement) using cyclic voltammetry having the following configuration as a measuring device. A schematic configuration of cyclic voltammetry (CV) will be described below with reference to FIG.
  • CV cyclic voltammetry
  • the cyclic voltammetry 20 includes an annular upper block 27a made of a fluororesin and a plate-like lower block 27b, and an O-ring 25 is interposed between the upper block 27a and the lower block 27b.
  • the cell 29 is configured by sandwiching an electrode 23 made of glassy carbon (manufactured by Tokai Carbon Co., Ltd.) as a working electrode and fixing it with bolts 26a and 26b.
  • the cell 29 is filled with the positive electrode electrolyte as the electrolyte 24 to be measured.
  • the cyclic voltammetry 20 includes a reference electrode 21 made of a silver / silver chloride (saturated potassium chloride aqueous solution) electrode and a counter electrode 22 made of a platinum wire in the cell 29 so as to be immersed in the electrolyte solution 24 to be measured.
  • a lid 30 covering the cell 29 is provided.
  • the counter electrode 22 is arranged at a certain interval so as to be wound around the reference electrode 21.
  • the lid 30 is formed with a hole through which the reference electrode 21, the counter electrode 22, and the tube 28 are passed.
  • the tube 28 is configured to supply nitrogen gas above the measured electrolyte solution 24 in the cell 29 from a supply device (not shown). The supplied nitrogen gas blocks the measured electrolyte solution 24 from oxygen in the atmosphere. , To eliminate the effects of oxygen.
  • the electrode characteristics of the electrode immersed in the positive electrode electrolyte were measured (electrochemical measurement), and the performance of the positive electrode electrolyte was evaluated.
  • the cyclic voltammetry 20 is electrically connected to an electrochemical measurement system (HZ-5000; manufactured by Hokuto Denko Co., Ltd.), the measurement temperature is 20 ° C. or 60 ° C., and the electrode is in contact with the electrolyte solution 24 to be measured.
  • HZ-5000 manufactured by Hokuto Denko Co., Ltd.
  • a cathode electrolyte solution having a molar ratio of manganese ions to nitrogen atoms contained in polyethyleneimine of 1: 1 was prepared by the following method. That is, first, 0.02 mol (0.86 g) of polyethyleneimine was added and dissolved in 50 ml of distilled water. As the polyethyleneimine, polyethyleneimine having an average molecular weight of 600 (manufactured by Wako Pure Chemical Industries, Ltd.) was used.
  • FIG. 4 is a graph when the measurement temperature is 20 ° C.
  • FIG. 5 is a graph when the measurement temperature is 60 ° C.
  • the horizontal axis represents the electrode potential (V VS Ag / AgCl)
  • the vertical axis represents the response current value (mA). From the shape of the curve (cyclic voltammogram) drawn in the graph, the charge / discharge cycle characteristics (reversibility) of the positive electrode electrolyte a can be evaluated.
  • the lower curve indicates the reduction wave and the upper curve indicates the oxidation wave.
  • a reduction wave which is a lower curve
  • the Mn (IV) -polyethyleneimine complex that is an oxidant present in the vicinity of the electrode 23 in the electrolyte solution to be measured 24 is reduced to a Mn (III) -polyethyleneimine complex that is a reductant.
  • an oxidation wave that is the upper curve is drawn from the left side to the right side.
  • the Mn (III) -polyethyleneimine complex which is a reductant present in the vicinity of the electrode 23 in the electrolyte solution 24 to be measured, is oxidized to a Mn (IV) -polyethyleneimine complex, which is an oxidant.
  • the response current values in the reduction wave and the oxidation wave indicate weak currents generated by the oxidation-reduction reaction generated in the vicinity of the electrode 23 in the measured electrolyte solution 24, respectively.
  • the redox potential of the redox reaction system of the Mn-polyethyleneimine complex can be determined from the average value of the peak potential (Ep) in both the reduced wave and the oxidized wave.
  • a positive electrode electrolyte solution having a molar ratio of manganese ions to nitrogen atoms contained in polyethyleneimine of 1: 5 was prepared as the electrolyte solution to be measured by the following method. That is, first, 0.10 mol (4.30 g) of polyethyleneimine was added and dissolved in 50 ml of distilled water. As the polyethyleneimine, polyethyleneimine having an average molecular weight of 600 (manufactured by Wako Pure Chemical Industries, Ltd.) was used.
  • FIGS. 6 is a graph when the measurement temperature is 20 ° C.
  • FIG. 7 is a graph when the measurement temperature is 60 ° C.
  • the positive electrode electrolyte a in which the molar ratio of manganese ions to nitrogen atoms contained in polyethyleneimine is 1: 1 is charge / discharge. It was found that the cycle characteristics (reversibility) were excellent and the reactivity of manganese ions was improved. Further, from the comparison between the graph of FIG. 5 and the graph of FIG. 7, at 60 ° C., the positive electrode electrolyte b in which the molar ratio of manganese ions to nitrogen atoms contained in polyethyleneimine is 1: 5 is charge / discharge. It was found that the cycle characteristics (reversibility) were excellent and the reactivity of manganese ions was improved.
  • charge / discharge cycle characteristics can be obtained by changing the molar ratio of manganese ions to nitrogen atoms contained in polyethyleneimine in the positive electrode electrolyte according to the operating temperature (operating temperature) of the redox flow battery. It was found that a redox flow battery having excellent (reversibility) and further improved manganese ion reactivity can be provided.
  • Example 4 The performance evaluation of the positive electrode electrolyte when the pH was changed was performed by the same method using the cyclic voltammetry similar to the cyclic voltammetry used in Example 3.
  • a positive electrode electrolyte having a pH in the range of 1.28 to 6.80 was prepared by the following method. That is, first, 0.02 mol (0.86 g) of polyethyleneimine was added and dissolved in 50 ml of distilled water. As the polyethyleneimine, polyethyleneimine having an average molecular weight of 600 (manufactured by Wako Pure Chemical Industries, Ltd.) was used.
  • aqueous solution is divided into four equal parts, and dilute sulfuric acid having a concentration of 2.5 mol / L is added dropwise to each aqueous solution to adjust the pH to 1.28, 3.01, 5.80, 6.80.
  • the positive electrode electrolytes c-1 to c-4 were used.
  • FIGS. 8 is a graph when the pH is 1.28 (positive electrode electrolyte c-1)
  • FIG. 9 is a graph when the pH is 3.01 (positive electrode electrolyte c-2)
  • FIG. Is is a graph when the pH is 5.80 (positive electrode electrolyte c-3)
  • FIG. 11 is a graph when the pH is 6.80 (positive electrode electrolyte c-4).
  • Example 5 The solubility of the Mn (II) -polyethyleneimine complex contained in the positive electrode electrolyte was confirmed by the following method.
  • polyethyleneimine 0.02 mol (0.86 g) of polyethyleneimine was added and dissolved in 50 ml of distilled water.
  • polyethyleneimine polyethyleneimine having an average molecular weight of 600 (manufactured by Wako Pure Chemical Industries, Ltd.) was used.
  • the solubility of the Mn (II) -polyethyleneimine complex was 2.5 mol / L or more, and the concentration of the manganese-polyethyleneimine complex contained in the positive electrode electrolyte was 0.2 mol / L or more. It was found that the amount could be adjusted to 5 mol / L or less. As a result, it was found that the positive electrode electrolyte containing Mn (II) -polyethyleneimine complex can be suitably used for a redox flow battery.
  • Example 3 A self-discharge test was performed by performing the same operation as in Example 1 except that the following aqueous solution was used as the positive electrode electrolyte.
  • Example 4 A self-discharge test was performed by performing the same operation as in Example 1 except that the following aqueous solution was used as the positive electrode electrolyte.
  • Example 7 A self-discharge test was performed by performing the same operation as in Example 1 except that the following aqueous solution was used as the positive electrode electrolyte.
  • an aqueous solution having a concentration of Mn (II) -DL-malic acid complex of 0.2 mol / L was prepared.
  • the self-discharge test was done by performing operation similar to Example 1 using the said aqueous solution as positive electrode electrolyte solution.
  • Example 8 A self-discharge test was performed by performing the same operation as in Example 1 except that the following aqueous solution was used as the positive electrode electrolyte.
  • Example 10 A self-discharge test was performed by performing the same operation as in Example 2 except that the following aqueous solutions were used as the negative electrode electrolyte and the positive electrode electrolyte.
  • a negative electrode electrolyte was prepared by the following method. That is, first, 0.1 mol (6.0 g) of ethylenediamine was added to 70 ml of distilled water and dissolved. Subsequently, dilute sulfuric acid having a concentration of 2.5 mol / L was dropped into this aqueous solution to adjust the pH to 7. Thereafter, 0.02 mol (3.19 g) of CuSO 4 was added to the aqueous solution and dissolved, and then 0.05 mol (7.1 g) of Na 2 SO 4 (conductive salt) was added and dissolved. . Then, distilled water was added so that the total amount became 100 ml. Thereby, an aqueous solution having a molar ratio of copper and ethylenediamine of 1: 5 and a concentration of Cu (II) -ethylenediamine complex of 0.2 mol / L was prepared.
  • a positive electrode electrolyte was prepared by the following method. That is, first, 0.1 mol (6.0 g) of ethylenediamine was added to 70 ml of distilled water and dissolved. Subsequently, dilute sulfuric acid having a concentration of 2.5 mol / L was dropped into this aqueous solution to adjust the pH to 7. Thereafter, 0.02 mol (3.38 g) of MnSO 4 .H 2 O was added to the aqueous solution and dissolved, and then 0.05 mol (7.1 g) of Na 2 SO 4 (conductive salt) was added. And dissolved. Then, distilled water was added so that the total amount became 100 ml.
  • a charge / discharge test of a redox flow battery was performed under the same conditions as the charge / discharge test of Example 2.
  • charging was performed at a constant current of 100 mA.
  • the end-of-charge voltage was set to 2.0V.
  • discharge was performed at a constant current of 100 mA.
  • the discharge end voltage was set to 0.3V.
  • Redox reactions of the positive electrode side is, the redox reaction of the negative electrode side "Cu (II)" Mn (II) - ethylenediamine complex ⁇ Mn (III) - - ethylenediamine complex + e "- ethylenediamine complex + e - ⁇ Cu (I ) -Ethylenediamine complex ".
  • the “utilization ratio of the electrolytic solution” of the redox flow battery of Comparative Example 10 significantly decreased as the charge and discharge were repeated. That is, the redox flow type battery of Comparative Example 10 was inferior in “charge / discharge cycle characteristics (reversibility)” and “utilization rate of electrolytic solution” as compared with the redox flow type battery of Example 2. Therefore, it was found that the redox flow type battery of Comparative Example 10 did not have sufficient durability to be widely put into practical use as a power storage battery.
  • the charge / discharge cell of the redox flow battery was disassembled, and the carbon felt (GFA5 manufactured by SGL) as the positive electrode and the negative electrode and the current collector plate were observed.
  • the carbon felt GFA5 manufactured by SGL
  • a large amount of manganese compound was observed on the positive electrode side, and a large amount of copper compound was observed on the negative electrode side.
  • the redox flow type battery of Comparative Example 10 does not have sufficient durability to be widely put into practical use as a power storage battery. In the redox flow battery of Example 2, the above precipitation was hardly observed.
  • polyethyleneimine polyethyleneimine with an average molecular weight of 600 (manufactured by Wako Pure Chemical Industries, Ltd.)
  • ethylenediamine ethylenediamine
  • flash point 248 ° C (Cleveland open type)
  • acute toxicity oral LD50
  • ethylenediamine is a dangerous class 4th class 2nd petroleum.
  • the flash point is 34 ° C. (sealed)
  • the acute toxicity (oral LD50) is 500 mg / kg. Therefore, it is clear that the redox flow type battery of Comparative Example 10 is inferior to the redox flow type battery of Example 2 in terms of handling as a dangerous substance and acute toxicity.
  • a power storage battery that can prevent precipitation of a manganese compound, can prevent self-discharge of the power storage battery, and has improved manganese ion reactivity. be able to. Therefore, it is possible to provide a power storage battery having sufficient durability to be widely put into practical use by using a manganese redox material.
  • the power storage battery according to the present invention can be widely used not only in power companies but also in various industries that require power storage.
  • Redox flow battery power storage battery
  • Charge / discharge cell battery container
  • positive electrode side cell 2b negative electrode side cell
  • positive electrode electrolyte tank 4
  • negative electrode electrolyte tank 10 charging / discharging device 11
  • diaphragm 12 current collector plate
  • positive electrode 14
  • current collector plate 15
  • negative electrode 20
  • cyclic voltammetry 21
  • reference electrode 22
  • counter electrode 23
  • electrode (working electrode) 24

