WO2023149224A1 - レドックスフロー電池用電解液の再生方法及びレドックスフロー電池の運転方法 - Google Patents

レドックスフロー電池用電解液の再生方法及びレドックスフロー電池の運転方法 Download PDF

Info

Publication number
WO2023149224A1
WO2023149224A1 PCT/JP2023/001603 JP2023001603W WO2023149224A1 WO 2023149224 A1 WO2023149224 A1 WO 2023149224A1 JP 2023001603 W JP2023001603 W JP 2023001603W WO 2023149224 A1 WO2023149224 A1 WO 2023149224A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
gas
positive electrode
redox flow
electrolytic solution
Prior art date
Application number
PCT/JP2023/001603
Other languages
English (en)
French (fr)
Inventor
縁 佐藤
孝明 酒井
昭博 大平
量一 兼賀
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Publication of WO2023149224A1 publication Critical patent/WO2023149224A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/008Disposal or recycling of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a method for regenerating the electrolyte of a redox flow battery.
  • a method for regenerating an electrolytic solution by dissolving aggregates derived from metal oxides generated in the electrolytic solution during the charging and discharging process of a redox flow battery in which an electrolytic solution containing metal ions such as manganese is circulated for charging and discharging or
  • the present invention relates to a redox flow battery operating method capable of suppressing the formation of aggregates and a redox flow battery having such an operating mode.
  • a redox flow battery is one of the large-capacity storage batteries that store power derived from natural energy such as solar power and wind power.
  • power plants for example, solar power generators, wind power generators, other general power plants, etc.
  • power systems consumers, etc.
  • a battery system such as that shown in FIG. 1, for example, is constructed that includes an RF battery and a circulation mechanism (tanks, pipes, pumps) for circulating the electrolytic solution in the battery.
  • This RF battery 1 includes a positive electrode cell 13 containing a positive electrode 11, a negative electrode cell 14 containing a negative electrode 12, and a diaphragm 15 separating the cells 13 and 14 and appropriately permeating protons.
  • a positive electrode electrolyte tank 17 is connected to the positive electrode cell 13 via a pipe.
  • a negative electrode electrolyte tank 18 is connected to the negative electrode cell 14 via a pipe.
  • the piping is provided with pumps 19 and 20 for circulating the electrolyte.
  • the RF battery 1 uses piping and a pump to circulate and supply the positive electrode electrolyte in the tank 17 and the negative electrode electrolyte in the tank 18 to the positive electrode cell 13 (positive electrode 11) and the negative electrode cell 14 (negative electrode 12), respectively. Charging and discharging are performed along with the oxidation-reduction reaction of the metal ions that become the active material in the electrolytic solution of the electrode.
  • the RF battery shown in the operating principle diagram of FIG. 1 contains manganese ions in the positive electrode electrolyte and titanium ions in the negative electrode electrolyte. Solid arrows in the figure indicate charging, and broken arrows indicate discharging.
  • Mn 3+ trivalent manganese ions
  • Mn 2+ divalent manganese ions
  • MnO 2 : tetravalent manganese dioxide
  • MnO 2 produced dissolves by the reverse reaction of the following disproportionation reaction.
  • the reaction rate of this reverse reaction is very slow. Therefore, MnO 2 precipitates on the bottom of the positive electrode electrolyte tank 17 or adheres to the pipes 21 and 23 and the positive electrode 11 until it dissolves. This impedes the distribution of the electrolytic solution.
  • the generated manganese dioxide is redissolved by adding a reducing additive such as oxalic acid, sulfurous acid, ascorbic acid, and glucose to the positive electrode electrolyte in which manganese dioxide is generated.
  • a reducing additive such as oxalic acid, sulfurous acid, ascorbic acid, and glucose
  • oxalic acid for example, if Mn 3+ is present in the positive electrode electrolyte, it is also reduced at the same time. Therefore, it is necessary to add the reducing agent at the end of discharging the battery.
  • Non-Patent Document 1 discloses a new RF battery that uses a mixed solution of titanium and manganese as electrolytes for both positive and negative electrodes.
  • Ti 4+ ions present in the cathode electrolyte are reported to suppress the disproportionation reaction of Mn 3+ and suppress the grain growth of manganese dioxide.
  • the stability of Mn 3+ under acidic conditions using four types of electrolytic solutions blended in equimolar ratios (Mn, Mn/Ti, Mn/V, Mn/V/Ti) reported the effects of Ti 4+ and/or V 5+ on V 5+ is disclosed to be an efficient replacement for Ti 4+ for stabilizing Mn 3+ electrolytes for RF batteries.
  • the present disclosure suppresses the generation of aggregates by acting on the electrolyte during charging and discharging of the RF battery or re-reduces the generated aggregates, which directly reduces the capacity of the electrolyte.
  • the purpose is to prevent the generation of
  • the present disclosure has been made to solve the above problems, and by bringing an inert gas into contact with the RF battery electrolyte, it acts on the metal ions or metal oxides in the liquid phase to form aggregates. I tried to suppress the production reaction itself. That is, the present disclosure includes the following embodiments.
  • a method for regenerating an electrolytic solution for a redox flow battery wherein the electrolytic solution contains metal ions containing at least manganese ions and aggregates derived from metal oxides generated by charging and discharging of the redox flow battery, and the electrolytic solution is A regeneration method, comprising a contacting step of contacting a liquid with an inert gas which may contain a reducing gas to reduce the average particle size of aggregates to less than 5 ⁇ m.
  • the contacting step includes bubbling an inert gas, which may contain a reducing gas, into the electrolytic solution.
  • a method of operating a redox flow battery comprising: passing an inert gas, which may contain a reducing gas, through the electrolytic solution to suppress formation of aggregates having an average particle size of 5 ⁇ m or more in the electrolytic solution. .
  • the aeration step includes bubbling an inert gas, which may contain a reducing gas, into the electrolytic solution.
  • a battery cell comprising a positive electrode, a negative electrode, and a diaphragm interposed between the positive electrode and the negative electrode; positive electrode and negative electrode electrolyte tanks for storing the positive electrode electrolyte and the negative electrode electrolyte, respectively;
  • an electrolyte circulation device for circulating the positive electrode electrolyte or the negative electrode electrolyte in the pipe, and the battery cell, the electrolyte tank, the pipe, and the electrolyte circulation device , a bubbling device for blowing an inert gas that may contain a reducing gas, and a control unit for performing the operation method according to any one of (7) to (10).
  • the method of the present disclosure by acting on the electrolyte during charging and discharging of the RF battery, it is possible to suppress the generation of aggregates or re-reduce the generated aggregates, and the effect of extending the life of the electrolyte. Bring.
  • FIG. 1 is an operating principle diagram of a redox flow battery.
  • FIG. 2 is a cross-sectional view of a miniature test cell of a redox flow battery according to one embodiment.
  • FIG. 3 shows the results of a charge/discharge test performed in Comparative Example 1 without introducing gas into the minicell.
  • FIG. 4 shows the results of a charge/discharge test in Example 1, in which nitrogen gas was passed through.
  • A plots the relationship between the battery capacity and the voltage when the positive electrode electrolyte is degassed and then charged and discharged 15 times while nitrogen gas is circulated.
  • (B) shows current efficiency (CE) and voltage efficiency (VE) after 15 cycles.
  • C is the result of DLS (dynamic light scattering) measurement of the solution after the experiment.
  • FIG. 1 is an operating principle diagram of a redox flow battery.
  • FIG. 2 is a cross-sectional view of a miniature test cell of a redox flow battery according to one embodiment.
  • FIG. 3 shows the results of
  • FIG. 5 shows the results of a charge/discharge test in Example 2 in which an inert gas containing about 4% hydrogen was passed through.
  • A plots the relationship between battery capacity and voltage after 15 charge/discharge cycles.
  • B shows changes in current efficiency (CE) and voltage efficiency (VE) when 15 cycles are repeated.
  • C is the result of DLS (dynamic light scattering) measurement of the solution after the experiment.
  • FIG. 6 shows the results of a charge/discharge test conducted in Example 3 by introducing atomized argon gas containing about 4% hydrogen.
  • A plots the relationship between battery capacity and voltage after 15 charge/discharge cycles.
  • B shows changes in current efficiency (CE) and voltage efficiency (VE) when 15 cycles are repeated.
  • FIG. 7 shows the charge-discharge behavior in Example 4 when humidified argon gas was introduced.
  • A plots the relationship between the battery capacity and the voltage when the battery is charged and discharged while changing the flow rate of humidified argon gas from 20 to 10 to 5 to 0 mL/min every 10 cycles.
  • B shows the relationship between the flow rate of argon gas and the current efficiency (CE) and voltage efficiency (VE).
  • C shows the relationship between the flow rate of argon gas and the energy density.
  • FIG. 8 shows the results of particle size measurement by the dynamic scattering method measured in Example 5.
  • (A) is the result of measuring the particle size distribution of the positive electrode electrolyte after discharging while changing the flow rate from 20 ⁇ 10 ⁇ 5 ⁇ 0 mL/min.
  • (B) is the result of measuring the particle size of the positive electrode electrolyte after two cycles of charging at 20 mL/min, and
  • (C) is the result of measuring the particle size of the positive electrode electrolyte after one cycle of discharging at 20 mL/min.
  • the regeneration method in the present embodiment uses an electrolyte containing metal ions containing at least manganese ions and aggregates derived from metal oxides generated by charging and discharging of the redox flow battery.
  • the electrolyte may further comprise metal ions or oxides thereof selected from the group consisting of titanium, vanadium, cerium, chromium or mixtures thereof. and a contact step of contacting the electrolytic solution with an inert gas that may contain a reducing gas to reduce the particle size of the aggregate to less than 5 ⁇ m.
  • the electrolytic solution may be a positive electrode electrolytic solution, a negative electrode electrolytic solution, or a mixture thereof.
  • the positive electrode electrolyte contains manganese ions as a positive electrode active material. Specifically, it contains at least one of divalent manganese ions (Mn 2+ ) and trivalent manganese ions (Mn 3+ ). Divalent manganese ions are mainly present during discharging, and mainly trivalent manganese ions are present during charging, and both manganese ions are present due to repeated charging and discharging.
  • the positive electrode electrolyte may contain metal ions selected from the group consisting of titanium, vanadium, cerium, chromium, or mixtures thereof, in addition to manganese ions as a positive electrode active material.
  • Titanium ions include, for example, tetravalent titanium ions (Ti 4+ ). This titanium ion does not act positively as a positive electrode active material. By containing titanium ions, it is easy to suppress the precipitation of the manganese oxide (see Non-Patent Document 1). Vanadium ions include, for example, pentavalent vanadium ions (V 5+ ) (see Non-Patent Document 2). Chromium ions include, for example, trivalent chromium ions (Cr 3+ ). A known positive electrode electrolyte containing manganese ions as a positive electrode active material can be used as the positive electrode electrolyte.
  • the positive electrode electrolyte of the present embodiment may contain aggregates derived from other metal oxides generated by charge and discharge of the redox flow battery, in addition to manganese oxide generated by the disproportionation reaction.
