WO2013161876A1 - タイヤ用ゴム組成物、空気入りタイヤ - Google Patents

タイヤ用ゴム組成物、空気入りタイヤ Download PDF

Info

Publication number
WO2013161876A1
WO2013161876A1 PCT/JP2013/062066 JP2013062066W WO2013161876A1 WO 2013161876 A1 WO2013161876 A1 WO 2013161876A1 JP 2013062066 W JP2013062066 W JP 2013062066W WO 2013161876 A1 WO2013161876 A1 WO 2013161876A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
weight
parts
modified
rubber
Prior art date
Application number
PCT/JP2013/062066
Other languages
English (en)
French (fr)
Inventor
武田 慎也
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to CN201380019668.4A priority Critical patent/CN104245817B/zh
Priority to KR1020147030345A priority patent/KR101508964B1/ko
Priority to US14/397,161 priority patent/US9284439B2/en
Priority to DE112013002176.5T priority patent/DE112013002176B9/de
Publication of WO2013161876A1 publication Critical patent/WO2013161876A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L47/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L57/00Compositions of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C08L57/02Copolymers of mineral oil hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L93/00Compositions of natural resins; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a rubber composition for a tire and a pneumatic tire in which low rolling resistance, wet grip properties and wear resistance are improved from conventional levels.
  • silica in order to improve the balance between low rolling resistance and wet grip, it is known to add silica to a rubber composition constituting a tread portion of a pneumatic tire.
  • silica has a silanol group on its surface and tends to agglomerate, and its dispersibility may be insufficient due to its poor affinity with diene rubber. In this case, the loss tangent (tan ⁇ ) of the rubber composition, etc.
  • the effect of modifying the dynamic viscoelastic properties could not be obtained sufficiently.
  • silica has a problem that the reinforcing property is small and the abrasion resistance is insufficient compared with carbon black, and the abrasion resistance is further lowered when the dispersibility is poor.
  • Patent Document 1 proposes to improve the dispersibility of silica by a rubber composition in which silica is blended with a terminal-modified solution-polymerized styrene butadiene rubber whose terminal is modified with polyorganosiloxane or the like.
  • this rubber composition is recognized to have an effect of improving rolling resistance, wet grip properties and wear resistance, the demand level expected by consumers to improve low rolling resistance, wet grip properties and wear resistance is higher, There was a need to further improve the balance of these performances.
  • An object of the present invention is to provide a rubber composition for a tire and a pneumatic tire in which low rolling resistance, wet grip properties, and wear resistance are improved to a level higher than conventional levels.
  • modified S-SBR solution-polymerized styrene butadiene rubber
  • the functional group of the modified S-SBR is reactive with the silanol group on the silica surface, and the ratio of silica to the total amount of the reinforcing filler containing X and silica Y and optionally mixed carbon black is 85.
  • the nitrogen adsorption specific surface area of the silica X is 140 m 2 / g or more
  • a nitrogen adsorption specific surface area of the silica Y is 100 m 2 / g, greater less than 140 m 2 / g
  • the relationship x / 7 ⁇ y ⁇ x is satisfied.
  • the pneumatic tire of the present invention uses the tire rubber composition.
  • the tire rubber composition of the present invention contains 5 to 50% by weight of modified S-SBR having a vinyl unit content of 25% by weight or more, a glass transition temperature of ⁇ 50 ° C. or less and having a functional group reactive with a silanol group. 2 to 50 parts by weight of an aromatic modified terpene resin having a softening point of 100 ° C.
  • the silica ratio with respect to the total amount of the agent is 85% by weight or more, the dispersibility of the silica can be improved, and the low rolling resistance, wet grip property and wear resistance can be improved to the conventional level or more.
  • a hydroxyl group is preferable, and it has excellent reactivity with a silanol group on the silica surface, and can improve the dispersibility of silica.
  • the pneumatic tire using the rubber composition for tires of the present invention can improve the low rolling resistance, wet grip property and wear resistance to the conventional level or more.
  • the rubber component is a diene rubber.
  • the diene rubber Out of 100% by weight of the diene rubber, 5 to 50% by weight is terminal-modified solution-polymerized styrene butadiene rubber (hereinafter referred to as “modified S-SBR”).
  • Modified S-SBR has a glass transition temperature (hereinafter referred to as “Tg”) of ⁇ 50 ° C. or lower, preferably ⁇ 80 to ⁇ 50 ° C. If the Tg of the modified S-SBR is higher than ⁇ 50 ° C., the wear resistance cannot be improved sufficiently.
  • the Tg of modified S-SBR is measured by differential scanning calorimetry (DSC) based on ASTM (American Society of Testing and Materials) D3418-82. Further, when the modified S-SBR is an oil-extended product, the Tg of the modified S-SBR in a state in which no oil-extended component (oil) is contained is used.
  • DSC differential scanning calorimetry
  • the modified S-SBR has a vinyl unit content of 25% by weight or more, preferably 30 to 50% by weight. For example, 25 to 30% by weight, 30 to 43% by weight, and 43 to 50% by weight. If the vinyl unit content of the modified S-SBR is less than 25% by weight, the affinity with silica is insufficient, resulting in poor reactivity with silica and inadequate improvement in wear resistance.
  • the upper limit of the vinyl unit content is not particularly limited.
  • the Tg of the modified S-SBR is preferably -50 ° C. or less, and is preferably 50% by weight or less.
  • the vinyl unit content of the modified S-SBR is measured by infrared spectroscopic analysis (Hampton method).
  • the modified S-SBR is a solution-polymerized styrene butadiene rubber in which both or one of its molecular ends is modified with a functional group reactive with a silanol group on the silica surface.
  • the functional group that reacts with the silanol group is preferably a hydroxyl group-containing polyorganosiloxane structure, alkoxysilyl group, hydroxyl group, aldehyde group, carboxyl group, amino group, imino group, epoxy group, amide group, thiol group, ether group At least one selected from the group consisting of: Of these, a hydroxyl group is more preferred.
  • the content of the modified S-SBR is 5 to 50% by weight, preferably 10 to 30% by weight, in 100% by weight of the diene rubber. For example, 5 to 10% by weight, 10 to 17% by weight, 17 to 30% by weight, and 30 to 50% by weight in 100% by weight of the diene rubber.
  • the content of the modified S-SBR is less than 5% by weight, the dispersibility of silica is insufficient, and the wet grip property and wear resistance cannot be sufficiently improved.
  • the content of the modified S-SBR exceeds 50% by weight, the rolling resistance is worsened.
  • the diene rubber contains 50 to 95% by weight, preferably 70 to 90% by weight, of other diene rubbers excluding the modified S-SBR.
  • other diene rubbers include natural rubber, isoprene rubber, butadiene rubber, unmodified solution-polymerized or emulsion-polymerized styrene-butadiene rubber, terminal-modified solution-polymerized styrene-butadiene rubber other than the above-described modified S-SBR, butyl rubber, and isobutylene.