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

 レドックスフロー型電池(1)は、充放電セル(2)、正極電解液タンク(3)および負極電解液タンク(4)を主として備えている。充放電セル(2)は、その内部が隔膜(11)によって正極側セル(2a)と負極側セル(2b)とに仕切られている。正極側セル(2a)には、集電板(12)と正極(13)とが収容されている。正極(13)には、正極電解液タンク(3)から供給管(3a)を介して、マンガン-ポリエチレンイミン錯体を含む水溶液が供給される。これにより、広く一般に実用化されるために充分な耐久性を備えた電力貯蔵電池を提供することができる。

Description

電力貯蔵電池
 本発明は、例えばレドックスフロー型電池等の電力貯蔵電池に関するものである。
 現在、電力貯蔵は、主として揚水発電によって行われている。ところが、揚水発電所の建設は立地条件に制約があることから、新しい電力貯蔵技術、特に、技術的および経済的に実現の可能性が高い二次電池が盛んに検討されている。そして、二次電池として、近年、レドックスフロー型電池に注目がなされている。
 従来、レドックスフロー型電池に用いる電解液は種々提案されている。例えば、特許文献1には、負極電解液を、鉄レドックス系物質を負極側の活物質として含むと共に、電位を負側にシフトさせるためのキレート剤や錯化剤を含む水溶液とした構成が提案されている。また、近年、例えば、正極電解液を、マンガンレドックス系物質を正極側の活物質として含む水溶液とした構成が提案されている。
 ところが、マンガンの酸化物は強力な酸化力を有し、水中の有機物を幅広く分解(酸化)することが知られている。そのため、マンガンの酸化物の一種である過マンガン酸カリウムは、水中の有機物の量、つまりCOD値を測定するための酸化剤として使用されている(非特許文献1を参照)。また、マンガンイオンも強力な酸化力を有している。例えば、キレート剤や錯化剤に錯化された状態である例えばMn(III) -EDTA(エチレンジアミン四酢酸)錯体等であっても、配位子を酸化して炭酸ガスを発生させ、自己分解してしまうことが知られている(非特許文献2を参照)。
 そこで、特許文献2には、マンガン化合物の沈澱を防止するために、キレート剤や錯化剤を使用することが提案されている。また、特許文献3には、微生物電池の正極電解液におけるマンガンイオンの反応性を向上させるために、キレート剤や錯化剤を使用することが提案されている。
特開昭56-42970号公報(1981年4月21日公開) 特開昭57-9073号公報(1982年1月18日公開) 特開2009-231230(2009年10月8日公開)
岩波理化学辞典 第5版(1998年2月20日 第1刷発行)223頁 発行所:岩波書店 東北大学大学院理学研究科(博士課程) 学位論文要旨「エチレンジアミンテトラアセタトマンガン酸(III) 錯体の平衡論的および速度論的研究」(1969年3月25日 学位授与) 白樫高史 和光純薬工業株式会社「MSDS/試薬ホームページ(http://www.wako-chem.co.jp/siyaku/msds.htm)」 ポリエチレンイミン(整理番号:JW161783) 製品安全データシート(MSDS)(作成日:2004年7月28日、改訂日:2009年5月20日) 和光純薬工業株式会社「MSDS/試薬ホームページ(http://www.wako-chem.co.jp/siyaku/msds.htm)」 エチレンジアミン(整理番号:JW050093) 製品安全データシート(MSDS)(作成日:2001年9月1日、改訂日:2010年10月14日)
 しかしながら、上記特許文献2,3に記載されている構成では、マンガンイオンの酸化力によって多くの種類のキレート剤や錯化剤が分解されてしまうという不都合を有している。正極電解液に含まれるマンガンイオンの酸化力によってキレート剤や錯化剤が分解されると、レドックスフロー型電池が自己放電することになるため、当該レドックスフロー型電池のエネルギー効率が低下するという問題を有している。また、キレート剤や錯化剤が減少するのでマンガン化合物が沈澱し易くなると共に、マンガンイオンの反応性が低下する。このため、レドックスフロー型電池の性能が低下するという問題も有している。それゆえ、マンガンレドックス系物質を用いたレドックスフロー型電池は、広く一般に実用化されるまでには至っていない。
 従って、マンガンレドックス系物質を用いて、広く一般に実用化されるために充分な耐久性を備えたレドックスフロー型電池等の電力貯蔵電池が求められている。
 即ち、本発明は、上記の課題に鑑みてなされたものであり、その主たる目的は、マンガンレドックス系物質を用いて、広く一般に実用化されるために充分な耐久性を備えたレドックスフロー型電池等の電力貯蔵電池を提供することにある。
 本願発明者は、マンガンイオンの酸化力に耐えることができる(分解(酸化)されない)キレート剤や錯化剤について鋭意検討した。その結果、ポリエチレンイミンだけがマンガンイオンの酸化力に耐えることができ(分解(酸化)されず)、しかもマンガン化合物の沈澱を防止することができ、電力貯蔵電池の自己放電を防止することができることを見出し、本願発明を完成させるに至った。
 即ち、本発明に係る電力貯蔵電池は、上記の課題を解決するために、レドックス型の電力貯蔵電池において、正極電解液が、正極側の活物質としてマンガンレドックス系物質を含むと共に、ポリエチレンイミンを含む水溶液であることを特徴としている。
 上記の構成によれば、正極電解液がポリエチレンイミンを含む水溶液であるので、マンガン化合物の沈澱を防止することができ、電力貯蔵電池の自己放電を防止することができ、しかもマンガンイオンの反応性を向上させることができる。それゆえ、上記の構成によれば、マンガンレドックス系物質を用いて、広く一般に実用化されるために充分な耐久性を備えた電力貯蔵電池を提供することができる。
 本発明に係る電力貯蔵電池は、マンガンイオンと、ポリエチレンイミンに含まれる窒素原子とのモル比が、1:1~1:5の範囲内であることがより好ましい。
 ここで、ポリエチレンイミンに含まれる窒素原子とは、基本単位であるエチレンイミン(-CHCHNH-)に含まれる窒素原子を指す。本願発明者の検討によれば、電力貯蔵電池を、20℃付近で使用した場合には上記モル比が1:1であるとマンガンイオンの反応性が最も向上し、60℃付近で使用した場合には上記モル比が1:5であるとマンガンイオンの反応性が最も向上することが判明した。それゆえ、上記の構成によれば、マンガンイオンの反応性がより一層向上した電力貯蔵電池を提供することができる。
 本発明に係る電力貯蔵電池は、上記正極電解液に含まれるマンガン-ポリエチレンイミン錯体の濃度が、0.2モル/L以上、2.5モル/L以下であることがより好ましい。また、本発明に係る電力貯蔵電池は、上記正極電解液のpHが2~7の範囲内であることがより好ましい。
 上記の構成によれば、性能がより一層優れた電力貯蔵電池を提供することができる。
 本発明に係る電力貯蔵電池は、上記マンガンレドックス系物質が硫酸マンガンであることがより好ましい。
 正極電解液に塩素イオンが含まれていると、電力貯蔵電池の充電によってマンガンイオンが酸化されるときに、塩素ガスが発生する。また、正極電解液に有機物が含まれていると、マンガンイオンの酸化力によって有機物が分解され、電力貯蔵電池が自己放電する。しかしながら、硫酸マンガンには塩素イオンや有機物は含まれていない。それゆえ、上記の構成によれば、塩素ガスが発生せず、しかも自己放電をより一層防止することができる電力貯蔵電池を提供することができる。
 本発明に係る電力貯蔵電池は、上記正極電解液が電解酸化されていることがより好ましい。
 例えばマンガンレドックス系物質が硫酸マンガン(II)である場合に、硫酸マンガン(II)を含む水溶液にポリエチレンイミンを溶解させたときに生じるマンガンイオンは、二価であると考えられる。一般に、マンガンイオンは、レドックス反応時に二価と三価との間で価数が変化する。ここで、二価のマンガンイオンを含む水溶液を電解酸化すると、大部分のマンガンイオンは三価になると考えられる(但し、正確な価数(価数の分布)は不明である)。従って、マンガンイオンを含む水溶液を電解酸化してなる正極電解液に含まれる当該マンガンイオンは、レドックス反応時に三価と四価との間で価数が変化することになる。それゆえ、上記の構成によれば、マンガン化合物の沈澱をより一層防止することができ、電力貯蔵電池の自己放電をより一層防止することができ、しかもマンガンイオンの反応性がより一層向上した電力貯蔵電池を提供することができる。
 本発明に係る電力貯蔵電池は、上記正極電解液が大気中の酸素と遮断されていることがより好ましい。
 詳細なメカニズムは不明であるものの、正極電解液が大気中の酸素に晒されると、電力貯蔵電池が自己放電してしまい、その後は良好な充放電を行うことができなくなる。それゆえ、上記の構成によれば、マンガン化合物の沈澱をより一層防止することができ、電力貯蔵電池の自己放電をより一層防止することができ、しかもマンガンイオンの反応性がより一層向上した電力貯蔵電池を提供することができる。
 本発明に係る電力貯蔵電池は、負極電解液が、負極側の活物質として鉄レドックス系物質を含む水溶液であることがより好ましい。また、本発明に係る電力貯蔵電池は、上記負極電解液が、鉄-ジエチレントリアミン五酢酸錯体を含む水溶液であることがより好ましい。さらに、本発明に係る電力貯蔵電池は、上記負極電解液が電解酸化されていることがより好ましい。
 上記の構成によれば、性能がより一層優れた電力貯蔵電池を提供することができる。
 また、本発明に係る電力貯蔵電池は、レドックスフロー型電池であることがより好ましい。
 本発明に係る電力貯蔵電池によれば、マンガン化合物の沈澱を防止することができ、電力貯蔵電池の自己放電を防止することができ、しかもマンガンイオンの反応性が向上した電力貯蔵電池を提供することができる。従って、マンガンレドックス系物質を用いて、広く一般に実用化されるために充分な耐久性を備えた電力貯蔵電池を提供することができるという効果を奏する。
本実施の形態に係るレドックスフロー型電池の一例を示すものであり、概略の構成を示す正面図である。 本実施の形態に係るレドックスフロー型電池を用いた実施例1における充放電試験の結果を示すグラフである。 本実施の形態に係るレドックスフロー型電池を用いた実施例2における充放電試験の結果を示すグラフである。 実施例3で得られた正極電解液aに浸漬した電極の20℃での電極特性を示すグラフである。 実施例3で得られた正極電解液aに浸漬した電極の60℃での電極特性を示すグラフである。 実施例3で得られた正極電解液bに浸漬した電極の20℃での電極特性を示すグラフである。 実施例3で得られた正極電解液bに浸漬した電極の60℃での電極特性を示すグラフである。 実施例4で得られた正極電解液c-1に浸漬した電極の電極特性を示すグラフである。 実施例4で得られた正極電解液c-2に浸漬した電極の電極特性を示すグラフである。 実施例4で得られた正極電解液c-3に浸漬した電極の電極特性を示すグラフである。 実施例4で得られた正極電解液c-4に浸漬した電極の電極特性を示すグラフである。 本実施の形態に係るレドックスフロー型電池の電解液に浸漬した電極の電極特性を測定する測定装置であるサイクリックボルタンメトリーの、概略の構成を示す断面図である。 実施例2のレドックスフロー型電池の「電解液の利用率」と、比較例10のレドックスフロー型電池の「電解液の利用率」とを示すグラフである。
 本発明に係る電力貯蔵電池は、レドックス型の電力貯蔵電池において、正極電解液が、正極側の活物質としてマンガンレドックス系物質を含むと共に、ポリエチレンイミンを含む水溶液である構成である。
 本発明において「マンガンレドックス系物質」とは、水溶液となったときに、レドックス反応時にイオンの状態で価数が変化する(レドックス反応に関与する)マンガンイオンを生じる化合物を指す。鉄についても同様である。また、本発明において数値範囲を示す「A~B」との記載は、特に断りが無い限り、「A以上、B以下」であることを表している。従って、本発明において例えば「pH2~7」とは、pHが2以上、7以下であることを指す。また、本発明において「ポリエチレンイミンのモル数」とは、基本単位であるエチレンイミン(-CHCHNH-)に含まれる窒素原子のモル数を指す。従って、「ポリエチレンイミン1モル」とは、基本単位であるエチレンイミン(分子量43)に含まれる窒素原子のモル数が1モルであることを表し、即ちエチレンイミンのモル数が1モルであることを表す(それゆえ、「ポリエチレンイミン1モル」は43gである)。
 本発明に係る実施の一形態について、図1に基づいて説明すれば、以下の通りである。以下の説明においては、電力貯蔵電池として、レドックスフロー型電池を一例として挙げることとする。但し、本発明はこれに限定されるものではなく、記述した範囲内で種々の変形を加えた態様で実施できるものである。
 〔レドックスフロー型電池〕
 図1に示すように、本実施の形態に係るレドックスフロー型電池1は、充放電セル(電池容器)2、正極電解液タンク3および負極電解液タンク4を主として備えている。充放電セル2は、その内部が、例えばイオン交換膜からなる隔膜11によって正極側セル2aと負極側セル2bとに仕切られている。尚、充放電セル2には、レドックスフロー型電池1の能力(各種性能)を安定させるために、温度を一定に保つ温度調節装置が設けられていてもよい。
 正極側セル2aには、例えばガラス状カーボン板等の集電板12と、例えばカーボンフェルトからなる正極13とが収容されている。負極側セル2bには、例えばガラス状カーボン板等の集電板14と、例えばカーボンフェルトからなる負極15とが収容されている。そして、正極13には正極電解液が含浸されており、負極15には負極電解液が含浸されている。上記正極電解液および負極電解液は、pHが2~7の範囲内であり、強酸性ではなく、腐食性に乏しいので、取り扱い性に優れている。
 上記集電板12・14は、充放電装置10に電気的に接続されている。そして、放電時には、正極13では還元反応が行われ、電子を受け取ると共に、負極15では酸化反応が行われ、電子を放出する。このとき、集電板12は、充放電装置10から電子を受け取って正極13に供給するようになっており、集電板14は、負極15で放出された電子を集めて充放電装置10に供給するようになっている。一方、充電時には、正極13では酸化反応が行われ、電子を放出すると共に、負極15では還元反応が行われ、電子を受け取る。このとき、集電板12は、正極13で放出された電子を集めて充放電装置10に供給するようになっており、集電板14は、充放電装置10から電子を受け取って負極15に供給するようになっている。
 正極電解液タンク3は、正極電解液を貯蔵するタンクであり、正極側セル2aに接続されている。即ち、上記正極電解液タンク3は、供給管3aを介して正極側セル2a内の正極13に正極電解液を供給すると共に、正極13内を通過した正極電解液を、回収管3bを介して回収するようになっている。そして、供給管3aに設けられたポンプ5によって、正極電解液の循環が行われるようになっている。尚、充放電時における正極側セル2aに対する単位時間当たりの正極電解液の供給量や、正極電解液タンク3の容量は、充放電セル2の大きさやレドックスフロー型電池1に求める能力等に応じて設定すればよく、特に限定されるものではない。