  • the negative electrode electrolyte should just contain the metal ion which can comprise a redox pair as a negative electrode active material.
  • the metal ion is not particularly limited and can be appropriately selected.
  • the negative electrode active material includes, for example, at least one metal ion selected from manganese ions, titanium ions, vanadium ions, chromium ions, zinc ions, and tin ions.
  • a known negative electrode electrolyte can be used as the negative electrode electrolyte.
  • the solvent of each electrode electrolyte is H2SO4 , K2SO4 , Na2SO4 , H3PO4 , H4P2O7 , K2HPO4 , Na3PO4, K3PO4 , HNO .
  • At least one aqueous solution selected from 3 , KNO3 , NaCl, and NaNO3 can be utilized.
  • the inert gas used in this embodiment is an inert gas that may contain a reducing gas.
  • inert gases include rare gases such as helium, neon, argon, krypton, and xenon, nitrogen, and carbon dioxide.
  • argon, nitrogen, carbon dioxide and the like are preferable because of their availability.
  • these inert gases can be used alone as they are, the regeneration efficiency is further improved by forming microbubbles as will be described later.
  • Examples of reducing gases include sulfur dioxide, carbon monoxide, methane, nitrogen monoxide, hydrogen, or mixtures thereof. Although these reducing gases may be used as they are, it is preferable to use them by mixing them with the above-described inert gas at an arbitrary ratio.
  • the content of the reducing gas is more preferably 1% by volume or more, more preferably about 4% by volume.
  • the upper limit of the content of the reducing gas is not particularly limited, but from the viewpoint of handling (safety), it is preferably an inert gas containing a reducing gas in an amount not higher than the explosive limit.
  • the inert gas of the present disclosure contains hydrogen as reducing gas.
  • This hydrogen-containing inert gas may be any inert gas containing hydrogen, and there is no particular need to limit the hydrogen concentration. From the viewpoint of reducing the particle size of metal oxide aggregates generated in the electrolytic solution, it is desirable that the hydrogen-containing inert gas has a high hydrogen concentration.
  • the concentration of hydrogen in the hydrogen-containing inert gas is 10% by volume or less, and if it is about 4% by volume or less, which is below the explosion limit , more secure. Therefore, the lower limit of the hydrogen content in the hydrogen-containing inert gas is not particularly limited, and may be within the range normally used. For example, the lower limit of the hydrogen content is about 0.1% by volume or about 1% by volume. be.
  • the regeneration method of the present embodiment includes a step of bringing an inert gas, which may contain a reducing gas, into gas-liquid contact with the electrolytic solution (hereinafter referred to as a contact step).
  • the method of contacting the electrolyte with an inert gas that may contain a reducing gas is not particularly limited, and bubbling to supply air to the electrolyte under normal pressure is simpler and more efficient. mentioned.
  • Examples of the method for bringing the liquid into contact with the gas include a method using an air diffuser, an air diffuser plate (a device for generating air bubbles of millimeter size, micrometer size, nanometer size, etc.), an ejector, and the like. Among them, bubbling using an air diffuser is preferred because it is the simplest and most effective. For example, Noritake Co., Ltd. fine bubble (microbubble) generator, Cerapol sparger, etc. can be mentioned.
  • bubbling refers to releasing an inert gas that may contain a reducing gas in the electrolytic solution to form a large number of bubbles.
  • a Teflon (registered trademark) tube a porous material such as a glass filter or a membrane filter is placed in the electrolytic solution, and the inert gas is released into the filter to form a large number of fine bubbles.
  • microbubbles such as fine bubbles (microbubbles or ultrafine bubbles) defined in the international standard ISO/TC281 may be supplied.
  • Fine bubbles have a bubble size (diameter) of 10 ⁇ 4 m or less.
  • those with a bubble diameter (diameter) of 10 ⁇ 6 m to 10 ⁇ 4 m are called microbubbles (MB), and those with a bubble diameter (diameter) of 10 ⁇ 6 m or less are called ultra fine bubbles (UFB). .
  • Bubbles larger than fine bubbles have diameters on the order of millimeters or more, are strongly affected by buoyancy, and easily rise to the surface of the water and disappear.
  • the microbubbles slowly rise at a slow speed, but since the self-pressurization effect becomes significant, the size of the microbubbles gradually shrinks and becomes ultra-fine bubbles, or disappears and dissolves.
  • ultra-fine bubbles since the effect of viscous force is greater than that of buoyancy, they hardly rise and remain in the electrolyte for a long period of time due to Brownian motion. Unlike microbubbles, ultra-fine bubbles do not fuse with each other and remain floating in the electrolytic solution for a long period of time.
  • Microbubbles and ultra-fine bubbles may be produced and supplied by a pressurized dissolution method (GaLF method), a swirl flow method, a spiral method, a diffusion method, or the like.
  • GaLF method pressurized dissolution method
  • a swirl flow method swirl flow method
  • a spiral method spiral method
  • a diffusion method or the like.
  • the time for contacting the electrolytic solution with the inert gas that may contain a reducing gas is not particularly limited, but the time is sufficient to make the average particle size of the aggregates contained in the electrolytic solution less than 5 ⁇ m. , preferably in contact.
  • the method for measuring the average particle size is not particularly limited, but for example, it can be measured by particle size distribution measurement by a dynamic light scattering method using a particle size distribution meter.
  • the average particle size the peak particle size of the particle size distribution by the dynamic light scattering method or the volume-based average particle size (dispersion size D50, median size) obtained by particle size distribution measurement can be used.
  • the dispersion diameter (D50) is a particle diameter when the electrolytic solution used in the present embodiment is measured by a dynamic light scattering method, and a particle diameter larger than a reference particle diameter based on a certain particle diameter. It means the reference particle size when the number of particles having a is equal to the number of particles having a small particle size.
  • Methods for measuring the average particle size other than the particle size distribution measurement by the dynamic light scattering method include, for example, shape observation of aggregates by a scanning electron microscope (SEM).
  • the particle size of the aggregates is preferably less than 5 ⁇ m, more preferably 1 ⁇ m or less. From the viewpoint of suppressing the capacity reduction of the RF battery, the average particle size is preferably 0.5 ⁇ m or less, more preferably 0.3 ⁇ m or less.
  • the particle size measuring device include a dynamic light scattering method using FPAR-1000 (manufactured by Otsuka Electronics Co., Ltd.), a laser diffraction/scattering method using Microtrac (manufactured by Nikkiso Co., Ltd.), and Macview (Mountec Co., Ltd.). (manufactured by Co., Ltd.).
  • an electrolytic solution containing at least manganese and optionally metal ions composed of titanium, vanadium, cerium, chromium, or a mixture thereof is placed in a battery cell of the redox flow battery.
  • the electrolytic solution to be ventilated may be a positive electrode electrolytic solution or a negative electrode electrolytic solution, but is preferably a positive electrode electrolytic solution.
  • an inert gas that may contain a reducing gas may be passed through both the positive and negative electrolytes.
  • the RF battery In the operation process, the RF battery is charged and discharged.
  • the RF battery can employ a configuration similar to that of the conventional RF battery 1 described with reference to FIG. That is, the RF battery 1 of the present embodiment includes a battery cell 16 separated into a positive electrode cell 13 and a negative electrode cell 14 by a diaphragm 15, a positive electrode electrolyte tank 17 for storing a positive electrode electrolyte to be circulated in the positive electrode cell 13, A negative electrode electrolyte tank 18 for storing the negative electrode electrolyte to be circulated to the negative electrode cell 14 is provided.
  • Charging and discharging of the RF battery is performed by circulating the respective electrode electrolytes through the respective electrode cells 13 and 14 of the battery cell 16 and utilizing the difference in oxidation-reduction potential of the ions contained in the respective electrode electrolytes. Circulation of each electrode electrolyte is performed through supply conduits 21, 22 and discharge conduits 23, 24 by pumps 19, 20 provided in the middle thereof.
  • FIG. 2 shows a cross-sectional view of a small test cell 21 of a redox flow battery according to one embodiment.
  • the cell 21 has a negative electrode 30 made of carbon felt or carbon paper and a positive electrode 31 made of carbon felt or carbon paper, and a cation exchange membrane or an anion exchange membrane (hereinafter referred to as "diaphragm” or simply " It has a structure in which they are arranged opposite to each other with a film 32 interposed therebetween.
  • the negative electrode 30 has a graphite composite collector plate 33 formed by combining resin and graphite on its outer side, and a negative electrode terminal 37 on its further outer side.
  • the positive electrode 31 has a graphite composite collector plate 34 formed by combining resin and graphite on its outer side, and a positive electrode terminal 38 on its further outer side.
  • the negative electrode 30, the graphite composite current collector plate 33, and the negative electrode terminal 37 are in contact with each other so as to be electrically conductive.
  • the positive electrode 31, the graphite composite current collector plate 34, and the positive electrode terminal 38 are also in electrical contact with each other. Therefore, measuring the potential difference between the negative terminal 37 and the positive terminal 38 can be equated with measuring the potential difference between the negative electrode 30 and the positive electrode 31 .
  • a gasket 35 and a gasket 36 are arranged between the graphite composite current collector plate 33 and the diaphragm 32 and between the graphite composite current collector plate 34 and the diaphragm 32 .
  • the negative electrode 30 is arranged inside the gasket 35 .
  • the positive electrode 31 is arranged inside the gasket 36 .
  • the gaskets 35 and 36 have the function of effectively preventing leakage of the electrolytes that have soaked into the negative electrode 30 and the positive electrode 31 from the cell 21 to the outside.
  • a back plate 39 is arranged outside the negative terminal 37 .
  • a back plate 40 is arranged outside the positive electrode terminal 38 . The back plate 39 and the back plate 40 are clamped in a direction to narrow the gap between the two using, for example, bolts and nuts (not shown).
  • the graphite composite current collector plate 33, the negative terminal 37, and the back plate 39 have two through holes that communicate with each other.
  • a tube 41 is inserted into one through hole.
  • a tube 42 is inserted into the other through hole.
  • the tubes 41 and 42 each reach the outer surface of the negative electrode 30 with no through-holes communicating with the graphite composite current collector plate 33 , the negative electrode terminal 37 and the back plate 39 .
  • the graphite composite current collector plate 34, the positive electrode terminal 38 and the back plate 40 have two through-holes that communicate with each other.
  • a tube 43 is inserted into one through hole.
  • a tube 44 is inserted into the other through hole.
  • the tubes 43 and 44 each reach the outer surface of the positive electrode 31 with no through-holes communicating with the graphite composite current collector plate 34 , the positive electrode terminal 38 and the back plate 40 .
  • Charging and discharging can be performed by connecting a power supply device (having a resistance circuit, not shown) between the negative terminal 37 and the positive terminal 38 .