  • examples include brominated products of / p-methylstyrene copolymer rubber, ethylene-propylene-diene rubber, and the like.
  • natural rubber butadiene rubber, emulsion-polymerized styrene-butadiene rubber, unmodified solution-polymerized styrene-butadiene rubber, terminal-modified solution-polymerized styrene-butadiene rubber other than the above-described modified S-SBR, isobutylene / p-methylstyrene copolymer rubber A bromide is preferred.
  • the terminal-modified solution-polymerized styrene butadiene rubber other than modified S-SBR has a vinyl unit content of 25% by weight or more, a glass transition temperature of ⁇ 50 ° C. or less, and a functional group reactive with silanol groups.
  • the terminal-modified solution-polymerized styrene butadiene rubber other than the modified S-SBR is, for example, 25 to 33% by weight, 33 to 53% by weight, 53 to 66% by weight, 66 to 73% by weight, 73% to 73% by weight in 100% by weight of the diene rubber. 90% by weight, 90 to 95% by weight.
  • an aromatic modified terpene resin by blending an aromatic modified terpene resin, it is possible to improve the balance between low rolling resistance and wet grip properties, and in particular to improve wet grip properties.
  • the aromatic modified terpene resin one having a softening point of 100 ° C. or higher, preferably 100 to 130 ° C. is blended. For example, 100-125 ° C. and 125-130 ° C. are blended. If the softening point of the aromatic modified terpene resin is less than 100 ° C., the effect of improving wet grip properties cannot be obtained.
  • the softening point of the aromatic modified terpene resin is measured based on JIS (Japanese Industrial Standards) K6220-1.
  • Examples of the aromatic modified terpene resin to be blended in the tire rubber composition of the present invention include terpenes such as ⁇ -pinene, ⁇ -pinene, dipentene, limonene, camphene, and styrene, ⁇ -methylstyrene, vinyltoluene, phenol, indene.
  • An aromatic modified terpene resin obtained by copolymerizing with an aromatic vinyl compound such as can be exemplified.
  • commercially available products such as YS Resin TO-125, TO-115, TO-105, and TR-105 manufactured by Yasuhara Chemical Co., Ltd. can be used.
  • the compounding amount of the aromatic modified terpene resin is 2 to 50 parts by weight, preferably 5 to 50 parts by weight with respect to 100 parts by weight of the diene rubber. For example, it is 2 to 7.5 parts by weight, 5 to 10 parts by weight, 10 to 15 parts by weight, and 15 to 50 parts by weight.
  • the blending amount of the aromatic modified terpene resin is less than 2 parts by weight, the balance between the low rolling resistance and the wet grip property cannot be sufficiently increased.
  • the compounding quantity of aromatic modified terpene resin exceeds 50 weight part, predetermined
  • the tire rubber composition of the present invention the nitrogen adsorption specific surface area of 140 m 2 / g or more in which silica X, and nitrogen adsorption specific surface area are two of silica Y is less than 140 m 2 / g exceed 100 m 2 / g Silica X and Y are blended.
  • silica X and Y the heat build-up of the rubber composition is suppressed, the rolling resistance when made into a tire is reduced, and wet grip properties and wear resistance can be improved.
  • Silica X used in the present invention has a nitrogen adsorption specific surface area of 140 m 2 / g or more, preferably 150 to 230 m 2 / g, more preferably 150 m 2 / g or more and less than 185 m 2 / g.
  • silica X wet grip properties and wear resistance can be secured at a high level.
  • the nitrogen adsorption specific surface area of silica X is less than 140 m 2 / g, wet grip properties and wear resistance are insufficient.
  • the silica Y is, 140 m less than 2 / g specific surface area by nitrogen adsorption of greater than 100 m 2 / g, preferably from 130m 2 / g or less exceed 100 m 2 / g, more preferably 105 ⁇ 130m 2 / g. For example, it is more than 100 m 2 / g and 105 m 2 / g or less, 105 to 110 m 2 / g, 110 to 125 m 2 / g, 125 to 130 m 2 / g, 130 m 2 / g or more and less than 140 m 2 / g.
  • silica Y having a relatively large particle diameter, it is possible to reduce rolling resistance when the tire is made particularly small and tires are formed.
  • the nitrogen adsorption specific surface area of silica Y is less than 100 m 2 / g, the wet grip property cannot be improved.
  • action which reduces rolling resistance is not fully acquired as the nitrogen adsorption specific surface area of the silica Y is 140 m ⁇ 2 > / g or more.
  • the nitrogen adsorption specific surface area of silica X and Y is determined according to the BET method of ASTM D3037-81.
  • the total amount of silica X and Y (x + y) is 60 to 130 parts by weight.
  • the amount is preferably 80 to 130 parts by weight. For example, it is 60 to 70 parts by weight, 70 to 80 parts by weight, or 80 to 130 parts by weight.
  • the total amount (x + y) of X and Y of silica is less than 60 parts by weight, the balance between low rolling resistance and wet grip properties cannot be sufficiently increased.
  • the blending amount x of silica X and the blending amount y of silica Y must satisfy the relationship x / 7 ⁇ y ⁇ x.
  • x / 7 ⁇ y ⁇ x / 6.3, x / 6.3 ⁇ y ⁇ x / 6, x / 6 ⁇ y ⁇ x / 5, and x / 5 ⁇ y ⁇ x must be satisfied. It is. Improving the balance between low rolling resistance and wet grip when the blending amount y (parts by weight) of silica Y is 1/7 or less (x / 7 or less) of the blending amount x (parts by weight) of silica X I can't.
  • the blending amount y (parts by weight) of silica Y exceeds the blending amount x (parts by weight) of silica X, wet grip properties and wear resistance deteriorate.
  • the rubber composition of the present invention can contain a reinforcing filler other than silica.
  • a reinforcing filler other than silica examples include carbon black, clay, talc, calcium carbonate, mica, and aluminum hydroxide. Among these, by always blending carbon black, it is possible to reinforce the rubber and ensure dry grip performance and wear resistance.
  • the amount of the other reinforcing filler is 0 to 19.5 parts by weight per 100 parts by weight of the diene rubber.
  • the ratio of silica in the total amount of 100% by weight of the reinforcing filler including silica and carbon black is 85% by weight or more, preferably 87 to 100% by weight. For example, 85 to 87.5 wt%, 87.5 to 88.9 wt%, 88.9 to 90 wt%, and 90 to 100 wt%. If the ratio of silica is less than 85% by weight, the balance between low rolling resistance and wet grip properties cannot be improved.
  • the compounding amount of the reinforcing filler other than silica is such that the silica ratio in the total amount of the reinforcing filler of 100% by weight is 85% by weight or more, and the silica compounding amount is 100 parts by weight of the diene rubber. It is determined from 60 to 130 parts by weight.
  • the silicas X and Y used in the present invention may be silicas having the above-described characteristics, and can be appropriately selected from those manufactured. Moreover, you may manufacture so that it may have the characteristic mentioned above by the normal method.
  • the type of silica for example, wet method silica, dry method silica, or surface-treated silica can be used.