 負極電解液タンク4は、負極電解液を貯蔵するタンクであり、負極側セル2bに接続されている。即ち、上記負極電解液タンク4は、供給管4aを介して負極側セル2b内の負極15に負極電解液を供給すると共に、負極15内を通過した負極電解液を、回収管4bを介して回収するようになっている。そして、供給管4aに設けられたポンプ6によって、負極電解液の循環が行われるようになっている。尚、充放電時における負極側セル2bに対する単位時間当たりの負極電解液の供給量や、負極電解液タンク4の容量は、充放電セル2の大きさやレドックスフロー型電池1に求める能力等に応じて設定すればよく、特に限定されるものではない。
 正極電解液および負極電解液を循環させることにより、充放電セル2内の電解液を入れ換えることができるので、本実施の形態に係るレドックスフロー型電池1においては、長時間の(いわゆる大容量の)充電および放電が可能となっている。
 上記充放電セル2並びに正極電解液タンク3および負極電解液タンク4には、不活性ガス供給管7によって窒素ガス等の不活性ガスが、ガス供給装置(図示しない)から供給されている。これにより、上記正極電解液および負極電解液は、大気中の酸素と遮断されるようになっている。不活性ガス供給管7から供給された不活性ガスは、排気管8を通じて外部に排気される。排気管8の先端部は水封管9によって水封されており、大気の逆流を防止すると共に、充放電セル2並びに正極電解液タンク3内および負極電解液タンク4内の気圧を一定に保っている。尚、不活性ガス供給管7は、不活性ガスを、充放電セル2並びに正極電解液タンク3および負極電解液タンク4の気相部分に供給するようになっていてもよく、正極電解液中および負極電解液中にバブリングすることによって供給するようになっていてもよい。
 そして、本実施の形態に係るレドックスフロー型電池1においては、上記正極電解液および負極電解液は、pHが2~7の範囲内であり、強酸性ではなく、腐食性に乏しいので、当該レドックスフロー型電池1を構成する各構成部材の材質選択の自由度が大きい。即ち、正極電解液および負極電解液が強酸性であれば電池容器として使用することができる材質の選択に制約がある(例えば、加水分解されるプラスチックは使用することができない)のに対して、正極電解液および負極電解液が強酸性ではないので、上記充放電セル2の材質として、具体的には、例えば、汎用のプラスチックや、Sn、Al、Ti、Cu、Fe、Ni等の比較的安価な金属を用いることができる。また、正極電解液タンク3やポンプ5、供給管3a、回収管3b、負極電解液タンク4、ポンプ6、供給管4a、回収管4bの材質としても上記例示の材質を用いることができる。それゆえ、レドックスフロー型電池1を比較的安価に製造することができる。また、腐食性に乏しいので、レドックスフロー型電池1の使用寿命は、従来の(強酸性の電解液を用いた)レドックスフロー型電池と比較して長くなる。従って、レドックスフロー型電池1は、従来の(強酸性の電解液を用いた)レドックスフロー型電池と比較して、比較的安価に大量生産(工業化)することが容易である。但し、レドックスフロー型電池1を構成する各構成部材は、装置を維持するのに足りる適度な機械的強度があり、正極電解液および負極電解液によって腐蝕しない材質で構成されていればよく、従って、上記例示の材質に限定されるものではない。
 〔負極電解液〕
 上記負極電解液は、pHが好ましくは2~7の範囲内であり、より好ましくは4~6の範囲内であり、pH2~7の条件下において良好な酸化還元反応を行うことができる(イオンの状態で価数が変化する)負極側の活物質を含む水溶液であればよい。
 負極電解液としては、具体的には、例えば、Fe-DTPA(ジエチレントリアミン五酢酸)錯体を含む水溶液、Fe-EDTA(エチレンジアミン四酢酸)錯体を含む水溶液、Fe-EGTA(O,O’-ビス(2-アミノエチル)エチレングリコール-N,N,N’,N’-四酢酸)錯体を含む水溶液、Fe-EDTA-OH(N-(2-ヒドロキシエチル)エチレンジアミン-N,N’,N’-三酢酸)錯体を含む水溶液、Fe-NTA(ニトリロ三酢酸)錯体を含む水溶液、Cr-DTPA錯体を含む水溶液、Cr-EDTA錯体を含む水溶液、Cr-EGTA錯体を含む水溶液、Cr-EDTA-OH錯体を含む水溶液、Cr-NTA錯体を含む水溶液、Ti-EDTA錯体を含む水溶液、V-EDTA錯体を含む水溶液、Fe-クエン酸錯体を含む水溶液、Cu-ポリエチレンイミン錯体を含む水溶液、Cu-エチレンジアミン錯体を含む水溶液、等が挙げられ、このうち、負極側の活物質として鉄レドックス系物質を含む水溶液、即ち、Fe錯体を含む水溶液がより好ましく、Fe-DTPA錯体を含む水溶液が最も好ましい。Fe錯体を含む水溶液を負極電解液として用いたレドックスフロー型電池は、充放電反応速度に優れている。
 また、負極電解液がFe錯体を含む水溶液である場合には、上記水溶液におけるFe錯体の濃度は、0.2モル/L以上、2.5モル/L以下であることがより好ましく、0.3モル/L以上、2.0モル/L以下であることがさらに好ましく、0.5モル/L以上、1.0モル/L以下であることが最も好ましい。
 さらに、負極電解液は、電解酸化されていることがより好ましい。負極電解液が例えばFe-DTPA錯体を含む水溶液であり、電解酸化されている場合には、当該錯体は充電状態ではFe(II)-DTPA錯体となり、放電状態では電子を放出したFe(III) -DTPA錯体となる。上記の構成によれば、性能がより一層優れたレドックスフロー型電池を提供することができる。
 また、負極電解液は、上記錯体の他に、硫酸ナトリウム(NaSO)や、酢酸ナトリウム、EDTAのナトリウム塩、NaCl等の、公知の電解質(導電塩)をさらに含んでいてもよい。尚、負極電解液の調製方法は、pHの調節方法も含めて公知の手法を採用することができ、特に限定されるものではない。また、負極電解液に用いる水は、蒸留水と同等以上の純度があれば充分である。
 但し、Fe,Crのアミノポリカルボン酸キレート物を含む水溶液、特に、Crのアミノポリカルボン酸キレート物を含む水溶液は、当該キレート物、即ち錯体の形成をより完全に行わせるために、当該水溶液を加熱して4時間~18時間程度、還流させることがより好ましい。還流操作を行わない場合には、Cr等が析出したり、当該水溶液を用いた電力貯蔵電池の充電が不可能になったりするおそれがある。尚、還流時間は、配位子の種類に応じて適宜設定すればよい。また、還流操作は、数回に分けて実施してもよい。
 FeやCr等のアミノポリカルボン酸キレート物を構成するアミノポリカルボン酸としては、具体的には、例えば、ジエチレントリアミン五酢酸{DTPA(Diethylene Triamine Pentaacetic acid)(「DTPA(5H)」と記載する場合もある);(CH2 COOH)2 NCH2 CH2 N(CH2 COOH)CH2 CH2 N(CH2 COOH)2 }およびその塩、エチレンジアミン四酢酸{EDTA(Ethylene Diamine Tetraacetic acid);(CH2 COOH)2 NCH2 CH2 N(CH2 COOH)2 }およびその塩、O,O’-ビス(2-アミノエチル)エチレングリコール-N,N,N’,N’-四酢酸{EGTA(O,O'-bis(2-aminoethyl)ethyleneglycol -N,N,N',N'- tetraacetic acid);(CH2 COOH)2 NCH2 CH2 OCH2 CH2 OCH2 CH2 N(CH2 COOH)2 }およびその塩、N-(2-ヒドロキシエチル)エチレンジアミン-N,N’,N’-三酢酸{EDTA-OH(N-(2-hydroxyethyl)ethylene diamine -N,N',N'- triacetic acid);(CH2 COOH)2 NCH2 CH2 NCHCH2 OH(CH2 COOH)}およびその塩、ニトリロ三酢酸{NTA(Nitrilotriacetic acid);N(CH2 COOH)3 }およびその塩、等が挙げられる。上記アミノポリカルボン酸の塩としては、アルカリ金属塩が挙げられる。
 例えばFeの無機化合物とアミノポリカルボン酸とを出発物質としてFeのアミノポリカルボン酸キレート物を調製する方法は、特に限定されるものではなく、公知のキレート化の手法を採用することができる。具体的には、Fe錯体は、FeSO4 を出発物質(原料)として用い、アミノポリカルボン酸を配位子として配位させることにより、製造することができる。即ち、Feのアミノポリカルボン酸キレート物の調製方法は、特に限定されるものではない。
 尚、上記Feの無機化合物は、キレート化を行うのに好適な水溶性(溶解度が0.2モル/L以上)の化合物であればよい。
 〔正極電解液〕
 上記正極電解液は、pHが好ましくは2~7の範囲内であり、より好ましくは3~6の範囲内であり、pH2~7の条件下において良好な酸化還元反応を行うことができる(イオンの状態で価数が変化する)正極側の活物質を含む水溶液、つまり、正極側の活物質としてマンガンレドックス系物質を含むと共に、ポリエチレンイミンを含む水溶液であればよい。
 上記マンガンレドックス系物質は、水溶液となったときに、レドックス反応時にイオンの状態で価数が変化する(レドックス反応に関与する)マンガンイオンを生じる化合物であればよく、特に限定されないものの、塩素イオンや有機物が含まれていないことが望ましい。当該マンガンレドックス系物質としては、具体的には、例えば、硫酸マンガン、過マンガン酸カリウム等が挙げられ、このうち、硫酸マンガンが最も好ましい。
 正極電解液に塩素イオンが含まれていると、レドックスフロー型電池の充電によってマンガンイオンが酸化されるときに、塩素ガスが発生する。また、正極電解液に有機物が含まれていると、マンガンイオンの酸化力によって有機物が分解され、レドックスフロー型電池が自己放電する。しかしながら、上記例示の化合物には塩素イオンや有機物は含まれていないので、塩素ガスが発生せず、しかも自己放電をより一層防止することができる。
 上記ポリエチレンイミンは、マンガンイオンの酸化力に耐えることができる(分解(酸化)されない)ので、マンガンイオンに対してキレート剤や錯化剤として作用して、Mn-ポリエチレンイミン錯体を形成する。ポリエチレンイミンは、通常、重合度の異なる化合物の混合物として市販されており、本発明においては市販品を好適に用いることができる。従って、ポリエチレンイミンは、Mn-ポリエチレンイミン錯体を形成するのに支障が無い範囲内で、一級、二級、三級アミン構造(分枝構造)を有する混合物であってもよい。
 上記ポリエチレンイミンの平均分子量は、特に限定されないものの、キレート化を行うのに好適な水溶性(溶解度が0.2モル/L以上)を備えていることが好ましく、具体的には、300以上、10000以下であることがより好ましく、600以上、1800以下であることがさらに好ましい。ポリエチレンイミンの分子量分布は、特に限定されないものの、性能が安定するように、より狭い方が望ましい。
 正極電解液がポリエチレンイミンを含むことにより、マンガン化合物の沈澱を防止することができ、レドックスフロー型電池の自己放電を防止することができ、しかもマンガンイオンの反応性を向上させることができる。それゆえ、マンガンレドックス系物質を用いて、広く一般に実用化されるために充分な耐久性を備えたレドックスフロー型電池を提供することができる。
 そして、マンガンレドックス系物質に対するポリエチレンイミンの量、即ち、マンガンイオンと、ポリエチレンイミンに含まれる窒素原子とのモル比は、1:1~1:5の範囲内であることがより好ましい。ここで、ポリエチレンイミンに含まれる窒素原子とは、基本単位であるエチレンイミン(-CHCHNH-)に含まれる窒素原子を指す。本願発明者の検討によれば、レドックスフロー型電池を、20℃付近で使用した場合には上記モル比が1:1であるとマンガンイオンの反応性が最も向上し、60℃付近で使用した場合には上記モル比が1:5であるとマンガンイオンの反応性が最も向上することが判明した。それゆえ、上記の構成によれば、マンガンイオンの反応性をより一層向上させることができる。
 従って、正極電解液は、Mn-ポリエチレンイミン錯体を含む水溶液である。上記正極電解液に含まれるMn-ポリエチレンイミン錯体の濃度は、0.2モル/L以上、2.5モル/L以下であることがより好ましく、0.2モル/L以上、1.5モル/L以下であることがさらに好ましく、0.5モル/L以上、1.5モル/L以下であることが最も好ましい。
 さらに、正極電解液は、電解酸化されていることがより好ましい。正極電解液が電解酸化されている場合には、Mn-ポリエチレンイミン錯体は充電状態では電子を放出したMn(IV)-ポリエチレンイミン錯体となり、放電状態ではMn(III) -ポリエチレンイミン錯体となる。具体的には、例えばマンガンレドックス系物質が硫酸マンガン(II)である場合に、硫酸マンガン(II)を含む水溶液にポリエチレンイミンを溶解させたときに生じるマンガンイオンは、二価であると考えられる。一般に、マンガンイオンは、レドックス反応時に二価と三価との間で価数が変化する。ここで、二価のマンガンイオンを含む水溶液を電解酸化すると、大部分のマンガンイオンは三価になると考えられる(但し、正確な価数(価数の分布)は不明である)。従って、マンガンイオンを含む水溶液を電解酸化してなる正極電解液に含まれる当該マンガンイオンは、レドックス反応時に三価と四価との間で価数が変化することになる。それゆえ、上記の構成によれば、充電状態では電子を放出したMn(IV) -ポリエチレンイミン錯体とすることができ、放電状態ではMn(III) -ポリエチレンイミン錯体とすることができるので、マンガン化合物の沈澱をより一層防止することができ、レドックスフロー型電池の自己放電をより一層防止することができ、しかもマンガンイオンの反応性をより一層向上させることができる。
 また、正極電解液は、上記Mn-ポリエチレンイミン錯体の他に、硫酸ナトリウム(NaSO)や、酢酸ナトリウム、EDTAのナトリウム塩、NaCl等の、公知の電解質(導電塩)をさらに含んでいてもよい。尚、正極電解液の調製方法は、pHの調節方法も含めて公知の手法を採用することができ、特に限定されるものではない。また、正極電解液に用いる水は、蒸留水と同等以上の純度があれば充分である。
 さらに、上記正極電解液は、上述した通り、レドックスフロー型電池内では不活性ガスによって大気中の酸素と遮断されていることがより好ましい。詳細なメカニズムは不明であるものの、正極電解液が大気中の酸素に晒されると、レドックスフロー型電池が自己放電してしまい、その後は良好な充放電を行うことができなくなる。それゆえ、正極電解液を大気中の酸素と遮断することにより、マンガン化合物の沈澱をより一層防止することができ、レドックスフロー型電池の自己放電をより一層防止することができ、しかもマンガンイオンの反応性をより一層向上させることができる。
 〔レドックスフロー型電池の性能〕