  • trivalent manganese ions are generated from divalent manganese ions, as shown in the following charging reaction, and in the discharging process, trivalent manganese ions are converted into divalent manganese ions, as shown in the discharging reaction. is generated.
  • divalent manganese ions Mn 2+
  • manganese oxides are produced by the following disproportionation reaction. That is, manganese oxide is generated during the charging process. This manganese oxide is typically tetravalent manganese dioxide (MnO 2 ). The MnO 2 produced dissolves by the reverse reaction of the following disproportionation reaction.
  • an inert gas is passed through the electrolytic solution so as to suppress the aggregation of manganese dioxide produced by the disproportionation reaction and prevent the formation of aggregates having an average particle size of 5 ⁇ m or more in the electrolytic solution.
  • This inert gas may contain a reducing gas, the type and composition of which are as described above.
  • the place for ventilation is not particularly limited as long as it can be in gas-liquid contact with the electrolyte. may Further, ventilation into the positive electrode electrolyte may be performed simultaneously with ventilation into the negative electrode electrolyte.
  • the flow rate of the inert gas introduced into the electrolytic solution is, for example, 0.1-100 mL/min, preferably 0.5-80 mL/min, more preferably 1-50 mL/min.
  • the flow rate can be represented by the amount (volume) of gas flowing per minute at 0° C. and one atmospheric pressure, for example.
  • the reducing gas contained in the inert gas is preferably hydrogen gas. Moreover, it is preferable to ventilate the hydrogen-containing inert gas so that the hydrogen gas concentration in the positive electrode electrolyte becomes 10 ppm or less.
  • the lower limit of the hydrogen gas concentration is not particularly limited, it is preferably 0.1 ppm or more, more preferably about 1 ppm.
  • the supplied inert gas is ultra-fine bubbles
  • the ultra-fine bubbles of the inert gas supplied into the positive electrode cell 13 stay near the positive electrode 11 due to Brownian motion without leaving the periphery of the positive electrode 11.
  • metal oxides such as manganese dioxide produced by the disproportionation reaction are efficiently reduced in the vicinity of the positive electrode 11 .
  • the method of the present disclosure is fundamentally different from the method of temporally delaying the generation of aggregates because it is difficult to generate aggregates by passing an inert gas through the electrolytic solution to affect the reaction during charging and discharging. In contrast, since it is theoretically possible to prevent the generation of aggregates at all times, the life of the electrolytic solution can be dramatically extended.
  • a battery cell including a positive electrode, a negative electrode, and a diaphragm interposed between the positive electrode and the negative electrode; Piping connecting positive and negative electrode electrolyte tanks and battery cells, electrolyte circulation device for circulating positive electrode electrolyte or negative electrode electrolyte in the piping, battery cell, electrolyte tank, piping and electrolyte circulation device and a bubbling device for blowing an inert gas, which may include a reducing gas, into at least one of the redox flow battery.
  • the battery cells, electrolyte tank, piping, and electrolyte circulation device in the redox flow battery of the present disclosure can be the same as in the conventional redox flow battery described in FIG.
  • the bubbling device can be a device for bringing the electrolyte into contact with an inert gas that may contain a reducing gas in the contacting step in the method for regenerating the electrolyte for a redox flow battery of the present disclosure. .
  • it is an air diffuser, an air diffuser plate, an ejector, or the like.
  • This bubbling device may be provided in at least one of the above-described battery cell, electrolyte tank, piping, and electrolyte circulation device.
  • the control unit in this embodiment controls the type and flow rate of the gas to be passed through the bubbling device so as to suppress the formation of aggregates with an average particle size of 5 ⁇ m or more in the electrolytic solution.
  • the type of gas is an inert gas or an inert gas containing a reducing gas, and specific examples have already been described.
  • the flow rate of the gas is not particularly limited as long as it can suppress the formation of aggregates having an average particle size of 5 ⁇ m or more in the electrolytic solution, but the preferred flow rate is as described above.
  • the controller may include a particle size measuring device for measuring the particle size of aggregates in the electrolytic solution.
  • the particle size measuring device may be based on static light scattering, dynamic light scattering, or multi-angle laser light scattering.
  • examples of particle size measurement devices that use the static light scattering method include Shimadzu SALD-7100 and the like, multi-angle laser light scattering.
  • a particle size measuring device using the method for example, Wyatt Technology's DAWN HELEOS or the like can be used.
  • the present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples.
  • the unit % of numerical values indicating the amount of addition of various components means volume %.
  • test cell As the test cell, a mini cell (purchased from Tsukuba Materials Information Laboratory Co., Ltd.) similar to the small test cell shown in FIG. 2 was used. Carbon fiber electrodes (AAF304ZS, size 5 cm ⁇ 1 cm) manufactured by Toyobo Co., Ltd. were used for both the positive electrode and the negative electrode, and Nafion (trademark) 212 was used as the diaphragm. 10 mL each of the positive electrode electrolyte and the negative electrode electrolyte were prepared.
  • the particle size of aggregates in the electrolytic solution was measured as follows using a dynamic light scattering method (device name: Zetasizer Pro, manufactured by Malvern Panalytical). A predetermined amount of the electrolytic solution after the charge/discharge test was directly placed in a 10 mm square cuvette, and the measurement was performed at 25°C. Measurements were performed in backscattering mode (incident light source was a helium-neon laser at 633 nm). The peak of the particle size distribution data (histogram) obtained at this time was taken as the average particle size.
  • Example 1 Charge/discharge behavior under inert gas flow A charge/discharge test was performed using the minicell under the same conditions as in Comparative Example 1, except that nitrogen gas was passed through the positive electrode electrolyte and the negative electrode electrolyte. .
  • FIG. 4A shows the battery after degassing the positive electrode electrolyte, and then charging and discharging 1, 5, 10, and 15 times while circulating nitrogen gas through a Teflon (registered trademark) tube in the container containing it.
  • Teflon registered trademark
  • FIG. 4B shows current efficiency (CE: (discharge capacity/charge capacity) ⁇ 100) and voltage efficiency (VE: (average voltage during discharge/average voltage during charge) ⁇ 100) when 15 cycles are repeated. shows the transition of It was found that there was almost no change even after 15 cycles.
  • FIG. 4(C) shows the particle size distribution of the solution after the experiment was measured by DLS (Dynamic Light Scattering). There was no such thing as not contributing to the reaction.
  • Example 2 Charge-discharge behavior when introducing argon gas containing about 4% hydrogen Conducted except that reducing gas (argon gas containing about 4% hydrogen) was circulated in the positive electrode electrolyte and the negative electrode electrolyte Under the same conditions as in Example 1, a charge/discharge test was performed using the minicell. The results are shown in FIG. FIG. 5(A) plots the relationship between battery capacity (abscissa) and voltage (ordinate) when the battery is charged and discharged 1, 5, 10, and 15 times. As compared with Comparative Example 1, it can be seen that the charging and discharging efficiency is remarkably improved.
  • FIG. 5(A) plots the relationship between battery capacity (abscissa) and voltage (ordinate) when the battery is charged and discharged 1, 5, 10, and 15 times.
  • FIG. 5B plots the relationship between the battery capacity (horizontal axis) and the voltage (vertical axis) after 15 charge/discharge cycles.
  • FIG. 5(C) shows the particle size distribution when the solution after the experiment was measured by DLS (dynamic light scattering method). It was also found that the size of the fine particles of the metal oxide was kept smaller than when nitrogen was introduced (Example 1).
  • Example 3 Charging and discharging behavior when argon gas containing about 4% hydrogen is introduced after being miniaturized A charging/discharging test using the above minicell was performed under the same conditions as in Example 1, except that bubbles of argon gas containing about 4% hydrogen) were further miniaturized and flowed. The results are shown in FIG. FIG. 6A plots the relationship between battery capacity (abscissa) and voltage (ordinate) when the battery is charged and discharged 1, 5, 10, and 15 times.
  • FIG. 6B shows changes in current efficiency (CE) and voltage efficiency (VE) after 15 charge/discharge cycles. It was confirmed that even when the number of cycles was repeated, the capacity was maintained larger when the atomized hydrogen-containing gas was flowed.
  • CE current efficiency
  • VE voltage efficiency
  • FIG. 6(C) shows the particle size distribution when the solution after the experiment was measured by DLS (dynamic light scattering method). As shown in FIG. 6(C), when the particle diameter after charging and discharging is confirmed, the particle diameter is overwhelmingly small, and it can be seen that there are particles of the order of nanometers (tens of nanometers). . The particle size could be made smaller by miniaturizing the gas and making it flow.
  • Example 4 Charge and discharge behavior when humidified argon gas is introduced
  • dry gas was introduced, but in this example, it was humidified by blowing into a glass bottle containing distilled water.
  • a charge/discharge test was conducted by introducing argon gas.
  • a 1.5M titanium-1.25M manganese solution (3M sulfuric acid) was used as the positive electrode electrolyte, and a 1.5M titanium-1.0M manganese solution (3M sulfuric acid) was used as the negative electrode electrolyte.
  • ultrasonic treatment was performed while bubbling the electrolytic solution (1 hour). Charge-discharge measurements were performed on the same mini-cell as in Example 1 while changing the flow rate of humidified argon gas every 10 cycles.
  • a glass ball filter 3907 series manufactured by Asahi Seisakusho, pore size: 30 to 60 ⁇ m was used to micronize argon gas bubbles.
  • the electrolytic solution was stirred during charging and discharging.
  • the relationship is shown in FIG. 7(A), the changes in current efficiency (CE) and voltage efficiency (VE) are shown in FIG. 7(B), and the change in energy density is shown in FIG. 7(C). From these results, it was found that the higher the flow rate of argon gas, the higher the energy density was maintained.
  • Example 5 Comparison of particle size when gas flow rate is changed
  • the particle size of the electrolytic solution subjected to charge/discharge in Example 4 was measured by DLS as the undiluted solution.
  • FIG. 8A shows the results of measuring the particle size distribution of the positive electrode electrolyte after discharging while changing the flow rate from 20 ⁇ 10 ⁇ 5 ⁇ 0 mL/min.
  • FIG. 8B shows the results of measuring the particle size of the positive electrode electrolyte after two cycles of charging at 20 mL/min
  • FIG. 8C shows the results of measuring the particle size of the positive electrode electrolyte after one cycle of discharging at 20 mL/min.
  • the flow rate was measured using a precision needle valve equipped flow meter MODEL RK1250 (manufactured by Kofloc Co., Ltd.). From these results, it was found that the positive electrode electrolyte after charging had a larger particle size, while the particle size after discharging was smaller. Also, the effect of reducing the particle size was observed in one experiment at 20 mL/min.
  • the method for regenerating the redox flow battery electrolyte according to one aspect of the present invention can be suitably used to regenerate the cathode electrolyte containing manganese ions in the redox flow battery.
  • RF redox flow