  • silane coupling agent in the rubber composition of the present invention, it is preferable to blend a silane coupling agent together with silica X and Y, so that the dispersibility of silica can be improved and the reinforcement to styrene butadiene rubber can be further enhanced.
  • the silane coupling agent is preferably added in an amount of 3 to 15% by weight, more preferably 5 to 12% by weight, based on the amount of silica.
  • the silane coupling agent is less than 3% by weight of silica, the effect of improving the dispersibility of silica may not be sufficiently obtained.
  • the silane coupling agent exceeds 15% by weight, the silane coupling agents are condensed with each other, and a desired effect may not be obtained.
  • the silane coupling agent is not particularly limited, but a sulfur-containing silane coupling agent is preferable.
  • a sulfur-containing silane coupling agent is preferable.
  • the derivatives include NXT-Z (manufactured by Momentive Performance).
  • tire rubber compositions are generally used for tire rubber compositions such as vulcanization or crosslinking agents, vulcanization accelerators, anti-aging agents, plasticizers, and processing aids.
  • Various additives can be blended, and such additives can be kneaded by a general method to obtain a rubber composition, which can be used for vulcanization or crosslinking.
  • a conventional general amount can be used.
  • Such a rubber composition can be produced by mixing each of the above components using a known rubber kneading machine, for example, a Banbury mixer, a kneader, a roll or the like.
  • the rubber composition for tires of the present invention can be suitably used for pneumatic tires, particularly tire tread portions.
  • Pneumatic tires using this rubber composition have excellent wear resistance, low rolling resistance, excellent fuel efficiency, and excellent wet grip performance, equivalent to the wet grip performance grade a based on the JATMA labeling system. Have the ability to
  • the common compounding agent shown in FIG. 4 is used, and 25 types of tire rubber compositions (Examples 1 to 9 and Comparative Examples 1 to 16) comprising the compounding agents shown in FIGS.
  • the components to be removed were prepared by adding sulfur and a vulcanization accelerator to the master batch that was kneaded and discharged for 5 minutes with a 1.8 L closed mixer and kneading with an open roll.
  • modified S-SBR1 and unmodified SBR contain 37.5 parts by weight of oil-extended oil, so the oil-extended oil is excluded in parentheses along with the actual amount in the amount column. The amount of each SBR net was shown.
  • the blending amount of the aroma oil was adjusted as appropriate so that the total oil amount and / or rubber hardness in the rubber composition could be compared.
  • the ratio of silica to the total amount of silica and carbon black is shown in the column “Silica ratio”.
  • the amount of the compounding agent shown in FIG. 4 is shown in parts by weight with respect to 100 parts by weight (net amount of rubber) of the diene rubber shown in FIGS.
  • tan ⁇ 60 ° C. was measured by the method described below and used as an index of rolling resistance.
  • tan ⁇ (60 ° C) Twenty-five types of rubber compositions for tires thus obtained were press vulcanized at 160 ° C. for 25 minutes in a mold having a predetermined shape to prepare vulcanized rubber samples. Using the viscoelastic spectrometer manufactured by Toyo Seiki Seisakusho Co., Ltd., tan ⁇ (60 ° C.) of the obtained vulcanized rubber sample was subjected to conditions of an initial strain of 10%, an amplitude of ⁇ 2%, a frequency of 20 Hz, and a temperature of 60 ° C. Measured with The obtained results are shown in the “rolling resistance” column of FIGS. 1 to 3 as an index with the reciprocal of the value of Comparative Example 1 being 100. The larger the rolling resistance index, the smaller the tan ⁇ (60 ° C.), the lower the heat generation, the lower the rolling resistance when made into a tire, and the better the fuel efficiency.
  • Modified S-SBR1 Solution-polymerized styrene butadiene rubber having a hydroxyl group at the terminal, an oil containing 43% by weight of vinyl units, Tg of ⁇ 27 ° C., and 37.5 parts by weight of oil to 100 parts by weight of rubber component Exhibit, Toughden E581 from Asahi Kasei Chemicals
  • Modified S-SBR2 solution-polymerized styrene butadiene rubber having a hydroxyl group at the terminal, vinyl unit content of 31% by weight, Tg of ⁇ 63 ° C., non-oil-extended product, Nipol NS612 manufactured by Nippon Zeon Unmodified SBR: Unmodified solution polymerized styrene butadiene rubber, oil unit containing 36% by weight of vinyl unit, Tg of -55 ° C, and 37.5 parts by weight of oil to 100 parts by weight of rubber component, As
  • Zinc oxide 3 types of zinc oxide manufactured by Shodo Chemical Industry Co., Ltd.
  • Stearic acid Industrial stearic acid N manufactured by Chiba Fatty Acid Co., Ltd.
  • -Anti-aging agent Seiko Chemical Co., Ltd.
  • Ozonon 6C Sulfur: Fine powder sulfur with Jinhua seal oil manufactured by Tsurumi Chemical Co., Ltd.
  • Vulcanization accelerator 1 Noxeller CZ-G manufactured by Ouchi Shinsei Chemical
  • Vulcanization accelerator 2 PERKACIT DPG manufactured by Flexis
  • the rubber composition of Comparative Example 2 is inferior in wet grip because it contains unmodified S-SBR instead of modified S-SBR2 of Example 3.
  • the rubber composition of Comparative Example 3 has poor wet grip properties because butadiene rubber was blended in place of the modified S-SBR2 of Example 3.
  • the rubber composition of Comparative Example 4 was inferior in rolling resistance and wear resistance because only the modified S-SBR1 was blended as the modified S-SBR without blending the modified S-SBR2 of Example 3.
  • the rubber composition of Comparative Example 5 is inferior in rolling resistance and wear resistance because the amount of the modified S-SBR2 is less than 5% by weight.
  • the rolling resistance cannot be improved because the blending amount y of silica Y is 1/7 or less of the blending amount x of silica X.
  • the rubber composition of Comparative Example 11 is inferior in wet grip properties and wear resistance because the blending amount y of silica Y exceeds the blending amount x of silica X.
  • the rubber composition of Comparative Example 14 was mixed with silica Z having a nitrogen adsorption specific surface area of 100 m 2 / g or less instead of silica Y, so that the wear resistance deteriorated.
  • Comparative Example 15 Since the rubber composition of Comparative Example 15 was blended with two types of silica (silica Y2 and silica Z) having a nitrogen adsorption specific surface area of less than 140 m 2 / g without using silica X, wet grip performance and abrasion resistance Sex worsens.
  • silica silica Y2 and silica Z
  • Comparative Example 16 Since the rubber composition of Comparative Example 16 was blended with two types of silica (silica X1 and silica X3) having a nitrogen adsorption specific surface area of 140 m 2 / g or more without using silica Y, the rolling resistance deteriorated. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 低転がり抵抗性、ウェット性能及び耐摩耗性を従来レベルよりも更に向上するようにしたタイヤ用ゴム組成物を提供する。ビニル単位含有量が25重量%以上、ガラス転移温度が-50℃以下の末端変性S-SBRを5~50重量%含むジエン系ゴム100重量部に軟化点が100℃以上の芳香族変性テルペン樹脂を2~50重量部、2種類のシリカX及びシリカYを合計で60~130重量部配合し、変性S-SBRの官能基がシラノール基と反応性があり、X及びシリカY並びに任意に配合されるカーボンブラックを含む補強性充填剤中のシリカの比率が85重量%以上、シリカXの窒素吸着比表面積が140m2/g以上、シリカYの窒素吸着比表面積が100m2/gを超え140m2/g未満、かつジエン系ゴム100重量部に対するシリカX,Yの配合量をx,y重量部とするとき、x/7<y≦xの関係を満たすことを特徴とする。