 レドックスフロー型電池の起電力は、高い方がより好ましい。本実施の形態に係るレドックスフロー型電池は、正極電解液がMn-ポリエチレンイミン錯体を含む水溶液であり、Mnは起電力が比較的高いため、1.0V以上の高出力のレドックスフロー型電池とすることができる。
 また、一般に、レドックスフロー型電池は、クーロン効率が高い方が、エネルギー効率が高くなり、充放電サイクル特性(可逆性)も良好となる。そして、クーロン効率は、実用的には65%以上であることが好ましく、80%以上であることがより好ましい。エネルギー効率は、実用的には40%以上であることが好ましく、60%以上であることがより好ましい。充放電サイクル特性(可逆性)は、実用的には90%以上であることが好ましい。また、電圧効率は、実用的には60%以上であることが好ましく、75%以上であることがより好ましい。電解液の利用率は、実用的には28%以上であることが好ましく、55%以上であることがより好ましい。
 本実施の形態に係るレドックスフロー型電池は、正極電解液がMn-ポリエチレンイミン錯体を含む水溶液であるので、クーロン効率を65%以上、より好ましくは80%以上にすることができる。また、エネルギー効率を40%以上、より好ましくは60%以上にすることができる。さらに、充放電サイクル特性(可逆性)を90%以上にすることができる。また、電圧効率を60%以上、より好ましくは75%以上にすることができる。さらに、電解液の利用率を28%以上、より好ましくは75%以上にすることができる。
 そして、本実施の形態に係るレドックスフロー型電池は、数千サイクルの使用に耐えることができるため、電力貯蔵電池として好適に用いることができる。尚、各種性能(充放電サイクル特性(可逆性)、クーロン効率、電圧効率、エネルギー効率および電解液の利用率)の具体的な算出方法については、後段の実施例にて説明する。
 また、本実施の形態に係るレドックスフロー型電池においては、上述した通り、正極電解液および負極電解液が、互いに異なる組成の水溶液(いわゆる二液式)からなっていてもよく、或いは、正極側に存在する正極側の活物質の量(濃度)、並びに、負極側に存在する負極側の活物質の量(濃度)を維持するために、両電解液を混合してなる互いに同一組成の水溶液(いわゆるプレミックス方式)からなっていてもよい。
 以下、実施例および比較例により、本発明をさらに詳しく説明する。尚、各実施例にて示された技術内容は、別の実施例にて示された技術内容と適宜組み合わせて用いることができる。
 〔実施例1〕
 レドックスフロー型電池の性能評価を下記方法にて行った。
 負極電解液を、下記方法によって調製した。即ち、先ず、蒸留水50mlに、0.02モル(7.87g)のDTPA(5H)と0.1モル(4.0g)のNaOHとを加えて溶解させた。続いて、この水溶液に、0.02モル(5.56g)のFeSO・7HOを加えて溶解させた後、0.05モル(7.1g)のNaSO(導電塩)を加えて溶解させた。次いで、全量が100mlになるように蒸留水を加えた。これにより、Fe(II)-DTPA錯体の濃度が0.2モル/Lである水溶液を調製した。
 続いて、下記方法によって上記水溶液の電解酸化を行った。即ち、図1に示す構成を有するレドックスフロー型電池を用いて水溶液の電解酸化を行った。但し、電解酸化(および後述する充放電試験)に用いたレドックスフロー型電池は、試験用の小規模の電池である。正極および負極として、カーボンフェルトの一種であるSGL社製のGFA5を用い、電極面積を10cm2 とした。隔膜として、イオン交換膜の一種であるアストム社製のCMSを用いた。集電板として、ガラス状カーボン板の一種である昭和電工株式会社製のSGカーボン(厚さ0.6mm)を用いた。充放電セルとして、プラスチック容器を用い、上記正極、負極、隔膜、集電板を装填した状態で、正極側および負極側の容量(電解液の容量)がそれぞれ3mlとなるように調節した。
 正極電解液タンクおよび負極電解液タンクとして、容量30mlのガラス容器を用いた。供給管、回収管、不活性ガス供給管、排気管等の各種配管として、シリコーン製のチューブを用いた。ポンプとして、東京理科器械株式会社製のマイクロチューブポンプMP-1000を用いた。そして、充放電装置として、菊水電子工業株式会社製の充放電バッテリテストシステムPFX200を用いた。
 上記構成のレドックスフロー型電池の、正極電解液タンクにFe(II)-DTPA錯体の濃度が0.2モル/Lである水溶液20mlを入れ、負極電解液タンクにNaSOの濃度が0.5モル/Lである水溶液20mlを入れた。そして、200mAの定電流で32分間、充電(計384クーロン)を行った。充電の開始前および期間中、不活性ガス供給管から窒素ガスを供給して、充放電セル並びに正極電解液タンクおよび負極電解液タンクの気相部分から酸素を追い出すと共に、水溶液中の溶存酸素も追い出した。これにより、正極電解液タンクに入れた水溶液に含まれるFe(II)-DTPA錯体を電解酸化して、Fe(III) -DTPA錯体の濃度が0.2モル/Lである水溶液を調製し、負極電解液とした。尚、充電中、負極側では水素ガスが発生した。
 一方、正極電解液を、下記方法によって調製した。即ち、先ず、蒸留水50mlに、0.02モル(0.86g)のポリエチレンイミンを加えて溶解させた。当該ポリエチレンイミンとして、平均分子量が600のポリエチレンイミン(和光純薬工業株式会社製)を用いた。
 続いて、この水溶液に、濃度が2.5モル/Lの希硫酸約2mlを滴下してpHを7に調節した。その後、上記水溶液に、0.02モル(3.38g)のMnSO・HOを加えて溶解させた後、0.05モル(7.1g)のNaSO(導電塩)を加えて溶解させた。次いで、濃度が2.5モル/Lの希硫酸を滴下してpHを6に調節した後、全量が100mlになるように蒸留水を加えた。これにより、Mn(II)-ポリエチレンイミン錯体の濃度が0.2モル/Lである水溶液を調製した。
 続いて、負極電解液の電解酸化の方法と同様の方法によって上記水溶液の電解酸化を行った。即ち、上記構成のレドックスフロー型電池の、正極電解液タンクにMn(II)-ポリエチレンイミン錯体の濃度が0.2モル/Lである水溶液20mlを入れ、負極電解液タンクにFe(III) -DTPA錯体の濃度が0.2モル/Lである前記水溶液20mlを入れた。そして、200mAの定電流で32分間、充電(計384クーロン)を行った。充電の開始前および期間中、不活性ガス供給管から窒素ガスを供給して、充放電セル並びに正極電解液タンクおよび負極電解液タンクの気相部分から酸素を追い出すと共に、水溶液中の溶存酸素も追い出した。これにより、正極電解液タンクに入れた水溶液に含まれるMn(II)-ポリエチレンイミン錯体を電解酸化して、Mn(III) -ポリエチレンイミン錯体の濃度が0.2モル/Lである水溶液を調製し、正極電解液とした。但し、電解酸化したMn-ポリエチレンイミン錯体の正確な価数(価数の分布)は不明である。
 上記正極電解液および負極電解液を用いて、上記構成のレドックスフロー型電池の充放電試験を下記条件で行った。
 即ち、上記構成のレドックスフロー型電池の、正極電解液タンクにMn(III) -ポリエチレンイミン錯体の濃度が0.2モル/Lである水溶液20mlを入れ、負極電解液タンクにFe(III) -DTPA錯体の濃度が0.2モル/Lである前記水溶液20mlを入れた。充放電試験は、100mAの定電流で40分間、充電(計240クーロン)を行い、放電を100mAの定電流で行った。放電終止電圧は0.0Vに設定した。そして、充電から始めて、充放電を五回(5サイクル)繰り返した。尚、充放電試験の開始前および期間中、不活性ガス供給管から窒素ガスを供給して、充放電セル並びに正極電解液タンクおよび負極電解液タンクの気相部分から酸素を追い出すと共に、電解液中の溶存酸素を追い出した。
 正極側のレドックス反応は「Mn(III) -ポリエチレンイミン錯体 ⇔ Mn(IV)-ポリエチレンイミン錯体 + e」であり、負極側のレドックス反応は「Fe(III) -DTPA錯体 + e ⇔ Fe(II)-DTPA錯体」であると考えられる。
 充放電試験の結果(電池電圧の推移)を図2にグラフとして示す。当該グラフから、上記レドックスフロー型電池の各種性能、即ち、「充放電サイクル特性(可逆性)」、「クーロン効率」、「電圧効率」、「エネルギー効率」および「電解液の利用率」を算出した。また、1サイクル目の充放電において、充電から放電に切り替わるとき(電流が0mAのとき)の端子電圧を読み取って「起電力」とした。
 上記「充放電サイクル特性(可逆性)」は、2サイクル目の充放電における放電時のクーロン量bと、3サイクル目の充放電における放電時のクーロン量eとを求め、式「(e/b)×100」(%)を用いて算出した。そして、算出した数値が80%以上である場合を「○」(繰り返しの充放電可能)、80%未満である場合を「×」(繰り返しの充放電不可能)と評価した。
 上記「クーロン効率」は、2サイクル目の充放電における充電時のクーロン量aおよび放電時のクーロン量bを求め、式「(b/a)×100」(%)を用いて算出した。
 上記「電圧効率」は、2サイクル目の充放電における充電時の平均の端子電圧aおよび放電時の平均の端子電圧bを求め、式「(b/a)×100」(%)を用いて算出した。
 上記「エネルギー効率」は、2サイクル目の充放電における充電時の電力量aおよび放電時の電力量bを求め、式「(b/a)×100」(%)を用いて算出した。
 上記「電解液の利用率」は、正極側または負極側に供給される電解液の活物質の量(モル数)にファラデー定数(96500クーロン/モル)を乗じてクーロン量cを求めると共に、1サイクル目の充放電における放電時のクーロン量dを求め、式「(d/c)×100」(%)を用いて算出した。尚、いわゆる二液式で、正極側に供給される電解液の活物質の量と、負極側に供給される電解液の活物質の量とに差がある場合には、少ない量の方を採用して算出することとした。
 その結果、「起電力」は1.2V、「充放電サイクル特性(可逆性)」は「○」(103%)、「クーロン効率」は85%、「電圧効率」は85%、「エネルギー効率」は72%、「電解液の利用率」は53%であった。従って、上記構成のレドックスフロー型電池は、電力貯蔵電池として好適に使用することができることが判った。
 また、「電解液の電位」を下記方法で評価した。即ち、レドックスフロー型電池の正極電解液タンクおよび負極電解液タンクに予め黒鉛電極と銀/塩化銀(飽和塩化カリウム水溶液)電極とを各々挿入し、充放電時の銀/塩化銀(飽和塩化カリウム水溶液)電極に対する黒鉛電極の電位を測定することによって評価した。その結果、正極電解液の電位は、放電終止時が0.94V、充電終止時が1.06Vであった。また、負極電解液の電位は、放電終止時が0.00V、充電終止時が-0.13Vであった。
 尚、上記各種性能(充放電サイクル特性(可逆性)、クーロン効率、電圧効率、エネルギー効率、電解液の利用率、および電解液の電位)の具体的な算出方法については、公知の方法を採用することもできる。
 次に、上記正極電解液および負極電解液を用いて、上記構成のレドックスフロー型電池の自己放電試験を下記条件で行った。
 即ち、上記構成のレドックスフロー型電池の、正極電解液タンクにMn(III) -ポリエチレンイミン錯体の濃度が0.2モル/Lである水溶液20mlを入れ、負極電解液タンクにFe(III) -DTPA錯体の濃度が0.2モル/Lである前記水溶液20mlを入れた。また、上記正極電解液タンクおよび負極電解液タンクに予め黒鉛電極と銀/塩化銀(飽和塩化カリウム水溶液)電極とを各々挿入した。自己放電試験は、100mAの定電流で30分間、充電(計180クーロン)を行って、充電後の銀/塩化銀(飽和塩化カリウム水溶液)電極に対する黒鉛電極の電圧を測定した後、レドックスフロー型電池を室温(約25℃)で一晩(約18時間)静置して、そのときの銀/塩化銀(飽和塩化カリウム水溶液)電極に対する黒鉛電極の電圧を測定し、両電圧を比較することによって行った。上記条件で充電したときの充電後の正極電解液には、Mn(III) -ポリエチレンイミン錯体が約0.1モル/Lの濃度、および、Mn(IV)-ポリエチレンイミン錯体が約0.1モル/Lの濃度で(凡そ50%:50%で)含まれており、充電後の負極電解液には、Fe(III) -DTPA錯体が約0.1モル/Lの濃度、および、Fe(II)-DTPA錯体が約0.1モル/Lの濃度で(凡そ50%:50%で)含まれていると考えた。尚、自己放電試験の開始前および期間中、不活性ガス供給管から窒素ガスを供給して、充放電セル並びに正極電解液タンクおよび負極電解液タンクの気相部分から酸素を追い出すと共に、電解液中の溶存酸素を追い出した。
 その結果、正極電解液の充電後の電圧は1.00Vであり、一晩静置後の電圧は1.00Vであった。また、負極電解液の充電後の電圧は-0.07Vであり、一晩静置後の電圧は-0.07であった。従って、上記構成のレドックスフロー型電池は、実質的に自己放電しない(自己放電が充分に遅い)ことが判った。
 〔実施例2〕
 負極電解液を、下記方法によって調製した。即ち、先ず、蒸留水50mlに、0.02モル(0.86g)のポリエチレンイミンを加えて溶解させた。当該ポリエチレンイミンとして、平均分子量が600のポリエチレンイミン(和光純薬工業株式会社製)を用いた。
 続いて、この水溶液に、濃度が2.5モル/Lの希硫酸約3mlを滴下してpHを6に調節した。その後、上記水溶液に、0.02モル(3.19g)のCuSOを加えて溶解させた後、0.05モル(7.1g)のNaSO(導電塩)を加えて溶解させた。次いで、全量が100mlになるように蒸留水を加えた。これにより、Cu(II)-ポリエチレンイミン錯体の濃度が0.2モル/Lである水溶液を調製した。当該水溶液のpHは3であった。
 一方、正極電解液を、下記方法によって調製した。即ち、先ず、蒸留水50mlに、0.02モル(0.86g)のポリエチレンイミンを加えて溶解させた。当該ポリエチレンイミンとして、平均分子量が600のポリエチレンイミン(和光純薬工業株式会社製)を用いた。
 続いて、この水溶液に、濃度が2.5モル/Lの希硫酸約3mlを滴下してpHを6に調節した。その後、上記水溶液に、0.02モル(3.38g)のMnSO・HOを加えて溶解させた後、0.05モル(7.1g)のNaSO(導電塩)を加えて溶解させた。次いで、濃度が2.5モル/Lの希硫酸を滴下してpHを5に調節した後、全量が100mlになるように蒸留水を加えた。これにより、Mn(II)-ポリエチレンイミン錯体の濃度が0.2モル/Lである水溶液を調製した。
 続いて、実施例1の電解酸化の方法と同様の方法によって上記水溶液の電解酸化と電解還元とを行った。即ち、上記構成のレドックスフロー型電池の、正極電解液タンクにMn(II)-ポリエチレンイミン錯体の濃度が0.2モル/Lである水溶液15mlを入れ、負極電解液タンクにCu(II)-ポリエチレンイミン錯体の濃度が0.2モル/Lである前記水溶液15mlを入れた。但し、集電板として、正極側の集電板には純チタン(厚さ0.6mm)を用い、負極側の集電板にはガラス状カーボン板の一種である昭和電工株式会社製のSGカーボン(厚さ0.6mm)を用いた。