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

少なくともマンガンイオンを含む金属イオンと、レドックスフロー電池の充放電によって生じた金属酸化物由来の凝集物を含む電解液に作用することで凝集物の生成そのものを抑制又は生成した凝集物を再還元することを可能とし、電解液の容量低下に直結する凝集物の生成を防ぎ、電解液の寿命を飛躍的に向上させるレドックスフロー電池用電解液の再生方法を提供する。この再生方法は、電解液と、還元性ガスを含んでもよい不活性ガスと、を接触させて凝集物の平均粒子径を5μm未満とする接触工程を含む。

Description

レドックスフロー電池用電解液の再生方法及びレドックスフロー電池の運転方法 クロスリファレンス
 本出願は、日本国において、2022年2月1日に出願された特願2022-14300号に基づく優先権を主張するものであり、当該出願に記載された内容はすべて、参照によりそのまま本明細書に援用される。
 本開示は、レドックスフロー電池の電解液の再生方法に関する。特に、マンガンなどの金属イオンを含む電解液を循環して充放電するレドックスフロー電池の充放電過程で電解液中に生成した金属酸化物由来の凝集物を溶解させる電解液の再生方法、又は当該凝集物の生成を抑制しうるレドックスフロー電池の運転方法並びにそのような運転モードを備えるレドックスフロー電池に関する。
 太陽光発電や風力発電といった自然エネルギー由来の電力を蓄電する大容量の蓄電池の一つにレドックスフロー電池(RF電池)がある。例えば、特許文献1に示すRF電池では、交流/直流変換器を介して、発電所(例えば、太陽光発電機、風力発電機、その他、一般の発電所など)と、電力系統や需要家などの負荷とに接続され、発電所を電力供給源として充電を行い、負荷を電力提供対象として放電を行う。上記充放電を行うにあたり、RF電池と、この電池に電解液を循環させる循環機構(タンク、配管、ポンプ)とを備えた、例えば図1に示すような電池システムが構築される。
 このRF電池1は、正極11を内蔵する正極セル13と、負極12を内蔵する負極セル14と、両セル13、14を分離すると共に適宜プロトンを透過する隔膜15とを具える。正極セル13には、正極電解液用のタンク17が配管を介して接続される。負極セル14には、負極電解液用のタンク18が配管を介して接続される。配管には、電解液を循環させるためのポンプ19、20を備える。RF電池1は、配管、ポンプを利用して、正極セル13(正極11)、負極セル14(負極12)にそれぞれタンク17の正極電解液、タンク18の負極電解液を循環供給して、各極の電解液中の活物質となる金属イオンの酸化還元反応に伴って充放電を行う。
 図1の動作原理図に示すRF電池は、正極電解液にマンガンイオンを含有し、負極電解液にチタンイオンを含有している。同図中の実線矢印は充電、破線矢印は放電を意味する。正極電解液にマンガンイオンを含有する場合、充電が進行すると正極電解液中の3価のマンガンイオン(Mn3+)の濃度が増加する。Mn3+の濃度が増加すれば、以下に示す不均化反応によって2価のマンガンイオン(Mn2+)及びマンガン酸化物(ここでは、二酸化マンガン(MnO:4価))が生成される。生成されたMnOは、以下の不均化反応の逆反応によって溶解する。しかし、この逆反応の反応速度は非常に遅い。そのため、MnOは、溶解するまでの間に正極電解液タンク17の底に沈殿したり、配管21、23や正極電極11に付着したりする。それにより、電解液の流通を阻害する。
    不均化反応:2Mn3++2HO→Mn2++MnO+4H
    逆反応:Mn2++MnO+4H→2Mn3++2H
 特許文献1のRF電池では、二酸化マンガンが生成した正極電解液に、シュウ酸、亜硫酸、アスコルビン酸、ブドウ糖などの還元性の添加剤を添加することにより、生成した二酸化マンガンを再溶解している。しかしながら、例えば、シュウ酸を用いた場合は、正極電解液にMn3+が存在するとこれも同時に還元されるため、正極と負極の電荷バランスが崩れ、電池の電気容量が低下すると考えられる。このため、還元剤の添加は、電池の放電末に行う必要がある。
 一方、非特許文献1では、チタンとマンガンの混合溶液を正負両極の電解液として用いる新しいRF電池が開示されている。正極電解液に存在するTi4+イオンは、Mn3+の不均化反応を抑制し、二酸化マンガンの粒子成長を抑制することが報告されている。また、非特許文献2では、等モル比(Mn、Mn/Ti、Mn/V、Mn/V/Ti)で配合された4種類の電解液を用いて酸性条件下でのMn3+の安定性に対するTi4+及び/又はV5+の影響が報告されている。V5+は、RF電池用のMn3+電解質を安定化させるためのTi4+の効率的な代替品であることが開示されている。
Yong-Rong Dong et al.,A Novel Titanium/Manganese Redox Flow Battery.ECS Transactions,69,59-67(2015) Danick Reynard et al.,Vanadium-Manganese Redox Flow Battery : Study of Mn-III Disproportionation in the Presence of Other Metallic Ions. Chemistry a European Journal,26(32):7250-7257 (2020)
特開2017-91857号公報
 以上のように、高エネルギー密度化が期待されるマンガン系電解液の開発が進められているが、充放電を繰り返すうちに電解液中で酸化マンガンの凝集物が生成することによる容量低下が問題となっている。平衡が凝集物生成に傾いていることから、電解液で徐々に増加していくことが原因である。これまでにこの平衡反応をずらす(凝集物生成系の逆反応に傾きを戻す)ために、多くの添加剤や犠牲試薬が検討されてきた。しかしながら、溶解度の制約から添加量に制限があること、電解液が強酸性のために添加剤に酸化物凝集体を還元するような安定な触媒機能を持たせることが困難であることなど、時間的に生成を遅らせることは可能であっても完全に生成を抑制することはできない。
 本開示はこのような課題に対し、RF電池の充放電中の電解液に作用することで凝集物の生成を抑制又は生成した凝集物を再還元し、電解液の容量低下に直結する凝集物の生成を防ぎ、電解液の寿命を飛躍的に向上させることを目的とする。
 本開示は、上記課題を解決するためになされたものであって、RF電池用電解液に不活性ガスを接触させることで、液相中の金属イオンあるいは金属酸化物に作用し、凝集物の生成反応そのものを抑えるようにした。すなわち、本開示は以下の実施形態を含む。
(1)レドックスフロー電池用電解液の再生方法であって、電解液は、少なくともマンガンイオンを含む金属イオンと、レドックスフロー電池の充放電によって生じた金属酸化物由来の凝集物を含み、この電解液と、還元性ガスを含んでもよい不活性ガスと、を接触させて凝集物の平均粒子径を5μm未満とする接触工程を含む、再生方法。
(2)接触工程が、電解液に還元性ガスを含んでもよい不活性ガスをバブリングすることを含む(1)に記載の再生方法。
(3)還元性ガスが、二酸化硫黄、一酸化炭素、メタン、一酸化窒素、若しくは水素又はこれらの混合物である(1)又は(2)に記載の再生方法。
(4)還元性ガスを含んでもよい不活性ガスが4体積%以下の水素混合窒素ガス又は4体積%以下の水素混合アルゴンガスである(1)~(3)のいずれかに記載の再生方法。
(5)凝集物の平均粒子径が、動的光散乱法で測定した平均粒子径である(1)~(4)のいずれかに記載の再生方法。
(6)凝集物の平均粒子径が、1μm以下である(1)~(5)いずれかに記載の再生方法。
(7)レドックスフロー電池の電池セル内に少なくともマンガンと、任意的にチタン、バナジウム、セリウム、クロム又はこれらの混合物からなる金属イオンとを含む電解液を循環して充放電を行う運転工程と、この電解液に、還元性ガスを含んでもよい不活性ガスを通気して、電解液中に平均粒子径5μm以上の凝集物の生成を抑止する通気工程と、を含む、レドックスフロー電池の運転方法。
(8)通気工程が、電解液に還元性ガスを含んでもよい不活性ガスをバブリングすることを含む(7)に記載のレドックスフロー電池の運転方法。
(9)還元性ガスを含んでもよい不活性ガスが4体積%以下の水素混合窒素ガス又は4体積%以下の水素混合アルゴンガスである(7)又は(8)に記載のレドックスフロー電池の運転方法。
(10)電解液中の水素ガス濃度が10ppm以下である(7)~(9)のいずれかに記載のレドックスフロー電池の運転方法。
(11)正極、負極、及び正極及び負極の間に介在する隔膜を備える電池セルと、正極電解液及び負極電解液を夫々貯蔵する正極用及び負極用電解液タンクと、正極用及び負極用電解液タンクと電池セルとを連結する配管と、配管内を正極電解液又は負極電解液を循環させる電解液循環装置と、電池セル、電解液タンク、配管及び電解液循環装置の少なくとも1つの中に、還元性ガスを含んでもよい不活性ガスを吹き込むバブリング装置と、(7)~(10)のいずれかに記載の運転方法を実施するための制御部と、を備えるレドックスフロー電池。
 本開示の方法によれば、RF電池の充放電中の電解液に作用することで凝集物の生成そのものを抑制又は生成した凝集物を再還元することができ、電解液の寿命を伸ばす効果をもたらす。