Description

タイヤ用ゴム組成物、空気入りタイヤ
 本発明は、低転がり抵抗性、ウェットグリップ性及び耐摩耗性を従来レベルよりも向上するようにしたタイヤ用ゴム組成物及び空気入りタイヤに関する。
 近年、乗用車用空気入りタイヤには、JATMA(Japan Automobile Tyre Manufacturers Association)によるラベリング(表示方法)制度が開始され、低転がり抵抗性とウェットグリップ性をより高次元で両立させることが求められている。特にウェットグリップ性に対する要求レベルは極めて高く、ラベリング制度に基づくウェットグリップ性の等級aを満たす空気入りタイヤは未だ開発されていなかった。また同時にタイヤ寿命を長くするため耐摩耗性を改良することが求められている。
 従来、低転がり抵抗性及びウェットグリップ性のバランスを改善するため、空気入りタイヤのトレッド部を構成するゴム組成物にシリカを配合することが知られている。しかしシリカはその表面にシラノール基を有し凝集しやすく、またジエン系ゴムとの親和性が乏しいため分散性が不十分になることがあり、その場合ゴム組成物の損失正接(tanδ)等の動的粘弾性特性を改質する効果が十分に得られないという問題があった。またシリカはカーボンブラックに比べ補強性が小さく耐摩耗性が不足することがあり分散性が悪いと耐摩耗性が更に低くなることが問題であった。
 このため特許文献1は、末端をポリオルガノシロキサン等で変性した末端変性溶液重合スチレンブタジエンゴムにシリカを配合したゴム組成物によりシリカの分散性を改良することを提案している。このゴム組成物は転がり抵抗、ウェットグリップ性及び耐摩耗性を改良する効果が認められるものの、需要者が低転がり抵抗性、ウェットグリップ性及び耐摩耗性の向上に期待する要求レベルはより高く、これらの性能のバランスを一層改善することが求められていた。
日本特開2009-91498号公報
 本発明の目的は、低転がり抵抗性、ウェットグリップ性及び耐摩耗性を従来レベル以上に向上するようにしたタイヤ用ゴム組成物及び空気入りタイヤを提供することにある。
 上記目的を達成する本発明のタイヤ用ゴム組成物は、ビニル単位含有量が25重量%以上、ガラス転移温度が-50℃以下の末端変性溶液重合スチレンブタジエンゴム(変性S-SBR)を5~50重量%含むジエン系ゴム100重量部に対し、軟化点が100℃以上の芳香族変性テルペン樹脂を2~50重量部、2種類のシリカX及びシリカYを合計で60~130重量部配合してなり、前記変性S-SBRの官能基がシリカ表面のシラノール基と反応性があり、前記X及びシリカY並びに任意に配合されるカーボンブラックを含む補強性充填剤の総量に対するシリカの比率が85重量%以上であり、前記シリカXの窒素吸着比表面積が140m2/g以上、前記シリカYの窒素吸着比表面積が100m2/gを超え140m2/g未満であり、かつ前記ジエン系ゴム100重量部に対するシリカXの配合量をx重量部、シリカYの配合量をy重量部とするとき、x/7<y≦xの関係を満たすことを特徴とする。
 また、本発明の空気入りタイヤは、上記タイヤ用ゴム組成物を使用したものである。
 本発明のタイヤ用ゴム組成物は、ビニル単位含有量が25重量%以上、ガラス転移温度が-50℃以下でシラノール基と反応性がある官能基を有する変性S-SBRを5~50重量%含むジエン系ゴムに、軟化点100℃以上の芳香族変性テルペン樹脂を2~50重量部、上述した特定の粒子性状を有する2種類のシリカX及びYの配合量を限定し、かつ補強性充填剤の総量に対するシリカ比率を85重量%以上になるように配合したので、シリカの分散性を改良し低転がり抵抗性、ウェットグリップ性及び耐摩耗性を従来レベル以上に向上することができる。
 前記変性S-SBRの官能基としては、ヒドロキシル基が好ましく、シリカ表面のシラノール基と反応性が優れ、シリカの分散性を改良することができる。
 本発明のタイヤ用ゴム組成物を使用した空気入りタイヤは、低転がり抵抗性、ウェットグリップ性及び耐摩耗性を従来レベル以上に向上することができる。
本発明の実施例、比較例の各組成物の配合、評価を示す図である。 本発明の比較例の各組成物の配合、評価を示す図である。 本発明の実施例、比較例の各組成物の配合、評価を示す図である。 本発明の実施例、比較例の各組成物に用いられる共通配合成分を示す図である。
 本発明のタイヤ用ゴム組成物において、ゴム成分はジエン系ゴムからなる。ジエン系ゴム100重量%中、5~50重量%が末端変性溶液重合スチレンブタジエンゴム(以下、「変性S-SBR」という。)である。変性S-SBRは、ガラス転移温度(以下「Tg」という。)が-50℃以下、好ましくは-80~-50℃である。変性S-SBRのTgが-50℃より高いと、耐摩耗性を十分に改良することができない。なお変性S-SBRのTgは、ASTM(American Society of Testing and Materials) D3418-82に基づき、示差走査熱量測定(DSC)により測定する。また、変性S-SBRが油展品であるときは、油展成分(オイル)を含まない状態における変性S-SBRのTgとする。
 変性S-SBRは、ビニル単位含有量が25重量%以上、好ましくは30~50重量%である。例えば、25~30重量%、30~43重量%、43~50重量%である。変性S-SBRのビニル単位含有量が25重量%未満であるとシリカとの親和性が不足する結果、シリカとの反応性が乏しく、また耐摩耗性を十分に改良することができない。ビニル単位含有量の上限は、特に制限されるものではないが、例えば変性S-SBRのTgを-50℃以下にするため、好ましくは50重量%以下にするとよい。なお変性S-SBRのビニル単位含有量は赤外分光分析(ハンプトン法)により測定するものとする。
 本発明において、変性S-SBRは、その分子末端の両方又は片方をシリカ表面のシラノール基と反応性を有する官能基で変性した溶液重合スチレンブタジエンゴムである。シラノール基と反応する官能基としては、好ましくはヒドロキシル基含有ポリオルガノシロキサン構造、アルコキシシリル基、ヒドロキシル基、アルデヒド基、カルボキシル基、アミノ基、イミノ基、エポキシ基、アミド基、チオール基、エーテル基から選ばれる少なくとも1種が挙げられる。なかでもヒドロキシル基がより好ましい。
 変性S-SBRの含有量は、ジエン系ゴム100重量%中5~50重量%、好ましくは10~30重量%にする。例えば、ジエン系ゴム100重量%中、5~10重量%、10~17重量%、17~30重量%、30~50重量%にする。変性S-SBRの含有量が5重量%未満であるとシリカの分散性が不足しウェットグリップ性及び耐摩耗性を十分に改良することができない。また変性S-SBRの含有量が50重量%を超えると転がり抵抗が却って悪化する。
 本発明において、ジエン系ゴムは変性S-SBRを除く他のジエン系ゴムを50~95重量%、好ましくは70~90重量%含有する。他のジエン系ゴムとしては、例えば天然ゴム、イソプレンゴム、ブタジエンゴム、変性されていない溶液重合又は乳化重合スチレンブタジエンゴム、上述した変性S-SBR以外の末端変性溶液重合スチレンブタジエンゴム、ブチルゴム、イソブチレン/p-メチルスチレン共重合体ゴムの臭素化物、エチレン-プロピレン-ジエンゴム等を例示することができる。なかでも天然ゴム、ブタジエンゴム、乳化重合スチレンブタジエンゴム、未変性の溶液重合スチレンブタジエンゴム、上述した変性S-SBR以外の末端変性溶液重合スチレンブタジエンゴム、イソブチレン/p-メチルスチレン共重合体ゴムの臭素化物が好ましい。なお変性S-SBR以外の末端変性溶液重合スチレンブタジエンゴムとは、ビニル単位含有量が25重量%以上、ガラス転移温度が-50℃以下、シラノール基と反応性を有する官能基を有することの内、少なくとも1つを満たさない末端変性溶液重合スチレンブタジエンゴムをいう。変性S-SBR以外の末端変性溶液重合スチレンブタジエンゴムは、ジエン系ゴム100重量%中、例えば25~33重量%、33~53重量%、53~66重量%、66~73重量%、73~90重量%、90~95重量%含有する。