 そして、100mAの定電流で50分間、充電(計300クーロン)を行った。充電の開始前および期間中、不活性ガス供給管から窒素ガスを供給して、充放電セル並びに正極電解液タンクおよび負極電解液タンクの気相部分から酸素を追い出すと共に、水溶液中の溶存酸素も追い出した。これにより、正極電解液タンクに入れた水溶液に含まれるMn(II)-ポリエチレンイミン錯体を電解酸化して、Mn(III) -ポリエチレンイミン錯体の濃度が0.2モル/Lである水溶液を調製し、正極電解液とした。但し、電解酸化したMn-ポリエチレンイミン錯体の正確な価数(価数の分布)は不明である。
 一方、充電中、負極電解液タンクのCu(II)-ポリエチレンイミン錯体は還元されて、Cu(I) -ポリエチレンイミン錯体となり、従って水溶液はCu(I) -ポリエチレンイミン錯体の水溶液となった。但し、電解還元したCu-ポリエチレンイミン錯体の正確な価数(価数の分布)は不明である。
 上記正極電解液および負極電解液を用いて、実施例1に記載したレドックスフロー型電池と同様の構成を備えたレドックスフロー型電池の充放電試験を下記条件で行った。
 即ち、上記構成のレドックスフロー型電池の、正極電解液タンクにMn(III) -ポリエチレンイミン錯体の濃度が0.2モル/Lである水溶液15mlを入れ、負極電解液タンクにCu(I) -ポリエチレンイミン錯体の濃度が0.2モル/Lである前記水溶液15mlを入れた。充放電試験は、100mAの定電流で40分間、充電(計240クーロン)を行い、放電を100mAの定電流で行った。放電終止電圧は0.0Vに設定した。そして、充電から始めて、充放電を三十回(30サイクル)繰り返す前試験を行った後、本試験として充放電を二十回(20サイクル、計50サイクル)繰り返した。尚、充放電試験の開始前および期間中、不活性ガス供給管から窒素ガスを供給して、充放電セル並びに正極電解液タンクおよび負極電解液タンクの気相部分から酸素を追い出すと共に、電解液中の溶存酸素を追い出した。
 正極側のレドックス反応は「Mn(III) -ポリエチレンイミン錯体 ⇔ Mn(IV)-ポリエチレンイミン錯体 + e」であり、負極側のレドックス反応は「Cu(II)-ポリエチレンイミン錯体 + e ⇔ Cu(I) -ポリエチレンイミン錯体」であると考えられる。尚、前試験においては、濃度が0.2モル/LであるCu(II)-ポリエチレンイミン錯体が形成(再生)されていると考えられる。
 充放電試験の本試験(31サイクル目~50サイクル目)の結果(電池電圧の推移)を図3にグラフとして示す。当該グラフから、実施例1と同様にして、上記レドックスフロー型電池の各種性能、即ち、「充放電サイクル特性(可逆性)」、「クーロン効率」、「電圧効率」、「エネルギー効率」および「電解液の利用率」を算出した。但し、各算出方法は下記方法とした。また、31サイクル目の充放電において、充電から放電に切り替わるとき(電流が0mAのとき)の端子電圧を読み取って「起電力」とした。
 上記「充放電サイクル特性(可逆性)」は、31サイクル目の充放電における放電時のクーロン量bと、50サイクル目の充放電における放電時のクーロン量eとを求め、式「(e/b)×100」(%)を用いて算出した。
 上記「クーロン効率」は、50サイクル目の充放電における充電時のクーロン量aおよび放電時のクーロン量bを求め、式「(b/a)×100」(%)を用いて算出した。
 上記「電圧効率」は、32サイクル目の充放電における充電時の平均の端子電圧aおよび放電時の平均の端子電圧bを求め、式「(b/a)×100」(%)を用いて算出した。
 上記「エネルギー効率」は、32サイクル目の充放電における充電時の電力量aおよび放電時の電力量bを求め、式「(b/a)×100」(%)を用いて算出した。
 上記「電解液の利用率」は、正極側または負極側に供給される電解液の活物質の量(モル数)にファラデー定数を乗じてクーロン量cを求めると共に、31サイクル目の充放電における放電時のクーロン量dを求め、式「(d/c)×100」(%)を用いて算出した。尚、いわゆる二液式で、正極側に供給される電解液の活物質の量と、負極側に供給される電解液の活物質の量とに差がある場合には、少ない量の方を採用して算出することとした。
 その結果、「起電力」は1.08V、「充放電サイクル特性(可逆性)」は「○」(101%)、「クーロン効率」は94%、「電圧効率」は55%、「エネルギー効率」は51%、「電解液の利用率」は78%であった。従って、上記構成のレドックスフロー型電池は、電力貯蔵電池として好適に使用することができることが判った。
 また、「電解液の電位」を実施例1と同様にして評価した。その結果、正極電解液の電位は、放電終止時が0.94V、充電終止時が1.06Vであった。また、負極電解液の電位は、放電終止時が0.14V、充電終止時が0.06Vであった。
 〔実施例3〕
 マンガンイオンとポリエチレンイミンに含まれる窒素原子とのモル比を変更したときの正極電解液の性能評価を、サイクリックボルタンメトリーを用いて下記方法にて行った。即ち、正極電解液の性能を評価するために、測定装置として下記構成のサイクリックボルタンメトリーを用いて、正極電解液に浸漬した電極の電極特性を測定(電気化学測定)した。サイクリックボルタンメトリー(CV)の概略の構成を、図12に基づいて説明すれば、以下の通りである。
 図12に示すように、サイクリックボルタンメトリー20は、フッ素樹脂からなる環状の上ブロック27aおよび板状の下ブロック27bを備えており、これら上ブロック27aおよび下ブロック27b間にO-リング25を介して、グラッシーカーボン(東海カーボン株式会社製)からなる電極23を作用電極として挟み込み、ボルト26a・26bで固定することによって、セル29を構成するようになっている。セル29には正極電解液が被測定電解液24として満たされている。サイクリックボルタンメトリー20は、当該セル29内に、銀/塩化銀(飽和塩化カリウム水溶液)電極からなる参照電極21、および白金線からなる対極22を被測定電解液24に浸漬するように備えると共に、セル29を覆う蓋30を有している。対極22は参照電極21に巻回するように一定の間隔を空けて配置されている。蓋30には参照電極21、対極22、およびチューブ28を通す孔が形成されている。チューブ28は、図示しない供給装置からセル29内における被測定電解液24の上方に窒素ガスを供給するようになっており、供給した窒素ガスで被測定電解液24を大気中の酸素と遮断し、酸素の影響を排除するようになっている。
 上記構成のサイクリックボルタンメトリー20を用いて、正極電解液に浸漬した電極の電極特性を測定(電気化学測定)して、正極電解液の性能を評価した。具体的には、サイクリックボルタンメトリー20を電気化学測定システム(HZ-5000;北斗電工株式会社製)に電気的に接続し、測定温度を20℃または60℃、被測定電解液24に接触する電極23の表面積を0.44cm2 、掃引速度(走査速度)を100mV/s、掃引範囲(走査範囲)を-1.0V~1.5V(対銀/塩化銀(飽和塩化カリウム水溶液)電極)、掃引回数(充放電の繰り返しサイクル数)を50回にして、電極23の電極特性を測定した。
 上記被測定電解液として、マンガンイオンとポリエチレンイミンに含まれる窒素原子とのモル比が1:1の正極電解液を、下記方法によって調製した。即ち、先ず、蒸留水50mlに、0.02モル(0.86g)のポリエチレンイミンを加えて溶解させた。当該ポリエチレンイミンとして、平均分子量が600のポリエチレンイミン(和光純薬工業株式会社製)を用いた。
 続いて、この水溶液に、濃度が2.5モル/Lの希硫酸約2mlを滴下してpHを7に調節した。その後、上記水溶液に、0.02モル(3.38g)のMnSO・HOを加えて溶解させた後、0.05モル(7.1g)のNaSOを加えて溶解させた。次いで、全量が100mlになるように蒸留水を加えた。これにより、マンガンイオンとポリエチレンイミンに含まれる窒素原子とのモル比が1:1の、Mn(II)-ポリエチレンイミン錯体の濃度が0.2モル/Lである水溶液を調製し、正極電解液aとした。
 そして、上記構成のサイクリックボルタンメトリーを用いて、上記正極電解液aに浸漬した電極の電極特性を、上記条件にて測定(電気化学測定)した。得られた電極特性をグラフにして図4,5に示す。図4は測定温度が20℃の場合のグラフであり、図5は測定温度が60℃の場合のグラフである。当該グラフにおいては、横軸を電極電位(V VS Ag/AgCl)、縦軸を応答電流値(mA)とした。グラフに描かれている曲線(サイクリックボルタモグラム)の形状から、正極電解液aの充放電サイクル特性(可逆性)を評価することができる。
 当該グラフに描かれている特有の形状を有する曲線(サイクリックボルタモグラム)において、下側の曲線が還元波、上側の曲線が酸化波を示す。電極電位を1.5Vから-1.0Vへ掃引することにより、下側の曲線である還元波が右側から左側に向かって描かれる。このとき、被測定電解液24において電極23近傍に存在する酸化体であるMn(IV)-ポリエチレンイミン錯体は、還元体であるMn(III) -ポリエチレンイミン錯体へと還元される。逆に、電極電位を-1.0Vから1.5Vへ掃引することにより、上側の曲線である酸化波が左側から右側に向かって描かれる。このとき、被測定電解液24において電極23近傍に存在する還元体であるMn(III) -ポリエチレンイミン錯体は、酸化体であるMn(IV)-ポリエチレンイミン錯体へと酸化される。そして、還元波および酸化波における応答電流値は、ぞれぞれ、被測定電解液24において電極23近傍にて生じた酸化還元反応でよって発生した微弱電流を示す。また、還元波および酸化波両方におけるピーク電位(Ep)の平均値から、Mn-ポリエチレンイミン錯体の酸化還元反応系の酸化還元電位が判る。
 グラフに描かれている曲線の形状から、Mn-ポリエチレンイミン錯体の三価-四価間の酸化還元反応が安定して繰り返され、再現性に優れていることが判った。
 次に、上記被測定電解液として、マンガンイオンとポリエチレンイミンに含まれる窒素原子とのモル比が1:5の正極電解液を、下記方法によって調製した。即ち、先ず、蒸留水50mlに、0.10モル(4.30g)のポリエチレンイミンを加えて溶解させた。当該ポリエチレンイミンとして、平均分子量が600のポリエチレンイミン(和光純薬工業株式会社製)を用いた。
 続いて、この水溶液に、濃度が2.5モル/Lの希硫酸約10mlを滴下してpHを7に調節した。その後、上記水溶液に、0.02モル(3.38g)のMnSO・HOを加えて溶解させた後、0.05モル(7.1g)のNaSOを加えて溶解させた。次いで、全量が100mlになるように蒸留水を加えた。これにより、マンガンイオンとポリエチレンイミンに含まれる窒素原子とのモル比が1:5の、Mn(II)-ポリエチレンイミン錯体の濃度が0.2モル/Lである水溶液を調製し、正極電解液bとした。
 そして、正極電解液aと同様にして、上記正極電解液bに浸漬した電極の電極特性を、上記条件にて測定(電気化学測定)した。得られた電極特性をグラフにして図6,7に示す。図6は測定温度が20℃の場合のグラフであり、図7は測定温度が60℃の場合のグラフである。
 グラフに描かれている曲線の形状から、Mn-ポリエチレンイミン錯体の三価-四価間の酸化還元反応が安定して繰り返され、再現性に優れていることが判った。
 そして、図4のグラフと図6のグラフとの比較から、20℃においては、マンガンイオンとポリエチレンイミンに含まれる窒素原子とのモル比が1:1の正極電解液aの方が、充放電サイクル特性(可逆性)に優れ、マンガンイオンの反応性が向上することが判った。また、図5のグラフと図7のグラフとの比較から、60℃においては、マンガンイオンとポリエチレンイミンに含まれる窒素原子とのモル比が1:5の正極電解液bの方が、充放電サイクル特性(可逆性)に優れ、マンガンイオンの反応性が向上することが判った。
 上記性能評価の結果から、レドックスフロー型電池の使用温度(運転温度)に応じて、正極電解液におけるマンガンイオンとポリエチレンイミンに含まれる窒素原子とのモル比を変更することにより、充放電サイクル特性(可逆性)に優れ、マンガンイオンの反応性がより一層向上したレドックスフロー型電池を提供することができることが判った。
 〔実施例4〕
 pHを変更したときの正極電解液の性能評価を、実施例3で用いたサイクリックボルタンメトリーと同様のサイクリックボルタンメトリーを用いて、同様の方法にて行った。
 被測定電解液として、pHが1.28~6.80の範囲の正極電解液を、下記方法によって調製した。即ち、先ず、蒸留水50mlに、0.02モル(0.86g)のポリエチレンイミンを加えて溶解させた。当該ポリエチレンイミンとして、平均分子量が600のポリエチレンイミン(和光純薬工業株式会社製)を用いた。
 続いて、この水溶液に、濃度が2.5モル/Lの希硫酸約2mlを滴下してpHを7に調節した。その後、上記水溶液に、0.02モル(3.38g)のMnSO・HOを加えて溶解させた後、0.05モル(7.1g)のNaSOを加えて溶解させた。次いで、全量が100mlになるように蒸留水を加えた。これにより、Mn(II)-ポリエチレンイミン錯体の濃度が0.2モル/Lである水溶液を調製した。
 その後、当該水溶液を四等分し、それぞれの水溶液に、濃度が2.5モル/Lの希硫酸を滴下してpHを1.28,3.01,5.80,6.80に調節し、正極電解液c-1~c-4とした。
 そして、上記サイクリックボルタンメトリーを用いて、上記正極電解液c-1~c-4に浸漬した電極の電極特性を、実施例3と同様の条件にて測定(電気化学測定)した。但し、測定温度は20℃とした。得られた電極特性をグラフにして図8~11に示す。図8はpHが1.28の場合(正極電解液c-1)のグラフであり、図9はpHが3.01の場合(正極電解液c-2)のグラフであり、図10はpHが5.80の場合(正極電解液c-3)のグラフであり、図11はpHが6.80の場合(正極電解液c-4)のグラフである。
 グラフに描かれている曲線の形状から、正極電解液のpHが2~7の範囲内である正極電解液c-2~c-4では、Mn-ポリエチレンイミン錯体の三価-四価間の酸化還元反応が安定して繰り返され、再現性に優れていることが判った。一方、正極電解液のpHが2~7の範囲外である正極電解液c-1では、正極電解液c-2~c-4と比較して、上記三価-四価間の酸化還元反応の反応性に劣ることが判った。
 上記性能評価の結果から、正極電解液のpHが2~7の範囲内である正極電解液を用いることにより、性能がより一層優れたレドックスフロー型電池を提供することができることが判った。
 〔実施例5〕
 正極電解液に含まれるMn(II)-ポリエチレンイミン錯体の溶解度を、下記方法にて確認した。
 即ち、先ず、蒸留水50mlに、0.02モル(0.86g)のポリエチレンイミンを加えて溶解させた。当該ポリエチレンイミンとして、平均分子量が600のポリエチレンイミン(和光純薬工業株式会社製)を用いた。
 続いて、この水溶液に、濃度が2.5モル/Lの希硫酸約2mlを滴下してpHを7に調節した。次いで、上記水溶液に、0.02モル(3.38g)のMnSO・HOを加えて溶解させた後、全量が100mlになるように蒸留水を加えた。これにより、マンガンイオンとポリエチレンイミンに含まれる窒素原子とのモル比が1:1の、Mn(II)-ポリエチレンイミン錯体の濃度が0.2モル/Lである水溶液を調製した。