図1は、レドックスフロー電池の動作原理図である。 図2は、1つの実施形態にかかるレドックスフロー電池の小型試験セルの断面図である。 図3は、比較例1において、ミニセルへのガスの導入無しに行った充放電試験の結果である。 図4は、実施例1において、窒素ガスを流通させて行った充放電試験の結果である。(A)は、正極電解液を脱気した後、窒素ガスを流通させて15回充放電したときの電池容量と電圧との関係をプロットしたものである。(B)は、15サイクル繰り返したときの電流効率(CE)及び電圧効率(VE)を示す。(C)は、実験終了後の溶液を、DLS(動的光散乱法)で測定した結果である。 図5は、実施例2において、約4%水素含有不活性ガスを流通させて行った充放電試験の結果である。(A)は、15回充放電したときの電池容量と電圧との関係をプロットしたものである。(B)は、15サイクル繰り返したときの電流効率(CE)及び電圧効率(VE)の推移を示す。(C)は、実験終了後の溶液を、DLS(動的光散乱法)で測定した結果である。 図6は、実施例3において、約4%水素含有アルゴンガスを微小化して導入して行った充放電試験の結果である。(A)は、15回充放電したときの電池容量と電圧との関係をプロットしたものである。(B)は、15サイクル繰り返したときの電流効率(CE)及び電圧効率(VE)の推移を示す。(C)は、実験終了後の溶液を、DLS(動的光散乱法)で測定した結果である。 図7は、実施例4において、加湿したアルゴンガスを導入して行った充放電挙動である。(A)は、加湿したアルゴンガスの流通量を10サイクルごとに、20→10→5→0mL/minと変えて充放電したときの電池容量と電圧との関係をプロットしたものである。(B)は、アルゴンガスの流量と電流効率(CE)及び電圧効率(VE)との関係を示す。(C)は、アルゴンガスの流量とエネルギー密度との関係を示す。 図8は、実施例5において測定した動的散乱法による粒子径の測定結果である。(A)は、20→10→5→0mL/minと流量を変えて放電後の正極電解液の粒子径分布を測定した結果である。(B)は、20mL/minで2サイクル充電後の正極電解液を、(C)は、20mL/minで1サイクル放電後の正極電解液の粒子径を測定した結果である。
 次に、本開示の各実施形態について、図面を参照して説明する。なお、以下に説明する各実施形態は、特許請求の範囲に係る発明を限定するものではなく、また、各実施形態の中で説明されている諸要素及びその組み合わせの全てが本発明の解決手段に必須であるとは限らない。
1.レドックスフロー電池用電解液の再生方法
 本実施形態における再生方法は、少なくともマンガンイオンを含む金属イオンと、レドックスフロー電池の充放電によって生じた金属酸化物由来の凝集物を含む電解液を用いる。電解液には、さらにチタン、バナジウム、セリウム、クロム又はそれらの混合物からなる群より選択される金属イオン又はそれらの酸化物を含んでもよい。そして、この電解液と、還元性ガスを含んでもよい不活性ガスと、を接触させて凝集物の粒子径を5μm未満とする接触工程を含むことを特徴とする。なお、電解液は正極電解液であっても負極電解液であってもよく、これらの混合物であってもよい。
(正極電解液)
 正極電解液は、正極活物質として、マンガンイオンを含む。具体的には、2価のマンガンイオン(Mn2+)及び3価のマンガンイオン(Mn3+)の少なくとも一種を含む。放電時は主に2価のマンガンイオンが存在し、充電時は主に3価のマンガンイオンが存在し、充放電の繰り返しにより、両マンガンイオンが存在する形態となる。正極電解液は、正極活物質としてのマンガンイオンに加えて、チタン、バナジウム、セリウム、クロム又はそれらの混合物からなる群より選択される金属イオンを含んでいてもよい。チタンイオンは、例えば、4価のチタンイオン(Ti4+)が挙げられる。このチタンイオンは、正極活物質として積極的に作用しない。チタンイオンを含むことで、上記マンガン酸化物の析出を抑制し易い(非特許文献1参照)。バナジウムイオンは、例えば、5価のバナジウムイオン(V5+)が挙げられる(非特許文献2参照)。クロムイオンは、例えば、3価のクロムイオン(Cr3+)が挙げられる。正極電解液は、正極活物質としてマンガンイオンを含む公知の正極電解液を利用できる。
 本実施形態の正極電解液は、不均化反応によって生じたマンガン酸化物の他、レドックスフロー電池の充放電によって生じたその他の金属酸化物由来の凝集物を含んでもよい。
(負極電解液)
 負極電解液は、負極活物質としてレドックス対を構成できる金属イオンを含んでいればよい。その金属イオンは、特に限定されず適宜選択できる。負極電解液は、負極活物質として、例えば、マンガンイオン、チタンイオン、バナジウムイオン、クロムイオン、亜鉛イオン、及びスズイオンの少なくとも一種の金属イオンが挙げられる。負極電解液は、公知の負極電解液を利用できる。
(溶媒)
 各極電解液の溶媒は、HSO、KSO、NaSO、HPO、HO7、KHPO、NaPO、KPO、HNO、KNO、NaCl、及びNaNOから選択される少なくとも一種の水溶液を利用することができる。
(不活性ガス)
 本実施形態で使用する不活性ガスは、還元性ガスを含んでもよい不活性ガスである。ここで、不活性ガスの例としては、ヘリウム、ネオン、アルゴン、クリプトン、キセノンなどの希ガス類、窒素、二酸化炭素などを例示できる。これらの中でもアルゴン、窒素、二酸化炭素などが入手容易性から好適である。これらの不活性ガスは、単独でそのまま用いることもできるが、後述するように微小気泡とすることでより再生効率が向上する。また還元性ガスの例としては、二酸化硫黄、一酸化炭素、メタン、一酸化窒素、若しくは水素又はこれらの混合物などが挙げられる。これら還元性ガスは、そのまま用いてもよいが、先の不活性ガスと任意の割合で混合して用いることが好ましい。
 還元性ガスを0.1体積%以上含有する不活性ガスを用いると、金属酸化物の生成を抑制する効果がより強くなり、電解液の容量低下を抑制し、電解液の寿命を大きく向上させることができて好ましい。還元性ガスの含有量は、1体積%以上がより好ましく、4体積%程度がさらに好ましい。還元性ガスの含有量の上限は特に限定されないが、取り扱い性(安全性)の観点から、爆発限界以下の量の還元性ガスを含む不活性ガスであることが好ましい。
 好ましい実施形態において、本開示の不活性ガスは還元性ガスとして水素を含有する。この水素含有不活性ガスは、水素を含有する不活性ガスであれば良く、水素濃度の限定は特に必要ない。電解液中に生じた金属酸化物の凝集物を還元してその粒子径を小さくするという観点からは、水素含有不活性ガスにおける水素濃度が高い方が望ましいが、バブリングにより水素含有不活性ガスを電解液に直接吹き込む場合は、作業環境によっては、バブリング後大気に放出された(又はバブリング時漏洩した)水素による爆発のリスクを十分に考慮する必要がある。したがって、水素による爆発のリスクを避ける点を考慮すれば、水素含有不活性ガスにおける水素の濃度は10体積%以下であることが安全であり、爆発限界以下となる約4体積%以下であれば、より安全性は高まる。従って、水素含有不活性ガス中における水素含有率の下限は特に限定されず、通常使用する範囲内であればよく、例えば、水素含有率の下限は約0.1体積%又は約1体積%である。
(接触工程)
 本実施形態の再生方法は、上記電解液に対して、還元性ガスを含んでもよい不活性ガスを気液接触させる工程(以下、接触工程と称する)を含む。電解液と、還元性ガスを含んでもよい不活性ガスとを接触させる方法は、特に制限されず、より簡素で、かつ、効率面で優れる点で、常圧下の電解液に給気するバブリングが挙げられる。気液接触させる方法としては、散気管、散気板(ミリメートルサイズ、マイクロメートルサイズ、ナノメートルサイズ等のサイズで気泡を発生させる装置)、エゼクター等を用いた方法が挙げられる。中でも、散気管を用いて行うバブリングが、最も簡便でかつ効果が高い点で好ましい。例えば、株式会社ノリタケカンパニーリミテド製のファインバブル(微細気泡)発生器やセラポールスパージャー等を挙げることができる。
 ここで、バブリングとは、電解液中で還元性ガスを含んでもよい不活性ガスを放出して多数の気泡を形成することをいう。例えば、電解液中にテフロン(登録商標)チューブや、グラスフィルタ又はメンブレンフィルタ等の多孔質材料を配置し、これらのフィルタ内部に上記不活性ガスを放出することにより、多数の細かな気泡を形成することができる。例えば、国際標準規格のISO/TC281に規定されるファインバブル(マイクロバブルまたはウルトラファインバブル)のような微小気泡で供給してもよい。
 ファインバブルは、気泡径(直径)が10-4m以下のものである。ファインバブルのうち、気泡径(直径)が10-6m~10-4mのものをマイクロバブル(MB)、気泡径(直径)が10-6m以下のものをウルトラファインバブル(UFB)という。
 ファインバブルより大きいバブルは、気泡の直径がミリオーダー以上となり、浮力の影響を強く受け、容易に水面へ上昇し、消滅する。マイクロバブルは、ゆっくりと遅い速度で上昇するが、自己加圧効果が顕著となるため、徐々にサイズが収縮し、ウルトラファインバブルとなるか、消滅、溶解する。ウルトラファインバブルでは、浮力よりも粘性力の効果が大きくなるため、殆ど上昇せず、ブラウン運動により電解液中に長期に残存する。ウルトラファインバブルは、マイクロバブルと異なり、互いに融合せず、長期に渡って、電解液中に浮遊し滞在する。
 マイクロバブル、ウルトラファインバブルは、加圧溶解式(GaLF式)、旋回流式・せん段式、散気式などによって製造し、供給されてよい。