 本発明において、芳香族変性テルペン樹脂を配合することにより、低転がり抵抗性及びウェットグリップ性のバランスを向上すること、とりわけウェットグリップ性を向上することができる。芳香族変性テルペン樹脂としては、軟化点が100℃以上、好ましくは100~130℃であるものを配合する。例えば、100~125℃、125~130℃であるものを配合する。芳香族変性テルペン樹脂の軟化点が100℃未満であると、ウェットグリップ性を改良する効果が得られなくなる。なお芳香族変性テルペン樹脂の軟化点はJIS(Japanese Industrial Standards) K6220-1に基づき測定するものとする。
 本発明のタイヤ用ゴム組成物に配合する芳香族変性テルペン樹脂としては、例えばα-ピネン、βピネン、ジペンテン、リモネン、カンフェンなどのテルペン類とスチレン、α-メチルスチレン、ビニルトルエン、フェノール、インデンなどの芳香族ビニル化合物とを共重合させて得られる芳香族変性テルペン樹脂を例示することができる。芳香族変性テルペン樹脂としては、例えばヤスハラケミカル社製YSレジンTO-125,同TO-115,同TO-105,同TR-105などの市販品を用いることができる。
 芳香族変性テルペン樹脂の配合量は、ジエン系ゴム100重量部に対し2~50重量部、好ましくは5~50重量部にする。例えば、2~7.5重量部、5~10重量部、10~15重量部、15~50重量部にする。芳香族変性テルペン樹脂の配合量が2重量部未満では、低転がり抵抗性及びウェットグリップ性のバランスを十分に高くすることができない。また、芳香族変性テルペン樹脂の配合量が50重量部を超えると、硬度が柔らかくなりすぎるなど所定の性能が得られず、また耐摩耗性が低下する。
 本発明のタイヤ用ゴム組成物は、窒素吸着比表面積が140m2/g以上であるシリカX、及び窒素吸着比表面積が100m2/gを超え140m2/g未満であるシリカYという2種類のシリカX,Yを配合する。シリカX,Yを配合することによりゴム組成物の発熱性を抑制し、タイヤにしたときの転がり抵抗を低減すると共にウェットグリップ性及び耐摩耗性を向上可能にする。
 本発明で使用するシリカXは、窒素吸着比表面積が140m2/g以上、好ましくは150~230m2/g、より好ましくは150m2/g以上185m2/g未満である。例えば、140~150m2/g、150~160m2/g、160~180m2/g、180~185m2/g、185~220m2/g、220~230m2/gである。シリカXを配合することにより、ウェットグリップ性及び耐摩耗性を高いレベルで確保することができる。シリカXの窒素吸着比表面積が140m2/g未満であると、ウェットグリップ性及び耐摩耗性が不足する。
 またシリカYは、窒素吸着比表面積が100m2/gを超え140m2/g未満、好ましくは100m2/gを超え130m2/g以下、より好ましくは105~130m2/gである。例えば、100m2/gを超え105m2/g以下、105~110m2/g、110~125m2/g、125~130m2/g、130m2/g以上140m2/g未満である。粒子径が比較的大きいシリカYを配合することにより、特に、発熱性を小さくしタイヤにしたときの転がり抵抗を低減することができる。シリカYの窒素吸着比表面積が100m2/g未満であると、ウェットグリップ性を改良することができない。またシリカYの窒素吸着比表面積が140m2/g以上であると、転がり抵抗を低減する作用が十分に得られない。なお、シリカX及びYの窒素吸着比表面積はASTM D3037-81のBET法に準拠して求めるものとする。
 本発明において、ジエン系ゴム100重量部に対するシリカXの配合量をx重量部、シリカYの配合量をy重量部にするとき、シリカX及びYの合計量(x+y)を60~130重量部、好ましくは80~130重量部にする。例えば、60~70重量部、70~80重量部、80~130重量部にする。シリカのX及びYの合計量(x+y)が60重量部未満であると、低転がり抵抗性及びウェットグリップ性のバランスを十分に高くすることができない。シリカのX及びYの合計量(x+y)が130重量部を超えるとゴム粘度が増大し加工性が悪化する。また耐摩耗性を十分に確保することができない上に、転がり抵抗性能が大きく悪化する。
 また、シリカXの配合量x及びシリカYの配合量yは、x/7<y≦xの関係を満たすことが必要である。例えば、x/7≦y≦x/6.3、x/6.3≦y≦x/6、x/6≦y≦x/5、x/5≦y≦xの関係を満たすことが必要である。シリカYの配合量y(重量部)がシリカXの配合量x(重量部)の7分の1以下(x/7以下)であると低転がり抵抗性及びウェットグリップ性のバランスを改良することができない。またシリカYの配合量y(重量部)がシリカXの配合量x(重量部)を超えると、ウェットグリップ性及び耐摩耗性が悪化する。
 本発明のゴム組成物は、シリカ以外の他の補強性充填剤を配合することができる。他の補強性充填剤としては、例えばカーボンブラック、クレー、タルク、炭酸カルシウム、マイカ、水酸化アルミニウム等を例示することができる。なかでもカーボンブラックを必ず配合することにより、ゴムを補強しドライグリップ性能及び耐摩耗性を確保することができる。他の補強性充填剤の配合量は、ジエン系ゴム100重量部に対し0~19.5重量部にする。
 シリカ及びカーボンブラック等を含む補強性充填剤の総量100重量%中のシリカの比率は85重量%以上、好ましくは87~100重量%にする。例えば、85~87.5重量%、87.5~88.9重量%、88.9~90重量%、90~100重量%にする。シリカの比率が85重量%未満であると、低転がり抵抗性及びウェットグリップ性のバランスを改良することができない。ここでシリカ以外の他の補強性充填剤の配合量は、補強性充填剤の総量100重量%中のシリカ比率が85重量%以上であること、及びジエン系ゴム100重量部に対するシリカ配合量が60~130重量部であることから決められる。
 本発明で使用するシリカX及びYは、上述した特性を有するシリカであればよく、製品化されたもののなかから適宜選択することができる。また通常の方法で上述した特性を有するように製造してもよい。シリカの種類としては、例えば湿式法シリカ、乾式法シリカあるいは表面処理シリカなどを使用することができる。
 本発明のゴム組成物において、シリカX,Yと共にシランカップリング剤を配合することが好ましく、シリカの分散性を向上しスチレンブタジエンゴムに対する補強性をより高くすることができる。シランカップリング剤は、シリカ配合量に対して好ましくは3~15重量%、より好ましくは5~12重量%配合するとよい。シランカップリング剤がシリカ重量の3重量%未満の場合、シリカの分散性を向上する効果が十分に得られないことがある。また、シランカップリング剤が15重量%を超えると、シランカップリング剤同士が縮合してしまい、所望の効果が得られないことがある。
 シランカップリング剤としては、特に制限されるものではないが、硫黄含有シランカップリング剤が好ましく、例えばビス-(3-トリエトキシシリルプロピル)テトラサルファイド、ビス(3-トリエトキシシリルプロピル)ジサルファイド、3-トリメトキシシリルプロピルベンゾチアゾールテトラサルファイド、γ-メルカプトプロピルトリエトキシシラン、3-オクタノイルチオプロピルトリエトキシシラン及びこれらの誘導体等を例示することができる。誘導体としては、例えばNXT-Z(モメンティブパフォーマンス社製)が挙げられる。
 タイヤ用ゴム組成物には、上述した充填剤以外にも、加硫又は架橋剤、加硫促進剤、老化防止剤、可塑剤、加工助剤などのタイヤ用ゴム組成物に一般的に使用される各種添加剤を配合することができ、かかる添加剤は一般的な方法で混練してゴム組成物とし、加硫又は架橋するのに使用することができる。これらの添加剤の配合量は本発明の目的に反しない限り、従来の一般的な配合量とすることができる。このようなゴム組成物は、公知のゴム用混練機械、例えば、バンバリーミキサー、ニーダー、ロール等を使用して、上記各成分を混合することによって製造することができる。