 そして、マグネティックスターラーを用いて攪拌しながら、全量が8mlになるまで当該水溶液の水分を蒸発させた後、室温(約25℃)まで冷却した。上記水溶液を全量が8mlになるまで濃縮したことにより、Mn(II)-ポリエチレンイミン錯体の濃度は2.5モル/Lになったものの、マンガン化合物の析出は室温(約25℃)でも認められなかった。つまり、Mn(II)-ポリエチレンイミン錯体の溶解度は2.5モル/L以上であることが判り、正極電解液に含まれるマンガン-ポリエチレンイミン錯体の濃度を、0.2モル/L以上、2.5モル/L以下に調節することができることが判った。これにより、Mn(II)-ポリエチレンイミン錯体を含む正極電解液は、レドックスフロー型電池に好適に使用することができることが判った。
 さらに、上記濃縮後の水溶液(全量8ml)に、0.02モル(2.84g)のNaSOを加え、全量が15mlになるように蒸留水を加えた後、マグネティックスターラーを用いて攪拌したところ、NaSOは溶解した。従って、全量が15mlの水溶液に0.02モルのMn(II)-ポリエチレンイミン錯体と0.02モルのNaSOとが溶解したことになるので、Mn(II)-ポリエチレンイミン錯体と導電塩であるNaSOとをモル比1:1で溶解させた水溶液におけるMn(II)-ポリエチレンイミン錯体の溶解度は1.33モル/L以上であることが判った。これにより、導電塩を用いた場合においても、Mn(II)-ポリエチレンイミン錯体を含む正極電解液は、レドックスフロー型電池に好適に使用することができることが判った。
 〔比較例1〕
 導電塩としてNaSOの替わりに0.10モル(5.85g)のNaClを加えた以外は、実施例1と同様の操作を行うことにより、Mn(II)-ポリエチレンイミン錯体の濃度が0.2モル/Lである水溶液を調製した。
 続いて、この水溶液を電解酸化して正極電解液を調製しようとしたところ、水溶液から塩素ガスが発生した。従って、正極電解液に塩素イオンが多く含まれている(この場合は1モル/L)と、マンガンイオンが酸化されるときに、マンガンの酸化反応が妨げられて塩素ガスが発生することが判った。
 〔比較例2〕
 自己放電試験において充電後に、充放電セル並びに正極電解液タンクおよび負極電解液タンクを大気中に暴露した以外は、実施例1と同様の操作を行うことにより、自己放電試験を行った。その結果、レドックスフロー型電池は、正極電解液の液面に接するガスに酸素が多く含まれている(大気では約20%)と、自己放電する(自己放電が非常に速い)ことが判った。
 〔比較例3〕
 正極電解液として下記水溶液を用いた以外は、実施例1と同様の操作を行うことにより、自己放電試験を行った。
 即ち、先ず、蒸留水50mlに、0.02モル(3.38g)のMnSO・HOを加えて溶解させた。続いて、この水溶液に、0.02モル(8.32g)のEDTA(4Na)・2HO(EDTAの四ナトリウム塩)を加えて溶解させた後、0.05モル(7.1g)のNaSOを加えて溶解させた。次いで、全量が100mlになるように蒸留水を加えた。これにより、Mn(II)-EDTA錯体の濃度が0.2モル/Lである水溶液を調製した。そして、上記水溶液を正極電解液として用いて、実施例1と同様の操作を行うことにより、自己放電試験を行った。
 その結果、正極電解液の充電後の電圧は0.55Vであり、一晩静置後の電圧は0.30Vであった。従って、ポリエチレンイミンの替わりにポリアミノカルボン酸であるEDTA(4Na)・2HOを含む正極電解液を用いたレドックスフロー型電池は、自己放電する(自己放電が非常に速い)ことが判った。
 また、一晩静置している間に、正極電解液では炭酸ガスの発生(気泡の発生)が認められた。当該現象は非特許文献2に記載されている現象と一致しているので、配位子であるEDTAが酸化され、自己分解したと考えられる。
 〔比較例4〕
 正極電解液として下記水溶液を用いた以外は、実施例1と同様の操作を行うことにより、自己放電試験を行った。
 即ち、先ず、蒸留水70mlに、0.02モル(3.38g)のMnSO・HOを加えて溶解させた。続いて、この水溶液に、0.02モル(5.56g)のEDTA-OHと、0.06モル(2.4g)のNaOHとを少量ずつ添加して溶解させた後、0.05モル(7.1g)のNaSOを加えて溶解させた。次いで、全量が100mlになるように蒸留水を加えた。これにより、Mn(II)-EDTA-OH錯体の濃度が0.2モル/Lである水溶液を調製した。そして、上記水溶液を正極電解液として用いて、実施例1と同様の操作を行うことにより、自己放電試験を行った。
 その結果、正極電解液の充電後の電圧は0.48Vであり、一晩静置後の電圧は0.40Vであった。従って、ポリエチレンイミンの替わりにポリアミノカルボン酸であるEDTA-OHを含む正極電解液を用いたレドックスフロー型電池は、自己放電する(自己放電が速い)ことが判った。
 〔比較例5〕
 先ず、蒸留水70mlに、0.02モル(2.96g)のマロン酸二ナトリウムを加えて溶解させた後、濃度が2.5モル/Lの希硫酸を滴下してpHを7に調節した。続いて、上記水溶液に、0.02モル(3.38g)のMnSO・HOを加えて溶解させた後、0.05モル(7.1g)のNaSOを加えて溶解させた。次いで、全量が100mlになるように蒸留水を加えた。これにより、Mn(II)-マロン酸錯体の濃度が0.2モル/Lである水溶液を調製しようとしたが、マンガン化合物が直ちに析出することが判った。従って、ポリエチレンイミンの替わりにポリカルボン酸であるマロン酸を用いて、Mn(II)-マロン酸錯体を充分な濃度で含む正極電解液を調製することができないことが判った。
 〔比較例6〕
 先ず、蒸留水70mlに、0.02モル(3.24g)のコハク酸二ナトリウムを加えて溶解させた後、濃度が2.5モル/Lの希硫酸を滴下してpHを7に調節した。続いて、上記水溶液に、0.02モル(3.38g)のMnSO・HOを加えて溶解させた後、0.05モル(7.1g)のNaSOを加えて溶解させた。次いで、全量が100mlになるように蒸留水を加えた。これにより、Mn(II)-コハク酸錯体の濃度が0.2モル/Lである水溶液を調製しようとしたが、マンガン化合物が直ちに析出することが判った。従って、ポリエチレンイミンの替わりにポリカルボン酸であるコハク酸を用いて、Mn(II)-コハク酸錯体を充分な濃度で含む正極電解液を調製することができないことが判った。
 〔比較例7〕
 正極電解液として下記水溶液を用いた以外は、実施例1と同様の操作を行うことにより、自己放電試験を行った。
 即ち、先ず、蒸留水70mlに、0.02モル(2.68g)のDL-リンゴ酸を加えて溶解させた後、0.04モル(1.6g)のNaOHを加えて溶解させた。続いて、この水溶液に、濃度が2.5モル/Lの希硫酸を滴下してpHを7に調節した。その後、上記水溶液に、0.02モル(3.38g)のMnSO・HOを加えて溶解させた後、0.05モル(7.1g)のNaSOを加えて溶解させた。次いで、全量が100mlになるように蒸留水を加えた。これにより、Mn(II)-DL-リンゴ酸錯体の濃度が0.2モル/Lである水溶液を調製した。そして、上記水溶液を正極電解液として用いて、実施例1と同様の操作を行うことにより、自己放電試験を行った。
 その結果、正極電解液の充電後の電圧は0.54Vであり、一晩静置後の電圧は0.27Vであった。従って、ポリエチレンイミンの替わりにオキシ酸であるDL-リンゴ酸を含む正極電解液を用いたレドックスフロー型電池は、自己放電する(自己放電が非常に速い)ことが判った。
 〔比較例8〕
 正極電解液として下記水溶液を用いた以外は、実施例1と同様の操作を行うことにより、自己放電試験を行った。
 即ち、先ず、蒸留水70mlに、0.02モル(4.20g)のクエン酸を加えて溶解させた後、0.06モル(2.4g)のNaOHを加えて溶解させた。続いて、この水溶液に、濃度が2.5モル/Lの希硫酸を滴下してpHを7に調節した。その後、上記水溶液に、0.02モル(3.38g)のMnSO・HOを加えて溶解させた後、0.05モル(7.1g)のNaSOを加えて溶解させた。次いで、全量が100mlになるように蒸留水を加えた。これにより、Mn(II)-クエン酸錯体の濃度が0.2モル/Lである水溶液を調製した。そして、上記水溶液を正極電解液として用いて、実施例1と同様の操作を行うことにより、自己放電試験を行った。
 その結果、正極電解液の充電後の電圧は0.51Vであり、一晩静置後の電圧は0.20Vであった。従って、ポリエチレンイミンの替わりにオキシ酸であるクエン酸を含む正極電解液を用いたレドックスフロー型電池は、自己放電する(自己放電が非常に速い)ことが判った。
 〔比較例9〕
 先ず、蒸留水70mlに、0.02モル(1.2g)のエチレンジアミンを加えて溶解させた後、濃度が2.5モル/Lの希硫酸を滴下してpHを7に調節した。続いて、上記水溶液に、0.02モル(3.38g)のMnSO・HOを加えて溶解させた後、0.05モル(7.1g)のNaSOを加えて溶解させた。次いで、全量が100mlになるように蒸留水を加えた。これにより、マンガンとエチレンジアミンとのモル比が1:1の、Mn(II)-エチレンジアミン錯体の濃度が0.2モル/Lである水溶液を調製しようとしたが、マンガン化合物が直ちに析出することが判った。従って、ポリエチレンイミンの替わりにエチレンジアミンを用いて、Mn(II)-エチレンジアミン錯体を充分な濃度で含む正極電解液を調製することができないことが判った。
 〔比較例10〕
 負極電解液および正極電解液として下記水溶液を用いた以外は、実施例2と同様の操作を行うことにより、自己放電試験を行った。
 負極電解液を、下記方法によって調製した。即ち、先ず、蒸留水70mlに、0.1モル(6.0g)のエチレンジアミンを加えて溶解させた。続いて、この水溶液に、濃度が2.5モル/Lの希硫酸を滴下してpHを7に調節した。その後、上記水溶液に、0.02モル(3.19g)のCuSOを加えて溶解させた後、0.05モル(7.1g)のNaSO(導電塩)を加えて溶解させた。次いで、全量が100mlになるように蒸留水を加えた。これにより、銅とエチレンジアミンとのモル比が1:5の、Cu(II)-エチレンジアミン錯体の濃度が0.2モル/Lである水溶液を調製した。
 一方、正極電解液を、下記方法によって調製した。即ち、先ず、蒸留水70mlに、0.1モル(6.0g)のエチレンジアミンを加えて溶解させた。続いて、この水溶液に、濃度が2.5モル/Lの希硫酸を滴下してpHを7に調節した。その後、上記水溶液に、0.02モル(3.38g)のMnSO・HOを加えて溶解させた後、0.05モル(7.1g)のNaSO(導電塩)を加えて溶解させた。次いで、全量が100mlになるように蒸留水を加えた。これにより、マンガンとエチレンジアミンとのモル比が1:5の、Mn(II)-エチレンジアミン錯体の濃度が0.2モル/Lである水溶液を調製した。尚、マンガン化合物は析出しなかった。
 上記正極電解液および負極電解液を用いて、実施例2の充放電試験の条件と同様の条件で、レドックスフロー型電池の充放電試験を行った。但し、充放電試験は、充電を100mAの定電流で行った。充電終止電圧は2.0Vに設定した。また、放電を100mAの定電流で行った。放電終止電圧は0.3Vに設定した。
 正極側のレドックス反応は「Mn(II)-エチレンジアミン錯体 ⇔ Mn(III) -エチレンジアミン錯体 + e」であり、負極側のレドックス反応は「Cu(II)-エチレンジアミン錯体 + e ⇔ Cu(I) -エチレンジアミン錯体」であると考えられる。
 その結果、「起電力」、「クーロン効率」、「電圧効率」および「エネルギー効率」の各数値は、何れも実施例2における各数値と大差が無かった。しかしながら、実施例2のレドックスフロー型電池は、充放電を五十回(50サイクル)繰り返した後においても、電池の容量が実質的に減少しなかったのに対して、比較例10のレドックスフロー型電池は、充放電を五十回(50サイクル)繰り返すと、電池の容量が減少した。即ち、図13に示すように、実施例2のレドックスフロー型電池の「電解液の利用率」は、充放電を五十回(50サイクル)繰り返した後においても実質的に変化しなかったのに対して、比較例10のレドックスフロー型電池の「電解液の利用率」は、充放電を繰り返すに従って著しく低下した。つまり、比較例10のレドックスフロー型電池は、実施例2のレドックスフロー型電池と比較して、「充放電サイクル特性(可逆性)」および「電解液の利用率」に劣っていた。従って、比較例10のレドックスフロー型電池は、電力貯蔵電池として広く一般に実用化されるために充分な耐久性を備えていないことが判った。
 また、充放電試験の終了後、レドックスフロー型電池の充放電セルを分解して、正極および負極であるカーボンフェルト(SGL社製のGFA5)と、集電板とを観察した。その結果、正極側ではマンガン化合物の析出が多く認められ、負極側では銅化合物の析出が多く認められた。このことからも、比較例10のレドックスフロー型電池は、電力貯蔵電池として広く一般に実用化されるために充分な耐久性を備えていないことが判った。尚、実施例2のレドックスフロー型電池では、上記析出は殆ど認められなかった。
 さらに、ポリエチレンイミン(平均分子量が600のポリエチレンイミン(和光純薬工業株式会社製))およびエチレンジアミンの安全性を比較すると、非特許文献3,4に記載されているように、ポリエチレンイミンは危険物第4類第4石油類に属し、引火点が248℃(クリーブランド開放式)、急性毒性(経口 ラット LD50)が1350mg/kgであるのに対して、エチレンジアミンは危険物第4類第2石油類に属し、引火点が34℃(密閉式)、急性毒性(経口 ラット LD50)が500mg/kgである。従って、危険物としての取り扱い性の面や急性毒性の面で、比較例10のレドックスフロー型電池は、実施例2のレドックスフロー型電池よりも劣っていることは明らかである。
 本発明は、上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても、本発明の技術的範囲に含まれる。
 本発明に係る電力貯蔵電池によれば、マンガン化合物の沈澱を防止することができ、電力貯蔵電池の自己放電を防止することができ、しかもマンガンイオンの反応性が向上した電力貯蔵電池を提供することができる。従って、マンガンレドックス系物質を用いて、広く一般に実用化されるために充分な耐久性を備えた電力貯蔵電池を提供することができるという効果を奏する。
 それゆえ、本発明に係る電力貯蔵電池は、電力会社のみならず、電力貯蔵が必要な各種産業において広範に利用され得る。
  1  レドックスフロー型電池(電力貯蔵電池)
  2  充放電セル(電池容器)
  2a 正極側セル
  2b 負極側セル
  3  正極電解液タンク
  4  負極電解液タンク
 10  充放電装置
 11  隔膜
 12  集電板
 13  正極
 14  集電板
 15  負極
 20  サイクリックボルタンメトリー
 21  参照電極
 22  対極
 23  電極(作用電極)
 24  被測定電解液