 接触工程において、電解液と、還元性ガスを含んでもよい不活性ガスとを接触させる時間は特に限定されないが、電解液に含まれる凝集物の平均粒子径を5μm未満とするために十分な時間、接触させることが好ましい。
 ここで、上記平均粒子径の測定方法としては、特に限定されないが、例えば、粒度分布計を用いて、動的光散乱法による粒度分布測定によって測定できる。上記平均粒子径は、上記動的光散乱法による粒度分布のピーク粒子径や、粒度分布測定で得られる体積基準の平均粒子径(分散径D50、メジアン径)を用いることができる。上記分散径(D50)とは、本実施形態で用いる電解液を動的光散乱法によって測定したときの粒子径であって、ある粒子径を基準として、基準となる粒子径よりも大きい粒子径を有する粒子の数と小さい粒子径を有する粒子の数とが等しくなる場合の基準となる粒子径のことを意味する。上記動的光散乱法による粒度分布測定以外の、平均粒子径の測定方法としては、例えば、走査型電子顕微鏡(SEM)による凝集物の形状観察などが挙げられる。
 凝集物の粒子径としては、平均粒子径が5μm未満となるものが好ましく、1μm以下となっていることがより好ましい。RF電池の容量低下を抑止する観点では、好ましくは0.5μm以下、さらに望ましくは0.3μm以下の平均粒子径である。上記粒子径の測定装置としては、例えばFPAR-1000(大塚電子株式会社製)による動的光散乱法や、マイクロトラック(日機装株式会社製)によるレーザー回折・散乱法や、マックビュー(株式会社マウンテック社製)による画像イメージング法などを挙げることができる。
2.レドックスフロー電池の運転方法
 本実施形態における運転方法は、レドックスフロー電池の電池セル内に少なくともマンガンと、任意的にチタン、バナジウム、セリウム、クロム又はこれらの混合物からなる金属イオンとを含む電解液を循環して充放電を行う運転工程と、この電解液に、還元性ガスを含んでもよい不活性ガスを通気して、電解液中に平均粒子径5μm以上の凝集物の生成を抑止する通気工程と、を含むことを特徴とする。なお、通気される電解液は、正極電解液であっても負極電解液であってもよいが、好ましくは正極電解液である。また、これら正負電解液の両方に還元性ガスを含んでもよい不活性ガスを通気してもよい。
(運転工程)
 運転工程では、RF電池の充放電を行う。RF電池は、図1を用いて説明した従来のRF電池1と同様の構成を採用できる。すなわち、本実施形態のRF電池1は、隔膜15で正極セル13と負極セル14とに分離された電池セル16と、正極セル13に循環させる正極電解液を貯留する正極電解液タンク17と、負極セル14に循環させる負極電解液を貯留する負極電解液タンク18とを備える。RF電池の充放電は、電池セル16の各極セル13、14に各極電解液を循環させて、各極電解液に含まれるイオンの酸化還元電位の差を利用して行う。各極電解液の循環は、各供給導管21、22、各排出導管23、24を介して、それらの途中に設けたポンプ19、20により行う。
 図2は、1つの実施形態にかかるレドックスフロー電池の小型試験セル21の断面図を示す。セル21は、その略中央部において、カーボンフェルト又はカーボンペーパー製の負極30とカーボンフェルト又はカーボンペーパー製の正極31とを、陽イオン交換膜又は陰イオン交換膜(以後、「隔膜」若しくは単に「膜」と称する)32を挟んで対向配置させた構造を有する。負極30は、その外側に樹脂とグラファイトを複合させて成るグラファイト複合集電板33を、そのさらに外側に負極端子37をそれぞれ配置する。同様に、正極31は、その外側に樹脂とグラファイトを複合させて成るグラファイト複合集電板34を、そのさらに外側に正極端子38をそれぞれ配置する。負極30、グラファイト複合集電板33および負極端子37は、互いに電気的に導通可能に接触している。同様に、正極31、グラファイト複合集電板34および正極端子38も、互いに電気的に導通可能に接触している。このため、負極端子37と正極端子38との間の電位差を測定することは、負極30と正極31との間の電位差を測定することと同一視できる。
 グラファイト複合集電板33と隔膜32との間、およびグラファイト複合集電板34と隔膜32との間には、ガスケット35およびガスケット36が配置されている。負極30はガスケット35の内方に配置されている。同様に、正極31はガスケット36の内方に配置されている。ガスケット35,36は、負極30および正極31にしみ込んだ各電解液がセル21から外部へと漏れるのを有効に防止する機能を有する。負極端子37のさらに外側には、バックプレート39が配置されている。同様に、正極端子38のさらに外側には、バックプレート40が配置されている。バックプレート39とバックプレート40とは、例えばボルトとナット(不図示)とを用いて、両者の間隔を狭くする方向に型締めされている。
 グラファイト複合集電板33、負極端子37およびバックプレート39は、それらを連通する2つの貫通孔を備える。1つの貫通孔にはチューブ41が挿入されている。もう1つの貫通孔には、チューブ42が挿入されている。チューブ41およびチューブ42は、グラファイト複合集電板33、負極端子37およびバックプレート39を連通する貫通孔と隙間のない状態にて、それぞれ負極30の外側表面に達している。また、グラファイト複合集電板34、正極端子38およびバックプレート40は、それらを連通する2つの貫通孔を備える。1つの貫通孔にはチューブ43が挿入されている。もう1つの貫通孔には、チューブ44が挿入されている。チューブ43およびチューブ44は、グラファイト複合集電板34、正極端子38およびバックプレート40を連通する貫通孔と隙間のない状態にて、それぞれ正極31の外側表面に達している。負極端子37と正極端子38との間に電源装置(抵抗回路を有する。不図示)を接続することにより充放電を行うことができる。
 充電過程では、以下の充電反応に示すように、2価のマンガンイオンから3価のマンガンイオンが生成され、放電過程では、放電反応に示すように、3価のマンガンイオンから2価のマンガンイオンが生成される。充電過程で3価のマンガンイオンの濃度が増加すると、以下の不均化反応によって2価のマンガンイオン(Mn2+)及びマンガン酸化物が生成される。すなわち、マンガン酸化物は、充電過程で生成される。このマンガン酸化物は、代表的には、4価の二酸化マンガン(MnO)が挙げられる。生成されたMnOは、以下の不均化反応の逆反応によって溶解する。
   充電反応:Mn2+→Mn3++e
   放電反応:Mn3++e→Mn2+
  不均化反応:2Mn3++2HO→Mn2++MnO+4H
    逆反応:Mn2++MnO+4H→2Mn3++2H
(通気工程)
 通気工程では、不均化反応によって生じた二酸化マンガンの凝集を抑止して、電解液中に平均粒子径5μm以上の凝集物が生成しないように、電解液に不活性ガスを通気する。この不活性ガスは還元性ガスを含んでいてもよく、その種類や組成は上述したとおりである。また、通気する場所も電解液と気液接触できれば特に限定されず、正極セル13、負極セル14、正極電解液タンク17、負極電解液タンク18又は電解液の供給導管若しくは排出導管のいずれであってもよい。さらに正極電解液の中へ通気すると同時に負極電解液中へ通気してもよい。
 通気工程において、電解液中に導入する不活性ガスの流量は、例えば0.1~100mL/min、好ましくは0.5~80mL/min、より好ましくは1~50mL/minである。なお、流量は、例えば、0℃、一気圧で毎分に流れるガスの量(体積)で表すことができる。
 通気工程において、不活性ガスに含まれる還元性ガスは水素ガスであることが好ましい。また、この水素含有不活性ガスを、正極電解液中の水素ガス濃度が10ppm以下となるように通気することが好ましい。水素ガス濃度の下限は特に限定されないが、0.1ppm以上であることが好ましく、約1ppm程度の濃度であることがより好ましい。
 また、供給される不活性ガスがウルトラファインバブルである場合、正極セル13内に供給された不活性ガスのウルトラファインバブルは、正極11の周囲を離れることなく、ブラウン運動により正極11付近にとどまり、還元性ガスが含まれると正極11付近において、不均化反応によって生じた二酸化マンガン等の金属酸化物を効率的に還元する。
(作用効果)
 従来技術は犠牲試薬のように還元剤となる物質を添加することで、生成した凝集物を還元する手法が取られている。この場合、電解液に別の物質が入ることから、この手法は電解液の再生は可能であるが、充放電中には適用できない。充放電中に生成する凝集物の増加を抑制するためには、予め電解液中に抑制するための添加物を加える必要があるが、強酸性下において添加剤に還元作用を有する触媒機能を持たせることは困難であり、凝集物の生成反応が平衡に基づいていることから、この手法では時間的に凝集物の生成を遅らせる効果はあっても、永久にゼロ、もしくは充放電中に回復することはできない。本開示の方法は、電解液中に不活性ガスを通気して充放電中の反応に作用することで、凝集物が生成しにくくなるために、時間的に生成を遅らせる手法とは根本的に異なり、常に凝集物を生成しないようにすることが原理的に可能であることから、電解液の寿命を飛躍的に伸ばす効果をもたらす。
(レドックスフロー電池)