 本発明のタイヤ用ゴム組成物は、空気入りタイヤ、特にタイヤトレッド部に好適に使用することができる。このゴム組成物を使用した空気入りタイヤは、耐摩耗性が優れ、転がり抵抗が小さく燃費性能が優れることに加え、ウェットグリップ性が優れ、JATMAのラベリング制度に基づくウェットグリップ性の等級aに相当する性能を有する。
 以下、実施例によって本発明を更に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
 図4に示す配合剤を共通配合とし、図1~3に示す配合からなる25種類のタイヤ用ゴム組成物(実施例1~9、比較例1~16)を、硫黄、加硫促進剤を除く成分を1.8Lの密閉型ミキサーで5分間混練し放出したマスターバッチに、硫黄、加硫促進剤を加えてオープンロールで混練することにより調製した。なお、図1~3中、変性S-SBR1、未変性SBRは37.5重量部の油展オイルを含むため、配合量の欄に実際の配合量と共に、括弧内に油展オイルを除いたそれぞれのSBR正味の配合量を示した。またアロマオイルの配合量は、ゴム組成物中の総オイル量及び/又はゴム硬度が対比可能なレベルになるように適宜調節した。シリカとカーボンブラックの総量に対するシリカの比率を「シリカ比率」の欄に示した。なお図4に記載した配合剤の量は、図1~3に記載したジエン系ゴム100重量部(正味のゴム量)に対する重量部で示した。
 得られた25種類のタイヤ用ゴム組成物について、下記に示す方法でtanδ(60℃)を測定し転がり抵抗の指標とした。
   tanδ(60℃)
 得られた25種類のタイヤ用ゴム組成物を、所定形状の金型中で、160℃、25分間プレス加硫して加硫ゴムサンプルを作製した。得られた加硫ゴムサンプルのtanδ(60℃)を、東洋精機製作所社製粘弾性スペクトロメーターを用いて、初期歪み10%、振幅±2%、周波数20Hzの条件下で、温度60℃の条件で測定した。得られた結果は、比較例1の値の逆数を100とする指数として、図1~3の「転がり抵抗」の欄に示した。転がり抵抗の指数が大きいほどtanδ(60℃)が小さく低発熱で、タイヤにしたときの転がり抵抗が低く、燃費性能が優れることを意味する。
 次に、タイヤサイズが205/55R16の空気入りタイヤを、上述した25種類のタイヤ用ゴム組成物をトレッド部に使用して4本ずつ製作した。得られた25種類の空気入りタイヤのウェットグリップ性を下記に示す方法により評価した。
   ウェットグリップ性
 得られた空気入りタイヤをリムサイズ6.5Jのホイールに組付け、2.0リットルクラスの試験車両に装着し、EU規則 ウェットグリップ グレーディング試験法(TEST METHOD FOR TYRE WET GRIP GRADING (C1 TYPES))に基づき測定した。得られた結果は、比較例1の値を100とする指数として、図1~3の「ウェット性能」の欄に示した。ウェット性能の指数が大きいほどウェットグリップ性が優れていることを意味する。
 なお、図1~3において使用した原材料の種類を下記に示す。
・変性S-SBR1:末端にヒドロキシル基を有する溶液重合スチレンブタジエンゴム、ビニル単位含有量が43重量%、Tgが-27℃、ゴム成分100重量部に対しオイル分37.5重量部を含む油展品、旭化成ケミカルズ社製タフデン E581
・変性S-SBR2:末端にヒドロキシル基を有する溶液重合スチレンブタジエンゴム、ビニル単位含有量が31重量%、Tgが-63℃、非油展品、日本ゼオン社製Nipol NS612
・未変性SBR:未変性の溶液重合スチレンブタジエンゴム、ビニル単位含有量が36重量%、Tgが-55℃、ゴム成分100重量部に対しオイル分37.5重量部を含む油展品、旭化成ケミカルズ社製タフデン1335
・BR:ブタジエンゴム、日本ゼオン社製Nipol BR1220
・NR:天然ゴム、SIR-20
・シリカX1:ローディア社製Zeosil 1165MP、窒素吸着比表面積が160m2/g
・シリカX2:ローディア社製Zeosil 195GR、窒素吸着比表面積が180m2/g
・シリカX3:ローディア社製Zeosil 200MP、窒素吸着比表面積が220m2/g
・シリカY1:ローディア社製Zeosil 115GR、窒素吸着比表面積が110m2/g
・シリカY2:デグサ社製Ultrasil 5000GR、窒素吸着比表面積が125m2/g
・シリカZ:デグサ社製Ultrasil 360、窒素吸着比表面積が50m2/g
・カーボンブラック:キャボットジャパン社製ショウブラックN234
・シランカップリング剤:硫黄含有シランカップリング剤、エボニクデグサ社製Si69
・変性テルペン樹脂1:芳香族変性テルペン樹脂、ヤスハラケミカル社製YSレジンTO-125、軟化点125℃
・変性テルペン樹脂2:芳香族変性テルペン樹脂、ヤスハラケミカル社製YSレジンTO-85、軟化点85℃
・アロマオイル:昭和シェル石油社製エキストラクト4号S
 図4において使用した原材料の種類を下記に示す。
・酸化亜鉛:正同化学工業社製酸化亜鉛3種
・ステアリン酸:千葉脂肪酸社製工業用ステアリン酸N
・老化防止剤:精工化学社製オゾノン6C
・硫黄:鶴見化学工業社製金華印油入微粉硫黄
・加硫促進剤1:大内新興化学工業社製ノクセラーCZ-G
・加硫促進剤2:フレキシス社製PERKACIT DPG
 図1~3から明らかなように実施例1~9のタイヤ用ゴム組成物は、低転がり抵抗性(60℃のtanδ)、及びウェットグリップ性が維持・向上することが確認された。
 比較例2のゴム組成物は、実施例3の変性S-SBR2の代わりに未変性S-SBRを配合したのでウェットグリップ性が劣る。
 比較例3のゴム組成物は、実施例3の変性S-SBR2の代わりにブタジエンゴムを配合したのでウェットグリップ性が劣る。
 比較例4のゴム組成物は、実施例3の変性S-SBR2を配合せずに、変性S-SBRとして変性S-SBR1のみを配合したので、転がり抵抗性及び耐摩耗性が劣る。
 比較例5のゴム組成物は、変性S-SBR2の配合量が5重量%未満であるので、転がり抵抗性及び耐摩耗性が劣る。
 比較例6のゴム組成物は、変性S-SBR2の配合量が50重量%を超えるのでウェットグリップ性能が悪化する。
 比較例7のゴム組成物は、芳香族変性テルペン樹脂2の軟化点が100℃未満であるのでウェットグリップ性能が悪化する。
 比較例8のゴム組成物は、シリカYを配合せず、かつシリカ比率が85重量%未満であるので、転がり抵抗及びウェットグリップ性を改良することができない。
 比較例9のゴム組成物は、シリカYを配合していないので転がり抵抗が悪化する。
 比較例10のゴム組成物は、シリカYの配合量yがシリカXの配合量xの1/7以下であるので、転がり抵抗を改良することができない。
 比較例11のゴム組成物は、シリカYの配合量yがシリカXの配合量xを超えるのでウェットグリップ性及び耐摩耗性が劣る。
 比較例12のゴム組成物は、シリカX及びYの合計量(x+y)が60重量部未満であるので、ウェット性能が改善できないばかりか、転がり抵抗が大きく悪化する。
 比較例13のゴム組成物は、シリカX及びYの合計量(x+y)が130重量部を超えるので、ウェット性能は改善できるが、転がり抵抗及び耐摩耗性が悪化する。
 図3から明らかなように、比較例14のゴム組成物は、シリカYの代わりに、窒素吸着比表面積が100m2/g以下のシリカZを配合したので、耐摩耗性が悪化する。
 比較例15のゴム組成物は、シリカXを使用せずに、窒素吸着比表面積が140m2/g未満の2種類のシリカ(シリカY2及びシリカZ)を配合したので、ウェットグリップ性能及び耐摩耗性が悪化する。
 比較例16のゴム組成物は、シリカYを使用せずに、窒素吸着比表面積が140m2/g以上の2種類のシリカ(シリカX1及びシリカX3)を配合したので、転がり抵抗性が悪化する。