Claims (11)

  1.  レドックス型の電力貯蔵電池において、
     正極電解液が、正極側の活物質としてマンガンレドックス系物質を含むと共に、ポリエチレンイミンを含む水溶液であることを特徴とする電力貯蔵電池。
  2.  マンガンイオンと、ポリエチレンイミンに含まれる窒素原子とのモル比が、1:1~1:5の範囲内であることを特徴とする請求項1に記載の電力貯蔵電池。
  3.  上記正極電解液に含まれるマンガン-ポリエチレンイミン錯体の濃度が、0.2モル/L以上、2.5モル/L以下であることを特徴とする請求項1に記載の電力貯蔵電池。
  4.  上記正極電解液のpHが2~7の範囲内であることを特徴とする請求項1に記載の電力貯蔵電池。
  5.  上記マンガンレドックス系物質が硫酸マンガンであることを特徴とする請求項1に記載の電力貯蔵電池。
  6.  上記正極電解液が電解酸化されていることを特徴とする請求項1に記載の電力貯蔵電池。
  7.  上記正極電解液が大気中の酸素と遮断されていることを特徴とする請求項1に記載の電力貯蔵電池。
  8.  負極電解液が、負極側の活物質として鉄レドックス系物質を含む水溶液であることを特徴とする電力貯蔵電池。
  9.  上記負極電解液が、鉄-ジエチレントリアミン五酢酸錯体を含む水溶液であることを特徴とする請求項8に記載の電力貯蔵電池。
  10.  上記負極電解液が電解酸化されていることを特徴とする請求項8に記載の電力貯蔵電池。
  11.  レドックスフロー型電池であることを特徴とする請求項1に記載の電力貯蔵電池。
PCT/JP2012/061546 2012-05-01 2012-05-01 電力貯蔵電池 WO2013164879A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12876002.2A EP2846389B1 (en) 2012-05-01 2012-05-01 Energy storage battery
IN8835DEN2014 IN2014DN08835A (ja) 2012-05-01 2012-05-01
JP2014513318A JP5768933B2 (ja) 2012-05-01 2012-05-01 電力貯蔵電池
PCT/JP2012/061546 WO2013164879A1 (ja) 2012-05-01 2012-05-01 電力貯蔵電池
US14/388,246 US9577283B2 (en) 2012-05-01 2012-05-01 Energy storage battery
CN201280067242.1A CN104054203B (zh) 2012-05-01 2012-05-01 蓄电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/061546 WO2013164879A1 (ja) 2012-05-01 2012-05-01 電力貯蔵電池