 本開示の他の実施形態において、正極、負極、及び正極及び負極の間に介在する隔膜を備える電池セルと、正極電解液及び負極電解液を夫々貯蔵する正極用及び負極用電解液タンクと、正極用及び負極用電解液タンクと電池セルとを連結する配管と、配管内を正極電解液又は負極電解液を循環させる電解液循環装置と、電池セル、電解液タンク、配管及び電解液循環装置の少なくとも1つの中に、還元性ガスを含んでもよい不活性ガスを吹き込むバブリング装置と、を備えるレドックスフロー電池が提供される。本実施形態のレドックスフロー電池は、電池セル内に少なくともマンガンと、任意的にチタン、バナジウム、セリウム、クロム又はこれらの混合物からなる金属イオンとを含む電解液を循環して充放電を行う運転工程と、電解液に、還元性ガスを含んでもよい不活性ガスを通気する通気工程と、を含む運転モードを備え、この電解液中に平均粒子径5μm以上の凝集物の生成を抑止するようにバブリング装置を制御する制御部を備えることが好ましい。
 本開示のレドックスフロー電池における電池セル、電解液タンク、配管及び電解液循環装置は、図1で説明した従来技術のレドックスフロー電池と同様のものを使用することができる。一方、バブリング装置は、本開示のレドックスフロー電池用電解液の再生方法における接触工程で、電解液と、還元性ガスを含んでもよい不活性ガスとを接触させるための装置を使用することができる。具体的には、散気管、散気板、エゼクター等である。例えば、株式会社ノリタケカンパニーリミテド製のファインバブル(微細気泡)発生器やセラポールスパージャー等を挙げることができる。このバブリング装置は、上述した電池セル、電解液タンク、配管及び電解液循環装置の少なくとも1つの中に備えていればよい。
 本実施形態における制御部は、電解液中に平均粒子径5μm以上の凝集物の生成を抑止するようにバブリング装置に通気するガスの種類及び流量等を制御する。ガスの種類としては、不活性ガス又は還元性ガスを含む不活性ガスであり、具体例はすでに述べた通りである。また、ガスの流量も電解液中に平均粒子径5μm以上の凝集物の生成を抑止できる流量であれば特に限定されないが、好ましい流量は上述したとおりである。制御部には、電解液中の凝集物の粒子径を測定するための粒子径測定装置を備えてもよい。粒子径測定装置としては、静的光散乱法、動的光散乱法、又は多角度レーザー光散乱法に基づく装置であってもよい。動的光散乱法を利用した粒子径計測装置としては、例えば、Malvern Zetasizer nano等、静的光散乱法を利用した粒子径計測装置としては、例えば、島津SALD-7100等、多角度レーザー光散乱法を利用した粒子径計測装置としては、例えば、Wyatt Technology社のDAWN HELEOS等を利用することができる。
 次に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれら実施例に何ら制約されるものではない。なお、以下の実施例において、各種成分の添加量を示す数値の単位%は、体積%を意味する。
(充放電試験に用いたミニセル装置の概要)
 試験セルは図2に示した小型試験セルと同様のミニセル(有限会社筑波物質情報研究所から購入)を用いた。正極、負極とも東洋紡株式会社製炭素繊維電極(AAF304ZS、大きさ5cm×1cm)を用い、隔膜としてNafion(商標)212を用いた。正極電解液および負極電解液は、それぞれ10mLずつ用意した。正極セル13および負極セル14に、電解液を3mL/minの流量で循環しながら、電流密度70mA/cm、カットオフ1.7V-0.8Vで充放電反応を行った。
(粒子径の測定方法)
 電解液中の凝集物の粒子径は動的光散乱法(装置名Zetasizer Pro、マルバーンパナリティカル社製)を用いて、次のように測定した。充放電試験後の電解液をそのまま10mm角のキュベットに所定量入れ、25℃で測定を行った。測定は後方散乱モードで行った(入射する光源は633nmのヘリウムネオンレーザーを使用)。このとき得られた粒度分布データ(ヒストグラム)のピークを平均粒子径とした。
(比較例1)ガス導入のない場合の充放電試験
 正極電解液及び負極電解液ともに、1Mチタン-1Mマンガン溶液(3M硫酸)をそれぞれ10mL使用して、上記ミニセルを用いて、ガスの導入無しに充放電試験を行った。その結果を図3に示す。5回の充放電後の正極電解液は、図3中央の写真(正極電解液のリザーバを示す。)に示すようにMnOがぎっしりと発生して液の色も褐色となり、沈殿と思われるものが電解液のかなり上部まで発生した。電池容量は、理論容量には達していなかった。
(実施例1)不活性ガス流通下での充放電挙動
 正極電解液及び負極電解液中に、窒素ガスを流通させたこと以外は比較例1と同じ条件で上記ミニセルによる充放電試験を行った。その結果を図4に示す。図4(A)は、正極電解液を脱気した後、これを含む容器内にテフロン(登録商標)チューブにて窒素ガスを流通させながら1、5、10及び15回充放電したときの電池容量(横軸)と電圧(縦軸)との関係をプロットしたものである。1サイクル後の開回路電圧(不図示)が1.23V、15サイクル繰り返した後の開回路電圧は1.26Vであり、大きく減少はしていないことが確認できた。図4(B)は、15サイクル繰り返したときの電流効率(CE:(放電容量/充電容量)×100)及び電圧効率(VE:(放電時の平均電圧/充電時の平均電圧)×100)の推移を示す。15サイクル経過後もほとんど変化していないことが分かった。図4(C)は、実験終了後の溶液を、DLS(動的光散乱法)で測定したときの粒度分布を示し、直径4μm程度のピークを有し、比較例1のように沈殿して反応に寄与しない、ということはなかった。
(実施例2)約4%水素含有アルゴンガスを導入した場合の充放電挙動
 正極電解液及び負極電解液中に、還元性ガス(約4%水素含有アルゴンガス)を流通させたこと以外は実施例1と同じ条件で上記ミニセルによる充放電試験を行った。その結果を図5に示す。図5(A)は、1、5、10及び15回充放電したときの電池容量(横軸)と電圧(縦軸)との関係をプロットしたものである。比較例1と比較すると格段に充放電の効率が良くなっていることがわかる。図5(B)は、15回充放電したときの電池容量(横軸)と電圧(縦軸)との関係をプロットしたものである。図5(C)は、実験終了後の溶液を、DLS(動的光散乱法)で測定したときの粒度分布を示す。金属酸化物の微粒子のサイズも窒素導入時(実施例1)よりさらに粒子径が小さく抑えられていることもわかった。
(実施例3)約4%水素含有アルゴンガスを微小化して導入した場合の充放電挙動
 還元性ガスを吹き込むチューブの先端にガラスボールフィルタ(旭製作所製3907シリーズ)を付けて、還元性ガス(約4%水素含有アルゴンガス)の気泡をさらに微小化して流通させたこと以外は実施例1と同じ条件で上記ミニセルによる充放電試験を行った。その結果を図6に示す。図6(A)は、1、5、10及び15回充放電したときの電池容量(横軸)と電圧(縦軸)との関係をプロットしたものである。図6(B)は、15回充放電したときの電流効率(CE)及び電圧効率(VE)の推移を示したものである。サイクル数を重ねても、微小化した水素含有ガスを流した場合の方が、容量も大きく維持されていることが確認できた。図6(C)は、実験終了後の溶液を、DLS(動的光散乱法)で測定したときの粒度分布を示す。図6(C)に示すように、充放電後の粒子径を確認すると、圧倒的に粒子径が小さくなっており、ナノメートル(数十ナノメートル)程度のものが存在していることがわかる。ガスを微小化して流すことで、粒子径をより小さくできた。
(実施例4)加湿したアルゴンガスを導入した場合の充放電挙動
 実施例1~3では、乾燥したガスを導入したが、本実施例では、蒸留水を入れたガラス瓶の中に吹き込んで加湿したアルゴンガスを導入して充放電試験を行った。正極電解液は1.5Mチタン-1.25Mマンガン溶液(3M硫酸)を、負極電解液は1.5Mチタン-1.0Mマンガン溶液(3M硫酸)を用いた。前処理として電解液をバブリングしながら超音波処理した(1時間)。実施例1と同じミニセルに、加湿したアルゴンガスの流通量を10サイクルごとに変化させて充放電測定を行った。正極はガラスボールフィルター(旭製作所製3907シリーズ、細孔径30~60μm)を使用してアルゴンガスの気泡を微小化した。充放電中は電解液を攪拌した。アルゴンガスの流通量を20→10→5→0mL/minと変えて、充放電に関与した電気量を正負極電解液の体積で除した電池容量(横軸)と電圧(縦軸)との関係を図7(A)に、また、電流効率(CE)及び電圧効率(VE)の推移を図7(B)に、エネルギー密度の変化を図7(C)に示す。これらの結果より、アルゴンガスの流量が高い方がエネルギー密度は高く保たれることが分かった。
(実施例5)ガス流量を変化させた場合の粒子径の比較
 実施例4で充放電を行った電解液を原液のままDLSにより粒子径を測定した。20→10→5→0mL/minと流量を変えて放電後の正極電解液の粒子径分布を測定した結果を図8(A)に示す。図8(B)は、20mL/minで2サイクル充電後の正極電解液を、図8(C)は、20mL/minで1サイクル放電後の正極電解液の粒子径を測定した結果である。なお、流量の測定は、精密ニードルバルブ付フローメータMODEL RK1250(コフロック株式会社製)で行った。これらの結果より、充電後正極電解液の方が粒子径の大きいものが存在し、放電後は粒子径が小さいものが認められた。また、20mL/minで1回の実験でも粒子径を小さくする効果が認められた。
 本発明の一態様に係るレドックスフロー電池の電解液の再生方法は、レドックスフロー電池のマンガンイオンを含む正極電解液の再生に好適に利用できる。
1 レドックスフロー(RF)電池、11、31 正極、12、30 負極、13 正極セル、14 負極セル、15、32 隔膜、16、21 電池セル、17 正極電解液タンク、18 負極電解液タンク、19、20 ポンプ、21、22 供給導管、23、24 排出導管。

 

Claims (11)

  1.  レドックスフロー電池用電解液の再生方法であって、
     前記電解液は、少なくともマンガンイオンを含む金属イオンと、前記レドックスフロー電池の充放電によって生じた金属酸化物由来の凝集物を含み、
     前記電解液と、還元性ガスを含んでもよい不活性ガスと、を接触させて前記凝集物の平均粒子径を5μm未満とする接触工程を含む、再生方法。
  2.  前記接触工程が、前記電解液に前記還元性ガスを含んでもよい不活性ガスをバブリングすることを含む請求項1に記載の再生方法。
  3.  前記還元性ガスが、二酸化硫黄、一酸化炭素、メタン、一酸化窒素、若しくは水素又はこれらの混合物である請求項1又は2に記載の再生方法。
  4.  前記還元性ガスを含んでもよい不活性ガスが4体積%以下の水素混合窒素ガス又は4体積%以下の水素混合アルゴンガスである請求項1~3のいずれか一項に記載の再生方法。
  5.  前記凝集物の平均粒子径が、動的光散乱法で測定した平均粒子径である請求項1~4のいずれか一項に記載の再生方法。
  6.  前記凝集物の平均粒子径が、1μm以下である請求項1~5のいずれか一項に記載の再生方法。
  7.  レドックスフロー電池の電池セル内に少なくともマンガンと、任意的にチタン、バナジウム、セリウム、クロム又はこれらの混合物からなる金属イオンとを含む電解液を循環して充放電を行う運転工程と、
     前記電解液に、還元性ガスを含んでもよい不活性ガスを通気して、前記電解液中に平均粒子径5μm以上の凝集物の生成を抑止する通気工程と、を含む、レドックスフロー電池の運転方法。
  8.  前記通気工程が、前記電解液に前記還元性ガスを含んでもよい不活性ガスをバブリングすることを含む請求項7に記載のレドックスフロー電池の運転方法。
  9.  前記還元性ガスを含んでもよい不活性ガスが4体積%以下の水素混合窒素ガス又は4体積%以下の水素混合アルゴンガスである請求項7又は8に記載のレドックスフロー電池の運転方法。
  10.  前記電解液中の水素ガス濃度が10ppm以下である請求項7~9のいずれか一項に記載のレドックスフロー電池の運転方法。
  11.  正極、負極、及び前記正極及び負極の間に介在する隔膜を備える電池セルと、
     正極電解液及び負極電解液を夫々貯蔵する正極用及び負極用電解液タンクと、
     前記正極用及び負極用電解液タンクと前記電池セルとを連結する配管と、
     前記配管内を前記正極電解液又は負極電解液を循環させる電解液循環装置と、
     前記電池セル、前記電解液タンク、前記配管及び前記電解液循環装置の少なくとも1つの中に、還元性ガスを含んでもよい不活性ガスを吹き込むバブリング装置と、
     請求項7~10のいずれか一項に記載の運転方法を実施するための制御部と、
    を備えるレドックスフロー電池。
     
PCT/JP2023/001603 2022-02-01 2023-01-20 レドックスフロー電池用電解液の再生方法及びレドックスフロー電池の運転方法 WO2023149224A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022014300 2022-02-01
JP2022-014300 2022-02-01

Publications (1)

Publication Number Publication Date
WO2023149224A1 true WO2023149224A1 (ja) 2023-08-10

Family

ID=87552068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001603 WO2023149224A1 (ja) 2022-02-01 2023-01-20 レドックスフロー電池用電解液の再生方法及びレドックスフロー電池の運転方法

Country Status (1)

Country Link
WO (1) WO2023149224A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111254A1 (ja) * 2010-03-12 2011-09-15 住友電気工業株式会社 レドックスフロー電池
JP2013008640A (ja) * 2011-06-27 2013-01-10 Sumitomo Electric Ind Ltd レドックスフロー電池
WO2013164879A1 (ja) * 2012-05-01 2013-11-07 日新電機株式会社 電力貯蔵電池
WO2014208322A1 (ja) * 2013-06-28 2014-12-31 日新電機 株式会社 レドックスフロー電池
WO2016104237A1 (ja) * 2014-12-22 2016-06-30 住友電気工業株式会社 レドックスフロー電池
WO2020004403A1 (ja) * 2018-06-26 2020-01-02 昭和電工株式会社 レドックスフロー電池システム及びその運転方法並びにレドックスフロー電池用電解液配管

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111254A1 (ja) * 2010-03-12 2011-09-15 住友電気工業株式会社 レドックスフロー電池
JP2013008640A (ja) * 2011-06-27 2013-01-10 Sumitomo Electric Ind Ltd レドックスフロー電池
WO2013164879A1 (ja) * 2012-05-01 2013-11-07 日新電機株式会社 電力貯蔵電池
WO2014208322A1 (ja) * 2013-06-28 2014-12-31 日新電機 株式会社 レドックスフロー電池
WO2016104237A1 (ja) * 2014-12-22 2016-06-30 住友電気工業株式会社 レドックスフロー電池
WO2020004403A1 (ja) * 2018-06-26 2020-01-02 昭和電工株式会社 レドックスフロー電池システム及びその運転方法並びにレドックスフロー電池用電解液配管

Similar Documents

Publication Publication Date Title
Pei et al. Technologies for extending zinc–air battery’s cyclelife: A review
CA2789889C (en) Redox flow battery and method of operating the same
US10403930B2 (en) Electrochemical nanofluid or particle suspension energy conversion and storage device
Ye et al. Advanced sulfonated poly (ether ether ketone)/graphene-oxide/titanium dioxide nanoparticle composited membrane with superior cyclability for vanadium redox flow battery
US9537169B2 (en) Electrochemical device comprising composite bipolar plate and method of using the same
JP4523580B2 (ja) 二次電池用負極活物質及びそれらを生成するための中間の混練物
CA2694324A1 (en) Compositions of nanometal particles
US20140255812A1 (en) Taylor vortex flow electrochemical cells utilizing particulate electrolyte suspensions
Park et al. Development of a redox flow battery with multiple redox couples at both positive and negative electrolytes for high energy density
Dong et al. Titanium-manganese electrolyte for redox flow battery
WO2023149224A1 (ja) レドックスフロー電池用電解液の再生方法及びレドックスフロー電池の運転方法
JP2019071193A (ja) 水系二次電池及び発電システム
Aberoumand et al. Enhancement in vanadium redox flow battery performance using reduced graphene oxide nanofluid electrolyte
US10665868B2 (en) Electrochemical cells and batteries
CN110100343A (zh) 氧化还原液流电池
CN108550905B (zh) 一种纳米复合钒电解液及其制备方法和包括其的静态钒电池
JP6734091B2 (ja) キャパシタ
WO2016164008A1 (en) Redox-air indirect fuel cell
Emmett et al. Increasing Charge Transfer at the Liquid− Solid Interface Using Electrodes Modified with Redox Mediators
KR102081767B1 (ko) 중공 실리카를 포함하는 바나듐 레독스 플로우 배터리용 전해액 및 이를 포함하는 바나듐 레독스 플로우 배터리
KR102039854B1 (ko) 레독스 흐름 전지 시스템 및 이를 포함하는 레독스 흐름 전지
WO2021121642A1 (en) System comprising an iron-based half-cell for rechargeable flow batteries
CN110997564A (zh) 电极材料用活性炭的制造方法
Feng et al. A hydrogen-vanadium rebalance cell based on ABPBI membrane operating at low hydrogen concentration to restore the capacity of VRFB
JP7423753B2 (ja) 金属空気電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749540

Country of ref document: EP

Kind code of ref document: A1