Claims (4)

  1.  ビニル単位含有量が25重量%以上、ガラス転移温度が-50℃以下の末端変性溶液重合スチレンブタジエンゴム(変性S-SBR)を5~50重量%含むジエン系ゴム100重量部に対し、
     軟化点が100℃以上の芳香族変性テルペン樹脂を2~50重量部、
     2種類のシリカX及びシリカYを合計で60~130重量部配合してなり、
     前記変性S-SBRの官能基がシリカ表面のシラノール基と反応性があり、
     前記シリカX及びシリカY並びに任意に配合されるカーボンブラックを含む補強性充填剤の総量に対するシリカの比率が85重量%以上であり、
     前記シリカXの窒素吸着比表面積が140m2/g以上、
     前記シリカYの窒素吸着比表面積が100m2/gを超え140m2/g未満であり、かつ
     前記ジエン系ゴム100重量部に対するシリカXの配合量をx重量部、シリカYの配合量をy重量部とするとき、x/7<y≦xの関係を満たすことを特徴とするタイヤ用ゴム組成物。
  2.  前記変性S-SBRの官能基がヒドロキシル基であることを特徴とする請求項1に記載のタイヤ用ゴム組成物。
  3.  前記ジエン系ゴムは、さらに、ガラス転移温度が-50℃を超える末端変性溶液重合スチレンブタジエンゴムを25~95重量%含む請求項1または2に記載のタイヤ用ゴム組成物。
  4.  請求項1から3のいずれかに記載のタイヤ用ゴム組成物を使用した空気入りタイヤ。
PCT/JP2013/062066 2012-04-24 2013-04-24 タイヤ用ゴム組成物、空気入りタイヤ WO2013161876A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380019668.4A CN104245817B (zh) 2012-04-24 2013-04-24 轮胎用橡胶组合物、充气轮胎
KR1020147030345A KR101508964B1 (ko) 2012-04-24 2013-04-24 타이어용 고무 조성물, 공기입 타이어
US14/397,161 US9284439B2 (en) 2012-04-24 2013-04-24 Tire rubber composite and pneumatic tire
DE112013002176.5T DE112013002176B9 (de) 2012-04-24 2013-04-24 Kautschukzusammensetzung für Reifen, vulkanisiertes Produkt und dessen Verwendung in einem Luftreifen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-098775 2012-04-24
JP2012098775A JP5376008B2 (ja) 2012-04-24 2012-04-24 タイヤ用ゴム組成物

Publications (1)

Publication Number Publication Date
WO2013161876A1 true WO2013161876A1 (ja) 2013-10-31

Family

ID=49483184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062066 WO2013161876A1 (ja) 2012-04-24 2013-04-24 タイヤ用ゴム組成物、空気入りタイヤ

Country Status (6)

Country Link
US (1) US9284439B2 (ja)
JP (1) JP5376008B2 (ja)
KR (1) KR101508964B1 (ja)
CN (1) CN104245817B (ja)
DE (1) DE112013002176B9 (ja)
WO (1) WO2013161876A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106459516A (zh) * 2014-04-30 2017-02-22 横滨橡胶株式会社 轮胎胎面用橡胶组合物
US10087314B2 (en) * 2014-12-26 2018-10-02 Compagnie Generale Des Etablissements Michelin Functionalized rubber composition
US10407517B2 (en) * 2014-08-27 2019-09-10 The Yokohama Rubber Co., Ltd. Rubber composition for tires and pneumatic tire
JP2020059769A (ja) * 2018-10-05 2020-04-16 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
US10654993B2 (en) * 2015-11-30 2020-05-19 Bridgestone Americas Tire Operations, Llc Rubber composition containing a blend of silicas and related processes for improving wear
US10669408B2 (en) 2016-05-10 2020-06-02 The Yokohama Rubber Co., Ltd. Rubber composition and pneumatic tire using same
US10703828B2 (en) * 2014-08-27 2020-07-07 The Yokohama Rubber Co., Ltd. Rubber composition for tires and pneumatic tire
JP2023150542A (ja) * 2022-03-31 2023-10-16 横浜ゴム株式会社 タイヤ用ゴム組成物
US12017479B2 (en) 2018-08-20 2024-06-25 he Yokohama Rubber Co., LTD. Pneumatic tire

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2995609B1 (fr) * 2012-07-25 2014-11-28 Michelin & Cie Pneumatique ayant une adherence sur sol mouille amelioree
JPWO2016167289A1 (ja) * 2015-04-14 2018-02-08 横浜ゴム株式会社 ゴム組成物及びタイヤ
WO2017077712A1 (ja) * 2015-11-05 2017-05-11 株式会社ブリヂストン ゴム組成物およびタイヤ
US10711121B2 (en) 2016-01-19 2020-07-14 Bridgestone Corporation Rubber composition and tire
CN108699298B (zh) * 2016-02-25 2021-04-06 住友橡胶工业株式会社 橡胶组合物和充气轮胎
JP6593250B2 (ja) * 2016-05-12 2019-10-23 横浜ゴム株式会社 タイヤ用ゴム組成物
CN109153824A (zh) * 2016-06-01 2019-01-04 株式会社普利司通 橡胶组合物和轮胎
WO2018056382A1 (ja) * 2016-09-26 2018-03-29 株式会社ブリヂストン ゴム組成物、及びタイヤ
JP6897080B2 (ja) * 2016-12-09 2021-06-30 住友ゴム工業株式会社 ゴム組成物及び空気入りタイヤ
FR3060452A1 (fr) * 2016-12-20 2018-06-22 Compagnie Generale Des Etablissements Michelin Pneumatique pour vehicule portant des lourdes charges comprenant une nouvelle bande de roulement
JP6384568B1 (ja) * 2017-05-16 2018-09-05 横浜ゴム株式会社 空気入りタイヤ
US11608425B2 (en) * 2017-10-05 2023-03-21 The Yokohama Rubber Co., Ltd. Rubber composition for tire, and pneumatic tire
JP6983324B2 (ja) 2017-12-26 2021-12-17 株式会社ブリヂストン トレッド組成物及びそれを使用して製造されたタイヤ
JP6838587B2 (ja) * 2018-08-22 2021-03-03 住友ゴム工業株式会社 トレッド用ゴム組成物及び空気入りタイヤ
US10767034B2 (en) * 2018-09-04 2020-09-08 The Goodyear Tire & Rubber Company Pneumatic tire
CN112409662B (zh) * 2020-11-16 2023-12-22 四川轮胎橡胶(集团)股份有限公司 一种用于制备混炼胶的组合物、混炼胶及其制备方法、轮胎
WO2022124147A1 (ja) * 2020-12-09 2022-06-16 株式会社ブリヂストン ゴム組成物、ゴム組成物の製造方法及びタイヤ
JP7168029B1 (ja) 2021-05-12 2022-11-09 横浜ゴム株式会社 タイヤ用ゴム組成物
JPWO2022249766A1 (ja) * 2021-05-28 2022-12-01
JPWO2022249767A1 (ja) * 2021-05-28 2022-12-01
CN117203275A (zh) * 2021-07-07 2023-12-08 横滨橡胶株式会社 轮胎用橡胶组合物
WO2023281854A1 (ja) * 2021-07-07 2023-01-12 横浜ゴム株式会社 タイヤ用ゴム組成物
WO2023176831A1 (ja) * 2022-03-16 2023-09-21 横浜ゴム株式会社 タイヤ用ゴム組成物
JPWO2023176832A1 (ja) * 2022-03-16 2023-09-21
JP7397362B2 (ja) * 2022-03-16 2023-12-13 横浜ゴム株式会社 タイヤ用ゴム組成物
JP7473829B2 (ja) 2022-08-15 2024-04-24 横浜ゴム株式会社 タイヤ用ゴム組成物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101127A (ja) * 2006-10-19 2008-05-01 Sumitomo Rubber Ind Ltd ゴム組成物およびそれを用いたトレッドを有するタイヤ
JP2009138157A (ja) * 2007-12-10 2009-06-25 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
JP2009263587A (ja) * 2008-04-28 2009-11-12 Bridgestone Corp タイヤ
JP2011094012A (ja) * 2009-10-29 2011-05-12 Sumitomo Rubber Ind Ltd トレッド用ゴム組成物及び空気入りタイヤ
JP2011132307A (ja) * 2009-12-22 2011-07-07 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及び空気入りタイヤ
JP2013036025A (ja) * 2011-07-14 2013-02-21 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
WO2013057993A1 (ja) * 2011-10-18 2013-04-25 住友ゴム工業株式会社 スタッドレスタイヤ用ゴム組成物及びスタッドレスタイヤ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100228208B1 (ko) * 1997-10-13 1999-11-01 홍건희 타이어 트레드용 고무조성물
CA2312880A1 (en) * 1999-08-25 2001-02-25 The Goodyear Tire & Rubber Company Rubber composition containing two silicas
JP5245346B2 (ja) 2007-10-10 2013-07-24 日本ゼオン株式会社 共役ジエン重合体組成物の製造方法
JP5451125B2 (ja) * 2009-03-18 2014-03-26 住友ゴム工業株式会社 サイドウォール補強層用ゴム組成物及びタイヤ
JP4883172B2 (ja) * 2009-12-10 2012-02-22 横浜ゴム株式会社 タイヤ用ゴム組成物
JP4875757B2 (ja) 2010-01-13 2012-02-15 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP5316660B2 (ja) 2012-02-15 2013-10-16 横浜ゴム株式会社 タイヤトレッド用ゴム組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101127A (ja) * 2006-10-19 2008-05-01 Sumitomo Rubber Ind Ltd ゴム組成物およびそれを用いたトレッドを有するタイヤ
JP2009138157A (ja) * 2007-12-10 2009-06-25 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
JP2009263587A (ja) * 2008-04-28 2009-11-12 Bridgestone Corp タイヤ
JP2011094012A (ja) * 2009-10-29 2011-05-12 Sumitomo Rubber Ind Ltd トレッド用ゴム組成物及び空気入りタイヤ
JP2011132307A (ja) * 2009-12-22 2011-07-07 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及び空気入りタイヤ
JP2013036025A (ja) * 2011-07-14 2013-02-21 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
WO2013057993A1 (ja) * 2011-10-18 2013-04-25 住友ゴム工業株式会社 スタッドレスタイヤ用ゴム組成物及びスタッドレスタイヤ

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106459516B (zh) * 2014-04-30 2019-01-11 横滨橡胶株式会社 轮胎胎面用橡胶组合物
US10894871B2 (en) 2014-04-30 2021-01-19 The Yokohama Rubber Co., Ltd. Rubber composition for use in tire treads
CN106459516A (zh) * 2014-04-30 2017-02-22 横滨橡胶株式会社 轮胎胎面用橡胶组合物
US10703828B2 (en) * 2014-08-27 2020-07-07 The Yokohama Rubber Co., Ltd. Rubber composition for tires and pneumatic tire
US10407517B2 (en) * 2014-08-27 2019-09-10 The Yokohama Rubber Co., Ltd. Rubber composition for tires and pneumatic tire
US10087314B2 (en) * 2014-12-26 2018-10-02 Compagnie Generale Des Etablissements Michelin Functionalized rubber composition
US10654993B2 (en) * 2015-11-30 2020-05-19 Bridgestone Americas Tire Operations, Llc Rubber composition containing a blend of silicas and related processes for improving wear
US10669408B2 (en) 2016-05-10 2020-06-02 The Yokohama Rubber Co., Ltd. Rubber composition and pneumatic tire using same
US12017479B2 (en) 2018-08-20 2024-06-25 he Yokohama Rubber Co., LTD. Pneumatic tire
JP2020059769A (ja) * 2018-10-05 2020-04-16 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP7371323B2 (ja) 2018-10-05 2023-10-31 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP2023150542A (ja) * 2022-03-31 2023-10-16 横浜ゴム株式会社 タイヤ用ゴム組成物
JP7473825B2 (ja) 2022-03-31 2024-04-24 横浜ゴム株式会社 タイヤ用ゴム組成物

Also Published As

Publication number Publication date
DE112013002176B4 (de) 2017-12-07
CN104245817A (zh) 2014-12-24
US9284439B2 (en) 2016-03-15
JP5376008B2 (ja) 2013-12-25
DE112013002176B9 (de) 2018-03-15
KR101508964B1 (ko) 2015-04-07
US20150148447A1 (en) 2015-05-28
KR20140130568A (ko) 2014-11-10
CN104245817B (zh) 2015-11-25
DE112013002176T5 (de) 2015-01-15
JP2013227375A (ja) 2013-11-07

Similar Documents

Publication Publication Date Title
JP5376008B2 (ja) タイヤ用ゴム組成物
JP5234203B2 (ja) タイヤ用ゴム組成物
JP5737324B2 (ja) タイヤ用ゴム組成物
JP5999167B2 (ja) タイヤトレッド用ゴム組成物
JP5900036B2 (ja) タイヤトレッド用ゴム組成物
JP4294070B2 (ja) タイヤ用ゴム組成物
JP5569655B2 (ja) タイヤ用ゴム組成物、空気入りタイヤ
JP5894182B2 (ja) スタッドレスタイヤ用ゴム組成物及びスタッドレスタイヤ
JP5409188B2 (ja) スタッドレスタイヤ用ゴム組成物及びスタッドレスタイヤ
JP5321751B2 (ja) タイヤ用ゴム組成物、空気入りタイヤ、及びタイヤ用ゴム組成物の製造方法
US10808107B2 (en) Rubber composition for tire
KR20160111040A (ko) 타이어 트레드용 고무 조성물
JP7009768B2 (ja) ゴム組成物およびタイヤ
JP2016003274A (ja) ゴム組成物およびそれを用いた空気入りタイヤ
JP5582921B2 (ja) スタッドレスタイヤ用ゴム組成物及びスタッドレスタイヤ
JP5920544B2 (ja) タイヤ用ゴム組成物
EP3412716B1 (en) Rubber composition for tires
JP2019026773A (ja) タイヤ用ゴム組成物
JP7473825B2 (ja) タイヤ用ゴム組成物
JP2019077833A (ja) タイヤ用ゴム組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13782081

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14397161

Country of ref document: US

Ref document number: 112013002176

Country of ref document: DE

Ref document number: 1120130021765

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20147030345

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13782081

Country of ref document: EP

Kind code of ref document: A1