Publications (1)

Publication Number Publication Date
WO2013164879A1 true WO2013164879A1 (ja) 2013-11-07

Family

ID=49514289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061546 WO2013164879A1 (ja) 2012-05-01 2012-05-01 電力貯蔵電池

Country Status (6)

Country Link
US (1) US9577283B2 (ja)
EP (1) EP2846389B1 (ja)
JP (1) JP5768933B2 (ja)
CN (1) CN104054203B (ja)
IN (1) IN2014DN08835A (ja)
WO (1) WO2013164879A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018533818A (ja) * 2015-10-30 2018-11-15 マサチューセッツ インスティテュート オブ テクノロジー エアブリージング水性イオウ再充電可能電池
WO2018235419A1 (ja) * 2017-06-21 2018-12-27 住友電気工業株式会社 レドックスフロー電池
CN114079111A (zh) * 2020-08-11 2022-02-22 北京好风光储能技术有限公司 一种大型竖式储能电池以及储能集装箱
WO2023149224A1 (ja) * 2022-02-01 2023-08-10 国立研究開発法人産業技術総合研究所 レドックスフロー電池用電解液の再生方法及びレドックスフロー電池の運転方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201522003D0 (en) 2015-12-14 2016-01-27 Imp Innovations Ltd Regenerative fuel cells
KR102006820B1 (ko) * 2016-11-25 2019-08-02 울산과학기술원 전해액 조성물 및 이를 포함하는 미생물 연료전지
CN111313128B (zh) * 2018-12-11 2021-06-22 中国科学院大连化学物理研究所 一种通信基站用铝空气电池和控制方法
EP3726633A1 (en) * 2019-04-16 2020-10-21 Universität Innsbruck Redox flow battery
US11664518B2 (en) * 2021-05-21 2023-05-30 Raytheon Technologies Corporation Alkaline manganese redox flow battery with inhibitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642970A (en) 1979-09-14 1981-04-21 Agency Of Ind Science & Technol Redox battery
JPS579073A (en) 1980-06-17 1982-01-18 Agency Of Ind Science & Technol Bedox battery
JPH11158271A (ja) * 1997-11-26 1999-06-15 Kagaku Gijutsu Senryaku Suishin Kiko ポリエチレンイミンおよびその製造方法
JP2009231230A (ja) 2008-03-25 2009-10-08 Kurita Water Ind Ltd 微生物発電方法および装置
WO2011111254A1 (ja) * 2010-03-12 2011-09-15 住友電気工業株式会社 レドックスフロー電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4362791A (en) 1980-06-17 1982-12-07 Agency Of Industrial Science & Technology Redox battery
JPS58133788A (ja) 1982-02-01 1983-08-09 Semiconductor Energy Lab Co Ltd 電解質溶液
ATE251806T1 (de) * 1995-05-03 2003-10-15 Pinnacle Vrb Ltd Verfahren zur herstellung eines vanadiumelektrolyten für ganzvanadium redoxzellen und -batterien mit hoher energiedichte
US20020122980A1 (en) * 1998-05-19 2002-09-05 Fleischer Niles A. Electrochemical cell with a non-liquid electrolyte
CN100459269C (zh) * 2006-03-31 2009-02-04 中国科学院大连化学物理研究所 用于液流蓄电的铁-配合物/卤素电化学体系
GB0614337D0 (en) 2006-07-19 2006-08-30 Acal Energy Ltd Fuel Cells
US7820321B2 (en) 2008-07-07 2010-10-26 Enervault Corporation Redox flow battery system for distributed energy storage
KR101638595B1 (ko) * 2010-01-29 2016-07-12 삼성전자주식회사 레독스 플로우 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642970A (en) 1979-09-14 1981-04-21 Agency Of Ind Science & Technol Redox battery
JPS579073A (en) 1980-06-17 1982-01-18 Agency Of Ind Science & Technol Bedox battery
JPH11158271A (ja) * 1997-11-26 1999-06-15 Kagaku Gijutsu Senryaku Suishin Kiko ポリエチレンイミンおよびその製造方法
JP2009231230A (ja) 2008-03-25 2009-10-08 Kurita Water Ind Ltd 微生物発電方法および装置
WO2011111254A1 (ja) * 2010-03-12 2011-09-15 住友電気工業株式会社 レドックスフロー電池

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Ethylenediamine (Serial No.: JW050093) Product Safety Data Sheet (MSDS", MSDS/REAGENTS HOMEPAGE, 1 September 2001 (2001-09-01), Retrieved from the Internet <URL:http://www.wako-chem.co.jp/siyaku/msds.htm), Wako Pure Chemical Industries, Ltd.>
"Polyethyleneimine (Serial No.: JW161783) Product Safety Data Sheet (MSDS", MSDS/REAGENTS HOMEPAGE, 28 July 2004 (2004-07-28), Retrieved from the Internet <URL:http://www.wako-chem.co.jp/siyaku/msds.htm), Wako Pure Chemical Industries, Ltd.>
IWANAMI: "Dictionary of Physics and Chemistry", 20 February 1998, IWANAMI SHOTEN, pages: 223
See also references of EP2846389A4 *
TAKASHI SHIRAKASHI: "Abstract of PhD dissertation for Graduate School of Science (doctoral course", 25 March 1969, article "Study of Equilibrium and Rate on Ethylenediaminetetraacetatomanganate(III) Complex"

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018533818A (ja) * 2015-10-30 2018-11-15 マサチューセッツ インスティテュート オブ テクノロジー エアブリージング水性イオウ再充電可能電池
US10992003B2 (en) 2015-10-30 2021-04-27 Massachusetts Institute Of Technology Air-breathing aqueous sulfur rechargeable batteries
WO2018235419A1 (ja) * 2017-06-21 2018-12-27 住友電気工業株式会社 レドックスフロー電池
JPWO2018235419A1 (ja) * 2017-06-21 2020-04-23 住友電気工業株式会社 レドックスフロー電池
JP7001094B2 (ja) 2017-06-21 2022-01-19 住友電気工業株式会社 レドックスフロー電池
CN114079111A (zh) * 2020-08-11 2022-02-22 北京好风光储能技术有限公司 一种大型竖式储能电池以及储能集装箱
CN114079111B (zh) * 2020-08-11 2023-11-14 好风光储能技术(成都)有限公司 一种大型竖式储能电池以及储能集装箱
WO2023149224A1 (ja) * 2022-02-01 2023-08-10 国立研究開発法人産業技術総合研究所 レドックスフロー電池用電解液の再生方法及びレドックスフロー電池の運転方法

Also Published As

Publication number Publication date
EP2846389A4 (en) 2015-12-16
EP2846389B1 (en) 2017-02-22
JPWO2013164879A1 (ja) 2015-12-24
IN2014DN08835A (ja) 2015-05-22
CN104054203B (zh) 2017-03-22
CN104054203A (zh) 2014-09-17
EP2846389A1 (en) 2015-03-11
US20150214565A1 (en) 2015-07-30
US9577283B2 (en) 2017-02-21
JP5768933B2 (ja) 2015-08-26

Similar Documents

Publication Publication Date Title
JP5768933B2 (ja) 電力貯蔵電池
WO2012117594A1 (ja) 電力貯蔵電池
JP6385926B2 (ja) 金属リガンド配位化合物を含む水性レドックスフロー電池
JPH0864223A (ja) バナジウム系レドックスフロー型電池の電解液
Noh et al. Organometallic redox flow batteries using iron triethanolamine and cobalt triethanolamine complexes
JP7476359B2 (ja) Fe-crレドックスフロー電池システムおよびこのシステムを使用する方法
CN105340117A (zh) 氧化还原液流电池
JP5874833B2 (ja) 電力貯蔵電池及びその製造方法
JP6065351B2 (ja) 電力貯蔵電池
WO2013118277A1 (ja) 電力貯蔵電池
CN118367189A (zh) 一种添加固相储能材料的全钒液流电池系统
JP2013033639A (ja) マグネシウム金属イオン電池
CN110100343A (zh) 氧化还原液流电池
Bryans et al. Synthesis and characterisation of novel additives for use in the hybrid ZnBr2 flow battery
JP2012009322A (ja) 水系リチウムイオン二次電池
JP6065348B2 (ja) 電力貯蔵電池及びその製造方法
JP6065349B2 (ja) 電力貯蔵電池及びその製造方法
WO2013118278A1 (ja) 電力貯蔵電池
US20230051932A1 (en) Iron complexes with phosphonate-based ligands as rfb anolyte materials
Pritchard Low-Cost and Sustainable All-Iron Redox Flow Battery Energy Storage
Cao et al. Vanadium-Mediated High Areal Capacity Zinc–Manganese Redox Flow Battery
Wessells et al. Cosolvent electrolytes for electrochemical devices
WO2016207959A1 (ja) レドックスフロー電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014513318

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14388246

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012876002

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012876002

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE